• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.55.2017.tde-03012017-104140
Documento
Autor
Nombre completo
Nelson Antonio Silva
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2016
Director
Tribunal
Mattos, Denise de (Presidente)
Libardi, Alice Kimie Miwa
Marzantowicz, Waclaw Boleslaw
Negreiros, Caio Jose Colletti
Pergher, Pedro Luiz Queiroz
Título en portugués
Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade
Palabras clave en portugués
Borsuk-Ulam
Bourgin-Yang
Esfera em cohomologia
Grafo de Reeb.
Length
Resumen en portugués
Bartsch (BARTSCH, 1993) introduziu uma teoria de índice cohomológico, conhecida como o length, para G-espaços, no qual G é um grupo de Lie compacto. Apresentamos o cálculo do length de G-espaços os quais são esferas de cohomologia e G = (Z2)k, (Zp)k ou (S1)k, k ≥ 1. Como consequências, obtemos um teorema de Borsuk-Ulam neste contexto e damos condições suficientes para a existência de aplicações G-equivariantes entre uma esfera de cohomologia e uma esfera de representação quando G = (Zp). Também, uma versão Bourgin-Yang do teorema de Borsuk-Ulam é apresentada. Como segunda parte desta tese, uma nova definição do grafo de Reeb R( f) de uma função suave f : MR com pontos críticos isolados, como um subcomplexo de M é dada. Para isto, um complexo 1-dimensional Γ (f ) mergulhado em M e equivalente por homotopia a R( f ) é construído. Como consequência, mostramos que para toda função f sobre uma variedade com grupo fundamental finito, o grafo de Reeb de f é uma árvore. Se π1(M) é um grupo abeliano, ou mais geralmente, um grupo amenable1, então R( f ) conterá no máximo um laço. Finalmente, é provado que o número de laços do grafo de Reeb de toda função sobre uma superfície Mg é estimado superiormente por g, o genus de Mg. Os resultados desta segunda parte estão publicados em (KALUBA; MARZANTOWICZ; SILVA, 2015).
Título en inglés
On G-maps between cohomology spheres and a representation of the Reeb Graph as a subcomplex of a manifold
Palabras clave en inglés
Borsuk-Ulam
Bourgin-Yang
Cohomology sphere
Length
Reeb Graph.
Resumen en inglés
Bartsch (BARTSCH, 1993) introduced a numerical cohomological index theory, known as the length, for G-spaces, where G is a compact Lie group. We present the length of G-spaces which are cohomology spheres and G = (Z2)k, (Zp)k or (S1)k, k ≥ 1. As consequences, we obtain a Borsuk-Ulam theorem in this context and we give a sucient condition for the existence of G-maps between a cohomological sphere and a representation sphere when G = (Zp)k. Also, a Bourgin-Yang version of the Borsuk-Ulam theorem is presented. As a second part of this thesis, a new definition of the Reeb graph R( f ) of a smooth function f : M → R with isolated critical points as a subcomplex of M is given. For that, a 1-dimensional complex Γ ( f ) embedded into M and homotopy equivalent to R( f ) is constructed. As consequence it is shown that for every function f on a manifold with finite fundamental group, the Reeb graph of f is a tree. If π 1 (M) is an abelian group, or more generally, an amenable group2, then R( f ) contais at most one loop. Finally, it is proved that the number of loops of the Reeb graph of every function on a surface Mg is estimated from above by g, the genus of Mg. The results of this second part is published in (KALUBA; MARZANTOWICZ; SILVA, 2015).
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-01-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.