Master's Dissertation
DOI
https://doi.org/10.11606/D.55.2019.tde-02122019-151205
Document
Author
Full name
Marcos Roberto Teixeira Primo
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1993
Supervisor
Committee
Cassago Junior, Herminio (President)
Baroni, Rosa Lucia Sverzut
Godoy, Sandra Maria Semensato de
Title in Portuguese
UM ESTUDO DE ALGUMAS CLASSES ESPECÍFICAS DE EQUAÇÕES DIFERENCIAIS RETARDADAS QUE SURGEM EM MODELOS BIOLÓGICOS
Keywords in Portuguese
Não disponível
Abstract in Portuguese
A equação diferencial com retardamento εx(t) = -x(t) + f(x(t - 1)) (0.1) é estudada para funções como f(x) = x3 - µx, f(x) = - µ[sen(x + 0) - sen (0)], f(x) = µxv e-x e f(x) = µx(1 - xz). Com estas funções, a equação (0.1) aparece em fenômenos biológicos. Sob algumas hipóteses em f, a equação (0.1) possue soluções periódicas que oscilam em torno de um ponto fixo x0 e que convergem para uma função do tipo "onda quadrada", quando ε → 0+. Nosso objetivo é dar alguns resultados que ajudam a verificação de tais hipóteses, e depois aplicá-los às específicas funções.
Title in English
Not available
Keywords in English
Not available
Abstract in English
The perturbed differential-delay equation εx(t) = -x(t) + f(x(t - 1)) (0.1) is studied for functions like f(x) = x3 - µx, f(x) = µ[sen(x + 0) - sen(0)], f(x) = µxv e-x and f(x) =µx(1 - xz). With these functions, such equation arises in biological phenomena. Under some hypotheses on f, the equation (0.1) has periodic solutions which oscillate about a fixed point x0 and converges to a function like a "square-wave" as ε → 0+. Our aim is to give some results that help in verifying these hipotheses, and then apply these results to the specific functions.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-02