• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Angelina Carrijo de Oliveira Ganancin Faria
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Jordão, Thaís (Presidente)
Bracciali, Cleonice Fatima
Peron, Ana Paula
Sant'Anna, Douglas Azevedo
Título em português
Ferramentas de Aproximação em Espaços Compactos 2-Homogêneos
Palavras-chave em português
Condição de Hölder
Decrescimento de sequências de autovalores
K-funcional
Módulo de suavidade fracionário
Raio de aproximação
Resumo em português
Neste trabalho apresentamos duas caracterizações para o K-funcional do tipo Peetre sobre os espaços compactos 2-homogêneos. Provamos a equivalência no sentido assintótico entre o módulo de suavidade de ordem fracionária e o K-funcional do tipo Peetre, e a equivalência deste último com o raio de aproximação de um operator multiplicativo definido para este propósito. Como consequência obtivemos a desigualdade de Marchaud, neste contexto. Estes resultados generalizam os equivalentes, e bem conhecidos, sobre o contexto esférico. As caracterizações foram aplicadas para mostrar que uma condição abstrata de Hölder, ou de diferenciabilidade de ordem finita, sobre núcleos que geram operadores integrais positivos, implica a obtenção de uma taxa de decrescimento polinomial para suas sequências de autovalores.
Título em inglês
Approximation Tools on Compact Two-Point Homogeneous Spaces
Palavras-chave em inglês
Decay of eigenvalue sequences
Fractional modulus of smoothness
Hölder condition
K-functional
Rate of approximation
Resumo em inglês
We prove two characterization for the Peetre type K-functional on M, a compact two-point homogeneous space. One in terms the rate of approximation of a family of multipliers operator defined to this purpose, and another in terms of the fractional moduli of smoothness. As a direct consequence of those we obtained the Marchaud inequality on this framework. These extend the well known results on the spherical setting. The characterizations are employed to show that an abstract Hölder condition or finite order of differentiability condition imposed on kernels generating certain operators implies a sharp decay rates for their eigenvalues sequences.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-10-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.