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RESUMO

ALVES, C. L. Aplicações de aprendizagem de máquina e redes complexas à neurociência.
2023. 211 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2023.

A mineração de dados e a descoberta de conhecimentos é uma área de estudo, com aplicações
em diferentes áreas, tais como na medicina, e seus métodos têm provado ser muito eficazes na
realização de diagnósticos automatizados, ajudando na tomada de decisões pelas equipes médicas.
Para além da utilização da extração de dados, os dados médicos podem ser representados por
redes complexas. Por exemplo, no caso do cérebro, as regiões corticais podem representar
vértices num gráfico e as ligações podem ser definidas através de atividades corticais. Assim,
podemos comparar a estrutura cerebral de pacientes saudáveis com a de pacientes com distúrbio
mental, a fim de definir métodos de diagnóstico e de obter conhecimentos sobre a forma como
a estrutura do cérebro está relacionada com mudanças comportamentais e neurológicas. O
presente trabalho visava desenvolver um modelo de previsão capaz de melhorar o diagnóstico
de doenças mentais como a esquizofrenia, a doença de Alzheimer e o transtorno do espectro
autista , utilizando séries temporais obtidas a partir do eletroencefalograma e da ressonância
magnética funcional. E, além disso, verificar se essa mesma metodologia é capaz de detectar
automaticamente alterações nas redes funcionais cerebrais induzidas pela ayahuasca e pela
N,N-Dimetiltriptamina, uma vez que os psicodélicos podem ter um potencial terapêutico para
algumas doenças mentais .

Em geral, o modelo preditivo desenvolvido para as doenças aqui estudadas foi superior ao encon-
trado na literatura. Quanto ao estudo dos psicodélicos, foram adquiridos novos conhecimentos
sobre os seus mecanismos. Além disso, a metodologia do presente trabalho determinou quais
medidas de redes complexas são mais eficazes na captura de alterações cerebrais, incluindo
novas métricas desenvolvidas pelo autor. E estas novas métricas foram fundamentais no estudo
do transtorno do espectro autista e das substâncias psicodélicas. Finalmente, a mesma metodo-
logia aqui aplicada pode ser útil na interpretação de séries temporais de eletroencefalograma
e ressonância magnética funcional de outras doenças e de sujeitos que consumiram outros
psicodélicos ou outros medicamentos (tais como antidepressivos) e podem ajudar a obter uma
compreensão detalhada nas alterações das redes funcionais cerebrais resultantes da administração
de medicamentos.

Palavras-chave: Aprendizado de máquina, Aprendizado profundo, Redes complexas, Doenças
neurológicas, psicodélicos, Eletroencefalograma, Ressonância magnética funcional.





ABSTRACT

ALVES, C. L. On the application of Machine Learning and Complex Networks to Neuros-
cience. 2023. 211 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

Data mining and knowledge discovery is a research area with applications in various fields,
such as medicine. Data mining methods have proven to be very effective in making automated
diagnoses and help medical teams in decision making. In addition to using data mining, medical
data can be represented by complex networks. In the case of the brain, for example, brain regions
can be represented as vertices of a graph and the neural activity between the regions define the
connection.

In this way, we can compare the brain structure of healthy patients with that of patients with
mental disorders to define diagnostic methods and gain insights into how brain structure is related
to behavioral and neurological changes.

The aim of the present work is to develop a predictive model that can improve the diagnosis
of mental disorders such as schizophrenia, Alzheimer’s disease, and autism using electroen-
cephalogram and functional magnetic resonance imaging data. In addition, it is to be tested
whether the same workflow is capable of automatically detecting the influence of neurally active
substances on functional changes in network structure. Because psychedelics are thought to
have therapeutic potential for some mental disorders, data from experiments with ayahuasca and
N,N-dimethyltryptamine were considered as examples.

In general, the predictive models developed for the diseases were not only able to automatically
detect the functional changes, but were also superior to the models presented in the literature.

Regarding the investigation of psychedelics, it could be shown that the same workflow is equally
suitable to automatically detect functional changes. Furthermore, by interpreting the models and
metrics, new insights into the mechanisms of action of the substances could be gained.

In addition, the present work determined which complex network measures are most effective in
detecting brain changes, including new metrics developed by the author. The new metrics proved
to be relevant to the studies of autism and psychedelics. It is likely that the methodology used
here can be applied to other diseases and substances (e.g., antidepressants) due to its flexibility
and adaptability to EEG and fMRI time series data.

Keywords: Machine learning, deep learning, Complex Networks, Neurological Diseases,
psychedelics, Electroencephalogram, Functional magnetic resonance imaging.
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35

CHAPTER

1
INTRODUCTION

“We dream the flight but we fear the height. To fly one needs to have the courage

to face the void. The flight can only happen in the void. The void is the space for

freedom, the absence of certainties. But that is what we fear: not having certainties.

That is why we change the flight for cages. Cages are the place where certainties

live"

— Fyodor Dostoyevsk, Brothers Karamazov

From these studies, MD (mainly depressive and anxiety disorders) has appeared in the
classification of the leading causes of DALY in the world (WHITEFORD et al., 2013; VIGO;
THORNICROFT; ATUN, 2016; BONADIMAN et al., 2017). For more details on the measures
used in this study, see Appendix A.

Overall, in the 2019 GBD (NAGHAVI et al., 2017), more than one billion people
worldwide have been affected by MD, representing about 16% of the world’s population (REHM;
SHIELD, 2019). This amount of the population can be seen in Figure 1, below is a map with the
percentage of people with MD around the world.

Furthermore, during the coronavirus pandemic, the number of reported cases of mental
illness in India, for example, increased by 20% (LOIWAL, 2020; KUMAR; NAYAR, 2021),
affecting the mental health of individuals in many other nations (LIU et al., 2020; EZPELETA et

al., 2020; BÄUERLE et al., 2020) due to social isolation and fear in the face of a worldwide
epidemic.

Moreover, most mental illnesses are associated with an increased risk of attempted
suicide (HOERTEL et al., 2015). For example, in (CAVANAGH et al., 2003), through analysis
of medical repositories of autopsy studies of suicide-related deaths, they suggest that up to 90%
of suicides occur due to underlying mental health or substance use disorder. In (FERRARI et al.,
2014), based on the review of several meta-analysis studies, the authors estimated that 68% of
suicides in China, Taiwan, and India were attributed to mental health problems and substance
use. In their estimations of the total attributable disease burden, the authors also concluded that



36 Chapter 1. Introduction

Figure 1 – The proportion of the population with MD in 2016 - Figure containing a proportion of the
population with any mental health disorder or substance use, including depression, anxiety,
bipolar, eating disorders, disorders related to alcohol or drug use, and schizophrenia. Due to
the broad and subjective diagnosis, the presented estimation uses a combination of sources, in-
cluding medical and national records, epidemiological data, research data, and meta-regression
models (WHITEFORD; FERRARI; DEGENHARDT, 2016; RITCHIE; ROSER, 2019).

mental health and substance use disorders accounted for 62% of total suicide DALYs.

One way of treating depression is by prescribing antidepressant drugs. In (CIPRIANI
et al., 2018), 21 antidepressant drugs were analyzed in different repositories, and in terms
of effectiveness, all antidepressants were more effective than placebo. However, in terms of
acceptability, it measures the proportion of patients who have withdrawn from treatment for
any reason (a recurring reason would be the side effects of the antidepressant medication 1),
only agomelatine and fluoxetine were associated with fewer withdrawals from treatment than
placebo. At the same time, clomipramine was worse than placebo (the measure for this study
was the Odds ratio2). Therefore, it is clear that a wrong diagnosis can lead to the prescription
of medications with significant side effects. Thus, a precise and accurate diagnosis of mental
illnesses is strongly recommended. In the following section, we describe the formal diagnosis of
mental diseases and their limitations.

1 In Brazil, all of these drugs are only sold through a prescription. They are psychotropic drugs, which
can cause dependence and bring many side effects and contraindications.

2 Odds ratio, is a measure that expresses risk and assesses the relationship between the chance of an
exposed individual to have the condition of interest, compared to the unexposed (FRANCISCO et al.,
2008).
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1.1 Limitations in the standard approaches for diagnosis
of mental disorders

According to the 2001 global health report (ORGANIZATION, 2001), the correct diag-
nosis of a mental illness is an essential requirement for adequate intervention at the individual
level and epidemiology and rigorous monitoring at the community level. The clinical diag-
nosis is based on diagnostic manuals like the Diagnostic and Statistical Manual of Mental

Disorders (DSM) and International Statistical Classification of Diseases and Related Health

Problems (10th Revision) (ICD-10), based on the presence of specific symptoms. However, this
practice has not been very effective in psychiatry because certain diseases have overlapping
symptoms (BORSBOOM; CRAMER, 2013). An example is a patient with hypothyroidism
(an endocrinological illness related to underacting thyroid) who may be misdiagnosed with
depression because of tiredness and fatigue, symptoms in both diseases. Other theoretical and
psychometric limitations are described in (BORSBOOM, 2008).

Since this standard diagnostic method is subjective (PONDÉ, 2018), it causes social
and mental damage to the patient, who often remains mistakenly treated and diagnosed for a
long time. An alternative way of conceptualizing mental disorders to these old latent models of
diagnosis is the network approach (JONES; HEEREN; MCNALLY, 2017; BORSBOOM, 2017),
as we describe as following.

1.2 Data-driven diagnosis of mental disorders
Since the first application of networks in Neuroscience, made by Watts and Strogatz

(WATTS; STROGATZ, 1998) for analyzing the nematode worm nervous system C. elegans, the
use of networks has enabled a better understanding of the organization of the brain (SPORNS,
2011; STAM, 2014). Network models have been providing insights into how structural and func-
tional connectivity of the human brain are related to cognitive symptoms of some mental diseases
(BASSETT; ZURN; GOLD, 2018). An increasing number of studies have focused on examining
possible functional disconnectivity affects the neurologic brain disorders (HEUVEL; POL, 2010),
including Autism Spectrum Disorders (ASD) (HERNANDEZ et al., 2015; WELCHEW et al.,
2005; PETERS et al., 2013), Attention-Deficit/Hyperactivity Disorder (ADHD) (QIAN et al.,
2018; CAO et al., 2014; MAZAHERI et al., 2010), SZ (CHENG et al., 2015; LIU et al., 2008;
SIGURDSSON et al., 2010; GARRITY et al., 2007; WANG et al., 2015), Alzheimer’s disease
(AD) (GREICIUS et al., 2004; SANZ-ARIGITA et al., 2010; FRANZMEIER et al., 2020),
dementia (CHASE, 2014; ROMBOUTS et al., 2009; HAFKEMEIJER; GROND; ROMBOUTS,
2012) and Major Depression (GREICIUS et al., 2007; KAISER et al., 2016; WISE et al., 2017;
HAMILTON et al., 2018).Thereat network approach to mental disorders has been considered
a more accurate alternative to latent diagnostic models (which, as previously described, has
limitations) (FRIED et al., 2017).
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Nevertheless, there is a vast number of methods to build networks based on functional
connectivity (BASTI et al., 2020) and choosing one of them is a challenge. An example is
connections of brain regions of interest are typically measured by Pearson Correlation (PC).
However, taking the average across voxels results in biased connectivity estimate (GEERLIGS;
HENSON et al., 2016); an alternative is Granger causality (GC), but these methods do not
perform well on typical functional magnetic resonance imaging (fMRI) data (KAUFMANN et

al., 2017).

Due to the increase in the volume of data related to the health area, such as medical
records and exams of patients, and hospital resources, there were greater applicability of Machine
Learning (ML) algorithms (HOSSEINI et al., 2018) mainly for medical diagnosis (SONG; JUNG;
CHUNG, 2019; MOZAFFARINYA et al., 2019; ILYASOVA et al., 2018; HOSSEINI et al.,
2018; KOH; TAN et al., 2011) in order to offer more accurate and automatic investigations of
several diseases (BELLAZZI; ZUPAN, 2008). Compared to traditional statistical techniques, this
approach has the advantage of not relying on prior assumptions (such as adequate distribution,
observation independence, absence of multicollinearity, and interaction problems). It is suited
to automatically analyze and capture complex non-linear relationships in data (LI et al., 2020;
RAJULA et al., 2020). As brain data are characterized by high complexity and highly correlated
brain regions, ML algorithms have been widely used to detect acute and permanent abnormalities
in the brain (FONG; SCHEIRER; COX, 2018; KRAGEL; LABAR, 2016; BOUTET et al., 2021).
On the other hand, ML needs more interpretability and a black-box nature that is an especially
disadvantageous general limitation when it comes to an understanding medical data (RUDIN,
2019; EKANAYAKE; MEDDAGE; RATHNAYAKE, 2022).

In recent years, new techniques have emerged to help interpret machine learning results.
Most notable is the SHapley Additive ExPlanations (SHAP) values method (LUNDBERG; LEE,
2017). This metric enables the identification and prioritization of features and can be used with
any machine learning algorithm (BOWEN; UNGAR, 2020; RODRÍGUEZ-PÉREZ; BAJORATH,
2019; SPADON et al., 2019). Furthermore, in this area of biomedical research, conventional
machine learning techniques have been used depending on a specialist with prior knowledge to
design the construction of a pattern recognition system (ESTEVA et al., 2019). However, the
space of characteristics of this type of learning deals with raw data scales badly and misses the
opportunity to discover new patterns (MIOTTO et al., 2017). An alternative approach is the
representation-based learning method capable of automatically discovering the representations
necessary to predict raw data (BENGIO; COURVILLE; VINCENT, 2013). In this context, an
alternative is to use deep learning, a set of algorithms with multiple levels of representation
obtained by the hierarchical composition of simple mathematical functions (each associated with
a layer) (LECUN; BENGIO; HINTON, 2015). Furthermore, Deep learning models have been
widely used for medical image analysis in different application domains (MUNIASAMY et al.,
2019), as diagnosing brain-related (PINAYA et al., 2016; BROSCH et al., 2014), heart (WANG
et al., 2017a; BERNARD et al., 2018) and cancer (XU et al., 2014; BYCHKOV et al., 2016;
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SCHAUMBERG; RUBIN; FUCHS, 2018) diseases.

1.3 Research Objective

This thesis aims to improve the methods of diagnosing mental illnesses and offer an
approach that tries to quantify the differences between healthy brains and people with different
types of mental illnesses, considering electroencephalogram (EEG) and fMRI data. The diseases
considered here were SZ, AD, and ASD.

For this purpose, network measures will be used, including new measures developed for
the authors related to network communities. To discriminate between the two classes (patient and
non-patient), machine learning algorithms will generate models (classification) to predict whether
a patient has a mental illness. In addition, it is intended to find out which network measures most
contribute to the model’s performance and how the diseases are correlated. Moreover, through
the use of the SHAP theoretic approach, it was intended to give a biological interpretation to the
ML model.

A second goal of this thesis is to apply the same workflow developed for diagnosing
mental diseases to EEG data considering subjects who had used ayahuasca and DMT. The aim
was to verify how these substances alter the brain since they have been used successfully in
treating some mental diseases. Recently, the interest in the medical use of psychedelics has
increased significantly. Only last year, in (PERKINS et al., 2021), it was identified that about
100 psychedelic clinical trials are currently being conducted worldwide. This shows an increase
in clinical trials compared to 43 assisted psychedelic therapy clinical trials conducted since 1999.

One example is the psychedelic 3,4-methylenedioxymethamphetamine (MDMA), which
is already in phase 3 clinical trials for the treatment of Post-Traumatic Stress Disorder (PTSD)
(MITCHELL et al., 2021) and major depression with positive results (ANDREWS; WRIGHT,
2022). Another notable example is psychedelic psilocybin, whose therapeutic use in the U.S. has
become a revolutionary therapy for treatment-resistant depression and major depressive disorder
(NICHOLS, 2020). These first promising results suggest that other psychedelic substances, such
as lysergic acid diethylamide (LSD) (MITCHELL et al., 2021), ibogaine hydrochloride, salvia
divinorum, 5-MeO-DMT, ayahuasca, and N,N-Dimethyltryptamine (DMT), which have been
less studied so far, should be investigated in more detail (SIEGEL et al., 2021). Therefore,
understanding how these drugs affect our brains is essential for new drug developments.

In summary, in this thesis, EEG and fMRI data are used to achieve the proposed goals,
and their time series are extracted and preprocessed. Each time series came from an area of
the brain, and through different correlation measures, we constructed the connectivity matrices.
These matrices generate networks where each node represents an area of the brain, and the
edges of these areas are connected. Finally, the connectivity matrix and the measures of complex
networks are used to feed several ML algorithms to verify which results in better performance,
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the best brain connections, and the best measures of complex networks found by the ML model.
Figure 2 contains the schema for the methodology used here.

1.4 Contributions of this thesis

The main contributions provided work are the following:

∙ Developed a predictive model workflow capable automatic diagnosing mental disorders.

∙ Detect changes in the functional network structure induced by DMT and ayahuasca using
ML to obtain new insights into the mechanisms of action of these psychedelics using ML
in combination with SHAP values.

∙ Determine which complex network measures are most effective for capturing brain changes
(in mental disorders and under the effect of psychedelic drugs).

∙ Advancing state of the art in the field of mental illness diagnosis.

1.5 Thesis organization

This monograph is organized as follows items:

∙ Chapter 2 - EEG functional connectivity and deep learning for automatic diagnosis
of brain disorders: Alzheimer’s disease and schizophrenia, containing a workflow
developed for EEG data from Alzheimer’s and schizophrenia patients using a deep learning
model and testing different correlation measures used to obtain the connectivity matrix, to
ascertain the best measure for each of these diseases and to improve the accuracy of their
diagnosis.

∙ Chapter 3- Application of machine learning and complex network measures to an
EEG dataset from ayahuasca experiments, containing a workflow developed for EEG
data from subjects who have used the psychedelic ayahuasca aiming to investigate how
this substance alters the functional connectivity of the brain.

∙ Chapter 4- Application of machine learning and complex network measures to an
EEG dataset from DMT experiments, containing a workflow developed for EEG data
from subjects who have used the psychedelic substance DMT intending to discover how
this substance causes changes in functional connectivity in the brain and which insights
into its mechanism of action can be inferred from them.

∙ Chapter 5- Analysis using fMRI data from ASD patients, containing a workflow
developed for fMRI data from patients with autism aimed at obtaining an ML algorithm



1.5. Thesis organization 41

EEG time series fMRI time series

Connectivity matrix

Complex network measure

ML

Best 
Brain complex network 

measure

Best 

connetions

(A)

(B)

(C)

(D)

Figure 2 – Scheme for methodology used- From the scheme, in (A), time series of EEG and fMRI data
where each time series belongs to a region of the brain (in the case of EEG data represents the
regions collected by the scalp, in Figure the 10-20 EEG system, and in the case of fMRI data
represents the regions of interest, in the Figure represented by Smith’s map). Correlating these
time series gives the connectivity matrix, depicted in Figure (B), by the connectivity matrix
obtained for the EEG database of the DMT experiments. From these matrices, networks are
generated (see Figure (C), the graph generated from the EEG data of the experiments using
DMT and the brain with the graph of connections to the fMRI database of patients with ASD).
From them, measures of complex networks are extracted (in Figure (C), illustrated by the
graph obtained from the EEG data of the ayahuasca experiments, depicting the measures of
closeness centrality and eigenvector centrality whose values for each node are illustrated in the
color bar). Thus, both the connectivity matrices and the complex network measures feed the
ML algorithms to verify the best complex network measures and brain connections (see Figure
in (D)).
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to improve the diagnosis of this disorder, including the best correlation measure, the
best measures of complex networks and the most important brain connections capable of
capturing the brain changes due to this disease.

∙ Chapter 6- Analysis of functional connectivity using machine learning and deep
learning in multimodal data from patients with Schizophrenia, applying the workflow
developed here for fMRI and EEG dataset in a multimodal fashion for evaluating connec-
tivity matrices and measures of complex networks to establish an automated diagnosis and
comprehending the topology and dynamics of brain networks in schizophrenia patients.

∙ Chapter 7- Conclusions and future work, containing the conclusions of this study and
future work.
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‘If you can dream—and not make dreams your master. If you can think—and not

make thoughts your aim. If you can meet with Triumph and Disaster and treat those

two impostors just the same. If you can bear to hear the truth you’ve spoken. Twisted

by knaves to make a trap for fools, or watch the things you gave your life to, broken,

and stoop and build ’em up with worn-out tools.. Yours is the Earth and everything

that’s in it.."

— Rudyard Kipling, If
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MD are among the leading causes of disability worldwide. The first step in treating these
conditions is to obtain an accurate diagnosis. ML algorithms can provide a possible solution to
this problem, as we describe in this work. We present a method for the automatic diagnosis of
mental disorders based on the matrix of connections obtained from EEG time series and deep
learning. We show that our approach can classify patients with AD and SZ a with a high level of
accuracy. The comparison with the traditional cases, that use raw EEG time series, shows that
our method provides the highest precision. Therefore, the application of deep neural networks
on data from brain connections is a very promising method for the diagnosis of neurological
disorders.

2.1 Introduction

Neurological disorders, including AD and SZ, are among the main priorities in the
present global health agenda (ORGANIZATION, 2006). AD is a type of dementia that affects
primarily elderly individuals and is characterized by the degeneration of brain tissue, leading
to impaired intellectual and social abilities (DOLGIN, 2016). Currently, around 25 million
people live with AD and, in the US, nearly six million individuals are affected by AD, with
incidence projected to increase more than two-fold to 13.8 million by 2050 (RODRIGUEZ et al.,
2021). Individuals with SZ have symptoms such as hallucinations, incoherent thinking, delusions,
decreased intellectual functioning, difficulty in expressing emotions, and agitation (JAHMUNAH
et al., 2019; GOTTESMAN; SHIELDS, 1982). According to the WHO, SZ affects around 26
million people worldwide (FLEISCHHACKER et al., 2014).

The base for successful treatment of AD and SZ is the correct diagnosis. However, both
the diagnosis and the determination of the stage of AD and SZ are based primarily on qualitative
interviews, including psychiatric history and current symptoms, and the assessment of behaviour.
These observations may be subjective, imprecise, and incomplete (BORSBOOM; CRAMER,
2013; FRIED et al., 2017; BORSBOOM, 2008; DAUWELS; VIALATTE; CICHOCKI, 2010).
To provide a quantitative evaluation of mental disorders, methods based on MRI, CT (JR et al.,
2009), PET (DING et al., 2019; WALHOVD et al., 2010) has been used to aid professionals in
the diagnostic process (GUERRA et al., 2018). However, the use of multiple imaging devices
can be expensive to implement and the fusion of images from different devices can have poor
quality due to motion artifacts.

To overcome these restrictions, EEG data is a viable candidate to support the diagnosis
of SZ and AD (TAIT et al., 2020). Although EEG has a low spatial resolution, it has a compara-
tively low cost, good temporal resolution and is easily available in most contexts. Nonetheless,
visual analysis of EEG data is time-consuming, requires specialized training, and is error-prone
(TRAMBAIOLLI et al., 2011; FALK et al., 2012; PIUBELLI et al., 2021). However, we can
consider automatic evaluation of EEG time series using modern classification algorithms, which
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Figure 3 – Illustration of the method for automatic diagnosis of mental disorders based on EEG time series.
Time series are collected and the correlation between electrodes are calculated yielding the
matrices of connections, which encompass the functional connectivity between brain regions.
Finally, the CNN is adjusted to enable the automatic classification of individuals.

can help to improve the efficiency and accuracy of AD and SZ diagnosis, as verified in pre-
vious works (PINEDA et al., 2020; OH et al., 2019; AHMADLOU; ADELI; ADELI, 2011;
BUETTNER et al., 2020).

Moreover, instead of using raw EEG time series, it is possible to encompass the connec-
tions between brain regions by constructing cortical complex networks (SPORNS, 2002). In this
case, we build cortical networks for healthy and individuals with neurological disorders. To dis-
tinguish between them, we use network measures to describe the network structure, as described
in a previous work of ours (ARRUDA et al., 2014) (see also (COSTA et al., 2007; COSTA et

al., 2010) for a description of the methodology used in network classification). Therefore, each
network is mapped into a d dimensional space, where d is the number of measures adopted for
network characterization. This process of building a set of features to represent the input data is
called feature engineering. After extracting the network features for the two classes of networks,
i.e. healthy and individuals with mental disorders, supervised learning algorithms are adjusted to
perform automatic classification. Previous works verified that this approach enables the diagnosis
with accuracy higher than 80% in the case of childhood-onset schizophrenia (ARRUDA et al.,
2014).

Although this methodology has been used for many different diseases (e.g. (PINEDA
et al., 2020; ARRUDA et al., 2014; DIYKH; LI; WEN, 2017; ROCCA et al., 2020)) the per-
formance of the algorithm depends on the measures selected to describe the network structure.
The network properties included in the model could represent just a subset of the information
necessary to get the best performance of the supervised model. Therefore, the network represen-
tation can be incomplete, restricting the accuracy of the classifiers. One possible solution to this
problem is the use of a matrix of connections in combination with deep neural networks (GOOD-
FELLOW; BENGIO; COURVILLE, 2016), as we show in the present paper. In this case, instead
of extracting the network measures, the matrix of connections is considered as input to train a
deep neural network. This matrix encodes all the information necessary to represent the network
structure and avoid the choice of network measures.

In this work, the metrics used to construct the matrices also have restrictions. A limitation
of the pairwise matrices used in this study is the possible loss of information when reducing the
raw EEG time series. However, our study suggests that the amount of information retained is
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sufficient for the classification of AD and SZ and represents a more computationally efficient
approach that is more practical in a clinical setting. In this work, the metrics used to construct
the matrices also have restrictions. As an example, PC considers only linear correlations, on the
other hand, Spearman Correlation (SC) is limited when there are many observations with the
same order, and GC considers the series stationary. Nevertheless, we aim here to develop an
efficient method to classify patients and not to make a comparison of methods.

Therefore, we consider the matrix of connections between brain areas and deep neural
networks to distinguish individuals with AD and SZ from healthy controls. Other than previous
works, where only raw time series are adopted as input for the neural network(ACHARYA
et al., 2018b; KASHIPAREKH et al., 2019; ISLAM; ZHANG, 2018; DUNEJA et al., 2019;
ACHARYA et al., 2018a; OH et al., 2018; YILDIRIM; BALOGLU; ACHARYA, 2018), we do
not ignore the connections between the electrodes used to record the time series. We construct the
matrix of connections by using GC, PC, and SC correlations (BASTOS; SCHOFFELEN, 2016;
SETH; BARRETT; BARNETT, 2015; BONITA et al., 2014). We verify that this information
about the connections is fundamental and improves the classification, compared to the previously
mentioned approaches that use only raw EEG time series.

In summary, in this work we achieve the following contributions:

∙ We propose a method to classify EEG time series from healthy and patients presenting AD
and SZ. With a matrix of connections as input for a tuned Convolution Neural Networks
(CNN) model, the accuracy obtained is close to 100 % for both disorders. Our results are
more accurate than those observed in previous works that consider only raw EEG time
series, reinforcing the importance of the network structure on the diagnosis of mental
disorders.

∙ We show that the method to infer the matrices of connections influences the quality of the
classification results. For SZ, the GC provides the most accurate classification, whereas,
for AD, the PC yields the highest accuracy.

∙ Our framework is general and can be used in EEG data from any brain disorder. It allows
to determine the best cortical network representation and adjust the CNN to optimize the
accuracy.

In the next sections, we outline the data set, present the CNN architecture and show our
results, comparing them with more common approaches that do not consider the connections
between brain areas.
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2.2 EEG data

The AD data set considered here is composed of EEG time series recorded at a sampling
frequency of 128 Hz and a duration of eight seconds for each individual and at 19 channels (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2). The letters F, C, P, O,
and T refer to the respective cerebral lobes frontal (F), central (C), parietal (P), occipital (O),
and temporal (T). The data is divided into two sets. The first one consists of 24 healthy elderly
individuals (control group; aged 72 11 years) who do not have any history of neurological
disorders. The second one is made of 24 elderly individuals with AD (aged 69 16 years)
diagnosed by the National Institute of Neurological and Communicative Disorders and Stroke,
the AD and Related Disorders Association (NINCDS-ADRDA), following the DSM-III-R
criteria ((PINEDA et al., 2020; PRITCHARD; DUKE; COBURN, 1991)).

The data set used for diagnosis of SZ contains 16-channel EEG time series recorded at
a sampling frequency of 128 Hz over one minute, including F7, F3, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1, and O2. Notice that both data set come from studies of 16 common brain
regions, with the AD data set having three more regions analyzed. Furthermore, it also includes
two sets, (i) one of 39 healthy young individuals (control group; aged 11 to 14 years) and (ii)
one of 45 teenagers individuals (aged 11 to 14 years) with symptoms of schizophrenia.

Both data sets are freely available at (PINEDA; ALVES, 2022).

2.3 Concepts and Methods

Our framework to perform the automatic diagnosis of AD and SZ is illustrated in Figure
3. In a first step, EEG time series, which are free of artifacts, are used to construct the matrices
of connections. The strength of the connections between two brain regions is quantified by three
different methods: (i) GC test (GRANGER, 1969), (ii) the PC (BENESTY et al., 2009) and (iii)
SC (LUBINSKI, 2004) correlation measures.

In our work, we have the following null hypothesis: the coefficients of the corresponding
past values are zero (one EEG channel does not influence the other). The rows are the response
variables and the columns are the predictors. We calculate the p-values, if these p-values are less
than 0.05 (significance level) this implies that the null hypothesis can be rejected. Therefore, the
p-value analyzes whether one brain region influences the other. If p < 0.05 we assign the value
1 because we reject the null hypothesis, i.e. it is true that one EEG channel influences another.
This influence is related to having a high correlation.

Therefore, matrices are calculated for AD data sets (19 EEG channels) and for SZ data
sets (16 EEG channels) filled with “1” if p < 0.05 and “0” if p ≥ 0.05. These matrices are
inserted in a CNN to discriminate healthy individuals from individuals diagnosed with AD and
SZ (see Figure 3). Notice that the use of different methods to infer the brain areas is necessary
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because there is no general method to infer functional connectivity (BASTOS; SCHOFFELEN,
2016; SETH; BARRETT; BARNETT, 2015; BONITA et al., 2014; COMIN et al., 2020). Indeed,
choosing the best metric to infer these connections between brain areas is a current challenge in
network neuroscience (e.g. (SHANDILYA; TIMME, 2011; LUSCH; MAIA; KUTZ, 2016)).

2.3.1 CNN

CNN is a type of neural network (MILLSTEIN, 2020) with three types of layers and
masked parameters, as proposed in (HUBEL; WIESEL, 1962; LÓPEZ-RISUEÑO et al., 2002).
The convolutional layer performs the mathematical operation called convolution, which is done
in more than one dimension at a time. The weights of the artificial neurons are represented by a
tensor called kernel (or filter). The outputs from the convolutional layer include the main features
from the input data. The convolution process between neurons and kernels produces outputs
called feature maps.

The pooling layer reduces the dimensionality and operates similarly to the convolutional
layer. The difference is that pooling kernels are weightless and add aggregation functions to
their input data, such as a maximum or mean function (LECUN et al., 1989; LECUN; BENGIO;
HINTON, 2015). The max-pooling function is used here to return the highest value within an area
of the tensor, which reduces the size of the feature map. The fully connected layer categorizes
input data into different classes, based on an initial set of data used for training. The artificial
neurons in the max pooling and fully connected layers are connected, as the output predicts
precisely the result of the input EEG data as healthy and unhealthy (OH et al., 2019).

Two approaches for the CNN architectures are proposed here, one using a tuning method
(CNNtuned) and another without this optimization step (CNNuntuned). Tuning is an optimiza-
tion method used to find the values of hyperparameters to improve the performance of the
CNN model (HUTTER; LÜCKE; SCHMIDT-THIEME, 2015). Three tuning techniques are
used in the present work: (i) random search (BERGSTRA; BENGIO, 2012), (ii) hyper-band
(ROSTAMIZADEH et al., 2017) and (iii) Bayesian optimization (DOKE et al., 2020). The
traditional way to optimize the hyperparameters is exhaustive searching through a manually
specified parameters search space and evaluating all possible combinations of these parameter
values. However, this approach has a high computational cost. An alternative method is to select
the values of parameters in the search space at random until maximize the objective function
(here, this objective function is the maximization of accuracy).

The idea of hyper-band optimizations is to select different possible models (with different
hyperparameters values), train them for a time, and discard the worst one at each iteration until a
few combinations remain. In contrast, Bayesian optimization is a global optimization method
that uses the Bayes Theorem to direct the search to find the minimum or maximum of a certain
objective function (GOODFELLOW; BENGIO; COURVILLE, 2016).
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Table 1 – Best hyperparameters and layer configurations obtained for the CNNtuned model.

Type of Layer Tuning hyperparameter Value
Convolutional — —

[0.00, 0.05, 0.10, 0.15,
Convolutional dropout 0.20, 0.25, 0.30,

0.35, 0.40, 0.45, 0.50]
Convolutional — —
Convolutional number of filters [32, 64]
Max Pooling dropout [0.00, 0.50, 0.10, 0.15, 0.20]

Flatten — —
Dense - units [32, 64, 96....512]

-activation [relu, tanh, sigmoid]
Dropout rate [0.00, 0.50, 0.10, 0.15, 0.20]
Adam min− value = 1e−4

optimization learning max− value = 1e−2

compile rate sampling= LOG

Table 2 – The network architecture for the CNNtuned model used in the AD and SZ data sets.

Type of Layer Output Shape (AD) Output Shape (SZ) Parameter
Convolutional (None, 17, 17, 16) (None, 14, 14, 16) 160
Convolutional (None, 15, 15, 16) (None, 12, 12, 16) 2320
max-pooling (None, 7, 7, 16) (None, 6, 6, 16) 0

dropout (None, 7, 7, 16) (None, 6, 6, 16) 0
Convolutional (None, 5, 5, 32) (None, 4, 4, 32) 4640
Convolutional (None, 3, 3, 32) (None, 2, 2, 32) 9248
max-pooling (None, 1, 1, 32) (None, 1, 1, 32) 0

dropout (None, 1, 1, 32) (None, 1, 1, 32) 0
flatten (None, 32) (None, 32) 0
dense (None, 160) (None, 160) 5280

dropout (None, 160) (None, 160) 0
dense (None, 2) (None, 2) 3

In the CNNtuned model, the dropout regularization technique is employed to avoid
overfitting (SRIVASTAVA et al., 2014). The layers and range used for hyperparameters are
presented in table 30. The best CNNtuned architectures tuned for each data set individually
are depicted in table 31. The CNNuntuned model presents fewer layers and therefore lower
computational costs. The parameters used in our analysis are described in table 32.

2.3.2 Evaluation

For evaluation, we consider the Recall, Precision, Accuracy (Acc.), F1 score, receiver
operating characteristic (ROC) and Area under the ROC curve (AUC).
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Table 3 – The network architecture for the CNNuntuned model used in the AD and SZ data sets.

Type of Layer Output Layer (AD) Output Layer (SZ) Kernel
Input Layer 19 x 19 x 1 16x16x1 -
Convolution 18 x 18 x 32 15 x 15 x 32 4
Max pooling 18 x 18 x 32 15 x 15 x 32 2
Convolution 17 x17 x 16 14 x 14 x 16 4
Max pooling 17 x17 x 16 14 x 14 x16 2

Flatten 17 x17 x 16 3136 -
Fully connected 10 10 -
Fully connected 1 1 -
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Figure 4 – Example of matrices of connections calculated with PC for (a) an individual with diagnosed
AD and (b) an healthy individual.
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Figure 5 – Example of matrices of connections calculated with GC test for (a) an individual with diagnosed
SZ and (b) an healthy individual.

2.4 Results and discussion

We consider the EEG time series described in section 2.2 to construct the matrices of
connections for healthy controls and individuals diagnosed with AD and SZ, following the
description in section 2.3. These matrices are built by using the GC test, PC and SC measures
for both data sets. In Figures 4 and 5, some examples of such matrices of connections are shown
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Table 4 – Classification results for AD using the CNNtuned model (best results are in bold).

Matrices of
connections Hyperparameter Sample Acc. Precision Recall AUC

GC

Random
Search

Train 0.81 0.81 0.81 0.88
Test 0.75 0.75 0.75 0.97

hyper-band Train 0.65 0.65 0.65 0.65
Test 0.75 0.75 0.75 0.97

Bayesian
Optimization

Train 0.68 0.68 0.68 0.82
Test 0.75 0.75 0.75 0.93

PC

Random
Search

Train 0.95 0.95 0.95 0.98
Test 1.00 1.00 1.00 1.00

hyper-band Train 0.86 0.86 0.86 0.90
Test 1.00 1.00 1.00 1.00

Bayesian
Optimization

Train 0.88 0.88 0.88 0.98
Test 1.00 1.00 1.00 1.00

SC

Random
Search

Train 0.47 0.47 0.45 0.47
Test 0.75 0.75 0.75 0.75

hyper-band Train 0.47 0.47 0.47 0.45
Test 0.75 0.75 0.75 0.62

Bayesian
Optimization

Train 0.47 0.47 0.47 0.45
Test 0.75 0.75 0.75 0.68

and differences between them can be noticed visually in both cases.

The matrices of connections are inserted into the CNN by applying the flattening method,
which converts the data into a 1-dimensional array that is input to the next layer. Two CNN
architectures are considered, i.e. CNNtuned and CNNuntuned , to evaluate the classification. The
CNNtuned is obtained by hyperparameter optimization, whereas the CNNuntuned is a simpler
model, without using the tuning optimization. The evaluation of both models is done by using
the AUC. Nested k-fold cross-validation (k = 10) for model selection, adjustment and evaluation
is considered here. The training and test sets are selected according to the holdout method, where
we include 10% of the observations in the test set. We obtain similar results for other test sizes,
as shown in the Appendix A.1.

The results for the CNNtuned model is shown in tables 4 and 5, for AD and SZ, respec-
tively. In all the cases, the CNNtuned model can unambiguously distinguish healthy individuals
from individuals diagnosed with a brain disorder. The best results with an accuracy close to
100% are obtained for both AD and SZ in the testing set using random search for hyperparameter
tuning.

Concerning the CNNuntuned model, the results are shown in tables 6 and 7 for AD and
SZ, respectively. For the AD data set, the best results are found using PC with a test accuracy
of 92%. Regarding SZ disease, independently of the method used for the construction of the
matrices of connections, results are close to the random guessing (see table 7). Therefore, the
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Table 5 – Classification results for SZ using the CNNtuned model (best results are in bold).

Matrices
of connections Hyperparameter Sample Acc. Precision Recall AUC

GC

Random
Search

Train 0.90 0.90 0.90 0.93
Test 1.00 1.00 1.00 1.00

hyper-band Train 0.73 0.73 0.73 0.77
Test 0.72 0.72 0.72 0.78

Bayesian
Optimization

Train 0.72 0.72 0.72 0.78
Test 1.00 1.00 1.00 1.00

PC

Random
Search

Train 0.54 0.54 0.54 0.54
Test 0.50 0.50 0.50 0.50

hyper-band Train 0.54 0.54 0.54 0.54
Test 0.50 0.50 0.50 0.50

Bayesian
Optimization

Train 0.54 0.54 0.54 0.54
Test 0.50 0.50 0.50 0.50

SC

Random
Search

Train 0.53 0.53 0.53 0.53
Test 0.50 0.50 0.50 0.50

hyper-band Train 0.53 0.53 0.53 0.53
Test 0.50 0.50 0.50 0.50

Bayesian
Optimization

Train 0.53 0.53 0.53 0.53
Test 0.50 0.50 0.50 0.50

Table 6 – Classification results for AD using the CNNuntuned model (best results are in bold).

Matrices of connections Sample Acc. Precision Recall AUC

GC Train 0.97 0.97 0.99 0.99
Test 0.58 0.57 0.66 0.75

PC Train 0.98 0.99 0.98 0.99
Test 0.92 1.00 0.83 1.00

SC Train 0.97 0.98 0.97 0.99
Test 0.83 1.00 0.66 1.00

Table 7 – Classification results for SZ using the CNNuntuned model.

Matrices of connections Sample Acc. Precision Recall AUC

GC Train 0.97 0.97 0.97 0.99
Test 0.52 0.53 0.73 0.55

PC Train 0.61 0.58 1.00 0.53
Test 0.57 0.55 1.00 0.45

SC Train 0.62 0.59 0.97 0.58
Test 0.62 0.58 1.00 0.53

CNNtuned model is more accurate for both AD and SZ diagnosis.

Importantly, the overall predictive performance depends on the choice of measure to
construct the matrices of connections. In the case of AD, PC provides the best performance in
CNNtuned (see table 4). On the other hand, in the case of SZ, GC is superior to the other methods
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Table 8 – Classification results for AD using raw EEG time series and the CNNtuned model.

Set Acc. Precision Recall AUC
Train 0.68 0.61 1.00 0.68
Test 0.75 0.66 1.00 0.75

Table 9 – Classification results for SZ using raw EEG time series and the CNNtuned model.

Set Acc. Precision Recall AUC
Train 0.62 0.62 1.00 0.50
Test 0.55 0.55 1.00 0.50
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Figure 6 – ROC curve obtained from the CNNtuned model. The matrices of connections are constructed
by (a) PC for AD disease and (b) GC for individuals diagnosed with SZ.

(see table 5). Therefore, there is no general method to infer the connections and obtain the most
accurate results. Thus, different methods should be considered to develop an accurate framework
for the automatic diagnosis of mental disorders.

For a comparison of our method with the more common approach known from the
literature, the classification is performed by applying the raw EEG time series as input for the
CNNtuned model (whose performance is the best for both diseases, as discussed before). The
results are shown in tables 8 and 9 for AD and SZ, respectively. The Acc. of 75% for AD and
55% for SZ are obtained. This outcome is supported by results available in the literature. Janghel
and Rathore (JANGHEL; RATHORE, 2021) obtained an Acc. of 76% for AD, where the authors
did not consider the matrices of connections.

As we can see, our proposed method based on a matrix of connections provided as input
to a CNN allows for more accurate results. This reinforces the importance of using a data set
that encompasses the connections between brain regions. Indeed, the network structure is a
fundamental ingredient to differentiate healthy individuals from patients presenting neurological
disorders, as verified in many papers (e.g. (ARRUDA et al., 2014; LYNN; BASSETT, 2019;
FALLANI et al., 2011a; RODRIGUES; COSTA, 2009; ANTIQUEIRA et al., 2010)).

In Figures 6 we show the ROC curve for the best results, i.e. for AD (using PC) and
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Figure 7 – ROC curve obtained from raw EEG time series for (a) individuals diagnosed with AD and (b)
individuals with SZ.

SZ (using GC test), respectively. For AD, the micro and macro-average ROC curve areas are
0.99 and 1.0, respectively, the micro and macro-average ROC curve areas are 0.92 for both
cases. For comparison, Figure 7 shows the ROC curve for AD and SZ using raw times series,
where the micro and macro-average AUC are 0.75 for AD and around 0.55 for AZ. Comparing
these results, we conclude that the use of the matrix of connections provides the most accurate
classifications. Since the databases are small, other classifiers were tested and the results are in
the appendix A.1.

2.5 Conclusion
In this paper, we propose a method for automatic diagnosis of AD and SZ based on

EEG time series and deep learning. We infer the matrix of connections between brain areas
following three different approaches, based on GC, PC and SC. These matrices are included
in a convolutional neural network, tunned with the random search, hyper-band, and Bayesian
optimization. We verify that this approach provides a very accurate classification of patients with
AD and SZ diseases. The comparison with the traditional method that considers raw EEG data
shows that our method is more accurate, reinforcing the importance of network topology for
the description of brain data. Our method is general and can be used for any mental disorder in
which EEG times series can be recorded.

A limitation of our analysis is the relatively small data set, although this is common in
other studies on disease classification (OH et al., 2019). However, even with this restriction,
our algorithm worked very well, showing that AD and SZ are associated with changes in brain
organization. As future work, we suggest considering larger data sets and additional information
about the patients, like health conditions and age. A method that provides the level of the
evolution of the disease is also an interesting topic to be developed from our study.



55

CHAPTER

3
APPLICATION OF MACHINE LEARNING

AND COMPLEX NETWORK MEASURES TO
AN EEG DATASET FROM AYAHUASCA

EXPERIMENTS

‘It matters not how strait the gate, How charged with punishments the scroll, I am

the master of my fate, I am the captain of my soul. "

— William Ernest Henley, Invictus

Published 16 December 2022 by PLOS ONE.

COLLABORATING AUTHORS

Rubens Gisbert Cury
Universidade de São Paulo (USP)

Kirstin Roster
Universidade de São Paulo (USP)

Aruane M. Pineda
Universidade de São Paulo (USP)

Francisco A. Rodrigues
Universidade de São Paulo (USP)

Christiane Thielemann
Aschaffenburg University of Applied Sciences (UAS)

Manuel Ciba
Aschaffenburg University of Applied Sciences (UAS)



56
Chapter 3. Application of machine learning and complex network measures to an EEG dataset from

ayahuasca experiments

Abstract

Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the
inhabitants of this region for hundreds of years. Furthermore, this plant has been demonstrated
to be a viable therapy for a variety of neurological and mental diseases.

EEG experiments have found specific brain regions that changed significantly due to ayahuasca.
Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain
activity using machine learning and complex networks. Machine learning was applied at three
different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the
EEG time series, and (C) the complex network measures calculated from (B). Further, at the
abstraction level of (C), we developed new measures of complex networks relating to community
detection.

As a result, the machine learning method was able to automatically detect changes in brain
activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C)
(83%), indicating that connectivity changes between brain regions are more important for the
detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is
consistent with the literature.

F3 and PO4 were the most important brain connections, a significant new discovery for
psychedelic literature. This connection may point to a cognitive process akin to face recog-
nition in individuals during ayahuasca-mediated visual hallucinations.

Furthermore, closeness centrality and assortativity were the most important complex network
measures. These two measures are also associated with diseases such as AD, indicating a possible
therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and
suggested larger brain communities associated with the use of ayahuasca. This suggests that the
dissemination of information in functional brain networks is slower when this drug is present.

Overall, our methodology was able to automatically detect changes in brain activity during
ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as
provide insights into their mechanisms of action.

3.1 Introduction

Ayahuasca is made from a blend of Amazonian herbs (METZNER, 1998). This combina-
tion of plants is often associated with rituals of different religions and social groups. Ayahuasca
has been used in the Amazon for a couple of hundred years, being part of the traditional medicine
of the indigenous population within this region (ARAÚJO, 2019).

Since the use of ayahuasca has spread throughout many countries, it is necessary to
study in depth its cerebral mechanisms and its potential clinical implications. In addition,
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because it affects brain areas related to emotions, memories, and executive functions, ayahuasca
might be used in the treatment of psychiatric disorders, such as drug addiction (BOUSO;
RIBA, 2014; FERNÁNDEZ; FÁBREGAS, 2014; GIOVANNETTI et al., 2020), Parkinson’s
disease (SERRANO-DUEÑAS; CARDOZO-PELAEZ; SÁNCHEZ-RAMOS, 2001; WANG et

al., 2010; KATCHBORIAN-NETO et al., 2020; BRIERLEY; DAVIDSON, 2012), and depression
(JIMÉNEZ-GARRIDO et al., 2020) (PALHANO-FONTES et al., 2019; SANCHES et al., 2016;
PALHANO-FONTES et al., 2021; OSÓRIO et al., 2011; FROOD, 2015; SANTOS et al., 2016).
For example, an open-label clinical study found significant therapeutic benefits among patients
with treatment-resistant major depressive disorder after the administration of a single dose
of ayahuasca (SANCHES et al., 2016). Moreover, a randomized trial showed that ayahuasca
doses were associated with reductions in depressive symptoms in patients with major depressive
disorder, compared to placebo treatments (PALHANO-FONTES et al., 2019).

Additionally, ayahuasca has been shown to elicit anti-neuroinflammatory properties
(SANTOS et al., 2016) and stimulate adult neurogenesis in vitro (MORALES-GARCÍA et al.,
2017). In this line, ayahuasca could be helpful for the treatment of several neurological diseases
well known to harbor inflammation in its physiopathology (SILVA; DAROS; BITENCOURT,
2020), including chronic degenerative diseases and illnesses related to acute injury, such as
cerebral ischemia, multiple sclerosis, and AD (FRECSKA; BOKOR; WINKELMAN, 2016;
SANTOS; HALLAK, 2017).

The EEG data studied here are from (SCHENBERG et al., 2015), from subjects who
ingested ayahuasca. This study observed slow-gamma power increases at the left Centro-parietal-
occipital, left frontotemporal, and right frontal cortices. In contrast, fast-gamma increases were
significant at the left Centro-parieto-occipital, left frontotemporal, right frontal, and right parieto-
occipital cortices due to ayahuasca ingestion. As a result, this study concentrated solely on the
changes in frequency bands caused by the use of the psychedelic substance.

Despite the enormous therapeutic potential of ayahuasca, in most countries, it is an illegal
substance and only legalized for religious use, such as in Brazil. Therefore, few studies on human
beings are found in the literature, and more research is needed on how this substance alters the
brain and its mechanism of action.

The use of graph theory mathematical approaches gave intriguing insights into the
intricate network structure of the human brain, which is also related with pathological states
(BASSETT; GAZZANIGA, 2011; PINEDA et al., 2020; SPORNS, 2018; BASSETT; ZURN;
GOLD, 2018). Notably, complex networks have been employed as biomarkers for a variety of
disorders (HAYASHIDA; AKUTSU, 2016; FEKETE et al., 2013). Furthermore, the community
detection algorithm (also referred to as the clustering graph) is a fundamental analysis technique
that aims to identify densely connected structures within complex networks (NEWMAN, 2012;
KIM; LEE, 2015; ZHAO; LIANG; WANG, 2021). Several studies have used complex network
measurements and community detection algorithms to detect brain activity in EEG data recently
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(LUNG et al., 2016; KHAJEHPOUR et al., 2019; VARLEY et al., 2020).

Because of the increased amount of data related to health, such as medical records, exams
of patients, and hospital resources, ML algorithms have become more applicable, primarily for
medical diagnosis (SONG; JUNG; CHUNG, 2019; MOZAFFARINYA et al., 2019; ILYASOVA
et al., 2018; LI; ASCH; SHAH, 2020), in order to provide more accurate and automatic investiga-
tions of various diseases (BELLAZZI; ZUPAN, 2008) and may be an important tool capable of
detecting acute and permanent abnormalities in the brain. In addition, many studies have utilized
ML algorithms to capture brain activity using raw EEG time series (BUZA, 2020; ABEL et

al., 2021), the correlation between electrodes (ALVES et al., 2022b; JAYARATHNE; COHEN;
AMARAKEERTHI, 2020), and complex network measures (PINEDA et al., 2020).

Also, in contrast to traditional statistical methods, the ML approach has the advantage
that it does not rely on prior assumptions (such as adequate distribution, independence of
observations, absence of multicollinearity, and interaction problems) and is also well suited to
analyze and capture complex nonlinear relationships in data automatically. Nevertheless, new
techniques have emerged to assist in interpreting machine learning results, e.g., SHAP values.
Any machine learning algorithm may use this metric for identifying and prioritizing features
(BOWEN; UNGAR, 2020; RODRÍGUEZ-PÉREZ; BAJORATH, 2019; SPADON et al., 2019).

The purpose of this study is to determine whether it is possible to automatically detect
the changes in brain activity after intake of ayahuasca with machine learning methods using
the following data abstraction levels for the input: (A) raw EEG time series, (B) the correlation
between the EEG electrodes as used in (A) represented by a connectivity matrix, and (C) complex
network measures extracted from (B). In contrast to articles in the literature that use only one
of these levels of abstraction, this study uses all three levels. In addition, we define which of
these abstraction levels is most appropriate for capturing ayahuasca-induced brain changes. The
SHAP value method has also been shown to be more effective than the studies cited above in
identifying the best brain regions, the best connections between the brain regions, and the best
measures of complex networks, which can be used to interpret the effects of the psychedelic
substance on the brain. A final result of this research was the creation of new measures that have
never been used before within the literature, which can be used as input to machine learning
algorithms to assess the size of community structures.

2 Materials and methods

The python code used for the analysis is available at <https://github.com/Carol180619/
Paper-ayahuasca.git>.

https://github.com/Carol180619/Paper-ayahuasca.git
https://github.com/Carol180619/Paper-ayahuasca.git
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2.1 Data

The data used for this study has been made openly available by the Federal University of
São Carlos, Brazil (SCHENBERG et al., 2015). Sixteen healthy male and female patients with
prior ayahuasca experience (eight women, mean 29.0 years; 12 men, mean 38.5 years) agreed
(with written permission) to consume this psychedelic substance while EEG recordings were
made 1. All methodologies for this investigation were approved by the Universidade Federal
de São Paulo’s Ethical Committee, and the study was carried out in compliance with available
criteria for human hallucinogen research safety (JOHNSON; RICHARDS; GRIFFITHS, 2008).

Patients were instructed to close their eyes and remain in a resting condition. A nurse
accompanied the experiment for its duration of 225 minutes. The recordings began 25 minutes
before ayahuasca consumption and ended 200 minutes afterward. The main compounds in the
brew were (SCHENBERG et al., 2015): DMT, DMTN-oxide (DMT-NO), N-methyltryptamine
(NMT), indoleacetic acid (IAA), 5-hydroxy-DMT (5-OH-DMT, or bufotenin), 5-methoxy-DMT
(5-MeO-DMT), Harmine, Harmol, Harmaline, Harmalol, THH, 7-hydroxy-tetrahydroharmine
(THH-OH), and 2-methyl-tetrahydro-beta- carboline (2-MTHBC). All recordings were down-
sampled to 500 Hz, bandpass filtered between 0.5 and 150 Hz, and artifacts due to movements
were removed. Recordings were made with 62 electrodes, following the EEG electrode positions
in the 10-10 system. These channels are: Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, TP9, CP5, CP1,
Pz, P3, P7, O1, Oz, P8, TP10, CP6, CP2, C4, T8, FT10, FC6, FC2, F4, F8, Fp2, AF7, AF3, AFz,
F1, F5, FT7, FC3, FCz, C1, C5, TP7, CP3, P1, P5, PO7, PO3, POz, PO4, PO8, P6, P2, CPz,
CP4, TP8, FC4, FT8, F6, F2, AF4, AF8, O2, P4, C6, and C2 (see in appendix A.2 Fig 51). It is
worth mentioning that after using ayahuasca, all individuals experienced notable alterations in
their typical state of consciousness.

Further details are given in (SCHENBERG et al., 2015).

2.2 Machine learning algorithm

2.2.1 Classification

In order to classify the (A) EEG time series, (B) the connectivity matrices, and (C)
the complex network measures, the support vector machine (SVM) (BOTTOU; LIN, 2007)
algorithm was used. SVM has been used with superior results for the classification of complex
network measures before by other groups (MAZROOYISEBDANI et al., 2020; DIYKH; LI;
WEN, 2017; DEY; RAO; SHAH, 2014) and performed superior in our comparative evaluation.
In this analysis, we compared the following machine learning methods to classify the complex
network measures: Random forest (RF)(BREIMAN, 2001), SVM (BOTTOU; LIN, 2007), Naive

1 The following exclusion criteria were used: minors than the age of 21 years, personal history of psy-
chiatric illness, current use of any psychiatric medication, cardiovascular disease, and any neurological
disorders or brain damage in the previous year.
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bayes (NB) (FRIEDMAN; GEIGER; GOLDSZMIDT, 1997), multilayer perceptron (MLP)
(HINTON; RUMELHART; WILLIAMS, 1986), stochastic gradient descent with linear models
classifier (SGD) (ZHANG, 2004), logistic regression (LR) (TOLLES; MEURER, 2016) and
extreme Gradient Boosting classifier (XGBoost) (FRIEDMAN, 2001). The results can be found
in Appendix A.4.

A more robust deep learning (DL) algorithm from (ALVES et al., 2022b) (in which the
model was named tuned CNN) was also tested. The results using DL are in the Appendix A.5.

2.2.2 Resampling and evaluation

The dataset was resampled by separating it into training (train) and test sets, with 25%
of data composing the test set. Then, for a reliable model, a k-cross validation was used (RE-
FAEILZADEH; TANG; LIU, 2009), with k = 10 (value widely used in the literature (BERRAR,
2019; BENGIO; GRANDVALET, 2004; SHAH; KHAN, 2020; KAWAMOTO; KABASHIMA,
2017; CHAN et al., 2019; KAWAMOTO; KABASHIMA, 2017)). A hyper-parameter optimiza-
tion called grid search was used here, similar to (SATO et al., 2019; ZHONG et al., 2021;
ARCADU et al., 2020; KRITTANAWONG et al., 2021; RASHIDI et al., 2020). The hyper-
parameter optimization values used for each classifier models can be found in Appendix A.4.

For evaluation, Acc. was used as the standard performance metrics, as is the state-of-art
in the literature (MINCHOLÉ; RODRIGUEZ, 2019; TOLKACH et al., 2020; DUKART et al.,
2021; LI; ASCH; SHAH, 2020; PARK; KELLIS, 2015). Since the problem here is a two-class
(negative and positive) classification problem, other metrics considered here are the measures of
precision and recall, also commonly used in the literature (ITO et al., 2021; KIM et al., 2020; LI
et al., 2021; YU et al., 2020). Precision (also called positive predictive value) is the proportion of
relevant instances among those retrieved. Whereas recall (also called sensitivity) measures how
well a classifier can predict positive examples (hit rate in the positive class), here related with
an effect of the ayahuasca. Another measure used here and also used in literature (ZHONG et

al., 2021; BERRYMAN et al., 2020; YANG et al., 2019) is the F1 score which is the harmonic
mean of the recall and precision (HANNUN et al., 2019). For visualization of these two latter
measures, ROC curve is a standard method as it displays the relation between the rate of true
positives and false positives. The area below this curve, called the AUC, has been widely used in
classification problems (MINCHOLÉ; RODRIGUEZ, 2019; BRACHER-SMITH; CRAWFORD;
ESCOTT-PRICE, 2021; PATEL et al., 2021; KRITTANAWONG et al., 2021). The value of
the AUC varies from 0 to 1, where the value of one corresponds to a classification result free
of errors. AUC = 0.5 indicates that the classifier is not able to distinguish the two classes; this
result is equal to the random choice. Furthermore, we consider the micro average of the ROC
curve, which computes the AUC metric independently for each class (calculate AUC metric for
healthy individuals, class zero, and separately calculate for unhealthy subjects, class one), and
then the average is computed considering these classes equally. The macro average is also used
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in our evaluation, which does not consider both classes equally, but aggregates the contributions
of the classes separately and then calculates the average.

Furthermore, we interpret the machine learning results using SHAP values (LUNDBERG;
LEE, 2017) to quantify the importance of the complex measures, connections of brain regions,
and location of electrodes for the classification result. This metric enables the identification
and prioritization of features and can be used with any machine learning algorithm (BOWEN;
UNGAR, 2020; RODRÍGUEZ-PÉREZ; BAJORATH, 2019; SPADON et al., 2019).

2.3 Input data for machine learning

The following three data abstraction levels were applied to a classification algorithm as
described in subsection 2.2 Machine learning algorithm: (2.3.1 EEG time series) the EEG time
series (Fig 8), ( 2.3.2 Connectivity matrices) the connectivity matrix calculated by means of the
Pearson correlation of the EEG time series (Fig 9), and (2.3.3 Complex network measures) the
complex network measures calculated from the connectivity matrix (Fig 10).

2.3.1 EEG time series

The data was divided into three “time windows” (see Table 10). The first window (25
minutes before ingestion until 50 minutes after ingestion of ayahuasca) was defined as the
“control”. This is reasonable as it is known from (SCHENBERG et al., 2015), that the blood
plasma concentration of the main psychedelic compound DMT is low until 50 minutes after
ingestion. Windows two and three were both defined as thoroughly influenced by ayahuasca.
The ayahuasca-influenced time series were divided into two windows to enhance the quantity of
data points for the machine learning method. Even though the number of independent samples
(subjects) did not change, increasing the data points by splitting the time series is a common
machine learning approach (CERQUEIRA; TORGO; MOZETIČ, 2020; BOUKTIF et al., 2018).
Even though the number of independent samples (subjects) did not change, increasing the data
points by splitting the time series is a standard machine learning approach. Furthermore, in the
following classification task, only two classes will be labeled class zero (without ayahuasca)
and labeled class one (with ayahuasca). The scheme of this methodology is shown in Fig 8 . All
participants’ EEG time series were successively combined and stored in a 2D matrix to feed
the data into the machine learning algorithm. Each column represents an electrode, and each
row represents the amplitude of each time point of the EEG signal. For each of the three time
windows, a 2D matrix was constructed.
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Machine Learning Algorithms
(SVM)

EEG time series

Fp1
Fz

FC1
P5

T7

Class oneClass zero

Figure 8 – Methodology of the subsection 3.1 using raw EEG time series. For each participant, the
EEG time series was split into three parts. Those corresponding to the first window were
labeled as class 0 (no effect of ayahuasca) and those corresponding to the second and third
windows as class 1 (under the influence of ayahuasca), and then SVM was used. The objective
was to determine which brain parts are most influenced by ayahuasca consumption. The crucial
areas discovered using the SHAP values approach are emphasized in the illustration.

Table 10 – Definition of time windows of the EEG signal. Window 1 is considered the control (without
effect of ayahuasca), window 2 and 3 are considered as recordings under the influence of
ayahuasca.

Time window Ingestion of ayahuasca
at t = 0 minutes

1 -25 to 50 minutes
2 50 to 125 minutes
3 125 to 200 minutes
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2.3.2 Connectivity matrices

The matrices of connectivity were calculated by the well known Pearson correlation. It is
a widely used and successfully approved measure to capture the correlation of EEG electrodes
(ROJAS et al., 2018; WANG et al., 2017b; JALILI, 2016; HAN et al., 2019; TOKARIEV et al.,
2019).

The Pearson correlation was calculated for all electrode pairs resulting in three connec-
tivity matrices per participant (for each time window). Fig 9 illustrates the workflow of this
approach. The connectivity matrices were flattened into one vector to input the data into the
machine learning algorithm. Then, all vectors were sequentially merged into a 2D matrix. Each
column represents a connection between two brain regions, and each row represents a subject.
Such a 2D matrix was generated for each of the three time windows.

2.3.3 Complex network measures

For each connectivity matrix (see subsection 2.3.2 Connectivity matrices), a graph was
generated to extract different complex network measures. The complex network measures were
stored in a matrix to input the data into the machine learning algorithm. Each column represents
a complex network measure, and each row a subject. Such a 2D matrix was generated for each of
the three time windows. The following complex network measures were calculated: Assortativity
(NEWMAN, 2003; NEWMAN, 2002), average path length (APL) (ALBERT; BARABÁSI,
2002), betweenness centrality (BC) (FREEMAN, 1977), closeness centrality (CC) (FREE-
MAN, 1978), eigenvector centrality (EC) (BONACICH, 1987), diameter (ALBERT; JEONG;
BARABÁSI, 1999), hub score (KLEINBERG, 1999), average degree of nearest neighbors (Knn)
(EPPSTEIN; PATERSON; YAO, 1997), mean degree (DOYLE; GRAVER, 1977), second mo-
ment degree (SMD) (SNIJDERS, 1981), entropy degree (DEHMER; MOWSHOWITZ, 2011),
transitivity (WATTS; STROGATZ, 1998; NEWMAN; WATTS; STROGATZ, 2002), complexity,
k-core (SEIDMAN, 1983; NEWMAN, 2010), eccentricity (HAGE; HARARY, 1995), density
(ANDERSON; BUTTS; CARLEY, 1999), and efficiency (LATORA; MARCHIORI, 2003).
Furthermore, newly developed metrics reflecting the number of communities in a complex
network are used in this paper.

Furthermore, newly developed metrics reflecting the number of communities in a complex
network are used in this paper. We perform the community detection algorithms to find the
largest community, then calculate the average path length within this community and receive
a single value as a result (that will be used to feed ML algorithm). The community detection
algorithms used were:

∙ Fastgreedy community (FC) is defined in (CLAUSET; NEWMAN; MOORE, 2004) as
a hierarchical agglomerative clustering algorithm aimed at maximizing the modularity
measure defined in (GIRVAN; NEWMAN, 2002).
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Figure 9 – Methodology of the subsection 3.1 using connectivity matrices. For each of the time win-
dows, the Pearson correlation connectivity matrix was generated, and then they were classified
with the SVM method considering the first window as zero label (without ayahuasca) and the
other two as one label (with ayahuasca). This analysis aimed to verify the best connections
of the brain areas used during ayahuasca use. The principal connection discovered using the
SHAP value approach is depicted in the picture.
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∙ Infomap community (IC) described in (ROSVALL; AXELSSON; BERGSTROM, 2009),
the purpose behind this technique is to exploit the dynamics of random walks. This is
accomplished by employing Huffman’s method (HUFFMAN, 1952) and then calculating
the minimization of the map equation to determine the number of communities (ROSVALL;
AXELSSON; BERGSTROM, 2009).

∙ Leading eigenvector community (LC) is defined in (NEWMAN, 2006). It aims to calculate
the eigenvector of the modularity matrix for the largest positive eigenvalue and then
separate the vertices into two communities based on the sign of the corresponding element
in the eigenvector.

∙ Label propagation community (LPC) is defined in (RAGHAVAN; ALBERT; KUMARA,
2007). It is an optimization algorithm (BARBER; CLARK, 2009) in which, at first, each
node in the network has a label indicating its assignment, and then each node updates
its label according to the label with the maximum number in its neighbors. This process
is repeated until the network reaches a stable state and nodes with the same class are
considered to belong to the same community. (LI et al., 2021).

∙ Edge betweenness community (EBC) is defined in (GIRVAN; NEWMAN, 2002) is a
divisive model based on the BC. At each iteration, this measure is calculated for all edges,
and the one with the highest value of this measure is eliminated until the network contains
N elements resulting in a hierarchical distribution of communities. The one with the highest
modularity is adopted.

∙ Spinglass community (SPC) is defined in (REICHARDT; BORNHOLDT, 2006) this
algorithm considers the spin state of nodes as communities and tries to minimize the spin
energy until it finds a ground state of the spin-glass model (CHEJARA; GODFREY, 2017).

∙ Multilevel community (MC) is a greedy optimization method using modularity and is
defined in (BLONDEL et al., 2008).

Since the community detection algorithms were combined with the average path length,
we extended the abbreviations by the letter "A" as follows: AFC, AIC, ALC, ALPC, AEBC,
ASPC, and AMC.

Figure 10 depicts the entire workflow.

3 Results
The highest classification performance was obtained using the connectivity matrices with

an accuracy of 92%, followed by the EEG time series (88%) and the complex network measures
(83%) (see Table 11). The following subsections 3.1 EEG time series, 3.2 Connectivity matrices
and 3.3 Complex network measures contain the results in more detail.
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Figure 10 – Methodology of the subsection 3.1 using complex network measures. The EEG time
series is divided into three parts. For each of them, the Pearson correlation was calculated.
For each window, a connectivity matrix was generated (in the Fig, the connectivity matrix
of the first window of the first subject containing the 62 electrodes, the color bar containing
the connection strength between these electrodes). A graph was formed for each of them
(in the Fig, the graph of this connectivity matrix has 62 nodes and the connection strength
according to the color bar and the node size according to its number of connections), and
complex network measures are extracted from them.
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Table 11 – Performances of the SVM classifier for the different data types used in this paper. The best
performance is highlighted in bold. The classification of connectivity matrices best captured
the changes in the brain due to ayahuasca.

Type of
data Subset AUC Acc. F1

score Recall Precision

EEG
time series

Train 0.87 0.89 0.88 0.87 0.89
Test 0.85 0.88 0.86 0.85 0.86

Connectivity
matrix

Train 0.92 0.94 0.93 0.92 0.96
Test 0.88 0.92 0.90 0.88 0.94

Complex
measure

Train 0.79 0.81 0.79 0.79 0.78
Test 0.75 0.83 0.78 0.75 0.90

3.1 EEG time series

The performance of the test sample using the EEG time series was mean AUC of 0.85,
mean precision of 0.88, mean F1 score of 0.86, mean recall of 0.85, and mean accuracy of
0.86. The precision measure is related to the positive class (with ayahuasca). Since the precision
measure was slightly higher than the recall measure, the model can better detect the presence of
ayahuasca instead of the absence of it.

In Fig 11, the confusion matrix (Fig 11A), the learning curve (Fig 11B), and the ROC
curve (Fig 11C) are plotted.

The learning curve evaluates the predictability of the model by varying the size of the
training set (SPADON et al., 2019). Fig 11B shows that the highest accuracy in the test sample
can only be achieved when the entire database is used.

Not all electrodes of the EEG recording were equally important for the classification.
According to the SHAP values, the most important region for the model was T7, located in the
temporal region (see Fig 12). In order of importance, this region was followed by FC1, Fp1, P5,
and Fz, located between frontal and central, frontal and parietal, parietal and frontal, respectively
(see Fig 13A). In addition, Fig 13B shows details of the impact of each feature on the model.
Positive SHAP values are shown when the presence of ayahuasca is detected, and negative SHAP
values are shown when the absence of ayahuasca is detected. The colors indicate whether the
feature value was low (blue) or high (red). Since the feature consists of the amplitudes of the
EEG time series, it can be seen that for T7, the low amplitudes (blue dots) were important to
detect the absence of ayahuasca (negative SHAP values), and the high amplitudes (red dots)
were important to detect the presence of ayahuasca (positive SHAP values).

3.2 Connectivity matrices

For the connectivity matrices, the test sample performance was a mean AUC of 0.88,
mean accuracy of 0.92, mean F1 score of 0.90, mean recall of 0.88, and mean precision of 0.94.
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(A) (B)

(C)
Figure 11 – Machine learning results using the EEG time series as input data. A) Confusion matrix

indicating a true negative rate of 92.1% (blue according to the color bar) and a true positive
rate of 78.3% (orange according to the color bar). B) Learning curve for the training accuracy
(blue) and for test accuracy (green). C) ROC curve of class 0 (without ayahuasca) and class 1
(with ayahuasca). The gray dotted curve is the macro-average accuracy (area under curve =
0.85) and the pink one the random classifier.

Similar to the previous subsection 3.1 EEG time series, the precision measure was higher
than the recall measure and therefore the model can better detect the presence of ayahuasca. In
Fig 14, the confusion matrix (Fig 14A), the learning curve (Fig 14B), and the ROC curve (Fig
14C)are plotted. Similar to EEG time series, the learning curve for the connectivity matrices
shows that the highest accuracy in the test sample can only be achieved when the entire database
is used.

In order to reveal the importance of the brain connections, the SHAP values were used
as in the preview subsection 3.1 EEG time series. The results are shown in Fig 15. From that
the most important connection was between F3 (frontal region) and PO4 (between parietal and
occipital region). In addition, in Fig 15B it can be seen that for the connection between F3 and
PO4, low values of correlation (blue dots) were important for detecting the absence of ayahuasca
(negative SHAP values), and high values of correlation (red dots) were important for detecting
the presence of ayahuasca (positive SHAP values).
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(A) (B)
Figure 12 – Feature importance ranking for SVM classifier being the brain regions ranked in de-

scending order of importance. Brain region T7 is most important to classify the effect of
ayahuasca. A) Feature ranking based on the average of absolute SHAP values over all subjects
considering both classes (gray:without ayahuasca, cyan: with ayahuasca). B) Same as A) but
additionally showing details of the impact of each feature on the model.

The location in the brain can be seen in Fig 16.

3.3 Complex network measures

The test sample performance using the complex network measures was a mean AUC of
0.75, mean accuracy of 0.83, mean F1 score of 0.78, mean recall of 0.75, and mean precision of
0.90.

Similar to the previous subsections 3.1 EEG time series and 3.2 Connectivity matrices,
the precision measure was higher than the recall measure, and therefore the model can better
detect the presence of ayahuasca.

In Fig 10, the confusion matrix (Fig 17A), the learning curve (Fig 17B), and the ROC
curve (Fig 17C) are plotted. Again, the entire database is necessary in order to get the highest
accuracy.

From the SHAP values in Fig 18 it can be seen that the most important measure for the
model was the CC, followed by assortativity, and the newly introduced measures ASC and ASPC.
In addition, in Fig 18B can be seen that for the CC measure, low values of this metric (blue dots)
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(A)

(B)
Figure 13 – The five most important brain regions considering EEG time series as input data. A)

- Sagittal left plane showing the brain region for the channel T7 and P5. B) Axial dorsal
plane showing the brain regions Fz, Fp1 and FC1. The brain plot was made using Braph tool
(MIJALKOV et al., 2017), based on the coordinates in (MICHEL; BRUNET, 2019; ASHER
et al., 2021).
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Figure 14 – Machine learning results using the connectivity matrices as input data. A) Confusion

matrix indicating a true negative rate of 75% (orange according to the color bar) and a true
positive of 100% (blue according to the color bar). B) Learning curve for the training accuracy
(blue) and for test accuracy (green). C) ROC curve of class 0 (without ayahuasca) and class 1
(with ayahuasca). The gray dotted curve is the macro-average accuracy (area under curve =
0.88) and the pink one the random classifier.

were important for detecting the absence of ayahuasca (negative SHAP values), and high values
of this metric (red dots) were important for detecting the presence of ayahuasca (positive SHAP
values).

4 Discussion
In this paper, we aimed to answer the question if it is possible to automatically detect

brain activity changes due to ayahuasca using machine learning and which features are most
important and could act as biomarkers.

Our results show that it is possible to automatically detect the changes due to ayahuasca.
The classification accuracy was above 75% for all three data abstraction levels. The classification
accuracy of connectivity matrices was higher than the raw EEG time series, suggesting that
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Figure 15 – Feature importance ranking for SVM classifier being the connections of brain regions

ranked in descending order of importance. The connection between the regions PO4 and
F3 is the most important to classify the effect of ayahuasca. A) Feature ranking based on the
average of absolute SHAP values over all subjects considering both classes (gray: without
ayahuasca, cyan: with ayahuasca). B) Same as A) but additionally showing details of the
impact of each feature on the model.

connection changes are more important between brain regions than within brain regions. This
result is important since the connectivity matrices improved the accuracy and produced efficiency
gains, such as reduced data storage and faster machine learning training. This would be especially
useful for larger datasets, where raw time series may be very costly, for example, in hospital
diagnosis systems.

4.1 EEG time series

The raw EEG time series analysis revealed that the frontal and the temporal lobe were
the most affected brain regions. In line with that, studies using single photon emission com-
puted tomography (SPECT) have reported that ayahuasca increases blood perfusion in the
frontal regions of the brain, more specifically, the insula, left nucleus accumbens, left amygdala,
parahippocampal gyrus, and left the subgenual area (SANTOS et al., 2016; RIBA et al., 2006).
Furthermore, works using functional magnetic resonance imaging have observed activation in
the brain’s occipital, temporal, and frontal areas (JIMÉNEZ-GARRIDO et al., 2020; ARAUJO et

al., 2012). These regions are related to introspection, emotional processing, and the therapeutic
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Figure 16 – The most important connection of brain regions considering connectivity matrices as
input data. Axial dorsal plane showing the brain regions connection between F3 and PO4.
The brain plot was made using Braph tool (MIJALKOV et al., 2017), based on the coordinates
in (MICHEL; BRUNET, 2019; ASHER et al., 2021).

effects of traditional antidepressants (SANTOS; HALLAK, 2021) and most interestingly, it may
also affect motor and cognitive functions in other neurological disorders, such as Parkinson’s
disease and Alzheimer’s disease, respectively (AARSLAND et al., 2017; SMITH et al., 2018).

4.2 Connectivity matrices

The correlation between the left frontal cortex (F3) and right parietal-occipital (PO4)
was most important in terms of brain connections.

(RODRIGUEZ et al., 1999) showed that synchronization in the gamma band between
the parietal-occipital and frontal cortices was present during face recognition tasks. Since the
EEG time series data used in this work only contained the gamma band, the P04-F3 connection
could point to similar cognitive processes in the subjects during ayahuasca-mediated visual
hallucinations.
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Figure 17 – Machine learning results using the complex network measures as input data. A) Confu-

sion matrix indicating a true negative rate of 50% (orange according to the color bar) and a
true positive rate of 100% (blue according to the color bar). B) Learning curve for the training
accuracy (blue) and for test accuracy (green). C) ROC curve of class 0 (without ayahuasca)
and class 1 (with ayahuasca). The gray dotted curve is the macro-average accuracy (area
under curve = 0.75) and the pink one the random classifier.

4.3 Complex network measures

The most important complex network measure was CC. CC is a centrality measure that
can be defined as the inverse of the average length of the shortest path from one node to all other
nodes in the network (RUBINOV; SPORNS, 2010). The idea is that important nodes participate
in many shortest paths within a network and, therefore, play an important role in the flow of
information in the brain (FREEMAN, 1978). The CC was also the most important measure in
other papers related to the differentiation of patients with AD (COPE et al., 2018; PERAZA et al.,
2019; EBADI et al., 2017; PEREIRA et al., 2016). In these papers, CC was shown to decrease
due to AD disease, while ayahuasca ingestion increased the median value of this measure (see
Fig 19).

The second most important complex network measure was assortativity. This measure
refers to the resilience of networks (NEWMAN, 2002). A positive assortativity coefficient indi-
cates a network with a resilient core due to the interconnected nodes of high degree (RUBINOV;
SPORNS, 2010). This measure was also associated with AD in several works (CONINCK et al.,
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Figure 18 – Feature importance ranking for SVM classifier being the features ranked in descend-
ing order of importance. The CC measure is the most important to classify the effect of
ayahuasca. A) Feature ranking based on the average of absolute SHAP values over all subjects
considering both classes (gray: without ayahuasca, cyan: with ayahuasca). B) Same as A) but
additionally showing details of the impact of each feature on the model.

closeness centrality assortativity
Figure 19 – Boxplot of the closeness centrality and assortativity measures. These measures were

calculated for all subjects in the first, second and third windows (respectively in pink, green
and blue). It can be seen that the median of the closeness centrality measure (central bar in
the boxplot) increased with the use of ayahuasca. The median of the assortativity, in contrast,
decreased with the use of ayahuasca.
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2020; LUO et al., 2021) whose results showed an increase in the assortativity value in contrast to
what was found here, where with the use of ayahuasca, the assortativity value (median) decreased
(see on Fig 19). It should be noted that although the median value decreased, the upper confidence
interval of the distribution increased.

In summary, the results suggest a possible relationship between ayahuasca and AD in
terms of the brain network, indicating a therapeutic potential. Indeed, a possible mechanism
of how ayahuasca acts against AD was described in (FRECSKA; BOKOR; WINKELMAN,
2016). According to this, the ayahuasca compound DMT agonizes the sigma 1 receptor (Sig-1R)
and thereby regulates endoplasmic reticulum (ER) (ER) stress and Unfolded Protein Response
(UPR), which are thought to play a crucial role in neuropsychiatric diseases such as AD.

The seven measures developed here concerning community detection are ranked among
the twenty most important measures for classification, with ALC ranking third (see Fig 18).
ALC is associated with the size of the largest community found by the leading eigenvector
community (LC) detection algorithm. This metric shows increased values (compared to con-
trols) in communities with larger path lengths after the use of ayahuasca (Fig18B), indicating
communities with larger paths after using this psychedelic. Larger brain communities were also
found in (VIOL et al., 2017) after the use of ayahuasca. There are two contrasting concepts
in the brains of large vertebrates: functional segregation (or specialization) and integration
(or distributed processes)(TONONI; SPORNS; EDELMAN, 1994; SPORNS, 2002). Larger
communities also indicate that the balance between functional segregation and integration in the
brain was disrupted. This suggests that the distribution of information is slower.

Overall, the classification was successful by considering the complete set of measures
rather than just one single measure. As shown in Fig 19, even the most important measures CC
and assortativity, did not show much difference between the first window (without ayahuasca)
and the other windows (with ayahuasca). Together with the other less important measures,
however, the machine learning method was able to distinguish both classes successfully. This
leads to the conclusion that a single feature is insufficient as a biomarker, while the different
features used in this work may serve as a biomarker.

5 Conclusion

In summary, the results obtained in our study demonstrated that the application of
machine learning methods was able to detect changes in brain connectivity during ayahuasca
use automatically. Additionally, we demonstrated that the connectivity matrices are the best
abstraction level to detect brain changes caused by this psychedelic.

At level abstraction A, our findings suggest that this substance affects important brain
regions related to cognitive, psychiatric, and motor functions. These effects may alleviate different
symptoms of diseases affecting the brain.
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At level abstraction B, the connection between F3 and PO4 is the most important while
using ayahuasca according to our classifier model, a significant discovery in psychedelic literature.
This connection may point to a cognitive process similar to face recognition in individuals during
ayahuasca-mediated visual hallucinations.

Concerning the complex network measures at level abstraction C, CC, assortativity,
and one of the new measures developed here, ALC, capture the best brain changes caused by
ayahuasca. The new ALC measure inferred that larger communities are associated with this
psychedelic and the opposite in its absence. Larger communities suggest that the distribution
of information is slower with the use of this substance. Therefore, the present study’s find-
ings support that cortical brain activity becomes more entropic under psychoactive substances.
(CARHART-HARRIS et al., 2014; CARHART-HARRIS, 2018; PAPO, 2016). There is, however,
evidence that psychedelics do not simply make the brain more random, but after the typical orga-
nization of the brain is disrupted, strong and topologically far-reaching functional connections
emerge which are not present in the natural state of mind.

While our methodology has proven effective, it is focused on the acute evaluation of
psychedelics. Consequently, more research is necessary to determine how psychedelics affect
the functional connectivity of the brain over the long term using our workflow.

In summary, we have developed a robust computational workflow that provides insights
into the mechanism of action of ayahuasca and the interpretability of how it modifies brain
networks.

Finally, the same methodology applied here may help interpret EEG time series from
patients who consumed other psychedelic drugs, such as pure DMT (PALLAVICINI et al., 2020).
In future work, we aim to apply this workflow to recordings from our laboratory using in vitro
neuronal networks on microelectrode arrays to study the effects of psychedelics at a single
network level. Thus, regardless of the equipment used to collect the data, we would like to verify
whether the same method used here can detect changes due to different psychedelics.
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Abstract

There is a growing interest in the medical use of psychedelic substances, as preliminary studies
using them for psychiatric disorders have shown positive results. In particular, one of these
substances is DMT, an agonist serotonergic psychedelic that can induce profound alterations in
the state of consciousness.

In this work, we use an exploratory tool to reveal DMT-induced changes in brain activity using
EEG data and provide new insights into the mechanisms of action of this psychedelic substance.
We used a two-class classification based on (A) the connectivity matrix or (B) complex network
measures derived from it as input to a support vector machine.

We found that both approaches could detect changes in the brain’s automatic activity, with case
(B) showing the highest AUC (89%), indicating that complex network measurements best capture
the brain changes that occur due to DMT use.

In the second step, we ranked the features that contributed the most to this result. For case (A), we
found that differences in the high alpha, low beta, and delta frequency bands were most important
in distinguishing between the state before and after DMT inhalation, which is consistent with
the results described in the literature. Further, the connection between the temporal (TP8) and
central cortex (C3) and between the precentral gyrus (FC5) and the lateral occipital cortex (P8)
contributed most to the classification result. The connection between regions TP8 and C3 has
been found in the literature associated with finger movements that might have occurred during
DMT consumption. However, the connection between cortical areas FC5 and P8 has not been
found in the literature and is presumably related to the volunteers’ emotional, visual, sensory,
perceptual, and mystical experiences during DMT consumption.

For case (B), closeness centrality was the most crucial complex network measure. Furthermore,
we discovered larger communities and longer average path lengths when DMT was used and
the converse when not, showing that the balance between functional segregation and integration
had been disrupted. These findings support the idea that cortical brain activity becomes more
entropic under psychedelics.

Overall, a robust computational workflow has been developed here with interpretability of how
DMT (or other psychedelics) modify brain networks and insights into their mechanism of action.
Finally, the same methodology applied here may help interpret EEG time series from patients
who consumed other psychedelic drugs.

4.1 Introduction
N, N-dimethyltryptamine (DMT) is a substance endogenously produced in various

mammals (CHRISTIAN et al., 1977), including humans (SMYTHIES; MORIN; BROWN,
1979), and has serotonin agonist properties. Thus, it can bind to serotonin receptors, simulating
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the neurotransmitter (SMITH et al., 1998). In (STRASSMAN, 2001), it was for the first time
suggested that the pineal gland produces DMT in stress situations such as birth and death. In
(BARKER; MCILHENNY; STRASSMAN, 2012; BARKER et al., 2013), it seems clear that it
is produced in small quantities by this gland (NICHOLS, 2018).

The substance was first synthesized in 1931 (MANSKE, 1931), while its psychoactive
effects were described for the first time many years later in 1956 by (SZARA, 1956). When
administered externally in large quantities, DMT can cause altered states of consciousness
(BARKER, 2018), hallucinations (GAUJAC et al., 2013; OTT, 1999; SCHARTNER; TIMMER-
MANN, 2020) and spiritual experiences such as communication with ‘presences’ or ‘entities’,
plus reflections on death (TIMMERMANN et al., 2018). Exogenous ingestion can be done by
smoking or injecting. Its effect by oral ingestion depends on the inhibition of monoamine oxidase,
an enzyme that degrades the alkaloid DMT in the liver and intestine (OTT, 1999). This enzyme
and DMT are also present in ayahuasca tea, which has been used in the Amazon for hundreds of
years as part of the traditional medicine of the region’s inhabitants (ARAÚJO, 2019).

Recently, there has been a surge in interest in the medicinal application of psychedelics.
Only last year, in (PERKINS et al., 2021), around 100 psychedelic clinical studies are presently
being done globally. This represents increased clinical trials compared to the 43 aided psychedelic
treatment clinical studies done since 1999. One example is the psychedelic MDMA which is al-
ready in phase 3 clinical trials for the PTSD (MITCHELL et al., 2021) and significant depression
with positive results (ANDREWS; WRIGHT, 2022). Another notable example is psychedelic
psilocybin, whose therapeutic use in the U.S. has come to be considered a revolutionary therapy
for treatment-resistant depression and major depressive disorder (NICHOLS, 2020). These first
promising results suggest that other psychedelic substances, such as LSD, ibogaine hydrochlo-
ride, salvia divinorum, 5-MeO-DMT, ayahuasca, and DMT, which have been less studied so far,
should be investigated in more detail (SIEGEL et al., 2021).

Only a few studies on administering micro- or low-dose DMT to non-human species
(predominantly rats) have been published in the scientific literature (BARKER, 2022). In (LY
et al., 2018), a low dose of DMT was administered to rats resulting in changes in frequency
and amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in the prefrontal cortex
(PFC) that lasted long even after the drug was removed from the body. In (CAMERON et al.,
2019), it was described that chronic, intermittent, low doses of DMT produced an antidepressant
effect and increased fear extinction learning in rats without affecting working memory or social
interaction. For a high amount of DMT (10 mg/kg), an increase in the density of the dendritic
spines in the prefrontal cortex was found in rodents, and antidepressant and anxiolytic behavioral
effects were observed (CAMERON et al., 2018). In humans, a single dose of 0.1 mg/kg of DMT
caused an apparent anxiolytic effect shown in (STRASSMAN et al., 1994). However, other
studies using inhaled 5-MeO-DMT also observed complete mystical experiences in 75% of
volunteers (BARSUGLIA et al., 2018) and improvements in depression and anxiety, which were
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associated with greater intensity of mystical experiences, with the spiritual and personal meaning
of the experience, when using this substance (DAVIS et al., 2019).

Thus, there is evidence that DMT can help with depression and post-traumatic stress
disorder. However, most studies have been conducted on animals and, therefore, only have a
reduced power. Therefore, more in-depth studies on DMT, its mechanisms in the brain, and its
potential clinical effects in humans are needed since there are few studies investigating the use
of DMT in humans through EEG (TIMMERMANN et al., 2019; TAGLIAZUCCHI et al., 2021;
ALAMIA et al., 2020) and fMRI (DAUMANN et al., 2008).

Despite DMT’s significant therapeutic potential, there are just a few human studies in
the literature, and additional study on how this substance modifies the brain and its mechanism
of action is required.

Graph theory methods yielded interesting insights into the complex network structure
of the human brain. It is known from the literature (SPORNS; ZWI, 2004; DIJK et al., 2010;
SCANNELL et al., 1999; HILGETAG et al., 2000; FORNITO; ZALESKY; BULLMORE, 2016;
WHITE et al., 1986) that the topology of the brain is a small world network. This type of network
has connectivity properties that are intermediate between random and regular graphs, preserving
a high degree of connectivity between local neighborhoods while allowing all of its nodes to be
connected via remarkably short pathways (SPORNS; ZWI, 2004; WATTS; STROGATZ, 1998).
They also preserve a high degree of connectivity between local neighborhoods while allowing
all their nodes 1 which to be connected to surprisingly short paths (SPORNS; ZWI, 2004).
Altering this topology is also associated with pathological states (BASSETT; GAZZANIGA,
2011; PINEDA et al., 2020; SPORNS, 2018; BASSETT; ZURN; GOLD, 2018), and the use of
substances such as psychedelics (NICHOLS; JOHNSON; NICHOLS, 2017; GIRN et al., 2020;
VIOL et al., 2017). Notably, complex network parameters have been used as a biomarker for
several diseases (HAYASHIDA; AKUTSU, 2016; FEKETE et al., 2013). In addition, complex
networks are widely used in EEG to characterize the brain functional networks (BULLMORE;
SPORNS, 2009; BARAVALLE et al., 2019; DAS; PUTHANKATTIL, 2020; DIYKH; LI; WEN,
2017).

In this context, ML has been used for more accurate, and automatic medical diagno-
sis (SONG; JUNG; CHUNG, 2019; MOZAFFARINYA et al., 2019; ILYASOVA et al., 2018;
RICHENS; LEE; JOHRI, 2020; LYNCH; LISTON, 2018; ALIZADEHSANI et al., 2019;
KEANE; TOPOL, 2018; BHATT et al., 2021). Compared to traditional statistical techniques,
this approach has the advantage of not relying on prior assumptions (such as adequate distribu-
tion, observation independence, absence of multicollinearity, and interaction problems) and is
suited to automatically analyze and capture complex non-linear relationships in data(LI et al.,

1 The network nodes can be representations from of neurons (<1µm, microscale) to brain regions (≈ 10
cm, macro-scale)
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2020; RAJULA et al., 2020). As brain data are characterized by high complexity and highly
correlated brain regions, ML algorithms have been widely used to detect acute and permanent ab-
normalities in the brain (FONG; SCHEIRER; COX, 2018; KRAGEL; LABAR, 2016; BOUTET
et al., 2021). On the other hand, ML shows a lack of interpretability and a black-box nature
that is an especially disadvantageous general limitation when it comes to an understanding
medical data (RUDIN, 2019; EKANAYAKE; MEDDAGE; RATHNAYAKE, 2022). In recent
years, new techniques have emerged to help interpret machine learning results. Most notable
is the SHAP values method (LUNDBERG; LEE, 2017). This metric enables the identification
and prioritization of features and can be used with any machine learning algorithm (BOWEN;
UNGAR, 2020; RODRÍGUEZ-PÉREZ; BAJORATH, 2019; SPADON et al., 2019).

The present work aims to investigate EEG data using ML as an exploratory tool to detect
temporal changes in the brain functionality of participants after DMT consumption. The study
raised the following research questions:

∙ Can we automatically detect changes in the functional network structure induced by DMT
using ML?

∙ Which new insights into the mechanisms of action of DMT can we draw when we use ML
in combination with SHAP values?

To answer these questions, we use the same methodology implemented in (ALVES
et al., 2022a), which proposes a two-class classification based on (A) the connectivity matrix
or (B) complex network measures derived from it as input to a SVM (BOTTOU; LIN, 2007).
SVM has been used with excellent results for classifying complex network measures before
(MAZROOYISEBDANI et al., 2020; DIYKH; LI; WEN, 2017; DEY; RAO; SHAH, 2014).
Furthermore, this ML algorithm can handle problems where the sample size of the data is
generally smaller in comparison to the dimensionality of its feature space and is therefore
applicable to the study of brain disorders with neuroimaging (PISNER; SCHNYER, 2020),
whose data have these characteristics, and also this is the case of the data in this work (the case
A with connectivity matrix). Moreover, we determine which abstraction levels are most suited
for EEG recording DMT-induced brain changes. In contrast to the previous study (ALVES et al.,
2022a), which uses gamma-band frequencies in EEG from ayahuasca experiments. This study
advances the methodology used before since different frequency bands are also considered to
see the best frequencies to differentiate brain changes due to DMT.

For a biological interpretation of the DMT-induced changes, the SHAP value technique
has also been demonstrated to be more successful than the research described above in identifying
the best connections between brain areas and the best complex network measures, which helps
understand the effects of the psychedelic substance on the brain.
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A more robust workflow has also been applied for interpreting brain network modifica-
tions due to DMT (or other psychedelics) in these two data abstract levels.

4.2 Data

The data used for this study has been published in (PALLAVICINI et al., 2021) and is
publicly available in a raw format 2. Thirty-five healthy male and female subjects (7 women
and 28 men) volunteered to inhale, using pipes, 40 mg of free DMT extracted from the root of
Mimosa hostilis. It should be noted that all participants had previous experiences with ayahuasca.
Recordings were made with 24 electrodes, following the EEG electrode positions in the standard
10 – 20 location system. These channels are Fp1, Fp2, Fz, F7, F8, FC1, FC2, Cz, C3, C4, T7,
T8, CPz, CP1, CP2, CP5, CP6, TP9, TP10, Pz, P3, P4, O1, and O2. In addition, reference and
ground electrodes were placed at FCz. The recordings on the subjects started 10 minutes before
DMT inhalation, 5 min with eyes closed, and 5 minutes with eyes open. After DMT use, subjects
were recorded for about 6 min (6 1.4 min) with eyes closed.

4.3 Methodology

In an earlier work of the authors (ALVES et al., 2022a), ML, in combination with complex
network measures, was successfully applied to EEG data recorded after ayahuasca consumption
to detect changes in brain activity. For this purpose, different levels of data abstraction were used
as input: (a) the raw EEG time series, (b) the correlation of the EEG time series, and (c) the
complex network measures calculated from (b). Several ML algorithms were tested, and the best
performance was obtained with the SVM at abstraction levels (b) and (c). Based on this result,
we decided to use in the present work connectivity matrices (see subsection 4.3.2) and derived
complex network measures (see subsection 4.3.3 as input for an SVM).

More details are displayed in Figure 20, which summarizes the methodology workflow.
In short, EEG time series were separated by filtering in eight frequency bands. In the next step,
preprocessing of the EEG time series was performed to obtain the connectivity matrices for each
frequency band (and the unfiltered signal); see Figure 20- A and B with details of this process
described in subsection 4.3.1 and 4.3.2. In a second step, complex networks measures are derived
from the connectivity matrices as described in subsection 4.3.3, see Figure 20- C, and both
types of data sets were used as input to an SVM as described in subsection 4.3.4. Finally, for
interpretation of the classification results, the feature ranking algorithm SHAP is finally applied
as described in subsection 4.3.5.

2 Avaiable on Zenodo. <https://doi.org/10.5281/zenodo.3992359>

https://doi.org/10.5281/zenodo.3992359
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Figure 20 – Diagram showing the methodology used in the present work. In (A) Data preprocessing,
described in the subsection 4.3.1, the EEG time series are filtered to remove artifacts (in the
picture, the time series of a subject at the time the DMT was used) and then separated into the
frequency bands high alpha, low alpha, high beta, mid-range beta, low beta, gamma, delta, and
theta (as an example in the picture the topographic map for the frequencies high alpha and high
beta for the same subject). For each band, the correlation between the channels is calculated
using Pearson’s correlation to obtain a 24x24 connectivity matrix. In (B) Connectivity
matrices, described in the subsection 4.3.2, where the connectivity matrices are flattened
into a vector that is put into the SVM to verify the most important connections with the use
of DMT (in the figure the best performing model, using the high alpha, low beta, and delta
bands, found TP8 and C3 as the primary connections). In (C) complex network measures,
described in the subsection 4.3.3, where the connectivity matrices are analyzed as graphs
(in the figure for the same subject, the diagram for the frequencies high alpha and high beta,
where the number of connections in each node varies according to the color bar) and from
them have extracted measures of complex networks that are applied in the SVM and the best
model found for the delta frequency found the closeness centrality as the main measure.
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Figure 21 – Scalp topography maps generated by ICA analytics were recorded from a subject shortly after
inhalation of DMT. The EEG signal was decomposed into twenty principal components. The
component with ocular activity (see ICA018 with activity in the frontal region near the eyes)
was removed, and an artifact-free EEG signal was reconstructed.

4.3.1 Data preprocessing

First, a high-pass filter with a cut-off frequency of 0.5 Hz was used to remove artifacts
such as electro galvanic signals and motion artifacts (KUMAR et al., 2017). This type of filtering
is widely used in the literature (STEVENSON et al., 2019; LOUWERSE; HUTCHINSON,
2012; DAFTARI; SHAH; SHAH, 2022; KLUG; GRAMANN, 2021). To remove eye artifacts,
we employed an independent component analysis (ICA) approach in which EEG signals are
decomposed to maximize independent components, and those with eye activity are identified and
eliminated (JUNG et al., 2000). An example of the ICA analysis for a subject using DMT can be
seen in Figure 21. This analysis was done with a python package called MNE (GRAMFORT et

al., 2013) using an algorithm based on maximum information (Infomax) perspective (AMARI;
CICHOCKI; YANG, 1995).

In the next step, EEG time series were separated by filtering in eight frequency bands:
high alpha (10-12 Hz), low alpha (8-10 Hz), low beta waves (12–15 Hz), mid-range beta waves
(15–20 Hz), high beta waves (18–40 Hz), gamma (30 - 44 Hz), delta (0.5 – 3 Hz) and theta (4 –
7 Hz).

4.3.2 Connectivity matrices

The well-known Pearson correlation calculated connectivity matrices. It is a widely used
and successfully approved measure to capture the correlation of EEG electrodes (ROJAS et
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al., 2018; WANG et al., 2017b; JALILI, 2016; HAN et al., 2019; TOKARIEV et al., 2019;
FALLANI et al., 2011b). The Pearson correlation was calculated for all electrode pairs and all
frequency bands (including the unfiltered signal). The connectivity matrices serve as input for
the following steps described in subsections 4.3.2 and 4.3.3.

The connection matrices were flattened into a single vector before being fed into the
ML algorithm. The vectors were then successively combined into a 2D matrix, with each
column representing a link between two electrodes and each row representing a person. For each
frequency band, such 2D matrices were created (and the unfiltered signal).

4.3.3 Complex network measures

A complex network graph was generated for each connectivity matrix to extract different
measures. To construct the graphs, we normalized the connectivity matrix between 0 and 1,
and connections bigger than 0.5 were binarized to 1 and smaller ones to zero. This way, the
generated graph is undirected and weightless. This undirected and weightless graph was taken
was considered since the Igraph package (CSARDI; NEPUSZ et al., 2006) that we used to
extract the complex network measures includes a more significant number of complex network
measures for binary graphs, and the ML approach works better with a large number of features.

Furthermore, many recent studies (JALILI, 2016; GOÑI et al., 2013) have excluded
weighted edges, turning them into binary edges, since weightless networks are simpler to
characterize and there are many more measures, from complex networks to weightless networks.
In addition, removing weights still eliminates weak, meaningless edges, which can be seen as
noise in functional and effective networks (RUBINOV; SPORNS, 2010).

To feed the data into the ML algorithm, the complex network measures retrieved from
the created graphs were stored in a matrix, with each column being a complex network measure
and each row representing a subject.

The following complex network measures were calculated: Assortativity (NEWMAN,
2003; NEWMAN, 2002), APL (ALBERT; BARABÁSI, 2002), BC (FREEMAN, 1977), CC
(FREEMAN, 1978), EC (BONACICH, 1987), diameter (ALBERT; JEONG; BARABÁSI, 1999),
hub score (KLEINBERG, 1999), Knn (EPPSTEIN; PATERSON; YAO, 1997), mean degree
(DOYLE; GRAVER, 1977), SMD (SNIJDERS, 1981), entropy degree (ED) (DEHMER; MOW-
SHOWITZ, 2011), transitivity (WATTS; STROGATZ, 1998; NEWMAN; WATTS; STRO-
GATZ, 2002), complexity, k-core (SEIDMAN, 1983; NEWMAN, 2010), eccentricity (HAGE;
HARARY, 1995), density (ANDERSON; BUTTS; CARLEY, 1999), and global efficiency
(LATORA; MARCHIORI, 2003). In addition, newly developed metrics (described in detail in
(ALVES et al., 2022a)) reflecting the number of communities in a complex network are applied.
Community detection (also called clustering graph) is one of the fundamental analyses of com-
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plex networks aiming to decompose the network in order to find densely connected structures,
so-called communities (NEWMAN, 2012; KIM; LEE, 2015; ZHAO; LIANG; WANG, 2021).
However, the community detection measures need to be transformed into a single scalar value
to include them in the matrix. To this aim, we perform the community detection algorithms to
find the largest community, then calculate the average path length within this community and
receive a single value as a result. The community detection algorithms used were: Fastgreedy
community (FC) (CLAUSET; NEWMAN; MOORE, 2004), infomap community (IC) (ROS-
VALL; AXELSSON; BERGSTROM, 2009), leading eigenvector community (LC) (NEWMAN,
2006), label propagation community (LPC) (RAGHAVAN; ALBERT; KUMARA, 2007), edge
betweenness community (EBC) (GIRVAN; NEWMAN, 2002), spinglass (SPC) (REICHARDT;
BORNHOLDT, 2006), and multilevel community (MC) (BLONDEL et al., 2008). To indicate
our approach, we extended the given abbreviations by the letter "A" (for average path length) as
follows: AFC, AIC, ALC, ALPC, AEBC, ASPC, and AMC.

4.3.4 Machine learning process

All the parameters of the ML algorithms used in this paper and the metrics used to
evaluate the model’s performance were based on a recent study (ALVES et al., 2022a). This
study assessed whether it could automatically detect changes in functional brain connectivity
due to psychedelic ayahuasca, which presents in its composition the substance DMT. Thus, to
classify these two levels of data abstraction, namely the connectivity matrix and the complex
network measures, the matrices were sampled by separating them into training (train) and test
sets, with 25% of the data composing the test set. Then, for a reliable model, k-fold cross
validation was used (REFAEILZADEH; TANG; LIU, 2009), with k = 10 (value widely used
in the literature (BERRAR, 2019; BENGIO; GRANDVALET, 2004; SHAH; KHAN, 2020;
KAWAMOTO; KABASHIMA, 2017; CHAN et al., 2019; KAWAMOTO; KABASHIMA, 2017)).
For the training process, the training sets were applied to the SVM. SVM is based on the search
for a hyperplane that geometrically divides samples into two classes. Three important hyper-
parameters of the SVM have been considered in this work:

∙ Kernel function: also known as kernel trick, has the function of projecting the input vectors
in higher dimensions because by increasing the dimension of the problem, the probability
of it becoming a linearly separable problem increases, which makes it easier to solve (XU;
ZOMER; BRERETON, 2006; AWAD; KHANNA, 2015).

∙ Regularization parameter C: this is the penalty term of the optimization problem and is an
added constant that creates flexible margins concerning the optimal hyperplane found.

∙ Gamma: defines how much influence a single training example has. When the gamma
value is too small, the model is too restricted and fails to capture the complexity of the
data.
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To find the best parameters, these hyper-parameters were optimized with the grid search
method, widely used in the literature (SATO et al., 2019; ZHONG et al., 2021; ARCADU et

al., 2020; KRITTANAWONG et al., 2021; RASHIDI et al., 2020). The grid search thoroughly
combines all values of the parameters selected for the models using some metrics to evaluate the
performance of these combinations, which in the present work was the AUC (for an explanation,
see below). Here, we used the following functions as values for the kernel: gaussian (RBF),
polynomial (poly), sigmoid and linear. Optimized values for parameters C and gamma are
displayed in Appendix A.6.

For evaluation, the standard performance metrics accuracy (Acc.) was used as described
in (MINCHOLÉ; RODRIGUEZ, 2019; TOLKACH et al., 2020; DUKART et al., 2021; LI;
ASCH; SHAH, 2020; PARK; KELLIS, 2015). As we have a two-class (negative and positive)
classification problem, other metrics like Precision and Recall are considered, also typical in the
literature (ITO et al., 2021; KIM et al., 2020; LI et al., 2021; YU et al., 2020). Precision (also
called specificity) corresponds to the negative class’s hit rate (here, no effect induced by DMT).
Whereas Recall (also called sensitivity) measures how well a classifier can predict positive
examples (hit rate in the positive class), here related to an effect of DMT. Another well-known
measure, see (ZHONG et al., 2021; BERRYMAN et al., 2020; YANG et al., 2019), is the F1
score which is the harmonic mean of the Recall and precision (HANNUN et al., 2019).

For visualization of these two latter measures, the ROC curve is a standard method as
it displays the relation between the rate of true positives and false positives. The area below
this curve called the AUC has been widely used in classification problems (MINCHOLÉ;
RODRIGUEZ, 2019; BRACHER-SMITH; CRAWFORD; ESCOTT-PRICE, 2021; PATEL et

al., 2021; KRITTANAWONG et al., 2021). The AUC value ranges from 0 to 1, with one
corresponding to an error-free classification result. For example, AUC = 0.5 indicates that the
classifier cannot distinguish the two classes equal to the random choice. Furthermore, we consider
the micro average of the ROC curve, which computes the AUC metric independently for each
class (calculate the AUC measure for patients before consuming DMT, class zero, and separately
for patients after ingesting DMT, class one.) and then the average is computed considering these
classes equally. Finally, the macro average is also used in our evaluation, which does not consider
both classes equally, but aggregates the classes’ contributions separately and then calculates the
average.

4.3.5 Feature Ranking

As described in 4.1, the most notable technique for interpreting ML results is the
SHAP values, which has its origin in game theory (RODRÍGUEZ-PÉREZ; BAJORATH, 2020;
SHAPLEY, 1953), where it aims to assign payoffs to players depending on their contribution
to the total payoff in the game. In addition, those who cooperate in a coalition receive a certain
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Table 12 – Performances of the SVM classifier. Complex network measures’ classification captures the
brain’s changes due to DMT slightly better than the connectivity matrix. The best performance
is highlighted in bold.

Type of
data

EEG
frequencies band Subset AUC Acc. F1

score Recall Precision

Connectivity
matrix

high alpha, low beta
and delta

Train 1.00 1.00 1.00 1.00 1.00
Test 0.82 0.82 0.82 0.82 0.82

Complex network
measures delta Train 1.00 1.00 1.00 1.00 1.00

Test 0.89 0.89 0.88 0.88 0.91

profit from this cooperation (PARRACHINO, 2012). When we apply this method to our ML
problem, each feature represents a player in a game, and the prediction represents the reward.
Thus SHAP values tell us how to distribute the payoff fairly among the features (MOLNAR,
2020).

Here, we used this methodology to evaluate which complex network measures and
which correlation between electrodes (brain regions) contributed most to the classification result
allowing for a biological interpretation of the results obtained with our ML algorithms.

4.4 Results

ML was applied for two different levels of data abstraction: (A) the correlation of EEG
time series (connectivity matrix) and (B) the complex network measures calculated from (A). We
found that both approaches could automatically detect acute changes in brain activity induced by
the inhalation of DMT. However, the highest classification performance was obtained for the
complex network measures with an AUC of 89% (see Table 12). The following subsections 4.4.1
and 4.4.2 describe the results in more detail.

4.4.1 Connectivity matrix

EEG data recorded from subjects before DMT inhalation (control with eyes closed) and
those after inhalation of DMT were filtered and divided into eight frequency bands as described
in 4.3.1. Detailed results for each frequency band are given in the appendix A.7.

The best performance was achieved for the low beta frequency band (test sample perfor-
mance with mean AUC of 0.78, mean precision of 0.78, mean F1 score of 0.78, mean recall of
0.78, and mean Acc. of 0.78) followed by the high alpha and delta frequency bands (test sample
performance for both frequency band was a mean AUC of 0.72, mean precision of 0.72, mean
F1 score of 0.72, mean recall of 0.72, and mean Acc. of 0.72). Then, these connection matrices
from the frequencies that performed best independently were inserted again in the ML approach.
Moreover, better results were achieved by combining these frequency bands whose test sample
performance had a mean AUC of 0.82, mean precision of 0.82, mean F1 score of 0.82, mean
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(a) (b)

(c)

Figure 22 – ML results using connectivity matrices. (a) Confusion matrix indicating a true negative rate
of 80.8% (purple according to the color bar) and a true positive rate of 84.6% (blue according
to the color bar). (b) The learning curve for the training accuracy (blue) and test accuracy
(green). (c) ROC curve with class 0 (control) and class 1 (after inhalation of DMT).

recall of 0.82, and mean Acc. of 0.82. Furthermore, see appendix A.9 for the similarity of results
obtained for each frequency.

In Figure 22, the confusion matrix (22-(a)), the learning curve (Figure 22-(b)), and the
ROC curve (22-(c)) are displayed. The learning curve evaluates the model’s predictability by
varying the size of the training set (SPADON et al., 2019). Results show that the entire database
is required to achieve the highest validation accuracy.

In order to reveal the importance of the connections between electrode pairs (brain
connections) by considering the combination of the best EEG frequency bands (high alpha, low
beta, and delta), the SHAP values were calculated. The results are shown in Figure 23. The most
important connection was between electrodes TP8 (temporal and parietal region) and C3 (central
region). In addition, the presentation of the data in Figure 23 shows that for the connection
between TP8 and C3, low values of correlation (blue dots) were essential for detecting the
presence of DMT (positive SHAP values). High correlation values (red dots) were important for
detecting the absence of DMT (negative SHAP values). The second most important connection,



92
Chapter 4. On the advances in machine learning and complex network measures to an EEG dataset from

DMT experiments

(a) (b)

Figure 23 – Feature importance ranking for the SVM classifier with electrode correlation (brain regions)
ranked in descending order of importance by considering the combination of the best EEG
frequency bands (high alpha, low beta, and delta). The connection between the regions TP8
and C3 is the most important to classify the effect of DMT. (a) Feature ranking based on the
average of absolute SHAP values over all subjects considering both classes (gray: control,
cyan: after inhalation of DMT). (b) Same as (a), but additionally showing details of the impact
of each feature on the model.

with a similar SHAP value, was between the electrodes FC5 and P8. Figure 24 depicts the
corresponding brain regions.

In other words, in Figure 24-B, the positive SHAP values (part to the right of the central
zero axis) are associated with the class with DMT. In contrast, the negative SHAP values (part to
the left of the central zero axis) are associated with the class without DMT. Each point on the
graph represents the Pearson correlation value of that connection obtained for a given subject.
For example, for the TP8-C3 connection, subjects had low correlation values in the presence
of DMT (blue points on the right region of the central axis) and high correlation values in the
absence of DMT (red points on the left region of the axis).

4.4.2 Complex network measures

We received the best performance considering complex network measures for the delta
frequency band (test sample performance with mean AUC of 0.89, mean precision of 0.91, mean
F1 score of 0.88, mean recall of 0.88 and mean Acc. of 0.89); see Table 12. Furthermore, the
precision measure is related to the positive class (with DMT). Thus, since the precision was
higher than the recall, we conclude that the model slightly better detects the presence of DMT
than its absence. Furthermore, see appendix A.9 for the similarity of results obtained for each
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C3

TP8

FC5

T8

Figure 24 – Brain plot displaying these electrode pairs which contributed most to the classification result
based on connectivity matrices. The brain plot was made using the Braph tool (MIJALKOV
et al., 2017), based on the coordinates in (MICHEL; BRUNET, 2019; ASHER et al., 2021).

frequency.

In Figure 25, the confusion matrix (Figure 25 (a)), the learning curve (Figure 25 (b)),
and the ROC curve (Figure 25 (c)) are plotted. Again, the entire database is necessary to get the
highest accuracy. All the other results can be found in Appendix A.8.

Based on the SHAP values in Figure 26, it can be seen that the essential measure for
the model was the CC, followed by the ALPC measure and the APL. In addition, high values
of the CC measure (pink dots) indicate its importance for the detection of the absence of DMT
(negative SHAP values); see Figure 26 (b). In contrast, with the presence of DMT, some subjects
have low values of closeness centrality (blue and purple dots).

4.5 Discussion
In the previous sections, we presented a computational workflow, including data pre-

processing and an ML algorithm revealing acute differences in brain activity before and after
consuming the psychedelic drug DMT. As a result, we achieved a classification accuracy of
at least 82%. We further showed that the classification accuracy based on complex network
measures (89%) was higher than that based on the connectivity matrix alone (see Table 12),
suggesting that these measures are important to capture differences in brain activity.

Further, we searched for descriptive parameters related to changes in the functional net-
work structure by ranking the importance of features that contributed to the classification result.
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(a) (b)

(c)

Figure 25 – ML results using complex network measures. (a) Confusion matrix indicating a true negative
rate of 77.8% (purple according to the color bar) and a true positive rate of 100.0% (blue
according to the color bar). (b) The learning curve for the training accuracy (blue) and test
accuracy (green). (c) ROC curve with class 0 (control) and class 1 (after inhalation of DMT).

The results are discussed in this section to get insights into the effects of DMT consumption
on the brain in terms of EEG frequency band (subsection 4.5.1), the connection of the most
activated brain regions (subsection 4.5.2), and measures of complex networks (subsection 4.5.3).

4.5.1 Frequency bands

With our workflow, we identified these frequency bands, which were mostly modified
after the intake of DMT. Furthermore, we found that classification results received with the
connectivity matrices and the complex network measures are strongly based on acute changes in
the delta band. Thus, changes in the delta band were most robust for both input data types.

This observation corresponds to what was also found in the literature (PALLAVICINI
et al., 2021; TIMMERMANN et al., 2019). Delta band activity is usually associated with
states where there is no wakefulness, such as sleep (AMZICA; STERIADE, 1998; BERNARDI
et al., 2019) and coma (ARDESHNA, 2016). However, some studies such in (FROHLICH;
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Figure 26 – Feature importance ranking for SVM classifier with features ranked in descending order
of importance. The CC measure is the most important to classify the effect of DMT. (a)
Feature ranking based on the average of absolute SHAP values over all subjects considering
both classes (gray: control, cyan: after inhalation of DMT). (b) Same as (a) but additionally
showing details of the impact of each feature on the model.

TOKER; MONTI, 2021) observed that the delta frequency is present even when there are
behavioral responses, such as in propofol anesthesia, postoperative delirium, and in powerful
psychedelic states. Moreover, delta band activity has also been detected in studies involving
spiritual experiences (BIELLO, 2007; HABIBABAD et al., 2019; BEAUREGARD; PAQUETTE,
2008), and meditation states (BANQUET, 1973; KORA et al., 2021).

Although the increase of delta band activity points clearly to an altered state of con-
sciousness after the inhalation of DMT, other frequency bands were also affected. We found that
in addition to delta, high alpha and low beta bands were essential features for the connectivity
matrices. This finding is supported by (PALLAVICINI et al., 2021), who describes that inhalation
of DMT reduces the alpha band activity while increasing the delta and gamma band at the same
time (PALLAVICINI et al., 2020). According to the authors, the increase in gamma is associated
with subjective perceptions typical of mystical experiences. In our data, we observed no changes
in the gamma band.

4.5.2 Connection between brain regions

With the connectivity matrices, we found that classification results are strongly based on
a decreasing correlation between the temporal/parietal (TP8) and the central brain (C3) region
after DMT uptake. These brain areas correspond to the occipitotemporal (Right BA37), primary
somatosensory cortex, and motor cortex (Left BA01/02) via Brodmann’s map (SCRIVENER;
READER, 2022). The temporal lobe is associated with the perception and production of speech,
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hearing, memory, and emotional processes because it is connected to the amygdala and the limbic
system (PATEL et al., 2021). The right temporal region, TP8, is associated with recognizing
familiar faces, with participation from the frontal cortex (GAINOTTI, 2007). Furthermore, in
humans, the TP8 region contributes to the global processing of visual information (DOYON;
MILNER, 1991). The connection between these two regions, TP8 and C3, is involved in visual
and tactile perceptions and finger movements (BRAND et al., 2020; PIERNO et al., 2009).

In addition, the correlation between the electrodes FC5 (frontal region) and P8 (parietal
region) contributed significantly to the classification result. These regions correspond to Left BA6
and Right BA19 of Brodmann’s map, respectively. The frontal region is involved in cognitive
processing, planning behavior, and has connections to the somatosensory cortex, motor, and
auditory areas (COBIA et al., 2012; CATANI, 2019) and limbic system, and is also involved
in emotions. The placement of FC5 electrode encompasses the region of the precentral gyrus
in the premotor region, which is responsible for controlling voluntary motor movement of the
body. This region also includes a portion of the supplementary motor cortex, responsible for
planning the voluntary movement of the limbs (BANKER; TADI, 2021). The P8 region, on the
other hand, is located in the lateral occipital cortex, responsible for integrating different types of
information so that our interaction with the environment is efficient, forming representational
spaces through perception, semantics, through perception, semantics, and motor functions
(LINGNAU; DOWNING, 2015).

Studies using other psychedelics, such as LSD, have found reduced functional connec-
tivity in the anterior medial prefrontal cortex, and time-specific effects were correlated with
different aspects of subjective experiences under the effect of psychedelics (LUPPI et al., 2021).
Psilocybin consumption, on the other hand, was related to decreased functional connectivity
between the medial temporal lobe and high-level cortical regions. The changes found in the
cortical regions reported above are related to the visual, sensory, perceptual, and motor type
experiences experienced by the volunteers during the use of these two psychedelics (LSD and
Psilocybin).

Correlating our findings with previous studies, the FC5 and P8 regions also found here
are part of the cortical region, and a possible inference is that they are related to the participants’
experience with DMT. In the original study from which the data of our study is derived, the
authors (PALLAVICINI et al., 2021) applied different scales to evaluate the lived experiences
of this study participants. Among the experiences accessed by the volunteers during the use of
inhaled DMT, the highest percentages were for elementary imagery (85.27%), blissful (61.77%),
complex imagery (50.21%), spiritual experience (49.61%), and disembodiment (47.58%). For the
Near-Death Experience scale, it was 60.94% for affect experience. For the Mystical Experience
Questionnaire (mystical, positive mood, transcendence of time and space, and ineffability),
46.29% was found. According to authors (PALLAVICINI et al., 2021), 13 of 35 participants
(equivalent to 37%) accessed a complete mystical experience. Other studies using inhaled 5-MeO-
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DMT also observed complete mystical experiences in 75% of volunteers (BARSUGLIA et al.,
2018) and improvements in depression and anxiety, which were associated with greater intensity
of mystical experiences, with spiritual and personal meaning, when using 5-MeO-DMT (DAVIS
et al., 2019). Although these two cortical regions, FC5 and P8, may be related to the participant’s
sensory and visual experiences when using DMT, an interpretation of the connectivity between
these regions has yet to be obtained since there is no information in the literature.

4.5.3 Complex network measures

Concerning the measures of complex networks, the most important was the CC. CC is
a centrality measure defined as the inverse of the average length of the shortest path from one
node to all other nodes in the network (RUBINOV; SPORNS, 2010). The idea is that important
nodes participate in many shortest paths within a network and, therefore, play an important role
in the flow of information in the brain (FREEMAN, 1978).

ALPC was the second important measure associated with the size of the largest com-
munity found by the label propagation community (LPC) detection algorithm. Increased values
(compared to controls) of this metric are associated with the effect of DMT (see Figure 26 (b))
indicating communities with increased average path lengths after the use of DMT, in other words,
larger communities. The third important metric was the APL which is the average of all shortest
paths. For example, the shortest path di j (also known as the geodesic path) between two nodes i

and j is defined as the shortest of all possible paths between these vertices. Increased values for
APL were associated with the presence of DMT (Figure 26(b)).

In the brain of large vertebrates, there are two contrasting concepts: functional segregation
(or specialization) and integration (or distributed processes) (TONONI; SPORNS; EDELMAN,
1994). Anatomical and functional segregation refers to the existence of specialized neurons and
brain areas organized in modules (SPORNS, 2002), which correspond to communities where
their members have high connectivity among themselves and few connections with members
of other modules (SPORNS, 2013). As opposed to segregation, neuron units do not operate in
isolation (SPORNS, 2002); there are regions of the brain (distributed system of the cerebral
cortex) capable of combining specialized information, characterizing the concept of integration
(RUBINOV; SPORNS, 2010). These regions have an executing function, benefiting from a high
global efficiency of information transfer throughout the entire network (BULLMORE; SPORNS,
2012). The fact that we found larger communities and a longer average path with the use of
DMT and the opposite in its absence indicates a decrease in brain integration, which might slow
down the distribution of information. Larger brain communities were also found in (VIOL et al.,
2017) after using ayahuasca, a mixture containing DMT.

Furthermore, when looking at the transitivity, which is a measure of the propensity of
nodes to be grouped, and global efficiency measure, which is a measure of how effective the
exchange of information within a network is, both are also presented in the rank of the most
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important measures for the model in Figure 26 (b), the presence of DMT decrease the values
of these two measures. The transitivity is a measure of the efficiency of information transfer
between all pairs of nodes in the graph (RANGAPRAKASH et al., 2019), and a higher value of
these measures indicates more significant active local processing and high segregation (LUO;
GREENE; CONSTABLE, 2021). Since we obtained lower values of transitivity associated with
DMT, this implicates less segregation in the brain’s functional network.

In contrast, higher values of global efficiency indicate greater integration of networks.
Since we obtained lower values of transitivity associated with DMT, this implicates less integra-
tion in the brain functional network.

Thus, considering the delta frequency, we can infer that the integration and segregation de-
creased with the use of the DMT. Furthermore, corroborating our findings, a decrease in brain seg-
regation has been found in studies using other psychedelics such as LSD (CARHART-HARRIS
et al., 2016). Specifically, in (CARHART-HARRIS et al., 2016), the authors concluded that the
use of LSD caused a decrease in the integration and segregation of brain networks, supporting
the idea that cortical brain activity becomes more “entropic” under psychedelics (CARHART-
HARRIS et al., 2014). However, as pointed out in (NICHOLS; JOHNSON; NICHOLS, 2017),
psychedelics not only render the brain more random, but with normal organization disruption,
they also produce strong functional and topologically far-reaching connections not seen in the
normal state. Thus, even though our results show that integration and segregation have been
disrupted, further experiments should be conducted to verify if there have been new long-distance
connections, as shown in the literature.

4.6 Conclusion and future work

Our results demonstrated that ML methods could automatically reveal changes in func-
tional brain connectivity induced by DMT consumption, considering a two-class classification
based on (A) the connectivity matrix or (B) complex network measures. Moreover, considering
these two data abstractions is more robust than the other literature studies.

The workflow developed here is powerful for detecting the brain changes caused due
to the psychedelic substance, with case (B) showing the highest AUC (89%), indicating a new
finding that complex network measurements best capture the brain changes that occur due to
DMT use.

Regarding frequency, the workflow employed here detected that the delta frequency
was most associated with DMT use. Although DMT induces an altered state of consciousness
with the presence of delta, other frequencies were important for recognizing the pattern of brain
activity with this substance, such as high alpha and low beta, through the connectivity matrix.
This may suggest that the combination of the brain frequencies may represent an important point
to be investigated to define further the altered state of consciousness induced by DMT.
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Furthermore, by using the SHAP value, it is possible to interpret the results of the ML
algorithms with a biological interpretation associated with the use of DMT on EEG data. The
most important connections found with the use of DMT are between the temporal (TP8) and
central cortex (C3) regions, followed by the connection between the precentral gyrus (FC5) and
the lateral occipital cortex (P8).

The connection between regions TP8 and C3 has been found in the literature associated
with finger movements that might have occurred during DMT consumption. However, the
connection between cortical regions FC5 and P8 has not been found in the literature, a new
finding, and is presumably related to the volunteers’ emotional, visual, sensory, perceptual, and
mystical experiences during DMT consumption.

Concerning the measures of complex networks similar to what was found with the use of
ayahuasca in (ALVES et al., 2022a), the most important is the centrality measure CC.

Furthermore, we find larger communities and a longer average shortest path when DMT
is used and the reverse when it is not suggested that the balance between functional segregation
and integration has been upset. This suggests that the brain distribution of information using
DMT is slower than absence. These findings support that cortical brain activity becomes more
entropic under psychedelics. However, from the literature, psychedelics do not simply make
the brain more random; after the typical organization is disrupted, strong and topologically
far-reaching functional connections emerge that are not present in the normal state. Therefore,
since a limitation of our study is that we evaluate the acute effect of this psychedelic, we would
like to investigate in the long term how psychedelics change the functional connectivity of the
brain using our workflow. Furthermore, although decreased segregation and integration have
been found in LSD-related work, this is a new finding for DMT.

Although the results are promising, a limitation of our study is that it is based on only 35
patients at two different times, so in future work, we would like to repeat our methodology in a
more extensive dataset. Furthermore, the same methodology applied here may help interpret EEG
time series from patients who consumed other psychedelic drugs and can help obtain a detailed
understanding of functional changes in the brain neural network due to drug administration.
Thus, in future work, we intend to use this methodology on the psychedelic drug called ketamine
(FARNES et al., 2020).

Overall, a robust computational workflow has been developed here with interpretability
of how DMT (or other psychedelics) modify brain networks and insights into their mechanism
of action.
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Abstract

ASD is a multifactorial neurodevelopmental disorder with high genetic heterogeneity. Studies of
brain networks in autism can provide new insights into the dynamics of information processing



102 Chapter 5. Analysis using fMRI data from ASD patients

in individuals who suffer from such a condition. This paper proposes a method for automatic
diagnosis of autism based on fMRI time series and machine learning algorithms. We verify
that the left ventral posterior cingulate cortex region reduces the functional connectivity of the
brain area in patients with autism spectrum disorder. Also, the brain networks of patients with
autism spectrum disorder show more segregation, lower distribution of information, and less
connectivity. Our methodology accurately differentiates control and autistic subjects providing
an area under the curve close to higher than 95%.

5.1 Introduction

ASD is a multifactorial neurodevelopmental disorder with a complex genetic component
(LORD et al., 2020; AL-BELTAGI, 2021) and usually manifested since childhood (at least in
the first three years of life) through deficits in social communication and restricted, repetitive
patterns of behaviours or interests (ASSOCIATION et al., 2013). Because ASD varies widely
in symptoms and severity, an accurate diagnosis may be difficult. Indeed, there is no medical
test to diagnose the disorder, such as a blood test, and diagnosis is based on the observation
of the individual’s communication, social interaction, and their activities and interests. This
approach depends on experienced professional and an incorrect diagnosis can impact families
and education, increasing the risk of depression, eating disorders, and self-harm (HOSOZAWA;
SACKER; CABLE, 2021). An autism misdiagnosis might occurs because there are many other
disorders that have similar symptoms. In this way, it is essential to develop a quantitative and
accurate method for autism diagnosis based on physical exams. This paper considers data from
functional brain networks and machine learning algorithms to propose a computer-aid diagnostic
methodology for autism.

The idea behind our approach is based on previous studies that suggested that autism is
a manifestation of changes in the brain organization (BEAUDET, 2007). Abnormal neuronal
connectivity has recently become the essential hypothesis for explaining the symptoms associ-
ated with autism (BELMONTE et al., 2004). By adopting the fMRI technique, Belmonte and
Yurgelun-Todd (BELMONTE; YURGELUN-TODD, 2003) demonstrated that the inputs of the
autistic brain regions are cut off, with reduced activation and functional correlations with sensory
areas. fMRI data from children with ASD (DERAMUS et al., 2014) suggest a strong activation
of the parietal cortex, which is responsible for visuospatial and sensory processing. In a resting
state, regions of the medial prefrontal cortex related to the executive function comprised of
skills that enable the individual to make decisions, pay attention, and differentiate conflicting
thoughts are suppressed (EUSTON; GRUBER; MCNAUGHTON, 2012). Apart from the medial
prefrontal region, the rostral anterior cingulate cortex and the posterior cingulate cortex have also
been investigated (KENNEDY; REDCAY; COURCHESNE, 2006). The function of the former
includes memory recall and learning. In contrast, the posterior cingulate cortex is responsible
for cognitive, emotional, and learning processes. Its metabolic activities during rest are deacti-
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vated during demanding cognitive tasks. According to Kennedy et al. (KENNEDY; REDCAY;
COURCHESNE, 2006), the midline resting network of patients with ASD is not as active as
that of the control group, and task deactivation is not significant. In structural terms, Keller at al.
(KELLER; KANA; JUST, 2007) suggested the development of the brains of autistic children is
atypical, showing an early overgrowth of white matter, followed by its reduction in adolescence
and adulthood. Furthermore, Diffusion Tensor Imaging Diffusion Tensor Imaging (DTI) results
revealed the disorganization of white matter paths (AOKI et al., 2013).

These studies show that the structure of the autistic brain differs from the control
brain. Hence, we hypothesize that it is possible to diagnose autism from data collected from
EEG or fMRI experiments. EEG is a relatively inexpensive method readily available in most
contexts and has a good temporal resolution. Data from EEG has been used to study brain
organization (FALLANI et al., 2011b; ALVES et al., 2022b). On the other hand, fMRI has
a low temporal resolution but high spatial one, thus being well suited for analyses of spatial
brain dynamics (MENON; CROTTAZ-HERBETTE, 2005; FORMISANO et al., 2003). fMRI
scans produce a set of three-dimensional images recorded over time and measure a signal (called
BOLD signal 1. The temporal evolution of the BOLD series is called the hemodynamic response
function and is determined by the pixel intensity in fMRI images (STURZBECHER, 2006;
BISWAL et al., 1995). Each cube of an fMRI image, called voxel which anatomically maps a
position in the brain, has a BOLD time series. Here, we consider BOLD series to develop the
classification method for autistic patients.

After mapping the brain, it is possible to classify people with ASD and typical develop-
ment (TD) using ML methods. ML techniques permit automatically extracting knowledge from
a database. Previous studies have evaluated the effectiveness of machine learning in diagnosing
ASD with supervised machine learning algorithms that distinguish between two classes, namely
ASD and TD. At least 45 articles have focused on supervised machine learning algorithms that
aid in ASD diagnosis, where the most used ones are based on SVM (HYDE et al., 2019) (see
Table 13 for publications on the use of fMRI for distinguishing between ASD and TD).

Although ML has provided important advances in diagnosing autism, considerable
challenges must be addressed. Many methods for classification lack interpretability, which is
disadvantageous, especially for the understanding of medical data (RUDIN, 2019; EKANAYAKE;
MEDDAGE; RATHNAYAKE, 2022). Also, according to Table 13, (MCBRIDE et al., 2015;
YAMAGATA et al., 2019), small data sets are quite common (STEYERBERG et al., 2000;
FERGUSON et al., 2014; BAE et al., 2018a; D’SOUZA; HUANG; YEH, 2020), which might
cause unreliable results. To overcome the lack of interpretability, we can consider new techniques
that have emerged in recent years towards facilitating the interpretation of machine learning
results (e.g., SHAP values) (LUNDBERG; LEE, 2017) identify the most important features for a

1 The decrease in the rate of deoxyhemoglobin can be detected with the increase of the NMR signal.
This effect is called Blood Oxygenation Level Dependent (BOLD)
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Table 13 – Publications on the use of supervised ML algorithms on fMRI data for distinguishing ASD
from TD patients. Based on (HYDE et al., 2019).

Authors Data
size

ML
methods AUC Acc. Recall Precision

(SUBAH et al., 2021)
n = 462 ASD;

n =464 TD
(ABIDE)

Deep
learning

0.96 0.87 0.87 -

(CHEN et al., 2015)
n = 126 ASD;
n = 126 TD
(ABIDE)

RF 0.91 0.89 0.93 -

(NUNES et al., 2020) (ABIDE) SVM - 0.80 - -

(YAMAGATA et al., 2019)
n =15 ASD;
n =45 TD
(ABIDE)

Lasso 0.78 0.75 0.77 0.73

(DEVI et al., 2019)
n = 505 ASD;
n = 530 TD
(ABIDE)

Deep
learning

- 0.70 0.74 0.63

(MCBRIDE et al., 2015)
n= 59 ASD;
n= 59 TD

Linear SVM;
ridge logistic

regression
0.73 - - -

model (BOWEN; UNGAR, 2020; RODRÍGUEZ-PÉREZ; BAJORATH, 2019; SPADON et al.,
2019)). Moreover, to circumvent the use of small medical data, data augmentation techniques
(e.g., sliding windows), which split data (e.g., time series from EEG and fMRI ) (LASHGARI;
LIANG; MAOZ, 2020; QIANG et al., 2021; LUO et al., 2020), might be adopted. However, one
of their limitations is the loss of information during the splitting process, which the overlapping
windows technique can solve. Part of the window information is repeated in each subsequent
window and used for EEG (CHANG et al., 2013a; LI et al., 2020) and fMRI (CHANG et al.,
2013b; JIE et al., 2020) data. In this paper, we consider these methods to develop a new method
for diagnosing autism that is interpretable and can be used in small data sets. In summary, our
contributions are the following:

∙ We design a method to classify fMRI time series using a connectivity matrix as input to the
ML algorithm, which provides more accurate results than those reported in the literature.

∙ Complex network measures are used to characterize brain organization, quantifying the dif-
ferences between ASD and TD patients. We use SHAP values for a biological interpretation
of the connections between brain regions and their relation with ASD.

∙ We adopt a sliding window data augmentation approach to increase the sample size by
splitting time series into smaller series with either mutually exclusive sections of time
series, or overlapping sections of the sliding windows, in which portions of the sequence
are repeated in multiple observations. This approach enables handling small medical data.

In the next sections, we describe the dataset, the methodology and the results.
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Figure 27 – Figure developed with the use of Python package Nilearn and containing BASC atlas with
the 122 ROIs used in the present study.

5.1.1 Data and data preprocessing

We consider the preprocessed version of the Autism Brain Imaging Data Exchange Brain
Imaging Data Exchange (ABIDE)2, which consists of 1112 datasets comprised of 539 ASD and
573 TD with 300s BOLD time series and provided by the Preprocessed Connectomes Project
Preprocessed Connectomes Project (PCP) dataset (NIELSEN et al., 2013). The PCP prepro-
cessing pipeline used includes cut time correction, motion correction, intensity normalization,
and removal of artifacts such as breathing, heartbeat, and head motion. It is available for use in
Nilearn’s python package, which is a Python module for neuroimaging data. 242 ASD and 258
TD were used and the preprocessed data were 0.5 Hz band-pass filtered, since recent studies
with fMRI have shown fluctuations may exist above that value (TRAPP; VAKAMUDI; POSSE,
2018).

Brain regions of interest (ROI), rather than the entire BOLD time series obtained from
each voxel of the brain image, are considered. A brain atlas containing these ROIs is used;
therefore, only the BOLD time series voxels of this ROIS were adopted. Among the numerous
predefined atlases, Bootstrap Analysis of Stable Clusters (BASC) was chosen, since it was the
map with best performance for distinguishing ASD patients by deep learning model, according to
(SUBAH et al., 2021). It was proposed in (BELLEC et al., 2010) and generated from group brain
parcellation by BASC method, which is a k-means clustering-based algorithm that identifies
brain networks with coherent activity in resting-state fMRI (YANG; ZHANG; SCHRADER,
2022). BASC map with a cluster number of 122 ROIs is used here (see figure 27).

A manual use of Yale BioImage Suite Package web application3 labelled the coordinates
of each ROI for the identification of their names. After the extraction of the BOLD time series,
the methodology described in Section 5.2 is adopted.

2 Avaiable in <https://fcon_1000.projects.nitrc.org/indi/abide/>
3 Avaiable in <https://bioimagesuiteweb.github.io/webapp/mni2tal.html>

https://fcon_1000.projects.nitrc.org/indi/abide/
https://bioimagesuiteweb.github.io/webapp/mni2tal.html
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Figure 28 – The methodology used here for the diagnosis of autism. (A) methodology described in
subsection 5.2.1; (B) methodology reported in subsection 5.2.2; (C) methodology described
in subsection 5.2.3.

5.2 Methodology

Figure 28 depicts the methodology workflow used and organized into three parts accord-
ing to their aim, i.e., the finding of the best connectivity matrix (described in Figure 28-(A) and
in subsection 5.2.1), the best measures of complex networks (described in Figure 28-(B) and
in subsection 5.2.2), and the best sliding technique for differentiating ASD from TD patients
(described in Figure 28-(C) and in subsection 5.2.3.) The python code with the methodology
used in this work is available at:

<https://github.com/Carol180619/Paper-autism.git>.

5.2.1 Connectivity matrix

Once the time series for each of the 122 regions had been extracted, they were correlated
according to PC (BENESTY et al., 2009), SC (LUBINSKI, 2004), GC (GRANGER, 1969),

https://github.com/Carol180619/Paper-autism.git
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time series
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(B) correlation metrics
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ASD TD 
Brain connectionBrain connection

Figure 29 – Methodology to obtain the connectivity matrices. In (A), time series of 122 ROI is ex-
tracted from fMRI data with the use of BASC BOLD atlas (highlighted in blue, purple, and
orange). The time series are correlated, B, by pairwise statistical metrics (Pearson correlation
was used in this example) towards forming the connectivity matrices, where each row and
column correspond to one of the Brodmann areas for a patient with ASD for one with TD.
The same highlighted matrices are arranged in a two-dimensional and three-dimensional brain
schematic for better visualization.

Biweight Midcorrelation (BM) (WILCOX, 2011), Sparce Canonical Correlation analysis (SCC)
(HARDOON; SHAWE-TAYLOR, 2011), Graphical Lasso method (GL) (SOJOUDI, 2016),
Ledoit-Wolf shrinkage (LW) (LEDOIT; WOLF, 2012), Mutual Information (MI) (KRASKOV;
STÖGBAUER; GRASSBERGER, 2004), and Transfer Entropy (TE)4(SCHREIBER, 2000).
Figure 29 displays the scheme to generate the connectivity matrices.

4 For the TE, MI and GL metrics a Min-max normalization and then a thresholding process was
performed, with a value of 0.5, since these measures deal best with binary values.
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Each matrix was reduced to the size of the vectors used as input to the ML algorithm.
The SVM algorithm (BOTTOU; LIN, 2007) was used to select the best methods to construct the
correlation and connectivity matrices. We use this method, because is has been considered in
studies of ASD (see section 6.1) and has a lower computational cost. The time series of each ROI
was used for directly feeding SVM and finding the best connectivity metric that captured the
brain changes due to ASD. It also checked whether the use of metrics was better than a direct use
of time series – the one of better performance would be chosen. After the best brain connectivity
metric had been determined, the following ML classifiers were used: RF (BREIMAN, 2001), NB
(FRIEDMAN; GEIGER; GOLDSZMIDT, 1997), LR with L-BFGS Limited-memory Broyden
Fletcher Goldfarb Shanno (L-BFGS) solver (NAJAFABADI et al., 2017), MLP (HINTON;
RUMELHART; WILLIAMS, 1986), and tuned CNN implemented in (ALVES, ). SHAP value
method was used for biological interpretation, since it allows to explain individual predictions
of each attribute. The same sampling data set was used in all ML algorithms and split into
training (train) and test sets, with 25% of data comprising the test set. A k-fold cross validation
procedure was employed, with k = 10 — this a very used value for this method (BERRAR,
2019; BENGIO; GRANDVALET, 2004; SHAH; KHAN, 2020; KAWAMOTO; KABASHIMA,
2017; CHAN et al., 2019; KAWAMOTO; KABASHIMA, 2017)). This procedure is used for
model selection and a hyper-parameter optimization. We considered the method called grid
search, which was used for all ML algorithms, except the untuned CNN model (since deep
learning algorithms have a higher computational cost), as done in (SATO et al., 2019; ZHONG
et al., 2021; ARCADU et al., 2020; KRITTANAWONG et al., 2021; RASHIDI et al., 2020).
The hyper-parameter optimization values for each classifier model are provided in Table 24 in
the Appendix A.3. The standard performance metric Acc. (MINCHOLÉ; RODRIGUEZ, 2019;
TOLKACH et al., 2020; DUKART et al., 2021; LI; ASCH; SHAH, 2020; PARK; KELLIS,
2015) was employed for evaluation. Due to the two-class (negative and positive) classification
problem, other common metrics such as precision and recall were considered (ITO et al., 2021;
KIM et al., 2020; LI et al., 2021; YU et al., 2020). Precision (also called positive predictive
value) corresponds to the hit rate in the negative class (here corresponding to TD group), whereas
recall (also called sensitivity) measures how well a classifier can predict positive examples
(hit rate in the positive class), here related to ASD patients. F1 score (ZHONG et al., 2021;
BERRYMAN et al., 2020; YANG et al., 2019), another well-known measure, is the harmonic
mean of recall and precision (HANNUN et al., 2019). Regarding the visualization of the two
latter measures, the ROC curve is a common method that displays the relation between the
rate of true and false positives. The area below the curve, called AUC, has been widely used in
classification problems (MINCHOLÉ; RODRIGUEZ, 2019; BRACHER-SMITH; CRAWFORD;
ESCOTT-PRICE, 2021; PATEL et al., 2021; KRITTANAWONG et al., 2021). The AUC value
ranges from 0 to 1- 1 corresponds to a classification result free of errors and 0.5 indicates the
classifier cannot distinguish the classes, as in a random choice. The micro average of ROC
curve, which computes the AUC metric independently for each class (it calculates AUC for
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healthy individuals, class zero, and separately calculates it for unhealthy ones, class one) was
also considered. The average is computed considering the classes equally. The macro average
was also employed in our evaluation - it does not consider the classes equally, but aggregates
their contributions separately and then calculates the average.

5.2.2 Complex network measures

A complex network (or a graph) was generated for each connectivity matrix for the
extraction of different measures. Towards inputting data into the ML algorithm, the complex
network measures were stored in a matrix of attributes, where each column represents a complex
network measure (feature) and each row denotes a subject. 2D matrices were generated for all
subjects, as in (ALVES et al., 2022a).

To describe the brain structure, the following complex network measures were calculated:
assortativity coefficient (NEWMAN, 2003; NEWMAN, 2002), APL (ALBERT; BARABÁSI,
2002), BC (FREEMAN, 1977), CC (FREEMAN, 1978),EC (BONACICH, 1987), diameter
(ALBERT; JEONG; BARABÁSI, 1999), hub score (KLEINBERG, 1999), Knn (EPPSTEIN;
PATERSON; YAO, 1997), mean degree (DOYLE; GRAVER, 1977), SMD (SNIJDERS, 1981),
ED (DEHMER; MOWSHOWITZ, 2011), transitivity (WATTS; STROGATZ, 1998; NEWMAN;
WATTS; STROGATZ, 2002), complexity, k-core (SEIDMAN, 1983; NEWMAN, 2010), ec-
centricity (HAGE; HARARY, 1995), density (ANDERSON; BUTTS; CARLEY, 1999), and
efficiency (LATORA; MARCHIORI, 2003).

Newly developed metrics (described in detail in (ALVES et al., 2022a)) reflecting
the number of communities in a complex network were also applied. Community detection
algorithms were also used in our study (NEWMAN, 2012; KIM; LEE, 2015; ZHAO; LIANG;
WANG, 2021). Since the community detection measures must be transformed into a single scalar
value to be included in the matrix, community detection algorithms were applied for finding
the largest community. The average path length within the community was then calculated and
received a single value as the result. The community detection algorithms used were the FC
(CLAUSET; NEWMAN; MOORE, 2004), IC (ROSVALL; AXELSSON; BERGSTROM, 2009),
LC (NEWMAN, 2006), LPC (RAGHAVAN; ALBERT; KUMARA, 2007), EBC (GIRVAN;
NEWMAN, 2002), SPC (REICHARDT; BORNHOLDT, 2006), and MC (BLONDEL et al.,
2008). The abbreviations were extended with letter "A" (for average path length) towards
indicating the approach (AFC, AIC, ALC, ALPC, AEBC, ASPC, and AMC).

These network measures were utilized to characterize the brain structure. Thus each
observation (which represents the Patient’s brain network) is represented by a vector with these
metrics. The results are provided in the subsection 5.3.2.
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5.2.3 Sliding windows and overlapping sliding windows

Due to the common issue of small datasets in neuroscience, the previously described
methodology was expanded by a sliding window data augmentation approach and the sample
size was increased by splitting each time series into smaller series. Such an increase can be
achieved with either mutually exclusive sections of the time series, or overlapping sections of
the sliding windows, in which portions of the sequence are repeated in multiple observations.

A sample with 50 patients (25 ASD and 25 TD) was considered from the initial sample
for evaluations by window sliding and overlapping windows sliding techniques. BOLD time
series with 300 seconds were divided into windows of 15, 20, 30, 50, and 60 seconds and placed
into the SVM for checking the best way to split data.Then, with the best window size, it was also
considered overlap sizes of 10%, 15%, 25%, 35%, 45%, and 55% of it. In other words, if the
overlapping is 10%, each sliding window size has depicted a repetition of 10% of the previous
window. This approach is used to avoid losing information when sliding.

The connection matrices are constructed using the best partitioning technique and the
best correlation metric that fed the previously computed best classifier (see figure 28). The same
sliding workflow was considered with samplings of 10, 20, 30, 50, 124, and 188 patients. The
choice of such different sizes was based on previous neuroscience studies that used fMRI of
similar sample sizes, respectively (HAJEBRAHIMI et al., 2022; LIU et al., 2022; PEROVNIK
et al., 2022; ASHAR et al., 2022; HACK; ZHANG; WILLIAMS, 2021; POLLI et al., 2016).

Additionally to the performance metrics, a mean square error Mean Square Error (MSE)
was obtained for each sampling and for each iteration of the k-fold cross validation, resulting
in an error vector. It was compared with the vector of the MSE obtained with the use of the
whole sample by statistical Student’s paired t-test (WILLIAM, 1908). The results are provided
in subsection 5.3.3.

5.3 Results

ML algorithms were applied for three different levels of data abstraction, namely (A)
connectivity matrix, (B) the matrix of attributes, whose elements are complex network measures
calculated from (A), and (C) sliding data (see Figure 28). The sliding window method was em-
ployed as an augmentation technique on small data samples to evaluate whether this methodology
is advantageous when dealing with these data sets. We verify that all approaches automatically
detected changes in the brain of ASD patients. The highest classification performance was
obtained for the connectivity matrix with a 99% mean AUC (Table 14). Subsections 5.3.1, 5.3.2,
and 5.3.3 detail the results.
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Table 14 – Classification using the connectivity matrix best captured brain changes due to ASD. The best
performance is highlighted in bold.

Data
abstraction level Subset AUC Acc. F1 Recall Precision

Connectivity
matrix

Train 1.00 1.00 1.00 1.00 1.00
Test 0.99 0.99 0.99 0.99 0.99

Complex
network

Train 0.93 0.93 0.89 0.88 0.91
Test 0.98 0.98 0.98 0.98 0.98

Sliding
data

Train 0.84 0.84 0.84 0.84 0.84
Test 0.81 0.81 0.81 0.81 0.81

Table 15 – Results from different ML algorithms. The best MLs were RF and LR, whose performances
are highlighted.

Measures Subset AUC Acc. F1 Recall Precision
Train 0.49 0.51 0.00 0.27 0.35Time

series Test 0.50 0.51 0.34 0.50 0.26
Train 0.67 0.67 0.69 0.67 0.66PC Test 0.60 0.60 0.60 0.60 0.60
Train 0.98 0.98 0.97 0.98 0.98SC Test 0.98 0.98 0.98 0.98 0.98
Train 0.51 0.52 0.00 0.32 0.37GC Test 0.50 0.51 0.34 0.50 0.26
Train 0.75 0.75 0.72 0.75 0.75BM Test 0.75 0.75 0.75 0.75 0.75
Train 0.67 0.67 0.65 0.67 0.66SCC Test 0.62 0.62 0.62 0.62 0.62
Train 0.66 0.66 0.65 0.66 0.66GL Test 0.57 0.58 0.57 0.57 0.57
Train 0.66 0.66 0.64 0.66 0.65LW Test 0.58 0.58 0.58 0.58 0.58
Train 0.49 0.50 0.40 0.50 0.49MI Test 0.49 0.49 0.49 0.49 0.49
Train 0.90 0.90 0.89 0.90 0.90TE Test 0.91 0.91 0.91 0.91 0.91

5.3.1 Results related to connectivity matrix

Table 15 contains the results for each connectivity matrix with different types of pairwise
statistical metrics. SVM was used to detected the best one for capturing the brain changes due to
ASD.

Spearman correlation coefficient (SC) achieved the best performance, followed by the
transfer entropy (TE). The best connectivity matrix was tested with the other ML algorithms for
determining the one that best differentiated ASD patients from TD ones. According to Table 16,
the best classifiers are the random forest (RF) and logistic regression (LR). Since LR has a lower
computational cost, it was chosen for the next steps. Its performance for the test set was equal to
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(a) Confusion matrix (b) Learning curve

(c) ROC curve

Figure 30 – ML results from connectivity matrices. (a) Confusion matrix indicating a 96.7% TN rate
(purple, according to the color bar) and a 100% TP rate (blue, according to the color bar).
(b) Learning curve for the training Acc. (blue) and for test Acc. (green). (c) ROC curve with
classes 0 (TD) and 1 (ASD).

0.99 for the mean AUC, precision, F1, recall and Acc. Figure 30 displays the confusion matrix
(30-(a)), the learning curve (Figure 30-(b)), and the ROC curve (30-(c)), respectively.

The learning curve evaluates the predictability of the model by varying the size of the
training set (SPADON et al., 2019). The results show the entire database is not necessary for
the achievement of a highest validation Acc. Regarding the classification model, TP (related to
class 1) was higher than TN, showing that it better detects ASD patients (see confusion matrix in
Figure 30- (b)).

SHAP values were calculated to quantify the importance of brain connections for the
logistic regression classifier (LR) (see Figure 42 for the results). The area between regions
Left-Sec Visual (visual cortex) and Outside defined BAS1 (area outside Brodmann’s map),
identified as the cerebellum, was clearly the most important connection. According to the data in
Figure 42, low correlation values (blue dots) for the connection (Left-Sec Visual and Outside
defined BAS1) were important for the detection of ASD patients, and high values of correlation
(red dots) were important for the detection of TD ones. The second most important connection
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Table 16 – Results from different ML algorithms. The best ML was RF and LR, whose performances are
highlighted.

ML algorithm Subset AUC Acc. F1 Rec. Pre.
Train 0.99 0.99 0.99 0.99 0.99SVM Test 0.98 0.98 0.98 0.98 0.98
Train 1.00 1.00 1.00 1.00 1.00RF Test 0.99 0.99 0.99 0.99 0.99
Train 1.00 1.00 0.99 1.00 0.99NB Test 0.98 0.98 0.98 0.98 0.98
Train 1.00 1.00 1.00 1.00 1.00LR Test 0.99 0.99 0.99 0.99 0.99
Train 1.00 1.00 1.00 1.00 1.00MLP Test 0.98 0.99 0.99 0.99 0.99
Train 1.00 1.00 1.00 1.00 1.00untuned

CNN Test 0.86 0.87 0.92 0.94 0.90

Figure 31 – Feature importance ranking for the LR classifier with brain regions in a descending
order. The connection between the Left-Sec Visual and Outside defined BAS1 regions is the
most important for the classification of ASD patients.

was detected between the Left ventral posterior cingulate cortex (Left-VentPostCing) and, again,
the cerebellum (Outside defined BAS1). The corresponding brain regions are depicted in Figure
32.

Since LG was the algorithm that provided the best performance, it was used in the next
subsections. Furthermore, since the results were close to 100%, noises were inserted into the ASD
and TD time series for further testing the model in this study. Such noises were generated by a
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Left-Sec Visual

Outside defined BAS1

Figure 32 – The most important connection found. Two-dimensional schematic (ventral-axis), where
the connection between the Left-Sec Visual region (visual cortex, highlighted in pink) and
Outsides BAS1 (cerebellum, highlighted in green) is observed in the central region. The brain
plot was developed by Braph tool (MIJALKOV et al., 2017) and each region was plotted with
the use of Brodmann map from Yale BioImage Suite Package (upper and lower regions in the
Figure).

normal distribution with a standard deviation equals to 0.1 and mean on the interval [0,10]. After
the introduction of the noises, Spearman’s correlation was used to generated the connectivity
matrices from the time series. The results of the average AUC calculated on the test set are shown
in Table 33. According to Figure 33, the AUC according to the noise follows approximately a
decreasing logarithmic function.

5.3.2 Results for complex networks measures

The performance of the test sample considering the complex network yield a mean
AUC equals to 0.98, 0.98 for precision, 0.98 for F1 score, 0.98 for recall, and 0.99 for the Acc.
Confusion matrix 34, learning curve 34, and ROC curve 34 are shown in Figure 34. The use
of the entire dataset was not necessary, since from the Figure 34 with 100 train instances was
possible to acquire the best performance. Furthermore, according to the Figure 34, the whole
dataset was unnecessary because the best result could be reached with only 100 train instances.

According to the SHAP values in Figure 35, the most important measure for the model
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Figure 33 – Mean AUC of the test obtained with the insertion of noise generated by a normal dis-
tribution with 0.1 standard deviation and 0-10 mean range.

(a) Confusion matrix (b) Learning curve

(c) ROC curve

Figure 34 – ML results from complex network measures. (a) Confusion matrix indicating a 98.5% TN
rate (blue, according to the color bar) and a 98.3% TP rate (purple, according to the color
bar). (b) Learning curve for the training Acc. (blue) and for test Acc. (green). (c) ROC curve
with classes 0 (TD) and 1 (ASD).



116 Chapter 5. Analysis using fMRI data from ASD patients

Figure 35 – Feature importance ranking for LR classifier with features in a descending order. K-
core measure is the most important for the classification of ASD patients, followed by the
AEBC measure.

was the k-core, followed by the AEBC, introduced in (ALVES et al., 2022a). High k-core values
(pink dots) indicate its importance for the detection of TD and low ones (blue dots) are important
for the detection of ASD (Figure 35). Low AEBC values (blue dots) indicate its importance for
the detection of ASD and high ones (pink dots) suggest its importance for the detection of TD.
Higher values of efficiency were associated with TD patients; higher values of transitivity were
associated with ASD and low values indicated TD. Remarkably, the seven measures introduced
in (ALVES et al., 2022a) appeared in the ranking of best ones.

5.3.3 Results from sliding windows and overlapping sliding windows

Figure 36- (a) shows the performance of SVM fed by time series divided into different
window sizes. The best performance was achieved with the use of a window size of 20 seconds.
Figure 36- (b) shows the best performance obtained with no overlapping or with a 10% of the size
of time window. Consequently, 10% overlapping was considered for the next step for avoiding
loss of information in the sliding process.

The sliding process was used with different sample sizes, and the results are shown in
Table 17.



5.4. Discussion 117

(a) (b)

Figure 36 – Results of sliding and overlapping window sizes. (a) Mean AUC test obtained for the
different window sizes. The width of the points in the graph corresponds to the window size
variation and their colors are indicated in the color bar. (b) Mean AUC test obtained for the
different overlapping sizes corresponding to the percentage of the window size. The colors of
the points in the graph are depicted in the color bar.

Paired Student’s t-test (here called t-test) was also calculated between the sample per-
formance and the performance for the whole data set. The null hypothesis is the performances
were statistically different. Therefore, a sample size of only 10 patients was taken as a basis
for comparison, given the premise their performance should be statistically different when the
entire database is considered for such a small sample size. Only samples for which the null
hypothesis could be rejected (p-value greater than or equal to the baseline value for comparison)
were considered, i.e., 10 and 20 patients. In other words, the performance of those two sizes
showed no statistically significant differences from the data set, but very similar results (Table
17). In other words, the performance of these two sample sizes showed no statistically significant
differences from the data set, but very similar results.

Figure 37 shows the confusion matrix (37-(a)) for the sample size of 30 patients, the
mean AUC test for each sample size (Figure 37-(b)), and the ROC curve for the sample size of
30 patients (37-(c)). According to Figure 37-(b), ASD and TD patients were differentiated even
with different sample sizes, with above 79% AUC and Acc.

5.4 Discussion

The results from the use of the abstraction levels of the connectivity matrix and complex
network data were superior to those reported in the literature (see Table 13). Therefore, the
workflow developed here is more effective for detecting ASD patients with above 95% mean
Acc. and mean AUC, and SC was the measure that best captured brain changes in the patients (as
an example, it is more robust for non-linear correlations than PC (WANG et al., 2015)). Since the
Pearson correlation coefficient (PC) was not effective to discriminated between the two classes
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Table 17 – Performance of the LR algorithm with the use of the sliding process and varied number of
samples of TD and ASC patients. The best performance is highlighted in bold and was achieved
with 30 patients.

Data
abstraction level Subset AUC Acccuracy F1

score Recall Precision T-test

sample
10

Train 0.79 0.80 0.80 0.77 0.81 7.25 e-07
Threshold p-valueTest 0.80 0.80 0.80 0.80 0.80

sample
20

Train 0.80 0.80 0.80 0.77 0.80 7.11 e-05
Reject null hypothesisTest 0.80 0.80 0.80 0.80 0.80

sample
30

Train 0.84 0.84 0.84 0.84 0.84 3.14 e-06
Reject null hypothesisTest 0.81 0.81 0.81 0.81 0.81

sample
50

Train 0.75 0.75 0.75 0.76 0.75
1.24 e-08

Test 0.75 0.75 0.75 0.75 0.75
sample

124
Train 0.70 0.70 0.70 0.72 0.70

2.77e-09Test 0.73 0.73 0.73 0.73 0.73
sample

188
Train 0.70 0.70 0.70 0.70 0.70

7.60 e-12Test 0.74 0.74 0.74 0.73 0.74

(a) Confusion matrix (b) Mean test AUC for the different sample sizes

(c) ROC curve

Figure 37 – Results from connectivity matrices and ML. (a) Confusion matrix indicating an 82.5%
true negative rate (blue, according to the color bar) and a 78.6% true positive rate (purple,
according to the color bar). (b) Mean test AUC obtained for the different sample sizes; the
width of the points in the graph corresponds to the window size variation, and their colors are
depicted in the color bar. (c) ROC curve with classes 0 (TD) and 1(ASD).
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(ASD and control subjects), we can conclude that brain changes due to ASD have a non-linear
nature. Also, LG provides the best results, being the most suitable machine learning model, with
lower computational cost than other ML algorithms used here (such as untuned CNN).

The most important connection in the first five major correlations was clearly observed
between Left-Sec Visual (visual cortex) and cerebellum (Outside defined BAS1) regions. Low
values of correlation (blue dots) were important for the detection of ASD patients, whereas high
values (red dots) indicated TD. The second most important connection was established between
the Left- VentPostCing and, again, the cerebellum (Outside de- fined BAS1) regions. Cerebellum
(Outside defined BAS1), Left-Thalamus, and Left-Prim Motor appeared in several of the main
connections found. Notably, Left-Thalamus has been reported in other studies associated with
ASD (MCGRATH et al., 2013; ALAERTS et al., 2014).

Left-Sec Visual (visual cortex) is a part of the cerebral cortex that processes visual
information, and a lower connection to the cerebellum (Outside defined BAS1) is more associated
with ASD.

Left-VentPostCing corresponds to the upper part of the limbic system, i.e., part of the
brain involved in behavioural and emotional responses. According to the literature, reductions in
the functional connectivity of that brain area are common in ASD patients (LEECH; SHARP,
2014), which is consistent with our results, since the region is less connected to the Outside
BAS1 in ASD patients.

The brain region changes addressed elsewhere have been reported in the ASD literature.
As an example, both hyper- and hypo-connectivity were observed in ASD through stepwise
functional connectivity in the resting state (MARTÍNEZ et al., 2020). In the same study, hypocon-
nectivity was related to the parietal and frontal regions of the attention networks, whereas hy-
perconnectivity was observed for the default mode network, in the visual cortex region. The
authors in (CLERY et al., 2013) claimed ASD patients have higher activity in the occipital
cortex bilaterally and in the Anterior Cingulate Cortex (ACC), but lower activation in the frontal
gyri in comparison with a control group, during automatic identification of visual changes.
However, (LEECH; SHARP, 2014) reported reductions in functional connectivity in ACC in
ASD patients. The low correlation observed between the posterior cingulate region and the
cerebellum (Left-VentPostCing vs Outside BAS1) observed in our study seems to point to a
dysfunction, i.e., an alteration in functional communication in ASD. Such a correlation differs
from the findings for ASD reported by other researchers, who have pointed to the anterior
cingulate as one of the altered brain regions in ASD (LEECH; SHARP, 2014; CLERY et al.,
2013; LAIDI et al., 2019) and found cortical thinning for ASD in the right ACC. Such results
have led us to hypothesize that not only the ACC, but also other cingulate regions are implicated
in ASD. Moreover, our attention has been drawn to both the cingulate region and its relationships
with other brain regions. The hypothesis can be reinforced by the findings of (LAU; LEUNG;
ZHANG, 2020), who reported an abnormal functional connectivity between the posterior cin-
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gulate cortex and the ventromedial prefrontal cortex for ASD, with hypoconnectivity. Other
studies have shown ASD patients have altered intra- and inter- network connectivity among the
cerebellum, visual networks, and the sensory-motor region. According to (OLDEHINKEL et al.,
2019), the connectivity among those regions is related to problems in sensory and visual motor
integration present in ASD. Such findings have corroborated our results of a low correlation
between visual cortex regions and the cerebellum (first correlation of highest importance) and
a correlation between the left primary motor region and the cerebellum (third correlation of
highest importance). The cerebellum is associated with both motor functions such as balance
maintenance and executive control of movements, and cognitive, behavioral, and language
functions (AMORE et al., 2021; MARIËN; BORGATTI, 2018; JEREMY; SCHMAHMANN,
2019; WANG; KLOTH; BADURA, 2014; OVERWALLE et al., 2020). Studies with fMRI have
pointed to structural and functional changes in several regions of the cerebellum that are related
to ASD. Lesions in the cerebellum compromise the cognitive, perceptual, and motor functioning
of those systems (DELGADO-GARCÍA, 2001). (STOODLEY, 2016) claimed abnormalities
in the different cerebellar regions would produce behavioral symptoms associated with the
functional breakdown of specific cerebrocerebellar circuits, thus compromising the acquisition
of certain skills. Moreover, such long-term changes would exert significant impacts on behavior,
language, and social cognition, hence dysfunctions in behaviors associated with ASD, dyslexia,
and Attention- Deficit/Hyperactivity Disorder (ADHD).

The third most important correlation found in our study was between Left-PrimMotor and
the cerebellum. The motor cortex is also associated with alterations in ASD patients. (NEBEL et

al., 2014) reported a delayed functional specialization within the motor cortex and alterations in
both size and segregation of the primary motor cortex and that the functional sub-networks of
the motor control system might be altered in autism. (MOSTOFSKY; BURGESS; LARSON,
2007) observed a low motor ability in ASD related to an increased white matter volume in
the primary motor and premotor regions of the left hemisphere. We found a low correlation
between Left-PrimMotor and the cerebellum for ASD, which are two important regions for motor
control and skill, balance, and executive control of movements. Such a low correlation may
cause problems in the overall motor performance, thus interfering with socialization, commonly
observed in ASD.

Regarding complex network measures, the most important measure for the model was
k-core, followed by the AEBC. K-Core decomposes the graph for finding important highly and
mutually interconnected areas (DAIANU et al., 2013; HAGMANN et al., 2008). The k-core
average was used for the calculation, which provides the degree of the subgraph in which all
nodes have the same degree value, and helps the identification of small contiguous core areas in a
network. High k-core values (pink dots) indicate its importance for the detection of TD, whereas
low ones (blue dots) suggest ASD patients (Figure 35, hence a weaker network connection
among them. In contrast, EBC measures the average size of the largest community found by the
edges betweenness method. For AEBC, low scores (blue dots) were important for detecting ASD
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and high scores (pink dots) were important for detecting TD. Therefore, smaller communities
can be detected by the presence of ASD. Higher values of efficiency were associated with TD
patients and a greater integration of networks and distributions of information in them. Therefore,
the distribution of information in the functional networks of ASD patients is worse than that in
TD. With respect to transitivity, which is a segregation network measure of the propensity of
nodes to be grouped together, higher values were associated with ASD and low values indicated
TD and presence of more isolated communities clustered together.

The sliding process proved effective in differentiating TD from ASD patients, since 30
patients enabled the achievement of a 0.81 AUC and 0.81 mean Acc. A statistical comparison
between data from the sliding process and complete data showed no significant differences.
Despite a lower performance with the use of the full database, the technique could distinguish
between ASD and TD patients with a significantly reduced amount of data, proving interesting
for few data regarding ASD, as in (MCBRIDE et al., 2015; YAMAGATA et al., 2019) (see Table
13).

5.5 Conclusions and future work
The workflow developed with the use of fMRI data could distinguish TD from ASD

patients with both Acc. and AUC above 81%. The best pairwise statistical metric that captured
brain changes due to the presence of ASD was SC, and the best performing machine learning
model was LG. According to the metric and the algorithm, the three most important brain
connections with low values were established among Left-Sec Visual (visual cortex), Left-
VentPostCing, and Left-PrimMotor with Outside defined BAS1 in ASD.

The functional connectivity of the Left-VentPostCing Posterior cingulate cortex is known
to be reduced in ASD patients, which is consistent with our findings, since this region is less
connected to the cerebellum (Outside BAS1 region) in patients with ASD. Regarding complex
networks, the brain networks of ASD patients showed more segregation, a weaker distribution
of information across the network, and less connectivity. The sliding process employed proved
effective in differentiating TD from ASD patients, since a sample with 30 patients enabled the
achievement of 0.81 mean AUC and mean Acc. A statistical comparison between data from the
sliding process and complete data showed no significant differences. Therefore, the methodology
is appropriate for cases of data of small sample size.

Future studies may involve the application of the methodology to other fMRI data, as in
(BELLEC, 2016) for schizophrenia, and fMRI data from ADHD-200 Global Competition. It can
also be adopted with EEG data from patients with dystonia (BALTAZAR et al., 2020). Other
methodologies such as the transfer learning method (WAN et al., 2021) may be applied to small
databases for comparison purposes.
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Abstract

Schizophrenia is a severe mental disorder associated with persistent or recurrent psychosis,
hallucinations, delusions, and thought disorders that affect approximately 26 million people
worldwide, according to the World Health Organization (WHO). Several studies encompass
machine learning and deep learning algorithms to automate the diagnosis of this mental disorder.
Others study schizophrenia brain networks to get new insights into the dynamics of information
processing in patients suffering from the condition. In this paper, we offer a rigorous approach
with machine learning and deep learning techniques for evaluating connectivity matrices and
measures of complex networks to establish an automated diagnosis and comprehend the topology
and dynamics of brain networks in schizophrenia patients. For this purpose, we employed an
fMRI and EEG dataset in a multimodal fashion. In addition, we combined EEG measures, i.e.,
Hjorth mobility and complexity, to complex network measurements to be analyzed in our model
for the first time in the literature. When comparing the schizophrenia group to the control group,
we found a high positive correlation between the left superior parietal lobe and the left motor
cortex and a positive correlation between the left dorsal posterior cingulate cortex and the left
primary motor. In terms of complex network measures, the diameter, which corresponds to the
longest shortest path length in a network, may be regarded as a biomarker because it is the
most important measure in a multimodal fashion. Furthermore, the schizophrenia brain networks
exhibit less segregation and lower distribution of information. As a final result, EEG measures
outperformed complex networks in capturing the brain alterations associated with schizophrenia.
As a result, our model achieved an AUC of 100%, an accuracy of 98% for the fMRI, an AUC of
95 %, and an accuracy of 95% for the EEG data set. These are excellent classification results.
Furthermore, we investigated the impact of specific brain connections and network measures for
these results, which helped us better describe changes in the diseased brain.

6.1 Introduction

Schizophrenia is a mental disorder that has plagued individuals for millennia and affects
around 26 million people worldwide, according to the WHO. Archaeologists discovered ancient
Egyptian inscriptions outlining common signs of this mental disorder (VEAGUE; COLLINS,
2007). However, it was not until the nineteenth century that it was classified as dementia
praecox by psychiatrist Emil Kraepelin, who claimed that people with this condition suffered
from constant and permanent mental degeneration beginning in childhood. In 1908, the Swiss
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physician Eugen Bleuler dubbed this psychiatric condition schizophrenia (BLEULER; JUNG,
1908), which means split mind in Greek because one of its symptoms was a loss of mind and
awareness unity (SPORNS, 2010). Other symptoms of SZ encompass: persistent or recurring
psychosis, hallucinations (mainly auditory voices), delusions, and disordered thinking (HUHN
et al., 2019; ANDREASEN; FLAUM, 1991).

Despite centuries of research, it is still unknown what biologically causes schizophrenia
(BAE et al., 2018b). The authors in (FRISTON; FRITH, 1995) propose a functional and structural
disconnection of brain networks, resulting in a dysfunctional integration of them, reflecting
on numerous cognitive and behavioral symptoms of schizophrenia (CALHOUN; EICHELE;
PEARLSON, 2009). This large-scale disconnection is reflected in the structural and functional
topology of patients with the disorder; thus, network measures have been applied to them
(SPORNS, 2010). In (TAN et al., 2006), and (LIU et al., 2008), altered small world properties on
these networks are suggested using fMRI data, and in (MICHELOYANNIS et al., 2006), through
EEG data, a decrease in these properties is reported. In (RUBINOV et al., 2009), again, using
electroencephalogram data and network measurements, such as cluster coefficient and the mean
of the shortest paths, it was found in the networks of patients with schizophrenia a decrease in
clusters and shorter paths concerning networks of healthy patients. Although the SZ networks
still present a small world topology, there is subtle randomization resulting in a disturbance in
the balance of brain integration and segregation (SPORNS, 2010).

In the investigation (ZHANG et al., 2021), SZ patients, compared with control patients,
had lower segregation and functional connectivity in brain areas such as the bilateral fusiform
gyrus, bilateral medial temporal gyrus, left supramarginal gyrus, right amygdala, and left tem-
poral regions. In addition, (TYAGI; SINGH; GORE, 2022) brought attention to the concurrent
increases and decreases in Posterior Cingulate Cortex (PCC) connectivity seen in SZ patients,
but mostly reduced connectivity between PCC and brain regions linked to the Default Mode
Network (DMN). The authors also discovered significant discriminative capacity using machine
learning (ML) for categorizing persons with the first episode of schizophrenia compared to con-
trol participants, with an average accuracy of 72.28% in test sample data. Furthermore, (DONG
et al., 2018) discovered hypoconnectivity in the DMNs in patients with SZ in the thalamus region.
Another investigation with SZ patients (NIERENBERG et al., 2005) showed changes in the left
angular gyrus brain region. The gray matter volume of this region was 14.8% smaller than the
control group in the same research, indicating that this region may represent a neuroanatomical
basis for the “expression of schizophrenia". The reversal asymmetry in the inferior parietal lobe,
angular gyrus, discovered by (NIZNIKIEWICZ et al., 2000), indicated a significance for this
area in cognitive deficiencies, language issues, and thinking disorders in SZ. The authors of
(SCHÜRMANN et al., 2007) also emphasize the impairment of motor cognition in SZ patients.

These aforementioned studies show that the structure of the brains of individuals with SZ
differs from those of normal controls. Hence, it is possible to diagnose SZ based on data collected
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Table 18 – The table comprises machine learning research that used the same database as the current study
(COBRE data described in more detail in subsection 6.2.1).

Authors Data Data
Type

Correlation
metrics

ML
methods ROIs AUC Acc. Recall Precision

(QURESHI et al., 2017)
COBRE

data fMRI
specific
method SVM 102 - 0.99 - -

(PATEL; AGGARWAL; GUPTA, 2016)
COBRE

data fMRI
Pearson

correlation

Deep Learning
combined
with SVM

116 - 0.92 - -

(ANDERSON; COHEN, 2013)
COBRE

data fMRI

correlation-
based

distance
metric

SVM 90 - 0.65 - -

(SAVIO; GRAÑA, 2015)
COBRE

data fMRI
Pearson

correlation SVM 27 - 0.80 - -

(ZENG et al., 2018)
COBRE

data fMRI
Pearson

correlation SVM 160 - 0.69 0.92 -

by the EEG or experiments. Furthermore, EEG is a low-cost, widely available technology with
high temporal resolution. Therefore, EEG data have been used to study brain organization
(FALLANI et al., 2011b; ALVES et al., 2022a). fMRI, in contrast, has a poor temporal resolution
but a high spatial resolution, which makes it ideal for studying spatial brain dynamics (MENON;
CROTTAZ-HERBETTE, 2005; FORMISANO et al., 2003). fMRI scans produce a set of three-
dimensional images recorded over time and measure a signal. The temporal evolution of the
BOLD series is called the hemodynamic response function and is determined by the pixel
intensity in fMRI images (STURZBECHER, 2006; BISWAL et al., 1995). Each cube of an fMRI
image, called voxel, which anatomically maps a position in the brain, has a BOLD time series
(LOPES et al., 2016).

Previous studies have evaluated the effectiveness of ML in diagnosing SZ with supervised
machine learning algorithms that distinguish between two classes, namely SZ and control group
(see Table 18). In contrast to traditional statistical methods, the ML approach does not rely
on prior assumptions (such as adequate distribution, independence of observations, absence
of multicollinearity, and interaction problems). It is well suited to automatically analyze and
capture complex nonlinear relationships in data. In addition, new methodologies, such as SHAP
values, have evolved to aid in interpreting machine learning outcomes. Any machine learning
algorithm may use this statistic to detect and prioritize features (BOWEN; UNGAR, 2020;
RODRÍGUEZ-PÉREZ; BAJORATH, 2019; SPADON et al., 2019).

This study aims to determine whether it is feasible to automatically detect brain changes
caused by SZ while providing a biological explanation. For that, we consider the BOLD series
to develop the classification method for SZ patients, and we also test in EEG data. After the
preprocessing of these two data (A), we consider as an input for the machine learning the
following data abstraction levels: (B) the correlation between the EEG electrodes and fMRI
regions of interest and (C) complex network measures extracted from (B). In contrast to articles
in the literature that use only one of these levels of abstraction, this study uses all two levels
in both data sets in a multimodal fashion for the first time in literature. In addition, we define
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which of these abstraction levels is the most appropriate for capturing SZ brain changes. The
SHAP value technique has also been found to be more successful than the previous research
(AL-BELTAGI, 2021; ALVES et al., 2022b; ALVES et al., 2022a) in finding the best brain areas,
connections between brain regions, and measurements of complex networks that may be utilized
to evaluate the effects of the SZ on the brain. As a final result of this research, for the first time in
literature, we combine EEG measures extracted from time series and complex network measures
as input for the ML method to evaluate which measure is more critical to distinguish SZ from
control patients.

6.2 Materials and methods

In the current study, two schizophrenia datasets were used to test our general workflow:
one fMRI, described in the subsection 6.2.1, and another EEG, described in the subsection
6.2.2, with different pre-processing for each data. First, the best pairwise metrics for capturing
schizophrenia-induced changes in the brain are defined based on the fMRI data workflow. This
metric is then validated using EEG data.

Figure 38 depicts the fMRI complete methodology workflow used and organized into
three parts according to their aim, i.e., preprocessing and using the best selecting pairwise metrics
(described in Figure 38-(A) and in subsection 6.2.1.1), the best brain connection (described
in Figure 38-(B) and in subsection 6.2.1.2), and the best complex network measures for dif-
ferentiating schizophrenia from control group (described in Figure 38-(C) and in subsection
6.2.1.3.)

Further, Figure 39 fully represents the EEG entire method workflow used and organized
into three parts accordingly to their aim. First, following preprocessing, the most distinguishing
metrics discovered for the fMRI data were used to create a connection matrix (described in
Figure 39-(A) and subsection 6.2.2.1), the best brain connection (described in Figure 39-(B) and
in subsection 6.2.2.2), and the best complex network measures for differentiating schizophrenia
from the control group (described in Figure 39-(C) and subsection 6.2.2.3.)

The python code with the methodology used in this work is available at: <https://github.
com/Carol180619/Paper-multimodal-schizophrenia.git>.

6.2.1 fMRI data

6.2.1.1 fMRI data preprocessing and selecting best pairwise metrics

The fMRI data utilized in this study were from The Centers of Biomedical Research
Excellence (COBRE) and included raw anatomical and fMRI data from 72 schizophrenia patients
and 74 healthy controls (ages 18 to 65 in each group) with 6 minutes resting-state BOLD time
series. As exclusion criteria, all the screened patients were excluded if they had a history of

https://github.com/Carol180619/Paper-multimodal-schizophrenia.git
https://github.com/Carol180619/Paper-multimodal-schizophrenia.git
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Figure 38 – The methodology for diagnosing schizophrenia using fMRI schizophrenia data is also in
subsection 6.2.1. (A) fMRI preprocessing and selecting best pairwise metrics method-
ology described in subsection 6.2.1.1; (B) Connectivity matrix methodology reported in
subsection 6.2.1.2; (C) Complex network measure methodology described in subsection
6.2.1.3.

mental retardation, a neurological condition, severe head trauma with more than 5 minutes of
loss of consciousness, or a history of drug dependency or misuse within the previous 12 months.
More details can be seen in (CALHOUN et al., 2012). This data was accessed using the Nilearn
Python library, in which the images were already preprocessed using the NIAK resting-state
pipeline (BELLEC, 2016).

ROIs are considered rather than the whole BOLD time series collected from each voxel
of the brain imaging. Because a brain atlas comprising these ROIs is employed, only the BOLD
time series voxels of these ROIs were utilized. BASC was chosen from among the several
preconfigured atlases since it was the map with the most outstanding performance according
to (SUBAH et al., 2021; ALVES et al., 2022). It was proposed in (BELLEC et al., 2010) and
obtained via group brain parcellation using the BASC technique, a k-means clustering-based
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Figure 39 – The methodology used here for the diagnosis of schizophrenia using EEG schizophrenia
data in subsection 6.2.2. (A) EEG preprocessing and selecting best pairwise metrics
methodology described in subsection 6.2.2.1; (B) Connectivity matrix methodology reported
in subsection 6.2.2.2; (C) Complex network measure methodology described in subsection
6.2.2.3.

approach that finds brain networks with coherent activity in resting-state fMRI (YANG; ZHANG;
SCHRADER, 2022). BASC map with a cluster number of 122 ROIs is used here (see Figure
38-(A)). Further, manual use of Yale BioImage Suite Package web application1 labeled the
coordinates of each ROIs for the identification of their names.

Once the time series for each of the 122 regions had been extracted, they were correlated
according to PC (BENESTY et al., 2009), SC (LUBINSKI, 2004), GC (GRANGER, 1969), BM
(WILCOX, 2011), SCC (HARDOON; SHAWE-TAYLOR, 2011), GL (SOJOUDI, 2016), LW
(LEDOIT; WOLF, 2012), MI (KRASKOV; STÖGBAUER; GRASSBERGER, 2004), and TE
(SCHREIBER, 2000) 2.

1 Avaiable in <https://bioimagesuiteweb.github.io/webapp/mni2tal.html>
2 For the TE, MI and GL metrics a Min-max normalization and then a thresholding process was

https://bioimagesuiteweb.github.io/webapp/mni2tal.html
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Each matrix was reduced to the size of the vectors used as input to the ML algorithm.
The support vector machine (SVM) algorithm (BOTTOU; LIN, 2007) was used as a classifier
to select the most effective method to choose the best methods to construct the correlation
and connectivity matrices. We use this method because it has been considered in studies of
schizophrenia (see section 6.1) and has a low computational cost, it also checked whether the
use of metrics was better than the direct use of time series – the one of better performance would
be chosen.

6.2.1.2 Most important brain connection

After the best brain connectivity metric had been determined, the following ML classifiers
were used: RF, NB, MLP, tuned CNN (called here CNNtuned and CNNuntuned) implemented in
(ALVES, ), and Long Short-Term Memory neural networks (LSTM) (HOCHREITER; SCHMID-
HUBER, 1997). In addition to the CNN deep learning used in prior work (ALVES et al., 2022b),
the LSTM network is a form of recurrent neural network commonly used to identify patterns in
time series. Subsequently, the SHAP value method was used for the biological interpretation, as
it explains the predictive power of each attribute. The same sampling data set was used in all
ML algorithms and split into training (train) and test sets, with 25% data comprising the test
set. was employed, with k = 10 which is a common value for this method (BERRAR, 2019;
BENGIO; GRANDVALET, 2004; SHAH; KHAN, 2020; KAWAMOTO; KABASHIMA, 2017;
CHAN et al., 2019; KAWAMOTO; KABASHIMA, 2017)). This procedure is applied for model
selection and hyper-parameter optimization. It was also considered the grid search method used
for all ML algorithms except the untuned CNN and LSMT model, as done in (SATO et al., 2019;
ZHONG et al., 2021; ARCADU et al., 2020; KRITTANAWONG et al., 2021; RASHIDI et

al., 2020). The hyper-parameter optimization values for each classifier model are provided in
Appendix A.3. The standard performance metric accuracy (MINCHOLÉ; RODRIGUEZ, 2019;
TOLKACH et al., 2020; DUKART et al., 2021; LI; ASCH; SHAH, 2020; PARK; KELLIS, 2015)
was employed for evaluation. Due to the two-class (negative and positive) classification problem,
other common metrics such as precision and recall were considered (ITO et al., 2021; KIM
et al., 2020; LI et al., 2021; YU et al., 2020). Precision (also called positive predictive value)
corresponds to the hit rate in the negative class (here corresponding to the control group), whereas
recall (also called sensitivity) measures how well a classifier can predict positive examples (hit
rate in the positive class), here related to SZ patients. Regarding the visualization of the two
latter measures, the ROC curve is a common method that displays the relation between the
rate of true and false positives. The area below the curve, called AUC, has been widely used in
classification problems (MINCHOLÉ; RODRIGUEZ, 2019; BRACHER-SMITH; CRAWFORD;
ESCOTT-PRICE, 2021; PATEL et al., 2021; KRITTANAWONG et al., 2021). The AUC value
ranges from 0 to 1- 1 corresponds to a classification result free of errors, and 0.5 indicates the
classifier cannot distinguish the classes, as in a random choice. The micro average of the ROC

performed, with a value of 0.5, since these measures deal best with binary values.
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curve, which computes the AUC metric independently for each class (it calculates AUC for
healthy individuals, class zero, and separately calculates it for unhealthy ones, class one), was
also considered. The average is computed considering the classes equally. The macro average
was also employed in our evaluation - it does not consider the classes equally but aggregates
their contributions separately and then calculates the average.

6.2.1.3 Best complex network measures

A complex network (or a graph) was generated for each connectivity matrix for the
extraction of different measures. Towards inputting data into the ML algorithm, the complex
network measures were stored in a matrix of attributes, where each column represents a complex
network measure (feature), and each row denotes a subject. 2D matrices were generated for all
subjects, as in (ALVES et al., 2022a).

To describe the brain structure, the following complex network measures were calculated:
assortativity coefficient (NEWMAN, 2003; NEWMAN, 2002), APL (ALBERT; BARABÁSI,
2002), BC (FREEMAN, 1977), CC (FREEMAN, 1978),EC (BONACICH, 1987), diameter
(ALBERT; JEONG; BARABÁSI, 1999), hub score (KLEINBERG, 1999), Knn (EPPSTEIN;
PATERSON; YAO, 1997), mean degree (DOYLE; GRAVER, 1977), SMD (SNIJDERS, 1981),
ED (DEHMER; MOWSHOWITZ, 2011), transitivity (WATTS; STROGATZ, 1998; NEWMAN;
WATTS; STROGATZ, 2002), complexity, k-core (SEIDMAN, 1983; NEWMAN, 2010), ec-
centricity (HAGE; HARARY, 1995), density (ANDERSON; BUTTS; CARLEY, 1999), and
efficiency (LATORA; MARCHIORI, 2003).

Newly developed metrics (described in detail in (ALVES et al., 2022a)) reflecting
the number of communities in a complex network were also applied. Community detection
algorithms were also used in our study (NEWMAN, 2012; KIM; LEE, 2015; ZHAO; LIANG;
WANG, 2021). Since the community detection measures must be transformed into a single scalar
value to be included in the matrix, community detection algorithms were applied for finding
the largest community. The average path length within the community was then calculated and
received a single value as the result. The community detection algorithms used were the FC
(CLAUSET; NEWMAN; MOORE, 2004), IC (ROSVALL; AXELSSON; BERGSTROM, 2009),
LC (NEWMAN, 2006), LPC (RAGHAVAN; ALBERT; KUMARA, 2007), EBC (GIRVAN;
NEWMAN, 2002), SPC (REICHARDT; BORNHOLDT, 2006), and MC (BLONDEL et al.,
2008). The abbreviations were extended with letter "A" (for average path length) towards
indicating the approach (AFC, AIC, ALC, ALPC, AEBC, ASPC, and AMC).

These network measures were used to characterize the brain’s network structure. Thus,
each observation representing the network properties of one patent is represented by a vector
containing these metrics. The results are provided in subsection 6.3.1.2.
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6.2.2 EEG data

6.2.2.1 Preprocessing and selecting best pairwise metrics

The EEG dataset used for diagnosis of SZ, also used in (ALVES et al., 2022b), contains
a 16-channel EEG time series recorded at a sampling frequency of 128 Hz over one minute,
including F3, F4, F7, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. The study included 39
healthy young people (control group; aged 11 to 14 years) and 45 teenagers (aged 11 to 14 years)
with schizophrenia symptoms in a resting state.

From these time series are extracted EEG measurements which are widely used in
the literature, as there are spectral entropy (TIAN et al., 2017; VANLUCHENE et al., 2004),
Hjorth mobility and complexity (ELBERT et al., 1992; HJORTH, 1975; HJORTH, 1986) and
Lempel-Ziv complexity (BAI; LIANG; LI, 2015; LEMPEL; ZIV, 1976).

Further, connectivity matrices were generated with the most successful method evaluated
for fMRI data; see section 6.2.1.

6.2.2.2 Most important brain connection

Based on these connectivity matrices, the best ML method is used. With the SHAP value
method, most distinguishing brain regions are found.

6.2.2.3 Complex network measures

The same measures of complex networks used in the previous subsection were extracted.
Moreover, for the first time in the literature, EEG measures extracted from time series and
complex network measures have been put into the ML algorithm to obtain which metric best
differentiates EEG data from schizophrenia patients.

6.3 Results

In general, ML algorithms were applied for two different levels of data abstraction,
namely (B) the connectivity matrix and (C) the matrix of attributes, whose elements are complex
network measures calculated from (B). This approach was used for EEG and fMRI data. However,
for EEG, not only the complex network but also EEG measures extracted from time series.

We verified that all approaches automatically detected changes in the brain of SZ patients.
The fMRI connectivity matrix obtained the highest classification performance with a 99% mean
AUC (see Table 19 and subsections 6.3.1 and 6.3.2.
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Table 19 – Summary of all the results obtained in the present work. Classification results using the
connectivity matrix best-captured brain changes due to SZ. The best performance is highlighted
in bold.

Data
abstraction

Data
ML Subset AUC Acc. Recall Precision

Connectivity
matrix

fMRI
CNN Train 1.00 1.00 1.00 1.00

Test 0.99 0.99 1.00 0.97

Connectivity
matrix

fMRI
RF Train 1.00 1.00 1.00 1.00

Test 0.97 0.97 0.97 0.97

Complex
network

fMRI
RF Train 1.00 1.00 1.00 1.00

Test 0.89 0.89 0.89 0.90

Connectivity
matrix

EEG
RF Train 1.00 1.00 1.00 1.00

Test 0.95 0.95 0.95 0.95

Complex
network

EEG
RF Train 1.00 1.00 1.00 1.00

Test 0.81 0.81 0.81 0.81

6.3.1 fMRI results

6.3.1.1 Selecting best pairwise metrics

Appendix A.11 contains the results for each connectivity matrix with different types of
pairwise statistical metrics. SVM was used to detect the best one for capturing the brain changes
due to SZ in fMRI data. TE achieved the best performance. It is worth mentioning that the
connectivity matrices outperformed the raw BOLD time series.

Then, the best connectivity matrix was tested with the other ML algorithms to determine
the one that best-differentiated SZ patients from control ones. According to Table 20, the best
classifiers are the CNNtuned and RF. CNN performance for the test set was equal to 1.00 for the
mean AUC and 0.98 for precision, recall, and accuracy. RF performance for the test set was equal
to 0.97 for the mean AUC, precision, F1, recall, and accuracy. Figure 41 displays the confusion
matrix (41-(a)), the learning curve (Figure 41-(b)), and the ROC curve (41-(c)), respectively,
using TE and CNNtuned . The learning curve contains the loss error in each epoch. The loss error
is computed on training and validation, and its interpretation is how well the model performs for
these two sets. It is the total error committed for each example in these train, and test samples
(RASCHKA; MIRJALILI, 2019).

In contrast, Figure 40 displays the confusion matrix (40-(a)), the learning curve (Figure
40-(b)), and the ROC curve (40-(c)), respectively, using TE and RF. The results suggest that the
complete database is not required to obtain the best validation accuracy (see learning curve in
Figure 40- (b)). Regarding the classification model, TP (related to class 1) was higher than TN,
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Table 20 – Results from different ML algorithms. The best ML was CNNtuned and RF for the fMRI dataset,
whose performances are highlighted.

ML
methods Subset AUC Acc. Recall Precision

RF Train 1.00 1.00 1.00 1.00
Test 0.97 0.97 0.97 0.97

CNN
tunned

Train 1.00 1.00 1.00 1.00
Test 1.00 0.98 0.98 0.98

CNN
untuned

Train 1.00 1.00 1.00 1.00
Test 1.00 0.98 1.00 0.97

LSTM Train 1.00 0.99 0.99 0.99
Test 0.99 0.97 0.97 0.97

SVM Train 0.99 0.99 1.00 0.99
Test 0.92 0.92 0.92 0.92

NB Train 1.00 1.00 1.00 1.00
Test 0.87 0.86 0.88 0.89

MLP Train 0.89 0.85 1.00 0.90
Test 0.80 0.80 0.80 0.80

showing that it better detects SZ patients (see confusion matrix in Figure 40- (a)). The learning
curve for ML assesses the model’s predictability by altering the size of the training set (SPADON
et al., 2019). Since RF has a lower computational cost, it was chosen for the following steps.

SHAP values were calculated to quantify the importance of brain connections for the
RF (see Figure 42 for the results). The connection between the Left-Dorsal Posterior Cingulate
Cortex and Left-Primary motor cortex (Left-DorsalPCC – Left PrimMotor1) was the most
important, according to Figure 42. Low correlation values (blue dots) for this connection (Left-
DorsalPCC – Left PrimMotor1) were essential for the detection of the control group, and high
values of this correlation (red dots) were important for the detection of SZ. The second most
crucial connection was detected between the Left- Premotor Cortex and Left-angular gyrus
(Left-premotor suppmor5 – Left-AngGyrus1). Low correlation values for this connection (blue
dots) were associated with SZ patients, and high correlation values (red dots) were essential for
detecting control ones. The corresponding brain regions are depicted in Figure 42.

Since RF was the algorithm that provided the best performance, it was used in the
following subsections.

6.3.1.2 Complex network

The performance of the test sample considering the complex network yielded a mean
AUC of 0.89, 0.90 for precision, 0.89 for F1 score, 0.89 for recall, and 0.89 for accuracy.
Confusion matrix Figure 43-(a), learning curve Figure 43-(b), and ROC curve Figure 43-(c).
Furthermore, according to Figure 43, the whole dataset was necessary. The results suggested
that almost the complete database is required to obtain the best validation accuracy (see learning
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(a) (b)

(c)

Figure 40 – RF results using fMRI connectivity matrices. (a) Confusion matrix indicating a TN rate of
100% (purple, according to the color bar) and a TP rate of 95.2% (blue, according to the color
bar). (b) Learning curve for the training Acc. (blue) and test Acc. (green). (c) ROC curve with
class 0 (control) and class 1 (with SZ).

curve in Figure 43- (b)).

According to the SHAP values in Figure 44, the most crucial measure for the model
was the Diameter, followed by the CC. Furthermore, except for CC, it is difficult to determine
whether low or high values of these other measures are related to the presence or absence of
schizophrenia from the Figure 44. However, in contrast to the other measures, it is evident that
low CC values are associated with the presence of schizophrenia.

6.3.2 EEG dataset

6.3.2.1 Connectivity matrix

As previously stated, the identical approach used in the preceding section was evaluated
on the EEG data. Furthermore, the TE measure was utilized to build the connectivity matrices
of the EEG data, and RF was used to differentiate SZ patients from the control group. Its
performance for the test set was equal to 0.95 for the mean AUC, precision, F1, recall, and



136
Chapter 6. Analysis of functional connectivity using machine learning and deep learning in multimodal

data from patients with schizophrenia

(a) (b)

(c)

Figure 41 – CNNtuned results using fMRI connectivity matrices. (a) Confusion matrix indicating a TN
rate of 100% (blue, according to the color bar) and a TP rate of 94.7% (blue, according to the
color bar). (b) The learning curve with the Loss for the training (blue dots) and validation
(line). (c) ROC curve with class 0 (control) and class 1 (with SZ).

accuracy. Figure 45 displays the confusion matrix (45-(a)), the learning curve (Figure 45-(b)),
and the ROC curve (45-(c)), respectively. The results suggest that the complete database is
required to obtain the best validation accuracy (see learning curve in Figure 45- (b)).

SHAP values were calculated to quantify the importance of brain connections for the RF
(see Figure 46 for the results). The connection between regions P3 and C3 (P3 – C3) was the
most important for the RF model. According to the data in Figure 46, high correlation values
(red dots) for the connection (P3 – C3) were essential for the detection of SZ patients, and low
values of correlation (blue dots) were necessary for the detection of control ones. The second
most crucial connection was detected between T6 and T4 (T6 – T3), and this connection’s low
values were associated with SZ. The corresponding brain regions are depicted in Figure 46

6.3.2.2 Complex network

The performance of the test sample considering the complex network yielded a mean
AUC equal to 0.82, 0.85 for precision, 0.81 for F1 score, 0.75 for recall, and 0.81 for accuracy.
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Figure 42 – Feature importance ranking for the RF classifier with brain regions ranked in descending
order of importance. For example, the connection between the regions Left-DorsalPCC and
Left-PrimMotor1 is the most important to classify SZ patients.

Confusion matrix, learning curve, and ROC curve are shown in Figure 47. The results suggest
that the complete database is required to obtain the best validation accuracy (see learning curve
in Figure 47- (b)). Regarding the classification model, TP (related to class 1) was slightly higher
than TN, showing that it better detects SZ patients (see confusion matrix in Figure 47- (a)).

According to the SHAP values in Figure 48, the most relevant measure was spectral
entropy, which had a positive correlation with SZ, followed by Hjorth mobility and complexity,
which have a negative correlation with the occurrence of SZ. Further, the measures extracted
from the EEG time series were more important than the complex network measures. However,
the diameter was the most relevant complex network measure, comparable to that found for the
fMRI data. Furthermore, the existence of SZ was connected with greater ASPC values, which
estimated the size of the communities. As a result, SZ is connected with larger communities.

6.4 Discussion

6.4.1 Connectivity matrix

One aim of this work was to compare the classificatory statements that can be made based
on two different SZ datasets, namely fMRI and EEG. The ML workflow used was essentially
the same. A comparison of the main results regarding altered connectivity in the neural network
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(a) (b)

(c)

Figure 43 – ML results using complex networks and fMRI. (a) Confusion matrix indicating a TN rate
of (blue, according to the color bar) and a TP rate of (blue, according to the color bar). (b)
Learning curve for the training Acc. (blue) and test Acc. (green). (c) ROC curve with class 0
(control) and class 1 (with SZ).

structure of the SZ patients can be found in Figure 49.

Our method identified a positive correlation in the SZ group between the left dorsal PCC
and the left primary motor during rest. The posterior cingulate cortex is in the upper region
of the limbic system and is associated with Brodmann Areas (BA)) 23 and 31. Researchers
(LEECH; BRAGA; SHARP, 2012) suggested that this brain region behaves as a central hub for
information exchange and has high connectivity with frontoparietal regions, which is related to
the cognitive control of directing attention inside and outside. Furthermore, they observed that
the ventral PCC is highly involved in DMN when there is the activation of cognitive activity
directed towards the inside focus and when there is recovery and memory planning. On the
other hand, dorsal PCC is related to highly complex connectivity directed to the frontal lobe,
correlated to the balance of internal/external and broad/ narrow attention (LEECH; BRAGA;
SHARP, 2012; LEECH; SHARP, 2014).

In contrast, the Primary Motor Cortex (PMC), BA04, was a brain region positively
correlated with PCC in our study, usually activated when the finger is in movement (WINDIS-
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Figure 44 – RF classifier features importance ranking in an fMRI dataset, with factors mentioned in
descending order. For the categorization of SZ patients, the spectral entropy measure is the
most essential, followed by the Hjorth mobility and complexity measure.

CHBERGER et al., 2003) or when healthy subjects press a button in a given task. However,
(YANG; SHU, 2012) suggested that the premotor and primary premotor cortex may be involved
in language processing, especially the left premotor cortex, which performs articulation planning
(DUFFAU et al., 2003). Considering previously cited studies mentioned here and in the 6.1, the
high positive correlation found between PCC and left PMC in our study suggests that activation
of DMN-related areas, usually present during rest and reflecting voluntary targeting for inside
observation, are also associated with language processing and may reflect problems in production,
articulation, and speech expression, such as alterations in thought process manifested in speech,
seen by (MOTA et al., 2012) in SZ patients.

The second highest correlation found in our study occurred between the left premotor
supplementary (BA6) and angular gyrus (BA39) areas; this time, these areas are negatively cor-
related. The Supplementary Motor Area (SMA) has been associated with movement control and
preparation (WELNIARZ et al., 2019), and patients with left medial SMA lesions showed severe
difficulties remembering and reproducing rhythms compared to control subjects. Furthermore, it
has been observed that bilateral SMA regions are altered in SZ patients with catatonia, and this
hyperperfusion is a marker of current catatonia in schizophrenia, indicating a dysregulation in
the motor system, particularly affecting the premotor areas (WALTHER et al., 2017).

The angular gyrus brain region, located in the posterior inferior parietal area, is activated
during different tasks, and as shown by (SEGHIER, 2013) as being a hub that receives information
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(a) (b)

(c)

Figure 45 – ML results using EEG connectivity matrices. (a) Confusion matrix indicating a TN rate of
(blue, according to the color bar) and a TP rate of (blue, according to the color bar). (b)
Learning curve for the training Acc. (blue) and test Acc. (green). (c) ROC curve with class 0
(control) and class 1 (with SZ).

and integrates it, generating comprehension and reasoning, redirecting attention to relevant
information, manipulating mental processes, and problem-solving. Considering the angular
gyrus findings described in the 6.1 and through the findings obtained for the negative correlation
in our study, in the SZ group compared to the control, between the left premotor supplementary
regions and the angular gyrus, we can suggest that this correlation may reflect an altered motor
system, with problems related to motor learning with altered coordination; express the cognitive
deficits, language and thinking problems, both associated with SZ.

We also observed a high positive correlation between P3 and C3 regions for the SZ group
compared to the control group. The P3 region corresponds to the Left Superior Parietal Lobe
(LSP), BA07, while the C3 region corresponds to the left motor cortex, BA06 (SCRIVENER;
READER, 2022). LSP is activated during the performance of body part localization task (FELI-
CIAN et al., 2004); both right and left parietal regions showed deficits in tests related to working
memory information involving mental information (KOENIGS et al., 2009). The motor cortex is
usually associated with motor actions. However, (BHATTACHARJEE et al., 2021) highlighted
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Figure 46 – Feature importance ranking for the RF classifier with brain regions in descending order. The
connection between the P3 and C3 is the most important for classifying SZ patients.

its involvement in cognitive processes such as task-directed attention, motor consolidation,
integration of multiple sensory inputs, and inhibition of involuntary movements. Therefore, the
studies cited in 6.1 and the correlation observed between P3 and C3 regions in our study during
resting state may reflect the dysfunctions found in SZ that unfold working memory problems
and deficits in motor cognition.

Our study’s negative correlation in the right temporal lobe between T6 and T4 electrodes
for SZ patients comprises BA 21 and 38. For example, the temporal lobe is associated with
speech perception and production, hearing, and episodic memory (PATEL; BISO; FOWLER,
2021). During hallucinatory crises in SZ patients, (SRITHARAN et al., 2005) found increased
coherence in the temporal cortices bilaterally, suggesting abnormally increased synchrony in the
left and right auditory cortices compared to the time without hallucination. In contrast with this
study, we only found a correlation between two electrodes in the right temporal cortex in SZ
patients, indicating an inverse activity variation in this region. Furthermore, the hallucinating
patients showed reduced alpha coherence in FT7, and FT8 electrodes, compared to the HC and
the group of patients without hallucination (HENSHALL et al., 2013). This finding points to the
importance of the activity of the temporal region bilaterally with other areas of SZ patients.
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(a) (b)

(c)

Figure 47 – ML results using complex network measures from EEG. (a) Confusion matrix indicating a
TN rate of (blue, according to the color bar) and a TP rate of (blue, according to the color
bar). (b) Learning curve for the training Acc. (blue) and test Acc. (green). (c) ROC curve with
class 0 (control) and class 1 (with SZ).

6.4.2 Complex network and measures extracted from EEG time se-
ries

The most important measure found for both data was Diameter, which corresponds to the
length of the longest of the shortest path between any two vertices (RYU et al., 2020). Since this
measure was observed in two different bases, EEG and fMRI, it may be an indicative biomarker
for the diagnosis of schizophrenia.

Regarding the EEG database, for the first time in the literature, we combined measures
extracted from EEG time series with measures of complex networks extracted from functional
networks of control individuals and schizophrenia patients to verify which measures are more
efficient for this type of data. The results suggested that measures extracted from time series were
more critical for classifying patients with SZ. The most relevant measure for EEG was spectral
entropy, which has a positive correlation with SZ, followed by Hjorth mobility and complexity,
which have a negative correlation with the occurrence of SZ.
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Figure 48 – RF classifier features importance ranking in an EEG dataset, with factors mentioned in
descending order. For the categorization of SZ patients, the spectral entropy measure is the
most essential, followed by the Hjorth mobility and complexity measure.

Spectral Entropy is an information theory-derived quantity that measures the degree of
uncertainty in a signal, with higher values corresponding to a more uniform spectrum and more
random frequency content and lower values corresponding to more regular frequencies (DUFF
et al., 2013; GOMEZ-PILAR et al., 2018). Spectral Entropy is an information theory-derived
quantity that measures the degree of uncertainty in a signal, with higher values corresponding to
a more uniform spectrum and more random frequency content and lower values corresponding
to more regular frequencies. During the resting condition, we detected greater levels of spectral
Entropy associated with SZ, indicating more random frequencies. This conclusion contradicts
previous studies (TAKAHASHI et al., 2010; MOLINA et al., 2020; GOMEZ-PILAR et al.,
2018) that reported spectral entropy deficiencies in schizophrenia patients executing the P300
activity. We assume this discrepancy because our data were obtained during the rest. The second
most important EEG measure was Hjorth mobility and complexity, which illustrates a frequency
shift and shows how a signal’s form is comparable to a pure sine wave (HJORTH, 1970). The
Hjorth mobility and complexity values found for SZ patients were according to the literature
(PORTNOVA; ATANOV, 2018).

Furthermore, for EEG data, the existence of SZ was connected with greater ASPC values,
which estimate the size of the communities. As a result, SZ is connected with larger communities.
Moreover, the discovery of larger communities shows that the brain’s equilibrium between
functional segregation and integration has been disrupted, implying that information distribution
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Figure 49 – Plot with the most crucial connections found, in the two-dimensional schematic (ventral-
axis), with the essential fMRI connection highlighted in blue and the most critical EEG
connection highlighted in pink. The brain plot was developed by Braph tool (MIJALKOV
et al., 2017), based on the coordinates in (MICHEL; BRUNET, 2019; ASHER et al., 2021;
SCRIVENER; READER, 2022), and each region was plotted using the Brodmann map from
the Yale BioImage Suite Package.

is slower than in the control group. These findings support the idea that functional brain networks
in SZ patients are more random than the control ones, as described in section 6.1.

Further, lower Transitivity values are related to the existence of SZ. The transitivity is a
measure of the efficiency of information transfer between all pairs of nodes in the graph (RAN-
GAPRAKASH et al., 2019), and a lower value of these measures indicates lower segregation
(LUO; GREENE; CONSTABLE, 2021). This finding is according to the literature (ANDERSON;
COHEN, 2013; BASSETT et al., 2008).

Additionally, for fMRI, CC was the second most crucial measure. The average of the
shortest path lengths from the node to every other node in the network, measured as CC,
represents how near a node is to all other nodes in the network (GOLBECK, 2013). Therefore, a
lower Closeness Centrality score reflects impairment at these nodes (THOMAS et al., 2015),
which was also found in previous findings (GRIFFA et al., 2015).

6.5 Conclusions and future work

The workflow developed using fMRI data distinguish control from SZ patients with an
accuracy of 98% and AUC of 100%. The best pairwise statistical metric captured brain changes
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due to the presence of SZ was TE, and the best-performing machine learning model was RF.

According to the TE and RF, essential brain connections in the SZ group are a positive
correlation between the left dorsal PCC and left primary motor at rest and a negative correlation
between the left premotor supplementary and angular gyrus areas. Furthermore, in the right
parietal lobe, there is a strong positive correlation between the P3 and C3 regions and a negative
correlation between the T6 and T4 electrodes, according to the EEG connectivity matrix.

Due to the employment of two databases collected in different groups of SZ patients
using two different types of equipment that capture detailed information on brain activity, this
study has particular difficulties in comprehending the associations revealed (fMRI and EEG).
However, the findings provide a wealth of information about brain activity in SZ patients, which
is corroborated by clinical and neurophysiological findings in the literature. We hypothesize that
fMRI and EEG correlations in the data point to brain regions involved in motor, cognitive, and
sensory processing, internal attention targeting, DMN-related regions, and auditory and language
processing. This finding may reflect changes in SZ patients, such as problems with expression,
production, and speech articulation, changes in thinking, internal attention targeting, cognition,
and hallucinatory episodes.

Concerning the complex network measures, Diameter is recognized as a critical measure
for both data, and it may be a suggestive biomarker for the diagnosis of SZ because the same result
was obtained with two different equipment and patient groups. This study could be a significant
finding, as it reveals a robust biomarker that enables ML-based diagnosis of schizophrenia disease
regardless of data modalities. Furthermore, for EEG data, SZ functional networks, compared
to the control group, have larger communities and lower. Moreover, SZ functional networks
exhibit larger communities and lower Transitivity for EEG data, indicating slower information
distribution and less segregation than in the control group. According to the literature, these
results mean that our approach with the SHAP value method could predict the primary SZ-related
connections and the best complex network measures.

Nevertheless, according to our ML approach, EEG measures extracted from raw time
series are more important than complex network measurements in capturing brain alterations in
SZ patients.

Finally, future studies may involve the application of the methodology to other fMRI
data from ADHD-200 Global Competition. It can also be adopted with EEG data from patients
with other neurological disorders, for example, dystonia (BALTAZAR et al., 2020).
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CONCLUSIONS AND FUTURE WORKS

‘The truth is that we isolate a particular kind of love and appropriate it for the name

of love, which really belongs to a wider whole"

— Plato, The Symposium

The present work aimed to develop a predictive model capable of improving the diagnosis
of mental illnesses such as schizophrenia, AD, and autism. Furthermore, verify if the same
workflow can automatically detect changes in the functional network structure induced by DMT
and ayahuasca since psychedelics may have a therapeutical potential for some mental illnesses.

In general, the model predictions for the diseases studied here were superior to those
found in the literature. Thereby state of art in the field of mental illness diagnosis has advanced.

Regarding the study of psychedelics, it was obtained new insights into the mechanisms
of action of ayahuasca and DMT using ML and SHAP values. Moreover, it was determined
which complex network measures are most effective for capturing brain changes, including new
metrics developed by the author. In addition, these new metrics have been fundamental in the
studies of autism and psychedelics.

In further detail, chapter 2 showed a deep learning approach that classifies patients with
Alzheimer’sAlzheimer’s disease and schizophrenia with a high level of accuracy. Furthermore,
the comparison with the classic cases that use raw EEG time series shows that our method
provides the highest precision.

In chapter 3, our workflow was able to distinguish brain changes occurring due to
ayahuasca, and the most activated areas were the frontal and temporal lobes, which is consistent
with the literature. The correlation between F3 and PO4 was the most important in terms of brain
connections. This connection may point to a cognitive process similar to face recognition in
individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality
and assortativity were the most important complex network measures. These two measures are
also associated with AD, indicating a possible therapeutic mechanism.



148 Chapter 7. Conclusions and future works

Specifically, in chapter 4, the ML model using our workflow found that differences in
the high alpha, low beta, and delta frequency band were most important to distinguish between
the state before and after DMT inhalation, which is consistent with results described in the
literature. Furthermore, the connection between the temporal (TP8) and central cortex (C3) and
between the precentral gyrus (FC5) and the lateral occipital cortex (T8) contributed most to the
classification result. The connection between regions TP8 and C3 has been found in the literature
associated with finger movements that might have occurred during DMT consumption. However,
the connection between cortical regions FC5 and P8 has not been found in the literature and
is presumably related to the volunteers’ emotional, visual, sensory, perceptual, and mystical
experiences during DMT consumption. In terms of complex networks, closeness centrality was
this chapter’s most crucial complex network measure. Moreover, we found larger communities
and a longer average path length with the use of DMT and the opposite in its absence, indicating
that the balance between functional segregation and integration was disrupted. These findings
support that cortical brain activity becomes more entropic under psychedelics.

In chapter 5, using fMRI data, the workflow developed here was able to distinguish TD
from ASD patients. Important regions include Left-Sec Visual (visual cortex), Left-VentPostCing,
Left-prim motor, and Left-VentPostCing Posterior cingulate cortex. Noteworthy, The Left-
VentPostCing Posterior cingulate cortex is known from the literature that reductions in functional
connectivity of this brain area in ASD patients, and this is consistent with the results found
here, in which this region is less connected to the Outside BAS1 region in patients with ASD.
In terms of complex networks, the brain networks of ASD patients showed more segregation,
less distribution of information across the network, and less connectivity. Regarding the sliding
process employed, this technique proved effective for differentiating TD and ASD patients,
where with 30 patients, it was possible to achieve a mean AUC and mean accuracy of 0.81.
Statistical comparison considering the data from the sliding process and complete data did not
show significant differences. Thus, it is an appropriate methodology that can be employed in the
case of data with a small sample size.

In chapter 6, we applied our workflow using fMRI and EEG datasets in a multimodal
fashion of SZ patients. Besides the previous ML methods, we also consider the deep learning
architecture LSTM. Furthermore, for the first time in the literature, we combined EEG measures
with complex network measurements to be analyzed in our model. We found that in the right
parietal lobe, there is a strong positive correlation between the P3 and C3 regions and a negative
correlation between the T6 and T4 electrodes, according to the EEG connectivity matrix. In terms
of complex network measures, the diameter, which corresponds to the longest shortest path length
in a network, is a biomarker because it is the most important measure in a multimodal fashion.
Furthermore, the schizophrenia brain networks exhibit less segregation and lower distribution
of information. As a final result, EEG measures outperformed complex networks in capturing
the brain alterations associated with schizophrenia. As a result, our model achieved an AUC
of 100%, an accuracy of 98% for the fMRI, an AUC of 95%, and an accuracy of 95% for the
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EEG data set. Noteworthy that a standard metric for constructing the connectivity matrix that
outperformed in the chapters 5 and chapter 6 was the normalized TE.

Although our methodology outperformed the diseases studied to those found in the
literature, we analyzed mainly EEG and fMRI during the rest and small data. For a more
generalized and robust workflow that could transform into a medical application, it would be
necessary to analyze data collected with patients performed some task, i. e. auditory oddball for
EEG and a more significant volume of data.

Another limitation is that we considered a binary classification with our workflow, which
would be interestingly considered a multiclass approach. Furthermore, it would be interesting
to extend our analyses for EEG and fMRI time series from other diseases and patients who
consumed other psychedelic drugs. Finally, the same methodology applied here may be useful in
interpreting EEG and fMRI time series from other diseases and patients who consumed other
psychedelic drugs. The following section 7.1 contains the intended future work.

7.1 Future work
We want to use EEG data and the methods described here to research, in addition to AD,

other degenerative disorders such as Parkinson’s disease and dystonia (BALTAZAR et al., 2020).

In addition, the methodology will also be applied to other EEG data related to other mental
disorders such as major depressive disorder, other schizophrenia dataset(ZHANG, 2019), ASD
(FROHLICH et al., 2019), and Attention deficit hyperactivity disorder (ADHD) (NASRABADI et

al., 2020). This comparison will also be made considering EEG and fMRI data from ADHD-200
Global Competition for ADHD patients.

Regarding the study of psychedelics, in future work, we intend to use this methodology
on EEG data from subjects that used the psychedelic drug called ketamine (FARNES et al.,
2020), and fMRI data from that used the psychedelic drug called Lysergic acid diethylamide
(LSD) (CARHART-HARRIS et al., 2016).

Moreover, finally, in addition to psychedelics, we would like to test our methodology on
other types of drugs such as antidepressants (JAWORSKA et al., 2019).
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APPENDIX

A
GLOBAL DISEASE BURDEN STUDY

METRICS

The Global Burden of Disease (GBD) Study fwas started in 1992 and is a collaboration
between the Harvard School of Public Health, the World Health Organization (WHO) and the
World Bank (WB) that seeks to meet the public health challenge of finding reliable and complete
metrics capable of globally assessing health conditions and the causes of illness and injury
to guide public policies in the next century (LOPEZ; MURRAY, 1998). This study, initially
coordinated by WHO and, since 2007, by Institute for Health Metrics and Evaluation (IHME),
University of Washington (United States of America - USA), presents a standardized disease
analysis methodology and is therefore comparable across countries (MURRAY et al., 2012).

One of the metrics used in the GBD and which was adopted by the WHO and the WB
(LEITE et al., 2015) was the Disability Adjusted Life Years (DALY). This synthetic measure
combines information on mortality and morbidity and was originally calculated for a list of more
than 100 diseases and conditions (NAGHAVI et al., 2009); it also allows measuring the impact
of each disease or condition on the population’s health status, constituting a fundamental tool for
the elaboration of policies aimed at reducing the burden of disease (MCKENNA et al., 2005).

In practical terms, a DALY represents a healthy year of life lost, being calculated as
the sum of two components: that of mortality, represented by the years of life lost (YLL) due
to premature death, and morbidity, characterized by years of healthy life lost due to disability
(YLD) (BARENDREGT; BONNEUX; MAAS, 1996). Mathematically, this metric is given by
the equation A.1.

DALY = Y LL+Y LD (A.1)

The YLL for a given cause of death is calculated as the product between the number
of deaths related to that cause and the estimated life expectancy for the age at which the death
occurred, according to (LEITE et al., 2015) the YLL can be mathematically given by the equation
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A.2.

Y LL(c, i,s) = N(c, i,s)XE(i,s), (A.2)

Being N(c, i,s) is the number of deaths due to the cause c for the age i and sex s; while
E(i,s) understands life expectancy at age i and sex s. On the other hand, considering that
mortality is an incident event, the YLD is calculated based on the new cases of a given disease
that occurred in a specific year (MURRAY et al., 2012) and can be calculated by the equation
A.3.

Y LD(c, i,s) = I(c, i,s)XD(c, i,s)XP(c, i,s), (A.3)

where I(c, i,s) is the number of incident cases due to the cause c, para a idade i and sex s;
D(c, i,s) refers to the average duration of disability resulting from the cause c, for the age i and
sex s; and P(c, i,s) understands the weight of disability related to the cause c, for age i and sex s.

An important study for mental disorders was 2015 GBD (FERRARI et al., 2014), in
which these disorders were defined according to the diagnostic criteria described in the Inter-
national Statistical Classification of Diseases and Related Health Problems (ICD-10) (SAÚDE,
1994) or in the Diagnostic and Statistical Manual of Mental Disorders (DSM–5). These disorders
total 19 groups listed below:

1. Neurodevelopmental disorders;

2. Schizophrenia spectrum and other psychotic disorders;

3. Bipolar and related disordersr;

4. Depressive disorders;

5. Anxiety disorders;

6. Obsessive-compulsive and related disorders;

7. Trauma- and stressor-related disorders;

8. Dissociative disorders;

9. Somatic symptom and related disorders;

10. Feeding and eating disorders;

11. Elimination disorders;

12. Sleep–wake disorder;

13. Sexual dysfunctions;
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14. Gender dysphoria;

15. Disruptive, impulse-control, and conduct disorders;

16. Substance-related and addictive disorders;

17. Neurocognitive disorders;

18. Personality disorders;

19. Paraphilic disorders;
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A.1 Machine learning algorithms for a small data set

Due to the fact that our data sets are very small since we cannot find more data in the
available literature, and that CNN may suffer from this lack of data, in this section, we aim to try
other classifiers that work more efficiently with small data sets.

For our best AD results using Pearson’s correlation and SZ using Granger causality,
we compared the following machine learning methods to classify: Support Vector Machine
(SVM) (BOTTOU; LIN, 2007), Random Forest (RF) (BREIMAN, 2001), Naive Bayes (NB)
(FRIEDMAN; GEIGER; GOLDSZMIDT, 1997), Multilayer Perceptron (MLP) (HINTON;
RUMELHART; WILLIAMS, 1986) and extreme Gradient Boosting classifier (FRIEDMAN,
2001) (XGBoost). We used the same resampling described used with CNN model with a
hyperparametric optimization called grid search whose values used for each classifier model can
be found in Table 24.

We can see in the Tables 21, 22 the results of all classifiers and to AD (using the Pearson’s
correlation) and SZ (using the Granger causality), respectively. Note that there are no cases
indicating overfitting. We can observe in Table 21 that all classifiers are able to differentiate
between patients in different health conditions, as opposed to the results in Table 22 that this
cannot be verified (since all classifiers performed similarly to a random classifier). Therefore,
CNN was able to differentiate both cases with better performance.

Table 21 – Classification results for AD using the Pearson’s correlation.

Classifier subset AUC Acc. F1
score Rec. Pre.

SVM Train 0.95 0.95 0.95 0.95 0.95
Test 0.91 0.91 0.91 0.91 0.92

NB Train 0.76 0.76 0.76 0.76 0.77
Test 0.70 0.69 0.69 0.70 0.70

RF Train 0.98 0.98 0.98 0.98 0.98
Test 0.96 0.96 0.96 0.96 0.96

MLP Train 1.00 1.00 1.00 1.00 1.00
Test 0.97 0.97 0.97 0.97 0.97

GBC Train 0.96 0.96 0.96 0.96 0.96
Test 0.92 0.93 0.93 0.92 0.94
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Table 22 – Classification results for schizophrenia using the Granger causality.

Classifier subset AUC Acc. F1 Rec. Pre.

SVM Train 0.56 0.56 0.53 0.56 0.57
Test 0.55 0.56 0.54 0.55 0.56

NB Train 0.57 0.57 0.55 0.57 0.58
Test 0.52 0.52 0.50 0.52 0.52

RF Train 0.67 0.66 0.66 0.67 0.67
Test 0.52 0.52 0.52 0.52 0.52

MLP Train 0.64 0.63 0.60 0.64 0.72
Test 0.59 0.59 0.56 0.59 0.61

GBC Train 0.50 0.50 0.33 0.50 0.25
Test 0.50 0.48 0.32 0.50 0.24

Table 23 – Table containing the hyper-parameters for each classifier using the Grid search optimizer.

Classifier Hyperparameters and description Values

RF

- max_depth: The maximum depth of the tree.
- max_features: The number of features to consider
when looking for the best split.
- min_samples_leaf : The minimum number of
samples required to be at a leaf node.
- min_samples_split: The minimum number of
samples required to split an internal node.
- n_estimators: The number of trees in the forest.

[1,2,5,10,20,80]
[2, 3,5,10]

[1,2,3, 4, 5]

[1,2,8, 10, 12,20]

[1,2,3,5,10, 30,50,100, 200, 300,500]

SVM

-kernel: Specifies the kernel type to be used in
the algorithm.
-gamma: Kernel coefficient.
-C: Regularization parameter.

[rbf, linear]

[1e-3, 1e-4]
[1, 10, 100, 1000]

NB -var_smoothin:Portion of the largest variance of
all features that is added to variances for calculation stability. range 1e-09 to 1

MLP

- activation: Activation function for the hidden layer.
- solver: The solver for weight optimization.
- alpha: L2 penalty (regularization term) parameter.
- batch_size: Size of minibatches for stochastic optimizers.
- learning_rate: Learning rate schedule for weight updates.
- learning_rate_init: The initial learning rate used.

[identity, logistic, tanh, relu]
[lbfgs, sgd, adam]
[0.0001,1e-5,0.01,0.001]
[1000,5000]
[constant, invscaling, adaptive]
[0.001,0.01,0.1,0.2,0.3]

XGBoost

- learning_rate: Learning rate shrinks the contribution of each tree.
- min_samples_split: The minimum number of samples required to
split an internal node.
- min_samples_leaf: The minimum number of samples required to
be at a leaf node.
- max_depth: The maximum depth of the individual r
egression estimators.
- max_features: The number of features to consider
when looking for the best split.
- criterion: The function to measure the quality of a split.
- subsample: The fraction of samples to be used for
fitting the individual base learners.
-n_estimators: The number of boosting stages to perform.

[0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2]
range 0.1 to 0.5

range 0.1 to 0.5

[3,5,8]

[log2, sqrt ]

[friedman_mse, mae],
[0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0],

[10, 100. 1000, 10000]

We also vary the validation sample size, including 10% to 50% of the observation in
the test set. Notice that we consider 10% of the elements in the test set to generate our results
shown before. As we can see in figure 50, regardless of the sample size, the obtained AUC is
higher than 0.90. We also included a k-fold cross-validation analysis for two different values of
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k, namely k=4 and k=12. For AD, considering k=4, the AUC train is 0.99 and k=12, the AUC
train is 0.91. Therefore, we can see that we can predict the mental disorders with high accuracy,
independent of the test size and using the k-fold cross-validation technique.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Validation sample size

0.93

0.94

0.95

0.96

0.97

0.98

0.99

AU
C

Figure 50 – The AUC according to the test size for AD.
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A.2 EEG database electrodes
Figure 51 showing the head model schematic with electrodes from the EEG database

used in this paper.

Frontal Temporal Occipital 
Figure 51 – Head model for all electrodes used in the present work. The brain regions modulated

after using ayahuasca, according to literature, are the frontal, temporal, and occipital lobes,
highlighted in the Fig in pink, green and purple, respectively. Developed by the authors using
MNE-Python (GRAMFORT et al., 2013).
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A.3 Hyperparameter values of Grid Search classifier
We used grid search as an optimization method to achieve good performance, which is

a method that exhaustively tests all possible combinations of values for each hyperparameter
considered—the Table 24 containing each classifier, the hyperparameters, and the values used in
the grid search tunning.

Table 24 – Table containing the hyperparameters for each classifier using the Grid search optimizer.

Classifier Hyperparameters and description Values

RF

- max_depth: The maximum depth of the tree.
- max_features: The number of features to consider
when looking for the best split.
- min_samples_leaf : The minimum number of
samples required to be at a leaf node.
- min_samples_split: The minimum number of
samples required to split an internal node.
- n_estimators: The number of trees in the forest.

[1,2,5,10,20,80]
[2, 3,5,10]

[1,2,3, 4, 5]

[1,2,8, 10, 12,20]

[1,2,3,5,10, 30,50,100, 200, 300,500]

SVM

-kernel: Specifies the kernel type to be used in
the algorithm.
-gamma: Kernel coefficient.
-C: Regularization parameter.

[rbf, linear]

[1e-3, 1e-4]
[1, 10, 100, 1000]

NB -var_smoothin:Portion of the largest variance of
all features that is added to variances for calculation stability. range 1e-09 to 1

MLP

- activation: Activation function for the hidden layer.
- solver: The solver for weight optimization.
- alpha: L2 penalty (regularization term) parameter.
- batch_size: Size of minibatches for stochastic optimizers.
- learning_rate: Learning rate schedule for weight updates.
- learning_rate_init: The initial learning rate used.

[identity, logistic, tanh, relu]
[lbfgs, sgd, adam]
[0.0001,1e-5,0.01,0.001]
[1000,5000]
[constant, invscaling, adaptive]
[0.001,0.01,0.1,0.2,0.3]

SGD

- loss: The loss function to be used
- alpha: Constant that multiplies the regularization term.
The higher the value, the stronger the regularization.
- penalty: The penalty (regularization term) to be used.

[hinge, log, squared_hinge, modified_huber]
[0.0001, 0.001, 0.01, 0.1]

[l2, l1, none]

LR
- C: Each of the values in Cs describes the inverse of r
egularization strength.
- penalty: Specify the norm of the penalty.

range 0.001 to 1000

[l1, l2]

XGBoost

- learning_rate: Learning rate shrinks the contribution of each tree.
- min_samples_split: The minimum number of samples required to
split an internal node.
- min_samples_leaf: The minimum number of samples required to
be at a leaf node.
- max_depth: The maximum depth of the individual r
egression estimators.
- max_features: The number of features to consider
when looking for the best split.
- criterion: The function to measure the quality of a split.
- subsample: The fraction of samples to be used for
fitting the individual base learners.
-n_estimators: The number of boosting stages to perform.

[0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2]
range 0.1 to 0.5

range 0.1 to 0.5

[3,5,8]

[log2, sqrt ]

[friedman_mse, mae],
[0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0],

[10, 100. 1000, 10000]
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A.4 Results of all classifier in the complex network mea-
sures

In the present study, we tested several machine learning algorithms whose performance
is shown in the Table 25.

Table 25 – Performance of all classifiers applied to the network measurements. In bold the best perfor-
mance referring to the SVM classifier.

Classifier Subset AUC Acc. F1
score Recall Precision

RF Train 0.69 0.75 0.70 0.69 0.72
Test 0.44 0.58 0.37 0.44 0.32

SVM Train 0.79 0.81 0.78 0.79 0.79
Test 0.75 0.83 0.79 0.75 0.90

NB Train 0.83 0.86 0.84 0.83 0.85
Test 0.50 0.67 0.40 0.50 0.33

MLP Train 1.00 1.00 1.00 1.00 1.00
Test 0.50 0.67 0.40 0.50 0.33

SGD Train 0.75 0.78 0.75 0.75 0.75
Test 0.56 0.67 0.55 0.56 0.60

LR Train 0.83 0.86 0.84 0.83 0.85
Test 0.63 0.75 0.62 0.63 0.86

XGBoost Train 0.98 0.97 0.97 0.98 0.96
Test 0.38 0.50 0.33 0.38 0.3
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A.5 Deep learning results
Additionally, Pearson’s connectivity matrix was used as an input to the deep learning

algorithm implemented in (ALVES et al., 2022b) with random research tuning. The results are
shown in Table 26 and Fig 52, in which it can be seen that it was possible to capture the alteration
due to ayahuasca without an indication of underfitting and overfitting. Also, the python code
used for the analysis is available at: <https://github.com/Carol180619/Paper-ayahuasca.git>.

Table 26 – Results were obtained by the use of the deep learning model.

Subset AUC Acc. F1 score Recall Precision
Train 1.00 1.00 1.00 1.00 1.00
Test 0.96 0.94 0.94 0.94 0.94

(B)

epochs

Lo
ss

(A)

(C)

Figure 52 – Results were obtained by the use of the deep learning model. A) The confusion matrix
indicates a true negative rate of 93.8% (blue according to the color bar) and a true positive rate
of 100.0% (blue according to the color bar). B) Loss value over the training data (blue dots
points) and validation data (blue line) after each epoch; in this curve, the error loss decreases,
indicating no underfitting or overfitting. C) ROC curve of class 0 (without ayahuasca) and
class 1 (with ayahuasca). The gray dotted curve is the macro-average accuracy (area under
curve = 0.96), and the pink one is the random classifier.

https://github.com/Carol180619/Paper-ayahuasca.git
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A.6 Grid search hyperparameter tuning
Figure 53 contains the values used in the present work where for one of the models (considering

all frequencies and comparison of DMT and open eyes control), the combination of
hyperparameter values and the grid search was plotted concerning the AUC metric.
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Figure 53 – Figure containing the values of each hyperparameter of the SVM varied with the grid search.
In (A), for the model considering all frequencies and comparing the subject DMT and without
DMT with the eye closed, the two-dimensional plot with the x-axis being the values of the
parameter C and the y-axis being the values of the kernel and gamma function. For each
combination of values and hyperparameters, AUC performance was obtained (whose obtained
values are illustrated in the color table). In (B), the three-dimensional plot of (A) in which
each hyperparameter corresponds to an axis.
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A.7 Results comparing different band frequencies

Table 27 – The table contains results considering different band frequencies.

Band frequencies Subset AUC Acc. F1
score Recall Precision

All frequencies Train 0.90 0.90 0.90 0.90 0.90
Test 0.67 0.67 0.67 0.67 0.68

Low
alpha

Train 1.00 1.00 1.00 1.00 1.00
Test 0.67 0.67 0.67 0.67 0.67

High
alpha

Train 1.00 1.00 1.00 1.00 1.00
Test 0.72 0.72 0.72 0.72 0.73

Low
beta

Train 0.98 0.98 0.98 0.98 0.98
Test 0.78 0.78 0.78 0.78 0.78

Mid
beta

Train 0.98 0.98 0.97 0.98 0.98
Test 0.45 0.47 0.40 0.45 0.42

High
beta

Train 1.00 1.00 1.00 1.00 1.00
Test 0.56 0.56 0.45 0.56 0.76

Gamma Train 0.67 0.67 0.67 0.67 0.67
Test 0.44 0.44 0.42 0.44 0.43

Delta Train 1.00 1.00 1.00 1.00 1.00
Test 0.72 0.72 0.72 0.72 0.73

Theta Train 0.61 0.61 0.61 0.61 0.61
Test 0.50 0.50 0.50 0.50 0.50
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A.8 Results considering complex network measures and
different frequencies band

Table 28 – The table contains results considering complex network measures and different band frequen-
cies.

Band frequencies AUC Acc. F1
score Recall Precision

All frequencies Train 1.00 1.00 1.00 1.00 1.00
Test 0.69 0.69 0.68 0.69 0.73

Low
alpha

Train 1.00 1.00 1.00 1.00 1.00
Test 0.72 0.72 0.70 0.72 0.82

High
alpha

Train 1.00 1.00 1.00 1.00 1.00
Test 0.61 0.61 0.54 0.61 0.76

Low
beta

Train 1.00 1.00 1.00 1.00 1.00
Test 0.56 0.56 0.56 0.56 0.56

Mid
beta

Train 0.98 0.98 0.98 0.98 0.98
Test 0.45 0.47 0.40 0.45 0.42

High
beta

Train 1.00 1.00 1.00 1.00 1.00
Test 0.56 0.56 0.45 0.56 0.76

Gamma Train 1.00 1.00 1.00 1.00 1.00
Test 0.17 0.17 0.14 0.17 0.13

Delta Train 1.00 1.00 1.00 1.00 1.00
Test 0.89 0.89 0.88 0.88 0.91

Theta Train 1.00 1.00 1.00 1.00 1.00
Test 0.50 0.50 0.33 0.50 0.25



204 APPENDIX A. Global disease burden study metrics

A.9 Similarity of results obtained for each frequency
The SHAP value calculated for each frequency band was also considered. For each band, a

vector of connection between electrode pairs and its respective SHAP value found by the model
is generated. For each of these vectors, the Euclidean distance between them is then calculated,

generating a distance matrix of these vectors. This aims to quantify how close the resulting
vectors are. The distance matrix is displayed as a cluster map, see Figure 54, where vectors with
a distance less than 0.2 are connected hierarchically in a dendrogram indicating clusters. Here,

the cluster is most prominent between the low beta and the delta frequency band vector.

Figure 54 – Cluster map with the Euclidean distance of each band SHAP value vector. The delta bands
and low beta frequencies are the closest frequencies, forming in the cluster map a connection.
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The same was made for the complex network measure, and then, a cluster map with the
Euclidean distance between vectors containing SHAP values for each complex network measure

is generated (see Figure 55). All vectors, except low beta, are very close to each other. This
proximity indicates that the results obtained were similar; in other words, the connections

between the electrodes and their respective SHAP value were similar for all frequency bands.
Thus, it can be seen that the results of the SHAP value vectors of each frequency, except for the

low beta frequency, were very close, showing remarkable similarities between them.

Figure 55 – Cluster map showing the Euclidean distance of the SHAP value vectors for different frequency
bands. Frequency band vectors, except low beta, are very close to each other, indicating
remarkable similarity.
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A.10 Boxplot with the best measures of complex
networks

Figure 56 contains the best measurements of complex networks using the SHAP value method.
Further, a Wilcoxon test with Bonferroni correction was also used to compare the measurements

before and after DMT, and the following symbols represent the statistical significance:

∙ ns: 5.00e−02 < p <= 1.00e+00

∙ *: 1.00e−02 < p <= 5.00e−02

∙ **: 1.00e−03 < p <= 1.00e−02

∙ ***: 1.00e−04 < p <= 1.00e−03

∙ ****: p <= 1.00e−04



A.10. Boxplot with the best measures of complex networks 207

With DMT Without DMT

0.5

0.6

0.7

0.8

0.9

1.0

CC

ns

(a)

With DMT Without DMT

1.00

1.05

1.10

1.15

1.20

1.25

AL
PC

**

(b)

With DMT Without DMT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

AP
L

**

(c)

With DMT Without DMT

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ec
ce

nt
ric

ity

*

(d)

With DMT Without DMT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BC

**

(e)

With DMT Without DMT

1.00

1.05

1.10

1.15

1.20

1.25

AI
C

**

(f)

With DMT Without DMT
16

17

18

19

20

21

22

23

24

M
ea

n 
de

gr
ee

**

(g)

With DMT Without DMT

0.85

0.90

0.95

1.00

1.05

Hu
b 

sc
or

e

**

(h)

With DMT Without DMT

0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pl
ex

ity

*

(i)

With DMT Without DMT

12

14

16

18

20

22

24

Kn
n

**

(j)

With DMT Without DMT

0

5

10

15

20

25

30

35

40

SM
D

*

(k)

With DMT Without DMT
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ef
fic

ie
nc

y

**

(l)

With DMT Without DMT

14

16

18

20

22

24

K-
co

re

*

(m)

With DMT Without DMT

14

16

18

20

22

24

K-
co

re

*

(n)

With DMT Without DMT
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

De
ns

ity

**

(o)

With DMT Without DMT

3.100

3.125

3.150

3.175

3.200

3.225

3.250

3.275

ED

*

(p)

With DMT Without DMT

0.85

0.90

0.95

1.00

1.05

EC

**

(q)

With DMT Without DMT

0.875

0.900

0.925

0.950

0.975

1.000

1.025

Tr
an

sit
iv

ity

**

(r)

With DMT Without DMT

1.0

1.5

2.0

2.5

3.0

Di
am

et
er

**

(s)

With DMT Without DMT

2.0

2.2

2.4

2.6

2.8

3.0

AS
C

*

(t)

With DMT Without DMT

1.00

1.02

1.04

1.06

1.08

1.10

1.12

AS
PC

ns

(u)

Figure 56 – Boxplot showing the best complex network measures. A Wilcoxon test with Bonferroni
correction was also used to compare the measurements before (in pink) and after DMT (in
purple).
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A.11 fMRI best pairwise metrics
Table 29 contains the all pairwise metrics results.

Table 29 – Results were obtained regarding the metrics used to obtain the connectivity matrix. The best
metric was TE, whose performance is highlighted.

Data
abstraction level Subset AUC Acc. Recall Precision

time
series

Train 0.50 0.50 0.40 0.30
Test 0.50 0.51 0.50 0.26

PC Train 0.57 0.57 0.59 0.56
Test 0.42 0.43 0.43 0.41

SC Train 0.57 0.56 0.57 0.58
Test 0.35 0.35 0.35 0.35

GC Train 0.48 0.47 0.36 0.43
Test 0.40 0.40 0.40 0.37

SCC Train 0.49 0.47 0.35 0.40
Test 0.45 0.46 0.45 0.37

LW Train 0.45 0.43 0.31 0.34
Test 0.56 0.57 0.56 0.57

CC Train 0.71 0.71 0.71 0.74
Test 0.68 0.67 0.68 0.68

MI Train 0.50 0.50 0.40 0.26
Test 0.50 0.51 0.50 0.26

TE Train 0.99 0.99 1.00 0.99
Test 0.92 0.92 0.92 0.92
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A.12 Deep Learning architetrure
Two approaches for the CNN architectures are proposed here, one using a Random Search

tuning method (CNNtuned) and another without this optimization step (CNNuntuned). Tuning is
an optimization approach for determining hyperparameter values to improve the performance of

the CNN model (GOODFELLOW; BENGIO; COURVILLE, 2016).

In the CNNtuned model, the dropout regularization technique is employed to avoid
overfitting (SRIVASTAVA et al., 2014). The layers and range used for hyperparameters are

presented in table 30. The best CNNtuned architectures tuned for each data set are depicted in
table 31. The CNNuntuned model presents fewer layers and, therefore, lower computational costs.

The parameters used in our analysis are described in table 32.

Table 30 – Best hyperparameters and layer configurations obtained for the CNNtuned model.

Type of Layer Tuning hyperparameter Value
Convolutional — —

[0.00, 0.05, 0.10, 0.15,
Convolutional dropout 0.20, 0.25, 0.30,

0.35, 0.40, 0.45, 0.50]
Convolutional — —
Convolutional number of filters [32, 64]
Max Pooling dropout [0.00, 0.50, 0.10, 0.15, 0.20]

Flatten — —
Dense - units [32, 64, 96....512]

-activation [relu, tanh, sigmoid]
Dropout rate [0.00, 0.50, 0.10, 0.15, 0.20]
Adam min− value = 1e−4

optimization learning max− value = 1e−2

compile rate sampling= LOG

The learning curve and ROC curve obtained for the CNNuntuned model are found in Figure 57.

Furthermore, the LSTM parameters used in our analysis are described in table 33.

The learning curve and ROC curve obtained for the LSTM model are found in Figure 58.
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Table 31 – The CNNtuned model used in the SCZ dataset is the network architecture.

Type of Layer Output Shape (AD) Parameter
Convolutional (None, 122, 122, 1) 160
Convolutional (None, 119, 119, 32) 2320
max-pooling (None, 59, 59, 32) 0

dropout (None, 56, 56, 16) 0
Convolutional (None, 28, 28, 16) 4640
Convolutional (None, 2, 2, 32) 9248
max-pooling (None, 1, 1, 32) 0

dropout (None, 1, 1, 32) 0
flatten (None, 32) 0
dense (None, 160) 5280

dropout (None, 160) 0
dense (None, 2) 3

Table 32 – The network architecture for the CNNuntuned model used in the SCZ dataset.

Type of Layer Output Layer Kernel
Input Layer (None, 122, 122, 1) 0
Convolution (None, 119, 119, 32) 544
Max pooling (None, 59, 59, 32) 0
Convolution (None, 56, 56, 16) 8208
Max pooling (None, 28, 28, 16) 0

Flatten (None, 12544) 0
Fully connected (None, 10) 125450
Fully connected (None, 1) 11

Table 33 – The network architecture for the LSTM model used in the SCZ dataset.

Type of Layer Output Layer Param
LSTM (None, 122, 70) 54040
LSTM (None, 122, 60) 31440
LSTM (None, 122, 50) 22200
LSTM (None, 40) 14560
Dense (None, 2) 82
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Figure 57 – CNNuntuned model results using fMRI connectivity matrices. (a) ROC curve with class 0
(control) and class 1 (with SCZ). (b) Each epoch loses the training (blue dots) and validation
(blue line).

Figure 58 – LSTM model results using fMRI connectivity matrices. a) ROC curve with class 0 (control)
and class 1 (with SCZ). (b) Each epoch loses the training (blue dots) and validation (blue
line).
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