Applying Rosenbrock method for solving stiff ODEs raised
from the chemical reactivity of the atmosphere through
heterogeneous architectures based on FPGAs

Carlos Alberto Oliveira de Souza Junior

Tese de Doutorado do Programa de Pés-Graduagao em Ciéncias de
Computacao e Matematica Computacional (PPG-CCMC)

o
=
2
o
o
<
V)]
LLl
a)
LL
a)
<
o
Vs
oc
LLl
>
P
-

Instituto de Ciéncias Matematicas e de Computacao

SAO CARLOS

ICMC
i

SERVIGO DE POS-GRADUAGAO DO ICMC-USP
Data de Depésito:

Assinatura:

Carlos Alberto Oliveira de Souza Junior

Applying Rosenbrock method for solving stiff ODEs raised
from the chemical reactivity of the atmosphere through
heterogeneous architectures based on FPGAs

Thesis submitted to the Instituto de Ciéncias
Matematicas e de Computagdo — ICMC-USP, in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for the
degree of Doctor in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Eduardo Marques
Co-advisor: Prof. Dr. Pedro Nuno Cruz Diniz

USP - Sao Carlos
May 2023

Ficha catalografica elaborada pela Biblioteca Prof. Achille Bassi
e Secdo Técnica de Informéatica, ICMC/USP,
com os dados inseridos pelo(a) autor(a)

Aiveira de Souza Junior, Carlos Al berto

M48a Appl yi ng Rosenbrock nmethod for solving stiff
ODEs raised fromthe chemical reactivity of the
at nosphere through het erogeneous architectures
based on FPGAs / Carlos Alberto Aiveira de Souza
Juni or; orientador Eduardo Marques; coorientador
Pedro Nuno Cruz Diniz. -- Sado Carlos, 2023.

147 p.

Tese (Doutorado - Programa de Pds-G aduacdo em
C énci as de Conputacdo e Mateméti ca Conputacional) --
Instituto de G éncias Matemati cas e de Conputagao,
Uni ver si dade de S&o Paul o, 2023.

1. Hardware. 2. FPGA. 3. OpenCL. 4. Codesign. 5.

Het er ogeneous- conmputing. 1. Marques, Eduardo,
orient. Il. Nuno Cruz Diniz, Pedro, coorient. III.
Titul o.

Bibliotecarios responséaveis pela estrutura de catalogagéo da publicacéo de acordo com a AACR2:
Glaucia Maria Saia Cristianini - CRB - 8/4938
Juliana de Souza Moraes - CRB - 8/6176

Carlos Alberto Oliveira de Souza Junior

Aplicando o método de Rosenbrock para resolver EDOs do
tipo stiff oriundas da reatividade quimica da atmosfera
através de arquiteturas heterogéneas baseadas em FPGAs

Tese apresentada ao Instituto de Ciéncias
Matematicas e de Computacdo - ICMC-USP,
como parte dos requisitos para obtengcdo do titulo
de Doutor em Ciéncias — Ciéncias de Computacéo e
Matematica Computacional. VERSAO REVISADA

Area de Concentragdo: Ciéncias de Computacdo e
Matematica Computacional

Orientador: Prof. Dr. Eduardo Marques
Coorientador: Prof. Dr. Pedro Nuno Cruz Diniz

USP - Sao Carlos
Maio de 2023

ACKNOWLEDGEMENTS

I dedicate this thesis to my grandparents, Ana and José, and sister Kelly for the support
and the incentive during this period. That would have never been true without your hearing me

out and supporting me during the long calls when I needed the most.

I appreciate everyone who collaborated on the development of this work and those who
contributed somehow. First, I would like to thank my supervisor Eduardo Marques for the
opportunity, efficient supervision, and the nights spent talking to me when I was anxious. I
am grateful for the learning and support; they were much more than necessary. I immensely
appreciate Professor Pedro Diniz and Jodo Cardoso, who supervised me during my internship at
FEUP-UPORTO. They were always available to read my work and provide insightful feedback.

I thank all the infrastructural and financial support for this research. Thank to the insti-
tutes and universities [CMC-USP and FEUP-UPORTO. To the “Fundagdo de Amparo a Pesquisa
do Estado de Sdo Paulo” (FAPESP) for the significant support given through processes no.
2017/14268-6 and 2019/07558-3. I also thank “Paderborn Center for Paralle]l Computing” and
“Intel Labs Academic Compute Environment”, for providing access to the Intel Hardware Accel-
erator Research Program (HARP) resources. The authors gratefully acknowledge the funding of
this project by computing time supplied by the Paderborn Center for Parallel Computing (PC2).
This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES) - Finance Code 001

I would also like to thank Judimar, my cousin. She was responsible for financing my
English studies. I hope you are proud to see this research written in English. That would have
never been possible without you believing in my potential. I also could not forget my friends,
Erinaldo, Jodo Bispo, and Pedro Pinto, for understanding the importance of this work to me.

Last and not least, my friends Livia and Daniel were present, no matter my geographic location.

“People are really serious about software making its own hardware.”

(My adaptation from Alan Kay)

RESUMO

SOUZA JUNIOR, C. A. O. Aplicando o método de Rosenbrock para resolver EDOs do tipo
stiff oriundas da reatividade quimica da atmosfera através de arquiteturas heterogéneas
baseadas em FPGAs. 2023. 147 p. Tese (Doutorado em Ciéncias — Ciéncias de Computacdo e
Matematica Computacional) — Instituto de Ciéncias Matemadticas e de Computacao, Universidade
de Sdo Paulo, Sao Carlos — SP, 2023.

Este trabalho foca na resolug¢do de equacdes diferenciais ordindrias do tipo stiff através de
métodos numéricos e com aplicacdo das técnicas de coprojeto de hardware/software. Estudos
Anteriores mostraram que equacdes stiff requerem métodos implicitos para evitar passos muito
curtos dos métodos explicitos. O problema € que estes métodos sdo baseados em conversdes de
sistemas ndo lineares para sistemas lineares, ou seja, € necessario resolver operacdes matriciais
Ax = b. Durante o mestrado ficou claro que os sistemas lineares do CCATT-BRAMS exigem
métodos diretos. No CCATT-BRAMS, isso € resolvido via método Rosenbrock que possui quatro
estagios (somente o primeiro exige decomposi¢ao de matriz). Assim, é possivel reaproveitar a
decomposicao para os proximos estdgios do algoritmo para a resolugdo equacdes diferenciais
ordindrias. O algoritmo de Rosenbrock foi dividido em duas partes, onde a primeira esta
relacionada com a resolugdo de sistemas lineares através de métodos diretos e a segunda com a
modificacdo do Rosenbrock para aproveitar a arquitetura de FPGAs. Nossa revisdo sistemdtica
mostrou que ha bem poucos trabalhos na literatura que exploram o paralelismo de equagdes
diferenciais ordindrias em problemas de reatividade quimica para FPGAs. Nesta tese, provemos
solugdes para FPGA utilizando o Intel HLS OpenCL. Nossos resultados demonstram que a
arquitetura de hardware gerada para o problema do CCATT-BRAMS € competitiva e que possui
potencial para melhorar o desempenho e efici€éncia energética dessa aplicacdo tdo importante

para a previsao meteroldgica do Brasil.

Palavras-chave: Hardware, FPGA, OpenCL, Codesign, Computa¢ao Heterogénea.

ABSTRACT

SOUZA JUNIOR, C. A. O. Applying Rosenbrock method for solving stiff ODEs raised from
the chemical reactivity of the atmosphere through heterogeneous architectures based on
FPGAs. 2023. 147 p. Tese (Doutorado em Ciéncias — Ciéncias de Computacdo e Matemadtica

Computacional) — Instituto de Ciéncias Matematicas e de Computacado, Universidade de Sao
Paulo, Sao Carlos — SP, 2023.

This work focuses on the solution of Stiff Ordinary Differential Equations through numerical
methods applied to hardware/software codesign techniques. Previous studies reveal that such
problems require implicit methods to avoid the very small timesteps of explicit methods. The
problem is that implicit methods are based on the conversion from non-linear systems to a system
of linear equations, which requires linear systems of the form Ax = b. During the author’s
master’s thesis, it became clear that CCATT-BRAMS linear systems require direct methods. In
CCATT-BRAMS, that is solved by Rosenbrock Method that includes 4 computational stages
(only the first stage requires a matrix decomposition). In that manner, it is possible to reuse
previous decompositions for the algorithm’s subsequent stages to solve the ordinary differential
equations. For that, we had to split Rosenbrock into two main tasks. The first relates to solving
linear systems with direct methods and then modifying Rosenbrock to leverage the FPGA
architecture. Our systematic review showed that very few works in the literature explore the
parallelism of the stiff ordinary differential equations in chemical reactivity for FPGAs. In
this thesis, we provide FPGA solutions based on Intel OpenCL HLS. Our results show that the
generated hardware architecture is competitive and can improve the performance and power

efficiency of such a critical application responsible for weather forecasting in Brazil.

Keywords: Hardware, FPGA, OpenCL, Codesign, Heterogeneous-computing.

LIST OF FIGURES

Figure 1 — van der Pol plot, figure from MathWorks (2018). 35
Figure 2 — Simulation of CCATT-BRAMS system, figure from (LONGO et al., 2013). . 38
Figure 3 — Rosenbrock Method. 39
Figure 4 — Xilinx FPGA prediction, figure from (AMOS; LESEA; RICHTER, 2011). . 41
Figure 5 — Harp 2 architecture, figure from (FAICT; D’HOLLANDER; GOOSSENS,

2019). . .o e 43
Figure 6 — Stratix 10 Hyperflex Architecture, figure from (HUTTON, 2022). 44
Figure 7 — Stratix 10 Hyperflex gen 2 Architecture, figure from (WON, 2022). 46
Figure 8 — Memory Hierarchy Agilex M-series, figure from (WON, 2022). 46
Figure 9 — Bluespec architecture, figure from Bluespec (2017). 49
Figure 10 — Clock rate and power increase after 42 years of processor data, figure from

(MURALIDHAR; BOROVICA-GAJIC; BUYYA, 2022). 50
Figure 11 — OpenCL Data Structures — Consider the Program as a single data structure;

we replicated it to make the understanding easier. 51
Figure 12 — An example of how the global IDs, local IDs, and work-group indices are re-

lated for a two-dimensional NDRange. For this figure, we have the following

indices: the shaded block has a global ID of (gy,gy) = (6,5), a work-group ID

of (wy,wy) = (1,1) plus alocal ID of (Iy,l,) = (2,1), figure from (MUNSHI,

2009). ..o e 52
Figure 13 — Components from OpenCL system on Intel FPGAs, figure from (ALTERA,

2013). . e 53
Figure 14 — Partitioning of the FPGA. PCle, DDR3 controller and IPs are every project

of OpenCL, so only the remaining is available for the kernels, figure granted

by André Perina. 54
Figure 15 — Implementation of local memory with three M20K blocks, figure from (IN-

TEL,2016a). e 54
Figure 16 — Design flow with OpenCL, figure from (CZAJKOWSKI et al., 2012b). . . . 55
Figure 17 — Driving factors in hardware/software codesign, figure from (SCHAUMONT,

2012). .. e 56
Figure 18 — Call Graph for BRAMS with chemical module disabled. 70
Figure 19 — Call Graph for BRAMS with chemical module disabled. 71

Figure 20 — Each color represents one work-group with 47 work-items. According to the

Verilog, two work-groups are executing at the same time. 77

Figure 21 — Roofline model for the Fexchem Function. 87

Figure 22 — Roofline model for Dratedc Function. 89
Figure 23 — Roofline model for Jacobian Function. 93
Figure 24 — Roofline model for Jacobian + Fexchem Functions. 94
Figure 25 — Roofline model for Rosenbrock. 96

Figure 26 — New matrices are streamed at the same rate as the current stage of the
Rosenbrock processes the previous ones. The QR factorization (yellow box)
was implemented during the BEPE internship. 97
Figure 27 — Architecture for the streaming Rosenbrock. Read and Write vertices are the
only ones communicating with the global memory. The remaining vertices

and edges only communicate through non-blocking channels, that is, FIFOs

implemented in the local memory. L Lo 98
Figure 28 — Roofline model for the streaming Rosenbrock. 100
Figure 29 — Streaming Rosenbrock architecture for Stratix 10. 101

Figure 30 — Preditor-Prey Stiff Problem 126

LIST OF ALGORITHMS

Algorithm 1 — QR method without reordering (herein identified as QR). 80
Algorithm 2 — QR method with reordering. 82

LIST OF SOURCE CODES

Source code 1
Source code 2
Source code 3
Source code 4
Source code 5
Source code 6
Source code 7

Source code 8

Rates — Reaction Rates terminOpenCL 84
Fexchem — Chemical production termin OpenCL 85

Dratedc — Derivative of Reaction Rates in OpenCL (custom banking) . 88

Jacc —JacobianinOpenCL 89
Jacc + Fexchem (custom memory layout) 91
Dot product with shift registerinOpenCL 94
C program for computing sparse linear systems 133

Fortran 90 program for computing rosenbrock Method 145

LIST OF TABLES

Table 1 — Comparison among FPGA architectures used in this thesis. 46
Table 2 — Main features of the linear system solvers in the literature. 62
Table 3 — Studies e 63
Table 4 — Parallelismapproach., 65
Table 5 — Algorithms. e 65
Table 6 — Resultsfrom Arch 1. 78
Table 7 — Timing results from Arch 1. 78
Table 8 — Results from Arch2. 78
Table 9 — Timing results from Arch2. 78
Table 10 — Results from Arch 3. 79
Table 11 — Tmining results from Arch3.. 79
Table 12 — Timing results for the original QR method without reordering. 81
Table 13 — Resource usage for the original QR method without reordering. 81
Table 14 — Timing results for the QR-based method. 82
Table 15 — Resource usage for the QR-based method. 83
Table 16 — Hardware resources for fexchem with automatic banking 87
Table 17 — Hardware resources fordratedc 88
Table 18 — Hardware resources for Jacobian only and merged Jacobian + Fexchem . .. 92
Table 19 — Hardware resources for Jacobian + Fexchem 92
Table 20 — Hardware resources for Rosenbrock 95
Table 21 — Hardware resources for the Streaming Rosenbrock 99
Table 22 — Results for performance 99
Table 23 — Arithmetic intensity foreachkernel 100
Table 24 — Resource usage for Arria 10 (I) and Stratix 10 (I) and (IIT) 102
Table 25 — Results for performance on the Stratix 10 102
Table 26 — Energy consumption for computing Rosenbrock for 65 matrices of 47 x 47 . 103
Table 27 — Resource comparison o vttt e e e e e e 111
Table 28 — Hardware resources for preditor-prey circuits 127
Table 29 — Hardware resources for jacc + fexchem+qr 129

Table 30 — Time execution for jacc + fexchem+qr 130

LIST OF ABBREVIATIONS AND ACRONYMS

ATMET
BDF
BRAMS
CB
CCATT
CPTEC
CT™
DSL
DSP
EMIB
FINEP
FPGA
GPL
GPUs
HDL
HLS
IAG
IME
INPE
1P
JULES
LCR
LE
LUT
MIC
MIMD
ODE
PBL
PDE
RACM
RAMS

ATmospheric, Meteorological, and Environmental Technologies
Backward Differentiation Formula

Brazilian developments on the Regional Atmospheric Modelling System
Carbon Bond

Coupled Chemistry Aerosol-Tracer Transport model

Center for Weather Forecasts and Climate Studies

Chemical Transport Model

Domain Specific Languages

Digital Signal Processor

Embedded Multi-die Interconnect Bridge

Financier of Studies and Projects

Field Programmable Gate Array

General Purpose Languages

Graphics Processing Units

Hardware Description Languages

High-Level Synthesis

Institute of Astronomy, Geophysics and Atmospheric Sciences
Institute of Mathematics and Statistics

National Institute for Space Research

Intellectual Property

Joint UK Land Environment Simulator

Reconfigurable Computing Laboratory

Logical Elements

Look-Up Table

Many Integrated Cores

Multiple Instruction Multiple Data

Ordinary Differential Equation

planetary Boundary Layer

Partial Differential Equation

Regional Atmospheric Chemistry Mechanism

Regional Atmospheric Modeling System

RELACS Regional Lumped Atmospheric Chemical Scheme

SDK Software Development Kit

SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SiP System-in-Package

SOC System-On-Chip

SOPC System-On-a-Programmable-Chip

SPMD Single Process Multiple Data

SRAM Static Random Access Memory

USP University of Sao Paulo

VHDL VHSIC Hardware Description Language
VHSIC Very High-Speed Integrated Circuit

CONTENTS

1.1
1.2
1.2.1
1.3

2.1
2.2
2.3
2.3.1
2.4
2.4.1
2.5
2.5.1
2511
2512
2513
2514
2.5.2
2.6
2.7
2.7.1
2.7.2
2.7.3
2.8
2.8.1
2.8.2
2.8.3
2.9
2.10

INTRODUCTION e e e e e e e e e 27
Context e 27
Motivation and Objectives 30
Specific objectives 31
Thesis Structure 31
FUNDAMENTAL CONCEPTS i i i i e 33
Ordinary Differential Equations 33
Continuity Equation L oL 33
Stiff Equations 34
Stiff problem 35
BRAMS e 36
CCATT-BRAMS e e e 36
FPGA . . . e 41
Architectures e 42
Stratix V . . . e e e 42
Arria 10 e e e e e e 42
Stratix 10 e e e e 44
Agilex . . . e e 45
Power Consumption 47
High-Level Synthesis 47
Hardware Description Languages 48
VHDL e 48
Verilog and SystemVerilog 48
Bluespec SystemVerilog 49
OpenCL 49
Data structures for OpenCL 50
Data Parallelism, 52
Task Parallelism 53
Intel FPGA SDK for OpenCL 53
Codesign of Hardware/Sofware 56
RELATED WORK e e e e e e e e e e e 59

3.1

3.2

3.3

3.4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
536.1
5.4
5.5
5.6

RQ1: What are the parallel methods (algorithms) used to solve stiff
ordinary differential equations? 0. 64
RQ2: What is the precision of the parallel methods (algorithms) to
solve stiff ordinary differential equations? 65

RQ3: What is the performance of each parallel method (algorithm)

to solve stiff ordinary differential equations? 66
Threats to Validity 66
METHODOLOGY e e e e e e e e e e e e e s 69
BRAMS profiling 69
Source Code Refactoring 70
Work Phases 72
Phase 1 e e 72
Phase 2 73
Phase 3 73
Phase 4 e 73
Phase 5 e 74
DEVELOPMENT i it e e e e et e e 75
Phase 1 — Jacobian Iterative Method for Solving Linear Systems . 76
Jacobi Multi-threaded Dense 76
Jacobi Multi-threaded Sparse 78
Jacobi Single-threaded Sparse 78
Phase 2 — Direct Method for Solving Linear Systems 79
Direct Method - LU 79
QR Factorization 79
The Original QR implementation 80
The QR based on Intel’s implementation 81
Phase 3 — Memory analysis on the Rosenbrock Method 82
Parser for the Rosenbrock Indices 83
g = 83
Fexchem e 84
Dratedc e 87
Jacobian. e 89
Rosenbrock e 93
Rosenbrock with memory-bound functions 94
Phase 4 — Streaming Rosenbrock 95
Phase 5 — Streaming Rosenbrock in the Stratix 10 100

Final Remarks 104

6 CONCLUSION e e e e e e e e 107

6.1 Contributions 109
6.2 Limitations 109
6.3 Lessons Learned 110
6.4 Future Work 110
BIBLIOGRAPHY e e e e e e e e e e e e e e e e 113
APPENDIX A EXPLICIT METHOD FOR THE PREDITOR-PREY
PROBLEM i e i it i oo 125
Al VHDL implementation 125
A.2 Technical issues and learning curve 127
APPENDIX B PERFORMANCE RESULTS FOR THE ROSENBROCK
WITH MEMORY-BOUND FUNCTIONS 129
APPENDIX C STREAMING ROSENBROCK 131

ANNEX A ADAPTED SOURCE CODE FOR BRAMS’ ROSENBROCK133

27

CHAPTER

INTRODUCTION

1.1 Context

Several engineering problems that rely on physical laws and relations can be modeled
as differential equations. Such equations can be either Ordinary Differential Equation (ODE)
or Partial Differential Equation (PDE) regarding the number of variables that the equation
depends (KREYSZIG, 2010). Scientists have been modeling the laws of nature in mathematical
expression to describe how nature behaves. Modeling such laws is crucial for fields such as
engineering, physics, computer science, biology, medicine, environmental science, chemistry,
and so forth. (KREYSZIG, 2010; TABAK, 2004).

Most of those laws of nature cannot be solved by analytic methods, which require
numerical methods. In general, they are part of a software package becoming crucial tools
for engineers. Although necessary, such methods impose the study of two principal variables:

precision and performance, since numerical methods approximate the exact solutions.

We can now use and develop robust numerical packages with advanced computer archi-
tectures that provide fast and precise solutions. In this thesis, we focus on the chemical reaction
problem, a system of Ordinary Differential Equations raised from the Coupled Chemistry
Aerosol-Tracer Transport model (CCATT) Brazilian developments on the Regional Atmospheric
Modelling System (BRAMS). This problem relies on a system of stiff ODEs using the Rosen-
brock, organized as a series of 4 linear-solver steps, and each currently uses Sparse 1.3a, a sparse

linear system solver library.

Sparse 1.3a is a package of subroutines in C for solving large sparse systems of linear
equations based on LU decomposition. It provides efficient memory management through linked
lists for the sparse structure. Besides, it also offers a Fortran interface, which allowed the
engineers to couple this library to the numerical prediction of concentrations of chemical species

in the atmosphere.

28 Chapter 1. Introduction

Predicting concentrations of chemical species requires a stiff ODE model. There is no
exact definition of stiff, although intuitive for specialists (HAIRER; NORSETT, WANNER,
1993). According to Chapra (2014), stiff equations have both fast and slow components in their
solution. Usually, the components that vary rapidly die away quickly, and then the slowly varying
components dominate the solution. Each chemical species concentration varies in different orders

of magnitude, and such variation defines the stiffness of the chemical reaction equation.

Solving such stiff problems is computationally intensive, and it is usually solved by
implicit or explicit methods. Curtiss and Hirschfelder (1952) were the first to conclude that stiff
problems demand implicit methods such that the numerical solution is stable and converging at a
reasonable computing time. According to Zhang et al. (2011) and Linford and Sandu (2009),
chemical reactivity is intensive due to the implicit time-stepping algorithms, which require the
solution of linear system equations. Our experiments also showed that matrix decomposition and

solving Ax = b is the most expensive operation of such methods.

Sartori (2014) explore two numerical implicit methods: (1) Rosenbrock, and (2) Back-
ward Differentiation Formula (BDF). Rosenbrock is the current method used in production in
BRAMS, and for BDF implementation, they used the LSODE library that contains a higher com-
plexity order variation algorithm. The problem with LSODE is that they compute the problem
for each grade point, which is different from how BRAMS works. BRAMS uses a group of
points named blocks, which is potentially great for vector processors that require more data at

the cost of a smaller step size for the block.

Their work does not explore parallelism or hardware implementation, and they are
concerned with stability and numerical analysis, which is the core of numerical modeling, the
most critical task in weather forecasting. It is also important to remark that the supervisor
of this work is responsible for the CCATT-BRAMS implementation currently used in Brazil.
Both implicit methods rely on expensive matrix decomposition and linear solver of the system
of stiff ODEs. This thesis will focus on the current method implemented in BRAMS, the
Rosenbrock. This method is already adapted for higher density of data, which is fundamental
when considering heterogeneous computing. Another reason for choosing this algorithm is
that both implicit methods have matrix decomposition as the most expensive operation due to
converting nonlinear systems to a sequence of linear systems. Modeling an implicit algorithm for
chemical reactivity is out of this thesis’s scope, requiring advanced knowledge of atmospheric

Processes.

Regarding explicit methods, it is known in the literature that explicit methods are adequate
for solving non-stiff differential equations or EDOs with a low degree of stiffness. That is, the
chemical reactivity stiffness relies on the magnitude of the chosen species. For highly stiff

problems, the step size would have to be tiny, consequently increasing the computational time.

Explicit algorithms for low stiff problems are highly parallel, and several studies apply
such algorithms to GPUs. Stone and Davis (2013) develops the Runge-Kutta-Fehlberg algorithm,

1.1. Context 29

an explicit algorithm of 4" order (high-order), which is mandatory for explicit methods applied
to stiff problems so they can be competitive with implicit methods. Their solution demands a
parallel architecture because the sequential version is slower than the implicit methods, which
directly affects the size of the integration step, as we mentioned earlier. The stiffer the equation,

the more steps for converging.

Niemeyer and Sung (2014) also used an explicit method for stiff equations. They have
implemented a low-order algorithm in GPU named Runge-Kutta-Chebyshev of 2"¢ order. Their
work concluded that highly stiff equations were up to 2.5x slower than the parallel CPU implicit
method implemented in VODE, and the solution is less precise. Since explicit methods are
unsuitable for highly stiff equations, we are not considering the use of explicit methods in this

thesis.

Besides choosing the appropriate numerical method for solving ODEs, we must also
define the underlying architecture for the parallel solution. Since the 1970s, we have relied on
the two most famous laws of computer science to improve our algorithms’ performance: (1)
Moore’s law and (2) Dennard Scaling. The first states that the number of transistors would double
every two years, and the second defines that as transistors get smaller and smaller, their power
density stays constant (MOORE et al., 1965; DENNARD et al., 1974). Those laws increased the

frequency and the number of cores per processor, improving performance.

As soon as the transistors reached a few dozen nanometers and increased their frequency,
the energy efficiency started to get worse due to the leakage current of the transistors. That
directly affects higher power density, which demands more heat dissipation from cooling systems.
The higher the power density, the lower the performance gain. Too much power density leads
to dark silicon, which describes the underutilization of the chip’s resources (RAHMANI et al.,

2016). That phenomenon directly reflects the performance of many-core architectures.

Considering the current technology limitations, science and industry have been shifting
to using accelerators that guarantee power efficiency besides the performance (LIU et al., 2009;
TSOI; LUK, 2010; THOMA et al., 2015). The Field Programmable Gate Array (FPGA) is a
technology used for high-performance computing and low power consumption. The modern
FPGAs have included floating-point Digital Signal Processor (DSP), larger on-chip memory, and
more adaptive logic resources that allowed the FPGAs to become close to the Graphics Processing
Units (GPUs) consuming much less energy, therefore, better performance in GFLOPs/Watt
(SANAULLAH; HERBORDT, 2018; MUSLIM et al., 2017).

The use of FPGA requires deep knowledge of hardware different from the CPU and GPU
that rely on software compilers. Unlike GPUs, FPGAs are not constrained to data parallelism.
Its flexible and parallel nature allows the designer to implement any computation. Over the last

year, Intel has invested in heterogeneous architectures containing a CPU and an FPGA in the

30 Chapter 1. Introduction

same die. One example of such a solution is the Atom E600C coupled to the Arria I GX FPGA!,
where such combination allows high-performance computing with low power consumption, also
known as Ultra Low Power (ULP).

Intel has also cooperated with universities to improve such technologies through the
Heterogeneous Architecture Research Platform (HARP) program. In HARP 2, they provided
access to a chip containing a Xeon E5 v4 (CPU) coupled to Arria 10 (FPGA). Besides the
previous advantages, this architecture improves the data communication overhead since both
architectures share the same memory. For this thesis, this is one of the architectures used for our

results.

This thesis relies on the Intel FPGA SDK for OpenCL since we use Intel’s FPGAs. For a
long time, FPGAs we being used only by experienced hardware engineers due to the difficulty of
the Hardware Description Languages (HDL) (See experiment in Appendix A). As an approach
to popularizing the FPGAs, the industry has been developing languages similar to the high-level
languages widespread among programmers. Such languages are named High-Level Synthesis
(HLS), and some of the most famous is Intel FPGA SDK for OpenCL, Xilinx Vitis HLS, and
Java HLS (MAxJ compiler from Maxeler). Those languages rely on powerful compilers capable
of generating an RTL from the HLS and then compiling for the FPGA.

1.2 Motivation and Objectives

According to (JUNIOR, 2015), using OpenCL is uncommon among meteorologists
because converting the current models developed in Fortran 90 to OpenCL is difficult. Most of
the solution for meteorological models in production relies on GPGPUs and Xeon Phi. None
of the proposed solutions provide a portable source code, which has been abdicated since each
architecture requires different optimizations for parallel strategies. Usually, those models for
weather forecasting have a long life cycle, which is different from the hardware life cycle. That
means any solution for such models must consider portability by including generic arguments

that allow optimizations for different architectures.

As we mentioned before, GPUs suffer the most in dark silicon phenomena. That means
we need to provide not only a fast solution but also a solution that is power efficient. That is
crucial for BRAMS since the supercomputer (Tupd) was being threatened to be turned off due to

the energy bill, which costs around one million dollars annually?.

The main objective of this thesis is to provide a hardware/software codesign for the
ODE implicit solver based on the Rosenbrock Method that should have a direct cause-effect on

the power efficiency known on developed FPGA circuits. To achieve this goal, we have used

https://www.eejournal.com/article/20101123-stellarton/
https://g1.globo.com/sp/vale-do-paraiba-regiao/noticia/2021/06/15/diretor-do-inpe-diz-que-instituto-
comprou-novo-equipamento-para-substituir-supercomputador-tupa.ghtml

2

1.3. Thesis Structure 31

OpenCL and Intel FPGA. Our current solution comprises data parallelism coupled with streaming
processing. In the design, we mitigate the portability problems for the future architecture by

including a set of parameters that allows the programmer to define the degree of parallelism.

1.2.1 Specific objectives

e Compare the architecture development to the literature regarding performance and type of

parallelism whenever possible;
e Analyze the power consumption of the architecture

e Provide a parser from Fortran 90 to C-like for Fexchem and Jacobian. That parser also

improves locality and removes sparsity, which drastically improves block RAM usage.

1.3 Thesis Structure

In Chapter 2, we describe the fundamental concepts necessary for this thesis. We start
discussing Ordinary Differential Equations, stiff problems, CATT-BRAMS, FPGA, languages
for hardware design, and heterogeneous computing. In Chapter 3, we contextualize our work in

the literature and what has been studied in heterogeneous computing for solving stiff ODE:s.

In Chapter 5, we show the 5 phases of the development of this thesis and how we designed
the streaming solution. In Chapter 4, we describe the methodology we used from Fortran 90 to
the OpenCL solution for the FPGA. In Chapter 6, we conclude our work and perform a final

discussion on future work and contributions.

33

CHAPTER

FUNDAMENTAL CONCEPTS

In this chapter, we describe the main concepts related to our research. We define the math-
ematical concepts, which include the solvers for our problem. We also define our environment

and the tools necessary for this research. Our last definition is our study case, BRAMS.

2.1 Ordinary Differential Equations

“Differential equations are extremely important in the history of mathematics and science,
because the laws of nature are generally expressed in differential equations. Differential equations
are how scientists describe and understand the world" (TABAK, 2004).

Differential equations can be either a PDE or ODE according to the number of variables.
An ODE is a differential equation for a function of a single variable, and a PDE is a differential
equation for a function of several variables (CHASNOV, 2016; SELICK, 2011).

In our thesis, we will work with the system of ordinary equations from chemical reactivity,
a stiff problem. As a study case, we will solve the chem term from the continuity equation of the
BRAMS. This term solves the chemical reactivity to measure air quality. For that, we provided

an FPGA-friendly Rosenbrock implementation.

2.2 Continuity Equation

According to Jacob (1999), the continuity equation is the foundation for all atmospheric
chemistry models. Such models support us in understanding how controlling processes (emis-
sions, transport, chemistry, and deposition) can affect the concentration of species. That is a 3-D
numerical model that simulates the variability of such processes in time and space; that model is
called Chemical Transport Model (CTM) (JACOB, 2007).

CTM is a mathematical representation of the current knowledge about the processes in

34 Chapter 2. Fundamental Concepts

atmospheric composition. By definition, they do not simulate atmospheric dynamics — they get
meteorological information for input. Although, they do simulate atmospheric chemistry, as in
the case of CCATT-BRAMS. The continuity equations from CTM can be either Eulerian or
Lagrangian. CCATT-BRAMS derives the continuity equation in its Eulerian Form.

2.3 Stiff Equations

Stiff ODE can be an individual or a system of ODEs, with both fast and slow components
in their solution. Usually, the components that vary rapidly die away quickly, and then the slowly

varying components dominate the solution (CHAPRA, 2014).

In Equation 2.1, we present an example of a single stiff ODE:

y = —100y, t>0, y(0)=1. 2.1)
The exact solution is in Equation 2.2, where r is a constant.

dy

3= —100y
%—HOOy:O, y=c¢", % =re"
re’" +100e" =0
" (r+100) =0 2
r+100=0
r=—100
3(t) = e 100

In this example, the k" derivative is rfe™. As t increases, the derivative of r* decays
much slower than e~ "". Since we have a term of this form, the error can be considerable if &
is not small enough to offset this derivative. The larger r is, the smaller 4 must be to maintain
accuracy (LAMBERS, 2010).

Requiring a tiny integration step (.e. small %) forces the time execution of the com-
putation to become very slow. Moreover, most of the time, we must find the solution in a
long-range (SATEK, 2011).

Due to the small integration times, systems of stiff differential equations cannot be
solved by explicit methods. In this manner, we must use implicit methods for solving them. The
following section shows some implicit solvers for stiff ODEs. In Figure 1, we show the plot from

the stiff van der Pol equation, a visual example of stiffness.

2.3. Stiff Equations 35

Solution of van der Pol Equation, ;= 1000

2*@: < T T T y T T
€ Seg] DSg
"S.'H - .
i Sy
11}
1t 11} |
1]
11}
DE B C;. 1 _
et E'I :I
Sy 9 ’ |
5 8 .»;
5 8
S 05F & 1
93]
1 1
-1.81 ‘_;: . @E?.@"' u' ’:x{*;?“ !
ﬂg&'&;‘{'rl{f &&:?Q{TN'
2 1
_25 i i i i i
] 500 1000 1500 2000 2500 3000
Time t

Figure 1 — van der Pol plot, figure from MathWorks (2018).

As we can see in the plot, some rapidly changing components require more points to
decrease the error. Also, we have some slowly changing components, which can take advantage

of bigger integration steps.

In general, stiff problems require the Jacobian matrix. Stiff solvers use the Jacobian
matrix to estimate the local behavior of each ODE as the integration proceeds. Providing the
Jacobian for efficiency and reliability is essential, especially in sparse systems. In Equation 2.3,
we define the Jacobian matrix (MATHWORKS, 2018; SIMON; BLUME, 1994).

N 9N
ox; " dxp
J= T (2.3)
fn 9fn
dx; 7T dxy

We must estimate numerically through finite differences if we do not provide the Jacobian
matrix. In the context of BRAMS, every f is a function of the chemical reaction, and x is a

chemical species.

2.3.1 Stiff problem

This project will consider the ODEs related to chemical reaction systems. We cannot
provide a singular solver that can solve all the stiff problems since each problem has its stiffness

rate and characteristics.

36 Chapter 2. Fundamental Concepts

A chemical reaction is rearranging one or more molecules into a new substance. A
chemical reaction can produce or lose energy, but molecular weights must maintain (HOWARD,
2009). In BRAMS, we have CCATT, the module responsible for air quality. CCATT solves the

chemical reaction systems of ODEs by using a sequential algorithm, the Rosenbrock method.

2.4 BRAMS

BRAMS is a project initially developed by ATmospheric, Meteorological, and Environ-
mental Technologies (ATMET), Institute of Mathematics and Statistics (IME)/University of
Sao Paulo (USP) (IME/USP), Institute of Astronomy, Geophysics and Atmospheric Sciences
(IAG)/USP and Center for Weather Forecasts and Climate Studies (CPTEC)/National Institute
for Space Research (INPE) (CPTEC/INPE), and funded by Financier of Studies and Projects
(FINEP) (INPE/CPTEC, 2022).

They aimed at producing an adapted version of Regional Atmospheric Modeling System
(RAMS) for the tropics (FREITAS et al., 2009), which provided a single model to Brazilian
Regional Weather Centers. One of the purposes of BRAMS/RAMS is to simulate atmospheric
circulations through a numerical prediction model. The simulation can range from hemispheric
scales to large eddy simulations (LES) of the planetary boundary layer (LONGO et al., 2013).

Since version 4.2, the CPTEC/INPE team has been responsible for the entire software
development. BRAMS uses the cathedral model. Software built in a cathedral model must
provide the source code for every release, and only the software developers can access the source
code between releases (RAYMOND, 2001). The software license is under CC-GNU-GPL; some

parts may receive other restricted licenses.

Three main models represent BRAMS: the tracer transport model, the chemical model
(CCATT), and a surface model. BRAMS incorporates the tracer transport model and chemical
model, and Joint UK Land Environment Simulator (JULES) is the name of the surface model. In
this dissertation, we focus on CCATT, more specifically, the numerical solution of the chemical

reactivity.

2.4.1 CCATT-BRAMS

CATT-BRAMS is an Eulerian atmospheric chemistry transport model fully coupled to
BRAMS. Its design allows us to study transport processes associated with the emission of tracers
and aerosols (FREITAS et al., 2010). CATT-BRAMS solves the mass continuity equation for

2.4. BRAMS 37

tracers; we present it in Equation (2.4).

) 3 (B
ot ot adv ot PBL diff ot deep conv

M () wireo
ot shallow conv dt chem

“Where s is the grid box mean tracer mixing ratio” (LONGO et al., 2013); a prognostic variable,

(2.4)

this variable is governed by the prognostic equation, which means that involve derivatives
(RANDALL, 2013). “The term adv represents the 3-D resolved transport (advection by the mean
wind); PBL diff, deep conv, and shallow conv stand for the sub-grid scale turbulence in the

planetary Boundary Layer (PBL), and deep and shallow convection, respectively”.

Advection and convection are the energy transfer generated by the movement of liquid
particles like water in the atmosphere. Advection transfer horizontally, and convection transfer
energy vertically (ACKERMAN; ACKERMAN; KNOX, 2013). Deep convection is the thermally
driven turbulent mixing that lifts the air from the lower to the upper atmosphere. “Shallow
convection: thermally driven turbulent mixing, where vertical lifting is capped below 500hPa”
(DAVISON, 1999; VAUGHAN, 2009).

“The chem term refers simply to the passive tracers’ lifetime, the W is the term for wet
removal applied only to aerosols, and R is the term for the dry deposition applied to both gasses
and aerosol particles” (LONGO et al., 2013).

CATT-BRAMS evolved to CCATT-BRAMS. This new model includes a gas phase
chemical module, which solves the chem term in Equation 2.4. We show this module in Equation
2.5.

dpk _ (dpk _
(%)= (5 =ne1-uie, =

The solution of this equation is the most expensive term of Equation 2.4. Where p stands
for the number density for each of the N species and P and L are the net production and loss of

species k, respectively. P and L terms include photochemistry, gas phase, and aqueous chemistry.

The development of CCATT required advanced numerical tools to provide a flexible
multi-purpose model, i.e., the model can run for both operational forecasts and research sim-
ulations. Figure 2 illustrates the simulation of the CCATT-BRAMS system. The illustration

represents the primary sub-grid scale processes involved in the trace gas and aerosol distributions.

Moreover, the model system allows the user to provide any chemical mechanism. Cur-
rently, there are three widely used chemistry mechanisms; they are as follows: Regional Atmo-
spheric Chemistry Mechanism (RACM) with 77 species (STOCKWELL et al., 1997), Carbon
Bond (CB) with 36 species (YARWOOD et al., 2005), and the Regional Lumped Atmospheric
Chemical Scheme (RELACS) with 37 species (CRASSIER et al., 2000).

38 Chapter 2. Fundamental Concepts

Model top CCATT-BRAMS
20 - 30 km
chemistry convective transport
ooifEma D by deep cumulus
& Y 4 convective transport
mass - M plume rise by shallow cumulus mass
inflow [E. outflow

Az ~100
1000 m |

Ax ~ 10 -100 km »
Figure 2 — Simulation of CCATT-BRAMS system, figure from (LONGO et al., 2013).

Scientific projects frequently use the RACM mechanism due to the number of species
it covers; RELACS is a reduced version of RACM. CPTEC uses RELACS for operational air
quality prediction. According to Gécita (2011), RELACS can replicate RACM results reasonably
well.

To solve Equation 2.5 with k species, Longo et al. (2013) uses Rosenbrock method
(WANNER; HAIRER, 1991; VERWER et al., 1999) to change from nonlinear differential
equation system to a linear algebraic increment in terms of K;. This method adjusts the integration
step as a function of the calculated error (FERNANDES, 2014).

The solution of this linear algebraic increment, which corresponds to P and L, is in
Equation 2.6.

p(to+1) =p(to) + Y biKi, (2.6)
i=

Where t(stands for initial concentration, 7 is the timestep. The product sum approximates the
integral, where i is the Rosenbrock stage. Each timestep and stage require the update of K;

increment according to the linear system in Equation 2.7a.

Ki =tF(p;) +tJ(p Z Y%K (2.7a)
= p(to) + Z a;;K; (2.7b)
=1
F(p:) = P(pi) — L(pi) (2.7¢)

2.4. BRAMS 39

Where a;; and ¥;; are constants that depend on s, p; stands for the intermediate solution used for
recalculating the net production on stage i given by the term F(p;), and J is the Jacobian matrix

of the net production at time fy. Solving the Equation 2.8 is the most computing-intensive.

Ax=b (2.8)

Where A is an N X N matrix, N is the number of species. The vector x is the solution, and b is
the right-hand side or vector of the independent terms. BRAMS solves Equation 2.7b by using
Sparsel.3a (KUNDERT; SANGIOVANNI-VINCENTELLI, 1988). In Figure 3, we show the

pseudo-algorithm for the Rosenbrock method with Sparsel.3a to solve each stage.

Algorithm: Rosenbrock Method
Input: Sparsel.3 data structure
1 begin

2 foreach block do

3 foreach grad_point do

4 Read variables from BRAMS;

5 | Update photolysis rate;

6 Compute initial kinetic reactions;

7 while Timestep < threshold do

8 Compute Jacobian of the matrix of concentrations;
9 Compute Equation (2.2);

10 foreach chemical_specie do

11 foreach grad_point do

12 L Update F (p) on the data structure;
13 while error > tolerance do

14 foreach chemical_specie do

15 foreach grad_point do

16 L Update matrix A;

17 Update b;;

18 foreach grad_point do

19 L Compute 1% Rosenbrock method;
20 Update b;;

21 foreach grad_point do

22 L Compute 2nd Rosenbrock method;
23 Update matrix of concentrations p;

24 Update production term F(p);

25 Update b;;

26 foreach grad_point do

27 L Compute 3" Rosenbrock method,;
28 Update matrix of concentrations p;

29 Update production term F(p);

30 Update b;;

31 foreach grad_point do

32 L Compute 4th Rosenbrock method;
33 Update matrix of concentrations p;

34 Compute error and rounding;

35 if tolerance - rounding > 1.0 then

36 L Accept solution;

37 else

38 L Compute the new integration step;
39 | Update the integration step;

40 | Update variables from BRAMS;

Figure 3 — Rosenbrock Method.

40 Chapter 2. Fundamental Concepts

According to Sartori (2014), the main references in the literature point to Rosenbrock
and BDF as the most efficient implicit methods, mostly because they take advantage of sparse
structures. Sandu er al. (1997) showed that Rosenbrock of 3™ with four stages (RODAS3)
is similar to Rosenbrock of 4™ order with six stages and requires less computational effort.
RODAS3 is the current CCATT-BRAMS method and is the subject of study in this thesis.

Rosenbrock proposed the Rosenbrock Method in 1963 for solving stiff equations, also
known as implicit Runge-Kutta. He developed a new class of single-step methods, where they
substitute non-linear systems’ solutions with a sequence of linear systems (much easier to
implement). Such a method is used to solve Equation (2.7c), where the algorithm in Figure 3 can

be represented as the Equation in Equation (2.9a).

(Ynt1 = Yn+2u1 +uz +uy (2.9a)
2
(1= T)ur = f(m) (2.9b)
2 4
(ZI_J)MZ = f(ym) + R (2.9¢)
2 1 1
(1 =)z = f O+ 2m) + 3 = 71t (2.9d)
2 1 1 8
\(ZI_J)IM :f(yn+2u1 —I—u3)—l—zu1 _Zuz_ﬁIB (2.9¢)

Where:

h = timestep
yn = s(t) = the initial solution
J = Jacobian matrix

u = changing variable at the K" stage

e For readability:
- (%I —J) equals to A matrix;
— u is the current x solution;
— f(yn) equals to b;

— f(yn+z) requires the execution of the fexchem function because of the z variable;
¢ In that manner, we solve each stage as a system of linear equations of the Ax=b.
CCATT-BRAMS has run operationally at CPTEC/INPE since 2003; it covers the entire

South America with a spatial resolution of 25 km. It is possible to predict the emission of Gases

and Aerosols in real time', as well as meteorological variables” (MOREIRA et al., 2013).

' http://meioambiente.cptec.inpe.br/

2 http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=CCattBrams

2.5. FPGA 41

2.5 FPGA

An FPGA semiconductor device contains a two-dimension array of generic logic cells
and programmable switches (CHU, 2011; MOORE ANDREW; WILSON, 2017). In 1985, Xilinx
introduced the FPGA (BOBDA, 2007). In 2011, Amos, Lesea and Richter (2011) predicted that
FPGAs would have around ten million logic cells, an accurate prediction for the current Stratix
10 GX 10M (Intel — around 10 million logic elements) and Virtex Ultrascale+ VUI19P (Xilinx —
around 9 million logic elements) FPGAs. In fig. 4, we show their prediction up to 2025.

1.00E+09

1.00E+08 - 4
Scaling with ITRS
2 A

1.00E+07 - : A
- 1

1.00E+06 - A

. ' -Moore's Law
1.00E+05 - —— ot
Historical

FPGA data **

Number of LCs

1.00E+04 ~
W -Q'
1.00E+03 4

1.00E+Q2 * T T T T T T !
1985 1890 1995 2000 2005 2010 2015 2020 2025
Year Largest Xilinx FPG/#
Figure 4 — Xilinx FPGA prediction, figure from (AMOS; LESEA; RICHTER, 2011).

With an FPGA, the programmer can define the behavior of the hardware after the
manufacturing, which is why the name field is programmable. That is possible due to the logic
cells that can perform the behavior of different functions; once defined the logic and synthesized,
the programmer can download the design through a bus to the FPGA; this bus can be a simple
USB cable (BOUT, 2011).

Modern FPGAs contain a set of configurable Static Random Access Memory (SRAM),
high-speed input/output pins (I/Os), logic blocks, and routing. They also have many Logical
Elements (LE)s, the smallest unit of logic; usually, they are a Look-Up Table (LUT). Each
LE can perform complex functions or basic logic as AND/OR. FPGAs also have configurable
memory blocks, allowing the programmer to provide a higher throughput since they are over the
board.

42 Chapter 2. Fundamental Concepts

Although FPGAs are reconfigurable, they also provide hard logic or hard Intellectual
Property (IP), i.e., that does not change. Those circuits implement specific logic considered a
commodity, which allows the programmer to reduce the cost and power of the design. These
features allowed the programmers to build complex systems called System-On-a-Programmable-
Chip (SOPC).

Generally, SOPC or System-On-Chip (SOC) focus on lower-power electronics or high-
performance applications. According to Silva (2014), SOPC is a suitable option for high-

performance computing.

2.5.1 Architectures

Previously, our master’s thesis used a Stratix V architecture. In this Ph.D. thesis, we
focused on two updated FPGA architectures, and they are (1) Arria 10 from HARP 2 from
Academic Compute Environment (ACE) and (2) Stratix 10 from Paderborn University. The first
is a non-commercial variation of the Arria 10 coupled to a Xeon processor on the same die. We

briefly discuss Agilex architecture because we intend to focus on it for future work.

2.5.1.1 Stratix V

Master’s thesis results relied on the SSPH-Q-A7 Bittware board. That board connected
the FPGA Stratix V to the CPU through a gen 3 x8, containing around 5.5 millions of gates
(BITTWARE, 2015). Our Reconfigurable Computing Laboratory (LCR) bought this board for a
project involving BRAMS and heterogeneous computing. This FPGA uses variable precision
DSPs for implementing single and double precision for floating-point operations. The main
reason for using such a Bittware solution was the Board Support Package for OpenCL, which
allowed us to provide a heterogeneous solution for BRAMS. To the best of our knowledge, our
work was the first to integrate FPGA and CPU in the same solution for solving CCATT-BRAMS

linear system equations.

This architecture explicitly requires data movement between the CPU and FPGA, which
is common in heterogeneous architectures. Regarding the floating-point operations, we noted
that the final results tend to have a lower frequency and a higher number of logic elements used.
Although it is the oldest architecture discussed here, this board is still a high-end FPGA with
52 MB of internal memory, the fastest resource to run out when solving matrix problems. The
Bittware board is an excellent option for the parallel processing integer elements, but our results

could have been more impressive when using the floating-point operations.

2.5.1.2 Arria 10

Arria 10 focuses on the HARP 2 architecture described on Faict, D’Hollander and

Goossens (2019). On this architecture, three communication channels between the CPU (Xeon

2.5. FPGA 43

E5-2600v4) and the FPGA (Arria 10 GX1150) are on the same die, which can achieve a
theoretical peak of 30 Gb/s. We can also use OpenCL programming, which forces each bitstream
to be split into two parts: (1) FPGA Interface Unit (FIU), and (2) Accelerator Functional Unit
(AFU). That is a similar approach used on the Stratix V architecture, where part of the FPGA

resources are used to implement the BSP.

In Figure 5, we show how the FPGA and CPU communicate with each other and how
the FPGA splits the bitstream. It is essential to point out that FIU is fundamental for Arria 10
performance, which is the part that implements that Core-Cache Interface (CCI-P). This block
abstracts away the low-level details from three channels to the programmer, which allows the use
of shared virtual memory. Our results showed that this is critical for avoiding communication

overhead.

This CCI-P also contains a cache coherent to the CPU cache and the DDR memory,
which is critical to this architecture usage. From our experience, avoid using this cache whenever
possible by inserting "volatile" over the global memory data. Most of the bitstream generation
errors are avoided, and it increases the performance. We do not know the root of the cause,
but for some kernels, the compiler cannot generate the circuit using this cache. When using it,
we also noticed a drop in the circuit performance because when CCI-P does not contain the
requested cache line, it fetches from the Last Level Cache (LLC) on the CPU, which results in
higher latency. The worst case uses data from DRAM, which is fine if the programmer uses it

only once during the production/consumer operations.

Inte]l Xeon CPU Arria 10 FPGA
FIU
QPI CTRL QPI QPICTRL <> Cache
PCle 0 PCle O | PCIeO
| CTRL | “| CTRL
e PCle | | PCle 1 J PCIE]
i CTRL CTRL

CCI-P

|

MPF
DRAM AFU

Figure 5 — Harp 2 architecture, figure from (FAICT; D’HOLLANDER; GOOSSENS, 2019).

44 Chapter 2. Fundamental Concepts

Another advantage of this architecture is the floating-point DSP which improved hard-
ware frequency, resource usage, and higher peak performance. According to our experience, this
heterogeneous solution requires some optimizations when upgrading from Stratix V. Porting our
previous Jacobi method source code without any modification to HARP 2 proved to be three
times slower, even though communication improved in 50%. Those poor results are because the
compiled solution to Arria 10 required more resources due to the memory replication applied to

the registers, which lowered the circuit’s frequency.

2.5.1.3 Stratix 10

The main difference of Stratix 10 is the new HyperFlex architecture. Intel added a register
between ALMs throughout the core fabric, which improved critical paths by adding pipeline
registers. That improvement also allowed a better usage of the ALMs since the designer does not
need to sacrifice the logic functions because of their registers. This architecture is represented in
Figure 6.

H Registers are available in every routing segment
B Registers are available on all block inputs (ALM, M20K blocks, DSP blocks, and 1/0 cells)

Figure 6 — Stratix 10 Hyperflex Architecture, figure from (HUTTON, 2022).

According to Hutton (2022), Intel’s compiler can optimize timing after place and route
without changing the design’s routing. Although it seems fascinating, that came with some
drawbacks like asynchronous resets must be converted to synchronous or removed because
the hyper-registers (orange squares in Figure 6) are always synchronous. The architecture
changed enough that Intel developed a new place-and-route algorithm for Stratix 10. They
also implemented a new Fast Forward Compile tool that supports the designer on the RTL

modification to improve performance (CHIU, 2021).

2.5. FPGA 45

Intel also introduced 3D System-in-Package (SiP) technology in this generation. In short,
this is an integration of different chiplets to the FPGA with different process nodes; that is, the
external logic is decoupled from the core fabric of the FPGA. That is important to improve the
time to market and avoid the expensive process of the 14 nm Stratix 10. The FPGA fabric and the
chiplet communicate through the Embedded Multi-die Interconnect Bridge (EMIB). Regarding
the Stratix GX 2800 that we used from Paderborn University, this is transparent to the designer.
We noticed the amount of DSPs and embedded memory used as local memory for the OpenCL

language.

For the theoretical peak performance of the Stratix 10 GX 2800, we have used the
model proposed by Karp et al. (2021) because we did not find enough information for using our
methodology in Section 5.3.3. According to their work, Stratix 10 can achieve a peak double
precision performance of 500 Gflops/s. If we had used our methodology with the information
mixed with Arria 10’s, we would have around one teraflop of peak performance. We did not find
ALM usage and flops per cycle for floating-point multiplication in double precision for Stratix
10, so we are using Karp’s results. Regarding local memory, we have around 244 Mb on Stratix
10 compared to the 65 Mb of the Arria 10.

2.5.1.4 Agilex

Agilex is a direct upgrade from Stratix 10 mixed with Arria 10 from HARP 2. It used
the second-generation Hyperflex architecture, more logic elements, higher memory bandwidth,
double DSP count, PCle gen 5 support, DDRS support, and Compute Express Link (CXL) with 7
nm technology. This architecture comes in four flavors: D-series (midrange), F-series (midrange),
I-series (high-end), and M-series (high-end) (INTEL, 2017). We focus on the M-series with High
Bandwidth Memory (HBM) for this discussion.

Agilex has two game-changing features on its architecture: (1) HyperFlex gen 2 and (2)
HBM. In the previous Stratix 10 architecture, the configuration RAM controls all the signals
needed to go through a mux (see Figure 7). Now in the second generation (on the left), Intel has
increased the speed of the signal bypass path. That optimization improves designs not tailor-made
for the HyperFlex architecture, although the company states it is highly recommended. The
second generation of HyperFlex did not fix the problem with asynchronous resets, which dropped
the final circuit’s performance. They also state that the second generation consumes up to 40%
less energy than Stratix 10 (WON, 2022).

The second feature is related to the memory hierarchy of the Agilex-M, which contains
HBM2e channels capable of 102 GB/s of peak memory performance. Figure 8 shows the memory
hierarchy in the M-series. According to Velagapudi (2022) and Won (2022), HBM was possible
due to the SiP connection introduced in the Stratix 10.

This new memory hierarchy allows the design teams to trade latency versus capacity.

HBM has two orders of magnitude more capacity than on-chip memory and more than two orders

46 Chapter 2. Fundamental Concepts

Intel®Agilex”FPGA
hyper-registers feature

high-speed bypass path

&
e

ck CRAM clk CRAM
config config

Prior generation 2nd generation
hyper-register hyper-register

Figure 7 — Stratix 10 Hyperflex gen 2 Architecture, figure from (WON, 2022).

MLAB
(640 b)

BlockRAM Onchip
(M20K) memory
eSRAM
(18 Mb)

DRAM SiP - HBM2E In package
(8- GB) memory
DDR4/5

/ Onboard
memory

Figure 8 — Memory Hierarchy Agilex M-series, figure from (WON, 2022).

of magnitude of bandwidth compared to on-chip memory. For high-demanding applications, it
is possible to use DDRS, 2x higher bandwidth than the DDR4 technology. Agilex also has a
Network-On-Chip hard implemented for external memories, which avoids using FPGA resources
as in the Arria 10 and Stratix 10 devices. Due to the 12,300 DSPs, this architecture can achieve
18.5 Teraflops in single-precision. Regarding the CXL, this is an upgrade from CCI-P from
Arria 10 in HARP 2, where this technology is only enabled for a few Xeon series. As mentioned
before, we could have had a better experience with CCI-P. We show a comparison table with the

most critical elements of each FPGA architecture in Table 1.

Table 1 — Comparison among FPGA architectures used in this thesis.

Arria 10 Stratix 10 Agilex
Logic elements 1,150,00 2,753,00 3,851,520
DSPs 1,518 5,760 9,375
Local Memory 65 244 311

2.6. High-Level Synthesis 47

2.5.2 Power Consumption

According to Seifoori et al. (2018), developing an exascale computer system requires
about 3% of a typical nuclear plant’s generating power, a prohibitive power consumption. That is
also becoming challenging for FPGAs, especially the static power dissipation that is already over
50% of the total power consumption for 28 nm. Considering CPUs and GPUs that can reach up
to 80%.

This thesis compares software implementation to FPGA implementations regarding
performance and energy efficiency. Muslim er al. (2017) states that FPGA consumes much
less energy because their control structure is hardwired; that is, it is unnecessary to fetch and
decode the instructions. That is one of the reasons we are using FPGAs. GPU SIMD instructions
require executing the source code twice whenever it finds a branch since the architecture cannot
predict the behavior of the software. In FPGA, this branch is hard implemented, and the branch
is chosen during the runtime execution. That also affects the energy-per-operation. Generally, a
good balance of energy efficiency requires a hardware/software codesign, where the designer is

responsible for mapping each application portion to the appropriate resource.

2.6 High-Level Synthesis

According to Nane et al. (2015), HLS tools have been developed for over two decades,
and most are not maintained anymore. In this work, they present a plethora of languages that they
distinguish into two groups: (1) Domain Specific Languages (DSL), and (2) General Purpose
Languages (GPL). Most of the shown works use C or a subset of C as the input language and
generate RTL in VHDL/Verilog/System Verilog.

One of the most famous HLS in the industry is OpenCL, an open standard for hetero-
geneous programming. The two biggest FPGA companies, Intel and Xilinx, implement their
OpenCL compiler for hardware design. Xilinx HLs is primarily based on AutoESL, acquired
by them in 2011. Later, it became Xilinx Vivado HLS and, finally, Xilinx Vitis HLS (XILINX,
2011).

Intel also has developed the Intel OpenCL Software Development Kit (SDK) for FP-
GAs, where they implement a subset of the OpenCL 1.2 version. Intel also provides specific
optimizations for leveraging the FPGA resources, which are not portable for heterogeneous
devices. Xilinx and Intel provide a set of techniques to enable pipelining, scaling, and efficient
memory access (LAI et al., 2021). The most recent HLS for Intel FPGAs is oneAPI, which has
interoperability with OpenCL so developers can reuse existing source codes (INTEL, 2022). The
main difference in the source code structure is that OneAPI describes the host and kernel into a
single source file. This tool replaced Intel OpenCL SDK for FPGAs; because of this, we did not
explore this framework for implementing our kernels. OneAPI promises the same benefits of the

48 Chapter 2. Fundamental Concepts

OpenCL by accelerating the FPGA workloads effortlessly-.

Intel provides some tutorials for migration from OpenCL to OneAPI, a language that
works only with Intel devices. In both languages, the programmer can split its computation over
single-task (pipeline parallelism) or ND-range (SIMD parallelism). OneAPI may be a problem
for our current architecture since it does not support kernel volatile types, which is fundamental

since CCI-P still presents some bugs.

According to (RODRIGUEZ-CANAL et al., 2021) results, OneAPI is not optimized
for the multiplication of tiny matrices, which is the case for CCATT-BRAMS. They also state
that OneAPI is more efficient at using resources and performance when considering stencil

computation.

2.7 Hardware Description Languages

2.7.1 VHDL

VHSIC Hardware Description Language (VHDL) is a hardware description language that
describes the behavior of a system or electronic circuit. VHDL originated from Very High-Speed
Integrated Circuit (VHSIC), an initiative of the security department from USA (PEDRONI,
2004).

It was the first IEEE language to become a standard by IEEE, called 1076. Its first version
was in 87 and was later updated to VHDL 93. IEEE added a pattern, IEEE 1164, which adds the
multivalue logic system. The designer can use VHDL for either circuit synthesis or simulation
since not all descriptions are synthesizable (D’AMORE; CIRCUITOS, 2005).

More abstraction to develop hardware, although we have system-level synthesis tools that

provide much more abstraction;

Libraries that implement common circuits for reuse;

Vendor independent;

Faster time-to-market.

2.7.2 Verilog and SystemVerilog

Verilog is a language similar to VHDL, although it is inspired by C. It is compact, and
as VHDL, not all constructions are synthesizable (IEEE, 2005). System Verilog is an extension

of Verilog that allows object-oriented programming, dynamical threads, communication among

3 https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html#gs.1gb2y6

2.8. OpenCL 49

processes, and advanced features for formal verification of hardware (SUTHERLAND; DAVID-
MANN; FLAKE, 2006). Modules represent the block projects, where each one contains input
and output ports.

2.7.3 Bluespec SystemVerilog

Bluespec is a high-level synthesis tool that provides more abstractions for hardware
designers, consequently speeding up the hardware design cycle (DAVE et al., 2005). However,
providing more abstraction limits the designer regarding the architecture integration since this
task becomes part of the high-level- synthesis tool (MARTINEZ, 2017a). Figure 9 depicts the

architecture of Bluespec.

BSV
> (Language)

BSC Bluesim/SysC

(Bluespec (Bluespec
Compiler) Simulator)

- - Verification Production
= |]
Verilog RTL
|
v

34 Party 3% Party 39 Party semu
RTLSynthesis Simulators Emulators elcsce

Emulator)

Figure 9 — Bluespec architecture, figure from Bluespec (2017).
Advantages of Bluespec language (MARTINEZ, 2017c¢):

e A hierarchical module similar to Verilog, which allows the designer to have control over
the architecture;

e Atomic transactions. It automatically generates the logic control for concurrent access to

shared resources;
e Atomic methods, which reduces the errors related to interface or integration problems;
e Source code fully synthesizable;

e Anticipated and fast simulation through Bluespec simulation tool.

2.8 OpenCL

Until 2004, programmers could improve software time execution by changing to a
processor with a higher clock frequency. When Intel CPUs reached 3.6Ghz (TSUCHIYAMA et

50 Chapter 2. Fundamental Concepts

al.,2012; MUNSHI et al., 2011), cooling commodity microprocessors became impractical; in
Figure 10, we show the increase of clock rate and power (MURALIDHAR; BOROVICA-GAIJIC;
BUYYA, 2022).

42 Years of Processor Data i qury Koo

“A New Golden Age”
7 ! ! ' H. sutter ! ’ Transistors
10' + “Free Lunch is Over” » | (ro00s)
A ry
6 “First Reconfigurable Wave” iA““
10° Adaptive Silicon, Elixent, Triscend, A o
Morphics, Chameleon Systems, 4
5 Quicksilver Technology, Mathstar A} :ﬁ : Single-Thread
107 -] Performance
(SpecINT x 10%)
1 04 | F. Brooks Foaxt |
“No Silver Bullet” Frequency
3 . (MHz)
107 Moore’s End of 1 £
Law A |y Dennard Scali s Typical Power
2 | A M AR ¥ v ¥ | (Watts)
10 ’ B, MM 4 "‘;" 1 Number of
A v’y Logical Cores
1 - >
10" | = 0. """
A .
0 | : 0““
10° ‘ *
_ T
1970 1980 1990 2000 2010 2020
Hennessy and Patterson, Turing Lecture 2018, overlaid over “42 Years of Processors Data”

https://www.karlrupp.net/2018/02/42-y: of-mi trend-data/; “First Wave" added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted byM Horowitz, F. Labonte 0. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Figure 10 — Clock rate and power increase after 42 years of processor data, figure from (MURALIDHAR;
BOROVICA-GAJIC; BUYYA, 2022).

From this point on, it was evident to the vendor that increasing the clock rate was not
possible anymore. That forced the vendors to invest their money and efforts to change the
design of the processors; from 2006 until now, all desktop and server companies decided to ship
multiprocessors per chip. Current processors allow the programmer to improve throughput rather
than response time. Most of the processors require parallel processing to take full advantage of

them.

Although the most intuitive parallel programming is in the CPU, it is possible to use
parallel programming for accelerators; in this thesis, we consider accelerators for every non-
CPU hardware. Shifting towards multicore technologies imposes a severe change in software

development, especially if there is the heterogeneity of hardware (BUCHTY et al., 2012).

Heterogeneous systems became critical for scientific and industrial applications, and
OpenCL is the first industry standard for programming such systems. OpenCL supports an
extensive range of systems, from smartphones to supercomputers; this framework delivers much

more portability than any other parallel programming standard (MUNSHI et al., 2011).

2.8.1 Data structures for OpenCL

Programming for heterogeneous platform demands the programmer to execute the

following steps:

2.8. OpenCL 51

Discovers the components in the heterogeneous system (CPU, FPGA, GPU);

Retrieve the characteristics of these components; this allows the software to use specific

features for each hardware component;

Create the logic responsible for computing the problem on the platform;

Establish the memory objects necessary for the computation;

Define order execution of the kernels on the specific components of the system;

Gather the final results from the component.

We can accomplish such steps by using OpenCL API and its data structures. Every
OpenCL application requires five data structures; they are as follows: device, kernel, program,

command queue, memory object, and context.

As the name says, the device is the set of accelerators available to perform some compu-
tation; the host is responsible for sending the data for computation. The kernel is the OpenCL
function that performs the calculation on the device. The program is the source code or executable

location for implementing the kernels.

Memory objects maintain the necessary data (on the device) for the kernel’s use. The
API guarantees the order of memory transfers and kernel execution through the command queue.
Regarding the last data structure, we have the context; this structure conducts the interaction

between the host and the kernels by managing all the previous data structures.

In Figure 11, it is possible to see how data structures interact. This picture represents
OpenCL mapped to an FPGA device (green box). In this manner, the program resides inside the
FPGA.

OpenCL

Context

Program Device —
Bittware (FPGA)

/ K1 Program
— [K2] - [Kn]

e . 11

Memory

Buffer 1
\ Kn Buffer 2

Buffer n

Figure 11 — OpenCL Data Structures — Consider the Program as a single data structure; we replicated it to
make the understanding easier.

52 Chapter 2. Fundamental Concepts

These data structures are essential to guarantee OpenCL portability and programming
model. OpenCL standard defines two different programming models: data-parallel and task-
parallel programming model. Programmers must know both models when designing and applying

in OpenCL; defining which is better depends on the algorithm and the underlying hardware.

2.8.2 Data Parallelism

Data parallelism is suitable for SIMD, which is the basis for the GPU. Usually, this kind

of model is perfect for matrix problems.

OpenCL API defines this programming model through NDRange. N ranges from one to
three; each dimension must specify the index space extent. This index space range allows the

programmer to divide the problem into work-groups and work-items.

This author believes programming using NDRange leads to a confusing index subdivision.
Usually, the programmer learns that i stands for rows and j for columns. In this messy sea of
indexes, we associate i to x and j to y, the opposite of how OpenCL maps the index space. The
first dimension, x, defines the width of the matrix, i.e., the dimension in columns. The second

dimension, y, defines the size of rows.

This index space subdivision is the same for work-groups and work-items. A global
problem can break into work-groups, and each work-group can have one or more work-items;

we better explain this subdivision in Figure 12.

5
D

k— G= 12—
— We=3 —»

Figure 12 — An example of how the global IDs, local IDs, and work-group indices are related for a
two-dimensional NDRange. For this figure, we have the following indices: the shaded block
has a global ID of (g, g,) = (6,5), a work-group ID of (w,,w,) = (1,1) plus a local ID of
(Iy,1y) = (2,1), figure from (MUNSHI, 2009).

By using work-groups, OpenCL API imposes some restrictions on the programmer. Only
work-items that belong to the same work-groups can share data, which can impose dependencies
on them. These dependencies require a work-group barrier synchronization. In OpenCL, 1.0,

synchronization is not possible between work-groups.

2.9. Intel FPGA SDK for OpenCL 53

2.8.3 Task Parallelism

Although the OpenCL execution model aims at data parallelism as the primary target
(MUNSHI et al., 2011), the model also allows the programmer to use task parallelism. This
parallelism uses a single work-item, this equivalent to NDRange defined as 1 for each dimension.
According to Tsuchiyama et al. (2012), Munshi (2009) task parallelism is suitable when there

are different commands; this application is common when using CPUs.

This kind of parallelism requires a method to balance the work between the processing
units since a task can perform its work before the others. This parallelism is useful for pipelining,
where multiple instructions execute simultaneously in different pipeline stages; it is a crucial
feature considering FPGA devices. Note that we did not mention GPUs; as we mentioned earlier,

these devices are suitable for data parallelism due to the number of available cores.

2.9 Intel FPGA SDK for OpenCL

Programming in OpenCL for CPU, GPU, ARM, or FPGA requires the vendor to im-
plement and provide for the programmer. In the scope of this master’s thesis, we used Intel

implementation for OpenCL in FPGAs.

Debugging is another critical leading factor that guarantees correct kernel functioning by
emulating the CPU. By using the OpenCL standard, we could abstract away the FPGA design.
This section presents key features of this standard applied to FPGAs from Intel. In Figure 13 we
show OpenCL system implementation on the FPGA.

Figure 13 — Components from OpenCL system on Intel FPGAs, figure from (ALTERA, 2013).

This figure presents multiple kernel pipelines; a kernel represents a high-performance

54 Chapter 2. Fundamental Concepts

implementation of a hardware circuit (CZAJKOWSKI et al., 2012a). Each of these pipelines
connects to internal and external interfaces to memory (Figure 14 shows the partitioning of the
FPGA). The internal interface is critical to local memory (ALTERA, 2013; INTEL, 2016b).
The external interface is necessary for accessing the Global Memory, which requires a global
interconnect to manage the request from different pipelines; this global interconnect is also
needed for the PCle interface with the host.

DDR3
Memory

A

N

OpenCL VAR DDR3
IPs Controller

To g

1
[}
pCI |
Host ™~ Express | \
PCI ! I
D> Express i€ \
Contr. [} |
[}
I
I

A4

PGA
Figure 14 — Partitioning of the FPGA. PCle, DDR3 controller and IPs are every project of OpenCL, so
only the remaining is available for the kernels, figure granted by André Perina.

Unlike the GPU, where multiple cache levels exist, in FPGA, local memory requires
M?20K blocks spread over the board (INTEL, 2016a). In figure 15, we show a local memory with
a single bank and three M20K blocks.

Local Memory
Bank 0
>
Readport0 - — M20K
b
>
M20K
J
>
M20K
J
Write port

Imem

Figure 15 — Implementation of local memory with three M20K blocks, figure from (INTEL, 2016a).

Regarding private memory, Intel uses FPGA register to implement them. That is the
fastest memory in the hierarchy, many of which are in the FPGA. The device can access these
registers in parallel, which allows a much higher bandwidth than any other memory in OpenCL.
According to our experiments, Intel infers registers for single variables or small arrays; a relatively

big array requires local memory.

Intel performs several optimizations before generating the hardware, and Figure 16 shows

the flow of the compilation of OpenCL based on LLVM compiler infrastructure. The input is an

2.9. Intel FPGA SDK for OpenCL 55

OpenCL application (.cl) that contains a set of kernels and a host program (.c) (CZAJKOWSKI
et al., 2012b).

Compilation of the host source code uses a standard C compiler. The compiled file links
with AOCL Host Library. The kernel source code uses an offline kernel compiler (JANIK; TANG;
KHALID, 2015), i.e., the programmer must compile the kernel separately from the host; this

process may take hours to compile.

Compilation of the hardware is more complex than it seems. A C-language parser outputs
an LLVM IR for each kernel (the kernel is a C code); this intermediate representation is in the

form of instructions and dependencies between them.

From this IR, the compiler optimizes it (live-value analysis) for an FPGA target. After
optimizing, a CDFG conversion takes place. The conversion is necessary to improve performance
and reduce area and energy consumption before RTL generation (RTL generator) in Verilog for

a kernel.

A system with interfaces to host and off-chip memory instantiates the compiled kernels.
The host interface allows the host to access each kernel and specify workspace parameters and
kernel arguments. Off-chip memory represents the global memory for a kernel in OpenCL; in
our case, it is DDR3 memory. Finally, we can synthesize the complete system in Figure 13 on an
FPGA.

At last, the compiled host program has two elements. The first is the ACL Host Library;
it calls the functions that allow the host application to exchange information with the FPGA
kernels. The second is the auto-discovery that allows the host program to detect kernel types on
an FPGA.

kernel.cl host.c

|
C-La:guage Adiig l tosi

i P > Discovery —> C compiler Host
front end Library
v | —

Live-Value —
Analysis program.exe

¥
CDFG
Generation

I 2

Scheduling
System Integration

= Verilo
RTL generator —+—> HDLg —> (Quartus)

Kernel Compiler

Figure 16 — Design flow with OpenCL, figure from (CZAJKOWSKI et al., 2012b).

The main advantage of OpenCL over the traditional HDL is to produce designs with
proper functionality without the FPGA design effort (considering the kernel is working correctly).

Once the user has created a functional model, the focus is on the optimization. It is different

56 Chapter 2. Fundamental Concepts

from the HDL designs, where only in the design process we can assure the correct functionality
(JANIK; TANG; KHALID, 2015).

2.10 Codesign of Hardware/Sofware

A successful electronic system design requires using hardware/software codesign tech-
niques (TEICH, 2012). Hardware/software codesign emerged in the 90s as a discipline; however,
this task was already common among microprocessor companies. At the time, they needed to be

conscious of the term codesign.

The current technology allows the programmers to deal with multiple processor cores,
memory arrays, application specific hardware on a single chip (GALLERY, 2015). A more recent
approach is from Intel on the HARP (Heterogeneous Architecture Research Platform) program
included an Intel microprocessor and a Stratix V FPGA (GUPTA, 2015).

Such technological evolution requires programmers to know about hardware and soft-
ware; thus, they can define the design trade-offs. In this manner, hardware/software codesign is
becoming an ordinary task. In the literature, we have some definitions for hardware/software

codesign.

According to Schaumont (2012), “Hardware/Software codesign is the design of cooperat-
ing hardware components and software components in a single design effort.". Another definition
in the book is: “the activity of partitioning, where one partition holds the flexible part (software),
and the other the fixed part (hardware)".

Gallery (2015) defines as a “concurrent design of both hardware and software of the
system by taking into consideration the cost, energy, performance, speed and other parameters of

the system".

Figure 17 shows the pros and cons of Hardware and Software. In Hardware, it is possible
to have a better performance, less energy consumption (more work done per unit of energy),
and power density (processors can no longer increase the clock). Design complexity is much
more challenging in hardware, design cost, and shrinking design schedules (time-to-market is

reducing over the years, but software development can start even without a hardware platform).

Manage Design Complexity

Improve Performance Reduce Design Cost
Improve Energy Efficiency Stick to Design Schedule
Reduce Power Density Handle Deep Submicron
Implement Implement
more in Hardware A more in Software

Figure 17 — Driving factors in hardware/software codesign, figure from (SCHAUMONT, 2012).

Partitioning or balancing is hard, and there is no magical solution. That requires expe-

2.10. Codesign of Hardware/Sofware 57

rience; another important factor is the cost; it is often better to have a cheaper product than a
fast one. Blickle, Teich and Thiele (1998) shows a theorem proving that determining a feasible
allocation is an NP-Complete problem. In this work, they consider the problem of mapping a set

of tasks to resources.

Some developed works in the literature consider hardware/software partitioning. Gupta
and Micheli (1993) automates the design space exploration; initially, the algorithm of this work
considers that all functionalities are in hardware and gradually moves some of them to software
based on the communication overhead. The problem is that much of the initial problem requires
many resources from the hardware because the initial guess starts from the problem entirely in
hardware. Our laboratory of reconfigurable hardware has experience in this field, as we can see
in Martinez (2017b) and Pereira (2019).

Ernst, Henkel and Benner (1993) follows an opposite approach. They start with an
initial partition in software and gradually move the software part into hardware. They used a
partitioning heuristic, where the algorithm minimizes the amount of hardware resources. They
show promising results for partitioning the digital control of a turbocharged diesel engine and a

filter algorithm for a digital image compared to software.

59

CHAPTER

RELATED WORK

We have used ACM Digital Library, IEEE Digital Library, and Scopus for this chapter’s
systematic mapping. We have defined the following criteria for removing the studies: (1) dupli-
cated study (removed with Mendeley tool), (2) non-English studies, (3) Computer Science as the
only subarea (we want details on the algorithm and not numerical analysis over them). Some
studies known previously were included based on experts’ advice. Once we have all the papers,
we read the titles and abstracts and perform another selection. Only then we read the entire paper

and decide whether it is related.

Our systematic mapping made it clear that parallelism in stiff ODE solvers can be across
the method or the system. Parallelism across the method means performing the stages in parallel,
and parallelism across the system improves the linear system solver. All of the methods we found
do not have dependency among the stages, which is possible depending on the problem they are
modeling. In CCATT-BRAMS, the Rosenbrock method was modeled with dependency among
the stages. We overcame that dependency by feeding a block of matrices to the Rosenbrock. In
that manner, we process them in a streaming fashion through the pipeline. Most of the authors
explore only one of the two types of parallelism. Several approaches also consider the approach

where a processor contains a subset of ODEs and process them in parallel.

In this thesis, we focused exclusively on efforts that leverage FPGA-based accelerators.
In our previous research (SOUZA; PEREIRA; MARQUES, 2017), we developed a parallel
iterative method in FPGA based on the Jacobi method using a Stratix V FPGA with double
precision. Since we are exploring both parallelism methods, we will split this systematic revision

into two parts: (1) Parallel matrix decomposition and (2) Parallel stiff ODE solvers.

Our results showed that even parallel iterative methods are insufficient for CCATT-
BRAMS since most of the computation must be redone several times. From those results, we
evolved our work from iterative to direct methods for solving linear systems on the FPGA. In
the literature, Kapre and DeHon (2009) replaced Sparse 1.3a with KLU. Both of those libraries

60 Chapter 3. Related Work

implement a variation of the LU Decomposition with double precision; the first one is the same
used currently in CCATT-BRAMS. They realized that Sparse 1.3a was unsuitable for FPGA

parallelism due to the frequent changes in the non-zero pattern of the matrices.

Their solution ranges from 300 to 1300 Mflop/s on a Xilinx Virtex-5, while the processor
(Intel Core 17 965) achieved 6 to 500 Mflop/s. However, their work is computed on the FPGA, and
the data/results are stored in DDR2 memory. In another work, Daga et al. (2004) implement an
LU decomposition in double-precision in FPGA. They limited their solution to only non-singular
matrices to avoid costly pivoting. The results are compared to a general-purpose processor,
whose speeds range from 19 to 23. The entire solution is decoupled from the CPU, including the

initial data.

In a similar FPGA-only design approach, Zhuo and Prasanna (2006), also report substan-
tial performance improvements over their earlier versions making extensive use of block RAMs.
In a genuinely heterogeneous design solution, Wu et al. (2011) propose a solution for sparse
matrices, where the preprocessing is carried out in the CPU, and the factorization is in FPGA.
Their simulated performance results rely on counting the factorization cycles and the processing

element (PE) frequency but exclude the data communication overhead.

Ruan et al. (2013) present a similar approach to our previous research with Jacobi. They
use a Java high-level synthesis (the MaxJ compiler) to implement the Jacobi method targeting a
heterogeneous architecture fitted with Virtex-6 FPGA and a CPU. They also explored software
parallelism with MPI and multithreading. Their heterogeneous solution is the fastest among their

results, although it does not support matrices bigger than 200 x 200.

Regarding the implementation of QR decomposition, Parker, Mauer and Pritsker (2016)
describe a pipelined implementation of the QR decomposition in single-precision targeting
an Arria 10 FPGA and making heavy use of DSP Builder Tools. Their solution, with a peak
performance rate of 78 Gflops, is not heterogeneous, as all the input data resides in FPGA block
RAMs.

More recent work by Langhammer and Pasca (2018) describes an implementation of
a QR decomposition based on the modified Gram-Schmidt in a core generator in C++, and
the math operations were implemented in the DSP Builder Tools. Their work presents some
modifications to the pipeline and the square-root operation using the reciprocal square root. Still,
they use single-precision, which requires fewer cycles for divisor and reciprocal square-root
operations. According to their results, they achieved three times the performance of (PARKER;
MAUER; PRITSKER, 2016). Notably, they did not execute their application on the FPGA, as

they used the frequency to simulate their peak performance.

In Ge et al. (2017), they also implement LU decomposition. According to their work, LU
Decomposition is used for large-scale sparse linear equations, and its parallelism is difficult due

to the data dependency of this decomposition. So they propose a cache-efficient architecture for

61

the Gilbert-Peierls algorithm, which relies on an elimination graph to avoid column dependency.
They run their experiments on a Xilinx XC7K325T FPGA at 150 Mhz with single precision and
compare to UMFPACK running on a CPU (Intel i5-3470 CPU). Their FPGA results range from
2x to 10x speedup compared to the CPU library. It is essential to remind that the matrices range
size is from 1157 to 6833.

Cholesky is another matrix decomposition used in the literature. According to Sun,
Liu and Zhou (2017), Cholesky decomposition is a particular form of the LU decomposition
that deals with symmetric positive definite matrices (none of those properties are present in
CCATT-BRAMS matrices). They process large sparse matrices (double precision) in their vector
architecture on a Xilinx Virtex-7 FPGA VC709 evaluation board (xc7vx485t-2ffg1761). Their
results are up to 2x faster than the state-of-the-art for supernode algorithms (HSL_MAS&7).

Jiang and Raziei (2017) implements the Gauss-Jordan elimination algorithm, a direct
method. That method requires one computation for each matrix since it can reuse previous
decompositions. They provide a very low latency implementation running at 200 Mhz on a
Xilinx Vertex 6 FPGA. Their results point to 5 microseconds for processing a 32 x 32 matrix.
This work does not provide any information about data type, communication latency, or language
used. Meng, Wakabayashi and Kuroda (2022) also provided a Gauss-Jordan implementation and
used OpenCL HLS; their initial results point to 6.16 Gflops for matrices of 32 x 32.

Macintosh, Banks and Kelson (2019) provides a linear system solver based on truncated
SPIKE that can simultaneously use FPGA, CPU, and GPU to solve tridiagonal matrices in
single-precision floating-point. Their design uses a CPU Intel Xeon E5-1620 v4 at 3.50 GHz,
a GPU NVIDIA M4000 8 GB GDDRS, and an FPGA Intel Arria 10 GX 8 GB DDR4. They
process large matrices that range from 256 to 1280) x 10, and their FPGA speedup is 1.7 x
compared to the Intel MKL sdtsvb procedure. The FPGA requires 2.8 x and 20x less energy
than CPU and GPU implementations.

Our literature review found that matrix decomposition algorithms need to be more
scalable for different matrix sizes. Most of the works in the literature are trying to solve linear
systems with huge matrices to improve locality and use parallel units. LU decomposition
is also likely unsuitable for small matrices, and most works restrict their solution to non-
singular matrices to avoid costly pivoting. In this thesis, we adapted the work from Parker,
Mauer and Pritsker (2016) to include a heterogeneous solution with OpenCL working in double
precision. We published those results in "Exploration of FPGA-Based Hardware Designs for QR
Decomposition for Solving Stiff ODE Numerical Methods Using the HARP Hybrid Architecture"
(JUNIOR et al., 2020).

The current state-of-the-art of matrix decomposition in GPU is QR householder, imple-
mented in the MAGMA library. However, the library only executes in GPU if the matrix is bigger
than 96 x 96. Otherwise, it is executed on the CPU. That is an optimization to avoid predominant
communication in the final time execution (ANDERSON; SHEFFIELD; KEUTZER, 2012).

62 Chapter 3. Related Work

We are not considering solutions that perform poorly in the batched mode for the systematic
mapping of the parallel matrix decomposition. That is methods optimized for tiny matrices, as
for CCATT-BRAMS. Most famous libraries already implement such operations. Below we show

the results found in the systematic mapping. We show the works’ main features in Table 2

Table 2 — Main features of the linear system solvers in the literature.

Iterative Direct Double Memory type Codesign

Jacobi (Souza, 2017) X X Local/Global X
QR (Souza, 2017) X X Local/global X
LU (Kapre 2009) X X Local

LU (Daga, 2004) X X Local

LU (Zhuo, 2006) X X Local

LU (Wu, 2011) X Local/Global X
Jacobi (Ruan, 2013) X Local/Global X
QR (Parker, 2016) X Local

QR (Langhammer, 2018) X

LU (Ge, 2017) X Local/Global X
Cholesky (Liu, 2017) X X Local/Global
Gauss-Jordan (Jiang, 2017) X

Gauss-Jordan (Meng, 2022) X Local/Global
Truncated Spike (Macintosh, 2019) X Local/Global

We explore the literature for methods that solve stiff differential equations for the second
front. As mentioned, explicit algorithms are helpful for Ordinary Differential Equations with low
stiffness. Equations with such variability in the answers are known as Stiff Equations. The more
significant the variability, the stiffer the equation is. Explicit algorithms for low stiffed equations
are highly parallel and have an advantage over CPUs. We show some works in this Chapter to
confirm our statement (NIEMEYER; SUNG, 2014).

Due to the parallel architecture, most of the works in the literature implement such
algorithms in GPUs. Such works are restricted to low-to-medium stiff problems since highly
stiff problems do not perform well in GPUs. Such a problem happens due to thread divergence,

which severely drops the performance of GPUs.

GPUs require Single Instruction Multiple Data (SIMD) applications to obtain perfor-
mance. Each thread must perform the same operation, and stiff equations require a different step
size for each equation. When we have thread divergence, the GPU must split the threads into
groups with the same behavior and execute each group serially. We want to avoid this problem
by using pipeline parallelism in this project. Our target architecture for that is the FPGAs, which
over the years have been the most efficient regarding pipeline parallelism with the advantage of

not suffering from thread divergence.

After refining our search string, we obtained 96 studies on solving Ordinary Differential
Equations across the three digital libraries. We had to include one primary study with an expert’s

help. From the abstract, we selected 30 studies and read them all in full. Finally, the student

63

selected only 13 studies; most still needed to answer the questions, and two were unavailable.

Table 3 presents the studies accepted.

Id
SO01

S02
S03

S04

S05

S06

S07

S08

S09

S10

S11

S12

S13

Table 3 — Studies

Title

Numerical Results for a Parallel Linearly-Implicit Runge-Kutta
Method

Numerical solution of ODEs with distributed maple

The impact of different stiff ODE solvers in parallel simulation of
diesel combustion

A parallel algorithm to solve large stiff ODE systems on grid
systems

Generalized parallel algorithms for BVPs in ODEs

A parallel algorithm to solve large stiff ODE systems on grid
systems
Efficient SIMD solution of multiple systems of stiff [VPs

Parallel exponential Rosenbrock methods

10M-core scalable fully-implicit solver for nonhydrostatic atmo-
spheric dynamics

GPU-accelerated solution of activated sludge model’s system of
ODEs with a high degree of stiffness

Accelerating finite-rate chemical kinetics with coprocessors: Com-
paring vectorization methods on GPUs, MICs, and CPUs

Exploiting the multilevel parallelism and the problem structure in
the numerical solution of stiff ODEs

Execution Behavior Analysis of Parallel Schemes for Implicit
Solution Methods for ODEs

Reference
(BRUDER, 1997)

(PETCU, 2001)
(BELARDINI et
al., 2005)
(BAHI et
2007)
(KHALAF; AL-
NEMA, 2009)
(BAHI et
2009)
(KROSHKO; SPI-
TERI, 2013)
(LUAN; OSTER-
MANN, 2016)
(YANG et
2016)
(ALIKHANIA;
MAS-
SOUDIEHB;
BHOWMIKA,
2017)

(STONE;
ALFERMAN;
NIEMEYER,
2018)

(RUIZ; LOPERA;
CARRILLO,
2002)
(KALINNIK;
RAUBER, 2018)

al.,

al.,

al.,

Many authors are researching parallel solvers for stiff ODEs. According to our systematic

mapping, we found 42 authors, and 12 of them are Chinese, where the fastest supercomputer of

Top500 is located. Among of studies, 7 out of 13 are Europeans.

64 Chapter 3. Related Work

3.1 RQ1l: What are the parallel methods (algorithms)

used to solve stiff ordinary differential equations?

Through our systematic mapping, we could find four main parallel methods (algorithms)
and their approaches to parallelism. Studies SO1, S02, S03, S12, and S13 used Runge-Kutta
methods, where all of them used Single Process Multiple Data (SPMD) approaches, that is, each
process performs the same computation on different data. Although S12 exploits parallelism
in two levels: task and data parallelism, they do not use any hardware that supports SIMD

parallelism.

Studies S03, SO5, and S10 used the Backward Differentiation Formula; interestingly,
each author followed a different parallel approach. In S03, they used the SPMD approach; in
S05, they used Multiple Instruction Multiple Data (MIMD) parallelism. In this paradigm, each

process has a different computation over different data.

In S10, they used SIMD. This paradigm dictates that every core must compute the same
thing over different data. Although SPMD and SIMD look the same, they are inherently different;
in SPMD computation, each unit of computation has its data path, which is the opposite for
SIMD devices.

We did not exclude any study with repeated authors, which is the case for S04 and
S06 studies. They implemented the Waveform Relaxation algorithm with the SPMD approach.
We wanted to check how they updated their algorithm and which insights were helpful for the

improvement of precision or performance.

These studies propose a slower parallel algorithm requiring the minimum communication
exchange in high-latency networks. Such studies showed the importance of communication and

more than just parallelism in the algorithms.

Studies S07, S08, S09, and S11 used the Rosenbrock Method; this method is the same
used in BRAMS, although it is sequential. We noted several approaches by the authors for this
algorithm, each with its insight. In the SO7 study, they only used a SIMD approach. In S08, they
present an SPMD approach.

Studies S09 and S11 are attractive from the point of heterogeneous approaches. SO09 uses
SPMD with SIMD, and their processor is a Many Integrated Cores (MIC) with 260 cores, each
core being an array processor. They used several techniques to make the most of the world’s

fastest MIC. The expert advised us that this study is the most important of them.

Finally, we have the S11 study. The authors present a Single Instruction Multiple Thread
(SIMT) approach. Such a parallel paradigm is similar to SIMD, but each core can perform more
than one task. They also used SIMD computation. They used GPU and MIC for both approaches.
We summarize all the information in Table 4 and Table 5. In Table 5, RK stands for Runge-Kutta,

WR is Waveform Relaxation and Ros is for Rosenbrock.

3.2. RQ2: What is the precision of the parallel methods (algorithms) to solve stiff ordinary differential

equations? 65
Table 4 — Parallelism approach. Table 5 — Algorithms.
Parallelism Algorithm

Studies | SPMD | SIMD | MIMD | SIMT Studies | RK | BDF | WR | Ros

S01 X S01 X

S02 X S02 X

S03 X S03 X X

S04 X S04 X

S05 X S0s X

S06 X S06 X

S07 X S07 X

S08 X S08 X

S09 X X S09 X

S10 X S10 X

S11 X S11 X

S12 X S12 X

S13 X S13 X

3.2 RQ2: What is the precision of the parallel methods
(algorithms) to solve stiff ordinary differential equa-

tions?

According to our systematic mapping, several studies must research the algorithms’
precision and accuracy. Among them are SO1, S02, S04, s06, S10, and S12; they do not even

report the floating point precision.

Others reported that a poor study regarding precision was S05, S07, S08, S11, and S13.
In SO5, the author guarantees the error of the solution is low, although they had to increase the
number of estimates of their method. In SO7, they report only their algorithm’s precision (double

precision), and no error study was performed.

In SO8, they compare the parallel version with the sequential version of the same algo-
rithm and conclude that the parallel version presents similar results. In S11, they report that they
used double precision and compared the results among their implementations; they do not report

any error study. In S13, they perform a similar study.

Only two works performed studies regarding accuracy. In S03, they compare the solver
result with the exact experimental result, concluding that their solver provides similar results for

a low stiff problem.

In S09, the Chinese researchers present a detailed performance, precision, and accuracy
study. They used double precision, proving that their algorithm is accurate for a high resolution,

which until the year of this study, nobody had exceeded the resolution.

66 Chapter 3. Related Work

3.3 RQ3: What is the performance of each parallel method
(algorithm) to solve stiff ordinary differential equa-

tions?

Our systematic mapping made it clear that parallelism can be across the method or the
system. Most authors explore only one of the two types of parallelism (we explored both in this
thesis). Several approaches also consider the approach where a processor contains a subset of

ODE:s and process them in parallel.

Studies SO1, S02, and SO8 explore the parallelism across the method. That is, they do
not perform linear system operations in parallel. In SO1 and S02, they could not perform better
than the sequential version. In SO8, they considered mildly stiff equations, which can provide
more parallelism than highly stiff problems.

In S06, SO7, and S10, they perform parallelism across the system. That is, they improved
the linear system solver. They all provide good results, although S10 requires a matrix bigger
than 128 x 128 to perform better than the CPU.

S09, S12, and S13 provide both method and system parallelism. In S09, they performed
an excellent optimization to scale their parallelism to more than 10 million cores. In S12, they

provide 5 to 8 times of speedup for dense systems.

Regarding sparse systems, they achieved 4 x of speedup. In S13, they had performance
only with parallelism across the method. That likely happened because they split their problem

with MPI processes, and no SIMD hardware was used.

The latter approach performs the computation by splitting the equations into subsets.
We found that in SO3 and S11. In S03, their algorithms performed better than BDF with low
stiffness. In S11, they consider a highly stiff problem, but they need to consider communication

time, which is unfair considering performance in heterogeneous systems.

3.4 Threats to Validity

This section presents some threads to the validity of our systematic mapping. Such
threads can compromise some results, and they also showed us how to improve our Systematic

Mapping.

Since only the Ph.D. student and the supervisor read and decided which paper was
essential, we should expect some bias in the study selection and data extraction. The authors
also struggled to decide whether the inclusion or exclusion criteria were impartial. The student
tried to minimize the problems by exchanging ideas with Elisa Yumi Nakagawa, the expert in

systematic mapping. However, she also needed help understanding the student’s actual need

3.4. Threats to Validity 67

(since it is not her area) and defining what was necessary.

We know the possible exclusion of essential studies due to needing clarification on the
titles or abstracts. The authors’ studies may also need critical information that could return to our
search string. We also did not search for specific conferences or journals in this topic area, which

could bring many more related studies that could further improve our systematic mapping.

69

CHAPTER

METHODOLOGY

In this Chapter, we describe the methodology for this work. In Section 4.1, there is a
description of BRAMS profiling studies that lead to the CCATT ODEs. Section 4.2 describes
how we changed from Fortran 90 environment to C and then OpenCL for FPGAs. Section 4.3
briefly describes the phases of this work and how we solved the ODEs from CCATT-BRAMS.

We also describe how measured performance and energy consumption.

4.1 BRAMS profiling

This thesis is an ongoing project from our master’s thesis. In our first studies, we
wanted to spot possible parallel algorithms that needed to be fully explored and responsible for
some considerable time execution. For detecting such hot spots, we used gprof for profiling
BRAMS into two configurations: (a) chemical module enabled and (b) with the chemical module
disabled. We used those two because we already knew from an expert at INPE that checking
every possibility of BRAMS is impossible because of the combinatorial explosion allowed by
BRAMS’s RAMSIM (configuration file).

Starting with the chemical module disabled, we noticed that the radiation function is
responsible for 68% of the total execution. That is also the only function that exceeds 3% of
execution. We have circled this function in Figure 18 generated with the gprof2dot tool. It is

important to remind that this is a short version of the original call tree.

Considering the same methodology for the chemical module enabled, the Rosenbrock
Method takes about 41% of total execution (see Figure 19). The second most compute-intense
operation is spFactor, a sparse LU factorization method from the Sparse 1.3a library. That
function is required for computing the linear systems raised from the ODEs and later solved
by 4 stages in Rosenbrock. As mentioned before, this is the core of the chemical reaction and

the most critical function for CCATT-BRAMS. Solving those linear systems is two times more

Chapter 4. Methodology

70

ritmg_w_rtmme_mp_rtmmc_
0.8

main
97.68%
(0.00%)

modoneproc_mp_oneproc_
97.68%
(0.00%)

3oamoo:m_uanlwnccm:nlzmél
1.76%
(0.00%)

288x

|

6.16%

modacoust_mp_acoust_new_

(0.55%)
968832«

mmg_lw_rad_mp_rtmg_Iw_ I X modacoust_mp_prdctpl_

.59%\ 0.1 1.51% |1.62% \ 0.78%

1%

60552x

mmg_lw_t Itmg_sw_Spcvme_mp_Spevme_sw_ \el_adwectc_
0.78%
(0.78%)

13563648x (13563648

rtmg_sw_wrtqdr_mp_wtqdr_sw_ tmg_sw_reftra_mp_reftra_sw_
1.91%

(1.91%) (1.22%)
13563648x 13563648

Figure 18 — Call Graph for BRAMS with chemical module disabled.

expensive than computing radiation and allows much more possibilities for parallel exploration.

4.2 Source Code Refactoring

BRAMS is a legacy source code implemented in Fortran 90 and C language. Our most

challenging task was to port a heterogeneous solution that included OpenCL and Fortran 90, so

we could execute the FPGA. The current Sparse 1.3a solution has a Fortran-ready interface to

avoid extra effort for the programmer. Since performance and energy were among our constraints,

we decided to avoid any automatic solution that included source-to-source compilation. Porting

the sparse LU decomposition was not an option either, and as we mentioned in the related work,

LU requires expensive pivoting operations.

4.2. Source Code Refactoring 71

Figure 19 — Call Graph for BRAMS with chemical module disabled.

For solving CCATT-BRAMS with FPGA, we needed a specific solution for the target
architecture. We already provide a portable source code, although we cannot guarantee its
performance in other architectures. To guarantee the accuracy of the results, we used absolute
error comparison. We executed the same function with CCATT-BRAMS functions and compared
it to our equivalent solution in C or OpenCL. We were more concerned about the FPGA
because we use compiler optimizations that affect the floating-point results by balancing the
float operations. From previous experience, we are not considering NDRange kernels for this

thesis. We wanted to provide a full pipelined version of the Rosenbrock solver.

The most time-demanding operation was compiling the OpenCL kernel for the FPGA.
Depending on the algorithm’s complexity, that task could take 12 hours. Thankfully Intel
provided an environment for the compilation and execution of such kernels. The problem was

72 Chapter 4. Methodology

that we could not install BRAMS on their server due to the space limit (we need around 20Gb
of data, it is possible to load only CCATT-BRAMS data) and administrator privilege. BRAMS

requires several libraries that are unavailable for the user and need some root privileges.

To overcome such limitation, we executed BRAMS in a local server and stored only the
necessary data for the Rosenbrock Method. We need the chemical production term, the Jacobian
matrices, and their respective constants. This first source code selection resulted in around five
thousand lines of code in Fortran 90 and C (see Annex C). For computing the production term and
the Jacobian matrix, we had to rely on the tool developed by Jodo Bispo at FEUP-UPORTO. He
developed a parser for the mandatory data that improved memory locality, removed duplicated

indices, and generated a C-like structure. Details on the implementation are in Chapter 5.

As an initial experiment, we developed this extracted software version of CCATT-
BRAMS and executed it in HARP 2. From this point on, we first developed the algorithms in C,
and after careful debugging, we implemented them in OpenCL. Rosenbrock solves an ODE by
converting a non-linear problem to a linear problem with 4 stages. From the master’s results, we
knew that this problem required a matrix decomposition targeting FPGAs. We use an OpenCL
adapted version of QR Decomposition developed by (PARKER; MAUER; PRITSKER, 2016).

During our research, we also noticed that implicit method like Rosenbrock relies on
converting non-linear to linear problems, which is the most time-demanding operation. Sartori
(2014) explores a refined solution named BDF implemented in LSODE. However, that solution
does not allow the designer to explore vector parallelism like Rosenbrock because the library
solves the problem for each grade point. Using a block of matrices like Rosenbrock resulted
in higher execution time due to the smaller step size. This thesis focuses on implementing the
Rosenbrock method targeting a pipelined solution for FPGA. Modeling an ODE solver from

scratch is out of this thesis’s scope, requiring deep numerical analysis and stability knowledge.

4.3 Work Phases

4.3.1 Phase 1

Our first work phase started in the master’s thesis that implemented an iterative method
for solving the linear system raised from the chemical reactivity of BRAMS. We also developed
an OpenCL solution from scratch targetting a Stratix V (Bitware) connected to the CPU through
PCle and did not have DSPs specifically for floating-point operations. Back then, we explored
both NDRange and task parallelism on the OpenCL. In the best scenario, communication was
responsible for 10% of the total heterogeneous computation. This initial work concluded that
even parallel iterative methods could not be a viable solution for ODE solvers that can take

advantage of matrix decompositions.

4.3. Work Phases 73

4.3.2 Phase 2

That is the first implementation of this thesis, and we used our systematic mapping to
reach the final solution that implements QR Gram-Schmidt targetting FPGAs. In this phase,
we changed the Stratix V architecture to a newer heterogeneous solution provided by the Intel
Hardware Accelerator Research Program (HARP 2), to which we had to submit a project and
the University of Sao Paulo is one of the top universities around the globe that had access to it.
In that new environment, we could share the cache and memory, communicate through three
channels, and use a higher density of logic provided by Arria 10. Most of this thesis relies on
this architecture for the results. This task resulted in a publication in (JUNIOR et al., 2020). Our
results showed that our matrix decomposition is still 5x slower than its software counterpart.
Because of that, we wanted to explore more algorithms of the Rosenbrock in the FPGA. Our
initial hypothesis was that we could overcome such a problem with more tasks in parallel and

avoid communication with the CPU.

4.3.3 Phase 3

Moving more operations to the FPGA side required the results from the parser. That
was necessary since Fortran 90 data structure is incompatible with OpenCL and allows more
flexibility to the designs if they want to change the RELACS TUV mechanism. The parser can
convert the chemical mechanisms implemented for CCATT-BRAMS to a C-like structure. We
tried to explore a few parallel techniques, such as loop unrolling, but most of the time was spent
fetching data. In this phase, we also analyzed every algorithm through the roofline model. That
was important to guarantee the balance of operation between CPU and FPGA. Moving all those
operations to the FPGA exhausted the local memory, pushing the performance down. Those
results indicated that we needed to focus only on the 4 stages of the Rosenbrock and avoid

memory-bound operations on the FPGA.

4.3.4 Phase 4

In this phase, we developed from scratch a streaming Rosenbrock capable of overcoming
the dependency of the Rosenbrock stages. We created a pipeline over those stages, which is only
possible because CCATT-BRAMS Rosenbrock is optimized to work with blocks of matrices.
We use this feature for processing more than one matrix at a time. This solution requires

communication with the CPU for each iteration of the Rosenbrock method.

That was necessary to avoid memory-bound operations like the Jacobian matrix generator.
According to our results, this solution is still 7x slower than the sequential sparse LU with
—03. That is the first phase we measured the energy consumption and the energy per operation.
We used a tool implemented in C by Intel named bdxpower. We throw the process during the

execution of the 40 executions of our kernel, and it outputs an approximation of the energy spent

74 Chapter 4. Methodology

in Watts. For measuring the energy consumption of the software, we used Xeon’s counters that
are exposed through the pcm-power tool (INTEL, 2023a), where it splits the results into the
energy spent in the CPU and the energy spent on the DRAM. We added both values for the total
consumption of the software. To avoid any statistical error, we repeated the execution 40 x.

4.3.5 Phase 5

Our previous solution exhausted the RAM blocks available on Arria 10. We used Stratix
10, an architecture with 4 x more RAM blocks and twice the logic, as another attempt to improve
performance. This architecture also uses a newer OpenCL version (21.4). That is one of the top
architectures available in the market that we could access because we submitted a project to
work on the Paderborn Center for Parallel Computing (PC?) (CENTER, 2023).

Porting our previous source code to this new architecture did not work, and there was
no warning on the compilation tool. The same source code caused a deadlock on the global
memory access on the Stratix, and we believe that this was not happening on the HARP2 because
there are three communication channels. We solved that by using mutex or preloading the global
memory into local memory, which was only possible because Stratix 10 has a plethora of such
resources. The final solution is around 183 x slower than our best architecture with Arria 10,
which is explained in Chapter 5. Regarding the energy results, we used the Nalla serial card
monitor utility that comes with the Bittware 520N card, in which we measured the energy 100 x

during the 40 iterations of the same Rosenbrock algorithm.

75

CHAPTER

DEVELOPMENT

In this thesis, we are concerned with the chemical reactivity of CCATT-BRAMS, a
system of stiff ODEs that models Brazil’s air quality. According to Zhang ef al. (2011) and
Linford et al. (2009), chemical reactivity can represent 90% of the computational time. On Tupa
(Cray XE6) CPTEC/INPE, this term is responsible for 80% of computational time (FERNAN-
DES, 2014), even for more minor scientific problems, we were able to replicate the intense
computation roughly. Longo et al. (2013) uses the Rosenbrock method for changing from a
nonlinear differential equation system to a linear algebraic increment in terms of K;, where K
stands for the chemical element. Such modification incurs in solving linear systems of the type

Ax = b through explicit or implicit methods.

In general, we solve stiff ODE problems in two classes of algorithms: implicit and
explicit methods. Wanner and Hairer (1996) defines stiff equations as “problems for which
explicit methods don’t work™; they provide quite a narrow definition since explicit methods
work with stiff equations. In our modest experience and opinion, a more accurate definition is
“stiff equations are problems for which explicit methods can take a really long time to compute

depending on the architecture”.

Implicit solvers are the most efficient class for highly stiff ODEs, such as chemical
kinetics in BRAMS. However, those implicit methods rely on complex algorithms to control
step size, where the control flow imposes thread divergences. That is not a problem for CPU or
FPGA architectures due to their large on-chip memory (SHI et al., 2012). In the FPGA, both
control flow paths are implemented, which removes the divergence at the cost of an area penalty.
Opposite to them, GPUs suffer performance penalties from thread divergence because it forces
serial execution (ZOHOURI; PODOBAS; MATSUOKA, 2018).

Since explicit methods usually have simple control flow and are more suitable for
parallel environments, GPUs can offer better performance for this class of solvers for some
balanced problems (STONE; DAVIS, 2013). We already have works in the literature that exploit

76 Chapter 5. Development

heterogeneous explicit/implicit methods, combining the strengths of both classes so they can use
GPUs as accelerators for the moderate stiff side of the equations (SHI ez al., 2012).

For this work, we are using Rosenbrock implicit method because this algorithm avoids
the computation of inverse for matrices and non-linear equations. Rosenbrock is also attractive
for its step size control, which is performed automatically through embedded equations to
estimate the local error. Such control relies on given values for ATOL and RTOL, absolute and
relative tolerance. That is entirely problem dependent, and there is no one size fits all value.
Since this is an implicit method, we can avoid computation using decomposition algorithms for
the Jacobian matrix. In this manner, it is possible to compute one decomposition for the 4 stages

of Rosenbrock.

In this chapter, we describe all the algorithms required for the Rosenbrock method to
solve the chemical reactivity of BRAMS. We briefly describe our previous work in our master
thesis and present the solutions for the problems we faced during the initial work that was
continued in this Ph.D. thesis. Then we describe the 5 phases of this project that lead to the

Rosenbrock Streaming algorithm, our main thesis contribution.

5.1 Phase 1 — Jacobian Iterative Method for Solving Lin-

ear Systems

During our master thesis, we wanted to test if a parallel iterative solver could outperform
a sequential matrix decomposition for solving the linear systems for the chemical reactivity in
CCATT-BRAMS. For that, we have implemented a Jacobian iterative solver in OpenCL by using
the two approaches allowed by the language: (1) task and (2) NDRange. This section briefly
shows our previous results and how that was the initial work for this thesis. In-depth detail of

implementation and results can be found in our master thesis (SOUZA, 2017).

5.1.1 Jacobi Multi-threaded Dense

Our first implementation of Jacobian used a dense representation with the NDRange
approach. We were already working with RELACS_TUYV chemical mechanism with 47 species.
Currently, INPE uses this mechanism for measuring the air quality in Brazil. CCATT-BRAMS
can use any chemical mechanism the user provides; the limitation is related to the available
computing resources. According to (LONGO et al., 2013), RELACS can reasonably reproduce

the results of the RACM, a chemical mechanism with 77 species.

Work-group size is the number of work items for each work-group. During kernel
compilation, we can choose two options for work group size: max_work_group_size and
reqd_work_group_size. The first option is a hint of the maximum number of work items. The

second option is much more strict and does not let the compiler optimize the work-group size for

5.1. Phase 1 — Jacobian Iterative Method for Solving Linear Systems 77

the problem. We tested both options, and the first generated the best hardware. Figure 20 depicts

how work-groups and work-items map to our linear system.

Work-items
r A N 47x]1 47x1
Work-group 1 <€—
47x47 | —
| "

Work-group 47 <«—

A X = Db

Figure 20 — Each color represents one work-group with 47 work-items. According to the Verilog, two
work-groups are executing at the same time.

Each work group has a private memory space, preventing any NDRange application
from synchronizing data among the work-groups. Since we needed to perform vector norm, we
could either define a new kernel or perform the computation on the software side. Enqueue a
new kernel is only worth it when there is a considerable amount of data for processing, which
was not the case back then. Nowadays, we would solve this problem with OpenCL channels and

avoid kernel communication with the CPU for this task.

Non surprisingly, this architecture presented terrible performance results. First, we
computed a single matrix at a time and communicated with the CPU for every algorithm iteration.

Besides, we were also using a dense representation for a matrix with only 10% density.

This communication exchange caused a severe drop in performance in BRAMS. Although
we did not improve performance, we managed to maintain the results with a satisfactory error of
1.241371e — 19. On average, it takes 28ms to compute a single matrix. Considering that for a

24-hour simulation, we would need 44 days to get the results with this implementation.

Regarding energy consumption, we used PowerPlay Power Analyzer Tool from Quartus
IT (INTEL, 2023b); this tool is responsible for estimating the potency in mW of the circuit.
According to the tool, our design consumes about 11W. We summarize the results of this
architecture in Table 6 and Table 7. In the latter, we split the execution time from the transfer

time.

78 Chapter 5. Development

Table 6 — Results from Arch 1.

Area | Frequency Time Energy Error
19% | 305Mhz | ~44days | 11 W | 1.241e-19

Table 7 — Timing results from Arch 1.

CPU-FPGA | Execution | FPGA-CPU | Total Time
11686us 9153us 7806us 28645us

5.1.2 Jacobi Multi-threaded Sparse

Our second approach implemented the same algorithm with a CSR sparse representation.
According to our results, data movement was not improved since CSR uses more data structure,
which directly translates to more transfers. A packed structure with the three arrays could improve
the results, but it would still have CPU communication issues for every iteration. So, that was

the root of the poor performance either.

We present the same results for this architecture in Table 8 and Table 9, as we can observe

that the kernel execution improved, but the communication increased.

Table 8 — Results from Arch 2.

Area | Frequency Time Energy Error
29% | 260 MHz | ~50days | 14 W | 1.241e-19

Table 9 — Timing results from Arch 2.

CPU-FPGA | Execution | FPGA-CPU | Total Time
17597us 7846us 7863us 33306us

5.1.3 Jacobi Single-threaded Sparse

From the previous architectures, we knew that only changing the matrix representation
was not enough. We must avoid communication with the CPU and perform the entire computation
on the FPGA side. For that, we developed a single-threaded sparse version of the algorithm. We

also boosted the performance using pinned memory, a type of non-paged memory.

According to our results, this architecture leads to the best performance and energy
efficiency. That came at the cost of 15% more resources of the FPGA. This architecture takes
around 19 hours for a 24-hour simulation. We summarize the results in Tab;e 10 and Table 11.
From the results, it is possible to conclude that even the best performance possible is far from
the ideal. We should try to provide a parallel direct method for solving the linear systems and

avoid communication with the CPU.

5.2. Phase 2 — Direct Method for Solving Linear Systems 79

Table 10 — Results from Arch 3.

Area | Frequency Time Energy Error
34% | 269 MHz | ~19 hours | 15W | 8.027e-20

Table 11 — Tmining results from Arch 3.

CPU-FPGA | Execution | FPGA-CPU | Total Time
92us 912us 9us 1013us

5.2 Phase 2 — Direct Method for Solving Linear Systems

According to Golub and Loan (2013) and Peng (2013), there are two fundamental
categories to solving linear systems: direct and iterative methods. In the previous section, we
showed the results for the iterative method of Jacobi applied to BRAMS. We concluded that
we needed to explore a direct method to reuse computation and avoid extra communication
between CPU and FPGA. In this Section, we describe the current algorithm in BRAMS (LU

decomposition) and the one that we developed to substitute it (QR decomposition).

5.2.1 Direct Method - LU

In theory, direct methods return the exact solution after a finite number of operations; in
practice, this is impossible due to rounding errors. Lower Upper (LU) decomposition, Cholesky,

Gaussian elimination, and QR decomposition are the main algorithms from this category.

Currently, BRAMS uses LU decomposition to solve linear systems. Such method is
computationally expensive, since LU decomposition requires ¢'(n) and solving through back-
ward and forward substitution requires ¢'(n?) (BINDEL; GOODMAN, 2006). The library for

decomposition and substitution is Sparsel.3a.

Sparse 1.3 is a package of subroutines in C for solving large sparse systems of linear
equations. Its original purpose was for use in circuit simulators; it can also handle node and
modified-node admittance matrices (KUNDERT; SANGIOVANNI-VINCENTELLI, 1988). This
library manages the necessary memory for the sparse matrix by using linked-list representation;

it also offers an interface for Fortran, making integration to BRAMS much simpler.

The current library used for LU decomposition in BRAMS is sequential. It requires an
expensive update operation due to its pivoting, even though it uses a sparse format to decrease
the amount of computing. So we needed a parallel direct method that could provide concurrency
without pivoting, so we chose the QR decomposition (ANDERSON; BAI; DONGARRA, 1992).

5.2.2 QR Factorization

In this thesis, we explore implementing a direct method, the QR factorization, rather than
the direct LU factorization method currently used in CCATT-BRAMS. Besides, we explored

80 Chapter 5. Development

two variants of the modified Gram-Schmidt QR (SINGH; PRASAD; BALSARA, 2007). The
first implementation is a naive translation of the original algorithm to OpenCL without any
improvement to take advantage of the underlying hardware; in the second, we implemented
Intel’s optimized version of QR (PARKER; MAUER; PRITSKER, 2016) for FPGAs. As a
vehicle for our experiments, we rely on the heterogeneous HARP architecture from Intel using
the OpenCL high-level programming language. We used an Arria-10 FPGA coupled to a Xeon

CPU, allowing better communication and floating-point DSP blocks.

Since we do not have these algorithms implemented in BRAMS, we had to implement a
software version in C language. Those implementations were necessary for the extrapolation of
the results. We compare the FPGA hardware to these software versions regarding precision and

performance. Over the following subsections, we describe both implementations of the QR.

5.2.3 The Original QR implementation

In this version, we implemented the QR factorization method based on Gram-Schmidt;
we list it in Algorithm 1. We have implemented four variations, where the first is the baseline
for the remaining three optimizations; they are as follows: (I) Straightforward translation from
Algorithm 1 in C to OpenCL, without adding specific code for parallelism; (II) Insertion of
shift registers to improve pipeline parallelism and remove data dependency on the multiply-
accumulate inherited from the dot product operation; (III) Optimization to use local memory
instead of global memory for performing the computation; (IV) Usage of the -fp-relaxed flag,
which uses a balanced tree of floating operations by relaxing the order of the operations. Although
useful for highly parallel hardware, it may incur numerical errors. We could not generate the
fourth variation, as it did not fit on the Arria 10 FPGA.

Algorithm 1 — QR method without reordering (herein identified as QR).
procedure QR(A,Q,R)

1:

2 O+ A

3 fork< 1 to ndo

4 R(k,k) < norm(Q(1 : m,k))

5: form<+ 1 to ndo

6 Q(m, k) < Q(m,k)/R(k,k)

7 end for

8 for j« k+1 to ndo

9: R(k,j) < dot(Q(1 :m,k),Q(1:m,j))/R(k,k)
10: form<+ 1 to ndo
11: Q(m,])<—(Q(m,])—R(k,]))*Q(m,k)
12: end for
13: end for
14: end for
15: return O, R > QR Factorization of the Matrix A

16: end procedure

5.2. Phase 2 — Direct Method for Solving Linear Systems 81

In Table 12, we show the timing results for each implementation. In Table 13, we
present the results related to hardware resources. Those results suggest that the internal hardware
generated for each version is similar, and most of the performance comes from the better usage of
the memory hierarchy. Moving the computation to shift registers and local memory was enough

to improve the (I) version in 15x.

Table 12 — Timing results for the original QR method without reordering.

O dnp Jdm

Send (us) 18 16 17
Computation (us) 66929 8038 4467
Receive (1Ls) 7 8 9

Total in HW (us) 66954 8062 4493

Table 13 — Resource usage for the original QR method without reordering.

@ D (1)
Registers 196,011 301,857 290,391
Logic 126,903 184,110 171,421
DSPs 43 47 34
RAM blocks 538 810 731

Frequency (Mhz) 198.8 19496 199.64

5.2.4 The QR based on Intel’s implementation

Intel implemented an optimized version of the QR Grand-Schmidt for Arria 10 FPGA.
They used DSP Builder tools and did not implement any codesign of their work. So we decided to
implement the same algorithm in OpenCL and apply specific optimizations for the heterogeneous
architecture HARP 2; we also had to change the algorithm’s precision to double. Intel reordered
the QR factorization to work into two functional groups; they computed the R terms before the Q
terms. Lastly, they issued square root and divide operations as late as possible due to their high
latency. We show this optimized version in the Algorithm 2.

We designed three variations of this algorithm, and they are as follows: (I) Insertion of
shift registers and usage of local memory; (II) Compiler optimization with -fp-relaxed flag; (I1I)
Compiler optimization with -fpc flag, that is responsible for avoiding rounding operations. Both
compiler optimizations incur numerical errors, so we had to perform accuracy tests to guarantee

the final results.

Table 14 shows the timing results for each version implemented. In the best scenario
(IIT), we implemented a QR decomposition 4x slower than the same algorithm implemented in
the C language. According to our results, Intel implementation (Algorithm 2) does not map well
to software. It is around 38% slower than Algorithm 1. In that manner, the best software version

is based on Algorithm 1, and the best hardware version is based on Algorithm 2. Comparing both

82 Chapter 5. Development

Algorithm 2 — QR method with reordering.

1: procedure QR(A,Q,R)

2 O+ A

3 fork< 1 to ndo

4: R2(k) < dot(Q(1 : m,k))

5: for j < k+1 to ndo

6 Rn(k, j) < dot(Q(1 :m,k),Q(1 :m,)
7 end for

8 for j< k+1 to ndo

9: form<«1 to ndo

10: Q(m, j) <= Q(m, j) — (Rn(k, j) /R2(k)) * Q(m, k)
11: end for

12: end for

13: end for

14:

15: fork< 1 to ndo

16: R(k,k) < sqrt(R2(k))

17: for j« k+1 to ndo

18: R(k,j) < Rn(k, j)/R(k,k)

19: form<+1 to ndo

20: O(m,k) < Q(m,k)/R(k,k)

21: end for

22: end for

23: end for

24: return Q,R > QR Factorization of the Matrix A

25: end procedure

best implementations, we have a hardware QR decomposition 5x slower than the best software
version. Regarding the precision, we found an absolute error close to zero (0.002), which is

enough for us to continue using compiler optimization on the floating point operations.

Table 14 — Timing results for the QR-based method.

@O adp Jdm

Send (L) 17 15 18
Computation (us) 5,658 1,176 950
Receive (1Ls) 8 9 10

Total in HW (us) 5,683 1,200 978

5.3 Phase 3 — Memory analysis on the Rosenbrock Method

Our previous results with QR Decomposition showed we needed to explore more ap-
proaches to improve BRAMS’ Chemical Reactivity. So we decided to port the Rosenbrock
algorithm to the FPGA; we had to evaluate if the memory-bound operations inside the FPGA
were better than the communication bandwidth required by a Hardware/Software Codesign. This

5.3. Phase 3 — Memory analysis on the Rosenbrock Method 83

Table 15 — Resource usage for the QR-based method.

@ §1)) (III)
Registers 349,291 472,231 287,786
Logic 216,907 263,752 166,794
DSPs 57 425 425
RAM blocks 2,145 707 642

Frequency (Mhz) 15822 194.89 230

section describes the algorithms required by the chemical reactivity, their memory footprint, and
a roofline model. We also describe the library developed by Jodao Bispo at FEUP-UPORTO to
support this thesis.

5.3.1 Parser for the Rosenbrock Indices

Porting Rosenbrock to FPGA demanded studying all the data structure around it and the
necessary algorithms. We already implemented QR Factorization, but we needed to generate the
data inside the FPGA to create a complete FPGA solution of the Rosenbrock. Most of the data
was described in a table mode with several lines in Fortran 90, which was unsuitable for simple

conversion from Fortran 90 to OpenCL.

We needed a fast approach to parse all of those data structures. For that, we used a
customized parser created by Jodo Bispo at FEUP-UPORTO. He used a library designed by
their laboratory named specs-java-libs implemented in Java, where he used our Fortran 90 as the
input and filtered each index of dratedc, jacobian, and fexchem. This parser, named Parser for
the Rosenbrock Indices (PRI), generated the table of indices in C-like with a smaller memory
footprint and better data locality since the Fortran version had a random data arrangement.
Messing with indexation also forced him to remap the remaining algorithms to the new indexation
so they could read the correct data. Those tables were essential to continue with our OpenCL
implementation of those algorithms. We are not showing the source code due to its verbosity, but
it is available in the GitHub of SPECS laboratory from the University of Porto'.

5.3.2 Rates

Generating b (the production term) requires two algorithms: (1) Rates and (2) Fexchem.
The rates function is responsible for computing reaction rates, and its output feeds the Fexchem
function, which generates b. The rates function can be represented as a mathematical notation in

Equation 5.1. Most structures are dense except for y indices (1Kb of data) extracted with regex

' https://github.com/specs-feup/specs-java-libs/tree/master/SpecsUtils/experiments-

test/pt/up/fe/specs/util/jacobi

1
2
3
4
5
6
7
8
9

10
11
12
13
14

84 Chapter 5. Development

in Python. We show the source code representation in Source Code 1.

w(i) =rk(i)xy(j)*y(k) Vi=1,2,... reactions. (5.1

Source code 1 — Rates — Reaction Rates term in OpenCL

void fexchem_func(const int block_end, const int nreactions, const int nspecies,
double local_rk[block_end] [nreactions],
double local_y[block_end][nspecies + 1],
double local_dlr[block_end][nspecies]) {
double local_wl[128];
const int y_indices[128][2] = {...};
for (unsigned int block = 0; block < 65; block++) {
for (umnsigned int y = 0; y < 128; y++) {
local_wly]l = local_rk[block][y]l * local_y[block][y_indices_fexchem[y][0]] x*
local_y[block][y_indices_fexchem[y][1]];
}
}
}

Some indices do not need the third element (y(k)), which was solved by padding 1
value to the last index of y. Whenever a third element is missing, we use this padded value for

multiplication.

5.3.3 Fexchem

The Fexchem function is responsible for the chemical production term or b array from
the Ax = b equation. Generating this function also required the PRI to extract reaction rate
indices, constants, index of constants, and the number of reactions rate per chemical species.

Fexchem is represented in Equation 5.2 and listed in the Source code 2.

N
b(i) = Z w(k) * const (index_const (k)) (5.2)
j=1

Where:

I =1,2,..., species
N = Number of reaction rate per b;

K = Index extracted by the customized parser.

The chemical production term (RELACS TUV) has a memory footprint of 8 Kb spread
over four tables (that does not consider the compiler replication). To explore parallelism, we
developed a mechanism that the programmer can define before compiling if they want data

parallelism by changing two constant values.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
L)
53
54
55
56
57
58

5.3. Phase 3 — Memory analysis on the Rosenbrock Method

85

Source code 2 — Fexchem — Chemical production term in OpenCL

void fexchem_func(const int block_end, const int nreactions, const int nspecies,

}

const
const
const

const

double local_rk([block_end] [nreactions],

double local_y[block_end] [nspecies + 1],
double local_dlr[block_end] [nspecies]) {
double local_wl[128];

int y_indices[128][2] = {...

B

}
unsigned int index_w[605] = {...};
double const_wl[296] = {...};

unsigned int index_const_w[605] = {...};

for (unsigned int block

for (unsigned int y

local_wly]l] = local_rk[block][yl]

0; block < 65; block++) {
= 0; y < 128; y++) { //rates

local_y[block][y_indices_fexchem[y][1]];

unsigned int index_w_begin = 0, index_w_accum = O0;

for (unsigned int y = 0; y < 47; y++) {

unsigned int w_per_chem = index_w_per_chem[y] ;
double shift_reg_chem[II_CYCLES_ACCUM + 1];

#pragma unroll

for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1;
shift_reg_chem[i] = 0;

for (unsigned int z = 0; z < ITERATIONS; z++) {

double accum_chem = 0;

#pragma unroll

for (unsigned int i = 0; i < FACTOR; i++) {//data-parallelism

unsigned int index = z * FACTOR + i;

accum_chem +=

* const_wl[index_const_w([index_w_begin]]

index_w_begin++;

}

shift_reg_chem[II_CYCLES_ACCUM] = shift_reg_chem[0] + accum_chem;

#pragma unroll
for (unsigned int i = 0; i < II_CYCLES_ACCUM;
shift_reg_chem[i] = shift_reg_chem[i + 1];

}

double sum_chem

#pragma unroll

= 0;

for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1;

sum_chem += shift_reg_chem[i];

local_dlr[block][y & O0x2E] = sum_chem;

index_w_accum +=

index_w_begin

w_per_chem;

index_w_accum;

i++) {

i++) {

i++) {

* local_y[block] [y_indices_fexchem([y] [0]]

0);

((index < w_per_chem) ? local_wl[index_w[index_w_begin]]

86 Chapter 5. Development

Although fexchem allows some degree of parallelism, it also incurs heavy memory-bound
operations at fetching indices, multiplying, and accumulating over matrices. One of the best
practices proposed by Intel is defining the arrangement of the local memory to avoid memory
replication and loss of performance. It is encouraged that the programmer should provide the
best banking possible according to their needs. The compiler can also do this automatically, but

they do not guarantee the best performance.

When we provided the local memory arrangement, we achieved a slight improvement of
10% 1in the number of block RAMs at the cost of running 20%. Improving block RAM utilization
increased the Initiation Interval (II) at lines 12, 18, and 27 in Source Code 2. We used the roofline
model to analyze fexchem (OFENBECK er al., 2014) to avoid unnecessary optimizations that

will not improve performance. We show the results in Table 16.

Roofline presentation for the fexchem is represented in Figure 21. Due to the flexible
nature of the FPGA, we will discuss whether it is possible to use all the available DSPs for
double multiplications, the most common operation in the Rosenbrock algorithm. According to
(INTEL, 2021), each double multiplication requires 4 DSPs, 312 ALMs, and provides a peak
frequency of 288.35 Mhz, where each DSP can perform 2 flops per clock cycle. Our FPGA
(Arria 10 GX1150) contains 427,200 ALMs, which limits the DSPs usage to 1,369. So our peak
performance for any application on this board is # x 2 % 288.35 = 197 Gflops/s for double
precision. Considering the DSPs from Table 16, we know that fexchem peak performance is 7.4

Gflops/s.

We are using the experiments from (FAICT; D’HOLLANDER; GOOSSENS, 2019)
regarding the bandwidth. According to Intel documentation, HARP2 bandwidth could achieve
30 GB/s if we considered the two PCle channels and the QPI channel. A realistic benchmark
showed that the bandwidth is 16 GB/s for different scenarios. Our peak performance is achievable
with that bandwidth if we have an arithmetic intensity of 0.43. In other words, we need at least
5 flops for each double retrieved from memory. Our algorithm has 6 flops for 32 bytes, an
arithmetic intensity of 0.1875 or 3 Gflops/s. The roofline model clearly shows that parallelism
can improve performance slightly. Our profiling shows that the actual performance is 263
Mflops/s (6 flops x 227.08Mhz x 10° x 0,1933).

From now on, we must define two profiling properties relevant to the performance
discussion: Occupancy and Bandwidth efficiency. Occupancy close to 100% means we can
process a loop iteration every cycle. Bandwidth efficiency close to 100% means we are using
all the data we retrieved from global memory. For fexchem, we have an occupancy of 19.33%
with an efficiency of 100%, which means we are processing an iteration every 5 cycles and using

all data fetched from global memory.

We also have to point out the compiler problems with those designs. For some reason,
the compiler struggles to manage stop conditions among the loops. We are using the constant

values from the kernel-imposed serial execution between the loops in 11 and 18 lines (Source

5.3. Phase 3 — Memory analysis on the Rosenbrock Method 87

A
Theorical Peak Performance GFlops/s
197+
128+
64t
32+
Fexchem Theorical
21 Peak Performance GFlops/s
126|3 Mﬂpp§/sl 1 1 1

Y

0 018043 8 9 10 11 12 13
Figure 21 — Roofline model for the Fexchem Function.

Table 16 — Hardware resources for fexchem with automatic banking

Automatic banking | Custom banking
Registers 192,857 (11%) 192,278 (11%)
Logic 122,322 (29%) 122,507 (29%)
DSPs 65 (4%) 66 (4%)
RAM blocks 954 (35%) 684 (25%)
Maximum Clock Frequency (MHz) 210 227.08

Code 2) because it found a dependency on them. We could solve this by using integer literals

unsuitable for generic designs. This problem occurred several times in different kernels.

5.3.4 Dratedc

Generating A depends on two functions: (1) Jacdchemdc — Jacobian, and (2) Dratedc — a
derivative of reaction rates. Here it is important to point out that the Jacobian matrix is unrelated
to the Jacobian Method (iterative method for solving linear systems). Dratedc has a sparse matrix
of doubles, whose size is BLOCK SIZE x REACTIONS x GASES. Considering RELACS TUV

as the chemical mechanism, those values are 65 x 128 x 47, respectively.

According to our previous results, the Jacobian matrix has 96% of sparsity, that is, 3 MB
of unused memory, without considering the compiler’s replication. Such a matrix has a fixed
sparse structure, where all the used indices are known upfront the execution, which makes it
suitable for flattening to 1D and removing the zero values. Furthermore, all the matrix definitions
are in Fortran 90, and we needed C-like arrays, so we used PRI to extract the indices and generate

a flattened version of those arrays with NoN-Zero elements (NNZ) only.

0 N N L kW=

—_ = =
N = O O

88 Chapter 5. Development

This solution requires two tables of indices with NNZ size for each and one for storing
the results. Dratedc is represented in Equation 5.3. Y factor is not always needed, so we padded
with 1 whenever it is missing. For RELACS TUYV, that means 3.46 kB compared to almost 3 MB
before our scripts. We also list it in Source Code 3.

dw(i) =rk(j)*y(k) VYi=1,2,...,nnz. (5.3)

Source code 3 — Dratedc — Derivative of Reaction Rates in OpenCL (custom banking)

void dratedc(const unsigned int block_end, const unsigned int nnz_dw,
const unsigned int nreactions, const unsigned int nspecies,
double local_rk[block_end] [nreactions],
double local_y[block_end][nspecies + 1], double local_dw[nnz_dw]) {
const unsigned int rk_indices[222] = {...};
const unsigned int y_indices[222] = {...};
for (unsigned int block = 0; block < 65; block++) {
for (unsigned int y = 0; y < 222; y++) {
local_dwly]l = local_rk[block][rk_indices[y]l]] * local_yl[block][y_indicesl[yl];
¥
}

We also performed some experiments on automatic banking vs. custom banking. All the
results are in Table 17. The performance results are nearly identical, with a few block RAMs
saved. Again, the clock did not significantly impact the overall performance; we explain that with
the roofline discussion. Improving throughput with loop unrolling did not work; the compiler
could not generate a correct design for some reason, even though the compiler steps finished

normally. We were able to find this bug while executing the design.

Table 17 — Hardware resources for dratedc

Automatic banking | Custom banking
Registers 158,613 (9%) 159,664 (9%)
Logic 105,038 (25%) 105,561 (25%)
DSPs 5(<1%) 8 (< 1%)
RAM blocks 596 (22%) 568 (21%)
Maximum Clock Frequency (MHz) 225 262.5

We can explain the performance results with the roofline model. For that, we repeat the
method applied in Section 5.3.3 and represent the model in figure 22. According to the roofline,
the peak performance for dratedc is 1 Gflop/s, but that goes even lower when considering the
arithmetic intensity, which is around 0.041 (or 666 Mflops/s). Our profiling shows that the effi-
ciency is 100% and the actual performance is 107 Mflops/s due to the low occupancy (41.16%).
Our results confirm that this algorithm does not allow any parallelism exploration due to its
memory-bound nature. This study should be enough to support the statement that Rosenbrock
should be entirely implemented on the FPGA side. However, we decided to implement it in the
FPGA to avoid doubt.

5.3. Phase 3 — Memory analysis on the Rosenbrock Method 89

197 Theorical Peak Performance GFlops/s

128t

64 1

324

Dratedc Theorical
Peak Performance GFlops/s

8 9 10 11 12 13
Figure 22 — Roofline model for Dratedc Function.

Y

0

5.3.5 Jacobian

Our previous modified dratedc function has a new indexation due to the flattening and
sparsity removal. To fix that problem, we used PRI again to remap all the indices to this new
indexation, which required six matrices for the correct indexation and almost 20 kB of local
memory to store constant data (we are also not considering the memory replication). Jacobian

can be represented as in the Equation 5.4 and listed in the Source Code 4.

N
Jacce(i, j) = Z dw(k) x const (index_const (k)) (5.4)
x=1
Where:

I =1,2, ..., species
J =1,2,..., species
N = Number of derivative of reaction rate per Jacc;;

K = Index extracted and remapped by the customized parser.

Source code 4 — Jacc — Jacobian in OpenCL

void jacc_fexchem_func(const int block_end, const int nreactions, const int nspecies,
const int nnz_dw, double local_rk[block_end][nreactions],

double local_y[block_end][nspecies + 1],

double local_jacc[block_end] [nspecies][nspecies],

double local_dlr[block_end][nspecies]) {

double local_dw[222];
const unsigned int index_jacc [461]1[2] = {...};

90 Chapter 5. Development

9 const int index_dwl[1120] = {...};

10 const double const_dw[564] = {...};

11 const int index_const_dw[1120] = {...};

12 const int index_dw_per_jacc[461] = {...};

13 const int y_indices[222] = {...};

14

15 for (unsigned int block_index = 0; block_index < block_end; block_index++) {
16 for (unsigned int y = 0; y < nnz_dw; y++) {

17 local_dwly] = local_rk[block_index][rk_indices[y]] *

18 local_y[block_index][y_indices[y]l];

19 }

20

21 unsigned int index_dw_begin = 0, index_dw_accum = O,

22 index_w_begin = 0, index_w_accum = O0;

23 for (unsigned int y = 0; y < NNZ_JACC; y++) {

24 unsigned int dw_per_jacc = index_dw_per_jaccl[yl;

25 double shift_reg_jacc[II_CYCLES_ACCUM + 1];

26

27 #pragma unroll

28 for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1; i++) {
29 shift_reg_jacc[i] = 0;

30 }

31

32 for (unsigned int z = 0; z < ITERATIONS; z++) {

33 double accum_jacc = 0;

34

35 #pragma unroll

36 for (unsigned int i = 0; i < FACTOR; i++) {//data-parallelism
37 unsigned int index = z * FACTOR + ij;

38 accum_jacc += ((index < dw_per_jacc) ?

39 local_dwl[index_dw[index_dw_begin]] x*
40 const_dw[index_const_dw[index_dw_begin]] : 0);
41 index_dw_begin++;

42 }

43 shift_reg_jacc[II_CYCLES_ACCUM] = shift_reg_jacc[0] + accum_jacc;
44

45 #pragma unroll

46 for (unsigned int i = 0; i < II_CYCLES_ACCUM; i++) {
47 shift_reg_jacc[i] = shift_reg_jacc[i + 1];

48 }

49 }

50 double sum_jacc = 0;

51

52 #pragma unroll

53 for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1; i++) {
54 sum_jacc += shift_reg_jaccl[il;

55 ¥

56

57 local_jacc[block_index][index_jacc[yl[0]][index_jacc[y]l[1]] = -sum_jacc;
58

59 index_dw_accum += dw_per_jacc;

60 index_dw_begin = index_dw_accum;

61 }

62 }

63

Herein, we explore the same design to check whether the memory layout impacts the area

and performance. We changed the input indices (y_indices_fexchem and index_jacc) to improve

1

O 0 N O L RN

L T T O N S S S S S S S T R TS L S R S L O R S R O R TS R S S I S T S R S S R S S S S S S I o T
N = O O 00 9 O L A W N~ O VW XX IO N B W IN = O VWO IO L A WK~ O W 3O i B W IN —~= O

5.3. Phase 3 — Memory analysis on the Rosenbrock Method 91

memory alignment through PRI. Since Jacobian and Fexchem use a similar loop structure, we
merged both algorithms (listed in Source Code 5) into the same loops and compared them to the

Jacobian-only solution.

Source code 5 — Jacc + Fexchem (custom memory layout)

void jacc_fexchem_func(const int block_end, const int nreactions, const int nspecies,
const int nnz_dw, double local_rk[block_end][nreactions],
double local_y[block_end][nspecies + 1],
double local_jacc[block_end] [nspecies][nspecies],
double local_dlr[block_end][nspecies]) {

for (unsigned int block_index = 0; block_index < block_end; block_index++) {
for (unsigned int y = 0; y < nnz_dw; y++) {
local_dwl[y] = local_rk[block_index][rk_indices[y]] =
local_y[block_index][y_indices([yl];
if (y < nreactions){
local_wl[y]l = local_rk[block_index][y] =

local_y[block_index][y_indices_fexchem[y][0]] *
local_y[block_index][y_indices_fexchem[y][1]];

unsigned int index_dw_begin = 0, index_dw_accum = O,
index_w_begin = 0, index_w_accum = 0;
for (unsigned int y = 0; y < NNZ_JACC; y++) {
unsigned int dw_per_jacc = index_dw_per_jacclyl;
unsigned int w_per_chem = ((y < nspecies) ? index_w_per_chem[y] : 0);
double shift_reg_jacc[II_CYCLES_ACCUM + 1];
double shift_reg_chem[II_CYCLES_ACCUM + 1];

#pragma unroll
for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1; i++) {

shift_reg_jacc[i] = 0;
shift_reg_chem[i] = 0;

}

for (unsigned int z = 0; z < 6; z++) {
double accum_jacc = 0, accum_chem = 0;

#pragma unroll
for (unsigned int i = 0; i < FACTOR; i++) {//data-parallelism
unsigned int index = z * FACTOR + ij;
accum_jacc += ((index < dw_per_jacc) ?
local_dwl[index_dw[index_dw_begin]] *

const_dw[index_const_dw[index_dw_begin]] : 0);

accum_chem += ((index < w_per_chem) ?
local_wlindex_w[index_w_begin]] =*
const_w[index_const_w[index_w_beginl]] : 0);
index_dw_begin++;
index_w_begin++;
¥
shift_reg_jacc[II_CYCLES_ACCUM] = shift_reg_jacc[0] + accum_jacc;
shift_reg_chem[II_CYCLES_ACCUM] = shift_reg_chem[0] + accum_chem;

#pragma unroll
for (unsigned int i = 0; i < II_CYCLES_ACCUM; i++) {
shift_reg_jacc[i] = shift_reg_jacc[i + 1];

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

92 Chapter 5. Development

shift_reg_chem[i] = shift_reg_chem[i + 1];
}
¥
double sum_jacc = 0
double sum_chem = 0;

#pragma unroll

for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1; i++) {
sum_jacc += shift_reg_jaccl[i];
sum_chem += shift_reg_chem[il;

}

local_jacc[block_index][index_jacc[y]l[0]] [index_jaccl[y]l[1]] = -sum_jacc;

if (y < nspecies){
local_dlr[block_index][y & O0x2E] = sum_chem;

}

index_dw_accum += dw_per_jacc;
index_dw_begin = index_dw_accum;
index_w_accum += w_per_chem;

index_w_begin = index_w_accum;

Merging Jacobian and Fexchem imposes some extra computation for Jacobian, so we
need to put some conditions before summation. The compiler manages this merged version
much better than the Jacobi-only version. According to our results, the merged version is 13%
faster than the Jacobi-only version. Managing the local memory layout also improved the results
in 33%. We show the resource usage in Table 18, and the memory layout results in Table 19.

Considering that, we proceeded with our experiments with the merged version.

Table 18 — Hardware resources for Jacobian only and merged Jacobian + Fexchem

Jacobian only Merged
Registers 193,164 (11%) | 230,054 (13%)
Logic 122,900 (29%) | 141,716 (33%)
DSPs 66 (4%) 126 (8%)
RAM blocks 1,764 (65%) 1,887 (70%)
Maximum Clock Frequency (MHz) 151.25 183.3

Table 19 — Hardware resources for Jacobian + Fexchem

Automatic banking | Custom banking
Registers 245,615 (14%) 230,054 (13%)
Logic 150,912 (35%) 141,716 (33%)
DSPs 124 (8%) 126 (8%)
RAM blocks 1,844 (68%) 1,887 (70%)
Maximum Clock Frequency (MHz) 180 183.3

5.3. Phase 3 — Memory analysis on the Rosenbrock Method 93

From the previous algorithm, we already know that dratedc is pushing performance down.
That is also exposed in the roofline model presented in Figure 24. The jacobian only has a peak
performance of 4.9 Gflops/s and arithmetic intensity of 0.208 or 3.3 Gflops/s. From those results,
we can conclude that 3 more flops for the same 24 bytes would be enough to achieve the peak
performance. Our profiling shows a sustained 101 Mflops/s performance due to its occupancy of

13.46%; note that the performance is similar to dratedc.

Regarding the merged version, we obtained conflicting results with reality. According
to the analysis, it needs 56 bytes for 11 flops, an arithmetic intensity of 0.196 or 3.14 Gflops/s
(performance lower than the Jacobian only). Our profiling shows that the actual performance is
225 Mflops/s for an occupancy of 11.2%, slightly higher than dratedc. As the results pointed out,
the memory-bound functions do not benefit from the parallel logic in the FPGA and consume

scarce resources. We still forced a Rosenbrock implementation to ensure the results were precise.

A
Theorical Peak Performance GFlops/s
197+
128+
64+
32+
Jacobian Theorical
51 Peak Performance GFlops/s
101 Mflops/s

Y

0 0.31 8 9 10 11 12 13
Figure 23 — Roofline model for Jacobian Function.

5.3.6 Rosenbrock

For implementing Rosenbrock, we have used two approaches: (1) Feeding the initial
data to the FPGA and implementing a solution with memory-bound functions in the FPGA; (2)
Avoiding memory-bound functions and implementing a streaming version of the Rosenbrock
with the stages running in pipeline. In the following sections, we discuss the implementation of
both.

The first approach avoids communication with the CPU at the cost of implementing
memory-bound functions on the FPGA side. As we showed in the previous results, there are more

efficient ways to solve this problem, leading us to the second solution, the streaming Rosenbrock.

1
2
3
4
5

94 Chapter 5. Development

A
Theorical Peak Performance GFlops/s
197+
128t
64+
32+
Jacobian + Fexchem Theorical
121 Peak Performance GFlops/s
I25I Mlﬂopsls L L L L L L [L .
0 0.19 0.71 8 9 10 11 12 13

Figure 24 — Roofline model for Jacobian + Fexchem Functions.

In this second solution, we accepted the communication with the CPU as part of the solution and

explored the parallelism across the Rosenbrock stages.

5.3.6.1 Rosenbrock with memory-bound functions

In this first version, we could not fit the entire Rosenbrock algorithm on the FPGA.
Although we had all of them implemented, they did not fit on the board, which forced us to
use only the first stage of the Rosenbrock. In this implementation, we compute the Jacobian
and Fexchem matrices and use them as inputs to the QR decomposition design to solve the
linear systems Ax = b. We still perform some analysis regarding the algorithm’s behavior, design
exploration of the memory layout, and the roofline model for the proposed solution as we did in

all previous algorithms.

Our memory-bound function took so many resources that we had to constrain the QR
decomposition for fitting the Arria 10 FPGA. For that, we disabled the loop unrolling of the dot
product and replaced it with shift registers (see Source Code 6), which incurs less parallelism
and possibly lower performance. We also had to improve memory utilization used by the upper
triangular matrix R, which can work by using half of the initial memory at the cost of complex

exit conditions.

Source code 6 — Dot product with shift register in OpenCL

double dot_product(unsigned int block_end, unsigned int nspecies, unsigned int k,
unsigned int j, unsigned int block,
double al[block_end] [nspecies][nspecies]){
double shift_reg[II_CYCLES_ACCUM + 1];

27

5.4. Phase 4 — Streaming Rosenbrock 95

#pragma unroll
for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1; i++) {
shift_regl[i] = 0;

}
for (unsigned int m = 0; m < nspecies; m++) {
shift_reg[II_CYCLES_ACCUM] = shift_reg[0] + alblock][m][k] * alblock][m][j];
#pragma unroll
for (unsigned int i = 0; i < II_CYCLES_ACCUM; i++) {
shift_reg[i]l = shift_regli + 1];
}
}
double sum = O0;

#pragma unroll
for (unsigned int i = 0; i < II_CYCLES_ACCUM + 1; i++) {
sum += shift_regl[il;

}

return sum;

Such changes were reflected in Rosenbrock’s performance, as shown in the roofline
model in Figure 25. Table 20 shows that the design exploration of the memory layout is not
enough to provide much improvement either. In the roofline model, we observe that generating
the jacobian and the chemical production on the hardware side have a peak performance of
3.71GB/s with an arithmetic intensity of 0.23. As we can observe from the profiling results, our

sustained performance is 16 Mflops/s with a poor occupancy of 0.42%.

Those results confirm that memory-bound functions should be on the software counterpart
and not using resources of the FPGA. That is why we implemented a streaming Rosenbrock
version, executing only the four stages of the Rosenbrock without the memory-bound functions.

See Appendix B for more details.

Table 20 — Hardware resources for Rosenbrock

Automatic banking | Custom banking
Registers 343,367 (20%) 337,884 (20%)
Logic 195,998 (35%) 193,958 (33%)
DSPs 215 (8%) 215 (8%)
RAM blocks 2411 (89%) 2408 (89%)
Maximum Clock Frequency (MHz) 145 154.7

5.4 Phase 4 — Streaming Rosenbrock

For the streaming Rosenbrock, we almost had to design the algorithm from scratch. Much
of the previous results could not be used in this new solution. To the best of our knowledge, there

1s no such solution available for FPGAs in the literature, and it is one of the contributions of this

96 Chapter 5. Development

A
Theorical Peak Performance GFlops/s
197+
128+
64+
32+
Rosenbrock Theorical
17 Peak Performance GFlops/s
" L M.Iflops/ls L L L L L [L L
0 0.23 1.06 8 9 10 11 12 13

Figure 25 — Roofline model for Rosenbrock.

thesis. In this new version, we removed the Jacobian memory-bound algorithm. According to
our studies of the bottlenecks, computing the four stages is the most time-demanding. We can
increase the arithmetic intensity and parallelism by computing the four stages in a streaming

fashion. Such streaming demands more than one matrix stored on the global memory.

It is found in the literature the parallelism across the stages. However, our Rosenbrock
variation has dependencies over the stages. We overcame that by processing such stages in a
pipeline fashion. Once the pipeline of stages is full, we have four stages executing in parallel and
receiving data in a streaming fashion (represented in Figure 26). Our final circuit is represented
in Figure 27.

Since we removed the Jacobian function, we had to communicate the initial conditions,
which, as expected, is faster than generating it on the FPGA side. So first, we had to copy the
content from global memory to local memory, which is necessary to avoid RAM contention and
stalls over the pipeline. The first stage of Rosenbrock is the most expensive because we need to

factorize the matrix.

Due to area restrictions, we had to modify the published algorithm. We implemented the
same mechanism we used for the previous algorithms and let the programmer define whether
they want data parallelism. According to our experiments, the board does not support unrolling
factor over 3 for our solution due to the memory replication and exhaustion of the memory
blocks (See the results for different unrolling factors in Appendix C). Since we are working with
streaming and pipeline, that should only cause some delay for the first matrix because of the

longer datapath.

97

5.4. Phase 4 — Streaming Rosenbrock

‘diysurout g4ag oY) urnp pajusworduir

sem (X0q MO[[oK) uoneziioloe] YO Y], ‘seuo snoraald ay) sasse001d Y00IqUISOY Y} JO AFe)s JUALIND YY) SB 9Jel JWES) J& POWEBANS e SOOLNBW MIN — 97 2In3L]

\|||||/

uonisodwodaq ¥oO

- |||/

£ abeys

z 9beys

1 9be3s J

sabe3s yr0iquasoy

uopisodwod’aq ¥dO

€ abers

z 9be3s

1 96e35 Y,

sebeys yd0iquasoy

~

seden

sedLen

Tz

v obe3s

Ve

€ abe3s z obexs 1 9be3s)

sabe3s y20iquasoy

sedue

seden

“:::
I

v abeis

-

€ obeis z °bers 1 96e3s Y,

sebeys y20iquasoy

98 Chapter 5. Development

LXeon ECSP-l2JGOOv4J

!

DDR4

16 Gb/s 1QPI 1PCIe gen3 x8 1 PCle gen3 x8

FPGA Interface Unit (FIU)

Load one matrix
(pipeline)

Save one matrix
(pipeline)

Arria 10

Figure 27 — Architecture for the streaming Rosenbrock. Read and Write vertices are the only ones
communicating with the global memory. The remaining vertices and edges only communicate
through non-blocking channels, that is, FIFOs implemented in the local memory.

After matrix decomposition, we have to compute fexchem, a memory-bound function.
The Fexchem function is the same from Section 5.3.3. Once we have the decomposition from
matrix A and generated array b with fexchem, we solve the linear system with QR and execute
the backward substitution. Each stage executes the instructions in the following order: (I) Update
chemical concentrations, (II) Generate b array, (III) Update b array with the previous result, (IV)

Q transposed multiplied by b, (V) backward substitution.

The streaming Rosenbrock outputs the results and stores them on the global memory. We
perform the error computation on the host side and check whether we need a new iteration. If a
new iteration is needed, we communicate the updated initial conditions again, and the FPGA

performs the computation as before until it converges to the expected error.

Herein, we show our initial results with this design. Our streaming version requires
double the logic and registers from the FPGA. As we mentioned, decreasing data parallelism
on the dot product is essential to improving memory usage and the slight difference in DSP

resources. We show the results for hardware resources in Table 21.

Regarding performance, our initial results show almost 4 x improvement over the pub-
lished results. Those results are also competitive with the vectorized software version compiled

with "-O3", which uses parallel vector instructions. Our design is still 5x slower than its software

5.4. Phase 4 — Streaming Rosenbrock 99

Table 21 — Hardware resources for the Streaming Rosenbrock

Streaming Rosenbrock
Registers 602,456 (35%)
Logic 291,998 (61%)
DSPs 278 (18%)
RAM blocks 2,284 (84%)
Maximum Clock Frequency (MHz) 158.93

counterpart. For the power consumption, we have used an estimation tool provided by Intel that
approximates the consumed energy for the HARP 2. According to this tool, this design consumes
around 24.6W.

We show the performance comparison between the vectorized software and the streaming
design in Table 22. We did not show the communication time because we could hide the
communication latency by overlapping computation with communication, which prevents us

from timing the communication itself.

We also analyzed the roofline model for our streaming Rosenbrock in Figure 28. Table
23 shows each stage’s flops and the bytes required for computation. For this analysis, we
consider that each stage is independent and can write to the output its peak performance,
which is 44.16 Gflops/s. Since our hardware has a peak performance of 22 Gflops/s, that is the
maximum achieved by our circuit in theory. Our profiling shows a sustained performance of 11.2
Gflops/s (75 flops x 158.93Mhz x 10° x 0,943 occupancy) or 50% of the hardware capacity.
Our occupancy is 94.3% with 100% of bandwidth efficiency, which means we are almost using

the full potential of the bandwidth and processing an iteration every clock cycle.

Asynchronism among the stages is the reason for the performance loss. Although the
FIFOs allowed us to hide most of the latency, they still have some stalls caused by the different
performances for each stage. The reports also showed many replications for the on-chip memories,
directly correlating to the degree of parallelism across the stages. The compiler replicated memory

because that was the only way to keep the stages running in parallel.

Table 22 — Results for performance

Software Streaming

Send (us) - -
Solve (us) 4,329 23,588
Receive (us) - -
Total (us) 4,329 23,588

Nevertheless, on the Asynchronism, Table 23 shows the performance for each stage.
Such differences demand more local memory as a buffer to avoid stalls among the stages, which
exhausts the amount of on-chip memory. From these arithmetic intensity results, we noticed that

stage 2 is the fastest because this kernel has a single communication with the global for fetching

100 Chapter 5. Development

Table 23 — Arithmetic intensity for each kernel

Flops Bytes I Ix Bandwidth (Gflops/s)

Stage 1 27 48 0.56 9
Stage2 10 8 1.25 20
Stage3 16 32 0.5 8
Stage 4 22 48 045 7.3
Total 75 136 2.76 44.16

a double constant (8 bytes). OpenCL optimizes it to store on the on-chip memory as soon as it
receives it. From these results, we noticed that Arria 10 does not allow further parallelism since
we almost used the maximum number of RAM blocks. So we wanted to explore the same circuit

in a more prominent architecture, so we chose Stratix 10.

A
Theorical Peak Performance GFlops/s

197+
128+

64t

32t

Rosenbrock Streaming Theorical
51 Peak Performance GFlops/s
.11.2 Gflops/s
o 137276 - 8 9 10 11 12 13 -

Figure 28 — Roofline model for the streaming Rosenbrock.

5.5 Phase 5 — Streaming Rosenbrock in the Stratix 10

Stratix 10 has more than twice the number of logic compared to Arria 10 on HARP 2
and 4 x more RAM blocks. Stratix 10 also uses one of the latest compilers for Intel OpenCL. In
this project, we use the 21.4 version (Arria 10 uses 16.0). We expected more performance than
Arria since we use a faster architecture with an updated compiler. Besides, Stratix 10 gives us

plenty of space to explore parallelism and memory replication.

As a first approach, we used the same source code developed for the Arria 10 FPGA.

That did not work because the updated compiler complained about the data structure. From now

5.5. Phase 5 — Streaming Rosenbrock in the Stratix 10 101

on, the programmer cannot use multidimensional arrays as parameters and must use a pointer to

the multidimensional array. Some function signatures also changed, but the behavior is the same.

Although it compiled without problems, the design is not functional because of a deadlock
between the read and write kernel on the global memory. That happened because Stratix 10 does
not have an FPGA Interface Unit (FIU) as Arria 10, which allows the runtime chooses one of
the three paths for fetching data from DDR4 global memory (see Figure 27). So, while a path
is blocked for the reader, another is used for writing data, preventing the deadlock. Among the
options to solve such a problem, we first tried to use clEnqueueMigrateMemObjects from the
OpenCL API. This command guarantees that the data is sent to the device before its use, but
that did not work either. For a second approach, we implemented a mutex that forces reading or
writing to the global memory depicted in Figure 29.

153.6 Gb/s

Load one matrix Save one matrix
(mutex) (mutex)

PCle gen 3 x16
16 Gb/s

CPU
AMD Milan (Zen 3)

Figure 29 — Streaming Rosenbrock architecture for Stratix 10.

102 Chapter 5. Development

Using a mutex imposes a serial execution on the read and write kernels, which is
acceptable as a first functional approach. However, we must improve it to provide a parallel
solution like Arria’s. For readability, we inserted the following results: (I) software result, (IT)
result for Arria 10, (III) result for mutex on Stratix 10, and (IV) result for local memory only on
Stratix 10. We list the results for resource utilization in Table 24 and timing execution in Table
25.

The results indicate a severe performance drop (around 187 x

That solution allowed us to read and write in parallel without deadlock at the cost of
8% more RAM blocks. The show results in Table 24 in the following order: (I) Streaming
Rosenbrock on the Arria 10, (I) Streaming Rosenbrock with Mutex on the Stratix 10, (III)
Streaming Rosenbrock with on-chip memory only on the Stratix 10. To our surprise, that solution
saved logic usage and improved circuit frequency. As we can see, we improved execution in 2%

even though the frequencies are much higher in the Stratix 10.

Table 24 — Resource usage for Arria 10 (I) and Stratix 10 (II) and (III)

@D (1)) (I1I)
Registers 602,456 (35%) 882,968 (23%) 829,511 (22%)
Logic 291,998 (61%) 417,065 (45%) 396,200 (42%)
DSPs 278 (18%) 315 (5%) 320 (6%)
RAM blocks 2,278 (84%) 2,401 (20%) 3,328 (28%)
Frequency (Mhz) 159.93 260.0 267.5

Table 25 — Results for performance on the Stratix 10

@ 11)) (I1D) Iv)
Send (Ls) - - - -
Computation (us) 4,329 23,588 5,070,865 4,965,642
Receive (L) - - - -

Total in HW (us) 4,329 23,588 5,070,865 4,965,642

Those results did not make sense, so we decided to deep dive into OpenCL strategies
for the Stratix 10 and found some problems in our design applied to this architecture. We will

briefly discuss each of them in the following list:

1. Reduce channel overhead: we are already using non-blocking channels to avoid resource

overhead;

2. Reduce the number of kernels: That is impossible since we need each stage in a separate

kernel. Otherwise they will run serially;

3. Using non-blocking channels: loop control logic becomes more complex and might limit
performance. That is also impossible to change without causing deadlock among the stages

since they are asynchronous;

5.5. Phase 5 — Streaming Rosenbrock in the Stratix 10 103

4. Optimizing loop control: Intel implemented a loop control specifically for Stratix 10,
which decoupled the exit condition calculation from the loop’s body. That comes at the
price of a few extra cycles for flushing the loop whenever the loop exit condition is signaled.
For designs with a few iterations, that becomes a bottleneck, for example, small matrices.
BRAMS has matrices with 47 x 47; as we discussed previously, that is the maximum

number we can process in production;

5. Simplifying memory access to local memories: Stratix 10 compiler discourages double
pumping in the M20K memories, that is, M20K works as a 4-port memory running at twice
the frequency. For that, the programmer must assign an attribute for each local memory,
which does not guarantee any performance since that requires some try-and-error strategy.

We did not change this attribute since we have 4 x more RAM blocks.

Intel provides more strategies in their documents, but we restrict them to the ones we
consider essential to our design. As we see from this list, our design is inappropriate for the
Stratix 10 architecture. We rely on separate kernels and 22 channels for communication among
the stages, which all require a complex exit condition. Even Intel optimization for hyperflex loop
control is decreasing performance. That means we would have to design a new design optimized

for Stratix 10 from scratch, which we will leave for future work.

Although we did not improve performance, we measured the power consumption of
this solution on Stratix 10 and compared it to the Arria 10. It is important to remind that Arria
10 provided an experimental tool that outputs an approximation of the power consumption for

HARP 2. Since this is the only way to compare, we will use those results.

Table 26 — Energy consumption for computing Rosenbrock for 65 matrices of 47 x 47

Time (us) Power (W) TDP (W) Energy (J) Energy TDP (J)

Rosenbrock Arria 10 23,588 24.6 70 0.58 1.65
Rosenbrock Stratix 10 4,965,642 70 225 347.59 1117.26
Rosenbrock in Software 4,329 28 290 0.121 1.25

The results show that Arria 10 on HARP 2 is 611 x more efficient than the Stratix 10
FPGA on the Padderborn server. Regarding the software, we are still 5x less energy efficient
and around 5Xx slower. First, we can justify those values by using a dense representation for QR
Decomposition instead of a sparse representation; modifying to a sparse representation requires
deeper optimizations because of the irregular access among the loops. From our experience,
OpenCL for Intel FPGAs does require pipeline-friendly modifications. So, changing the data
structure is not viable if the designer wants to improve performance. OpenCL compiler infers

serial execution whenever the loop is irregular, considerably dropping performance.

104 Chapter 5. Development

5.6 Final Remarks

In this chapter, we discuss the results obtained in this chapter. Our results were split into
5 phases, where the first one is derived from our master’s thesis. For the development, we have
used three versions of OpenCL: (1) 16.1 for Stratix V, (2) 16.0 for HARP2, and (3) 21.4 for
Stratix 10. Using a single version for the three architectures is impossible because that depends
on the BSP provided by the board manufacturer. Except for Phase 1, all implementations used
task parallelism in OpenCL because that is the closest language paradigm that leverages the
FPGA resources.

Regarding the FPGA architectures, they were chosen because they are the top FPGAs in
the market. Even Stratix V, an FPGA from 2010, is still competitive, although much smaller than
the other two we used for this work. It is important to remark that HARP2 is available only for
researchers around the globe, and Intel has already been warning about updating those Broadwell
architectures. That is one of the reasons that their power tool for Arria 10 is an approximation;
they do not intend to support this product anymore. Therefore, we moved our design to a newer

architecture with more resources.

As we mentioned in the results, the source code required a few changes because Arria 10
from HARP2 and Stratix 10 from Paderborn are entirely different architectures. Even the FPGA
architecture is different with its hyperflex registers. Exploring performance over different devices
with the same source code is challenging, and it was not possible to maintain the performance
with OpenCL portable language. The language portability depends on the manufacturer compiler

and how they implement specific warnings according to the underlying architecture.

Another experience with those compilers showed us that loop unrolling is only sometimes
efficient, especially if the design considers the algorithm’s behavior. Most of the time, unrolling
drops the performance because the compiler needs to duplicate the memory so the computation
over the data can run in parallel. In Arria 10, the compiler uses double pumping to avoid
replication by duplicating the clock frequency. Stratix 10 has this feature disabled by default
because it contains 4 x more M20K memory than Arria 10, and Intel does not want to drop the
performance by decreasing the frequency. Stratix 10 can reach up to 1 Ghz, so doubling the

frequency is not an option.

Generally, our FPGA results are less energy efficient and perform less than the software
counterpart. Stratix 10 had the worst performance related to our solution, which needs to be
optimized for this architecture. Our results are still not a viable option for substituting the
sequential software based on Sparse 1.3a, and we still need to further test with other chemical
mechanisms with more reactions and, consequently, more data for processing. We must also
note that the software version implements an optimized algorithm in a sparse format. At the
same time, our solution is based on a dense representation so that we could use a pipeline for the

algorithm’s loops.

5.6. Final Remarks 105

Fortran 90 source code used for converting is used in production for weather forecasting
in Brazil. That is not a benchmark designed specifically for exploring the performance over a
specific architecture, which provides a challenging application that needs newer solutions based
on GPUs. This thesis provides an initial design exploration for solving ODEs raised from the

chemical reactivity problem.

Regarding energy, our Arria 10 final architecture has the most promising results. We
generated a streaming Rosenbrock method with 24.6W of power, which is almost 3 x less power
than Stratix 10. Considering the efficiency, our results point to 426 less joule per operation.
Although we did not improve the results compared to the software version, we still argue that we
use the dense representation of the matrices. This kind of data representation incurs in 10X more
data for processing. Extrapolating the current results for Arria 10 for 10x fewer data, we would
have 0.058 joules per operation, 2 X less energy per operation than the software counterpart. On
this extrapolation, we consider that the sparse implementation would have the same performance

as the dense one.

107

CHAPTER

CONCLUSION

Besides the author’s previous research, that explored the use of the Jacobian iterative
method, we also have "A hardware/software co-design framework for the dynamics module
of the Brazilian weather forecast model - BRAMS" (PEREIRA, 2019). The work presented
here is one of the first studies that focuses on porting BRAMS to a heterogeneous computing
architecture in a hardware/software codesign.

We continued Pereira’s effort at porting BRAMS modules to a heterogeneous architecture
comprising FPGAs and CPUs. The research started with performing profiling analysis and
exploring BRAMS’ source code. That was a long activity that took years from us because of the
structure and the complex equations. BRAMS is a complex application with over 400.000 lines
of source code that uses advanced fluid mechanics, physics, chemistry, and parallel processes that
communicate with each during the execution. The output of BRAMS is a set of products generated
through the configuration file. We relied on an expert’s advice on setting this configuration file

since the number of options can quickly become unmanageable.

During this extended analysis, we concluded that chemical reactivity is one of the hot
spots that could leverage parallel solutions (Chapter 4). Although the module has plenty of
concurrency, it also imposes a challenge due to the stiff ODE equations requiring implicit
methods for solving efficiently. Our studies also showed that modeling such applications is
complex and requires a deep knowledge of meteorological physics and chemistry. So we decided
to develop hardware/software codesign from scratch to solve the stiff ODEs raised by CCATT-
BRAMS. Our efforts were towards the Rosenbrock Method, the current solver implemented in
BRAMS.

According to Sartori (2014), the Rosenbrock method was designed to allow vector
operations so the programmers can extract concurrency when porting their applications to a new
underlying architecture. The method is also designed to guarantee numerical stability and avoid

tiny timesteps. That was one of the reasons that we wanted to extend this implementation to

108 Chapter 6. Conclusion

leverage the FPGA resources.

This thesis presented a hardware/software codesign targeting the ODE solver for the
chemical reactivity problem in BRAMS. We provided this solution for Intel’s heterogeneous
architecture in HARP 2. Before implementing the codesign solution, we needed to extract the
Rosenbrock method and its linear solver algorithms. Considering that BRAMS is a complex
application that depends on several libraries and a huge amount of data, we had to refactor the
source code of BRAMS to a smaller, manageable source code. This first refactoring resulted in
5.000 lines of source in Fortran 90 and C, a fraction of the entire CCATT-BRAMS application.
That is one of the reasons that very few works concentrate their efforts on porting legacy applica-
tions to heterogeneous architectures. Most of those applications depend on legacy languages and

high human effort for building the hardware/software codesign solution for those environments.

We could define our hardware/software codesign from this source code extraction. Our
final solution can be split into two parts: (1) matrix decomposition for the linear solver, (2)
Hardware/Software codesign for the Rosenbrock Method. Those solutions went through 5 phases
so we could find a balance between hardware and software. Those implementations took a long
time because we had to adapt several source codes to OpenCL. We also had to rely on a parser
for generating structure in C-like to avoid error-prone activities such as copying the fexchem

constants to a file. Implementing in OpenCL is much faster than implementing in RTL.

We performed initial studies with VHDL, and the difficulties with floating-point oper-
ations and timing constraints made us change our focus (see Appendix A). Implementing an
implicit algorithm in VHDL demands much more work and human effort than using a High-
Level Synthesis language. Although the final results with the streaming Rosenbrock solution did
not improve the serial execution, we still provided a solution targeting FPGAs. It is important
to remind that the software solution uses sparse representation, and our solution uses dense
representation. Considering that only 10% of the matrix is non-zero, the software is computing

10x fewer data than our architecture solution.

Moving to a higher-density logic FPGA did not improve our results; it became even
worse because we needed to implement a specific solution for the new architecture. Those 5
phases exposed the heavy memory-bound operations over the Rosenbrock implicit method. That
could be better explored with future FPGA technology like Agilex, which can provide up to
102 GB/s of peak memory performance against our 16 GB/s on Arria 10 in HARP2. The new
hyperflex architecture also promises to work well on non-optimized OpenCL kernels, which can

be promising for future work with our streaming solution.

Overall, OpenCL is competitive in generating efficient hardware. We developed a solution
that is 5x slower, but we must consider that we are processing the zero elements. So we are
processing 10x more data than the software solution. Our final architecture consumes 4 W less
than the CPU execution. Considering the extrapolation of those results, our final architecture

performs with 0.058 of power efficiency compared to the 0.121 of the software, which is almost

6.1. Contributions 109

2x more power efficient. We also need to consider that we are using an old OpenCL compiler
version based on 16.0, which is impossible to change because of the BSP development. We also
assessed our solution with real data from a huge application in Brazil. The development of this
research proved that FPGAs are mature enough to be used on high-performance applications and

not only restricted to embedded systems.

6.1 Contributions

The main contribution of this thesis is implementing a hardware/software codesign for
the ODE implicit solver based on the Rosenbrock Method. Thanks to the parser application that
generates the structures in C-like, we also provide an optimal balance between hardware and
software. This approach allowed us to move to the FPGA and perform a good trade-off between

memory-bound and CPU-bound operations. Other contributions:

e Providing a solution that was converted from a Fortran 90 legacy application to a codesign

of hardware/software;

e Providing a QR decomposition solution for FPGAs in OpenCL, which can be used for any
application that can fit on the target FPGA and is not restricted to the sizes of the BRAMS
matrices. This work was published in "Exploration of FPGA-Based Hardware Designs for
QR Decomposition for Solving Stiff ODE Numerical Methods Using the HARP Hybrid

Architecture";

e To the best of our knowledge, this is the first porting of the Rosenbrock method to Intel’s

heterogeneous architecture;

e To the best of our knowledge, this is the first work to use the Stratix 10 hyperflex architec-

ture and expose the new challenges for the Rosenbrock method;
e Provided OpenCL kernels that can be adapted for other FPGA architectures;

e Provided a parser that allows the programmer to choose the chemical mechanism. This
parser also allows some local memory savings, which is the most used resource for this

implementation;

e Provided a good trade-off between memory-bound and CPU-bound operations which is

key for performance.

6.2 Limitations

e There is still room for improvement over the QR decomposition regarding the matrix size;

110 Chapter 6. Conclusion

e The work did not explore a sparse solution because that would break the loop pipeline.
So we could explore more solutions that could perform a trade-off between pipeline

parallelism and less data-intensive operations;
e We did not explore more implicit ODE due to the modeling complexity of the application;

e The system was tested for a single process. We did not implement collective calls for
computing the matrices from the other core processors. That is a normal limitation on

external computing devices. It is the programmer’s responsibility to solve that;

e We were not able to couple our solution to BRAMS because it requires administrative
permissions and because there are no FPGAs available at CPTEC/INPE;

e Using the FPGAs remotely did incur more time for implementation;

e Compiling the green part (the area responsible for the BSP) and the blue part (the user
logic) is impossible. Intel locked this feature in HARP 2;

e Old OpenCL compiler version.

6.3 Lessons Learned

While initially planed, some aspects of this work were no explored. These included
exploring different floating-point types, implementing a VHDL solution, and using OpenCL
only for communication with the CPU. We also had yet to learn how much work involves in
modeling an implicit solver for CCATT-BRAMS. The most challenging work was understanding
the BRAMS application due to the lack of documentation, and the ones found are accessible
to people that are not experts in the field. Working with remote FPGAs also imposed some
extra time whenever there was a bug or maintenance on the server. We had to contact the INPE

personnel and travel to their institute to better understand how the application works.

The remote execution of those tests was not planned either. We were considering coupling
our solution to BRAMS as we did in the master thesis, but then we had to face the limitations
of a shared server and extract the source code from BRAMS. This task was error-prone and
time-consuming, which took much more time than planned, mainly because we needed to fully
understand the application. We also needed to adapt the source to execute the same operations

on BRAMS with the same performance.

6.4 Future Work

Several kinds of research could be derived from this thesis. The first and most important

should be related to the efficient sparse implementation of the QR decomposition, a data-intensive

6.4. Future Work 111

operation that needs a pipeline solution. Such a solution could change the results obtained by

this work.

Exploring advanced implicit methods targetting FPGAs is another direct study from this
thesis. The literature review showed that we still have plenty of algorithms to explore, most of
which are implemented targetting GPUs. Modeling a new solution considering CCATT-BRAMS
and FPGA:s is also interesting, but it requires a specialist in the field working with a hardware
specialist. Another work we propose is to explore Agilex architecture, and this is an FPGA
targetting data-intense operations with peak memory performance 6 x higher than our best
solution with Intel’s heterogeneous architecture. Table 27 shows a resource comparison among
the FPGA architecture we worked on.

Table 27 — Resource comparison

Arria 10 Stratix 10 Agilex
Logic elements 1,150,00 2,753,00 3,851,520
DSPs 1,518 5,760 9,375
Local Memory 65 244 311

We should also consider using Intel OneAPI to replace the current OpenCL SDK, the
most updated language for High-Level Synthesis. Our previous studies on this language showed
that it is possible to migrate to OneAPI from OpenCL; although the languages are not identical,
they have similar data structures. Even Intel has a tutorial page for migration. In this author’s
opinion, it is weird that Intel accepted a language that merges host and kernel into a single file.
Anyone who has already worked with OpenCL High-Level Synthesis knows that compiling the
kernel is time-demanding and should be avoided. However, that is impossible when there is a
single file for the host and kernel. Any change on the host side will incur in hours of compilation.
Thankfully, that is not the only mode allowed by OneAPI.

Another feature that requires special attention is the higher-level abstraction for data
transfers. Our previous results with OpenCL show that this is not recommended for hardware
design if the final target is performance. Companies may argue that it is a programmer-friendly
environment, so the adoption of FPGA can increase. However, why would a programmer adopt
something slower and harder to optimize? The best results we obtained in this thesis required
deep knowledge of hardware, and most of them were possible by avoiding the good practices

standard in the software environments.

One huge limitation is that OneAPI for Intel FPGAs can only be used with Intel devices.
That may impose some adoption challenges, especially for legacy applications like BRAMS. For
the last, we found it curious that Intel does not support volatile type in OneAPI kernels, which
was critical for performance in HARP 2 architecture since CCI-P still presents some bugs. Initial
research showed that OneAPlI is a viable solution for stencil computation and not optimized for
tiny matrices (RODRIGUEZ-CANAL et al., 2021), which is precisely the type of matrix inside
the CCATT-BRAMS module.

113

BIBLIOGRAPHY

ACKERMAN, P.; ACKERMAN, S.; KNOX, J. Meteorology. Jones & Bartlett Learn-
ing, LLC, 2013. ISBN 9781284027389. Available: <https://books.google.com.br/books?id=
qWcrAQAAQBAIJ>. Citation on page 37.

ALIKHANIA, J.; MASSOUDIEHB, A.; BHOWMIKA, U. Gpu-accelerated solution of activated
sludge model’s system of odes with a high degree of stiffness. In: . [S.L.: s.n.], 2017. p. 555-560.
Citation on page 63.

ALTERA. Implementing FPGA Design with the OpenCL Standard. [S.1.], 2013. Available:
<https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf>. Accessed: May 4,
2017. Citations on pages 13, 53, and 54.

AMOS, D.; LESEA, A.; RICHTER, R. FPGA-based prototyping methodology manual: Best
practices in design-for-prototyping. [S.1.]: Happy About, 2011. Citations on pages 13 and 41.

ANDERSON, E.; BAI, Z.; DONGARRA, J. Generalized qr factorization and its applications.
Linear Algebra and its Applications, Elsevier, v. 162, p. 243-271, 1992. Citation on page 79.

ANDERSON, M. J.; SHEFFIELD, D.; KEUTZER, K. A predictive model for solving small
linear algebra problems in gpu registers. In: IEEE. 2012 IEEE 26th International Parallel and
Distributed Processing Symposium. [S.1.], 2012. p. 2—13. Citation on page 61.

BAHI, J.; CHARR, J.-C.; COUTURIER, R.; LATYMANI, D. A parallel algorithm to solve large
stiff ode systems on grid systems. In: . [S.1.: s.n.], 2007. p. 534-541. Citation on page 63.

. A parallel algorithm to solve large stiff ode systems on grid systems. International Jour-
nal of High Performance Computing Applications, v. 23, n. 2, p. 140-151, 2009. Citation
on page 63.

BELARDINI, P.; BERTOLI, C.; CORSARO, S.; D’AMBRA, P. The impact of different stiff
ode solvers in parallel simulation of diesel combustion. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), v. 3726 LNCS, p. 958-968, 2005. Citation on page 63.

BINDEL, D.; GOODMAN, J. Principles of scientific computing linear algebra ii, algorithms.
2006. Citation on page 79.

BITTWARE, 1. S5-PCle-HQ. [S.1.], 2015. 57 p. Citation on page 42.

BLICKLE, T.; TEICH, J.; THIELE, L. System-level synthesis using evolutionary algorithms.
Design Automation for Embedded Systems, Springer, v. 3, n. 1, p. 23-58, 1998. Citation on
page 57.

BLUESPEC. BSV Documentation. 2017. Available: <http://wiki.bluespec.com/Home/
BSV-Documentation>. Accessed: Nov. 28, 2018. Citations on pages 13 and 49.

https://books.google.com.br/books?id=qWcrAQAAQBAJ
https://books.google.com.br/books?id=qWcrAQAAQBAJ
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
http://wiki.bluespec.com/Home/BSV-Documentation
http://wiki.bluespec.com/Home/BSV-Documentation

114 Bibliography

BOBDA, C. Introduction to Reconfigurable Computing: Architectures, Algorithms, and
Applications. Springer Netherlands, 2007. ISBN 9781402061004. Available: <https://books.
google.com.br/books?id=_cNSgjR32LkC>. Citation on page 41.

BOUT, D. V. FPGAs?! Now What? [s.n.], 2011. Available: <http://www.xess.com/static/media/
appnotes/FpgasNowWhatBook.pdf>. Citation on page 41.

BRUDER, J. Numerical results for a parallel linearly-implicit runge-kutta method. Computing
(Vienna/New York), v. 59, n. 2, p. 139-151, 1997. Citation on page 63.

BUCHTY, R.; HEUVELINE, V.; KARL, W.; WEISS, J.-P. A survey on hardware-aware and
heterogeneous computing on multicore processors and accelerators. Concurrency and Compu-
tation: Practice and Experience, Wiley Online Library, v. 24, n. 7, p. 663—675, 2012. Citation
on page 50.

CENTER, P. Intel® Performance Counter Monitor - A Better Way to Measure CPU
Utilization. 2023. Available: <https://www.intel.com/content/www/us/en/developer/articles/
technical/performance-counter-monitor.html>. Accessed: May 05, 2023. Citation on page 74.

CHAPRA, S. Numerical Methods for Engineers. [s.n.], 2014. ISBN 9780077492168. Avail-
able: <https://books.google.com.br/books?id=3GpzCgAAQBAJ>. Citations on pages 28 and 34.

CHASNOV, J. R. Introduction to Differential Equations. 2016. Available: <https://www.math.
ust.hk/~machas/differential-equations.pdf>. Accessed: Dec 8, 2018. Citation on page 33.

CHIU, G. Using intel quartus prime software to maximize performance in the intel hyperflex
fpga architecture. Intel white paper, 2021. Citation on page 44.

CHU, P. FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version. Wiley, 2011.
ISBN 9781118210604. Available: <https://books.google.com.br/books?1d=nXdbDRUUCyUC>.
Citation on page 41.

CRASSIER, V.; SUHRE, K.; TULET, P.; ROSSET, R. Development of a reduced chemical
scheme for use in mesoscale meteorological models. Atmospheric Environment, Elsevier,
v. 34, n. 16, p. 2633-2644, 2000. Citation on page 37.

CURTISS, C. E.; HIRSCHFELDER, J. O. Integration of stiff equations. Proceedings of the
National Academy of Sciences, National Acad Sciences, v. 38, n. 3, p. 235-243, 1952. Citation
on page 28.

CZAJKOWSKI, T. S.; AYDONAT, U.; DENISENKO, D.; FREEMAN, J.; KINSNER, M,;
NETO, D.; WONG, J.; YIANNACOURAS, P.; SINGH, D. P. From opencl to high-performance
hardware on fpgas. In: IEEE. Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on. [S.1.], 2012. p. 531-534. Citation on page 54.

CZAJKOWSKI, T. S.; NETO, D.; KINSNER, M.; AYDONAT, U.; WONG, J].; DENISENKO, D.;
YIANNACOURAS, P.; FREEMAN, J.; SINGH, D. P.; BROWN, S. D. Opencl for fpgas: Proto-

typing a compiler. In: Int’l Conf. on Engineering of Reconfigurable Systems and Algorithms
(ERSA). [S.1.: s.n.], 2012. p. 3—12. Citations on pages 13 and 55.

DAGA, V.; GOVINDU, G.; PRASANNA, V.; GANGADHARAPALLL S.; SRIDHAR, V. Ef-
ficient floating-point based block lu decomposition on fpgas. In: International Conference
on Engineering of Reconfigurable Systems and Algorithms, Las Vegas. [S.1.: s.n.], 2004. p.
21-24. Citation on page 60.

https://books.google.com.br/books?id=_cNSgjR32LkC
https://books.google.com.br/books?id=_cNSgjR32LkC
http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/performance-counter-monitor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/performance-counter-monitor.html
https://books.google.com.br/books?id=3GpzCgAAQBAJ
https://www.math.ust.hk/~machas/differential-equations.pdf
https://www.math.ust.hk/~machas/differential-equations.pdf
https://books.google.com.br/books?id=nXdbDRUUCyUC

Bibliography 115

D’AMORE, R.; CIRCUITOS, V.-D. e sintese de. Digitais. Editora LTC, 2005. Citation on
page 48.

DAVE, N. H. et al. Designing a processor in Bluespec. Phd Thesis (PhD Thesis) — Mas-
sachusetts Institute of Technology, 2005. Citation on page 49.

DAVISON, M. Shallow/Deep Convection. [S.1.], 1999. Available: <http://origin.wpc.ncep.noaa.
gov/international/training/deep/sld001.htm>. Accessed: May 8, 2017. Citation on page 37.

DENNARD, R. H.; GAENSSLEN, F. H.; YU, H.-N.; RIDEOUT, V. L.; BASSOUS, E.;
LEBLANC, A. R. Design of ion-implanted mosfet’s with very small physical dimensions.
IEEE Journal of solid-state circuits, IEEE, v. 9, n. 5, p. 256-268, 1974. Citation on page 29.

ERNST, R.; HENKEL, J.; BENNER, T. Hardware-software cosynthesis for microcontrollers.
IEEE Design Test of Computers, v. 10, n. 4, p. 64-75, Dec 1993. ISSN 0740-7475. Citation
on page 57.

FAICT, T.; D’HOLLANDER, E. H.; GOOSSENS, B. Mapping a guided image filter on the
harp reconfigurable architecture using opencl. Algorithms, v. 12, n. 8, 2019. ISSN 1999-4893.
Available: <https://www.mdpi.com/1999-4893/12/8/149>. Citations on pages 13, 42, 43, and 86.

FERNANDES, A. d. A. Paralelizacdo do Termo de Reatividade Quimica do Modelo Am-
biental CCATT-BRAMS utilizando um Solver Baseado em Estimacao Linear Otima. 76 p.
Master’s Thesis (Master’s Thesis) — Instituto Nacional de Pesquisas Espaciais, 2014. Master’s
thesis at INPE-SP. Citations on pages 38 and 75.

FREITAS, S.; LONGO, K.; DIAS, M. S.; CHATFIELD, R.; DIAS, P. S.; ARTAXO, P.; AN-
DREAE, M.; GRELL, G.; RODRIGUES, L.; FAZENDA, A. et al. The coupled aerosol and tracer
transport model to the brazilian developments on the regional atmospheric modeling system

(catt-brams)—part 1: Model description and evaluation. Atmospheric Chemistry and Physics,
Copernicus GmbH, v. 9, n. 8, p. 2843-2861, 2009. Citation on page 36.

FREITAS, S.; LONGO, K.; TRENTMANN, J.; LATHAM, D. Technical note: Sensitivity of 1-d
smoke plume rise models to the inclusion of environmental wind drag. Atmospheric Chemistry
and Physics, Copernicus GmbH, v. 10, n. 2, p. 585-594, 2010. Citation on page 36.

GALLERY, R. Hardware/software codesign. The ITB Journal, v. 4, n. 1, p. 5, 2015. Citation
on page 56.

GE, X.; ZHU, H.; YANG, F.; WANG, L.; ZENG, X. Parallel sparse lu decomposition using fpga
with an efficient cache architecture. In: IEEE. 2017 IEEE 12th International Conference on
ASIC (ASICON). [S.1.], 2017. p. 259-262. Citation on page 60.

GOLUB, G.; LOAN, C. V. Matrix Computations. Johns Hopkins University Press, 2013.
(Johns Hopkins Studies in the Mathematical Sciences). ISBN 9781421407944. Available: <https:
/Mbooks.google.com.br/books?id=X5YfsuCWpxMC>. Citation on page 79.

GUPTA, P. Xeon+FPGA Platform for the Data Center. [S.1.], 2015. Available: <https://www.
ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf>. Accessed: Apr 10, 2017.
Citation on page 56.

GUPTA, R. K.; MICHELI, G. D. Hardware-software cosynthesis for digital systems. IEEE
Design Test of Computers, v. 10, n. 3, p. 29-41, Sept 1993. ISSN 0740-7475. Citation on page
57.

http://origin.wpc.ncep.noaa.gov/international/training/deep/sld001.htm
http://origin.wpc.ncep.noaa.gov/international/training/deep/sld001.htm
https://www.mdpi.com/1999-4893/12/8/149
https://books.google.com.br/books?id=X5YfsuCWpxMC
https://books.google.com.br/books?id=X5YfsuCWpxMC
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf

116 Bibliography

G4CITA, M. S. Estudos Numéricos de Quimica Atmosférica para a regido do Caribe e
América Central com Enfase em Cuba. Master’s Thesis (Master’s Thesis) — Instituto Na-
cional de Pesquisas Espaciais - INPE, Sao José dos Campos - SP - Brasil, 2011. Citation on
page 38.

HAIRER, E.; NORSETT, S.; WANNER, G. Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems. Springer, 1993. (Lecture Notes in Economic and
Mathematical Systems). ISBN 9783540604525. Available: <https://books.google.com.br/books?
id=m7c8nNLPwalC>. Citation on page 28.

HOWARD, P. Modeling with ODE. 2009. Available: <www.math.tamu.edu/~phoward/m647/
modode.pdf>. Citation on page 36.

HUTTON, M. Understanding how the new intel hyperflex fpga architecture enables next-
generation high-performance systems. Intel white paper, 2022. Citations on pages 13 and 44.

IEEE. Verilog register transfer level synthesis. IEC 62142-2005 First edition 2005-06 IEEE
Std 1364.1, p. 1-116, 2005. Citation on page 48.

INPE/CPTEC. Model Description. [S.1.], 2022. Available: <http://brams.cptec.inpe.br/about/>.
Accessed: Dec. 4, 2022. Citation on page 36.

INTEL. Intel FPGA SDK for OpenCL - Best Practices Guide. [S.l.], 2016. Avail-
able: <https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.
pdf>. Accessed: Mar 29, 2017. Citations on pages 13 and 54.

. Intel FPGA SDK for OpenCL - Programming Guide. [S.1.], 2016. Available: <https://
www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf>. Accessed:
May 4, 2017. Citation on page 54.

. Fpga agility and flexibility for the data-centric world. Intel white paper, 2017. Citation on
page 45.

. Floating-Point IP Cores User Guide. [S.1.], 2021. Available: <https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf>. Accessed: Oct.
15, 2021. Citation on page 86.

OpenCL™ Code Interoperability. 2022. Available: <https://www.intel.
com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/

software-development-process/composability/opencl-code-interoperability.html>. Accessed:
Dec 11, 2022. Citation on page 47.

. Current and Recent FPGA Systems at PC2. 2023. Available: <https://pc2.
uni-paderborn.de/hpc-services/available-systems/fpga-research-clusters>. Accessed: May 05,
2023. Citation on page 74.

PowerPlay Power Analyzer Support Resources. 2023. Available: <https:
/lwww.intel.com/content/www/us/en/support/programmable/support-resources/power/
sof-qts-power.html>. Accessed: May 05, 2023. Citation on page 77.

JACOB, D. Introduction to atmospheric chemistry. [S.1.]: Princeton University Press, 1999.
Citation on page 33.

https://books.google.com.br/books?id=m7c8nNLPwaIC
https://books.google.com.br/books?id=m7c8nNLPwaIC
www.math.tamu.edu/~phoward/m647/modode.pdf
www.math.tamu.edu/~phoward/m647/modode.pdf
http://brams.cptec.inpe.br/about/
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/composability/opencl-code-interoperability.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/composability/opencl-code-interoperability.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/composability/opencl-code-interoperability.html
https://pc2.uni-paderborn.de/hpc-services/available-systems/fpga-research-clusters
https://pc2.uni-paderborn.de/hpc-services/available-systems/fpga-research-clusters
https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/sof-qts-power.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/sof-qts-power.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/sof-qts-power.html

Bibliography 117

JACOB, D. J. Chemical Tracer Models: an introduction. 2007. Available: <http://acmg.seas.
harvard.edu/education/jacob_lectures_ctms_chapl.pdf>. Accessed: Nov. 28, 2018. Citation on
page 33.

JANIK, I.; TANG, Q.; KHALID, M. An overview of altera sdk for opencl: A user perspec-
tive. In: IEEE. Electrical and Computer Engineering (CCECE), 2015 IEEE 28th Canadian
Conference on. [S.1.], 2015. p. 559-564. Citations on pages 55 and 56.

JIANG, Z.; RAZIEIL S. A. An efficient fpga-based direct linear solver. In: IEEE. 2017 IEEE Na-
tional Aerospace and Electronics Conference (NAECON). [S.1.], 2017. p. 159-166. Citation
on page 61.

JUNIOR, C. Alberto Oliveira de S.; BISPO, J.; CARDOSO, J. M.; DINIZ, P. C.; MARQUES, E.
Exploration of fpga-based hardware designs for qr decomposition for solving stiff ode numerical
methods using the harp hybrid architecture. Electronics, MDPIL, v. 9, n. 5, p. 843, 2020. Citations
on pages 61, 73, and 130.

JUNIOR, M. B. d. S. Portabilidade com Eficiéncia da Adveccao do Modelo BRAMS entre
Arquiteturas Multi-Core e Many-Core. 92 p. Master’s Thesis (Master’s Thesis) — Instituto
Nacional de Pesquisas Espaciais, 2015. Master’s thesis at INPE-SP. Citation on page 30.

KALINNIK, N.; RAUBER, T. Execution behavior analysis of parallel schemes for implicit
solution methods for odes. In: IEEE. 2018 17th International Symposium on Parallel and
Distributed Computing (ISPDC). [S.1.], 2018. p. 1-8. Citation on page 63.

KAPRE, N.; DEHON, A. Parallelizing sparse matrix solve for spice circuit simulation using fpgas.
In: IEEE. Field-Programmable Technology, 2009. FPT 2009. International Conference on.
[S.L], 2009. p. 190-198. Citation on page 59.

KARP, M.; PODOBAS, A.; JANSSON, N.; KENTER, T.; PLESSL, C.; SCHLATTER, P;
MARKIDIS, S. High-performance spectral element methods on field-programmable gate arrays:
implementation, evaluation, and future projection. In: IEEE. 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). [S.1.], 2021. p. 1077-1086. Citation on
page 45.

KHALAF, B.; AL-NEMA, M. Generalized parallel algorithms for bvps in odes. In: . [S.1.: s.n.],
2009. p. 759-765. Citation on page 63.

KREYSZIG, E. Advanced Engineering Mathematics. John Wiley & Sons, 2010. ISBN
9780470458365. Available: <https://books.google.com.br/books?id=UnN8DpXI74EC>. Cita-
tion on page 27.

KROSHKO, A.; SPITERI, R. Efficient simd solution of multiple systems of stiff ivps. Journal
of Computational Science, v. 4, n. 5, p. 377-385, 2013. Citation on page 63.

KUNDERT, K. S.; SANGIOVANNI-VINCENTELLI, A. Sparsel.3. [S.1.], 1988. Available:
<http://web.cs.ucla.edu/classes/CS258G/sis-1.3/sis/linsolv/>. Accessed: Oct. 28, 2015. Citations
on pages 39 and 79.

LAL Y.-H.; USTUN, E.; XIANG, S.; FANG, Z.; RONG, H.; ZHANG, Z. Programming and
synthesis for software-defined fpga acceleration: status and future prospects. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), ACM New York, NY, v. 14, n. 4, p.
1-39, 2021. Citation on page 47.

http://acmg.seas.harvard.edu/education/jacob_lectures_ctms_chap1.pdf
http://acmg.seas.harvard.edu/education/jacob_lectures_ctms_chap1.pdf
https://books.google.com.br/books?id=UnN8DpXI74EC
http://web.cs.ucla.edu/classes/CS258G/sis-1.3/sis/linsolv/

118 Bibliography

LAMBERS, J. Lecture 9 Notes. 2010. Lecture Note. Available: <http://www.math.usm.edu/
lambers/mat461/spr10/lecture9.pdf>. Citation on page 34.

LANGHAMMER, M.; PASCA, B. High-performance qr decomposition for fpgas. In: Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. [S.1.: s.n.], 2018. p. 183—-188. Citation on page 60.

LINFORD, J. C.; MICHALAKES, J.; VACHHARAJANI, M.; SANDU, A. Multi-core ac-
celeration of chemical kinetics for simulation and prediction. In: IEEE. High Performance
Computing Networking, Storage and Analysis, Proceedings of the Conference on. [S.L],
2009. p. 1-11. Citation on page 75.

LINFORD,J. C.; SANDU, A. Vector stream processing for effective application of heterogeneous
parallelism. In: Proceedings of the 2009 ACM Symposium on Applied Computing. ACM,
2009. (SAC ’09), p. 976-980. ISBN 978-1-60558-166-8. Available: <http://doi.acm.org/10.1145/
1529282.1529496>. Citation on page 28.

LIU, L.; WANG, H.; LIU, X.; JIN, X.; HE, W. B.; WANG, Q. B.; CHEN, Y. Greencloud: a
new architecture for green data center. In: Proceedings of the 6th international conference
industry session on Autonomic computing and communications industry session. [S.1.: s.n.],
20009. p. 29-38. Citation on page 29.

LONGO, K.: FREITAS, S.; PIRRE, M.: MARECAL, V.; RODRIGUES, L.; PANETTA, J.;
ALONSO, M.; ROSARIO, N.; MOREIRA, D.; GACITA, M. et al. The chemistry catt—brams
model (ccatt—brams 4.5): a regional atmospheric model system for integrated air quality and
weather forecasting and research. Model Dev. Discuss, v. 6, p. 1173-1222, 2013. Citations on
pages 13, 36, 37, 38, 75, and 76.

LUAN, V.; OSTERMANN, A. Parallel exponential rosenbrock methods. Computers and Math-
ematics with Applications, v. 71, n. 5, p. 1137-1150, 2016. Cited By 3. Citation on page
63.

MACINTOSH, H. J.; BANKS, J. E.; KELSON, N. A. Implementing and evaluating an hetero-
geneous, scalable, tridiagonal linear system solver with opencl to target fpgas, gpus, and cpus.
International Journal of Reconfigurable Computing, Hindawi, v. 2019, 2019. Citation on
page 61.

MARTINEZ, L. A. Projeto de um sistema embarcado de predicao de colisdo e pedestres
baseado em computacao reconfiguravel. Phd Thesis (PhD Thesis) — Universidade de Sao
Paulo, 2017. Citation on page 49.

MARTINEZ, L. A. Um framework para coprojeto de hardware e software de sistemas
avancados de assisténcia ao motorista baseados em cameras. Phd Thesis (PhD Thesis) —
Universidade de Sao Paulo, 2017. Citation on page 57.

MARTINEZ, L. A. Um framework para coprojeto de hardware e software de sistemas
avancados de assisténcia ao motorista baseados em cameras. Phd Thesis (PhD Thesis) —
University of S@o Paulo, 2017. Citation on page 49.

MATHWORKS. Solve Stiff ODEs. 2018. Available: <https://www.mathworks.com/help/matlab/
math/solve-stiff-odes.html>. Citations on pages 13 and 35.

http://www.math.usm.edu/lambers/mat461/spr10/lecture9.pdf
http://www.math.usm.edu/lambers/mat461/spr10/lecture9.pdf
http://doi.acm.org/10.1145/1529282.1529496
http://doi.acm.org/10.1145/1529282.1529496
https://www.mathworks.com/help/matlab/math/solve-stiff-odes.html
https://www.mathworks.com/help/matlab/math/solve-stiff-odes.html

Bibliography 119

MENG, H.; WAKABAYASHI, K.; KURODA, T. A scalable linear equation solver fpga using
high-level synthesis. In: . [S.L.: s.n.], 2022. (24th Workshop on Synthesis And System Integration
of Mixed Information technologies). Citation on page 61.

MOORE ANDREW; WILSON, R. FPGAs for Dummies. Wiley, 2017. ISBN 978-1-119-39047-
3. Available: <https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/
misc/fpgas_for_dummies_ebook.pdf>. Citation on page 41.

MOORE, G. E. ef al. Cramming more components onto integrated circuits. [S.1.]: McGraw-
Hill New York, 1965. Citation on page 29.

MOREIRA, D.; FREITAS, S.; BONATTI, J.; MERCADO, L.; ROSARIO, N.; LONGO, K_;
MILLER, J.; GLOOR, M.; GATTI, L. Coupling between the jules land-surface scheme and
the ccatt-brams atmospheric chemistry model (jules-ccatt-brams1. 0): applications to numerical
weather forecasting and the co 2 budget in south america. Geoscientific Model Development,
Copernicus GmbH, v. 6, n. 4, p. 1243-1259, 2013. Citation on page 40.

MUNSHI, A. The OpenCL Specification. [S.1.], 2009. Available: <https://www.khronos.org/
registry/OpenCL/specs/opencl-1.0.pdf>. Accessed: Mar 21, 2017. Citations on pages 13, 52,
and 53.

MUNSHI, A.; GASTER, B.; MATTSON, T. G.; GINSBURG, D. OpenCL programming guide.
[S.1.]: Pearson Education, 2011. Citations on pages 50 and 53.

MURALIDHAR, R.; BOROVICA-GAJIC, R.; BUYYA, R. Energy efficient computing sys-
tems: Architectures, abstractions and modeling to techniques and standards. ACM Computing
Surveys (CSUR), ACM New York, NY, v. 54, n. 11s, p. 1-37, 2022. Citations on pages 13
and 50.

MUSLIM, F. B.; MA, L.; ROOZMEH, M.; LAVAGNO, L. Efficient fpga implementation of
opencl high-performance computing applications via high-level synthesis. IEEE Access, IEEE,
v. 5, p. 2747-2762, 2017. Citations on pages 29 and 47.

NANE, R.; SIMA, V.-M.; PILATO, C.; CHOL, J.; FORT, B.; CANIS, A.; CHEN, Y. T.; HSIAO,
H.; BROWN, S.; FERRANDI, F. et al. A survey and evaluation of fpga high-level synthesis
tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, v. 35, n. 10, p. 1591-1604, 2015. Citation on page 47.

NIEMEYER, K. E.; SUNG, C.-J. Accelerating moderately stiff chemical kinetics in reactive-flow
simulations using gpus. Journal of Computational Physics, Elsevier, v. 256, p. 854-871, 2014.
Citations on pages 29 and 62.

OFENBECK, G.; STEINMANN, R.; CAPARROS, V.; SPAMPINATO, D. G.; PUSCHEL, M.
Applying the roofline model. In: IEEE. 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). [S.1.], 2014. p. 76-85. Citation on page 86.

PARKER, M.; MAUER, V.; PRITSKER, D. Qr decomposition using fpgas. In: IEEE. 2016
IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation
Summit (OIS). [S.1.], 2016. p. 416-421. Citations on pages 60, 61, 72, and 80.

PEDRONI, V. A. Circuit design with VHDL. [S.1.]: MIT press, 2004. Citation on page 48.

PENG, R. Algorithm design using spectral graph theory. Phd Thesis (PhD Thesis) — Mi-
crosoft Research, 2013. Citation on page 79.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/misc/fpgas_for_dummies_ebook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/misc/fpgas_for_dummies_ebook.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf

120 Bibliography

PEREIRA, E. d. S. Um framework para coprojeto de hardware/software para o médulo da
dinamica do modelo brasileiro de previsao do tempo-BRAMS. Phd Thesis (PhD Thesis) —
Universidade de Sao Paulo, 2019. Citations on pages 57 and 107.

PETCU, D. Numerical solution of odes with distributed maple. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), v. 1988, p. 666—-674, 2001. Citation on page 63.

RAHMANI, A. M.; LILJEBERG, P.; HEMANI, A.; JANTSCH, A.; TENHUNEN, H. The dark
side of silicon. Springer International Publishing, AG Switzerland, Springer, v. 10, p. 978-3,
2016. Citation on page 29.

RANDALL, D. A. An Introduction to Atmospheric Modeling. [s.n.], 2013. Available: <http:
//kiwi.atmos.colostate.edu/group/dave/at604.html>. Citation on page 37.

RAYMOND, E. S. The Cathedral & the Bazaar: Musings on linux and open source by an
accidental revolutionary. [S.1.]: " O’Reilly Media, Inc.", 2001. Citation on page 36.

RODRIGUEZ-CANAL, G.; TORRES, Y.; ANDUJAR, F. J.; GONZALEZ-ESCRIBANO, A.
Efficient heterogeneous programming with fpgas using the controller model. The Journal of
Supercomputing, Springer, v. 77, n. 12, p. 13995-14010, 2021. Citations on pages 48 and 111.

RUAN, H.; HUANG, X.; FU, H.; YANG, G. Jacobi solver: A fast fpga-based engine system for
jacobi method. Research Journal of Applied Sciences, Engineering and Technology, March
2013. ISSN 2040-7459. Citation on page 60.

RUIZ, J. M.; LOPERA, J. O.; CARRILLO, J. Exploiting the multilevel parallelism and the
problem structure in the numerical solution of stiff odes. In: IEEE. Parallel, Distributed and
Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop on. [S.1.], 2002.
p. 173-180. Citation on page 63.

SANAULLAH, A.; HERBORDT, M. C. Fpga hpc using opencl: Case study in 3d fft. In:
Proceedings of the 9th International Symposium on Highly-Efficient Accelerators and Re-
configurable Technologies. [S.1.: s.n.], 2018. p. 1-6. Citation on page 29.

SANDU, A.; VERWER, J.; BLOM, J.; SPEE, E.; CARMICHAEL, G.; POTRA, F. Benchmarking
stiff ode solvers for atmospheric chemistry problems ii: Rosenbrock solvers. Atmospheric
environment, Elsevier, v. 31, n. 20, p. 3459-3472, 1997. Citation on page 40.

SARTORI, L. M. Métodos para resolucao de EDOs stiff resultantes de modelos quimicos
atmosféricos. Master’s Thesis (Master’s Thesis) — Universidade de Sdo Paulo, 2014. Citations
on pages 28, 40, 72, and 107.

SATEK, V. Stiff systems analysis. Citeseer, 2011. Citation on page 34.

SCHAUMONT, P. A practical introduction to hardware/software codesign. [S.1.]: Springer
Science & Business Media, 2012. Citations on pages 13 and 56.

SEIFOORI, Z.; EBRAHIMI, Z.; KHALEGHI, B.; ASADI, H. Introduction to emerging sram-
based fpga architectures in dark silicon era. In: Advances in Computers. [S.1.]: Elsevier, 2018.
v. 110, p. 259-294. Citation on page 47.

SELICK, P. Differential Equations I. 2011. Available: <http://www.math.toronto.edu/selick/
B44.pdf>. Accessed: Dec 8, 2018. Citation on page 33.

http://kiwi.atmos.colostate.edu/group/dave/at604.html
http://kiwi.atmos.colostate.edu/group/dave/at604.html
http://www.math.toronto.edu/selick/B44.pdf
http://www.math.toronto.edu/selick/B44.pdf

Bibliography 121

SHI, Y.; GREEN, W. H.; WONG, H.-W.; OLUWOLE, O. O. Accelerating multi-dimensional
combustion simulations using gpu and hybrid explicit/implicit ode integration. Combustion and
Flame, Elsevier, v. 159, n. 7, p. 2388-2397, 2012. Citations on pages 75 and 76.

SILVA, E. Pereira da. Projeto de um Processador Open Source em Bluespec Baseado no
Processador Soft-core Nios II da Altera. 95 p. Master’s Thesis (Mestrado em Ciéncia da
Computag¢do) — Univerisity of Sdo Paulo, Sao Paulo, 2014. Citation on page 42.

SIMON, C. P.; BLUME, L. Mathematics for economists. [S.].]: Norton New York, 1994.
Citation on page 35.

SINGH, C. K.; PRASAD, S. H.; BALSARA, P. T. Vlsi architecture for matrix inversion using
modified gram-schmidt based qr decomposition. In: IEEE. 20th International Conference
on VLSI Design held jointly with 6th International Conference on Embedded Systems
(VLSID’07). [S.L.], 2007. p. 836-841. Citation on page 80.

SOUZA, C. A. O. D. A hardware/software codesign for the chemical reactivity of BRAMS.
112 p. Master’s Thesis (Master’s Thesis) — University of Sao Paulo, 2017. Master’s thesis at
ICMC-USP. Citation on page 76.

SOUZA, C. A. O. D.; PEREIRA, E. D. S.; MARQUES, E. A hardware/software codesign for
the chemical reactivity of brams. In: IEEE. 2017 Euromicro Conference on Digital System
Design (DSD). [S.1.], 2017. p. 70-77. Citation on page 59.

STOCKWELL, W. R.; KIRCHNER, F.; KUHN, M.; SEEFELD, S. A new mechanism for
regional atmospheric chemistry modeling. Journal of Geophysical Research: Atmospheres
(1984-2012), Wiley Online Library, v. 102, n. D22, p. 25847-25879, 1997. Citation on page 37.

STONE, C.; ALFERMAN, A.; NIEMEYER, K. Accelerating finite-rate chemical kinetics with
coprocessors: Comparing vectorization methods on gpus, mics, and cpus. Computer Physics
Communications, v. 226, p. 18-29, 2018. Citation on page 63.

STONE, C.; DAVIS, R. Techniques for solving stiff chemical kinetics on gpus. In: S1st ATAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposi-
tion. [S.1.: s.n.], 2013. p. 369. Citations on pages 28 and 75.

SUN, Y.; LIU, H.; ZHOU, T. Sparse cholesky factorization on fpga using parameterized model.
Mathematical Problems in Engineering, Hindawi, v. 2017, 2017. Citation on page 61.

SUTHERLAND, S.; DAVIDMANN, S.; FLAKE, P. SystemVerilog for Design Second Edi-
tion: A Guide to Using System Verilog for Hardware Design and Modeling. [S.1.]: Springer
Science & Business Media, 2006. Citation on page 49.

TABAK, J. Mathematics and the Laws of Nature: Developing the Language of Science.
Facts on File, 2004. (Facts on File math library). ISBN 9780816049578. Available: <https:
/Ibooks.google.com.br/books?id=h5xguAAACAAJ>. Citations on pages 27 and 33.

TEICH, J. Hardware/software codesign: The past, the present, and predicting the future. Pro-
ceedings of the IEEE, IEEE, v. 100, n. Special Centennial Issue, p. 1411-1430, 2012. Citation
on page 56.

THOMA, Y.; DASSATTI, A.; MOLLA, D.; PETRAGLIO, E. Fpga-gpu communicating through
pcie. Microprocessors and microsystems, Elsevier, v. 39, n. 7, p. 565-575, 2015. Citation on
page 29.

https://books.google.com.br/books?id=h5xguAAACAAJ
https://books.google.com.br/books?id=h5xguAAACAAJ

122 Bibliography

TSOI, K. H.; LUK, W. Axel: A heterogeneous cluster with fpgas and gpus. In: Proceedings
of the 18th annual ACM/SIGDA international symposium on Field programmable gate
arrays. [S.1.: s.n.], 2010. p. 115-124. Citation on page 29.

TSUCHIYAMA, R.; NAKAMURA, T.; [IZUKA, T.; ASAHARA, A.; SON, J.; MIKI, S. The
OpenCL Programming Book. Fixstars, 2012. Available: <https://books.google.com.br/books?
1d=086m1hJxA6QC>. Citations on pages 50 and 53.

VAUGHAN, C. Deep Thoughts on Deep Convection. [S.1.], 2009. Available: <http://blogs.ei.
columbia.edu/2009/03/01/deep-thoughts-on-deep-convection/>. Accessed: May 8, 2017. Cita-
tion on page 37.

VELAGAPUDI, S. Addressing memory-bandwidth and compute-intensive challenges with intel
agilex m-series fpgas. Intel white paper, 2022. Citation on page 45.

VERWER, J. G.; SPEE, E. J.; BLOM, J. G.; HUNDSDORFER, W. A second-order rosen-
brock method applied to photochemical dispersion problems. SIAM Journal on Scientific
Computing, SIAM, v. 20, n. 4, p. 1456-1480, 1999. Citation on page 38.

WANNER, G.; HAIRER, E. Solving ordinary differential equations ii. Stiff and Differential-
Algebraic Problems, 1991. Citation on page 38.

. Solving ordinary differential equations II. [S.1.]: Springer Berlin Heidelberg, 1996.
Citation on page 75.

WON, M. S. Intel agilex fpgas deliver a game-changing combination of flexibility and agility for
the data-centric world. Intel white paper, 2022. Citations on pages 13, 45, and 46.

WU, W.; SHAN, Y.; CHEN, X.; WANG, Y.; YANG, H. Fpga accelerated parallel sparse matrix
factorization for circuit simulations. In: SPRINGER. Intl. Symp. on Applied Reconfigurable
Computing. [S.1.], 2011. p. 302-315. Citation on page 60.

XILINX. Xilinx Acquires AutoESL to Enable Designer Productiv-

ity and Innovation With FPGAs and [Extensible Processing Plat-

form. 2011. Available: <https://www.prnewswire.com/news-releases/
xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation- with-fpgas-and-extensible-processing-pla
html>. Accessed: Dec 11, 2022. Citation on page 47.

YANG, C.; XUE, W.; FU, H.; YOU, H.; WANG, X.; AO, Y.; LIU, F.; GAN, L.; XU, P.; WANG, L.
et al. 10m-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics. In: IEEE
PRESS. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. [S.1.], 2016. p. 6. Citation on page 63.

YARWOOD, G.; RAO, S.; YOCKE, M.; WHITTEN, G. Updates to the carbon bond chemical
mechanism: Cb05. Final report to the US EPA, RT-0400675, v. 8, 2005. Citation on page 37.

ZHANG, H.; LINFORD, J. C.; SANDU, A.; SANDER, R. Chemical mechanism solvers in
air quality models. Atmosphere, v. 2, n. 3, p. 510-532, 2011. ISSN 2073-4433. Available:
<http://www.mdpi.com/2073-4433/2/3/510>. Citations on pages 28 and 75.

ZHUQ, L.; PRASANNA, V. K. High-performance and parameterized matrix factorization on
fpgas. In: IEEE. Field Programmable Logic and Applications, 2006. FPL’06. International
Conference on. [S.1.], 2006. p. 1-6. Citation on page 60.

https://books.google.com.br/books?id=O86m1hJxA6QC
https://books.google.com.br/books?id=O86m1hJxA6QC
http://blogs.ei.columbia.edu/2009/03/01/deep-thoughts-on-deep-convection/
http://blogs.ei.columbia.edu/2009/03/01/deep-thoughts-on-deep-convection/
https://www.prnewswire.com/news-releases/xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-extensible-processing-platform-114922409.html
https://www.prnewswire.com/news-releases/xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-extensible-processing-platform-114922409.html
https://www.prnewswire.com/news-releases/xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-extensible-processing-platform-114922409.html
http://www.mdpi.com/2073-4433/2/3/510

Bibliography 123

ZOHOURI, H. R.; PODOBAS, A.; MATSUOKA, S. Combined spatial and temporal blocking
for high-performance stencil computation on fpgas using opencl. In: Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. [S.1.: s.n.],
2018. p. 153-162. Citation on page 75.

125

APPENDIX

EXPLICIT METHOD FOR THE
PREDITOR-PREY PROBLEM

A.1 VHDL implementation

This set of experiments were done in 2019. In our master’s degree research, we realized

that OpenCL did not improve performance. We concluded the following reasons caused that:

1. Jacobi iterative method was not suitable for our problem;
2. Stratix V is not suitable for floating-point operations with double precision;
3. Processing a single matrix at a time;

4. OpenCL was not generating an efficient design.

All of those reasons were enough to convince us to explore a mixed approach, where
we design a circuit with VHDL and uses OpenCL as a channel of communication with our host.
Intel OpenCL has a feature where the programmer can define its circuit and insert it into the

compilation process.

We decided to start with a simple example to test if the implementation would be feasible
or not according to our schedule. For that, we chose a small stiff equation with two variables (for
comparison, BRAMS model for air quality uses 47 variables), the preditor-prey problem. We
represent our problem in the set of Equations A.1, which represents the number of rabbits and
foxes over the time. For the experiments, we used the following initial values: a = 10, b = —1,
[=-0.1,k=1, Ry, and F = 5.

126 APPENDIX A. Explicit method for the Preditor-Prey Problem

(d_r> = aR — bRF (A.1a)
dt) vabbis
d
(—f) = —[F + kRF, (A.1b)
dt Fox

Given the simplicity of our problem, we used the classic Fourth-Order Runge-Kutta
algorithm, the explicit version. Using an implicit algorithm imposes more than one unknown
per row, which requires implementing a matrix decomposition solver and then solving the linear
system. Our initial intention was to measure the complexity of implementing a stiff solver in
VHDL, and we wanted to make the algorithm as simple as possible. So the performance was not

our concern for this case.

We first implemented in software using C language, that prototype as necessary to
guarantee the correct and fast implementation of the floating-point operations. From this software
version, we generated the graph (Figure 30), which represents the preditor-prey stiff problem.

Preditor-prey problem
50 T T T T

Rabbits -
45 ‘L | | Foxes —— -

40 [| E |
35 \ \ -
30 || \ \ [

25 || \ \ (=

population

20F | \ \ VA

\ \ \ \

15 F \ \ VA
\ \ \

\

wof \ \ \ \
5+ \\\\\\ \\\\\ \\\\\ b

0 . —e— L M " M
0 20 40 60 80 100 120 140 160

Time

Figure 30 — Preditor-Prey Stiff Problem

Using floating-point in VHDL is not a simple task. It does require advanced knowledge
and some expertise with timing and verification in FPGA. In the first design, we implemented a
combinational circuit to process the 4 stages of the implicit Runge-Kutta with double precision
by David Bishop’s library for floating-point. We used Stratix V FPGA (5SGXEA7K2F40C2),
which is the one we have available in the laboratory. We knew that designing a combinatorial
circuit was not an efficient approach, but we needed the algorithm to be as simple as possible for

managing the complexity of the design.

This design imposed some problems since the beginning, and Intel demands a VHDL
code close to their role model to avoid errors like read during on RAM, which took us a
while to figure out how to solve. Our results showed that the clock frequency was very slow
(1.91MHz), and the timing report had negative slacks, which was expected since we were

building a combinatorial circuit with a long critical path.

A.2. Technical issues and learning curve 127

We developed a pipelined version in a second design to fix clock frequency, improve
critical path, and fix the negative slacks. Our algorithm pipeline contains 27 stages, and it
is enough to improve maximum clock frequency but still requires attention over the timing.
According to our timing report, we improved the negative slacks in 26 x, and that is when we
reached a point where we cannot further improve timing without modifying David Bishop’s
library. In the TimeQuest Timing Analyzer, we found that the multiplication was causing the
negative slacks, we also tried to use the compiler features to improve the design without any
modification over the library, but that did not work either. We show the compilation report for
both designs in Table 28.

Table 28 — Hardware resources for preditor-prey circuits

Combinatorial Pipeline
Registers 808 (< 1%) 6,967 (12%)
Logic 83,843 (36%) | 49,021 (21%)
DSPs 104 (41%) 64 (25%)
RAM blocks 5(<1%) 5(<1%)
Maximum Clock Frequency (MHz) 1.91 45.73

As we mentioned earlier, working with floating-point in VHDL is not trivial, which
becomes even worse when using double precision. We found that the library does not use
pipelines for the math operations by reading the source code. That explains the negative slacks
and the low frequency for all of our designs. We could use FloPoCo, a C++ framework responsible
for generating a pipelined arithmetic operation given the desired frequency. The framework
could solve our problem, but that would require that the generated VHDL be compatible with
the VHDL pattern accepted by OpenCL. Given the complexity of such a problem, we gave up
on the idea and decided to proceed with our designs using only OpenCL. We have finished this
activity in July of 2019.

A.2 Technical issues and learning curve

In July, we started our OpenCL experiments at Paderborn University, but they did not
provide any resources for compilation. So we had to compile the designs at Euler Cluster
provided by FAPESP (grant 2013/07375-0), we also compiled some designs at our laboratory,
but our resources were not competitive to improve compiling time. A regular compilation usually
takes 8 hours to generate a design. In our laboratory, we already had some designs taking two

full days. That is why we were avoiding our laboratory resources.

In November, Euler had to stop operating because of some technical issues related to
the air conditioning. At the same time, our laboratory suffered some external attack erasing the
entire content of our hard drive. We had a backup of our source codes, but we still needed to

Install and set the Intel OpenCL environment all over again. That takes a long time, and most

128 APPENDIX A. Explicit method for the Preditor-Prey Problem

of the time, we need to do it more than once, caused by driver errors or poor documentation
provided by Intel. That happened during the BEPE internship in Portugal, and there was not

anyone who could help set the environment again.

So we needed a new environment where we could run and compile as fast as possible.
Our only choice was IL Academic Compute Environment (ACE) by Intel, which has the same
board as Paderborn University and provided resources to compile the kernels in their cluster.
Since we were working in a new environment, we had a learning curve on submitting the jobs

and working with this new architecture.

At Paderborn, we struggled to design any kernel that worked in the hybrid architecture
Xeon (CPU) + FPGA. Anything different from the examples would not work. Since ACE has the
same architecture, we had to stop implementing and start working on the FPGA documentation.
Although we already had some experience with OpenCL, that was insufficient to program this
new architecture properly. We had to learn concepts like shared memory, which was the leading
cause of our mistakes. Such memories require a lock and unlock from the accelerator to guarantee
the integrity of the data, so the FPGA can only access the RAM after locking that slice of the
memory. Otherwise, the system will fail or enter into an infinite loop. That kind of management
is performed by the host side, which explains why we could generate the bitstream but could not

execute them. We realized that we needed to modify the entire host side.

129

APPENDIX

PERFORMANCE RESULTS FOR THE
ROSENBROCK WITH MEMORY-BOUND
FUNCTIONS

This stage required our previous QR Decomposition algorithm. We had to make some
changes to the QR algorithm’s memory structure; otherwise, it would not compile due to area
restrictions or compiler errors. The first change was on the dot product function, which is now
using shift registers instead of loop unrolling. This modification incurs performance penalties,
but we did not have block RAMS to spend on the memory replication of the loop unrolling.
We also had to improve memory utilization used by the upper triangular matrix R, which can
work by using half of the initial memory. We have also implemented another version of QR with

padded loops to avoid stalls, and we show the results for both versions in Table 29.

Besides the modification of the memory structure of the QR, we also modified Jacobian
and Fexchem algorithms. Since both computations were similar, we merged the computation.
That did not incur any performance penalty and allowed us to spare memory resources. According
to Table 29, we do not have more memory resources to increase the algorithm in the same FPGA,

which requires extrapolation analysis from now on.

Table 29 — Hardware resources for jacc + fexchem + qr

No stalls With stalls
Registers 321,303 (18%) | 343,367 (20%)
Logic 186,415 (44%) | 195,998 (46%)
DSPs 210 (14%) 215 (14%)
RAM blocks 2,400 (88%) 2,411 (89%)
Maximum Clock Frequency (MHz) 137.5 145.0

130 APPENDIX B. Performance Results for the Rosenbrock with Memory-bound Functions

Table 30 — Time execution for jacc + fexchem + qr

No stalls | With stalls
Send (us) 23 17
Execution (us) | 237,658 115,650
Receive (Us) 12 8
Total (LLs) 237,693 115,675

As we can see in Table 30, padding the QR algorithm loops are 2x slower than the
original algorithm without any modification. According to the report, our loop padding inserted
some dependencies on the matrices Q and R, which forced serial execution. Since we were
computing all the matrix columns and not the upper triangular, that does incur the double of
computation. We also tried to fully unroll the dot product, which did not fit on the board. We
used data parallelism for the dot product with a factor of 6, which is almost a multiple of 47.

According to our results, that dropped the performance in 2%.

Comparing the results from Table 30 with our previous published results in (JUNIOR
et al., 2020). We realized that this version with the entire Rosenbrock algorithm in the FPGA
is almost 2x slower than the computing QR algorithm with the initial variables being commu-
nicated, which made us realized that this is one of those situations where communicating is
less expensive than computing. We could not fit in a single FPGA the backward substitution, so
further research of this Ph.D. project will consider the results’ extrapolation if there were more

than one FPGA to solve this problem.

131

APPENDIX

STREAMING ROSENBROCK

We have two unrolling factors in the format X.Y, the X factor is related to the dot product

unrolling, and the Y factor is related to the fexchem unrolling.

Unrolling Factor Time (LLs)

1.2 29,424
1.3 28,714
2.1 28,770
2.2 27,085
23 28,041
3.1 30,030
33 29,863
Unrolling Factor 1.2 1.3 2.1 2.2 23 3.1 33
Registers 569,992 577,529 578,169 602,456 591,453 596,713 609,987
Logic 274,608 277,652 277,498 291,998 284,051 289,795 295,831
DSPs 230 242 242 278 266 266 290
RAM blocks 2118 2,136 2,141 2278 2,171 2,272 2,302

Frequency (Mhz) 158.17 161.68 147.81 159,93 148.75 145.3125 143.333333334

133

ANNEX

ADAPTED SOURCE CODE FOR BRAMS’
ROSENBROCK

Source code 7 — C program for computing sparse linear systems

#include <sys/types.h>
#include "spConfig.h"
#include "spmatrix.h"
#include "spDefs.h"

#include <stdio.h>
//#include <stdlib.h>
#include <math.h>

#include <string.h>

#define II_CYCLES_ACCUM 9
#define FACTOR 2

#define ITERATIONS 48/FACTOR
#define FACTOR_FEXCHEM 2
#define FEXCHEM_ITERATIONS 75/FACTOR_FEXCHEM
#define C83 8/3

#define ARRAY_SIZE 47
#define BLOCK 65

#define REACTIONS 128
#define NNZ_DW 222

O 0 NN N R W N =

DD = = = = = s e e e e
S O 00 NN N LR WD = O

int initialize_variables_(double *rk_fortran, double *scp_fortran);

NS}
—_

void fexchem_(int nreactions, int nspecies, double *local_rk, double *local_y, double *
local_dlr);

22 void solve_linear_(int *nspecies, double dlr[47], double result[47], int *factorize);

23

24

25 extern struct crk_d{

26 double dataRk [65*128];

27 } crk_;

28

29 int initialize_variables_(double *rk_fortran, double *scp_fortran);

30 void fexchem_(int nreactions, int nspecies, double *local_rk, double *local_y, double *

local_dlr);

31 void solve_linear_(int #*nspecies, double dlr[47], double result[47], int *factorize);

32

33 double dataA[ARRAY_SIZE*ARRAY_SIZE] = {0.008356, -0.000000, 0.000020, -0.000020,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

134

ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
0.000001, -0.000000, -0.000001, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

34 -0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

35 0.007629, -0.000000, 0.015962, -0.007629, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, 0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, 0.000000, 0.000000, 0.000000, -0.000000, -0.000000,
0.000000, 0.000000, 0.000000, -0.000000,

36 0.000013, -0.000000, -0.000000, 0.008346, -0.000013, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, 0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, 0.000000, -0.000000,

0.000000, -0.000000, -0.000000,

37 -0.000000, -0.000000, 0.032613, -0.046712, 0.155322, -0.018533, -0.000000,
-0.000073, -0.000000, -0.000000, -0.000000, -0.000030, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000026,
-0.000000, -0.000000, -0.000000, 0.000138, 0.095613, 0.000000, 0.000023, 0.000045,
-0.000000, -0.087712, -0.000000, 0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.000000, 0.000000, 0.000000, -0.000000, -0.000000, 0.000000,
-0.000047, -0.095742, -0.000001,

38 -0.000000, -0.000000, -0.000000, -0.023654, -0.023654, 0.031988, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

39 -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.008333,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

40 -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

41 -0.000000, -0.000000, -0.000000, -0.048183, -0.000000, -0.000000, -0.000000,

-0.000000, 0.056517, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.048183,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

42

43

44

45

46

47

48

49

50

135

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, 0.008333, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, 0.008333, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.008333, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.008333,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-77436.298921, -0.000000, -0.138916, 0.162288, -0.023372, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.065714, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, 77443.051476, -0.000000, -0.131427,

51

52

53

54

55

56

57

58

136

ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock

-1.839983, -0.000000, -0.000000, -0.000000, -6.036983, 6.571366, -0.000000,
-0.328568, -0.000000, -0.000000, -0.871035, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.985705,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -719149154.597408, 840256257 .842559,
-242214206.473636, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000,

0.029333, 0.000000, 0.006097, 0.171589, -0.000533, -0.000000, -0.006097,
-0.171276, 0.000000, 0.000000, -0.000000, 0.124019, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, 14.142115, -1.261046, 0.229139, 0.001837,

0.716671, 0.167367, 11.272654, 0.007067, 0.443049, 0.299556, -0.005173, 0.015943,
0.000000, 0.000220, 0.000000, 0.000000, -0.006292, -0.000000, -0.229139, -0.631153,
-0.171600, -11.272654, -0.000020, -0.006640, -0.000000, -0.393519, -0.000000,
-0.003725,

0.000905, -0.000000, 0.010573, 0.010287, 0.000000, -0.000000, -0.000000,
-0.000000, -0.020860, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.011478, 0.040672,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, -0.000000,
0.000000, 0.000000, 0.000000, 0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000, 0.008333,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,

-0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000,

0.000002, =-0.000000, -0.000000, =-0.000000, 0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, -0.000001, -0.000000, =-0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000, -0.000001, =-0.000000,
-0.000000, -0.000000, -0.000000, 0.008335, -0.000000, -0.000000, -0.000001,
-0.000001, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

0.000005, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000002, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000001, =-0.000002,
-0.000000, -0.000000, -0.000000, -0.000002, 0.008339, =-0.000000, -0.000005,
-0.000000, -0.000000, -0.000002, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000001, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, =-0.000000,
-0.000000, -0.000000, -0.000001, -0.000000, =-0.000001,

59

60

61

62

63

64

65

66

67

137

-0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.008333, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.008333,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, 0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, 0.008333, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

0.000000, -0.000000, -0.000000, -0.000215, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, 0.008549, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000215, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.008333, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,

68

69

70

71

72

73

74

75

138 ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, 0.008333,
-0.000000, -0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000,

-0.000000, =-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, 0.008333, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, =-0.000000,

-0.000000, -0.000000, 0.009451, -0.009451, 0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.009451,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.009451,
-0.000000, =-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.017785, 0.000000, 0.000000, 0.000000, =-0.000000, =-0.000000,
0.000000, 0.000000, 0.000000, -0.000000,

-0.000000, -0.000000, 0.005308, -0.004859, 0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -0.003942,
-0.000000, -0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -0.000159,
-0.001759, -0.002895, -0.000181, -0.000449, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000479, 0.013207, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.000000, -0.000000, -0.000690,

-0.000000, -0.000000, 0.008437, -0.008437, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.008437,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.011801,
-0.003554, -0.000440, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, =-0.000000, 0.016770, -0.000000, -0.000000,
-0.000000, =-0.000000, 0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, 0.004870, -0.004125, 0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -0.004125,
-0.000000, -0.000000, -0.000000, -0.001842, -0.000000, -0.000000, -0.002951,
-0.000000, -0.000000, -0.002214, -0.000745, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, 0.013203, -0.000000,
-0.000000, -0.000000, 0.000000, -0.000000, -0.000000,

-0.000000, -0.000000, -0.000000, 0.288037, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, 0.000000,
-0.000000, -0.000000, -0.000000, =-0.000000, -0.000000, -0.030734, -0.000000,
-0.000000, -0.000000, -0.000000, -0.288037, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, 0.296370,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000,

12.694951, -0.000000, -0.000000, 0.518466, -0.000000, -0.000000, -0.518466,
-0.000000, -0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -12.694951, -57.897810,
-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -71.111227, -0.000000,
-0.000000, =-0.000000, =-0.000000, =-0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, =-0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
2908.112258, -2836.992698, -0.000000, -0.000000, -0.000000,

76 -0.000000, -0.000000, 0.004870, -0.004632, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.00000O0,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.004632,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.00000O0,
-0.000000, -0.000000, -0.010080, -0.000238, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, 0.013203, 0.000000, -0.000000, -0.000000,

77 -0.000000, -0.000000, 0.014853, 0.113279, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.001832,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000869,
-0.001094, -0.000000, -0.001288, -0.000000, -0.128132, -0.000000, -0.000000,
-0.000000, -0.000000, -0.011605, 0.000000, 0.000000, 0.000000, -0.000000, -0.000000,
0.000000, 0.149903, 0.000000, -0.000381,

78 -0.000000, -0.000000, 0.004870, -0.008844, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000896,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.001140,
-0.004927, -0.001844, -0.000000, -0.000896, -0.000000, -0.000000, -0.00000O0,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.000000, 0.013203, -0.000000,

79 -0.000000, -0.000000, 0.004870, -0.004870, 0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000, -0.000000,
-0.000000, -0.000000, 0.000000, -0.000000, 0.013203

80 >3

81

82 int nnz_elements (int nspecies){

83 int cont = O0;

84 for (int i = 0; i < nspecies; i++){

85 for (int j = 0; j < nspecies; j++){

86 if (dataA[i * nspecies + j] != 0 && dataA[i * nspecies + jl != -0){

87 cont++;

38 }

89 }

90 }

91 }

92

93 char* sp_matrix;

94 void solve_linear_(int #*nspecies, double dlr [47], double result[47], int x*factorize){

95 int error;

96 double temp[47 * 47], *temp_ptr [47%47], *temp2, *result_ptr;

97 int cont = 0;

98 if (xfactorize == 1){

99 sp_matrix = spCreate (47, 0, &error);

100 spClear (sp_matrix) ;

101

102 for (int i = 0; i < #*nspecies; i++){

103 for (int j = 0; j < *nspecies; j++){

104 if (dataA[i * *nspecies + jl] > O || dataA[i * *nspecies + j] < 0){

105 temp2 = spGetElement (sp_matrix, i+l, j+1);

106 if (temp2 == NULL) printf ("NULL\n");

107 *temp2 = dataA[i * *nspecies + jl;

108 }

109 }

110 }
111

140

ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock

112 error = spOrderAndFactor (sp_matrix, NULL, 0.0000001, O, 1);
113 }
114 spSolve (sp_matrix, dlr, result);
115 }
116
117 void fexchem_(int nreactions, int nspecies, double *local_rk, double *local_y, double *
local_dlr) {
118 double local_w([128];
119 const int y_indices_fexchem[128][2] = {{3, 47}, {o, 47}, {o, 47}, {6, 47}, {7, 47},
{8, 47}, {4, 47}, {4, 47},
120 {1, 47}, {27, 47}, {27, 47}, {28, 47}, {33,
47}, {34, 47}, {29, 47}, {30, 47},
121 {31, 47}, {17, 47}, {17, o0}, {18, 47}, {18,
47}, {18, 47}, {0, 19}, {0, 20},
122 {19, 20}, {1, 19}, {20, 20}, {20, 20}, {17,
2}, {17, 3}, {17, 3}, {19, 2},
123 {19, 3}, {19, 4}, {20, 2}, {20, 3}, {8, 47},
{20, 4}, {19, 6}, {19, 7},
124 {19, 8}, {0, 2}, {o, 3}, {2, 2}, {4, 2}, {4,
3}, {4, 3}, {5, 47},
125 {4, 4}, {19, 47}, {19, 9}, {11, 19}, {25,
17}, {30, 17}, {21, 19}, {22, 19},
126 {23, 19}, {24, 19}, {25, 19}, {26, 19}, {27,
19}, {28, 19}, {29, 19}, {30, 19},
127 {33, 19}, {34, 19}, {32, 19}, {31, 19}, {27,
4}, {28, 4}, {30, 4}, {26, 4},
128 {24, 4}, {25, 4}, {32, 4}, {24, 0}, {25, O},
{30, 0}, {32, 0}, {41, 3},
129 {41, 20}, {42, 3}, {42, 47}, {42, 0}, {44,
3}, {32, 47}, {37, 2}, {38, 2},
130 {39, 2}, {40, 2}, {43, 2}, {44, 2}, {45, 2},
{37, 20}, {38, 20}, {39, 20},
131 {40, 20}, {43, 20}, {44, 20}, {45, 20}, {37,
37}, {38, 37}, {39, 37}, {40, 37},
132 {43, 37}, {44, 37}, {45, 37}, {38, 44}, {39,
44}, {40, 44}, {43, 44}, {44, 44},
133 {45, 44}, {45, 45}, {45, 45}, {37, 4}, {38,
4}, {39, 4}, {40, 4}, {43, 4},
134 {44, 4}, {45, 4}, {46, 20}, {46, 37}, {46,
44}, {46, 46}, {46, 2}, {46, 4}};
135
136 const int index_wl[605] = {1, 2, 17, 18, 22, 23, 41, 42, 75, 76, 77, 78, 83, 98, 8,
25, 26, 27, 75, 76, O,
137 3, 6, 28, 29, 31, 34, 41, 43, 44, 45, 86, 87, 88, 89, 90,
91, 92, 126, O, 4, 5,
138 7, 16, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42,
43, 44, 46, 47, 48,
139 67, 70, 74, 78, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92,
106, 114, 115, 1186,
140 117, 118, 119, 120, 121, 126, 127, 5, 6, 7, 30, 33, 37, 39,
42, 44, 45, 46, AT,
141 48, 66, 68, 69, 70, 71, 72, 73, T4, 115, 116, 117, 118,
119, 120, 121, 127, 46,
142 a7, 3, 31, 38, 81, 4, 32, 37, 39, 68, 69, 70, 71, 5, 35,
36, 40, 50, 50, 9, 10,
143 11, 15, 51, 52, 56, 60, 63, 68, 70, 75, 76, 77, 78, -1, -1,
i, 2, 6, -1, 9, 15,
144 75, 76, 78, 0, 2, 7, 17, 18, 19, 20, 28, 29, 30, 52, 53,
76, 1, 19, 20, 21, 3, 4,

141

145 5, 8, 12, 13, 21, 22, 23, 24, 25, 31, 32, 33, 34, 37, 38,
39, 40, 49, 50, 51, 52,
146 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 75,
76, 77, 78, 83, 5,
147 10, 11, 12, 13, 15, 16, 22, 23, 24, 25, 26, 27, 33, 34, 35,
36, 37, 49, 50, 51,
148 52, 56, 59, 60, 63, 65, 66, 68, 70, 75, 76, 77, 78, 80, 82,
86, 87, 88, 89, 90,
149 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108,
150 i09, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 54,
151 75, 55, 75, 56, 52, &7, 72, 75, 76, 89, 103, 109, 118, 52,
58, 73, 76, 59, 71,
152 79, 80, 81, 82, 83, 9, 10, 12, 15, 52, 56, 60, 64, 65, 66,
68, 74, 75, 76, 78,
153 86, 87, 88, 89, 91, 92, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 111,
154 112, 114, 115, 116, 117, 118, 120, 121, 123, 11, 13, 16,
53, 56, 61, 63, 65, 69,
155 70, 75, 77, 87, 88, 91, 92, 101, 102, 105, 106, 107, 108,
111, 112, 114, 116,
156 117, 120, 121, 14, 16, 56, 62, 63, 65, 70, 75, 87, 88, 92,
101, 102, 106, 107,
157 i08, 111, 112, 114, 116, 117, 121, 15, 52, 53, 56, 63, 66,
70, 73, 76, 77, 87,
158 89, 90, 91, 101, 103, 104, 105, 107, 109, 110, 111, 116,
118, 119, 120, 16, 67,
159 74, 79, 87, 89, 90, 92, 99, 106, 112, 113, 114, 121, 66,
74, 78, 84, 85, 12, 64,
160 93, 13, 65, 77, 94, 95, 96, 97, 98, 122, b6, 75, 76, 77,
78, 75, 77, 98, 105,
161 107, 108, 109, 111, 112, 11, 13, 54, 64, 75, 76, 86, 87,
91, 93, 100, 101, 102,
162 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116,
120, 123, 124, 14,
163 55, 56, 65, 67, 75, 87, 94, 101, 107, 116, 57, 88, 95, 102,
108, 117, 58, 89, 96,
164 103, 109, 118, 59, 71, 79, 80, 59, 81, 82, 83, 82, 90, 97,
104, 110, 119, 14, 15,
165 61, 62, 63, 65, 69, 70, 75, 76, 77, 78, 84, 85, 91, 98,
105, 107, 108, 109, 110,
166 111, 112, 120, 124, 72, 73, 92, 99, 106, 112, 113, 114,
121, 52, 59, 63, 65, 66,
167 ro, 74, 76, 87, 91, 101, 105, 107, 111, 116, 120, 122, 123,
124, 125, 126, 127};
168
169 const double const_wl[296] = {0.17307, 0.01833, 0.001, 2.0, 0.65, 0.7, 2.0, 2.0, 2.0,
0.1053, 0.4, 0.7, 0.91541,
170 0.847, 0.95115, 1.81599, 0.3244, 0.75, 1.74072, 0.35,
2.0, 0.71893, 0.4, 0.3, 0.91567,
171 0.91924, 0.01, 8.78E-4, 1.01732, 1.33723, 0.3512, 0.36,
0.64728, 0.13, 0.0, 0.0, 0.0,
172 0.20842, 0.05409, 0.05, 0.04, 0.09, 0.35, 2.0, 2.0, 0.7,
0.02, 0.999122, 0.65,
173 0.5507500000000001, 0.39435, 0.28, 0.20595, 0.036, 0.65,
2.0, 0.96205, 0.7583, 2.0,
174 2.0, 0.28, 0.12793, 0.10318, 0.51208, 0.02915, 0.28107,

0.63217, 0.23451, 0.3, 0.28441,

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

142 ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock
0.08, 0.02, 0.74265, 0.847, 0.95115, 0.12334, 0.18401,
0.66, 0.98383, 1.02767, 0.82998,
0.6756, 0.48079, 0.50078, 0.506, 0.07566, 0.17599, 0.5,
0.8129, 0.04915, 0.25928,
0.043, 0.03196, 0.91868, 0.37388, 0.37815, 0.48074,
0.24463, 0.42729, 0.1067, 1.06698,
0.02, 0.06517, 0.05, 0.0014, 0.35, 0.02915, 0.57839,
0.4, 0.4829, 0.9, 0.7, 0.03002,
1.3987, 0.606, 0.05848, 0.23419, 1.33, 0.80556, 1.42894,
1.09, 0.95723, 0.88625, 0.076,
0.68192, 0.34, 0.03432, 0.13414, 0.353, 0.03142,
1.40909, 0.686, 0.03175, 0.2074,
0.96205, 0.2, 0.08173, 0.06253, 0.07335, 0.05265,
0.51468, 0.15692, 0.33144, 0.42125,
0.07368, 1.01182, 0.5607, 0.46413, 0.08295, 0.41524,
0.71461, 0.68374, 0.06969,
0.42122, 0.925, 0.33743, 0.43039, 0.02936, 0.9185, 0.8,
0.03498, 0.00853, 0.37591,
0.00632, 0.07377, 0.54531, 0.0522, 0.37862, 0.09673,
0.03814, 0.09667, 0.18819,
0.06579, 0.0219, 0.10822, 0.217, 0.62978, 0.02051,
0.3474, 0.13255, 0.00835, 0.83081,
0.21863, 0.8947, 0.91741, 0.39754, 0.07583000000000006,
0.03407, 0.45463, 2.06993,
0.0867, 0.07976, 0.56064, 1.99461, 0.15387, 0.06954,
0.78591, 1.99455, 0.10777,
0.03531, 0.6116, 2.81904, 0.03455, 0.6, 0.08459, 0.153,
0.04885, 0.18401, 0.6756,
0.66562, 2.0, 1.25, 0.25928, 0.7189300000000001, 0.6,
0.7, 0.10149, 1.00524, 1.00524,
1.00524, 1.00524, 0.80904, 1.00524, 0.00878, 0.15343,
0.15, 0.10788, 0.11, 0.08143,
0.20595, 0.17307, 0.13684, 0.4981, 0.49922, 0.494,
0.09955, 0.48963, 0.03795, 0.65,
0.13966, 0.03, 0.09016, 0.78134, 2.0, 0.9861, 0.43969,
0.5148, 0.50078, 0.506, 1.66702,
0.51037, 0.09731, 0.9191, 0.87811, 0.40341, 0.09815,
0.91813, 0.99615, 0.99172,
0.91006, 1.02529, 0.00276, 0.93968, 0.98, 0.69622,
0.51419, 0.05413, 0.38881, 0.05705,
0.17, 0.2746, 0.7, 0.90468, 0.94046, 1.94179, 0.96825,
0.93768, 2.0, 2.0, 0.15,
0.10318, 0.10162, 0.09333, 0.1053, 0.13, 0.13007,
0.02563, 0.1337, 0.02212, 0.11306,
0.01593, 0.16271, 0.01021, 2.0, 1, -1};
const int index_const_w[605] = {295, 295, 294, 295, 295, 295, 295, 295, 295, 295,
295, 295, 295, 0, 295,
295, 294, 294, 1, 2, 294, 294, 294, 295, 294, 295,
295, 295, 3, 295, 294,
295, 295, 295, 295, 295, 295, 295, 295, 295, 294, 4,
294, 294, 294, 295,
295, 295, 294, 294, 295, 294, 5, 294, 294, 294, 295,
6, 7, 295, 294, 8,
294, 9, 10, 11, 295, 295, 295, 294, 294, 12, 294, 13,
14, 294, 15, 16, 17,
294, 294, 294, 294, 294, 294, 18, 294, 294, 19, 295,
295, 294, 295, 295,
294, 294, 295, 295, 295, 294, 20, 21, 295, 295, 295,
295, 295, 295, 22,

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

143

295, 294, 295, 294, 295,
295, 294, 294, 294,
33, 34, 35, 294, 294,
295, 294, 294, 295, 295,
43, 294, 294, 44, 295,
295, 295, 295, 46,
49, 295, 295, 50, 51,
295, 294, 58, 59,
294, 63, 64, 65, 294,
75, 76, 295, 295, 295,
83, 84, 294, 85, 86,
295, 91, 295, 92, 295,
295, 295, 295, 99,
295, 105, 106, 107, 295,
117, 118, 119, 120, 294,
130, 131, 132, 133, 294,
140, 141, 142, 143, 144,
155, 156, 157, 158, 295,
168, 169, 170, 171, 172,
181, 182, 183, 184, 185,
196, 197, 198, 199, 200,
294, 208, 209, 210, 211,
295, 216, 217, 218, 219,
230, 231, 232, 233, 234,
242, 295, 243, 244, 295,
295, 251, 252, 295, 294,
259, 260, 295, 295, 295,
295, 295, 262, 295, 295,
294, 265, 266, 294, 267,
295, 295, 295, 274, 295,

295, 295, 295, 295, 295, 295, 295, 295, 294, 295,
294, 23, 295, 294, 294, 24, 294, 295, 294, 295, 295,
294, 25, 295, 26, 27, 294, 28, 294, 29, 30, 31, 32,
294, 36, 294, 37, 38, 39, 40, 294, 294, 294, 295,
295, 295, 295, 41, 294, 295, 295, 295, 294, 294, 42,
294, 295, 295, 295, 295, 295, 294, 45, 295, 295, 295,
295, 295, 47, 295, 295, 295, 295, 295, 295, 295, 48,
52, 53, 294, 54, 55, 294, 294, 56, 57, 294, 294, 295,
294, 295, 295, 294, 295, 294, 294, 294, 60, 61, 62,
66, 67, 68, 69, 70, 295, 71, 294, 72, 294, 73, 74,

295, 295, 295, 295, 77, 78, 294, 294, 79, 80, 81, 82,
294, 87, 294, 88, 294, 294, 294, 89, 90, 295, 294,
93, 295, 295, 295, 94, 95, 96, 97, 98, 295, 295, 295,
100, 294, 101, 294, 295, 295, 294, 102, 103, 104,
108, 109, 110, 111, 294, 112, 113, 114, 115, 116,
121, 122, 123, 124, 125, 126, 127, 128, 294, 129,
295, 134, 135, 294, 136, 295, 137, 138, 295, 139,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154,
159, 160, 295, 161, 162, 163, 164, 165, 166, 167,
173, 174, 175, 176, 177, 178, 295, 179, 295, 180,
186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
201, 202, 295, 295, 203, 294, 204, 205, 206, 207,
212, 213, 214, 215, 294, 295, 295, 295, 294, 295,
220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
235, 236, 294, 237, 294, 238, 239, 240, 295, 241,
295, 295, 245, 295, 246, 247, 248, 294, 249, 250,
294, 294, 253, 254, 294, 255, 256, 295, 257, 258,
295, 295, 294, 295, 295, 295, 295, 295, 261, 294,
295, 263, 295, 295, 295, 295, 295, 294, 264, 294,
268, 269, 270, 271, 295, 294, 272, 295, 273, 295,

236

237

238
239
240

241

242
243
244
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

144

ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock

295,

291,

275, 295, 276, 294, 295, 295, 295, 295, 277, 278,
279, 280, 281, 282,

294, 283, 294, 284, 285, 286, 287, 288, 289, 290,
292, 295, 295, 295,

293, 295, 295};

const int index_w_per_chem[47] = {14, 6, 19, 49, 29, 2, 4, 8, 4, 1, 1, 15, 1, 1, 3,
1, 5, 13, 4, 42, 74, 2,

28,

for

2, 1, 9, 4, 7, 41, 29, 22, 26, 14, 5, 3, 9, 5, 9,
11, 6, 6, 4, 4, 6,

(int y = 0; y < 128; y++) {
local_wly]l] = local_rk[y] * local_y[y_indices_fexchem[y][0]] * local_yl[

y_indices_fexchem[y][1]];

}

int

for

1]

index_w_begin = 0, index_w_accum = 0;

(int y = 0; y < 47; y++) {

unsigned short w_per_chem = index_w_per_cheml[y];
double shift_reg_chem[II_CYCLES_ACCUM + 1];

for (int i = 0; i < II_CYCLES_ACCUM + 1; i++) {
shift_reg_chem([i] = 0;

}
for (unsigned short z = 0; z < FEXCHEM_ITERATIONS; z++) { //74 div 2 == 37
double accum_chem = 0;
for (unsigned short i = 0; i < FACTOR_FEXCHEM; i++) {//data-parallelism
unsigned short index = z * FACTOR_FEXCHEM + ij;
accum_chem += ((index < w_per_chem) 7?7 local_w[index_w[index_w_begin]] x*
const_wl[index_const_w[index_w_begin
0);
index_w_begin++;
¥
shift_reg_chem[II_CYCLES_ACCUM] = shift_reg_chem[0] + accum_chem;
for (int i = 0; i < II_CYCLES_ACCUM; i++) {
shift_reg_chem[i] = shift_reg_chem[i + 1];
¥
}
double sum_chem = 0;

for (int i = 0; i < II_CYCLES_ACCUM + 1; i++) {

sum_chem += shift_reg_chem[i];

local_dlr[y] = sum_chemn;
index_w_accum += w_per_chem;

index_w_begin = index_w_accum;

int initialize_variables_(double *rk_fortran, double *scp_fortran) {

int

i = 0, size = ARRAY_SIZE;

double rke, scpe;//, dataRk[BLOCK * REACTIONS], dataScp [BLOCK * ARRAY_SIZE];
FILE *rk, *scp;

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

22
23
24
25
26
27

145

rk =
scp
if (

if (

i =
whil
rk_f

a4 =

whil

fclo
fclo

retu

fopen("rk.dat", "rb");
= fopen("y.dat", "rb");

rk == NULL) {
printf ("Error RK!");
exit (1) ;

scp == NULL) {
printf ("Error SCP!");
exit (1) ;

0;

e(fread (&rke, sizeof (double), 1, rk) > 0){

ortran[i] = rke;

i++;

0;

e(fread (&scpe, sizeof

i++;

se (rk);

se(scp);

rn O;

(double), 1, scp) > 0){

scp_fortran[i] - scpe;

Source code 8 — Fortran 90 program for computing rosenbrock Method

program

'USE so

implici

INTEGER
integer
double
double
double
resu
double
double
double
real
common

common

rodas3
lve_sparse, ONLY: Solve_linear ! Subroutine, O0UT:
t none
i, j, ijk, nreactions = 128, nspecies = 47, block_end = 65

, dimension (47,47)
precision, dimension
precision, dimension
precision, dimension
1t4
precision, dimension
precision, dimension
precision dt_chem_i
startTime, stopTime,
/crk/ dataRk
/cscp/ dataScp

matrix
(65%128) :: dataRk
(65%47) :: dataScp
(47) :: dlri, dlr2,
(128) :: local_rk
(48) :: local_scp,
increment = 0

CALL initialize_variables(dataRk, dataScp)
lcall exit (1)

call cpu_time(startTime)

DO ijk=

DO

END

loc

1,block_end

j=1,nreactions

dlr3, dlr4,

local_scp_new

local_rk(j) = dataRk(0 * block_end + j)

DO

al_scp(48) = 1

resultl,

result2,

spack_2d(ijk,inob)%DLk1

result3,

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

87

146

ANNEX A. Adapted Source Code for BRAMS’ Rosenbrock

local_scp_new (48)

DO j=1,nspecies
local_scp(
ENDDO

! Stage 1

]
[N

j) dataScp (0 * block_end + j)

CALL fexchem(nreactions, nspecies, local_rk, local_scp, dlrl)

!call cpu_time(stopTime)

!increment = increment + (stopTime - startTime)

lwrite(x, ’(A, F8.6)

!print *,

’) ’Elapsed time, s : ’, (stopTime - startTime)

"passou fexchem"

I CALL Solve_linear(nspecies, matrix, dlrl, resultl)

'call cpu_time(startTime)

CALL Solve_line

ar (nspecies, dlrl, resultl, 1)

!call cpu_time (stopTime)

lincrement = increment + (stopTime - startTime)

IPRINT *,

! Stage 2

"Passou solve linear 1"

!call cpu_time(startTime)

dt_chem_i = 1.0

DO i=1,nspecies

d0/0.5

dlr2(i) = (4.0D0 * dt_chem_i) * resulti1(i) + dlri(i)
ENDDO
!call cpu_time(stopTime)
!increment = increment + (stopTime - startTime)
!'print *, "Update dlr2"

I!CALL Solve_linear (nspecies, matrix, dlr2, result2)

'call cpu_time(startTime)

CALL Solve_line

ar (nspecies, dlr2, result2, 0)

!call cpu_time (stopTime)

lincrement = increment + (stopTime - startTime)

!print *, "solve 2"

!Stage 3

!call cpu_time(startTime)

DO j=1,nspecies

local_scp_new(j) = local_scp(j) + 2.0D0* resultl(j)

IF (local_

local

scp_new(j) .LT. 0.0) THEN
_scp_new(j) = 0.0

resultl1(j) = 0.5D0 * (local_scp_new(j) - local_scp(j))

ENDIF
ENDDO

!call cpu_time (stopTime)

lincrement = increment + (stopTime - startTime)

!print *, "scp_new"

!call cpu_time(startTime)

CALL fexchem(nreactions, nspecies, local_rk, local_scp_new, dlr3)

!call cpu_time(stopTime)

lincrement = increment + (stopTime - startTime)

!'print *, "dlr3"

!call cpu_time(startTime)

DO j=1,nspecies
dlr3(i) =
ENDDO

dlr3(i) + dt_chem_i * (resultl1(j) - result2(j))

!call cpu_time(stopTime)

!increment = increment + (stopTime - startTime)

!'print *, "update dl

'CALL Solve_1lin

r3"

ear (nspecies ,matrix, dlr3, result3)

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128

147

!call cpu_time(startTime)

CALL Solve_linear (nspecies, dlr3,

call cpu_time(stopTime)

result3, 0)

increment + (stopTime - startTime)

call cpu_time(startTime)

dt_chem_i = 1.0d0/0.5

DO j=1,nspecies

local_scp_new(j) = local_scp(j) + 2.0D0 * resultl1(j) + result3(j)

IF (local_scp_new(j) .LT. 0.0) THEN

local_

result3(j) = (local_scp_new(j)

scp_new(j) = 0.0

!call cpu_time(stopTime)

CALL fexchem(nreactions,

increment + (stopTime - startTime)

call cpu_time(startTime)

call cpu_time(stopTime)

nspecies,

- local_scp(j)) -2.0D0 * resultl(j)

local_rk, local_scp_new, dlr4)

increment + (stopTime - startTime)

!'print *, "fexchem dlr 4"

! call cpu_time(stopTime)

DO j=1,nspecies
dlr4 (j) =

dlr4(j) + dt_chem_ix (resultl(j)

!call cpu_time(stopTime)

increment + (stopTime - startTime)

print *, "update dlr 4"

- result2(j) - ((8/3) * result3(j))

! CALL Solve_linear (nspecies, matrix, dlr4, result4) !matrix solution

call cpu_time(startTime)

CALL Solve_linear (nspecies, dlré4,

!call cpu_time(stopTime)

!
!increment =
!'print *, "solve 3"

! Stage 4
!

ENDIF

ENDDO
!increment =
!print *, "scp_new 4"
!
!
!increment =

)

ENDDO
!increment =
!
!
!increment =
!'print *, "resultado"
ENDDO

resultd4, 0)

increment + (stopTime - startTime)

call cpu_time(stopTime)

write(*, (A,

end program

F8.6) 7)

’Elapsed_time

)

s

(stopTime

!matrix solution

startTime)

SSSSSSSSS

	Title page
	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Motivation and Objectives
	Specific objectives

	Thesis Structure

	Fundamental Concepts
	Ordinary Differential Equations
	Continuity Equation
	Stiff Equations
	Stiff problem

	BRAMS
	CCATT-BRAMS

	FPGA
	Architectures
	Stratix V
	Arria 10
	Stratix 10
	Agilex

	Power Consumption

	High-Level Synthesis
	Hardware Description Languages
	VHDL
	Verilog and SystemVerilog
	Bluespec SystemVerilog

	OpenCL
	Data structures for OpenCL
	Data Parallelism
	Task Parallelism

	Intel FPGA SDK for OpenCL
	Codesign of Hardware/Sofware

	Related Work
	RQ1: What are the parallel methods (algorithms) used to solve stiff ordinary differential equations?
	RQ2: What is the precision of the parallel methods (algorithms) to solve stiff ordinary differential equations?
	RQ3: What is the performance of each parallel method (algorithm) to solve stiff ordinary differential equations?
	Threats to Validity

	Methodology
	BRAMS profiling
	Source Code Refactoring
	Work Phases
	Phase 1
	Phase 2
	Phase 3
	Phase 4
	Phase 5

	Development
	Phase 1 – Jacobian Iterative Method for Solving Linear Systems
	Jacobi Multi-threaded Dense
	Jacobi Multi-threaded Sparse
	Jacobi Single-threaded Sparse

	Phase 2 – Direct Method for Solving Linear Systems
	Direct Method - LU
	QR Factorization
	The Original QR implementation
	The QR based on Intel's implementation

	Phase 3 – Memory analysis on the Rosenbrock Method
	Parser for the Rosenbrock Indices
	Rates
	Fexchem
	Dratedc
	Jacobian
	Rosenbrock
	Rosenbrock with memory-bound functions

	Phase 4 – Streaming Rosenbrock
	Phase 5 – Streaming Rosenbrock in the Stratix 10
	Final Remarks

	Conclusion
	Contributions
	Limitations
	Lessons Learned
	Future Work

	Bibliography
	Explicit method for the Preditor-Prey Problem
	VHDL implementation
	Technical issues and learning curve

	Performance Results for the Rosenbrock with Memory-bound Functions
	Streaming Rosenbrock
	Adapted Source Code for BRAMS' Rosenbrock

