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RESUMO

SANTOS, M. R. Seleção e compreensão de desempenho de algoritmos para previsão de
séries temporais. 2023. 101 p. Tese (Doutorado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2023.

Previsão de séries temporais é uma tarefa estratégica no suporte à tomada de decisão. A grande
disponibilidade, e variabilidade, de algoritmos capazes de induzir modelos preditivos tem gerado
uma demanda por formas de seleção de algoritmos. Adicionalmente, para validação do modelo
induzido, é importante entender o seu desempenho preditivo quando aplicado a uma série
temporal. Esta tese investiga novas abordagens de seleção de algoritmos para combinação de
previsões e entendimento de desempenho preditivo de modelos induzidos por algoritmos para
previsão de séries temporais. Para isso, foi inicialmente pesquisado o estado da arte em previsão
de séries temporais, com foco na seleção de algoritmos e entendimento de desempenho preditivo.
Este estudo observou as limitações de abordagens existentes e identificou as lacunas na literatura
que puderam ser solucionadas por esta pesquisa. As principais contribuições desta tese são
quatro: o desenvolvimento de uma abordagem baseada em meta-aprendizado para seleção de
combinações de previsão com decomposição de séries temporais; um método de geração de séries
temporais sintéticas baseado em “dataset morphing”; a análise empírica de diferentes medidas
de desempenho para escolha de meta-alvo na seleção de algoritmos por meta-aprendizado;
a análise da aplicação de decomposição de sazonalidade e tendência com Loess como uma
etapa de pré-processamento. A abordagem MetaFore combina algoritmos de aprendizado de
máquina para as componentes de tendência e resíduo na tarefa de previsão de séries temporais.
As componentes são separadas com a decomposição de sazonalidade e tendência com Loess
e a sazonalidade é prevista com o método “naive” sazonal. MetaFore foi avaliado nas séries
temporais mensais da competição M4 e atingiu melhor desempenho preditivo e computacional
que um método que é estado da arte, as redes neurais “Long Short-Term Memory” (LSTM), em
mais de 70% dos conjuntos de dados. Na pesquisa, o método tsMorph gera séries temporais
sintéticas de forma gradual transformando uma série temporal de origem em uma série temporal
alvo. O método tsMorph foi aplicado para o entendimento da variação de desempenho preditivo
de algoritmos de previsão Regressão com Suporte Vetorial e a rede neural LSTM. Os resultados
experimentais mostraram que o método tsMorph gerou séries temporais com variação gradual do
desempenho preditivo e meta-características. Esta pesquisa contribuiu para o desenvolvimento
de novas abordagens de previsão e entendimento de desempenho de algoritmos eficientemente.
Os estudos em seleção de combinações de previsões e entendimento de desempenho podem ser
facilmente incluídos nos processos de previsão de séries temporais e abrem perspectivas para
pesquisa e desenvolvimento na área de meta-aprendizado e aprendizado de máquina automático.



Palavras-chave: Seleção de algoritmos, Desempenho preditivo, Meta-aprendizado, Previsão de
séries temporais.



ABSTRACT

SANTOS, M. R. Algorithm selection and performance understanding for time series fore-
casting. 2023. 101 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

Time series forecasting is a strategic task in supporting decision-making. The wide availability of
forecasting algorithms has generated a demand for algorithm selection methods and approaches
that enable the understanding of predictive performance given a time series. This thesis focuses
on developing new approaches for forecast combination selection and understanding the predic-
tive performance of time series forecasting algorithms. The research started with a review of the
state of the art in time series forecasting, focusing on algorithm selection and understanding of
predictive performance. This study highlighted the limitations of existing approaches and identi-
fied gaps in the literature that this research could address. The main contributions of this thesis
are fourfold: firstly, the development of a metalearning-based approach for selecting forecasting
combinations with time series decomposition. A synthetic time series generation method based
on dataset morphing. The empirical analysis of different performance measures for the choice of
meta-label in the selection algorithms by metalearning. Finally, an analysis of applying Seasonal
and Trend decomposition using Loess as a pre-processing step for machine learning algorithms
in the time series forecasting task. The MetaFore approach selects combinations of machine
learning algorithms for the trend and residual components in the time series forecasting task.
The components are separated with the Seasonal and Trend decomposition using Loess, and the
seasonality is forecasted with the seasonal naive method. MetaFore was evaluated in the monthly
time series of the M4 competition and achieved better predictive and computational performance
than LSTM neural networks in more than 70% of the datasets. The tsMorph method generates
synthetic time series by gradually transforming a source time series into a target time series.
TsMorph was applied to understand the predictive performance variation of Support Vector
Regression and Long Short-Term Memory neural network prediction algorithms. The results
showed that the tsMorph method generated time series with gradual predictive performance and
meta-feature variation. Empirical analysis of different performance measures as meta-label in the
selection of time series forecasting algorithms showed no statistical difference in the predictive
performances of the meta and base level. The analysis of the application of Seasonal Trend with
Loess decomposition as a pre-processing step in machine learning showed that when the residual
component follows a normal distribution, the decomposition improves the predictive perfor-
mance of the algorithms. In summary, this research contributed to developing new approaches
for efficiently predicting and understanding algorithms’ performance. Studies on the selection of
forecasting combinations and performance understanding can be easily included in time series
forecasting processes and open perspectives for research and development in metalearning and



autoML.

Keywords: Algorithm selection, Predictive performance, Metalearning, Time series forecasting.
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CHAPTER

1
INTRODUTION

The practice of forecasting future events has fascinated humanity for thousands of years
(HYNDMAN; ATHANASOPOULOS, 2018a). For a long time, predictions were attributed to
divine inspiration, among other explanations without scientific rigor. A milestone for formalizing
the temporal data forecasting task was the work of Box et al. (1970). This started the treatment
of forecasting from the perspective of time series analysis.

Time series are sequential data collected equally spaced in time (CRYER; CHAN, 2008).
One of the main tasks in time series analysis is forecasting, which consists of predicting the
occurrence of future events (MONTGOMERY; JOHNSON; GARDINER, 1990). Forecasting
time series is an essential task, as predicting future events is a desirable knowledge in various
types of planning and decision-making processes (MONTGOMERY; JENNINGS; KULAHCI,
2015a; HYNDMAN; ATHANASOPOULOS, 2018a), with applications in areas such as finance,
industry, government, demography, epidemiology, among others.

The first methodologies to be used for forecasting time series were statistical methods.
These methods predict future events in a distribution, whose coefficients are adjusted from
historical data (MONTGOMERY; JENNINGS; KULAHCI, 2015a). Examples of statistical
methods are autoregressive models, moving averages, and exponential smoothing, still widely
used in the literature(HYNDMAN; ATHANASOPOULOS, 2018a). More recently, machine
learning algorithms have gained space in the literature due to the versatility of not assuming a
prior distribution for historical data (MULLER et al., 1999; DEB et al., 2017).

We found several time series forecasting frameworks in the literature. The task of
forecasting time series to real-world applications goes beyond the choice of methodology.
Several steps start from defining the problem to using the forecasting model. Figure 1 illustrates a
generic forecasting task process based on those proposed by Montgomery, Jennings and Kulahci
(2015a), Shmueli and Jr (2016), Hyndman and Athanasopoulos (2018a).

Problem definition is the definition of the data to be used, the understanding the process
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Figure 1 – Steps in a forecasting task.

that produced the data and how the data are distributed. The forecast can be short, medium, or
long-term. Which forecast horizon will be considered? How much accuracy is needed for the
forecast to be helpful? After this phase, the data of the variable of interest of the event to be
predicted are acquired.

The next step is data preprocessing, which consists of preparing the time series for
the forecasting algorithms. This step is linked to algorithm selection, as each method requires
a specific preprocessing approach. For example, some methods need data normalization to
a specific scale. The algorithm selection step consists of choosing and fitting the time series
forecasting algorithm for the time series. It is a crucial step, as algorithms are widely available,
and testing them all in a trial-and-error approach would be costly.

Predictive performance validation uses performance measures and evaluation techniques
to estimate the algorithm’s error and behavior in a real-world application. Deploying the forecast-
ing model involves using the forecasts resulting from the process in real problems. Success in
deploying a forecasting model is strongly linked to previous steps in the process. The forecasting
process in the streaming time series is a repeating cycle from data acquisition to deployment. In
case of inadequate performance during model deployment, returning to the algorithm selection
step is necessary.

In this thesis, we focus on two steps of the time series forecasting process: algorithm
selection, and predictive performance validation. In Figure 1, these steps are highlighted in
blue. Algorithm selection and predictive performance validation require great expert knowledge
(ARMSTRONG; ADYA; COLLOPY, 2001; HYNDMAN et al., 2006). In the remainder of this
section, we delve deeper into these steps and the problems that motivated this work. After the
motivation, we introduce the objective and contributions of this thesis.

1.0.1 Motivation

The selection of the algorithm that can induce the best forecasting model for a given time
series is a challenging task in this area. To select the most suitable algorithm, it is necessary to
explore a wide search space of forecasting algorithms, especially when there is little knowledge
of the nature of the time series, which is why the forecasting task is computationally expensive
(MEADE, 2000; PRUDÊNCIO; LUDERMIR, 2004). Figure 2 illustrates the algorithm selection
problem in time series forecasting.

Metalearning is a set of methods that use the knowledge extracted from past tasks to
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Figure 2 – An example of algorithm selection problem.

perform better for new datasets (VILALTA; DRISSI, 2002; BRAZDIL et al., 2008; FINN;
ABBEEL; LEVINE, 2017). In this context, metalearning emerges as an alternative to reduce the
computational cost and the high need for specialized knowledge (BRAZDIL et al., 2008). Several
works have successfully applied metalearning to select time series forecasting methods (MEADE,
2000; PRUDÊNCIO; LUDERMIR, 2004; LEMKE; GABRYS, 2010; WIDODO; BUDI, 2013;
Kück; Crone; Freitag, 2016; ALI; GABRYS; BUDKA, 2018; TALAGALA et al., 2018; BARAK;
NASIRI; ROSTAMZADEH, 2019; TALAGALA; LI; KANG, 2019; MONTERO-MANSO et

al., 2020; MA; FILDES, 2020). However, some improvements can still be made in selecting
metalearning-based time series forecasting techniques, especially regarding exploring new ways
of combining forecasts and improvements in the metalearning process for the algorithm selection
process.

The forecasting combination is an up-and-coming alternative to be investigated. Clemen
(1989), Hibon and Evgeniou (2005) states that combining time series forecasts decreases the
risk of choosing a single method with a poor fit to the data. Forecasting combinations gained
prominence in the M4 competition (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2020).
The first place was received by a hybrid method that combined the predictions of the exponential
smoothing method with those of long short-term memory (LSTM) neural networks (SMYL,
2020). This result, among other factors, can be attributed to the great generalization capacity that
the prediction combinations have (ZHOU, 2012). Wang et al. (2022a) points out as a perspective
for future developments in forecasting combination the selection of which forecasts will be
combined.

Another point of improvement in the time series forecasting process is the empirical and
systematic performance validation experiments. In addition to a simple averaging analysis of
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error measures, tools and methods capable of extracting knowledge about the variation in the
performance of algorithms are lacking in the literature. In Figure 3, we illustrate an example of
applying the same algorithm to two different time series.

t

y1

Train data 1
Test data 1
Algorithm 1

t

y2

Train data 2
Test data 2
Algorithm 1

Figure 3 – An example of algorithm performance in different datasets.

An important issue in validating predictive performance is determining under what
conditions an algorithm will or will not perform properly. In Figure 3, Algorithm 1 is applied to
two data sets. For Data 1, Algorithm 1 cannot follow the general trend of the data, while for Data
2, the performance is much better. These results are usually analyzed by averaging performance
measures. However, according to Smith-Miles and Muñoz (2022), we miss the opportunity to
get more information about the learning process by looking only at summaries of performance
measures.

In time series forecasting, only few works seek to understand the performance of al-
gorithms. Some studies analyze meta-knowledge in metalearning applications to explain the
selection of Armstrong, Adya and Collopy (2001), Lemke and Gabrys (2010), Talagala et al.

(2018) algorithms. However, the need for more metadata in quantity and diversity prevents the
extraction of more general knowledge from these approaches.

In other tasks, methodologies were developed to understand the performance of algo-
rithms empirically and systematically. In work by Smith-Miles and Muñoz (2022), the Instance
Space Analysis (ISA) methodology is applied to optimization problems. ISA is a methodology
that explores the relationships between the complexity characteristics of the test instances and
the impact on the performance of the algorithms. With this technique, a 2d plane represents the
space of all possible test instances. Instance space analysis allows machine learning algorithms
to be used to predict regions where good performance can be expected. The area of this region is
called algorithm footprint and is a measure of the applicability and robustness of algorithms.



27

The dataset morphing (CORREIA; SOARES; JORGE, 2019) method was proposed for
recommender systems. Dataset morphing is the generation of synthetic data from the gradual
transformation of a source dataset into a target dataset. The synthetic datasets created between
the source and the target are used to understand the variation in the predictive performance of a
pair of algorithms in datasets. Allied with the performance variation, variations in characteristics
of the synthetic datasets are also analyzed. The goal is to understand the predictive performance
of algorithms systematically.

1.0.2 Objective and Hypotheses

The main objective of this thesis is to develop and analyze methods for algorithm
selection and understanding the predictive performance of time series forecasting algorithms.
From this objective, we delimited the scope of the research with two research questions:

• Q1: What is the effect of the use of metalearning to select hybrid forecasting combinations
on the predictive and computational performance?

• Q2: Is it possible to empirically show under which conditions a forecasting algorithm will
show a predictive performance?

Based on the research questions mentioned above, we formulated hypotheses that guided
the development of methods and experiments throughout the work.

• Hypothesis 1: There is a performance measure that induces better predictive performance
than the baselines, at base level and meta level. This hypothesis is related to Q1.

• Hypothesis 2: Hybrid forecasting combinations with good predictive performance are
possible when using metalearning and decomposition methods. This hypothesis is related
to Q1.

• Hypothesis 3: Seasonal and Trend decomposition using Loess as a pre-processing step
can benefit machine learning algorithms when its residual follows a normal distribution.
This hypothesis is related to Q2.

• Hypothesis 4: It is possible to understand the variation in the predictive performance of
forecasting algorithms by using morphing. This hypothesis is related to Q2.

1.0.3 Thesis Organization

This thesis is a collection of papers written by the candidate during the doctoral period.
As they are articles, the chapters are self-contained and organized in the order of the explored
hypotheses, not necessarily representing the chronological order. Chapter 6 presents the final
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remarks, limitations, and possible future work directions. Figure 4 illustrates the relationship
between the chapters of the thesis and the problems addressed in the thesis.

Time Series Forecasting

Algorithm selection Performance Understanding

Chapter 2: study of different
error metrics for meta-label

Chapter 3: MetaFore

Chapter 4: STL decomposition
as a preprocessing step

Chapter 5: tsMorph

Figure 4 – Thesis organization diagram.

In Figure 4, Chapters 2 and 3 deal with solutions to the algorithm selection problem.
Chapter 2 presents an experimental analysis of the predictive performance obtained using differ-
ent error metrics to define the meta-label value. Chapter 3 proposes and empirically evaluates
MetaFore, a new time series forecasting approach that uses seasonal trend decomposition with
Loess and metalearning to recommend suitable algorithms for time series forecasting combina-
tions.

Chapters 4 and 5 propose and investigate alternatives to understand predictive perfor-
mance. In Chapter 4, we designed a procedure that uses the Seasonal and Trend decomposition
using Loess as a preprocessing step to model the time series components separately using a
machine learning algorithm and a seasonal naive forecaster. Chapter 5 proposes tsMorph, a sim-
ple method for generating synthetic time series based on dataset morphing. Given two datasets,
tsMorph creates a sequence of datasets that gradually transform the two.
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CHAPTER

2
EVALUATION OF ERROR METRICS FOR
METALEARNING LABEL DEFINITION IN

THE FORECASTING TASK

Reference: SANTOS, M.R.; MUNDIM, L.R.; CARVALHO, A.C.P.L.F. Evaluation of Error
Metrics for Meta-learning Label Definition in the Forecasting Task. In: International
Conference on Hybrid Artificial Intelligence Systems, XV, 2020, Gijon-Spain. Hybrid
Artificial Intelligent Systems. Springer, Cham, 04 November 2020. p.397–409.

2.1 Abstract

Meta-learning has been successfully applied to time series forecasting. For such, it uses
meta-datasets created by previous machine learning applications. Each row in a meta-dataset
represents a time series dataset. Each row, apart from the last, is meta-feature describing aspects
of the related dataset. The last column is a target value, a meta-label. Here, the meta-label is the
forecasting model with the best predictive performance for a specific error metric. In the previous
studies applying meta-learning to time series forecasting, error metrics have been arbitrarily
chosen. We believe that the error metric used can affect the results obtained by meta-learning.
This study presents an experimental analysis of the predictive performance obtained by using
different error metrics for the definition of the meta-label value. The experiments performed
used 100 time series collected from the ICMC time series prediction open access repository,
which has time series from a large variety of application domains. A traditional meta-learning
framework for time series forecasting was used in this work. According to the experimental
results, the mean absolute error can be the best metric for meta-label definition.
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2.2 Introduction

Time series are usually represented by a sequence of data points collected along with
the time (CRYER; CHAN, 2008). One of the main tasks in time series analysis is forecasting,
the prediction of the occurrence of future events (MONTGOMERY; JOHNSON; GARDINER,
1990). Time series forecasting is a crucial task of data analysis in many domains, such as finance,
industry, government, health, and environment.

One of the main challenges in time series forecasting is the selection of the technique
able to induce the best forecasting model for a given time series. Several techniques have been
proposed, each with its bias, favoring particular data distributions. Thus, to select the most
suitable technique from a set of options, it is necessary to explore an ample search space of
available forecasting techniques and depends on domain expert knowledge, which has a high cost
(MEADE, 2000), (ARMSTRONG, 2001), (PRUDÊNCIO; LUDERMIR, 2004). An alternative
to reduce this cost is the use of meta-learning (MtL), which uses the knowledge obtained from
past applications of machine learning (ML) algorithms in related tasks to create a predictive
model able to recommend the most suitable technique(s) for a new dataset.

MtL has been successfully applied to algorithm recommendation and hyper-parameter
selection (VILALTA; DRISSI, 2002),(SOUZA; SOARES; CARVALHO, 2009) (BRAZDIL et al.,
2008),(PIMENTEL; CARVALHO, 2019),(MANTOVANI et al., 2019). Like in a conventional
ML application, MtL applies a ML algorithm to a dataset, named meta-dataset. This learning
process is called meta-level learning, to differ from the conventional learning process in ML,
named base-level learning in the MtL literature. In the meta-dataset, each row represents a
dataset and is labeled by either the ML algorithms performance applied to this dataset or by the
forecasting model with the best predictive performance for a specific error metric. The predictive
attributes in the meta-dataset are named meta-features. The values of the meta-features describe
a dataset, highlighting important aspects that characterize the dataset. When an ML algorithm is
applied to the meta-dataset, it induces a meta-model. Usually, the meta-model is a predictive
model, which can be used, as part of a recommendation system, to predict the most suitable
technique(s) for a new dataset. The ML algorithm used to induce the meta-model is named
meta-learner.

Previous works have successfully applied in time series forecasting (PRUDÊNCIO;
LUDERMIR, 2004), (LEMKE; GABRYS, 2010), (WIDODO; BUDI, 2013), (Kück; Crone;
Freitag, 2016), (ALI; GABRYS; BUDKA, 2018), (BARAK; NASIRI; ROSTAMZADEH, 2019).
However, in these works, the error metric as meta-label was arbitrarily defined, not considering
other error metrics.

We believe that the error metric used can affect how well MtL works. This study evaluates
the error metrics performance when used for the meta-label definition for several types of meta-
learners. For such, we carried out experiments using a set of time series datasets collected from
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the ICMC time series datasets repository (PARMEZAN; BATISTA, 2014)1. In the experimental
analysis, we also look at the computational cost of each error metric used.

As base-learners, we used state of the art time series forecasting techniques (MAKRI-
DAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2018a), based on ML and statistics: Autoregressive
Integrated Moving Average (ARIMA) (BOX et al., 2015), state space exponential smoothing
(ETS) (HYNDMAN et al., 2008), and neural networks autoregressive (NNAR) (MEDEIROS;
TERÄSVIRTA; RECH, 2006). The meta-dataset was created extracting 23 meta-features based
on basic statistics, statistical tests for time series, partial and autocorrelations function coefficients
and frequency domain measures. For the meta-labels, the following error metrics were assessed:
Mean Absolute Error (MAE), Mean Squared Error (MSE), Median Absolute Error (MedAE),
Symmetric Mean Absolute Percentual Error (sMAPE), and Mean Absolute Scaled Error (MASE)
(HYNDMAN et al., 2006). The ML algorithms used to induce the meta-models were: K-Nearest
Neighbors, Decision Tree, Random Forest, and Multilayer Perceptron. More information about
these techniques can be found in (MARSLAND, 2014).

2.3 Time series forecasting

Given a time series Y = y1,y2, ...,yt and a forecasting horizon h, a time series forecasting
model estimates the Y subsequent values yt+h. Regarding h, the time series forecasting can be
classified as one-step ahead or multi-step ahead. One-step ahead forecasting is the prediction of
the time series subsequent value, where h = 1. Multi-step forecasting predicts many steps into the
future, where h > 1 (MONTGOMERY; JOHNSON; GARDINER, 1990). This work focuses on
the one-step forecasting. Time series forecasting can follow a univariate or multivariate approach.
The first uses historical values of a single time series to predict future values. The second use,
simultaneously, historical values of multiple time series (TSAY, 2013). Next, we present the
main techniques used to induce models for time series forecasting.

2.3.1 Autoregressive integrated moving average

Autoregressive Integrated Moving Average (ARIMA) models (BOX et al., 2015) are
widely used for time series forecasting. The autoregressive component builds the interest variable
prediction as a linear combination of p previous values. The moving average component is
modeled as an error ε average of q previous values to predict the value of the variable of interest.
The integrated component of ARIMA models is the inverse of differentiation (HYNDMAN;
ATHANASOPOULOS, 2018a). ARIMA models can be generically described to Equation 2.1.

y′t = c+φ1y′t−1 + ...+φpy′t−p +θ1εt−1 + ...+θqεt−q + εt (2.1)

1 Datasets are available here

http://sites.labic.icmc.usp.br/icmc_tspr/index.php/datasets
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where y is the differenced time series, φ , and θ are the coefficients of autoregressive and
moving average models, respectively, p and q are the model degrees. For simplicity, we can
denote an ARIMA model as ARIMA(p,d,q), where p is the autoregressive part degree, d is the
differentiation degree, and q is the moving average part degree.

2.3.2 Exponential smoothing state-space model

Exponential smoothing models are based on time series decomposition in a seasonal s

and a trend t components. The trend component t can be expressed as a linear combination of
a level term l and a growth term b (HYNDMAN et al., 2008). A general state-space model is
described by Equations 2.2 and 2.3.

yt = w(xt−1)+ r(xt−1)εt (2.2)

xt = f (xt−1)+g(xt−1)εt (2.3)

where εt is a Gaussian white noise process and xt = (lt ,bt ,st ,st−1, ...,st−m+1)
′.

2.3.3 Neural network autoregression

Neural networks are ML algorithms inspired in the human brain, specifically in the
processing and interaction between neurons (HAYKIN, 1994). Although there are several neural
network architectures, the neural networks autoregressive (NNAR) (MEDEIROS; TERÄSVIRTA;
RECH, 2006) is the most straightforward for time series forecasting. An NNAR is usually
represented as NNAR(p,k), where p is previous inputs in a time series, and k is the number of
neurons in the hidden layer. The NNAR weights are originally adjusted by the backpropagation
algorithm. Given a NNAR(p,k) and a time series y. The values of output are given by Equation
2.4.

yt = f (
k

∑
j=1

w j f (
p

∑
i=1

wi jxi +b0 j)+b0) (2.4)

where w are the weights associated to neurons, x = yt−p, ...,yt−1 is a set of lagged input and b is
the bias, which work like a intercept component of linear equations for make neural networks
most robust.

2.4 Meta-learning for forecasting model recommendation

Among other implications, according to the "no free lunch" theorem (WOLPERT, 1996),
there is no technique that provides the best model for every dataset. This motivates the use of
MtL for algorithm recommendation. Formally, given a set of problem instances P represented
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Figure 5 – MtL based recommendation system architecture

by a distribution of datasets D, a set of algorithms A and a performance metric m: P X A → R,
the algorithm recommendation problem consists of finding a mapping f : P → A that optimizes
the expected performance measure regarding m for instances P with a distribution D (RICE,
1976). Figure 5 illustrates a architecture of a MtL based recommendation system for time series
forecasting inspired on (PRUDÊNCIO; LUDERMIR, 2004) and (Kück; Crone; Freitag, 2016).

According to this figure, the MtL based model selection process can be described by its
components. For such, it uses a meta-dataset from time series data where each meta-example
represents a dataset by the values of meta-features (FE) extracted from the dataset and the
predictive performance of different techniques, or the technique(s) with the best performance
when applied to this dataset (BL). An ML algorithm can be applied to the meta-dataset, as a
conventional ML experiment, to extract a predictive meta-model able to recommend, e.g., the
most suitable technique for a new time series dataset.

2.5 Experimental setup

2.5.1 Time series data

The experiments carried out used 100 time series datasets from the ICMC time series
prediction repository (PARMEZAN; BATISTA, 2014). These time series include synthetic,
chaotic, real-world series, from several domains. These time series were selected to present
explicitly open policy and domain diversity necessary for MtL.

2.5.2 Meta-features

To create the meta-dataset, we extracted from the 100 time series datasets 23 meta-
features, divided in four groups:
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• Basic statistics: length(Kück; Crone; Freitag, 2016), minimum(Kück; Crone; Freitag,
2016), maximum(Kück; Crone; Freitag, 2016), mean(Kück; Crone; Freitag, 2016), me-
dian(Kück; Crone; Freitag, 2016), standard deviation(Kück; Crone; Freitag, 2016), range(Kück;
Crone; Freitag, 2016), skewness(Kück; Crone; Freitag, 2016), kurtosis(Kück; Crone;
Freitag, 2016), variation coefficient(PRUDÊNCIO; LUDERMIR, 2004), upper quar-
tile(Kück; Crone; Freitag, 2016), lower quartile(Kück; Crone; Freitag, 2016), turning
points(PRUDÊNCIO; LUDERMIR, 2004), trend(PRUDÊNCIO; LUDERMIR, 2004);

• Statistical tests: Spearman correlation coefficient(Kück; Crone; Freitag, 2016), Mann-
Kendall trend test(Kück; Crone; Freitag, 2016), Kruskal–Wallis test(Kück; Crone; Freitag,
2016), Durbin-Watson test(Kück; Crone; Freitag, 2016);

• Autocorrelation: lags one and two of autocorrelation function(PRUDÊNCIO; LUDER-
MIR, 2004), lags one and two of partial autocorrelation function(HYNDMAN; ATHANA-
SOPOULOS, 2018a);

• Frequency domain: real part of the Fast Fourier Transform (FFT) maximum value(PRUDÊNCIO;
LUDERMIR, 2004).

2.5.3 Base-learners

The base learners used are implemented in the R package "forecast" (HYNDMAN;
KHANDAKAR et al., 2007). This package includes several techniques to induce forecasting
models, such as ARIMA, ETS, and NNAR, which are briefly described next.

• ARIMA: produces automatically tuned ARIMA models for univariate time series data.
The implementation used in this work was auto.arima;

• ETS: produces an automatic exponential smoothing state-space model. The implementa-
tion ets was used;

• NNAR: trains feed-forward neural networks NNAR with one hidden layer for univariate
time series forecasting. After several tests, we decided to use 25 neurons in the hidden layer.
For the normalization of the time series input, we applied the Box-Cox transformation
from nnetar to the datasets.

2.5.4 Error metrics meta-label

The meta-model recommends, for new time series datasets, the most suitable techniques
according to specific error metric, the meta-label. This study investigates how the error metric
used affects the recommendations from the meta-model. As five error metrics were investigated,
five meta-datasets were created, each one using a different error metric to define the meta-label
values.
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Given y, the test time series values, ŷ are predicted values and n the test set length. The
error metrics investigated in this work were:

• Mean Absolute Error (MAE) Equation 2.5: magnitude of prediction errors;

• Mean Squared Error (MSE) Equation 2.6: average squared of prediction errors;

• Median Absolute Error (MedAE) Equation 2.7: median magnitude of prediction errors;

• Symmetric Mean Absolute Percentage Error (sMAPE) Equation 2.8: percentage
absolute difference of predictions errors. This is symmetric due to original MAPE not
work for test set values close to zero (WIDODO; BUDI, 2013).

• Mean Absolute Scaled Error (MASE) Equation 2.9: scales the errors based on MAE
from the naive forecast method. This naive forecast method defines prediction value as the
one-step past value.

MAE =
∑

n
i=1 |yi − ŷi|

n
(2.5)

MSE =
∑

n
i=1(yi − ŷi)

2

n
(2.6)

MedAE = median(|yi − ŷi|) (2.7)

sMAPE =
100
n

n

∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

(2.8)

MASE = mean

(∣∣∣∣∣ |yi − ŷi|
1

n−1 ∑
n
i=2 |yi − yi−1|

∣∣∣∣∣
)

(2.9)

2.5.5 Meta-learner

The following meta-learners were used for the experiments carried out in this study. They
were selected to cover different learning biases.

• K-Nearest Neighbors (KNN): simple technique based on lazy learning. We used the caret

(KUHN, 2012) R package;

• Decision Tree induction algorithm (DT): Induce decision trees using divide and conquer.
We used the Classification And Regression Trees (CART) algorithm (BREIMAN et al.,
1984a) implementation in the rpart R package.
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• Random Forest (RF): ensemble technique that induces a set decision tree classifiers on
various dataset sub-samples. The implementation used was from the randomForest (LIAW;
WIENER, 2002) R package.

• Multilayer Perceptron (MLP): fully connected feedforward artificial neural networks.
The implementation came from the RSNNS (BERGMEIR; SÁNCHEZ et al., 2012) R
package.

2.5.6 Meta-level evaluation

The experiments with the 100 time series datasets generated meta-datasets. For the
meta-learning experiments, each meta-dataset was divided into training (80%) and test subsets
(20%), keeping the class proportion. The MtL experiments partitioned the meta-dataset using
Leave-One-Out (LOO). For KNN and MLP, the predictive attributes were centralized and scaled
to unit variance.

Hyperparameters specific to each technique were tuned using the caret (KUHN, 2012)
basic hyperparameter tuning technique, with at most 10 tuning interactions: value of k for the
KNN technique, complexity for DT, number of variables sampled as a candidate at each split for
RF, and number of hidden layer neurons for MLP with a one-hidden layer. The meta-models
induced by each technique had their predictive performance assessed using accuracy, as in the
related works found in the literature. Each experiment was repeated 30 times, and the Friedman
rank sum statistical hypothesis and Nemenyi, multiple comparison post hoc tests, were applied
to all results with a p-value < 0.05. The Intel Math Kernel Library for R code was used for
performance optimization.

2.5.7 Forecasting level evaluation

The labels predicted for the test data in the meta-level experiment were used for the
experimental analyses at the base level. The meta-level predictive performance was measured by
the mean and standard deviation of the results obtained by all the meta-learners. Thus, the focus
of the first analysis is on the meta-level, i.e., the predictive performance of the recommendation
framework.

On the forecasting level, the evaluation focus on whether the MtL use improves the
predictive performance of forecasting techniques when compared with the use of a baseline. In
this study, the baseline is the average of the predictive performance obtained by the forecasting
techniques. Due to intuitive interpretation of the number of times a technique was better than
others, Percentage Better (PB) (SHAH, 1997), described by Equations 2.10 and 2.11, is used.

PB =
1
m

n

∑
j=1

δ j (2.10)
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{
δ j = 1, if |eR

j | ≤ |e j|

δ j = 0, otherwise
(2.11)

In these equations, δ is incremented when the magnitude of reference error is less than
or equal to the magnitude of the MtL predicted error. The variable m is the number of times
that these errors are different. Thus, when PB is close to 0, the MtL prediction is better than the
reference (baseline), when close to 50, it is similar, and when more than 50, it is worse.

2.5.8 Time complexity analysis of the error metrics

For time complexity analysis, the "microbenchmark" R package (MERSMANN et al.,
2015) was used. Error metrics are tested with two synthetic arrays with a length of 102 and run
10 times.

2.6 Experimental results

The previous section described the experimental setup adopted to compare the error
metrics performance for meta-label prediction in univariate one-step ahead time series forecast-
ing. This section presents the main experimental results. These results aim to answer the two
fundamental questions of this study:

1. Does the MtL predictive performance varies for different meta-learners and distinct error
metrics?

2. Among the error metrics with the best results for MtL, for each meta-learner, is there any
difference in time complexity?

This section presents the results for the MAE, sMAPE, and MASE error metrics for the
meta-target selection. Figures 6, 7, and 8 shown the results obtained.

These results show that the results for MedAE and MSE error metrics are redundant since
there is a strong Spearman correlation with the MAE measurements for three meta-learners.

2.6.1 Meta-learner performance for meta-label error metrics

2.6.1.1 KNN performance for meta-label error metrics:

Figures 9 and 10 show the KNN meta-learner performance for each error metric used, in
the meta and the forecasting level, respectively. On average, the MAE metric presented the best
performance in the meta and forecasting levels. However, for both levels, there is no statistically
significant difference between MAE and MASE.
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Figure 6 – ARIMA Spearman corr. Figure 7 – ETS Spearman corr.

Figure 8 – NNAR Spearman corr.

2.6.1.2 DT performance for meta-label error metrics:

Figures 11 and 12 show the DT meta-learner performance for each error metric used in
the meta-label definition in the meta-level and in the forecasting level, respectively. The sMAPE
metric presented a better performance in the meta-level, but without significant difference
regarding MAE and MASE. For the base level, the best performance was obtained by the MASE
metric.

2.6.1.3 RF performance for meta-label error metrics:

Figures 13 and 14 show the RF meta-learner performance for each error metric used in
the meta-label definition in the meta and in the forecasting level, respectively. The sMAPE metric
presents a superior performance on average in the meta and forecasting levels. The meta-level
has no statistically relevant difference for all metrics. In the forecasting level, we did not observe
a statistical difference between the results obtained using sMAPE, MAE, and MASE.
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Figure 9 – Accuracy KNN Figure 10 – PB KNN Figure 11 – Accuracy DT

Figure 12 – PB DT Figure 13 – Accuracy RF Figure 14 – PB RF

Figure 15 – Accuracy MLP Figure 16 – PB MLP
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Figure 17 – Error metrics time complexity

2.6.1.4 MLP performance for meta-label error metrics:

Figures 15 and 16 show the MLP meta-learner performance for each error metric used in
the meta-label definition, for the meta-level and for the base level, respectively. On average, the
MAE metric showed the best performance at both these levels. However, in these meta-level has
no relevant difference between all the error metrics. In the forecasting level, has no significant
difference between the MAE and MASE metrics.

2.6.2 Time complexity evaluation

Figure 17 shows the boxplot of the time complexity of the three error metrics previously
analyzed. In this figure, the abscissa coordinate represents the execution time (milliseconds) in
the logarithmic scale. The ordinate coordinate is the error metric.

According to Figure 17, MAE presented the lowest running time among the error metrics
evaluated. In terms of analysis of the average relative time, the cost of sMAPE is twice the
cost of MAE, and the cost of MASE is three times higher than the cost of MAE. This occurred
because sMAPE, and MASE are MAE-based metrics. Thus, they have more operations than
MAE, making their computational cost higher.

2.7 Conclusion

This study evaluates the effect of predictive performance metrics on the recommendation
of time series forecasting techniques using MtL. According to the experimental results, Regarding
the error metrics MAE, sMAPE, and MASE, Mtl produced the best predictive performance,
when compared with a baseline, for all tested scenarios.

For most of the meta-learners, the MAE metric presented, on average, the best predictive
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performance, despite being the metric with the lowest cost. In the time complexity analysis, the
MAE obtained the best performance when compared with the error metrics. Thus, MAE should
be used in scenarios requiring low computational costs without performance loss.

A limitation of this work is the low number of meta-examples in the meta-dataset.
Although this fact did not impair the MtL process in our experiments, a larger meta-dataset
would provide more significant experimental results. Thus, for the future, we want to increase
the size of the meta-dataset. Another future work directions are to include meta-features that
extract other aspects of time series and to investigate the effect of meta-feature selection on the
MtL performance.
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CHAPTER

3
METAFORE: ALGORITHM SELECTION FOR

DECOMPOSITION FORECASTING
COMBINATIONS

Reference: This work was submitted to the "Information Sciences" journal. The current status
is "Under review.".

3.1 Abstract

Time series forecasting is an important tool for planning and decision-making. Consider-
ing this, several forecasting algorithms can be used, with results depending on the characteristics
of the time series. The recommendation of the most suitable algorithm is a frequent concern.
Metalearning has been successfully used to recommend the best algorithm for a time series
analysis task. Additionally, it has been shown that decomposition methods can lead to better
results. Based on previously published studies, in the experiments carried out, time series com-
ponents were used. This work proposes and empirically evaluates MetaFore, a new time series
forecasting approach that uses seasonal trend decomposition with Loess and metalearning to
recommend suitable algorithms for time series forecasting combinations. Experimental results
show that MetaFore can obtain a better predictive performance than single models with statis-
tical significance. In the experiments, MetaFore also outperformed models widely used in the
state-of-the-art, such as the Long Short-Term Memory neural network architectures, in more
than 70% of the time series tested. Finally, the results show that the joint use of metalearning
and time series decomposition provides a competitive approach for time series forecasting.
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3.2 Introduction

The predictive performance of time series forecasting methods is affected by several
aspects, such as trend, seasonality, and number of attributes. The fast increase in the data
volume, sources and complexity make their analysis more challenging. A recent approach to deal
with these challenges is to decompose the series into components, modeling each component
separately and then combining their output into a final forecast. One challenge of this approach
is which method to use for each of the decomposed time series.

Forecasting is one of the main tasks of time series analysis (HYNDMAN; ATHANA-
SOPOULOS, 2018a). It is a set of essential tools for planning and strategic decision-making in
various areas such as the financial sector, industry, and public health. Time series forecasting
was a field dominated by essentially statistical methods that assumed distribution for the data.
However, in the last decade, machine learning (ML) algorithms have achieved very competitive
results (DEB et al., 2017; PARMEZAN; SOUZA; BATISTA, 2019c).

When considering the full range of candidate methods for the forecasting task, the
expert is faced with choosing the best method. However, testing all possibilities involves a
high computational cost and high processing time. In this context, metalearning emerges as
an alternative by using the learning acquired in past tasks and ML algorithms to recommend
promising algorithms for performing new tasks (BRAZDIL et al., 2008).

Recent research studies have investigated hybrid approaches, when two or more method-
ologies are used in addition to using single models. These approaches have presented state-
of-the-art results in time series forecasting (SMYL, 2020). A topic widely explored is hybrid
forecast combinations from time series decomposition. A decomposition method example is
Seasonal Trend decomposition using Loess (STL), which presents good predictive performance
and stability (GURNANI et al., 2017; SILVESTRE; SANTOS; CARVALHO, 2021).

However, hybrid forecasting approaches usually choose algorithms for each component
arbitrarily, based on expert knowledge of the time series and the inductive bias of candidate
models. This study aims to empirically analyze the use of metalearning for the automatic
recommendation of algorithms for decomposed univariate times series.

The main contributions of this study are: to propose MetaFore: a metalearning approach
for forecasting decomposed time series; empirically show the potential of MetaFore in time
series of real applications with different domains; analysis of the meta-knowledge obtained
through partial dependence plots.

This paper is structured as follows. Section 3.3 defines some essential concepts for
designing the approach to the problem; Section 3.4 discusses related work; Section 3.5 introduces
MetaFore; In Section 3.6, the experimental setup is described; The results are presented in
Section 3.7 and in Section 3.8 the conclusions of the study and future perspectives are shown.
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3.3 Background

This section describes the main concepts that are important to follow this work. First, we
introduce the main aspects of time series analysis, the STL decomposition, and the forecasting
task. Then, we will introduce the idea of recommending models by metalearning.

3.3.1 Time series analysis

Time series can be classified according to the number of variables observed simulta-
neously. When only one variable of interest is observed in a time series, it is univariate. A
univariate time series Yt = {yt}T

t=1 is a sequence of observations that are ordered and evenly
spaced in time (MONTGOMERY; JENNINGS; KULAHCI, 2015a). When two or more variables
of interest, related to the same phenomenon, are observed, it is a multivariate time series.

A time series can also be characterized regarding its frequency, usually daily, weekly,
monthly, or annually, when each observation covers one day, week, month or year, respectively.
We can also have high-frequency time series, when observations are collected in periods of hours,
seconds or even shorter intervals (ANDERSEN, 2000).

A univariate time series Yt can be divided into three main components:

• Trend (Tt): a low-frequency component that describes a long-term direction of the series.
It can assume linear or non-linear patterns.

• Seasonality (St): a cyclical pattern that repeats itself over a period. Multiple seasonal
patterns can be present in a time series.

• Residue (Rt): a time series component, usually of high frequency, whose expected property
is to be random.

Different representations of a time series Yt can be obtained using Tt , St , or Rt (HYND-
MAN et al., 2008). Their combination can be additive, defined by Equation 3.1, in the sense that
aspects from different components are added to form a new time series.

Yt = Tt +St +Rt (3.1)

We can also combine the components using a multiplicative combination, as expressed
by Equation 3.2.

Yt = Tt ×St ×Rt (3.2)

where the three components are combined by a product operator.
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The inverse can also occur, when a time series is decomposed in its basic components,
using a combination of components. Decomposition techniques assume that it is possible to
find a function able to decompose a time series into the T, S and R components, as expressed in
Equation 3.3.

f (Yt) = (Tt ,St ,Rt) (3.3)

Different techniques have been proposed to decompose a time series into these three
components, such as Seasonal Extraction in ARIMA Time Series (SEATS) and the X-11 method
(DAGUM; BIANCONCINI, 2016). For reasons to be explained later, we will adopt the Seasonal
Trend decomposition using Loess (STL) in this work.

The STL method additivelly decomposes a time series Yt by sequentially applying local
regression smoothers (Loess) to the time series.

Loess applies local linear regression to a time series to reduce the effect of extreme
observations or outliers. To do this, at each iteration of the local regression, its weights are
adjusted to penalize observations with large errors during curve estimation (CLEVELAND et al.,
1990).

The STL decomposition uses two iterative procedures, one nested within the other. In
each inner loop iteration, the seasonality and trend components are updated once. The outer loop
has one or two inner loop iterations, followed by the identification of extreme values. In the
next inner loop, the weights of extreme observations are decreased. The complete process takes
between 10 and 20 iterations (MAKRIDAKIS; WHEELWRIGHT; HYNDMAN, 1998).

The advantages of using the STL, when compared with the other decompositions previ-
ously mentioned are: it supports seasonal components varying over time; it is robust to outliers;
and it can control the smoothness of the trend. Its main disadvantage is not being able to handle
calendar variation or specific events (HYNDMAN; ATHANASOPOULOS, 2018a).

Time series forecasting tasks use known observations to extrapolate observations to
the future. Formally, given a time series Yt = {yt}T

t=1, they look for a function f such that
f (t) = ŷt+h ≈ yt+h, ∀t + h > T (HYNDMAN; ATHANASOPOULOS, 2018a). The mapping
A : {yt}T

t=1 → f is a forecasting model. Forecasting models assume the existence of a probability
measure µ(yT+h|{yt}T

t=1), where h is the forecast horizon. When h = 1, the forecasting is one-
step ahead forecasting, and when h > 1, it is multi-step ahead. Thus, these models assume that
there is a direct relationship between past observations and a future observation. To do this,
different approaches can be used by forecasting models.
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3.3.2 Metalearning for model selection

In this section, we will formally define how metalearning can be used for model selection.
Concerning this, let P be the space or a collection of datasets d of a task such that d ∈ P .
Let A be the space or portfolio of algorithms L applicable to tasks of P such that L ∈ A . The
mapping S : P → A applies all L algorithms to all datasets d. From the S mapping, the space
of performance measures p : A ×P → Rn can be accessed. The Algorithm Selection Problem
(ASP) searches in S for an algorithm L that optimizes a performance measure of p given a
dataset d (RICE, 1976).

Depending on the complexity and the number of algorithms in the portfolio A , the
search for an algorithm L that satisfies the desired predictive performance can have a high cost.
An alternative to reduce this cost of exploring all possibilities in S is to use the metalearning.

Metalearning, or learning to learn, is the set of methods that uses knowledge extracted
from tasks, algorithms, or performance evaluation of algorithms to improve predictive per-
formance and make it faster and more efficient in the future (BRAZDIL et al., 2008; FINN;
ABBEEL; LEVINE, 2017). As shown in (HUTTER; KOTTHOFF; VANSCHOREN, 2019a),
there are several approaches to metalearning. In this study, we will use metalearning for algorithm
recommendation based on meta-features.

Meta-feature-based metalearning uses an ML approach to relate the characteristics
present in datasets to the relative performance of algorithms applied to them (BRAZDIL et al.,
2008). For the sake of simplicity, in this work, we will simplify meta-feature-based metalearning
to just metalearning. Figure 18 presents a general metalearning diagram with its main steps.

Tasks, 
Datasets

Algorithms

Characterization

Evaluation

Metadata: 
Characteristics, 

Performance

Meta-level
ModelMetalearner

Figure 18 – Metalearning General Diagram based on (BRAZDIL et al., 2022a).

On the left side of the diagram, we have the two main inputs for a metalearning-based
solution, at the top a set of n tasks, represented by n datasets D = {d0,d1, . . . ,dn}, and at the
bottom, a portfolio of m candidate algorithms or base learners L = {l0, l1, . . . , lm}. Next, we have
the characterization of the datasets and the evaluation of the algorithms when applied to the
datasets.

The characterization is the extraction of characteristics, called meta-features, from the
datasets. A large number of meta-features, based on different approaches, have been proposed.
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In (RIVOLLI et al., 2018), the authors formally define a meta-feature f as a function f : D → Rk.
Function f returns a set of k values that characterize the dataset di. The evaluation step applies the
base learners L to the datasets D to obtain a performance measure p(L,D). The recommendation
to be learned for each dataset, represented by meta-features, is called meta-target. The value of
the meta-target is defined according to p and the expected output of the recommendation system,
which can be: an algorithm, a set of algorithms, a ranking of algorithms, or a performance
prediction (BRAZDIL et al., 2008). The combination of the meta-features with the meta-target
forms the metadata.

The next step in the diagram is the application of a ML algorithm to the metadata,
inducing a meta-model (BRAZDIL et al., 2008). When a new dataset, in our case, a new time
series, needs to be predicted, the meta-model is applied to the meta-feature values representing
this dataset to recommend one of the ML algorithms in the portfolio for this task.

3.4 Related work

In this section, we briefly describe previous studies investigating the use of metalearning
to recommend ML algorithms for time series forecasting and the combination of different
approaches for hybrid forecasting.

3.4.1 Metalearning for time series forecasting

The approaches proposed by (MEADE, 2000; PRUDÊNCIO; LUDERMIR, 2004) were
the first to use metalearning to recommend time series forecasting models. (MEADE, 2000)
investigated the selection of single statistical models and committees. To evaluate the performance
of their metalearning approach, the authors used data from the M-Competition (MAKRIDAKIS
et al., 1982) and telecommunication-based time series. (PRUDÊNCIO; LUDERMIR, 2004)
analyzed the use of meta-features for the recommendation of statistical methods rankings for
time series forecasting. The experiments used data from the M3 competition (MAKRIDAKIS;
HIBON, 2000). Both studies obtained promising results towards the effective application of
metalearning for selecting time series forecasting models.

Many different approaches were proposed after these works. They can be character-
ized according to several dimensions. In (MEADE, 2000; PRUDÊNCIO; LUDERMIR, 2004;
LEMKE; GABRYS, 2010; WIDODO; BUDI, 2013; Kück; Crone; Freitag, 2016; ALI; GABRYS;
BUDKA, 2018), the authors used their own sets of meta-features, which were based on descrip-
tive statistics, statistical tests, frequency domain measures (based on Discrete Fourier Transform),
autocorrelation coefficients and relative performance of models. The work of (MA; FILDES,
2020) developed a deep learning approach to learn a meta-level representation of a time series
using Convolutional Neural Networks.
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Regarding the recommendation strategy based on metalearning, three trends were found
in the literature: recommendation of the best model or ranking, recommendation of a combination
of models, and prediction of model performance. The approaches by (MEADE, 2000; PRUDÊN-
CIO; LUDERMIR, 2004; WIDODO; BUDI, 2013; Kück; Crone; Freitag, 2016; ALI; GABRYS;
BUDKA, 2018; BARAK; NASIRI; ROSTAMZADEH, 2019; TALAGALA et al., 2018) used the
selection strategy of the best model or ranking. The papers (MEADE, 2000; LEMKE; GABRYS,
2010; MONTERO-MANSO et al., 2020; MA; FILDES, 2020; VAICIUKYNAS et al., 2021)
built model combinations from metalearning. In most of the studies, the predictive performance
of model combinations was compared with the single models, and the combinations obtained the
best results. Another approach is the prediction of model performance for a given time series ob-
served in the study by (TALAGALA; LI; KANG, 2019; MONTERO-MANSO et al., 2020; MA;
FILDES, 2020). Moreover, considering combination strategies, the study (CERQUEIRA et al.,
2017) uses metalearning to dynamically combine models to predict the error of the combination
of models within a given time series.

Neural networks are used in many approaches but are the only ML model on the base level
in many frameworks. Despite this, ML models presented competitive results when compared to
statistical models (PARMEZAN; SOUZA; BATISTA, 2019c). Most of the work focuses on using
statistical methods as base learners. In the study by (MA; FILDES, 2020), other ML algorithms
are added as base learners: extreme learning machines, Random Forest (RF), Support Vector
Machine (SVM), and gradient boosting.

3.4.2 Hybrid forecasting

Recent works in hybrid forecasting propose new alternatives of combining forecasts
and applying them to real-world time series analysis problems. The approaches proposed by
(GURNANI et al., 2017; LI et al., 2020c; DUDEK; PEŁKA; SMYL, 2021) developed methods
for specific domains, drugstore sales forecasting, dam displacement, and midterm load forecast-
ing, respectively. Moreover, the methods proposed by (SMYL, 2020; SILVESTRE; SANTOS;
CARVALHO, 2021) were applied to several application domains.

In these studies, the methods used to decompose the time series are exponential smoothing
statistical and STL decomposition. In (SMYL, 2020; DUDEK; PEŁKA; SMYL, 2021), the
authors use the exponential smoothing method to separate and forecast the seasonality component,
while using another method for the other components. The studies published in (GURNANI et

al., 2017; LI et al., 2020c; SILVESTRE; SANTOS; CARVALHO, 2021) use STL decomposition
to separate a time series into the three components and use different methods for each component
forecasting.

The studies that used STL decomposition (GURNANI et al., 2017; LI et al., 2020c;
SILVESTRE; SANTOS; CARVALHO, 2021) described that, in addition to the present state-of-
the-art predictive results, the hybrid forecasts showed stability and robustness. The method that
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uses exponential smoothing (SMYL, 2020) was the best in the M4 competition, when it was
compared with several other methods for different forecasting horizons.

A review article (WANG et al., 2022b) with a 50-year overview of the time-series
forecasting combination discussed the evolution of research in this area. The complexity of the
combination methods does not necessarily increase the predictive performance. Another point
raised in the article is that certain types of combination are suitable only in certain situations,
and therefore future work should focus on determining which situations the proposed methods
improve performance. The article also pointed out several directions for future research in this
area.

3.5 The MetaFore approach
Given a time series data Y = {Y0,Y1, . . . ,Yn} and a new time series Ynew. The MetaFore

framework forecasts the new time series Ynew as illustrated in Figure 19. Figure 19 shows that
the proposed approach is based on two main steps: the metadata collection step and the model
recommendation step.

STL

ML method

Seasonal naive

Evaluation

Characterization
Metadata

Time series data

Metalearner

STL

Metalearning 
Recommendation

Seasonal naive

Forecasting 
Combination

Metadata Collection Step

Model Recommendation Step

Trend + Residue

Seasonality

Trend + Residue

Seasonality

New time series

Figure 19 – MetaFore approach Diagram.

In the metadata collection phase, we carry out the STL decomposition for each time series
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of Y . The trend, seasonality, and residual components are separated in the STL decomposition.
In MetaFore, trend and residual are combined and treated separately from seasonality. The
combined trend and residual components are modeled using ML algorithms. The seasonality
component is modeled with the seasonal naive method. The choice of the seasonal naive method
for the seasonality component was due to previous successful studies (GURNANI et al., 2017;
SILVESTRE; SANTOS; CARVALHO, 2021). At the same time, we characterized the time series
Y using a set of meta-features.

Component forecasts are carried out and combined after modeling by their respective
methods. From the forecasting combination, the predictive performance is obtained. The meta-
target is the base learner that achieves the best predictive performance. Thus, the problem is cast
as a classification task.

In the model recommendation phase, we forecast the time series Ynew based on the meta-
knowledge obtained from the metadata. To do this, we performed the STL decomposition step as
was done for the time series in Y . The metalearner recommends an algorithm for the combined
trend and residual components. At the same time, the seasonality component is modeled by
the naive seasonal method. MetaFore returns the additive combination of the predictions of the
recommended algorithm and the seasonal naive method.

3.6 Materials & Methods

This section describes the datasets and the methods used to implement and evaluate
MetaFore.

3.6.1 Time series data

The experiments carried out in this study use the monthly time series from the M4
competition (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2020). There are 48,000 time
series from different real applications such as micro and macro economy, industry, finance,
demographic, and others. The M4 competition time series, as in, (MAKRIDAKIS; SPILIOTIS;
ASSIMAKOPOULOS, 2020) has been scaled so that there are neither negative observations nor
below value 10 to avoid possible errors in metric calculations. Some evaluation measures, such
as the Mean Average Percentage Error (MAPE), do not work when a time series has values equal
to zero (WIDODO; BUDI, 2013).

Unlike other benchmarks datasets, such as the dataset used for the M3 competition, the
M4 competition dataset has real world data (SPILIOTIS et al., 2020). We used only the monthly
frequency because, according to (SPILIOTIS et al., 2020), in most time series forecasting
applications, organizations are more interested in forecasting monthly series.
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3.6.2 Meta-features

As meta-features are able to characterize time series, the time series features from the
Tsfresh (CHRIST et al., 2018) package, available in python, have been successfully used in
several applications, such as activity recognition from synchronized sensors (KEMPA-LIEHR et

al., 2019), volcanic eruption forecasting (DEMPSEY et al., 2020) and sensor anomaly detection
(TEH et al., 2021). Their use in these applications show their relevance.

Among others, the meta-features extracted by Tsfresh include measures from descrip-
tive statistics, trend, frequency domain, Benford correlation, auto-correlation, and entropy. For
this study, we extracted 783 meta-features from this package, avoiding meta-features with high
computational cost (with the parameter default_fc_parameters set to efficient).

3.6.3 Base-Learners

The following regression algorithms were used as base-learners: Light Gradient Boost-
ing Machine (LGBM) (KE et al., 2017), K Nearest Neighbors Time Series Prediction with
Invariances (KNN) (PARMEZAN; SOUZA; BATISTA, 2022), Support Vector Regression (SVR)
(SMOLA; SCHÖLKOPF, 2004), Random Forest Regressor (RF) (HO, 1995), Bayesian Kernel
Ridge Regressor (BKR) (TIPPING, 2001), and Linear Regression (LINREG) (LAI; ROBBINS;
WEI, 1979). They were chosen because they are widely used for time series regression and
forecasting tasks with very good results reported in the literature (PARMEZAN; SOUZA;
BATISTA, 2019a; MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2022; PARMEZAN;
SOUZA; BATISTA, 2022).

The sktime package was used to support the induction of the regressors for the time
series forecasting task. The support includes a reduction procedure to transform the time series
into a supervised learning task. The recursive strategy is used for multi-step ahead forecasting.
As an example, given the time series Y = {1,2,3,4,5,6,7}, Figure 20 illustrates the reduction
procedure and the recursive forecasting process.

t-3 t-2 t-1 t t+1

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

t-3 t-2 t-1 t t+1

4 5 6 7 ŷ+1

5 6 7 ŷ+1 ŷ+2

Figure 20 – Example of the reduction Procedure.

Figure 20 illustrates an example of using the reduction procedure to transform the time
series Y into a structured dataset (4 predictor variables and 1 target variable). In the right part,
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we see the recursive strategy. In the example, we forecast two steps ahead ŷ+1 and ŷ+2. Since the
data in the time series are collected monthly, we used 12 temporal lags as predictor variables.
We forecast 18 steps ahead, using the M4 competition test data.

In the experiments carried out, all base-level algorithms use the default hyperparameter
values. For reproducibility, we controlled the seed of the value random generator.

3.6.4 Meta-target definition

For the definition of the meta-target, we used the lowest value of the Mean Squared Error
(MSE) Equation 3.4. This metric was chosen due to its high penalty for large errors, a feature
that can be beneficial for differentiating algorithm performances.

MSE =
∑

n
i=1(yi − ŷi)

2

n
(3.4)

Table 1 summarizes the main characteristics of metadata. In the meta-target lines, we
show the distribution of the meta-target divided among the base learners.

Table 1 – Metadata description

Meta-features 783
Meta-examples 48000

Meta-target KNN LGBM RF LINREG BKR SVR
13035 7809 7504 7267 6203 6182

3.6.5 Metalearner

The metalearner used in this work is the Random Forest (RF) algorithm. The RF al-
gorithm was chosen due to it being successfully used for this task in previous studies, such
as (TALAGALA et al., 2018). Besides, RF works well with noisy features and presents good
results even without hyperparameter tuning. Only the RF was used as a metalearner because
the metalearning algorithm is not an important issue of the proposed framework. The only
hyperparameter value defined by the authors was the number of estimators; i.e., 2000. For the
other hyperparameters, the default values were used.

3.6.6 Meta level evaluation

This evaluation assesses the overall predictive performance for each base learner and the
metalearner. The confusion matrix was used to evaluate the recommendation performance for
each base learner. The confusion matrix arranges the results of a classifier in two dimensions.
One dimension represents the predicted target variable, and the other represents the true target
variable.
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The Geometric mean (Gmean) was used to measure overall predictive performance at the
meta-level. The Gmean measure is used when the data set has a class imbalance. The Gmean defi-
nition for multiclass problems is the root of the product of all the class sensitivity (BARANDELA
et al., 2003).

The baseline used for the performance of the recommendation was random classification
(Rd). To simulate Rd, 30 random classes were drawn. Then the Gmean was calculated, and the
result considered was the average.

3.6.7 Base level evaluation

For the definition of the meta-target, and the subsequent performance evaluation of the
regression models, the training and test set division of the competition dataset, the base-dataset,
was used, when the monthly time series was separated from the 18 forward test steps, which will
not be seen during the training phase. The meta-dataset was divided into 80% for training and
20% for testing. The metric used to assess the difference between the predictive performance of
the regressor recommended by the metalearning and the regressor defined by the baselines was
the Mean Absolute Percentage Error (MAPE) Equation 3.5.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (3.5)

MAPE was used because it is a percentage metric, therefore, is independent of the
scale of different time series. This behavior is desirable because differences in scales could
cause bias in the analysis of results. To analyze the statistical significance of the results, the
Friedman statistical test with Post-hoc Nemenyi was used, and the results are shown in the
critical difference diagram (DEMŠAR, 2006).

3.6.8 Base level benchmarking

For a base-level validation of the proposal approach, we also compared it with recurrent
deep learning algorithms, in addition to the performance of the single models. These algo-
rithms were chosen because they have state-of-the-art results in several applications (SEZER;
GUDELEK; OZBAYOGLU, 2020; HEWAMALAGE; BERGMEIR; BANDARA, 2021). How-
ever, the training process of recurrent neural networks has a high computational cost and
requires a large amount of data (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2018a;
PARMEZAN; SOUZA; BATISTA, 2019c). The methods used as base learners in this study are
less computationally complex than recurrent neural networks. The recurrent architectures used
as benchmarking were the stacked LSTM and the bilateral LSTM neural networks.



3.7. Experimental Results 55

3.6.9 Computational cost

In addition to the predictive performance, we analyzed the computational cost when
comparing MetaFore with the other methods. The processing time used is equal to the sum of
the user and system processing time during the current process, not including the time elapsed
during sleep. Entering the sleep state means that the process suspends its access to the processor.
The computational structure available can affect the execution time. For reproducibility, the
structure used was a server with 2 Intel Xeon Processors E5-2650v4, 2.2 GHz with twelve cores,
128 GB DDR3 1866MHz, and 1 Nvidia Tesla P100 GPU.

3.6.10 Meta-knowledge interpretation

The mean decrease in the impurity (MDI) method (BREIMAN et al., 1984b) was used to
obtain the ten most important metafeatures. The MDI can be defined as the total impurity decay
of a node weighted by the probability of reaching this node divided by the number of trees in the
ensemble.

After obtaining the ten most important meta-features, we used the Partial Dependence
Plot (PDP) (HASTIE; TIBSHIRANI; FRIEDMAN, 2009) to extract meta-knowledge and to
understand how the model recommendation probability varies according to the value of the
meta-feature.

3.7 Experimental Results

In this section, we present and analyze the main experimental results obtained by
MetaFore. At the meta level, we compare MetaFore with the baseline, and at the base level we
compare the performance of the recommended regression models with the single models and
LSTM architectures. At the end, we analyze the meta-knowledge present in the classification
model using feature importance and PDP.

3.7.1 Meta level results

We start by analyzing the meta-level predictive performance. In this evaluation, we extract
predictive performance measures from the confusion matrix. Figure 21 shows the metalearner
confusion matrix for the test data. The predicted algorithms are on the x-axis, and the y-axis are
the true algorithms. The confusion matrix is scaled by the total number of time series in the test
data.
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Figure 21 – Recommendation Model Confusion Matrix.

In the confusion matrix, the main diagonal represents the correctly classified labels. In
the MetaFore confusion matrix, it can be observed that the percentage of correctly predicted
labels was higher than the errors for all classes. There is an imbalance of classes in the dataset.
The largest proportion of data refers to the KNN class. Most of the predictions also focused on
the KNN class. We will analyze the Gmean measure to understand how the imbalance impacted
the overall performance. Table 2 shows the results of the Gmean obtained by MetaFore and for
the mean of the random classification (Rd).

Table 2 – Meta Level: Classification Metrics.

Metric MetaFore Rd

Gmean 0.22 0.16

Table 2 indicates that the MetaFore Gmean is greater than the average of the random
classifications. The Gmean measure penalizes errors given the class imbalance. The Gmean
presented by MetaFore shows that it was difficult to differentiate the classes in many time series.
In future work, finding effective strategies to minimize these errors is desirable.

These results provide evidence that the algorithms recommended by MetaFore were
correctly classified for a large proportion of the data. In terms of Gmean, the proposed baseline
was surpassed. Given the difficulty of classifying six classes, the results were satisfactory.
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3.7.2 Base level results

Figure 22 shows the results at the base level, using the predictive performance (MAPE)
and computational cost. In this figure, the y-axis shows the MAPE results obtained by the
baselines, the state of the art models, LSTM and Bi LSTM, and MetaFore, and the x-axis their
computational cost in seconds.
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Figure 22 – Base Level: comparison between predictive performance and execution time.

According to these results, algorithms recommended by MetaFore obtained lower error
rates than the base-level algorithms. The predictive performance of MetaFore was close to
that obtained by KNN, the algorithm with the best single model. Besides, KNN, in its TSPI
(PARMEZAN; SOUZA; BATISTA, 2022) version, is the most frequent algorithm in the meta-
target. Thus, when MetaFore recommends an algorithm other than KNN, it gains an advantage
in predictive performance. It is easy to see that when considering computational time, MetaFore
is more efficient than executing all the base-level algorithms, as the latter takes less time than
KNN, which is the slowest algorithm. In a statistical significance test, MetaFore was significantly
better than the worst single model, the SVR, corroborating the learning potential obtained by the
meta-model.

Finally, MetaFore performed much better than the LSTM neural networks, both in
predictive performance and computational cost. In more than 70% of the test time series, the
recommended algorithm was better than the LSTM architectures. Figure 23 shows the Critical
Difference Diagram referring to the Post-hoc Nemenyi statistical test.
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Figure 23 – Base Level: Critical Difference Post-hoc Nemenyi Test.

The Critical Difference Diagram confirms that the result obtained by MetaFore out-
performed models induced by single algorithms and LSTM neural networks with statistical
significance. The second best alternative was KNN, followed by BKR, RF, and LINREG, with
no statistically significant difference. The worst predictive performance was achieved by the
model induced by the SVR algorithm.

These results show that the MetaFore approach balances the predictive performance and
computational time consumption well. In several applications, approaches with these charac-
teristics are desirable. MetaFore shows good results at the meta and baseline level for a set of
time series from different real-world domains. Due to the empirical evaluation of a challenging
dataset, MetaFore has a consistent and promising performance.

3.7.3 Feature importance and partial dependence plot

Table 3 shows the ten most important meta-features used by the metalearner for the
training data. The first column has the name of the meta-features and the second their importance
measured in MDI. This information helps to understand the characteristics considered the most
relevant in the MetaFore decision-making process.

Table 3 – Top 10 Metalearner Feature Importance.

Meta-feature Feature Importance (MDI)

Augmented Dickey-Fuller Statistic 0.0026
Augmented Dickey-Fuller P-value 0.0026
Autoregressive Coefficient 0 0.0023
First Location of Maximum 0.0022
Autoregressive Coefficient 4 0.0022
Autoregressive Coefficient 10 0.0022
Last Location of Maximum 0.0022
Partial Autocorrelation Lag 4 0.0022
Autoregressive Coefficient 6 0.0022
Autoregressive Coefficient 7 0.0022

The first two meta-features, Augmented Dickey-Fuller statistic and p-value, are the time
series trend-stationarity test results. The Augmented Dickey-Fuller statistic is a negative value.
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The more negative, the higher the probability that the time series has a trend. The Augmented
Dickey-Fuller p-value is the probability of obtaining the observed time series, assuming that
the null hypothesis is true. The null hypothesis of the statistical test is that there is no trend-
stationarity in the time series.

Autoregressive Coefficients can show how smooth a time series is. They are defined by
the estimation of parameters of an autoregressive process. The explanation of this meta-feature
comes from the data order and value. The order comes from how many past temporal lags affect
the future values. The coefficient in a given order can be interpreted as the relevance of the lag to
the prediction. Regarding the value, the larger the value in higher orders, the smoother the time
series.

The first and last Locations of Maximum are the relative positions of the maximum value
in the time series. Each one of these values is scaled from 0 to 1. These positions define whether
the values in a time series in a particular interval are growing or decreasing.

The Partial Autocorrelation coefficient is a statistical value that shows the order of an
autoregressive process. If the Partial Autocorrelation coefficient value of a given lag is statistically
relevant, it signals the order of the autoregressive process. The higher the time series seasonality,
the higher the lag. For example, the statistically relevant lag in monthly time series is usually 12
(annual seasonality) or 4 (quarterly seasonality).

A meta-knowledge that can be derived from these meta-features to meta-knowledge
is that trend, smoothness, and seasonality properties are important in the MetaFore algorithm
selection phase. The meta-level model assigned relevance to meta-features directly related to the
trend and seasonality components, which are the main focus of the STL decomposition.

In Table 3, we selected four representative meta-features from each category to investigate
further with PDP plots. In Figure 24, the values in the vertical axis, Partial dependence, are
the probability of the model being chosen. The values in the horizontal axis are assumed by a
particular meta-feature.
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Figure 24 – Partial dependence plot for the metalearner.

The top left graph shows the partial dependence for the Augmented Dickey-Fuller
Statistic meta-feature. From -1 onwards, the probability of recommending KNN decreases. The
probabilities for the LGBM and SVR models remain practically constant with the variation of
this meta-feature. Close to the value 0, the BKR and LINREG models increase the probability of
being recommended. The RF model probability decays smoothly when the meta-feature value
is close to the value 0. Regarding the meta-knowledge, the results show that the KNN and RF
algorithms benefit from trend stationarity, while the opposite happens for the BKR and LINREG
algorithms.

The top right graph shows the partial dependence for the Autoregressive Coefficient
0 meta-feature. For all models, the larger variations of the partial dependence are shown in
the interval between 0 and 250. While this value increases for KNN and RF, it decreases for
LINREG and BKR. For SVR and LGBM, it remains constant. Thus, KNN and RF algorithms
benefit from higher coefficient values, and LINREG and BKR from values close to 0.

The bottom left graph shows the probabilities for the First Location of the Maximum
meta-feature. The probability values for KNN remain constant for this meta-feature. For LGBM
and RF, they sharply decrease when the maximum value approaches the end of the time series.
The opposite occurs for BKR, SVR, and LINREG. BKR, SVR, and LINREG gain when the
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maximum value is near the end of the time series. LGBM and RF have their highest probabilities
before the last decile.

The bottom right graph shows the probabilities for the Partial Autocorrelation Lag 4
meta-feature. In this graph, there are no probability variations with the change of the meta-feature
values. An investigation with another technique or with sets of meta-features can extract some
meta-knowledge from this meta-feature.

The interpretation of meta-knowledge with PDP provides new insights into the relation-
ships between the meta-features and the selected algorithm. In this analysis, it can be observed
how the selection of algorithms depends on the presence of trend-stationarity in the time series.
It is also shown that the location of the maximum value at the end of the time series impacts the
algorithm selection by the meta-level model.

3.8 Conclusion

This paper proposed and experimentally assessed a new metalearning-based approach
for time series forecasting. The proposed approach, MetaFore, uses metalearning for the rec-
ommendation of the most suitable ML algorithm for STL decomposition based-forecasting
combinations. Experiments were carried out to assess the proposed approach. According to the
experimental results, for the datasets used in this study, the predictive performance obtained by
MetaFore was superior to the results obtained by literature methods.

MetaFore was implemented and evaluated at meta and base levels for the monthly time
series of the M4 Competition. At the meta level, the predictive performance for each base-learner
and the metalearner was evaluated. At the base level, the prediction error and computational
time were compared with single models and LSTM architectures. The predictive performance
presented by the MetaFore was superior to the predictive performance obtained by single models
and LSTM architectures, with a lower computational cost.

Furthermore, the most important meta-features for the meta-level model were analyzed.
Based on the analysis, the following meta-knowledge found that the most important meta-features
are related to trend and seasonality. These properties are the main focus of STL decomposition.
The PDP analysis showed that the presence of trend-stationarity and the location of the maximum
value in the time series are related to the selection of the algorithm by the meta-level model.

These experimental results showed the benefits of using MetaFore for time series fore-
casting, which we understand to be important scientific contributions for research in this area.
We believe that the automatic selection of models that compose the combination has several
good opportunities for further investigation. New research directions include using metalearning
to recommend a model for seasonality, assuming that some time series have more complex
seasonal patterns that would hardly be modeled by the naive seasonal method. Another possi-
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ble improvement would be the investigation of the proposed approach to test new time series
frequencies.
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CHAPTER

4
SEASONAL-TREND DECOMPOSITION

BASED ON LOESS + MACHINE LEARNING

Reference: SILVESTRE, G.D.; SANTOS, M.R.; CARVALHO, A.C.P.L.F. Seasonal-Trend
decomposition based on Loess + Machine Learning: Hybrid Forecasting for Monthly
Univariate Time Series. In: International Joint Conference on Neural Networks (IJCNN),
2021, Shenzhen, China (Virtual Event). IEEE, 20 September 2021. 1-7.

4.1 Abstract

Recent studies have shown that hybrid forecasting models tend to be a powerful tool
to forecast univariate time series. However, most of these models are applied to time series
of specific domains and do not report general performance analysis for several time series
application domains. In this work, we designed a procedure that uses the Seasonal-Trend
decomposition based on Loess as a preprocessing step to model the time series components
separately using a machine learning algorithm and a seasonal naive forecaster. Finally, we analyze
under which conditions our proposed framework can improve a standard machine learning
model’s predictive performance. Results have shown that our hybrid forecasting framework
achieves a significant advantage in comparison to standard machine learning.

4.2 Introduction

Time series forecasting is a crucial problem in tasks that involve planning and support
to decision making. The forecasting task is challenging and is part of the daily life of several
areas such as finance, industry, government, demography, epidemiology, among others (MONT-
GOMERY; JENNINGS; KULAHCI, 2015a; HYNDMAN; ATHANASOPOULOS, 2021).

Literature approaches for time series forecasting is found in statistical and machine
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learning (ML) methods. The statistical methods were dominant for several decades. However,
in recent work, the machine learning algorithms presented an auspicious performance in the
time series forecasting task (MULLER et al., 1999; DEB et al., 2017; PARMEZAN; SOUZA;
BATISTA, 2019b; CERQUEIRA; TORGO; SOARES, 2019).

Besides, hybrid methods have appeared in the literature to unite the best of the two areas.
In time series forecasting, it is known that model combinations generally have better results
than individual models or at least minimize the risk of choosing the worst method (CLEMEN,
1989; HIBON; EVGENIOU, 2005). In the M4 competition (MAKRIDAKIS; SPILIOTIS; ASSI-
MAKOPOULOS, 2020), the best results were obtained by model combinations. The method that
presents the best results is a hybrid combination of a ML algorithm with a statistical method.

(REN; SUGANTHAN; SRIKANTH, 2014) aims to perform a comparative analysis of
the methods based on Empirical Mode Decomposition (EMD) for wind speed forecasting. The
results have shown that the combination of decomposition based on EMD and Support Vector
Regression (SVR) has outstanding wind speed forecasting performance.

In some applications, like power load time series, multi-phase decomposition might be
more useful to handle non-linearity and non-stationarity. The work (LI et al., 2020b) purpose an
approach with two-phase decomposition, Complementary Ensemble Empirical Mode Decom-
position (CEEMD) and the Variational Modal Decomposition (VMD) considering the Sample
Entropy (SE). This two-phase method is performed to model and separate differents non-linear
load series patterns. Support Vector Regression is trained in two-phase approach components.
The model achieves the state of the art results due to stable performance for short term power
load forecasting.

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
was applied to decompose flow traffic complex and irregular patterns in several more simple
components (LU et al., 2020). The Extreme Gradient Boosting (XGBoost) was applied to make
accurate traffic flow forecasting. This approach achieves superior performance in a benchmark
with state of the art models. The model show robustness for capture flow traffic patterns in
different conditions.

For short-term load forecasting, EMD and Seasonal-Trend decomposition based on Loess
(STL) are widely found in the literature (LI et al., 2020a). The work (LI et al., 2020a) purpose a
hybrid approach using Ensemble Empirical Mode Decomposition (EEMD) to decompose electric
load time series in different frequency components with low and high levels. The components
with low-frequency were forecasted by Multiple Linear Regression (MLR) and high-frequency
components by Long Short Term Memory (LSTM) neural network. This approach was called
ELM, an abbreviation for (EEMD-LSTM-MLR). The ELM method showed the Mean Absolute
Percentage Error (MAPE) 67% smaller than neural network LSTM.

The paper (LI et al., 2020c) uses the STL for decomposing dam displacement time series
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in seasonality, trend, and remainder. The seasonality is model with the Extra Trees algorithm,
and the components combination trend and the remainder by a neural network stacked LSTM.
This hybrid method shows performance superior in comparison to the state of the art models. A
great feature of this approach is the excellent stability besides forecast accuracy.

The M4 competition winner method (SMYL, 2020) is a hybrid combination of exponen-
tial smoothing based formulas and neural networks LSTM. The exponential smoothing-based
formulas were used to seasonality modeling and normalize time series. After the deseasonaliza-
tion, the LSTM neural network captures the trend component and obtain cross-learning.

Most of these hybrid methods are applied to a specific domain time series. Because of
this, it does not have a clear idea of when the method works in another domain and when it
had the same performance of not performing decomposition and combinations. Thus, this work
aims to describe a framework based on the STL to separately model the time series’s model
components by an ML algorithm and a naive seasonal forecaster combined for final forecasting.
The conditions under which the proposed framework improves predictions of an ML model are
evaluated based on the literature’s assumptions.

The proposed hybrid framework was evaluated in 30 monthly time series of the ICMC
time series prediction repository (PARMEZAN; BATISTA, 2014) from different applications.
The ML models used in this work were Bayesian Ridge Regression, Kernel Ridge Regression,
Support Vector Regressor, and Kernel Support Vector Regressor. For validation, the multicriteria
performance metric (MPM) (PARMEZAN; LEE; WU, 2017) and Mean absolute error (MAE)
were used for the Nemenyi post hoc test.

The paper is organized as follows: Section 2 describes the time series analysis methods
that are used during this work; Section 3 presents the proposed hybrid framework; Section
4 presents the experimental setup used to achieve the results of Section 5; discussions and
conclusion of the work are set out in Section 6.

4.3 Time-series analysis

A time series Yt = {yt}T
t=1 is a sequence of observations ordered in time (BOX et al.,

2015), for instance, daily stock prices, monthly meat consumption, number of people accessing
a website within an hour.

When the time series consists of only one variable varying in time, it is univariate. If
one measures the maximum temperature every month, then the temperature itself is the only
quantity considered, which means that this set of observations is a univariate time series. On the
other hand, if two or more variables are changing simultaneously, we say that it is a multivariate
time series (MONTGOMERY; JENNINGS; KULAHCI, 2015a). For example, the data collected
from an accelerometer can consist of three time series. Each one represents the acceleration in a
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different axis. Together they make up a multivariate time series.

Consider now that Yt is a univariate time series, its three main components are: trend
(Tt), seasonality (St) and residue (Rt) (HYNDMAN; ATHANASOPOULOS, 2021). These can
be defined as follow:

• Trend is a long-term increase or decrease in the data. It can assume both linear and non-
linear patterns. The first one is described using a linear map and the latter using polynomial
functions, exponential maps, and others;

• Seasonality is a cyclic pattern that repeats itself after a constant period. It is important
to note that a time series can carry out multiple seasonal patterns, i.e., there are multiple
cycles, and each one has its period;

• Residue is the short-term fluctuations, it is expected to be a random component, and
therefore, it cannot be estimated properly.

Suppose the magnitude of the seasonal fluctuations or the Trend variation does not
depend on the level, mean overall observations ignoring the long-term trend effect. In that case,
we can assume an additive decomposition, which means that Yt can be written as Equation 4.1.

Yt = Tt +St +Rt (4.1)

In contrast, if there is a relationship of proportionality between the level and the seasonal
fluctuations then a multiplicative decomposition is more appropriate, and the time series is
written as Equation 4.2.

Yt = Tt ×St ×Rt (4.2)

4.3.1 STL Decomposition

STL (CLEVELAND; CLEVELAND; MCRAE JEAN E ADN TERPENNING, 1990) is
a robust and versatile algorithm to perform time series decomposition. It performs sequential
applications of the Loess (local regression) smoother in order to decompose a time series Yt

into Tt + St +Rt . It has several advantages over other decomposition methods, e.g., SEATS
(Seasonal Extraction in ARIMA Time Series) and X11. Unlike those methods, the STL can
handle any seasonality, the seasonal component can change over time, the user can control the
trend smoothness, and it is robust to outliers. Its disadvantages include the limitation to additive
decomposition, which the application of a logarithmic transformation can overcome, and it does
not handle a trading day or calendar variation (HYNDMAN; ATHANASOPOULOS, 2021).
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Figure 25 – Components from the CBE: Eletricity production time series

The STL was applied to the monthly CBE: Electricity Production time series available
at the ICMC-USP Time Series Prediction Repository (PARMEZAN; BATISTA, 2014). In the
figure 25, the first plot shows an increasing linear trend along a strong cycle that repeats itself
every 12 months. A visual analysis of the residue plot shows random fluctuations around level 0,
and the L-Jung Box test results also give us high confidence that the residuals are noise.

4.3.2 Forecasting

Given a time series {yt}T
t=1 we would like map it into a function f such that f (t) = ŷt ≈

yt , ∀t > T , in other words, it’s going to be used the information present in the past values to
build a mathematical function that will output predictions for future observations (HYNDMAN;
ATHANASOPOULOS, 2021).

The map A : {yt}T
t=1 → f will be referred to as a forecaster or a model, now suppose

we want to predict the quantity yT+1, the latter is a random variable. It is possible to assume
the existence of a probability measure µ(yT+1|{yt}T

t=1) which is what describes the relationship
between the available data and the future observation. Every forecaster tries to estimate µ in
some sense. In most cases, its output, f , will represent the mean of this distribution. The process
of forecasting yT+1 given {yt}T

t=1 is called one-step forecast, on the other hand, if we want to
forecast a subset of {yT+k}k≥1 then the process will be called multi-step forecast.
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It is essential to evaluate it using out-of-sample observations to compare multiple fore-
caster’s performance(HYNDMAN; ATHANASOPOULOS, 2021), not in the training set. The
evaluation can be done by a metric, which tells us if the predictions are close to the actual values.
There are several different metrics to choose from, each with its interpretation, and it is up to the
user to decide which one is more appropriate for a specific problem.

4.4 Proposed Hybrid Forecasting Framework
The framework sums up the decomposition of the time series, using the STL, into two

components: the first one is the seasonality, which will be modeled using a seasonal naive
forecaster, and the second component, the trend + residue that a ML algorithm will model.
Consequently, it is necessary to make some assumptions before diving into the modeling phase
as a consequence of the no free lunch theorem. In this case, we will assume:

1. The seasonal pattern is strong and remains constant over time;

2. The residuals from the STL decomposition are approximately noise.

Each one of them will play an important role during the modelling phase. The assump-
tions about the seasonal component bring sense to the application of the seasonal naive forecaster.
Otherwise, we cannot fit the periodic component properly. Finally, we want to simplify the
forecasting task. If one can still spot autocorrelation within the residuals, then we know that the
STL failed, and therefore there is no guarantee that the data being fed to the models is indeed
what we have been expecting.

Suppose a time series Yt = {yt}T
t=1 fulfills our requirements, the sequence of steps we

will apply to forecast Yt is illustrated in the figure 26.

The log transformation ensures that Yt can be decomposed additively and stabilizes the
variance across time (HYNDMAN; ATHANASOPOULOS, 2021), to handle negative values, we
added a shift term. Thus the overall procedure is given by Equation 4.3.

log(yt +1) if min{yt}T
t=1 > 0

log(yt + |min{yt}T
t=1|+1) otherwise

(4.3)

The transformed time series will be decomposed by the STL algorithm yielding two
components: Zt = Tt +Rt , the trend+residual component, and St the seasonal component. The
latter is going to be modeled by a seasonal naive forecaster whose predictions are written as
Equation 4.4

ŝt = f (T +h,y1, . . . ,yT ) = yT+h−m(k+1) (4.4)
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Figure 26 – Proposed framework

Where h is the forecast horizon, m is the seasonal period and k the integer part of h−1
m

(HYNDMAN; ATHANASOPOULOS, 2021). The Zt component cannot be treated by a ML
model directly. Firstly it is necessary to extract features from it to turn the time series into a
structured dataset. The process is straight-forward and to illustrate it, we will take a time series
Zt = {z1, . . . ,z10} and p = 5, Zt is given by Equation 4.5.


z1 z2 z3 z4 z5 z6

z2 z3 z4 z5 z6 z7

z3 z4 z5 z6 z7 z8

z4 z5 z6 z7 z8 z9

z5 z6 z7 z8 z9 z10

 (4.5)

Note that we end up with a dataset with five samples and five features, more generally
with T − p samples and p features, which is precisely the case in which we can apply a classical
ML model. However, before training the algorithm, if there is a significant trend in the time
series, it will be applied to a local detrend operation (BANDARA; BERGMEIR; SMYL, 2020).
It consists of subtracting the last observation from each value in the corresponding input and
output. If we apply the local detrend to the previous dataset, we will get the Equation 4.6.
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z1 − z5 z2 − z5 z3 − z5 z4 − z5 z6 − z5

z2 − z6 z3 − z6 z4 − z6 z5 − z6 z7 − z6

z3 − z7 z4 − z7 z5 − z7 z6 − z7 z8 − z7

z4 − z8 z5 − z8 z6 − z8 z7 − z8 z9 − z8

z5 − z9 z6 − z9 z7 − z9 z8 − z9 z10 − z9

 (4.6)

Once the ML model is fixed and the dataset is constructed, we can start the training
process to estimate a function f that will perform the forecasting. The latter is based on an update
procedure that uses a queue to store the subsequences and updates it using the predicted values
from the model (PARMEZAN; SOUZA; BATISTA, 2019b). Suppose we want to predict z11 in
the previous example, then we will apply the following steps:

1. Construct the subsequence:

{z6 − z10,z7 − z10,z8 − z10,z9 − z10}

2. Calculate
f (11,z6 − z10,z7 − z10,z8 − z10,z9 − z10) = ˜z11 − ˜z10

3. Revert the detrend operation:
ˆz11 = ˜z11 − ˜z10 + z10

To forecast z12 it is enough to remove the first element from the subsequence, stack the
quantity z10 − ˆz11 to it and repeat the previous steps applying the necessary changes. It is not
hard to generalize for any time series and any forecasting horizon.

The predictions {ẑt}T+h
t=T+1 from the ML model are then added with the predictions from

the seasonal naive forecaster, {ŝt}T+h
t=T+1. Now it is enough to revert the predictions to the original

scale by the application of the Equation 4.7.

exp(ẑt)−1 if min{yt}T
t=1 > 0

exp(ẑt)−|min{yt}T
t=1|−1 otherwise

(4.7)

4.5 Experimental setup
The 30 monthly time series from the ICMC-USP Time Series Prediction Repository

(PARMEZAN; BATISTA, 2014) were chosen to test the proposed framework, since we believe
that they are more likely to fulfill our assumptions. Moreover, the repository contains a wide
variety of datasets from different domains which is rich environment to analyse if the hybrid ap-
proach will behave as we expect. We will describe the procedure used to compare the approaches
starting by the ML models considered.



4.5. Experimental setup 71

4.5.1 Machine Learning Models

It was decided to go for models that can be written as min f∈H Ê ( f )+λR( f ), where
Ê is the empirical error, λR is the regularization term and H is a reproducing kernel hilbert
space (EVGENIOU et al., 2002). They rely on optimization procedures in order to estimate the
function f given the training data, in this work, we will apply 4 algorithms:

• Bayesian Ridge Regression (BRR): Given the data matrix X and its corresponding target
vector y, the model can be written as follows:

prior: P(θ) = N (θ |m0,S0)

likehood: P(y|X ,θ) = N (y|Xθ ,σ2I)

It addresses the problem of overfitting in the least squares formulation by taking the mean
over all possible solutions according to a probability distribution instead of trying to
estimate θ directly (DEISENROTH; FAISAL; ONG, 2020). To make predictions we are
interested on the mean of the distribution P(θ |X ,y) which is exactly the solution of the
regularized least squares Problem 4.8.

min
θ

||Xθ − y||2 +λ ||θ ||2 (4.8)

In other words, it’s the maximum a posteriori solution for some convenient λ .

• Kernel Ridge Regression (KRR): In this case, we are also looking for the solution of the
regularized least squares problem but instead of assuming the correspondence f ↔ θ , i.e.
f is a linear map, we will allow f to be any element from a reproducing kernel hilbert
space H that will be constructed using some kernel function K (EXTERKATE, 2013). In
this case, by the representation theorem the solution is given by Equation 4.9.

f (·) =
n

∑
i=1

αiK(·,xi) (4.9)

where xi, i = 1, . . . ,n are the training points, then our problem reduces to find the vector α

such that Equations 4.10 and 4.11.

α = argmin
α

||K̂α − y||2 +λα
T K̂α (4.10)

K̂i j = K(xi,x j) (4.11)

• Support Vector Regressor (SVR): It allows sparse solutions by restricting the optimiza-
tion to the points outside a certain decision boundary controlled by the user (BISHOP,
2006). This can be achieved by replacing the squared error in the least-squares problem
with the ε-insensitive loss shown the Equation 4.12.
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max(0, |y− (θ T x+b)|− ε) (4.12)

Therefore, if the distance between the prediction and the actual value is less than some ε ,
the error at that point is completely ignored. Hence the solution depends only on a few
data points, and they are called support vectors.

• Kernel Support Vector Regressor (KSVR): If one introduces slack variables that tells
whether a point lies within, above or below the decision boundary in the SVR formulation
discussed previously and reformulate the whole optimization procedure using Lagrangian
Multipliers it’s possible to re-write the problem as:

min
α,α̂

1
2
(α − α̂)XXT (α − α̂)+ ε1T (α + α̂)− yT (α − α̂)

s.t. 1T (α − α̂) = 0

0 ≤ αi, α̂i ≤C, i = 1, . . . ,n

Note that the covariance matrix XXT can be replaced by Φ(X)Φ(X)T , where Φ is some
feature map. Finally, by representing the feature map using some kernel K, it is possible to
model the relationship between x and y using non-linear maps (BISHOP, 2006).

The implementation was provided by the scikit-learn API (BUITINCK et al., 2013),
to isolate the effects from the preprocessing steps, we used the default hyperparameters. The
kernel fixed was the Radial Basis Function (RBF), and the autoregressive order p was set to 12,
which is the maximum seasonal variation for the time series. Moreover, the STL decomposition
implementation is available at (SEABOLD; PERKTOLD, 2010).

4.5.2 Metrics

The metrics chosen to evaluate the models quantify the model’s capability to predict
the level, the seasonal, and the trend component while bringing high interpretability to the user
(HYNDMAN; KOEHLER, 2006). In order to simplify the analysis, they will be combined into a
single performance measure that will be used for comparison (PARMEZAN; SOUZA; BATISTA,
2019b).

• REL naive: Let {l̂t}T+h
t=T the predictions from the naive forecaster, i.e. l̂t = yT , ∀t > T and

{ŷt}T+h
t=T the prediction from some forecaster A , then the REL naive is define as follows

the Equation 4.13.
∑

T+h
t=T |yt − ŷt |

∑
T+h
t=T |yt − l̂t |

(4.13)

Thus, if this quantity is greater or equal than 1 we conclude that A is, at least, as worse as
the naive forecaster to forecast the level, otherwise, the model is better than the baseline.
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• REL snaive: Let {ŝt}T+h
t=T the predictions from the seasonal naive forecaster, then the REL

snaive is define as follows the Equation 4.14.

∑
T+h
t=T |yt − ŷt |

∑
T+h
t=T |yt − ŝt |

(4.14)

The interpretation is similar to the latter, but in this case we are evaluating the capability
of extrapolating the seasonal component.

• POCID: It measures if the model is able to tell if future values are increasing or decreasing
(PARMEZAN; SOUZA; BATISTA, 2019b), it ranges from 0 to 1 and values closer to the
latter are desired. We calculate it using the following the Equation 4.15.

T+h

∑
t=T

I{(ŷt − ŷt−1)(yt − yt−1)> 0} (4.15)

where I{A} is 1 if A holds true and 0 otherwise.

Finally, the multicriteria performance metric (MPM) used was devepoled by (PARMEZAN;
LEE; WU, 2017), it consists on calculate the area of the triangle which sides lengths are the
metrics chosen. In this case if a = REL naive, b = REL snaive, andc = 1-POCID, then the MPM
is given by Equation 4.16.

1
2

sin(
2π

3
)(a×b+a× c+b× c) (4.16)

The model with a lower MPM yields better forecasts.

4.5.3 Evaluation procedure

The time series were split using a temporal holdout (HYNDMAN; ATHANASOPOU-
LOS, 2021), leaving 5% for the testing set. We applied both the hybrid framework proposed
and what we call a classical framework, consisting of the same steps described in section 4.4.
However, instead of decomposing the time series, it feeds the log-transformed data directly to
the feature extractor. Applying the reverse local detrend operation is enough to transform the
predictions back to the original scale. Once we have the values, forecast it is enough to calculate
the MPM for both frameworks. The steps are illustrated in the figure 27.

We will compare each ML model individually against its hybrid version using the
MPM. The goal is to analyze if our assumptions are fulfilled, then the STL decomposition
as a preprocessing technique is likely to improve the forecast quality. Furthermore, we will
also compare all models along with the baselines, the naive forecaster and the seasonal naive
forecaster, using the Nemenyi posthoc test (NEMENYI, 1963), the metric used in this case was
the mean absolute error (MAE).
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Figure 27 – Evaluation procedure

4.6 Experimental results
The time series chosen were divided into two groups based on the outcome of the STL

decomposition. Using time, ACF, and histogram plots along with the L-Jung Box test, we were
able to tell apart the time series in which our assumptions held, group A, and the ones where at
least one of them failed, group B. The Tables 4 and 5 show the MPM’s for the time series, and
the letter “H” in front of the name stands for a hybrid.

Table 4 – Group A

Dataset BRR H-BRR KRR H-KRR SVR H-SVR KSVR H-KSVR
Bebida 0.84 0.55 2.01 0.78 0.92 0.46 1.24 0.48

CBE: Chocolate 0.58 0.33 3.01 30.24 0.62 0.36 1.01 0.87
CBE: Elec Prod 0.13 0.06 56.72 55.26 0.40 0.13 1.55 1.57

OSVisit 0.07 0.07 17.88 14.66 0.26 0.04 0.23 0.48
Ozonio 0.42 0.33 0.36 0.32 0.44 0.41 0.30 0.54

W: Dry White 0.66 0.53 1.77 6.31 0.59 0.34 1.69 1.39
W: Fortified White 0.39 0.32 15.05 12.71 0.46 0.35 0.60 0.24

W: Red 0.19 0.12 21.76 16.21 0.20 0.01 0.66 0.33
W: Rose 0.92 0.49 5.03 5.95 0.83 0.57 0.69 0.27

W: Sparkling 0.31 0.18 4.06 0.20 0.62 0.18 0.19 0.22
W: Sweet White 0.70 0.24 7.00 3.25 0.72 0.24 0.46 0.24

Latex 0.44 0.57 34.24 31.10 0.75 0.59 0.54 0.70
PFI 0.97 2.12 3.03 4.60 1.15 2.25 0.71 2.24

When the time series has a strong and constant seasonality and the STL produces
uncorrelated residuals, the hybrid approach is likely to give better predictions than the standard
ML approach to forecasting univariate time series. The Table 4 also shows us that the linear
models tend to benefit more from the proposed framework than the kernel-based models. The
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Table 5 – Group B

Dataset BRR H-BRR KRR H-KRR SVR H-SVR KSVR H-KSVR
CBE: Beer 0.23 0.63 0.80 0.70 0.37 0.56 0.37 0.63
Consumo 0.39 0.43 0.30 0.10 0.43 0.50 1.32 1.55

Lavras 0.33 1.36 0.60 4.41 0.32 1.39 0.28 1.64
Maine 0.44 0.50 0.66 0.71 0.49 0.66 1.35 0.84

Reservoir 0.54 2.50 2.25 2.58 1.99 2.51 1.94 2.50
Temp: Ubatuba 0.63 0.78 0.31 0.65 0.58 0.60 1.78 0.80

Chicken 1.97 1.17 119.74 130.86 5.06 3.65 1.37 1.49
DowJones 1.48 1.28 3.99 4.13 1.33 1.29 0.68 0.82

Energia 0.41 0.50 10.33 9.84 0.25 0.36 1.52 1.50
Global 1.44 5.42 7.21 5.52 9.83 5.63 6.78 1.85
ICV 0.04 0.09 7.94 7.94 0.21 0.23 1.73 1.71
IPI 0.21 0.13 1.24 0.98 0.24 0.18 0.30 0.47

STemp 4.07 6.13 10.15 8.76 9.12 6.26 16.04 20.19
Temp: Cananeia 0.27 0.27 0.39 0.56 0.37 0.38 0.31 0.23

USA 0.44 0.64 2.19 2.07 0.45 0.81 3.80 3.61
Darwin 0.51 0.44 0.33 0.37 0.44 0.41 0.25 0.37
MPrime 0.49 0.22 0.35 0.18 0.46 0.27 0.43 0.23

Nemenyi test, Figure 28 shows a significant difference between the strategies, and the hybrid
linear models are within the best ones.

CD = 3.76

1 2 3 4 5 6 7 8 9 10

H-BRR
H-SVR
Snaive
BRR

H-KSVR

KRR
H-KRR
Naive
KSVR
SVR

Figure 28 – Nemenyi - Group A

CD = 3.29

1 2 3 4 5 6 7 8 9 10

BRR
Snaive
H-BRR

SVR
H-SVR

H-KRR
KRR
Naive

H-KSVR
KSVR

Figure 29 – Nemenyi - Group B

In contrast, the table 5 shows the time series where the residuals are not independent
or lacking seasonality. The classical approach outperformed the proposed framework in most
of the datasets, as expected. If the STL decomposition failed, we have no guarantee of what
component it is being modeled precisely. Thus treating them all as one single measure is, in fact,
the best option. In some time series, the hybrid framework improved the predictions we can see
in the figure 29. There is no statistical difference between the approaches, and none of the hybrid
models could outperform neither its classical version nor the seasonal naive baseline. Again, the
kernel models showed themselves as worse as the naive forecaster to predict future observations,
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reinforcing the idea that modeling a time series with complex models does not always guarantee
better predictions.

4.7 Conclusion
This work showed that when we have a time series that fulfills our assumptions, there

is a high probability that using the STL as a preprocessing approach along the seasonal naive
forecaster can improve the performance of the ML models. We also saw that when one of those
assumptions does not hold, there is a big chance that the model will not be able to perform
better than a simple naive forecaster. Hence the application of it ends up adding unnecessary
complexity to the pipeline. Finally, we believe that linear models are more likely to be improved
by the proposed framework than the kernel-based models. Their simplicity can be a powerful
and reliable tool to forecast univariate time series among the ARIMA and exponential smoothing
models.
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CHAPTER

5
TSMORPH: GENERATION OF SYNTHETIC

TIME SERIES TO UNDERSTAND
ALGORITHM PERFORMANCE

Reference: This work was submitted to the "AutoML Conference 2023". The current status is
"Under review.".

5.1 Abstract

Time series forecasting is a task of great scientific and industrial interest. Despite the
widespread use of forecasting methods, there is limited work on understanding under which
conditions they achieve good or bad results. Existing approaches are mostly based on metalearn-
ing. The limited number of datasets available for that purpose makes extracting general and
reliable knowledge difficult. Synthetic data generation is a promising alternative to obtaining
large sets of datasets. However, current methodologies for generating synthetic data for time
series are complex and have a high computational cost. We propose tsMorph, a simple method
for generating synthetic time series based on dataset morphing. Given two datasets, tsMorph
creates a sequence of datasets that are a gradual transformation between the two. We illustrate
the usefulness of the methodology by analyzing the performance of two forecasting algorithms:
Long Short-Term Memory Networks and Support Vector Regression. The time series used in this
study are from the NN5 Competition. The results include several interesting observations that
illustrate the usefulness of the approach. For example, the performance of the Long Short-Term
Memory Networks improves with the increase in the amplitude of variation of the time series
values. In general, the experiments showed that tsMorph could be used to obtain knowledge
about the behavior of forecasting algorithms.
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5.2 Introduction

Forecasting is one of the main tasks in the decision-making process (HYNDMAN;
ATHANASOPOULOS, 2018b). Quantitative approaches use historical data such as time series to
make forecasts (MONTGOMERY; JENNINGS; KULAHCI, 2015b). Time series forecasting is
used in several application domains, such as weather, stock markets, and epidemiology. Several
methods for time series forecasting have been proposed in the literature with high predictive
performance on diverse domains (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2018b).
However, according to Wang et al. (2022a), a limited amount of work tries to understand under
which conditions we can expect a forecasting method to obtain good (and bad) results.

Datasets are needed to understand the variation in the performance of forecasting al-
gorithms from an empirical perspective. However, benchmarking for time series analysis is
limited (KEOGH; KASETTY, 2002). Some approaches have been proposed in the literature
for generating synthetic time series with realistic characteristics to generate benchmarking and
improve the performance of metalearning. Autoregressive approaches generate time series with
specific characteristics with optimization techniques. Furthermore, generative approaches (HY-
LAND; ESTEBAN; RÄTSCH, 2017; YOON; JARRETT; SCHAAR, 2019) based on Generative
Adversarial Networks (GOODFELLOW et al., 2020) learn the temporal dynamics of real time
series for the generation of synthetic series. These frameworks are committed to the reality
of the generated time series. However, generating datasets to improve understanding of the
performance of algorithms has two important challenges: (1) high computational cost related
to the optimization process and the training of neural networks; (2) absence of mechanisms for
gradual variation data characteristics that lead to variation of the behavior of algorithms.

(CORREIA; SOARES; JORGE, 2019) proposed a simple approach for systematic dataset
generation called dataset morphing. Dataset morphing consists of gradually transforming a
source dataset into a target dataset. The changes in the behavior of learning algorithms in
the sequence of manipulated datasets lead to a better understanding of those algorithms. This
approach was originally proposed for the evaluation of collaborative filtering algorithms. It
is a simple implementation method, and depending on the transformation function, it may
have a low computational cost. Here, we extend this work by proposing tsMorph, a simple
method for generating synthetic time series from morphing datasets. We propose a specific
transformation function for time series that is guaranteed to converge and has linear complexity.
We apply tsMorph to the NN5 competition data to understand the difference in the performance
of forecasting algorithms. Our results show that tsMorph can generate synthetic time series with
gradual variation between two datasets. This variation is reflected in the performance curve
and the characteristics of the time series. These properties make our method a support tool for
understanding forecasting algorithms.
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5.3 Background

5.3.1 Time series forecasting

A time series is a sequence of observations of a variable of interest equally spaced in
time (MONTGOMERY; JENNINGS; KULAHCI, 2015b). Let T be periods of historical data for
the variable of interest. Then we can denote an observed time series at period t by Yt = {yt}T

t=1.
Such a time series can represent many phenomena in the real word. For example, the demand for
beds for patients in a hospital during period t or the daily closing price of a stock on the stock
exchange.

One of the main tasks in time series analysis is forecasting. Time series forecasting
consists of using the available observations of the variable of interest to extrapolate the time
series into the future. Given Yt , the goal of the time series forecasting task is to find a function f

such that f (t) = Ŷt+h and Ŷt+h ≈ Yt+h, ∀t +h > T . In the forecasting definition, h denotes the
number of forecast observations ahead and is called forecast horizon. The mapping F : Yt → f

is a forecasting model. Forecasting models assume a direct relationship between the available
observations and the future of a variable of interest. In other words, these models assume the
existence of a probability measure µ(Ŷt+h,Yt) (MONTGOMERY; JENNINGS; KULAHCI,
2015b).

Several statistical methods and machine learning algorithms are capable of inducing time
series forecasting models (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2018b). It is
necessary to analyze the forecast error et to decide the most suitable one. The forecast error et is
defined by Equation 5.1.

et(h) = Yt+h − Ŷt+h (5.1)

There are several measures of forecasting performance. Each measure adapts the notion
of forecast error for specific purposes. We use the Mean Absolute Scaled Error (MASE) in this
work. MASE (HYNDMAN et al., 2006) is a scale-free error measure. Because it is scale-free,
this measure can be applied to analyze time series from different scales. This performance
measure originates from the scaled error qt defined by Equation 5.2.

qt =
et

1
n−1 ∑

n
i=2 |Yi −Yi−1|

(5.2)

where n is the number of observations in the time series. The denominator of Equation 5.2 is the
in-sample Mean Absolute Error of the naive forecast method. The naive forecast is one period
ahead by repeating the last observed value Ŷt+1 = YT . Once these terms are defined, the MASE
can be seen in Equation 5.3.
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MASE = mean(|qt |) (5.3)

The interpretation of this error value is that if the MASE is less than 1, the forecasting
method is better than the naive forecast and vice versa. An additional interpretation is that the
smaller the MASE value, the better the forecasting method.

5.3.2 Understanding the behavior of ML forecasting algorithms

In the literature, some approaches are used to understand ML algorithms. This section
discusses some that serve as a basis for the proposed approach–starting with dataset morphing
and the meta-knowledge analysis for time series forecasting.

Dataset morphing is the process of generating synthetic data from the gradual transfor-
mation of a source dataset into a target dataset. Given a source dataset Ds, a target dataset Dt ,
and a transformation τ , intermediate synthetic datasets D j are obtained by the dataset morphing
process. Correia, Soares and Jorge (2019) defines a generic dataset morphing process for various
tasks in Equation 5.4.

Dmorph : {D j|D0 = Ds,Dn = Dt ,D j = τ(D j−1)},1 ≤ j < n (5.4)

where Dmorph is the total set of datasets, and n is the number of transformations. The dataset
morphing process is proposed and used initially to understand the contrasting performance of a
pair of algorithms on pairs of datasets.Correia, Soares and Jorge (2019) analyzed the performance
curves obtained from the Dmorph datasets. Data characteristics related to performance variation,
called meta-features, were also analyzed.

Given a set of datasets D= {d0, . . . ,dn}, a meta-feature m can be defined as a function that
maps m : D → Rk (ALCOBAÇA et al., 2020). Function m returns k values that characterize each
dataset in D. Several meta-features have been proposed in the literature for different specific tasks.
According to Brazdil et al. (2022b), meta-features must have three main properties: performance
discrimination power, computationally not very expensive, and suitable dimensionality to the
amount of data available.

Another approach that makes use of meta-features is metalearning. Metalearning is the set
of methods that uses knowledge extracted from learning tasks, algorithms, or task performance
evaluation to improve predictive performance, make it faster, or understand how algorithms
work (HUTTER; KOTTHOFF; VANSCHOREN, 2019b). It is also occasionally used to analyze
the obtained meta-knowledge, despite being typically used for algorithm selection. Here we
focus on the use of metalearning.

Armstrong, Adya and Collopy (2001) analyze meta-features in the pioneering work on
metalearning for time series forecasting. The relations between the used meta-features and the
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selection of the algorithms were shown to evaluate the gain of the automatic selection about the
judgmental selection.

The approach proposed by Lemke and Gabrys (2010) uses decision trees to extract
meta-knowledge. Decision tree trained on metadata were forecasting methodologies are the
target. After inducing a decision tree, rules were extracted on which methodology to follow
according to the value of the meta-features.

The work of Talagala et al. (2018) presents an extensive meta-knowledge analysis. The
first analysis consists of a probability matrix of the output of a classification model. The rows
represent the time series, the columns are the forecasting models, and the matrix values are the
probabilities of selecting a model for a time series. The authors extract interpretations based on
the hierarchical grouping of the matrix by columns and the characteristics of the time series in
the rows. The second analysis is based on feature importance, measured in individual conditional
expectation score (ICE). This analysis aims to measure the effect of changing the value of a
single time series feature on the probability output of the algorithm.

The following section better explores related work to our proposal. In this work, the focus
will be on the dataset morphing approach. Dataset morphing is the basis for the development of
the tsMorph method.

5.4 Synthetic time series

The need for datasets is a challenge in many applications. In order to reach the perfor-
mance discrimination power and obtain more solid conclusions, a representative diversity of
these datasets is also necessary. In the context of time series analysis, some approaches are
available in the literature to generate synthetic data with realistic characteristics.

The autoregressive approach called GRATIS proposed by Kang, Hyndman and Li (2020)
is a method that generates synthetic time series given the desired values of some meta-features.
It is an evolutionary approach that searches for the parameters of a data generation method that
minimizes the distance between the metafeatures of the generated time series and values defined
by the user. The data generation is done using a Gaussian Mixture Autoregressive (MAR) model.
The applications proposed for GRATIS were generating representative benchmarks and metadata
augmentation. One important characteristic of this method is that the time series generated may
be very different from each other. This occurs because the similarity which guides search is
calculated in the selected meta-features space and not in the time series space. Additionally, the
search optimizes only some meta-features, which means that the values of other meta-features
(i.e., other characteristics of the time series) can be very different.

Yoon, Jarrett and Schaar (2019) proposed Time Series Generative Adversarial Networks
(TimeGAN), an adaptation of Generative Adversarial Networks (GAN) for time series. GAN is a
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framework for the generation of realistic data, and in TimeGAN the focus is on the preservation
of the temporal dynamics in the generated time series. This is achieved by adding to the classic
unsupervised adversarial loss a term representing the similarity to the original data. The work
proposes improving the performance of prediction, forecasting, and classification tasks as direct
applications.

GRATIS and TimeGAN frameworks are methods for generating synthetic time series
that can be used to understand the behavior of algorithms, which is the goal of our work. Both
are committed to the realism and diversity of the data generated. However, they have some
limitations. First, the time series that is generated may be too different from each other. By
analyzing the performance of algorithms on such time series, it is possible to obtain an overall
perspective of their behavior (e.g., on what types of time series algorithm A perform better than
algorithm B). However, it may also be important to have a more detailed characterization of
their behavior (e.g., how does the relative performance of algorithms A and B evolve as the
characteristics of the time series gradually change). The time series generated by autoregressive
and the generative processes support this kind of analysis. Secondly, the computational costs of
TimeGAN training and the GRATIS optimization process are high.

5.5 Dataset morphing for time series

tsMorph generates synthetic time series for understanding forecasting algorithms. Let a
source time series Ysourcet and a target time series Ytargett of the same length be observed up to
time t. The proposed transformation function ϕ for the gradual transition between Ysourcet and
Ytargett is:

ϕ(i) = αi ·Ytargett +(1−αi) ·Ysourcet (5.5)

where α is a contribution coefficient equals to i
n−1 , n is the number of time series and i is the

index of transformations between Ysourcet and Ytargett . The function ϕ is a linear transformation
whose contribution coefficient α spaces the generated synthetic time series equally in the range
of values between Ysourcet and Ytargett during the morphing process. The function ϕ is guaranteed
to converge. The computational cost of the ϕ transformation is O(t ×n). For time series with
length t >> n, the computational cost of the transformation ϕ is O(t). The dataset morphing for
time series developed in the tsMorph method is defined by:

Ymorph : {Yi|Y0 = Ysourcet ,Yn = Ytargett ,Yi = ϕ(i)},1 < i < n (5.6)

where Ymorph is the set of datasets and n is the number of time series in the set Ymorph. Therefore,
Yi are the synthetic time series gradually generated by the tsMorph method. Figure 30 illustrates
the application of the tsMorph method on two time series source and target with n = 5.
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Morphing 1: 75% Source / 25% Target
Morphing 2: 50% Source / 50% Target
Morphing 3: 25% Source / 75% Target
Target

Figure 30 – Illustrative example of the tsMorph method with n=5.

Figure 30 illustrates how tsMorph generates synthetic time series. The value of α for
each series can be found in the legend (percentage associated with the source). We can observe
that the series are gradually less similar to the source and more similar to the target.

Given Ysourcet and Ytargett and one or more forecasting algorithms with contrasting perfor-
mance on time series. It is possible to understand the behavior of algorithms from the perspective
of performance variation and meta-features in the set Ymorph using tsMorph. We can also control
the metadata augmentation process with the generation of synthetic data based on realistic Ysourcet

and Ytargett time series.

The advantages of the tsMorph method are the simplicity of the method, which can be
easily implemented in any programming language from the formulation. It is a computationally
cheap method, as explained earlier. Moreover, it promotes the gradual transformation between
the source and target time series. This last characteristic is of great interest in understanding the
behavior of forecasting algorithms.

Our method complements other synthetic time series generation methods, such as
GRATIS and TimeGAN, rather than replacing them. The main focus will be on investigat-
ing whether it is possible to extract interesting meta-knowledge from the time series of the set
Ymorph generated with tsMorph.

5.6 Empirical validation

5.6.1 Experimental setup

We carried out experiments to illustrate the potential of tsMorph to support a better
understanding of the performance of forecasting algorithms. The repository for reproducing the
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results of this study is publicly available 1.

We use the 111 time series from the NN5 (CRONE, 2008) Competition. The dataset
consists of 2 years of historical data from cash machines located in different places in England.
The objective of the competition is to forecast 56 days ahead. The main characteristic of choosing
this set of this dataset is that it is a benchmark known in the literature with time series of the
same size. The data have missing observations that were linearly interpolated since this work
objective is not to evaluate this effect.

The algorithms which we analyze are Long Short-Term Memory Neural Networks
(LSTM) and Support Vector Regression (SVR). LSTM is a machine learning algorithm pro-
posed by Hochreiter and Schmidhuber (1997). It is a widely used algorithm for forecasting time
series with relevant results in the literature. SVR is an algorithm originating from statistical
learning theory (VAPNIK, 1999). It also has good results in domain-varied time series forecast-
ing (PARMEZAN; SOUZA; BATISTA, 2019d). These algorithms were selected because they
are widely used for time series forecasting and there is limited understanding of their behavior.
LSTM is from the Python package DARTS (HERZEN et al., 2022). SVR is available in the
Python packages scikit-learn (PEDREGOSA et al., 2011) and sktime (LÖNING et al., 2019).

To illustrate the usefulness of tsMorph, we selected source and target times series from
the 111 in NN5 as follows. For each algorithm, we selected ten source time series and ten target
time series for each algorithm. The ten source/target time series are the ones where the algorithm
obtained best/worst predictive performance, respectively, according to MASE. We paired each of
the sources with a target and applied tsMorph to generate the corresponding datasetoids. The goal
is to understand the changes in the properties of the time series as the predictive performance of
the algorithm degrades.

The meta-features used in this work are from the Python package Time Series Feature
Extraction Library (TSFEL) (BARANDAS et al., 2020). This package implements a set of 60
meta-features with different natures: statistical, temporal, and spectral. It should be noted that
the meta-features were extracted only from the training data, and the performance is extracted
only from the test data, while the tsMorph is applied to the complete time series.

5.6.2 Distance between synthetic, source, and target data

One of the motivations of this work is the need to generate sequences of time series that
are increasingly different from a source and similar to another. Therefore, the first test was to
assess if tsMorph can do that. In this experiment, tsMorph was used with n = 20. In the plots in
Figure 31 the y-axis represents the average Euclidean distance between the synthetic data and
the source/target data; the x-axis represents the order of the synthetic series in the set Ymorph (i.e.
from source to target). Figures 31a and 31b present the results for LSTM and SVR, respectively.

1 Repository URL: <https://anon-github.automl.cc/r/paper_tsmorph-7C1E/README.md>

https://anon-github.automl.cc/r/paper_tsmorph-7C1E/README.md
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The scatter bar is the standard deviation of the Euclidean distances between the time series of
Ymorph and each algorithm experiment source and target time series.
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(b) SVR
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Figure 31 – Euclidean distance between synthetic, source, and target time series.

These results show that tsMorph generates sequences of gradually changing time series:
the figure shows that the distance to the source gradually increases as the distance to the target
gradually decreases. This is the first indication that the tsMorph method is working as expected.

The gradual variation of the Euclidean distance indicates that the variation of the meta-
features that characterize the time series is also gradual (with the reasonable assumption that the
functions that compute the meta-features are continuous). This transition of characteristics can
reveal patterns for understanding the change in performance. This will be further investigated in
the next section.

5.6.3 Understanding the performance of forecasting algorithms

The time series generated by tsMorph can be used to better understand the behavior of
forecasting algorithms using different approaches, such as meta-learning. Here, for illustration
purposes, we use a very simple method: we analyze the correlation between the value of a single
meta-feature and the error of the algorithm.

Given that not all meta-features are expected to contain useful information about the
predictive performance of algorithms, we present results for the three meta-features with stronger
correlations. Tables 6a and 6b) present the mean and standard deviation of the results for all pairs
of source and target time series for each algorithm.

The tables show the correlation results obtained by three meta-features. Before we
interpret with an example, we explain each of these meta-features. A brief description of each of
them follows:
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Table 6 – Pearson correlation between performance and meta-features.

(a) LSTM

Pearson correlation

meta-feature mean std

median frequency -0.8220 0.1173
mean absolute difference -0.7900 0.1217
signal distance -0.7860 0.1268

(b) SVR

Pearson correlation

meta-feature mean std

median frequency -0.8862 0.1133
signal distance -0.8061 0.2087
mean absolute difference -0.8078 0.2120

Median frequency: it is the time series median frequency in the Fourier spectrum. The smaller
the value, the greater the interval between peaks in the time series.

Mean absolute difference: it is the mean absolute difference between consecutive observations
in the time series. The smaller the value, the smoother the time series.

Signal distance: it is the total distance traveled by the signal using the hypotenuse between
2 observations. It measures the amplitude of the total variation in time series without
considering whether this variation occurs at fixed intervals.

The three meta-features that had a strong negative correlation and consistency with the
performance of the two forecasting algorithms are related to the variation of time series values
over time. Therefore, in this analysis, we evaluate how the meta-features influence the difference
in performance between the forecasting algorithms and the naive forecast. Figures 32 and 33
show the curves of performance of LSTM and SVR, respectively and values of the meta-features,
on an illustrative pair of source-target time series. From these figures and the interpretation of
the meta-features, it is possible to extract knowledge about the prediction algorithms.

In Figure 32a, we observe that the predictive performance varies gradually with the
morphing process, as expected. We see that the meta-features mean absolute difference in Figure
32b and the signal distance in Figure 32d also vary gradually with the morphing process. This
indicates that the transformations did not produce unusual values in the generated time series,
also as expected. Additionally, the values of the two meta-features decrease with the similarity
to the target. Given that the predictive performance of LSTM is degrading, this means that the
smaller the variations over time in the time series, the worse the performance of the LSTM is.
Concerning the other meta-feature, median frequency, Figure 32c shows that it, in general, also
decreases with the morphing process. However, the shape is not as smooth as the other two
meta-features. In the interval from index 3 to index 11, the value of the meta-feature remains
constant, with a sharp drop from index 12 onwards. Curiously, in the same interval, there is also
an increase in MASE (Figure 32a). This means that the predictive performance of LSTM relative
to the naive baseline decreases with smoother time series. This is to be expected, not because
of the effect on the forecasting error of LSTM but rather because the naive prediction becomes
more accurate.
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(a) Predictive performance curve from NN5-016 to NN5-
026.
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(b) Mean absolute difference.
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(c) Median frequency.
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(d) Signal distance.
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Figure 32 – A example from LSTM experiment: tsMorph from NN5-016 to NN5-026.

Figure 33a shows that the relation between the forecasting error of SVR and the meta-
feature values is generally very similar to what was previously observed for LSTM, even though
the source and target datasets are different. We observe that the smaller the amplitude of variation
of the time series, the worse the performance. of SVR, relative to the naive forecast. The median
frequency meta-feature (Figure 33c). The behavior after index 12 is not as clear. The median
frequency increases slightly, indicating an increase in the variation of the time series, but the
MASE continues to grow. This means that, even though the higher the variation, the larger the
gain in forecasting accuracy obtained with SVR compared to the naive forecast, the results also
indicate that further analysis is still necessary, possibly using other meta-features.

In summary, these results show that tsMorph can be used to generate synthetic time
series from real ones that can be used to understand the behavior of forecasting algorithms with
gradual variations of the data: 1. the generated time series are gradually less similar to the source
and more similar to the target, in the data, meta-feature, and forecasting performance spaces; 2.
it is possible to extract knowledge about the behavior of forecasting methods, even using simple
analysis methods.
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(a) Predictive performance curve from NN5-008 to NN5-
011.
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(b) Mean absolute difference.
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(c) Median frequency.
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(d) Signal distance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Morphing series

5250

5500

5750

6000

6250

6500

6750

7000

Si
gn

al
 d
ist

an
ce

Figure 33 – A example from SVR experiment: tsMorph from NN5-008 to NN5-011.

5.7 Conclusion

In contrast to the extensive work on developing and testing forecasting algorithms, there
is limited work on understanding their behavior. In this work, we propose a simple method of
generating synthetic time series that can be used for that purpose. The tsMorph method gradually
transforms a source time series into a target time series, generating a sequence of semi-synthetic
time series. The data generated by tsMorph supports an empirical and systematic approach to
understanding the behavior of algorithms.

To illustrate the potential of tsMorph, we analyzed the behavior of two algorithms, LSTM
and SVR, using a simple approach based on the correlation between the values of meta-features
of the data and the forecasting accuracy of the algorithms. The results showed that, as desired,
the tsMorph method generates synthetic time series with Euclidean distance gradually increasing
concerning the source time series and decreasing concerning the target time series for both
prediction algorithms in the data, meta-feature, and forecasting accuracy spaces. Furthermore,
even in such a simple experimental scenario, it was possible to obtain knowledge about the
behavior of the algorithms. The results suggest that increasing the amplitude and range of
variation of the time series can improve the performance of the LSTM and SVR algorithms,
relative to the naive forecast.
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One limitation of the work presented here is that the transformation operation is very
simple and, most importantly, is only applicable to time series of the same size. However, we
plan to develop other transformation options which can deal with time series of varying sizes.
Additionally, in the experiments, we focused on analyzing algorithms individually. However, by
choosing the target and source time series differently, we can carry out other types of analyses
(e.g., comparing the performance of two algorithms). In fact, tsMorph can be used to define
and understand the borders of the meta-data space that delimit the areas of expertise of each
algorithm.

Finally, the (semi)-synthetic data generated by tsMorph can also be used as training data
for autoML and meta-learning approaches, addressing a major limitation of the current work in
the area, which is the limited amount of meta-data.

5.8 Broader impact
Understanding the behavior of forecasting algorithms is one of the core challenges for the

responsible use of AI and ML technology. tsMorph can be used to improve that understanding.
Additionally, morphing can be applied to other types of data analysis (e.g., recommender
systems (CORREIA; SOARES; JORGE, 2019)), so the scope of the applicability of this approach
goes beyond time series. Additionally, (semi-)synthetic data is important to promote data sharing
with a lower risk of violating privacy. Finally, due to its low computational complexity, the
tsMorph method can reduce energy consumption in the generation of synthetic data.
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CHAPTER

6
CONCLUSION

The selection of algorithms is an essential and time consuming step in time series
forecasting. After algorithm selection, understanding the characteristics of the time series related
to predictive performance is a differential in evaluating the forecasting process. Although there
are some proposals for automatic algorithm selection based on metalearning for time series
forecasting, a study of design choices in the framework is necessary. Another direction is
related to the selection of a combination of forecasts. Previous studies that deal with forecast
combinations, the choice of algorithms is usually made arbitrarily, based on the knowledge of
an expert. Understanding under which conditions a forecasting algorithm will have good or
bad performance is challenging. Few studies propose empirical and systematic approaches to
understanding algorithm performance. In this thesis, some paths were proposed to solve these
problems.

We empirically evaluated the use of various performance measures for meta-label defi-
nition in selecting forecasting algorithms based on metalearning. The main result we obtained
is that the performance measure used for meta-label definition does not significantly influence
the performance of metalearning at the meta and base levels. Therefore, using less complex
measures such as Mean Absolute Error or Mean Squared Error can reduce computational costs
in this algorithm selection method.

For the automatic selection of forecasting algorithms, we propose the MetaFore ap-
proach. MetaFore is a forecasting combination approach that uses the STL decomposition as a
preprocessing step and metalearning to select forecasting algorithms. After decomposing the
time series, the trend and noise components were combined additively and forecasted by a
machine learning algorithm. The seasonality component was predicted with the seasonal naive
method. We proposed to use metalearning to recommend the machine learning algorithm based
on the meta-features of the time series. From the meta-knowledge obtained in the metalearning
process, we extracted helpful information about the characteristics of the time series related
to the selected algorithm. We obtained competitive predictive performance and computational
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cost results. The MetaFore approach outperformed individual hybrid forecasting algorithms and
LSTM and bilateral LSTM neural networks.

When using the STL decomposition for time series analysis, testing for the normality
of the residual component is common. There is no evidence of cyclic behavior residuals if
the residual component follows the normal distribution. We hypothesize that using the STL
decomposition as a preprocessing step improves predictive performance when the residual
follows the normal distribution. To test this hypothesis, we applied the STL decomposition to the
entire set of time series. Based on the result of the normality test, we divided this set into two
groups: residuals do not follow/follow the normal distribution. We applied two machine learning
algorithm configurations to these groups. For the first configuration we used an algorithms
without the STL decomposition. For the second, we adopted the STL decomposition, combined
the trend and residual and use a predictive model induced by a machine learning algorithm. The
seasonality component is predicted with the seasonal naive method in this second approach.
In the analysis of the results, we obtained that when the residual of the STL decomposition
follows the normal distribution, hybrid algorithms that use the STL as a preprocessing step have
better predictive performance than default algorithms. In the other group, there is no statistically
relevant difference. These results validate the hypothesis elaborated in the study.

The tsMorph method was developed to deepen the understanding of time series character-
istics related to performance variation. The tsMorph method is a simple approach for generating
synthetic time series based on dataset morphing. Dataset morphing is the gradual transformation
of a source dataset into a target dataset, generating intermediate datasets. These intermediate
datasets can be used to analyze algorithm performance and characteristic variation between the
original datasets. The proposed approach yielded the expected results, revealing meta-features
strongly correlated with performance variation of LSTM and SVR algorithms.

6.0.1 Limitations and Future Work

The limitations of this study are distributed throughout each path we adopted to solve
the problems. In Chapter 2, the limitations include needing a more extensive set of time series to
validate better the results obtained. Another line of improvement for this work is the investigation
of these properties in different forms of meta-label, such as ranking recommendations or meta-
regression. In Chapter 3, a natural extension of the work is the recommendation of algorithms
for the seasonal component or each component separately based on metalearning. In Chapter 4,
the analysis could be extended to other data frequencies, such as daily, weekly, and quarterly. In
Chapter 5, the main limitation is that the method only applies to time series of the same length.
More complex transformations may solve this problem. The possibility of applying the synthetic
time series generated by the tsMorph method as training data in metalearning and autoML can
also be evaluated.
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