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RESUMO

ARTUR, E. S. JR. Novas abordagens visuais para análise, seleção e predição de atributos.
2020. 87 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2020.

Enquanto as capacidades de coleta e armazenamento de dados crescem extensamente hoje em dia,
a capacidade geral de processar e analisar grande quantidade de dados cresce em uma taxa mais
lenta. Essa assincronia introduz novos desafios impactando métodos que lidam com essa enorme
quantidade de dados, como abordagens em mineração, estatística e aprendizado de máquina. Para
ajudar a diminuir esta lacuna, abordagens visuais vem sendo propostas para combinar habilidades
humanas com soluções consolidadas no desenvolvimento de ferramentas interativas que permitem
uma investigação mais aprofundada dos dados. Uma quantidade substancial de abordagens
visuais se concentra em técnicas baseadas em itens, onde os itens de dados representam os
objetos de primeira ordem. Contudo, informações valiosas frequentemente aparecem a partir
de observações de relacionamentos entre atributos, como os relacionamentos entre atributos
categóricos e numéricos que frequentemente codificam informações relevantes. Nesse contexto,
uma abordagem de análise visual para a exploração do espaço de atributos é fundamental, tanto
quando há hipóteses de correlações que devem ser confirmadas, como também nos casos em
que tais relações são desconhecidas ou imprevisíveis. Nesta Tese, propomos uma abordagem
para análise de atributos com base na apresentação simultânea de múltiplas correlações por
meio de uma visualização baseada em pontos, a qual visa construir mapas cognitivos desses
relacionamentos para o usuário final. Além disso, o processo de análise oferece suporte a tarefas
adicionais como seleção de atributos e criação de modelos de predição com base em um resultado
alvo. Mostramos a eficiência das abordagens através de uma série de estudos de caso e cenários
de uso que envolvem conjuntos de dados em contextos distintos.

Palavras-chave: Análise visual, Visualização de dados, Análise de espaço de atributos, Seleção
de atributos, Análise visual preditiva.





ABSTRACT

ARTUR, E. S. JR. Novel visual approaches for attribute analysis, selection, and prediction.
2020. 87 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2020.

While data collection and storage capabilities grow widely nowadays, the general ability to
process and analyze large amounts of data increases at a slower rate. This asynchrony introduces
new challenges touching methods for large amounts of data, such as the ones in data mining,
statistics, and machine learning. To help addressing this gap, visual approaches have been
proposed to combine human capabilities with consolidated solutions in the development of
interactive tools that allow a more in-depth investigation of the data. A substantial amount of
visual approaches has focused on items-based techniques, where the data items represent the
first-order objects. Nevertheless, valuable knowledge frequently appears from observations of
relationships between attributes of these data items, such as the relationships between numerical
and categorical variables, which often encode relevant information. In this context, a visual
analysis approach for attribute space exploration is paramount, both when there are hypotheses
of correlations that must be confirmed, and also in cases where such relationships are unknown
or unforeseen. In this Thesis, we propose an approach for attribute analysis based on the
simultaneous presentation of multiple correlations through a point-based visualization aiming
to build cognitive maps of these relationships to the end-user. Also, the analysis process then
supports additional tasks such as feature selection and the development of prediction models
based on a target outcome. We show the efficiency of the approaches through a series of case
studies and usage scenarios involving real data sets in distinct contexts.

Keywords: Visual analytics, Data visualization, Attribute space analysis, Feature selection,
Predictive visual analytics.
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CHAPTER

1
INTRODUCTION

Over the past few decades, the increased computational efficiency and capacity for data
collection and storage have made the availability of multidimensional data very high. However,
dealing with large data sets is considerably challenging, especially in the context of demanding
application domain. This scenario demands development of strategies to extract useful knowledge
from large data sets; such strategies have been proposed in a diversity of fields such as statistics,
data mining, and machine learning.

While a variety of solutions try to automatically extract information from multidimen-
sional data sets, they struggle to aggregate the tacit knowledge of humans in the process. In
this sense, the field of data visualization attempts to address this gap by inserting the user into
the loop to combine flexibility, creativity, and background knowledge into the analysis tasks of
multidimensional data sets (KEIM; MANSMANN; THOMAS, 2010; CUI et al., 2019). Visual
interactive approaches often allow users to gain insights about data sets in multiple fields as
health, business, government, environment, weather and climate analysis, as well as in the
prevention of undesired events, such as accidents, fraud, market instability and epidemics.

In general, the visualization community has made efforts in the development of ap-
proaches that visually explore data spaces, where the items in a data set are either explicitly
or implicitly represented in the visualization (TURKAY; FILZMOSER; HAUSER, 2011). Yet,
relevant information in the data set often lies in the interrelationships of attributes. For example,
in medical research, analysts look for attributes that correlate with treatment or clinical results to
prevent adverse outcomes and also to improve the quality of internal protocols. Parallel situations
can be observed in most multidimensional data set applications.

Another advantage of attribute-based visualizations is the support for additional tasks
such as feature selection (FS). Although many efficient automatic methods have been proposed
for FS purposes, once again they are not currently able to aggregate prior human knowledge in
the process. Interactive approaches that aim at building classification systems should allow users
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who are familiar with the data to effectively apply their domain knowledge (WARE et al., 2001;
ZHENG et al., 2016). Visual strategies that reveal the relationship of attributes are helpful to let
users understand and recognize the various degrees of importance of attributes (frequently in
isolation and also when combined) related to some target event or object of interest, as well as
redundancy amongst them. Consequently, users should be able to perform potentially useful FS
tasks to find the minimum subset of attributes capable of describing the data from the perspective
of the target phenomenon.

As a consequence of enabling users to perform relevant FS tasks, a range of applications
can take advantage of the selected representative subsets. An example is logistic regression
analysis, which suffers from some limitations such as the multicollinearity phenomenon. It
occurs when a large number of correlated predictor attributes are included in the model and can
generate unreliable and unstable estimates of regression coefficients (CHATTERJEE; HADI,
2006). Thus, an accurate FS should be useful to eliminate or decrease the constraints of applying
these methods combined with multidimensional data sets.

1.1 Motivation and Objective

Regardless the growing interest in the visualization community to represent attribute
spaces, few results have been successful in adequately revealing relationships between all data
attributes and target labels or features. For example, in a trauma registry data set, analysts
may look for insights by investigating the relationship between attributes that encode relevant
information of the data set (e.g., clinical outcomes, such as patients’ final condition or cause
of death). Other regular categorical attributes can also be employed as a target in searching for
new insights, such as age ranges, length of care, or geographic region of the trauma event. These
attributes can be interpreted as labels and be used to extract associated relevance and predictive
power of other attributes. Our proposal is to present these relationships visually as a cognitive
map that allows an in-depth investigation of attributes related to some phenomena encoded in a
candidate target attribute.

The main objective of this Thesis is to provide visual approaches that allow users to
investigate relationships between regular attributes and other candidate target attributes, in order
to locate their relevance in coding valuable knowledge of the data set. Through a point-based
radial visualization, we map attributes according to their correlations with user-chosen labels.
Interacting with such a view, users can select attributes and evaluate the generated subset in a
second view. We have also extended the applicability of the attribute analysis and selection task
by providing an approach focused on attribute prediction based on logistic regression analysis.
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1.2 Contributions
Among the main contributions of this Thesis, we highlight the development of a novel

approach to analyze and select attributes, which include the Attribute-RadViz visualization.
This interactive technique visually presents a panorama with multiple correlations of attributes
related manly to target categorical attributes of interest. Since current data sets are full of relevant
categorical attributes, each one revealing a particular phenomenon encoded in the data, users can
examine distinct scenarios to gain insights into such data sets.

We also highlight the development of two fully operational web-based tools. The first
one contemplates our attribute analysis and selection approach; whereby an interactive dual-
view interface support users in selecting relevant attributes and then evaluating their capability
in distinguishing patterns in the data. The second tool implements our approach to creating,
evaluating, and applying both binary and multinomial logistic regression models.

As parallel achievements, we highlight the improvements for the RadViz technique, such
as the arcs of the dimensional anchors (DAs), the greedy DAs sorting algorithm, and the novel
interface model. We also highlight novel RadViz representations, which originally displays
relationships by mapping items related to attributes; we include new designs showing labels as
DAs and attributes as mapped elements, as well as labels as DAs and items as mapped elements.

These contributions have been documented mainly in two papers. The first one, called A

Novel Visual Approach for Enhanced Attribute Analysis and Selection (ARTUR; MINGHIM,
2019), has been published in the Computer and Graphics Journal (Qualis A21). The second,
called An Approach to Explore Logistic Regression Models and its Prediction Capabilities, is, at
the time of submission of this Thesis, being finished for submission.

1.3 Thesis Organization
This thesis is organized as follows:

∙ Chapter 2 presents the literature review centered on visual attribute analysis approaches;

∙ Chapter 3 describes our first approach focused on attribute analysis and selection;

∙ Chapter 4 presents our second approach, which explores logistic regression models aiming
at the prediction of target attributes;

∙ Finally, in Chapter 5, we present the conclusions of this Thesis.

1 Qualis is a combination of procedures used by the Coordination for the Improvement of Higher
Education-Personnel of Brazil to stratify the quality of intellectual production in postgraduate programs.
The classification of publications and events is carried out by each evaluation area and undergoes an
annual update process. Strata levels classify the vehicles indicating quality, with the A1 being the
highest one followed by; A2; B1; B2; B3; B4; B5; and finally C - with zero weight.
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CHAPTER

2
RELATED WORK

In this chapter, we present the previous works related to this Thesis focusing on ap-
proaches that visually support the attribute analysis task. Initially, we show techniques that
interactively represent the attribute space by visual means, and in the following, we expose the
methods which also support the selection task. Then we present approaches that promote the
interactive construction of regression models by aggregating FS mechanisms.

2.1 Interactive Visual Exploration of Attribute Spaces

Traditional dimensionality reduction (DR) techniques transform multidimensional data
into a meaningful representation with reduced dimensions amount. Several interactive approaches
support DR tasks through the attribute subspaces exploration; therefore, users can find or
combine relevant attributes. Yang et al. (2003) introduce the Visual Hierarchical Dimension
Reduction (VHDR), an approach to handling and exploring multidimensional data. In VHDR, a
hierarchical structure scheme arranges the dimensions, and a hierarchical radial visualization
method, called InterRing (see Figure 1), displays the data. The central idea is to visualize
data without losing inherent meaning by generating lower-dimensional spaces and allowing
users to play an interactive role in the DR process by modifying the hierarchy and selecting
interesting clusters. Cheng and Mueller (2016) propose an approach that provides visualization
both from the point of view of items and from the attributes in the same layout. They employ
four matrices; two similarity matrices (usually applied in isolation), one encoding the similarity
between attributes, and another between items of the data. The remaining two matrices are
assembled from the combination of the first two, thus forming the four sub-matrices required for
the proposed multidimensional visualization model. The authors explain that the layout, called
Data Context Map, allows observation of the relationships between items and attributes, as well
as the relationship between themselves simultaneously.

Some approaches apply resources like operators or well-known DR techniques to find
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Figure 1 – Example of subspaces exploration with the InterRing.

Source: Yang et al. (2003).

and evaluate subsets of attributes and usually show their results as two-dimensional scatter
plots. Ingram et al. (2010) present the DimStiller, which allows users to proceed with analysis
and reduction of dimensionality by creating and handling pipelines composed of operators
capable of transforming data. Johansson and Johansson (2009) combine different user-defined
quality metrics applying weight functions to reduce the data dimensionality, trying to preserve as
many important structures within the original data set as possible. The authors aim to provide
a quality-guided reduction of dimensions with a flexible user-controlled DR. Figure 2 shows
through parallel coordinates the DR result in a synthetic data set from 100 to 18 attributes
applying a combination of quality metrics. Choo et al. (2010) present the iVisClassifier, an
interactive visual tool based on the Linear Discriminant Analysis (LDA). Users can interactively
explore and understand the obtained dimensions by the LDA through views rendered with
parallel coordinates and scatter plots. Additionally, a heat map shows an overview of the clusters’
relationships regarding the pairwise distances between their centroids related to both original
and obtained distances. Hence, iVisClassifier permits a user-driven classification by observing
adjusted clusters, and also by mutual dimension filtering in the mentioned parallel coordinates
and the scatter plot views.

Other works promote sequential subspaces navigation with some similarity criteria be-
tween adjacent ones to find representative subsets of attributes. Dy and Brodley (2000) introduce
the Visual Feature Subset Selection using Expectation-Maximization Clustering (Visual-FSSEM),
an interactive visual tool focused on selecting attributes in unsupervised data. Users can select
any attributes subset as the starting point, perform a sequential exploratory search (forward or
backward) on attribute subspaces, and visualize the results of the expectation-maximization clus-
tering. Tatu et al. (2012) employ an interestingness-guided subspace search algorithm to find a
candidate set of subspaces. Initially, an algorithm is used to identify a candidate set of interesting
subspaces automatically. After that, a filtering step is employed to reduce the representations to a
user-selectable amount. Lastly, a visual-interactive tool to explore the representations of subsets
is provided to the user. DR can also be achieved by applying user-defined metrics and operators
for data filtering. Other solutions try to expose insights through dynamic projections. The idea is
to reveal information from the patterns transitions shown by the navigation between subspaces.
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Figure 2 – A parallel coordinate plot showing a DR task result related to a synthetic data set with 100
attributes initially.

Source: Johansson and Johansson (2009).

In (LIU et al., 2015), users can navigate between projection pairs animatedly through a transition
view graph. Jäckle et al. (2017) present a framework that displays pairwise of projections linked
by trails, making the transitions easily to compare. Additionally, the authors present a data-driven
similarity measure for projections to group subspaces and avoid redundancy.

An alternative strategy to aid users in the subspace analysis task is providing mechanisms
for finding combinations of attributes that reveal content, such as clusters or recurrent patterns.
Seo and Shneiderman (2005) describe a conceptual framework where – according to a ranking
generated from user-selected criteria – attributes are displayed graphically by several views.
Features are presented in graphs, exposing their pairwise relationship, the intensity of the criterion
value (by colors), a summary of the dimension distribution, amongst other information. Figure 3
shows the main interface of the framework. Tatu et al. (2011) also use rankings (by a specified
user task) to show a potentially relevant set of visualizations for further interactive data analysis.
The authors also present ranking quality measures for both class-based and non-class-based
scatterplots and parallel coordinates visualizations. Zhou et al. (2016) present an approach that
reconstructs new attributes by combining well-known multidimensional projections considering
the preservation of interesting clusters. McKenna et al. McKenna et al. (2016) present the s-
CorrPlot visualization, a highly scalable method to explore correlations in the attribute space
in large data sets. Gleicher (2013) describes an approach to summary the data by creating
projections functions that represent user-defined concepts.

These previously described approaches are very useful to reduce significant amounts of
attributes interactively. As a matter of fact, they provide visual means to insert the user into DR
processes. Still, they fail to provide insight into the relevance of isolated or combined attributes
related to some phenomenon of interest, which is a relevant goal in our research. In general,
these works try to find cluster structures and internal patterns exploring subspaces; therefore,
they are not intended to use labels or target attributes when available. Our approach supports
finding meaningful attributes and representative subspaces directly from the perspective of a
target one to evaluate the choices for the prediction of such attributes. An example would be to
define which sets of exam values (attribute subspaces) are related to a discharge condition from
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Figure 3 – The main interface of the rank-by-feature framework.

Source: Seo and Shneiderman (2005).

the hospital (target attribute).

2.2 Visual Feature Selection

Several FS algorithms have been proposed to find relevant attribute subsets automatically.
In general, they have successfully reached their goals. Nevertheless, they remove the analyst from
this step, which can both reveal valuable insights and also take advantage of the user expertise in
the process. Based on this, the visualization community has started to focus on the development
of interactive FS methods.

To help users better understand how automated FS algorithms rank (or select) features,
Krause, Perer and Bertini (2014) propose a visual analysis tool called INFUSE (INteractive
FeatUre SElection). Its main screen initially has three components: feature view, list view,
classifier view, and optionally, the interactive model builder, as shown in Figure 4. The first
one shows attributes from sliced glyphs to represent the values obtained by FS algorithms.
The second displays an ordered list of all dimensions according to some custom criterion. The
third component shows the subsets evaluation by five classifiers. The customization of models
for subsequent evaluation is the focus of the last component. Their tool presents an overview
of automatic algorithms results, assisting the user in understanding how these methods work.
Similarly to the DR methods, this approach is handy for finding and evaluating subsets of relevant
attributes. However, it is complicated for analysts to understand the importance of attributes
individually in relation to others, as well as in relation to potential data labels.

Since strong local correlations may be hidden between attributes in their global distribu-



2.2. Visual Feature Selection 25

Figure 4 – The main interface of the INFUSE framework showing the feature view, the list view, and the
classifier view.

Source: Krause, Perer and Bertini (2014).

tions, some approaches visually expose the relationship between partitions of the data. Bernard et

al. (2014) present a tool that builds a relationship panorama between attributes and, more impor-
tantly, between their bins (see Figure 5). The tool is also able to find correlations between bins in
mixed data sets. Another interactive FS approach is the SmartStripes, a technique proposed in
(MAY et al., 2011). It supports the investigation of interdependencies between different attributes
and entity subsets defined by a selected one. A heat map shows the dependency intensity of
attributes with each entity subset. Overall, these approaches have a high analytical capacity with
the ability to find hidden relationships; However, in terms of FS, their application may be limited
due to scalability issues, since they discretize attributes into several partitions, and the quantity
of the attributes might be a limitation by itself.

Figure 5 – The interactive prototype presented in (BERNARD et al., 2014) that supports the exploration
of interesting relations between aggregated bins of attributes in mixed data sets.

Source: Bernard et al. (2014).
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Enhanced radial visualization techniques also have been applied to support FS tasks.
Wang et al. (2017) propose an approach to formulate an optimal initial anchors disposition of
a star coordinates visualization applying the concept of clusters and class separation from an
LDA model (see Figure 6). The approach is useful for promoting weights to attributes. Users can
handle a built linear discriminative star coordinates visualization in the investigation for the best
separation between clusters or classes. Therefore, users can understand the influence of each
attribute in the formation of such structures. Since users manage anchors as attributes in the
main view, a limitation of this approach lies in the scalability of those manageable entities, when
their number passes the hundred mark, the overlapping may cause the visualization and handling
impracticable. The approach also suffers from redundancy problems, as it tends to give similar
weights to correlated attributes and then misleading the FS tasks. Sanchez et al. (2018) present
another radial solution, where attributes are exposed as improved scaled axes. Thus, analysts can
interactively eliminate unimportant attributes since the axes represent the degree of importance
of each attribute. However, backward FS strategies are not efficient for filtering large amounts of
attributes; therefore, the approach may be coupled with another DR technique.

Figure 6 – The prototype interface of the FS based on linear discriminative star coordinates.

Source: Wang et al. (2017).

2.3 Dual-Visual Analysis

Aiming to provide a broader view in the exploration of data sets, many approaches
promote the simultaneous visualization of the attribute space with another one representing data
items (or their values). These provided views are often linked and allow for new possibilities
in the interactive model of the analysis, as well as FS tasks. Turkay, Filzmoser and Hauser
(2011) present an approach that displays an item view linked with another one showing the
statistical properties of attributes. The dual-view promotes an interface that adopts the style
linking and brushing to support the interactivity of one view, which subsequently updates the
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Figure 7 – The multiple view interface of BaobabView, an interactive decision tree construction tool.

Source: Elzen and Wijk (2011).

other in a focus+context fashion. Therefore, analysts can recognize, together, the structure of the
attribute space, as well as the related distribution of data items. Later, the authors applied the
dual-analysis for characterizing cancer subtypes in (TURKAY et al., 2014). Similarly, Yuan et al.

(2013) present a dimension projection tree/matrix visualization that simultaneously explores both
attributes and items spaces. The user can perform the investigation by drilling down the data,
restricting its range as well as pruning dimensions to examine different levels of the data. Another
approach is the BaobabView (see Figure 7) proposed by Elzen and Wijk (2011), a multiple-view
tool that allows users to build and analyze decision trees using their domain-specific knowledge.

Rauber, Falcao and Telea (2017) propose a projection-based visual analytics methodology
to aid classification systems design coupled with the working tool. The tool displays multiple
views, where users can perform FS tasks, generate projections according to the current FS, check
the relevance of attributes concerning data labels, and so on. The approach aims at experienced
users since they define the projections responsible for the exposure of attributes as well as data
items, and this choice determines the cognitive map that will guide the FS tasks, as well as
the learning process that may provide insights. Another aspect to be improved is the lack of
resources to prune the data or to concentrate the analysis on specific subsets (such as mixed
regions in the projection). This is important in FS methods to prevent relevant attributes with
significant local correlations from being discarded.

2.4 Interactive Exploration of Regression Models
A variety of approaches combines visual analysis with regression modeling to investigate

both the selection of representative attribute subsets as well as the quality of the generated
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Figure 8 – The interface of a partition-based framework for building regression models presented in
(MÜHLBACHER; PIRINGER, 2013).

Source: Mühlbacher and Piringer (2013).

models; this section presents state of the art related to interactive visual models for generating and
exploring regression models. Mühlbacher and Piringer (2013) present an interactive framework
for building regression models that aids the user in understanding the relationship of attributes
related to a target one (see Figure 8). The tool provides two overviews, the first one showing
the relationship of the target attribute to each attribute, and another exposing the relationship of
the target attribute to each possible attribute pairs. Both display feature ranks to assist the user.
A key point of the approach is the local approximation of the conditional target distribution by
partitioning the feature domains into disjoint sections to enable a visual investigation of local
patterns. Likewise, Klemm et al. (2016) present a regression analysis tool that exhaustively
creates regression models between features and a target attribute. A three-dimensional heat map
shows the results for the consequent user exploration. Users can also freely adjust the regression
formulas.

A commonly used regression method for predicting an occurrence of a dichotomous
event is the logistic regression (LR). Some visual tools apply LR models to check the prediction
power of attributes and then formulate relevant attribute subsets. Zhang et al. (2016) present a
visual analytics approach to multidimensional LR modeling for risk factor identification. The
authors define three basic steps. In the first step, users perform FS tasks based on univariate
indicators displayed by the tool. In the second step, users evaluate the relationships between
the variables chosen in the first one to define good subsets for building the regression model.
The last step deals with the evaluation of the regression models generated among the subsets
chosen by the user. Similarly, Dingen et al. (2019) introduce the RegressionExplorer, a tool that
allows users to find and evaluate subsets of attributes and then apply on regression models. A
univariate analysis view shows individual attribute significance level, which aids the search for
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proper combinations of relevant subsets of attributes for multivariate analysis.

LR analysis is widely used in many fields such as financial performance, consumer
purchasing, ecology, medicine, epidemiology, and so forth (HARRELL, 2015), a fact that
includes several non-experts machine learning users as analysts. Thus, the demand for user-
friendly regression modeling tools persists where analysts should easily create, evaluate, and
subsequently employ the generated regression models. It is precisely over this gap that we
developed our approach for exploring regression models supported by interactive visualization
techniques.

2.5 Final Remarks
In this chapter, we reviewed techniques that explore attribute space for a variety of

purposes. The common ground between all of these works is some mechanism to reveal and
investigate the attributes subspaces visually. Hence, analysts may gain insights and cooperate in
the following tasks inserting their knowledge into the process.

We separated the review into four groups based mainly on the main goal of each work.
Table 1 summarizes the main features of the reviewed works in this chapter. In the next chapter,
we present our approach to analysis and selection of attributes based on correlation with visual
support by radial technique. In the following chapter, we present another approach that aims the
exploration of LR models, as well as the tooling for the later application of the generated models.
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Table 1 – List of the reviewed work in this chapter and their main features.
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Yang et al. (2003) x x x x x x
Cheng and Mueller (2016) x x x x x

Ingram et al. (2010) x x x x x
Johansson and Johansson (2009) x x x x x x

Choo et al. (2010) x x x x x x x
Dy and Brodley (2000) x x x x x

Tatu et al. (2012) x x x x x x
Liu et al. (2015) x x x x

Jäckle et al. (2017) x x x
Seo and Shneiderman (2005) x x x x x x x

Tatu et al. (2011) x x x x
Zhou et al. (2016) x x x x x x

McKenna et al. (2016) x x x
Gleicher (2013) x x x x x

Krause, Perer and Bertini (2014) x x x x
Bernard et al. (2014) x x x x x x x

May et al. (2011) x x x x x x x
Wang et al. (2017) x x x x x x x x x

Sanchez et al. (2018) x x x x x x x x x
Turkay, Filzmoser and Hauser (2011) x x x x x x x x

Yuan et al. (2013) x x x x x x x x
Elzen and Wijk (2011) x x x x x x

Rauber, Falcao and Telea (2017) x x x x x x x x x
Mühlbacher and Piringer (2013) x x x x x x x

Klemm et al. (2016) x x x x x x x
Zhang et al. (2016) x x x x x x x
Dingen et al. (2019) x x x x x x x x

Source: Research data.
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CHAPTER

3
INTERACTIVE ATTRIBUTE ANALYSIS AND

SELECTION

This chapter is a modified version of the paper “A Novel Visual Approach for Enhanced
Attribute Analysis and Selection”, presented in the 32nd Conference on Graphics, Patterns
and Images (SIBGRAPI 2019) and published in the Elsevier Computers & Graphics Journal
(ARTUR; MINGHIM, 2019).

As a consequence of the current capabilities of collecting and storing data, a data set
of many attributes frequently reflects more than one phenomenon. Understanding the role of
attribute subsets and their impact on the organization and structure of a data set under study is
paramount to many exploratory and analytical tasks. Example applications range from medicine
to financial markets, whereby one wishes to locate subsets of variables that impact the prediction
of target categorical attributes. The user is essential in this context since automated techniques
are not currently capable of embedding user knowledge in attribute selections. In this work, we
propose an approach to deal with the analysis and selection of attributes in a data set based on
three principles: firstly, we center the analysis of the relationships on categorical attributes or
labels, because they usually summarize important state variables in the application; secondly, we
express the relationship between target attributes and all others in the data set within a single
visualization, providing understanding of a large number of correlations in the same visual
frame; thirdly, we propose an interactive dual-visual approach whereby changes and selections
in attribute space reflect visually on the configuration of data layouts, conceived to support
immediate analysis of the impact of selected subsets of attributes in the organization of the data
set. We validate our approach by means of a number of case studies, illustrating distinct scenarios
of knowledge acquisition and feature selection.
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3.1 Introduction

In most applications, data sets are created with a certain degree of uncertainty in the
importance of different attributes and their impact in defining the object under analysis. Addition-
ally, one single data set may encode more than one phenomenon that may be governed by distinct
subsets of attributes. Other attribute related complexities can be observed in many real-life cases,
such as redundancy, various degrees of relevance, and the need to reduce dimensions so as to take
advantage of strategies that work better with fewer attributes as well as to reduce the size of the
data set. It is, thus, of great importance to be able to select attributes and to analyze the impact of
such selection. Although there are algorithms to perform attribute selection, they cannot currently
replace the perspective of the user in finding relevant patterns and relationships.

Relevant information in a data set frequently comes from observations of interrelation-
ships between certain attributes and other data components. For example, in medical research,
analysts try to find the most relevant attributes correlated with causes of death, both to improve
the quality of medical protocols and to predict survival. That parallel can be seen in most
multidimensional analysis cases. In this context, a visual analysis approach for attribute space
exploration is essential when hypotheses of correlations must be confirmed, but most importantly
when previously unknown correlations are to be found. With proper tools at the disposal of users,
new knowledge can be gained by understanding the relevance of attributes that may support
other tasks, such as classification and clustering. The human insertion in the analysis and FS
allows flexibility, creativity, and inclusion of tacit knowledge not possible by employing fully
automatic methods (KEIM; MANSMANN; THOMAS, 2010).

Correlation analysis is a recurrent way of measuring complex relationships between
variables. Traditionally, approaches that visually present such correlations expose attribute
measures in pairs, regularly employing scatter plots or heat maps. However, hidden correlations
between groups of attributes and partitions of other attributes (such as categories or labels) often
remain hidden. In our approach we present the relationship between these labels or categories
and the remaining attributes. The relationship between attributes is also indirectly revealed since
similar attributes tend to correlate with the same labels.

We propose a correlation-based visual approach for data analysis focused on attribute
space. The uniqueness of this work lies in the exposure not only of the relationship between
attributes but also between them and each data label. We adapt the RadViz projection (HOFF-
MAN et al., 1997; HOFFMAN; GRINSTEIN; PINKNEY, 1999), a technique originally built
to express similarities between data items, for displaying attribute data similarity. That choice
is due to its ease of interaction, speed of rendering, and the capability of showing groups of
related attributes. The resulting technique, named Attribute-RadViz, allows the analyst to conduct
explorations by interacting with a projection of attributes. A set of interactions and displays
panels complete the analysis structure. We also provide a layout of the data set items by means of
a data space projection allowing the observation of the impact of the selected attributes subsets
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on the structure of the data. We demonstrate, through two case studies, how the attribute analysis
afforded by the approach can lead to an improvement in data understanding and meaningful
selection of subsets of attributes.

The main contributions of this approach are therefore:

∙ A correlation-based approach for feature analysis to identify relationships between all
attributes and the available data labels or categories. We devise a specific correlation matrix
for this purpose;

∙ Attribute-RadViz, an enhanced RadViz visualization that maps large amounts of attributes
as elements with new visual and exploratory features to increase its analytic capabilities;
and

∙ the description of two case studies; one example of usage for knowledge acquisition and
hypotheses testing and another for attribute selection.

3.2 Overview of the Approach

The inspiration for this work is that, in many applications, data sets are full of categorical
information, most of which are difficult to handle together with other attributes. But commonly,
many of these attributes can be interpreted as labels and carry predictive potential if adequately
targeted by classification models. To use as an example the health records data again, some
attributes record different impacts of treatments or procedures; looking to other attributes from
their perspective, it is possible to investigate how outcomes, such as the degree of severity or
adverse reactions, are reached. This type of scenario occurs very often in weather prediction,
environmental monitoring, epidemic control, and even in the prevention of undesired events,
such as accidents, fraud, and market instability.

Our approach for attribute space exploration is named Attribute-RadViz, an improvement
of the classic RadViz technique to make it capable of mapping attributes (instead of items) and
highlight attribute correlation under the influence of a label set (or categorical attribute). The
assembly of Attribute-RadViz is described in Figure 9 and detailed in Section 3.3.

A second view is provided to displays a multidimensional projection of the data set based
on current attributes. Once the user finds interesting attributes towards some desired outcome,
this second view is updated to consider only the selected attributes. For small to moderate
quantities of selected attributes, the second view adopts a RadViz in its traditional construction.
However, as the number of selected attributes grows, the user can change the visualization to the
t-SNE technique, which is more scalable. The second view is described in Section 3.4.
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Figure 9 – Graphical abstract of the Attribute-RadViz with the sample data set shown in Table 2 presenting
the panorama of relationships between attributes and labels from the target attribute. (a)
Decomposition of labels of target attribute into presence vectors (for each label). (b) Performing
the calculation of correlation between data labels and other attributes. (c) Projection of the
correlation matrix encoded into the RadViz visualization technique.

Source: Artur and Minghim (2019).

3.3 First View: Attribute-RadViz Layout

The classic RadViz is a radial visualization technique that presents attributes as points
known as dimensional anchors, distributed initially equidistantly around the unit circle. The
elements (data items) are mapped according to the approximation influence from each DA,
similarly to a spring system. The attraction values for each DA are usually normalized, avoiding
discrepancies in the positioning of the elements due to the different scales and ranges between
attributes.

The reason why we choose RadViz is that its layout represents a map that helps the user
to quickly find the objects of interest. This is due to its ability to jointly consider both aspects of a
data matrix (rows and columns) and further rendering them in the final layout. Also, the RadViz
computation is fast enough for implementation in an interactive context. For more detailed
information about the RadViz and other radial visualization methods, the reader is referred to
Draper, Livnat and Riesenfeld (2009) and Diehl, Beck and Burch (2010). Other interesting works
regarding RadViz extensions are presented in (SHARKO; GRINSTEIN; MARX, 2008; ONO et

al., 2015; ZHOU et al., 2015; CHENG; XU; MUELLER, 2017).

In Attribute-RadViz, the DAs are label values of a chosen categorical attribute. A correla-
tion matrix gives the attraction forces from all other attributes to the DAs. We further made the
correlation data to be encoded by element sizes, and the entire generated matrix coded on the
same view and shown according to user’s interaction. The search for specific correlations is also
simplified because of the mentioned RadViz’s simple mapping methodology.

As a practical example of the advantages of applying RadViz mapping to our correlation
matrix, Figure 10 compares RadViz with well-known projection techniques in the task of
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searching for strongly correlated attributes with the “Venezuelan President” label in the News
data set. Inside the Attribute-RadViz, this task is straightforward; the user can examine the closest
mapped attributes to the DA representing the desired label (see Figure 10b). The t-Distributed
Stochastic Neighbor Embedding (t-SNE) (MAATEN; HINTON, 2008) clusters very well, but
this does not make this task any easier; in this case, the user should investigate the clusters of
interest to find the desired attributes (see Figure 10c). In the Principal Component Analysis
(PCA) (JOLLIFFE, 2011), this task is even more challenging since the items mapping seems
more complex (see Figure 10d).

However, RadViz approaches have limitations that need to be addressed. Firstly, the
ambiguity of positions, where RadViz maps different items in the same location. Secondly, the
overlapping, where RadViz maps several items in the same area. Finally, the DAs scalability
issue, where their arrangement in the unit circle can become saturated. We minimize the first two
drawbacks by the encoding of element sizes, the inclusion of item-to-item force layout adjustment,
and smoothing the RadViz mapping adding to its equation a new parameter. Regarding the
scalability problem, in our approach the DAs are label values in the attribute view, and its
quantity is rarely more than 20 in most data sets. In the item view, DAs are the currently selected
attributes; it is unusual for the user to select more than 20 without performing the pruning to
refine the selection and start a new sub-selection. Figures 10a and 10b compare the traditional
RadViz and our enhanced RadViz rendering 3,731 attributes.

In the following, we present every step of the construction of Attribute-RadViz and some
visual increments enhancing our RadViz. Firstly, we explain the correlation matrix construction
and how we deal with categorical variables, and then we detail the visual encoding adopted in
this approach. To demonstrate our methodology, we adopt a partition of the zoo data set available
in UCI Machine Learning Repository (ASUNCION; NEWMAN, 2007). Originally, the data set
has 18 attributes and 101 items. For our example, we reduce to 15 items, as presented in Table 2.

3.3.1 The Correlation Matrix

The core of Attribute-RadViz lies in the correlation matrix construction, which is dif-
ferent from most available methods. Given a target attribute, we want to quantify how related
the remaining attributes are to each value inside the target. Conventional methods based on
correlation compute the correlation coefficient for each pair of attributes and then assemble the
matrix. We perform the correlation estimation between attributes and a boolean presence vector
of each label value. Therefore, it is required to decompose the target attribute – which contains
information for k label values – into k virtual presence vectors with binary values symbolizing
the label presence for each item. Figures 9a and 9b illustrates the process.

To assemble the base matrix for subsequent visualization task, presence vectors are col-
lected similarly One-Against-All (LIU; ZHENG, 2005) and Binary Relevance (TSOUMAKAS;
KATAKIS, 2006) approaches. In them, each data label is represented by one vector where each
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Figure 10 – Encoding the correlation matrix of the News data set containing 3,731 attributes in different
visualization techniques. (a) The classic RadViz. (b) Our enhanced RadViz. (c) t-SNE Projec-
tion. (d) PCA Projection. Our Attribute-RadViz approach expresses a cognitive map where
outer elements (close to the anchors) generally represent attributes with strong and exclusive
correlations, and the internal ones commonly are shared (strong or not) correlations. For
example, to find the two strongest correlated attributes with the label “Venezuelan President”
(in this case “Hugo” and “Chavez”), the cognitive map provided by RadViz is of great help
compared with the other projections, as we can see when highlighting the attributes in (b), (c),
and (d).

(a) (b) (c) (d)

Source: Adapted from Artur and Minghim (2019).

element records the value one on the items where the label occurs. Their goal is to enable the
classification of multi-label problems in separated stages by applying existing single-label solu-
tions. In our approach, the presence vectors are instruments to measure the correlation intensity
and direction between attributes and data labels.

Let L be the finite set of k possible labels values L = {l1, l2, ..., lk} and yl be the target
variable, which records the label information of a m-dimensional data set with n items x. To
enable correlation calculation of labels individually, yl is decomposed into k presence vectors
{z1,z2, ...,zk}, where for every l ∈ L, zi = 1 if yli = l and yli = 0 otherwise.

Pearson’s correlation coefficient (TABACHNICK; FIDELL, 2006) is calculated between
each attribute against the boolean presence vectors. Pearson’s correlation is among the most
popular metric to quantify the relationship between two variables. The Equation 3.1 obtains the
coefficient, where x and y are vectors of the same size, x̄ and ȳ are their arithmetic means.

r(x,y) =
Σ(xi− x̄)(yi− ȳ)√
Σ(xi− x̄)2Σ(yi− ȳ)2

. (3.1)

The resulting values range from -1 to +1, where the signal implies the direction of the
relationship and the magnitude is related to the intensity of the correlation. The final matrix has
dimensions m× k.



3.3. First View: Attribute-RadViz Layout 37

Table 2 – Sample data set extracted from the zoo data set available in UCI Machine Learning Repository.
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goat 0 1 0 4 1 0 0 0 0 1 1 1 0 1 1 1 Mammal
chicken 1 0 0 2 0 1 1 0 0 0 1 1 0 1 1 0 Bird
piranha 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 Fish
gnat 0 0 0 6 0 1 1 0 0 0 0 1 0 0 0 0 Bug
crab 0 0 0 4 0 1 0 1 1 0 0 0 0 0 0 0 Invertebrate
elephant 0 1 0 4 1 0 0 0 0 1 1 1 0 1 0 1 Mammal
bear 0 1 0 4 1 0 0 0 1 1 1 1 0 0 0 1 Mammal
clam 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Invertebrate
dolphin 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 Mammal
penguin 1 0 0 2 0 1 0 1 1 0 1 1 0 1 0 1 Bird
leopard 0 1 0 4 1 0 0 0 1 1 1 1 0 1 0 1 Mammal
duck 1 0 0 2 0 1 1 1 0 0 1 1 0 1 0 0 Bird
seahorse 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 Fish
flea 0 0 0 6 0 1 0 0 0 0 0 1 0 0 0 0 Bug
scorpion 0 0 0 8 0 0 0 0 1 0 0 1 1 1 0 0 Invertebrate

Source: Asuncion and Newman (2007).

3.3.2 Handling Categorical Variables

Although Pearson’s correlation remains an excellent way to quantify relationships be-
tween numerical variables, we still need some mechanism to build the correlation matrix with
numerical and categorical data. An alternative solution is to convert each level (categorical value)
into a numerical value and then apply the Pearson’s correlation; however, the choice of those
values influences the resulting coefficient value directly, since order and distance information is
arbitrarily chosen. A strategy to solve this problem may be applying regression models, as the
multinomial LR. Nevertheless, solving regression models for large amounts of data in interactive
approaches may become too expensive.

Zhang et al. (ZHANG et al., 2015) present a solution, adopted here, that avoids solving the
entire model to find the transformation. They attempt to maximize the coefficient of determination

r2, and therefore the correlation coefficient r. Since r2 = 1−RSS/T SS, being RSS (residual

sum of squares) the data variance unexplained by the regression model and TSS (total sum of

squares) the sum of squared differences of the dependent variable from the overall mean. Then,
minimization of RSS maximizes r2.

They want to minimize RSS, being RSS = ∑(yi− ŷ)2, where ŷ is the predicted value
of y given x. The Equation 3.2 describes RSS’ which is the RSS of the desired transformation.
Basically, it computes the RSS for each categorical value against every numerical value of the
other variable that falls on it, where vc is the categorical variable, vn is the numerical variable, n

is the number of points, m is the number of levels of vc, mi is the number of points related to the
categorical value vc(i) and vi

n( j) representing the jth numerical value that falls on the categorical
level vc(i). So, they want to find numerical values v′c(i) to replace each categorical level vc(i)
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that maximize r.

RSS′ =
m

∑
i=1

mi

∑
j=1

(vi
n( j)− v′c(i))

2. (3.2)

By making µ(vi
n) as the mean of all numeric values that fall under the categorical value

vc(i) (the entire manipulation of the Equation 3.2 that allows this transformation is described in
(ZHANG et al., 2015)), the authors arrive at the expression 3.3, which must be minimized:

m

∑
i=1

mi

∑
j=1

(µ(vi
n)− v′c(i))

2. (3.3)

This way, minimization occurs when µ(vi
n) = v′c(i). Thus, the values that replace each

categorical level are computed from the averages of numeric values that affect them. This model
of categorical data handling is efficient, given the need to compute only a set of means, and
it confers good results in terms of cost and benefit. The disadvantage of this solution is that
the categorical target attribute must have potentially different levels of ordering and distance
measures associated with each other attribute. However, concerning our approach, this problem
is mitigated, since our target attribute is decomposed into presence vectors that are essentially
numerical, and then the correlation is performed between those presence vectors against the rest.
Hence, this solution is suitable and brings fast results to our interactive approach.

3.3.3 Visual Encoding

A favorable arrangement of the visual elements is important for the correct perception of
the information being coded (MACKINLAY, 1986). The various entities of the visualization can
be managed to increase the interpretability of the data while at the same time minimizing the
possible problems of the RadViz visualization. Here we present our visual encoding including
the interactive mechanisms and widgets.

∙ Elements position. The positioning of the elements represents immediate hints of how and
where users can find correlations of interest. The RadViz methodology defines the elements’
mapping, and its application is straightforward since we are dealing with homogeneous
data (correlation coefficients) in the same range of values (absolute correlation values
between 0 and 1). The normalization step of the attributes made by the classic RadViz
becomes unnecessary.

Let us illustrate the positioning with an example. When constructing the correlation matrix
in our sample data set (Table 2), we can observe that the attribute “feathers” has a powerful
correlation with the “Bird” label value and mild correlation with the others. When applying
the RadViz mapping, the attribute is placed next to the bird-DA since this anchor exerts
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the most significant attraction force among all DAs, as shown in Figure 9. Therefore, the
positioning scheme constructs a cognitive map that aids user exploration in the search for
label targeted correlations.

Additionally, the user can adjust a force-directed layout approach (KOBOUROV, 2012) on
the RadViz mapping intended to reduce overlapping. Each element exerts a user-selected
repulsion force proportional to the size of its radius to the other elements (simulating a
circle to circle collision detection). Also, we made a slight change in the original RadViz
equation to make the elements mapping more flexible,

Pi =
m

∑
j

as
i, j

∑
m
j as

i, j
v j, (3.4)

where Pi is the mapped point for the item i, v j is the anchor j, ai j is the item i in the jth

dimension among the m total dimensions. We included s as a user-defined parameter that
changes the distribution of the values in the RadViz mapping; Figures 10a and 10b show
how modifying these parameters can be useful for a better presentation of the attributes
in the News data set, where the s value is 1 and the repel force is 0 in Figure 10a and
the s value is 2 and the repel force is 1 in Figure 10b. The appropriate adjustment of
these parameters is mainly dependent on the overlapping level of the rendering, which is
generally proportional to the scale of the data sets.

∙ Dimensional Anchors Ordering. The order and arrangement of dimensions are essential
for the effectiveness of several visualization techniques as it has a significant impact on
the expressiveness of the visualization (ANKERST; BERCHTOLD; KEIM, 1998). In
RadViz, it is not different, and we provide a greedy ordering algorithm to organize and
consequently avoid or reduce problems clutering.

The algorithm itself is quite simple and its pseudocode is outlined in Appendix A. A
representative data item is chosen (the medoid) for each label value, and a pair to pair
correlation test is performed between them. Label values with high positive correlation
are placed in close slots (adjacent preferably) and those with high negative correlation in
distant slots (opposite preferably), improving the distribution of the mapped attributes in
that view. The algorithm is similar to the one applied in the data view with the traditional
RadViz, and we give more details in the next subsection.

∙ Colors. In the attribute view, the colors of the elements symbolize their most correlated
labels. For example, toward the sample data set shown in Figure 9c, the “feather” attribute
has a stronger correlation with the “Bird” label; therefore, it assumes the corresponding
label color. The same occurs with “milk” for “Mammals” (both are blue), or “fins” for
“Fish” (both are yellow). In the data view, the color of the elements indicates their actual
labels.
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Figure 11 – Illustration of interaction when hovering the pointer over (a) the attribute “ind_abdomen1”
and (b) the TBI-DA while investigating the data set. It is noticeable that “Hemorrhagic shock”
is the most correlated label with the attribute “ind_abdomen1”. In detail, interpretation of
the arcs representing the DA; the inner arc refers to the balance of the data set; the outer
arc denotes relevance for the attribute pointed at, and the middle one is a reference for both.
When the pointer is hovering a DA (b), lines show the correlation direction for each attribute
(green as positive and red as negative) whilst the size of each attribute encodes its correlation
value for that DA-label.

(a) (b)

Source: Artur and Minghim (2019).

∙ Elements’ size. As mentioned previously, the positioning of the elements gives an initial
overview of the values present in the correlation matrix. However, the size of the elements
also encodes the correlation matrix, and throught this property, users can investigate
correlations more deeply.

The initial sizes of the mapped elements encode the correlations of the attributes against
the whole set of labels. Thus, large elements may imply good candidates for prediction
purposes in the context of the entire data set. In contrast, small elements initially imply
low predictive power for the whole data set; however, nothing can be stated about partic-
ular labels since strong correlations can be hidden, especially when considering poorly
populated labels.

In our sample data set, as shown in Figure 9c, the largest initial element is the “legs”
attribute. This is because “legs” is the attribute of greater prediction power in the context
associated with all the labels. However, if users are interested in strong correlations
specifically with the “Fish” label, they can hover the pointer over the Fish-DA and all sizes
of elements start to encode the correlations related to the ‘Fish”label. Hence, the “fins”
attribute will become the largest element of the view momentarily.

∙ Arcs of Dimensional Anchors. Another visual widget of our work is the set of arcs of
DAs. Arcs for each DA are rendered in layers close to the model’s unit circle; the inner
ones represent the proportion of elements marked by the respective label value (thus data
set balance regarding that label), and the outer ones represent the correlation amount
for the attribute under the pointer. Figure 11a shows the arcs in detail when hovering an
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Figure 12 – Improving discrimination in the Human Activity Recognition data set. (a) A dual-view
containing the attribute space visualization as it relates to six label values (Standing, Sitting,
Laying, Walking, Walking Downstairs and Walking Upstairs) and the data space view, where
five attributes are selected and consequently influence the mapping of data items. (b) The user
recognizes an area with a mixture of labels, the majority belonging to the yellow category
“Walking”. (c) In an attempt to improve separability between categories, the user hovers
the pointer over the DA corresponding to “Walking” and investigates its relationships to all
attributes. (d) An attribute strongly correlated to the label is found and selected becoming
part of the data space view. (e) By the insertion of the new attribute, there is a considerable
improvement in the visual organization and segregation of categories.

Source: Adapted from Artur and Minghim (2019).

element. The label “TBI” (blue inner arc) has twice as many items concerning “Sepsis”
(red inner arc) as shown in Figure 11b.

3.4 Second View: Visualization in Data Space
Once the approach presents a panorama of correlations between attributes and labels,

a second linked view is provided to promote the analysis task jointly with the evaluation of
current FS. For that purpose, users can choose the conventional RadViz or the t-SNE projection.
Hence, users can adjust the model by adding or removing attributes and looking for useful
insights. Additionally, they can request values of the silhouette coefficient as a feedback metric
for evaluating the selected subspace. The silhouette is a prevalent measure to define class-based
segregation. The approach returns three silhouette values: the original space, the selected space,
and the mapped two-dimensional space coefficients.

Similarly to the first view, the linked RadViz from the second view also has its DAs
ordered to avoid clutter. The algorithm is greedy, and it is somewhat similar to the DA positioning
in attribute view. Initially, a pairwise attributes correlation matrix is built, and then the highest
absolute value is picked and placed in close slots on the RadViz unit circle if they have a positive
correlation; otherwise, they will be positioned in the most distant slots. From there, the algorithm
chooses the highest correlated attribute in relation to those that have already been inserted and



42 Chapter 3. Interactive Attribute Analysis and Selection

Figure 13 – Pruning the data to focus on mixed and potentially hard to segregate areas. (a) Strongest
globally correlated attributes selected in an FS task. (b) Pruning the data in an attempt to
find correlated attributes to the picked subset. (c) A new attribute view is generated with a
recalculated correlation matrix. (d) New useful attributes found and selected.

Source: Elaborated by the author.

places it in the nearest or farthest free slot, according to their correlation direction. In any case,
the user can change positions of DAs at will.

Figure 12 illustrates a scenario where the user evaluates and adjusts the FS aiming at the
segregation of categories as well as reducing clutter. After a preliminary FS (see Figure 12a), the
user examines the item space and realizes an area with multiple mixed items (see Figure 12b),
most of them as yellow items (“Walking” label). Then, he or she returns to the attribute space and
investigates attributes correlated with the yellow label searching potential attributes to segregate
the “walking” cases (see Figure 12c). After locating and selecting an attribute (see Figure 12d),
you can see the improvement in the label separation as well as the visual organization (see Figure
12e).

Another essential feature made possible by the dual-view is the FS refining mechanism
through the pruning of elements and correlation matrix reconstruction. The primary goal of this
functionality is to find locally correlated attributes, especially in scenarios where categories are
difficult to segregate in the global analysis. In general, such situations are frequent when the
data set has very similar categories. Hence, when users prune the data set, a parallel analysis
is initiated with a new panorama of correlations containing possibly useful attributes for the
segregation of the picked subset of elements. Figure 13 presents a scenario where the user applies
the pruning mechanism to segregate two mixed categories (“Standing” and “Sitting”).

3.5 Prototype Implementation

In addition to the design elements described above, we have developed a tool with
interactive resources to improve the user’s analytical process. Here we present a brief description
of this implementation and its interactive functionality. Our implementation is a simple and
portable web-based tool. It is developed based on HTML and Javascript languages combined
with the visualization framework D3js (<https://d3js.org/>). The tool is made freely available at

https://d3js.org/
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Figure 14 – The prototype of a visual analysis tool implementing our approach. (a) Control panel for
Attribute-RadViz. (b) Control panel for data space view. (c) Users can freely manipulate the
DAs. (d) By hovering over an element, the correlation information can be observed from
the information bars, arcs of DAs, or by the opacity of the influence lines. (e) The dynamic
attributes rank shows the most correlated attributes for the last hovered DA-label. The rank
helps users perceive the highest correlations when it is difficult to distinguish element sizes
while interacting with DA-labels.

Source: Artur and Minghim (2019).

<https://github.com/erasmoartur/attribute-radviz> together with its manual and the sample data
sets. Figure 14 shows the interface adopted in our prototype.

When starting the tool, the user must open the CSV data file and then select a target
attribute. This allows the first view to render (attribute view). Some visualization parameters
are configurable by the control panels (see Figures 14a and 14b). Users can enable or disable
information bars, enable or disable element borders, adjust transparency levels, adjust the
proportionality of element sizes, define the number of attributes simultaneously selected in the
multi-select mechanism, and define the repulsion force intensity between the elements as well as
force intensity between DAs to elements.

A variety of actions is possible inside the attribute view. In the search for patterns, the
analyst can freely manipulate the DAs (see Figure 14c). By hovering the pointer over DAs, the
correlation data between attributes and the current DA-label is encoded in element sizes, returning
to regular sizes when removing the pointer (see Figures 12a and 12c). Correlation information
between a particular attribute and all data labels is exposed by hovering the pointer over this
attribute inside the attribute view. This information arises from arcs of DAs, information bars
and influence lines (see Figure 14d). Additionally, the user can remove label values by dragging
out DAs. Thus, the correlation matrix will be recalculated containing only the remaining label
values. This mechanism is particularly useful when users notice some already segregated label

https://github.com/erasmoartur/attribute-radviz
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value (observing the second view); hence, users could remove this label to focus on interesting
attributes of the remaining label values.

If the user wants to select a large number of attributes, he or she can use two distinct
multi-selection mechanisms. The first one is the bounding box, which allows multiple selections
inside the unit circle. The second is the multi-select click, where the user right-clicks on a
DA-label and the P strongest correlated attributes (not yet selected) are included. The P value is
defined by users in the control panel.

To start the second view, the user must choose an attribute in the right panel (see Figure
14b) to identify the items. Users can choose the visualization method between RadViz and t-SNE.
Selecting RadViz, when hovering the pointer over the elements, arcs and information bars expose
the actual data values of the selected item proportionally. Taking our sample data set again as
an example, by hovering over the “chicken” element in the data view the arc over “eggs” DA
becomes fully filled demonstrating the value of this element for that anchor is maximum. By
hovering the pointer over DAs, the values of the attribute represented by that DA encodes new
sizes of elements in the projection. It is possible to do this also by hovering over attributes in the
attribute view, providing coordination between views during analysis. For example, by hovering
over the “legs” attribute in the attribute view, the item “scorpion” assume the maximum size in
the second view, while items “piranha” and “seahorse” become only dots with minimum size.
This could give the user a sense of how each attribute affects the labels and items. Additionally,
every attribute selected in the attribute view or in the list of attributes is added to the second view.

3.6 Case Studies
We present two case studies addressing different aspects of our approach. The first

examines the analytical context, where the combined exploration between attribute and data
views aids the user to formulate and test new hypotheses. The second case study investigates the
ability of this approach to support finding representative subsets of attributes and compares the
results with automated methods.

3.6.1 Case One: Understanding the Predictive Power of Attributes

Trauma scores represent an attempt to characterize and document traumatic injuries – as
much as possible – by their severity levels. They are essentially mathematical or statistical values,
quantified by numerical scores that vary according to intensity and types of trauma injuries. The
estimation of a trauma score is carried out from the analysis of anatomical and physiological
parameters (JÚNIOR et al., 1999). These scores are mainly useful for evaluating the quality of
trauma care and providing metrics for comparison for inter-hospital care protocols.

The data set for this case study comes from a collection of trauma information collected
from the University Hospital (Hospital das Clínicas) of the Medical College of Ribeirão Preto,
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Figure 15 – An analysis of health records data. This investigation considers only trauma cases with death
outcome. The analyst aims to understand the behavior of trauma scores and how to improve
their prediction accuracy. (a) Initial Attribute View. (b) The FS is performed; highlighted items
represent the selected attributes. (c) Projection of data items considering the selected attributes.
The DAs are rearranged to delineate a proper mental cognitive map. The red highlighted
ones mean attributes for which high values imply in low survival probabilities. The green
group describes the scores for which high values indicate a good survival probability. (d) By
hovering the pointer over the “NTRISS” DA, the elements in the data space view assume
sizes proportional to the actual attribute values (as explained in Section 3.5). The sepsis cases
are among the ones with high recovery probability (large elements are approximately 100%
of recovery probability cases while small elements (dots) are cases close to 0% of recovery
probability), which implies affirming that the score has difficulties when predicting cases of
this condition, since cases here resulted in death. (e) The analyst returns to the attribute space
to investigate whether there are candidates correlated attributes with sepsis cases to adjust
the trauma score. The attributes most correlated with “Sepsis” are length_of_stay (in days)
and complication; both are dependent on the patient’s evolution, not immediately available.
Thus, to improve the score, it is necessary to model a dynamic solution, with monitoring of
certain variables added to a time-varying score. Then, the analyst can proceed to investigate
the reasons for the poor prediction for the cases highlighted in (f) to “hemorrhagic shock” and
“traumatic brain injury”.

Source: Adapted from Artur and Minghim (2019).

University of São Paulo (HC-FMRP-USP) for nine years (2006 to 2014). The data set has 21,294
records with 145 attributes. It includes patient profile data, trauma event information, clinical
tests and observations, and calculated trauma scores.

We describe part of the analysis of trauma scores performed in the medical data set.
Analysts attempt to adjust the trauma scores models to increase their efficiency in the charac-
terization of patient care and their prediction capabilities. Aided by Attribute-RadViz, we have
shown some gaps that can be explored to develop more descriptive scores.
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This analysis considers only death cases of the data set, a total of 904 incidents in the
nine years of collection. Due to the absence of some attribute values, the number of items is
reduced to 367. We chose as target the attribute “death causes”, the label values inside it are
Multiple Organ Dysfunction Syndrome (MODS), Traumatic Brain Injury (TBI), Acute Kidney

Injury (AKI), Hemorrhagic Shock, Sepsis, Arrhythmia, Acute Respiratory Distress Syndrome

(ARDS), and others.

Attribute-RadViz initially displays the attribute space projection (see Figure 15a). Without
any interaction, it is possible to make some observations. The most populous class label is the
“TBI”, followed by “Hemorrhagic Shock” and “Sepsis”. The attribute of highest correlation with
the whole class labels is “ind_head1”, which is a measure that determines the damage level in
the head region, including the face.

Making use of the available interactions, we perform a FS after examining label by label,
trying to keep the choice as balanced as possible, as explained in subsection 3.5. This task is
possible by investigating the DAs hovering the pointer over them. Figure 15b shows a selection
of 13 attributes highlighting the selected ones.

Moving to data space (Figure15c), we organize the DAs to place the attributes whose
high values indicate low survival probability in the right side. The attributes for which high
values imply in a good recovery probability are arranged on the left side (as shown in Figure
15c). This attribute layout sets up a cognitive map that allows us to identify patterns but also
separates items with different labels relatively well. In fact, the sorting algorithm organized the
data similarly, but we rearranged the DAs to place semantic groups in the left and right sides.

As previously explained, when hovering over DAs in attribute view, it shows correlations
between attributes to the current DA-label; but in data space, hovering DAs makes the size of
elements proportional to the actual value of the current DA-attribute. The highest correlated score
associated with death cases in this data set is New Trauma and Injury Severity Score (NTRISS)

(DOMINGUES et al., 2011). When we check their values (see Figure 15d), we observe that
several cases have a good recovery estimation; however, all items in this context represent death
cases, which opens a gap for an investigation over this inconsistency.

When examining the “NTRISS” values, the interesting point is that most cases of sepsis
have estimation scores values indicating high recovery probability. Therefore, we may conclude
that the “NTRISS” score is not a good predictor when sepsis cases occur. A question then
emerges; is there any way to adjust the score to allow detection of such cases? The answer
naturally is in attribute space. If we find an attribute with a strong correlation with that label value,
it can then become part of the score modeling. Figure 15e shows the attributes exposed when
hovering over the Sepsis’s DA, and, besides other scores – which are not useful in this case – only
two attributes have a good correlation level: “length_of_stay(in days)” and “complication”. These
two attributes are not instantly acquired, being determined only at the end of the process. That fact
limits us from trying some new adjustment. Hence, this analysis has returned a recommendation
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Figure 16 – Steps performing a FS in the Corel data set. The graphs are displayed in pairs, the left ones
are the attribute views and the right ones are denoting the item views. Illustration of (a) 5,
(b) 10, and (d) 20 attributes selected. As attributes are selected, we notice an improvement
in label separation and reduction of items positioned in the central area (region with many
mixed items).

Source: Adapted from Artur and Minghim (2019).

to model a severity score dynamically, with updates in small periods according to the patient
evolution. Analysts firmly agreed with that assessment and mentioned that they are currently
working to perfect dynamic score.

Figure 15f shows that – particularly for this data set – a relatively large slice of the
“hemorrhagic shock” and “TBI” cases have also score values indicating good recovery. Based on
this, some hypotheses may be raised to explain the imprecision of the score. It may designate a
certain error margin of the score’s accuracy, or it may reflect different contexts in which the same
scores are applied. In this case, there is a field for modeling custom scores that satisfy the local
reality. Domingues et al. (DOMINGUES et al., 2017) argue that Trauma and Trauma Revised
Injury Severity Score (TRISS) has been developed based on data from high-income countries,
such as USA and Canada, and when applied in low-income and middle-income countries it loses
accuracy. Based on these analyses, authors have suggested adjustments to the score’s coefficients
based on LR model to increase the efficiency for these cases.

We demonstrate in this case study how to employ our approach in the analysis of attribute
space combined with a collection of observations of the data space, particularly concerning the
prediction potentialities of categorical attributes. It became clear that this type of analysis can be
done even by non-experts in either the data set or the visualizations at hand, of course, with the
help of experts in interpreting the observations.
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3.6.2 Case Two: Finding Representative Subspaces

In the previous case study, health attributes would be well known and meaningful to the
analyst, who has prior experience with the data. Non-experts can also gain insight since they
understand the meaning of attributes in the data set. In some cases, though, such as in image
collections, the attribute themselves are not individually meaningful to the final user. In this case
study, we demonstrate how it is possible to deal also with data sets without prior user knowledge
of attributes.

Here, we use the Corel (LI; WANG, 2003), the Human Activity Recognition Using
Smartphones (ANGUITA et al., 2013) and the News data sets. The first one has 150 attributes
extracted from 1,000 images representing ten different image categories (African people and
villages, beach, buildings, buses, dinosaurs, elephants, flowers, horses, mountains, and food).
Each category is composed of 100 images, which makes the data set balanced. The second
one includes data from an experiment with a group of 30 volunteers aged between 19 and 48
years of age. Each person performed six different activities; walking, walking upstairs, walking
downstairs, sitting, standing, and laying. Through a smartphone attached to their waist, data
from a gyroscope and accelerometer (3-axial linear acceleration and 3-axial angular velocity)
is collected at a frequency of 50 Hz. It has 561 attributes extracted in a total of 10,299 items.
Here we deal with a partition of this data set containing the first 1,000 items. Finally, the News
data set contains 1,771 RSS news feeds from BBC, CNN, Reuters and Associated Press and its
3,731 attributes were created using term frequency–inverse document frequency (TF–IDF) with
stemming and stopwords filtering. The data set is labeled between 23 categories.

We proceed with the FS highlighting interesting observations that might guide a good
choice of attributes. In the following, we evaluate the subset selections illustrated here against au-
tomated FS methods, so we can discuss the practical advantages and disadvantages of performing
FS tasks interactively aided by a visual support technique.

∙ Feature Selection in the Corel Data Set. Aiming to select the first ten attributes, we
focus on the strongest correlations per label. Figure 16a presents both views with the first
five chosen attributes. The star-like shape in the data space view reveals how attributes
represented in DAs influence the position of elements concerning positively correlated
labels. There is an apparent distinction related to the labels that already had a correlated
attribute picked, but the central area remains considerably mixed. The separation between
categories becomes more evident as we select ten attributes, one highly correlated attribute
for each label (see Figure 16b).

For the next picks, we adopt a different selection strategy. One of the primary concerns
in FS methods is to filter out redundancies, avoiding the choice of attributes that might
carry the same information. To check for redundancies, users can explore the visual and
interactive resources of the tool. When the user hovers the pointer over elements in the
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attribute view, the data view is updated with the attribute values as new elements sizes (as
explained in section 3.5). Then, by hovering the pointer over the attributes, the user can
investigate patterns revealed in the data view in the attempt to detect redundancy.

Figure 16c presents the selection of ten additional attributes, two related to each label. In
the item view, the improvement in label separation is clear, although some mixed elements
remain in the central area. In terms of silhouette, both the 10 attributes and the 20 attributes
subsets improve over the 150 original attributes data set (in fact the 10 attributes subset
improve even more, but for effect of classification and of projection the 20 attributes subset
was better). Silhouette of the 150 attributes data set was 0.16; for 20 selected attributes it
was 0.19, and for 10 selected attributes it was 0.24.

So far, we made a straight selection considering that the Corel is a balanced data set with
strongly label-to-attribute correlations already apparent in the first rendering. The initial
ten attributes were chosen directly as the top correlated for each label value. The second FS
round was similar to the first; however, it required more care to avoid redundant attributes.
Although it is hard to state precisely, we consider that in general FS tasks in data sets like
this demand less than half an hour to be performed – not taking into account the time
needed to learn the tool.

∙ Feature Selection in the Human Activity Data Set. In this data set, we had to make a
more in-depth investigation by performing a tree-like exploration on the data set partitions
through the refine/pruning mechanism. Figure 17 illustrates the FS task of the first ten
attributes. We start by selecting the most significant correlation of the entire data set (the
largest when investigating label-by-label). The “41 tGravityAcc-mean () - X” attribute has
a correlation coefficient of 0.98 with the category “Laying”, which almost wholly segregate
it in the data view. Figure 17a presents the attributes arrangement when hovering over the
Laying-DA, where there are six strongly correlated attributes (we need to consult the rank
to precisely distinguish the levels of correlation between them). Selecting another one
from this group, purposely the strongest with the opposite correlation direction related to
the first one (see the lines between attributes and DA in Figure 17a), we achieve the whole
segregation of the category (see Figure 17b), which allow us to prune the data to focus
on the remaining elements. Then, after selecting three more attributes (see Figure 17c),
we notice that the categories are segregated into two clusters, which define our strategy of
pruning them to perform two other FS tasks. Finally, in Figures 17d and 17e we select the
attributes that promote proper visual segregation of the refined clusters.

This time, we had to investigate further and look for particular correlations with the ability
to segregate specific partitions. In data sets like this, the perception of the user is essential
to determine what to select, where to prune, and when to stop. Even so, we consider this
task to be accomplished in less than an hour for a simple FS without additional claims.



50 Chapter 3. Interactive Attribute Analysis and Selection

Again, this statement is quite subjective and depends a lot on what the user is actually
looking for in the data set.

∙ Feature Selection in the News Data Set. The News is a sparse and unbalanced data
set; following from this, we adopt the strategy of choosing attributes that segregate the
most significant number of items in the current rendering state. For example, the first
two selected attributes “Murdoch” and “debt” are correlated with the two most populous
categories “London hacking scandal” and “USA crisis”, respectively. In the data view,
whenever we select new attributes, the elements not yet segregated remain mixed in the
very central position of the unit circle, which helps the pruning process to start a newly
refined sub-selection following this same strategy.

We have also implemented mechanisms for multiple selection, which should help users
when representative subsets are reached only with numerous attributes. In the Corel data
set, after the FS previously described, we defined the multi-selection click mechanism to
pick eight attributes, and then we right-clicked over each DA, thus achieving 100 selected
attributes. For the Human Activity data set, instead of the selecting the five attributes
presented in Figures 17d and 17e, we define the multi-selection click to select 19 attributes
and then we right-clicked on each DA, also reaching the subset of 100 attributes. In the
News data set, after the second pruning, eight categories remained, so we defined the
multi-selection mechanism to pick eight attributes for each category (nine for the largest).

∙ Classification Experiment. To evaluate the quality of the selected subsets in the previous
subsection, we confront it with subsets made by some of the most traditional automated
algorithms. All chosen algorithms are of the filter type for supervised FS tasks; six are
based on mutual information named: Conditional Infomax Feature Extraction (CIFE)

(LIN; TANG, 2006), Conditional Mutual Info Maximisation (CMIM)(FLEURET, 2004),
Interaction Capping (ICAP) (AKADI; OUARDIGHI; ABOUTAJDINE, 2008), Joint

Mutual Information (JMI) (YANG; MOODY, 1999), Mutual Information Feature Selection

(MIFS) (BATTITI, 1994), Max-Relevance Min-Redundancy (MRMR) (PENG; LONG;
DING, 2005); three are similarity based: Fisher Score (DUDA; HART; STORK, 2000),
ReliefF (ROBNIK-ŠIKONJA; KONONENKO, 2003), Trace Ratio (NIE et al., 2008); and
three are statistics based: Chi Square (LIU; SETIONO, 1995), F-Score (WRIGHT, 1965),
and Gini Index (GINI, 1912).

To proceed with the experiments, we select as classifier M the linear SVM method. The
tool applied to perform the tests is the FeatureMiner (LI et al., 2017), which includes all
mentioned FS algorithms and the classifier implementation. The selection and evaluation
are performed with 10, 20, and 100 attributes selected. For the whole experiment, we
employed 5-Fold cross-validation. We define the MIFS algorithm parameter β equal to one.
Our test/training ratio corresponds to 0.2, and our statistical measure is the classification
accuracy.
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Figure 17 – Steps while performing an FS in the Human Activity Recognition training set. Investigating
each DA, we find an attribute group that assumes the largest sizes when (a) hovering over
Laying-DA. After selecting two of these attributes, (b) there is a complete segregation of the
“Laying” category in the data view. Then, through the refinement mechanism, the segregated
elements are pruned to rebuild the correlation matrix focusing on the remaining data. In (c)
three more attributes are selected witch reveals two large clusters that segregate the categories
into two groups; therefore, the FS strategy is from now on to prune and select correlated
attributes for each group. In (d) and (e) attributes that contribute to the segregation of the
refined partitions in (c) are selected, totalizing the selection of ten attributes.

Source: Adapted from Artur and Minghim (2019).

Table 3 reports the classification accuracy results applying the FS described earlier in
comparison with automatic methods. Given the characteristics of the tested data sets, we
realize that it is advantageous to use our approach. By selecting a few attributes, we achieve
robust representative subsets.

The custom FS strategy performed by the user should not always follow as outlined in
this case study. The relationship between chosen categorical attributes or class labels and the
remaining attributes is, naturally, very much dependent on the application. This is the proposal
of the visual FS support, to show a panorama that leads the user to carry out a selection of
representative subset from their insights.

3.6.3 Additional Experiments

Besides the controlled experiments above, we have set to find the answer to two particular
questions: 1) “how does the approach perform when submitted to a pre-defined hypothesis on
data attributes?”, and 2) “how does the analyst view the utility of the approach?”.

To answer the first question, two users have employed our tool to choose a subset with
minimum attributes, from 27 available, that would keep or improve segregation of 4 labels in a
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Table 3 – Classification accuracy of FS tasks with 10, 20, and 100 selected attributes among most tradi-
tional filter-based methods. We have left the trace ratio test for the News data set without results
since we kept the algorithm running for days without any response.

Corel Human Activity News
10 20 100 10 20 100 10 20 100

CIFE 0.41 0.58 0.89 0.69 0.81 0.92 0.68 0.84 0.88
CMIM 0.27 0.41 0.89 0.77 0.85 0.96 0.65 0.83 0.97
ICAP 0.27 0.42 0.88 0.83 0.89 0.98 0.64 0.83 0.97
JMI 0.27 0.42 0.87 0.86 0.94 0.98 0.64 0.74 0.96
MIFS 0.42 0.59 0.87 0.77 0.88 0.96 0.69 0.84 0.95
MRMR 0.46 0.60 0.87 0.71 0.87 0.99 0.64 0.74 0.96
ReliefF 0.37 0.58 0.88 0.70 0.84 0.94 0.22 0.31 0.94
Trace Ratio 0.42 0.63 0.90 0.78 0.85 0.90 – – –
F-Score 0.48 0.64 0.90 0.61 0.71 0.84 0.36 0.38 0.96
Fisher Score 0.46 0.63 0.89 0.68 0.82 0.90 0.36 0.38 0.96
Chi Square 0.41 0.61 0.89 0.59 0.73 0.82 0.28 0.31 0.77
Our approach 0.76 0.84 0.90 0.96 0.98 0.95 0.68 0.86 0.98

Source: Research data.

data set with 4,340 data items (the application was indices in acoustic landscapes). Both users
managed to achieve such a reduction, both keeping the same levels of segregation (as defined
by various measurements over multidimensional projections of the data set, including original
RadViz and t-SNE). One of the two users reduced the number of attributes to 4 and the other
to 3. That first part of the job was performed in under half an hour. In order to segregate all
labels at once more work was necessary since two of the labels were very hard to segregate. The
successful strategy for this last trial was performed by one of the two users, who looked into
attributes that were highly correlated to each class separately. In the end, a set was found that
improved the segregation of the original four classes. That set was comprised of 10 attributes and
the task took approximately 4 hours to perform. As a relevant note, that task of finding subsets
of attributes for this particular application was being carried out in conventional ways for days
with very little success without the help of our approach.

To answer the second question, regarding the user’s opinion, the solution was shown
remotely (with the use of a video) to one particular target user in the field of trauma medical
records. We had already an idea of the utility of the tool in the case, since it had been demonstrated
to other partners in the trauma application project before, who were very impressed with the
capability of the tool. This analyst had no previous contact with the tool and found the system
very useful for its purpose and is very excited to build that into their general system, with
the purpose of visualizing the scenario of resources application and review of procedures and
protocols in hospital emergency wards. All the suggestions for improvements presented by the
analyst regarded the need to have documented reports of the findings in terms of actual written
documents and charts to explain and register in more formal terms the solutions found by the
user.



3.7. Final Remarks 53

3.7 Final Remarks

In this work, we have presented an approach to analyze and select attributes; it includes
the Attribute-RadViz, an interactive technique for visually displaying and exploring multiple
correlations between attributes in a data set. The approach is based on relating all attributes
at once to target categorical ones (or to labels) to find predictive subsets to the label values
individually or in combination. Since categorical attributes are commonly vast in current data sets,
this is expected to resonate within a large number of applications. It certainly has good results in
at least two applications, to find patterns and verify hypotheses, as well as to perform useful FS
tasks. Once users learn about these displayed relationships – some expected, others acquired –
they can utilize their knowledge in the follow-up activities such as mining and machine learning
tasks.

Among the contributions of our work, we highlight the development of a visualization
technique coupled with proper data processing that exposes a cognitive map with the straight
relationship between attributes and a chosen label set. This particular aspect is difficult to realize
with any of the previous attribute analysis tools. Having the possibility of investigating the
predictive capabilities of attributes towards categories is very useful to gain knowledge of the
subject under analysis as well as finding ways towards predicting outcomes and target classes,
sometimes identifying more than one phenomenon happening at the same time within a single
data collection exercise.

Secondary achievements of our approach are the development of new visual widgets
that would work in general to improve the analysis capabilities of RadViz (e.g., arcs providing
extra information for each DA, the interaction model that changes visual attributes for features
under analysis); Also, we demonstrate how to reveal valuable information from data sets by the
combination of interactions between attribute and data views throughout our case studies.

Some limitations persist in our work. The tool is not effective when the data has only
two label values, or when the number of target label values is too high and beyond RadViz
capabilities, although that particular aspect is troublesome in its conception anyway. More than
20 categories, for instance, is challenging to handle under the same set of attributes. Concerning
the FS capabilities, we show that there is significant potential in the subset selection performed
by the user through our approach; however, for a substantial number of attributes, this task
becomes challenging. We have implemented multi-selection mechanisms, but more sophisticated
procedures (i.e., semi-automatic selections combining user choices with automated FS methods)
would be ideal in applications where the size of attribute subsets reach the hundreds mark.
Another limitation is the need to choose a useful and meaningful categorical target attribute.
Poorly labeled data may bring inaccuracy in the correlation matrix. Nevertheless, punctual errors
in the label values are tolerable and could be detected in the data view by observing outliers.

Another limitation relates to the correlation estimations regarding categorical and numeric
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variables. In this approach, we adopted two distinct ways to perform the calculation, first by a
regression model and also by binarization of the label values (one-against-all strategy). However,
when applying regression, there are problems in the overestimation of correlations, especially
in cases when dealing with sparse data. In binarization, there are problems in hiding useful
correlations evident only in all-against-all strategies. Although the approach is conceptually
independent of the metrics, we remain looking for more precise models for the hybrid calculation
of correlations.

As future work, we intend to address aspects of scalability and support for more diversity
in data types. For scalability, it is interesting to implement filters and introduce automatic methods
to assist in the complementary FS, helping in situations with a more massive demand for selected
attributes. The approach works with numerical and categorical data. Newer versions are being
designed for textual data. We are also interested in studying how the proportion of numeric and
categorical attributes impact the precision of the correlation matrix and how to develop new
correlation methodologies to make it even more accurate accordingly to this balance.
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CHAPTER

4
ATTRIBUTE ANALYSIS TO EXPLORE

REGRESSION MODELS

In this chapter, we apply the potential of Attribute-RadViz in identifying correlations
levels of attributes to explore LR models. We focus on reducing the limitations of applying those
models in multidimensional data contexts. The developed methodology is based on scenarios
derived from health records; however, the approach can be generalized in other broader contexts
where one desires to predict phenomena of interest encoded into potential target attributes.

4.1 Introduction

The medical research studies can be highly benefited by multidimensional visualization
and multivariate prediction tools. Nowadays, large amounts of medical data (e.g., clinical
information and treatment outcomes) have been stored in structured electronic health records
(EHRs). These EHRs can represent a valuable source of information in an attempt to extract
insights that can shape healthcare methods (GOLDSTEIN et al., 2017). A common way of
using these data is by applying the predictive power of attributes to evaluate probable outcomes
supporting the decision-making process of the healthcare team.

Regression analysis is a widely used method in scenarios of health records analysis
(DREISEITL; OHNO-MACHADO, 2002; GOLDSTEIN et al., 2017), where relevant attributes
could potentially be used to build models for predicting outcomes very accurately. However,
regression models generally do not deal well with multidimensional data, mainly because of the
multicollinearity problem (MANLY; ALBERTO, 2016), where strongly correlated attributes can
destabilize the model. Thus, an FS step is vital in the construction of a proper statistical model
based on LR.

Another essential aspect of the regression analysis is the evaluation of the model’s
performance. Among many consolidated goodness-of-fit measures, a popular way to evaluate
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LR efficacy is through receiver-operating characteristic (ROC) curves (METZ, 1978; HANLEY;
MCNEIL, 1982), where the relationship between specificity and sensitivity is exposed among
the range of cut-off values (GREINER; PFEIFFER; SMITH, 2000). However, this is efficient to
evaluate binary LR, where the goal is to determine the occurrence or not of an event. For the
multinomial LR, other solutions to evaluate the model’s performance should be used, such as
confusion matrices. We have developed a novel variant of the RadViz visualization technique
to provide an overview of the model classification showing how the multinomial LR might be
hitting or missing.

We describe in this chapter a comprehensive approach for LR models exploration, which
includes: (i) feature selection, (ii) regression model construction, (iii) evaluating binary and
multinomial regression, and (iv) constructing a panorama for queries over the model. The input
of the approach is the data set containing the target attribute with the desired outcome labels. We
employ a previously developed tool to provide an overview of attributes for the analyst to perform
FS and evaluate combinations of attributes and their effect on target attributes. Optionally the
analyst can create a query tool based on the generated regression models.

4.2 Interactive Logistic Regression Model Builder

In this section, we describe the general methodology of the proposed approach. Firstly,
the analyst performs an FS related to some chosen label set and then evaluates its performance as
an LR model through ROC curves or RadViz visualization. The analyst is free to evaluate various
combinations of subsets to define the model more accurately. After the analyst already knows or
has gathered a considerable amount of information, he or she can create a query panorama based
on a definitive LR model. The generated overview for queries can be accessed later without
the need to perform the previous steps. When consulting some profile in the tool, the analyst
should provide the associated values of the prior selected attributes, and the tool will show the
probabilities of the outcomes as well as the cases most correlated with the queried one. Finally,
it is also possible to visualize the evolution of outcomes through streamgraphs by submitting
updated attributes values, assuming the existence of attributes that vary dynamically. Figure 18
shows the pipeline of the approach.

4.2.1 Interactive Feature Selection

After loading the data set, the first step in this approach is to perform an FS. As mentioned
earlier, the LR models are sensitive to strongly correlated independent attributes. Thus, a good
FS is required, which aims not only to select relevant attributes but also to select attributes that
complement the selected subset in the potential of describing the target one.

Unlike automatic FS algorithms, an interactive selection allows analysts to use their prior
knowledge as a criterion for choice. For example, in the trauma EHRs, several attributes correlate
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Figure 18 – The pipeline of the approach for creating and evaluating an LR model. Initially, the analyst
can create regression-based models and evaluate them interactively. After gaining more
knowledge, the analyst can generate a definitive model for later use within a tool for quick
queries.

Source: Elaborated by the author.

with the patient’s final condition, especially the trauma scores. One of the well-known scores
is the Revised Trauma Score (RTS) (CHAMPION et al., 1989), which is a combination of the
attributes: Glasgow coma scale (GCS), systolic blood pressure (SBP) and respiratory rate (RR).
Once RTS is selected, the other three attributes should be preferentially not selected, or vice
versa. Hence, user selection typically carries some tacit knowledge undetectable by automatic
algorithms.

To accomplish this task, we use the Attribute-RadViz approach, described in chapter
3. Once the correlations between attributes are exposed to each label, users can analyze them
individually and select their relevant attributes. This allows the creation of binary LR models
fast and easily for any label inside the target attribute.

4.2.2 Logistic Regression

LR is widely used when one wants to predict the probability of some outcome that is
regularly binary. It is a robust discriminative method that explicitly provides the user probabilities
of classification (SHEVADE; KEERTHI, 2003). The model is generated from observations
where one or more independent attributes (discrete or continuous) determine an outcome. In our
approach, we employ both classical binary LR and its generalized alternative, the multinomial
LR.

Binary LR is a special type of regression where a dependent attribute, which represents a
binary outcome, is related to a set of independent attributes, also known as explanatory variables.
Binary LR differs from other regression types in that it does not attempt to predict a value through
the linear combination of the independent attributes. It tries to predict the odds and probabilities
of a given event to occur or not occur.
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For a given number of explanatory attributes, y1,y2, ...,ym, the probability of the response
variable occurs or not is a function p of the given attributes. The prediction function is defined
by the equation below:

p = σ(w0 +w1y1 +w2y2 + ...+wmym), (4.1)

where w0,w1, ...,wn are the coefficients (or weights) associated with different explanatory at-
tributes, and σ(z) is the logistic function which maps the prediction into a probability value
between 0 and 1. The logistic function is usually calculated by the sigmoid function, defined
below:

σ(z) =
1

1+ e(−z)
. (4.2)

We apply binary LR to generate predictive models related to isolated label values present
in the dependent (target) attribute chosen by the user. However, often the user wants to examine
the probability scenario between the various label values of the target attribute into unified charts.
For this purpose, we also employ the multinomial LR.

The solution we adopt to solve the multinomial regression splits the problem in a set of
k−1 binary logistic models, being k the number of label values inside the dependent variable.
For each sub-problem, we find the coefficients of the model and apply in the logistic function,
which is now the softmax function:

σ(z) j =
ez j

∑
k
1 ezk

. (4.3)

Hence, we can provide a complete scenario of outcomes probabilities to the user, both
concerning the odds of isolated labels occur or not as well as multi-label situations.

4.2.3 Logistic Regression Evaluation

We provide visual interactive means to evaluate the generated LR models. The first
one is the well-known ROC curve, which is generated as soon as the LR model is ready.
The second method of evaluation is through a visual strategy, in which we adapt, again, the
RadViz visualization technique. In the following, we describe details of implementation and the
description of the interactive interface of each of the two tools.

ROC curves are widely adopted for performance analysis in classifiers (GONÇALVES et

al., 2014). It describes the relationship between the specificity (true negative rate) and sensibility
(true positive rate) beyond the scope of a threshold assumed by some diagnostic test. A handy
measure extracted from the overall performance of the classifier examined in the ROC curve
is the area under the curve (AUC), and it can be interpreted as the average value of sensitivity
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Figure 19 – Distinctive alternatives evaluating the same regression model generated by the approach. In
this case, the identification of acoustic data origin from four different regions. (a) ROC curves
identify the individual efficiency of the binary LR as well as the ideal cut-off values for each
model. (b) The LoRRViz displays by the proximity for DAs how each item is classified by
the multinomial model, giving a broader view of how the model might be missing.

Source: Elaborated by the author.

among all possible specificity values (ZHOU; MCCLISH, 2011.). In our approach, along any
point in the path of the ROC curve, users can consult the sensitivity, specificity, AUC, and cutoff
values. Various ROC curves can be plotted simultaneously to compare the generated models, as
shown in Figure 19a. Also, the user can consult hidden information of each generated model
interacting with the ROC view legends, as the overall model fit values (e.g., p-value), as well as
the generated regression equation.

ROC curves are excellent for evaluating the performance of a classifier when the response
is binary. Nevertheless, when the scenario includes a multi-label condition, that is, users want to
hold more than two categories in the model; a multinomial LR modeling should be applied. For
these cases, we can analogously evaluate the models separately by several ROC curves. However,
some details of the model evaluation remain unclear, such as how the models are missing the
mark.

We have developed Logistic Regression Radial Visualization (LoRRViz) to reveal the
efficiency of the multinomial regression model visually (see Figure 19b). Each DA represents a
label value and exerts attraction force according to the probability value for each item defined
by the LR model. If an item is placed very near some label-DA, it implies that the probability
value of this item regarding that label is high (and low regarding the other labels). In contrast, if
an item is placed equidistantly between two labels, it may mean that the probability defined by
the model is the same for both labels represented by the DAs. Interactively, the user can further
investigate these cases of inconsistent probabilities generated by the model.

In practice, the entire matrix of n items versus k labels is assembled through the Equation
4.3 (or Equation 4.2 if only one label is chosen), resulting in a n x k matrix. The interpretation
is that each cell holds the probability that item xi belongs to the label l j. Finally, the RadViz
mapping is applied (Equation 3.4), where the interactive resources described earlier for the
RadViz such as the force scheme improvement, DAs management, and positioning distortion
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Figure 20 – The query tool interface composed of four panels. (a) Pie chart presenting the probabilities
calculated by the regression model for the consulted profile. (b) The historic containing
submitted profile states allowing the user to perform comparisons. (c) Cases most correlated
with the last consulted profile. (d) Streamgraph containing all submitted states exposing trends
in the evolution of probabilities.

Source: Elaborated by the author.

adjustment are also available in LoRRViz.

Figure 19 shows the evaluation of a multinomial regression model generated from an
acoustic data set. The data has been collected in four different regions; their attributes have been
extracted, and then we have created an LR model able to identify the origin of the samples by our
approach. The color represents the actual origin, and the position represents the way in which
the model classified the samples. We can note that, for the “Ilheus” and “Laje” categories, the
model classified with quite a significant accuracy. However, in the “Costa Rica 1” and “Costa
Rica 2” categories, we notice a considerable mix of samples, and it is up to the user to investigate
whether the model needs adjustments focusing on these categories (such as new selection of
attributes), or whether the samples are just intrinsically indiscernible regarding the available
attributes.

4.2.4 A Regression Query Tool

Our approach allows the generation of regression models according to the user’s interest
in predicting some single or multiple events. Also, we include resources to enable model
evaluation and reveal potential adjustment demands. However, aiming for an all-around solution,
we have developed a query tool to take advantage of the previously generated learned data for
later queries related to any desired profile.

The tool usage is quite simple; the user restores previously saved regression data and
then inserts the information about some profile that he or she wants to query; hence, the query
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Figure 21 – Viewing estimated results by the multinomial LR model with the test partition (half of all
samples) of the Corel data set. In addition to individual profile queries, users can query entire
data sets using CSV files, where the tool automatically catches the attributes associated with
the models by the performed FS tasks. The visualization can be rendered (a) without the label
information or (b) applying the labels (if available) to encode the colors of mapped elements.

(a) (b)

Source: Elaborated by the author.

tool will return the probabilities of this profile belonging to any of the labels. He or she can also
submit several states of this profile; in this way, the tool will expose evolution trend patterns. For
example, in the case of a patient who varies his clinical condition over time, the user can submit
his or her states and observe the variation of probabilities through the outcome trends exposed
by the model.

Figure 20 shows the query tool interface. There are four panels per generated model.
The first one (see Figure 20a) presents a pie chart with the probability scenario of the current
consulted profile. The second (see Figure 20b) presents the history of submitted states. The
next panel (see Figure 20c) shows the most correlated cases with the last consulted profile. To
make this panel available, the user must, in addition to opening the regression model file, to load
the original data set. Finally, the last panel (see Figure 20d) shows, through a streamgraph, the
evolution of the probabilities according to the profile changes submitted by the user. This panel
is useful when the analyzed object has attributes that change dynamically over time and reveals
trends in the probability scenario.

The tool also allows multiple models queries. For example, in a trauma data set, we can
find more than one target attribute in which we would like to create prediction models, such
as the “condition of discharge” and “cause of death” attributes. Hence, we can imagine three
scenarios that can be queried simultaneously: “probability of survival”, “condition of discharge
(in case of survival)”, and “cause of death (in case of obit)”. Thus, the user can set up a more
comprehensive odds scenario provided by the regression models generated from the same data
set.

There is also the possibility of querying not only individual profiles but entire lists of
items. As soon as the data is ready, the tool scans for the selected explanatory attributes of the
built regression models, and them an overview of the classification is displayed through the
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Figure 22 – Snapshot of the main interface of our prototype. (a) The attribute view control panel. (b)
Visualization of attributes through RadViz, which constructs a cognitive map showing the
relevant attributes for each label value of the data set. (c) Panel for evaluation and review
mechanisms of generated regression models. (d) Control panel for evaluation settings.

Source: Elaborated by the author.

LoRRViz. Optionally the user can encode the color of the mapped elements based on some
chosen attribute (usually the one containing the labels); this is useful for visualizing the efficiency
of classification generated over supervised data (see Figure 21).

4.2.5 Prototype Implementation

We have developed the approach as a web-based tool predominantly encoded in Javascript
language. Also, we use the D3js library to handle visual elements and HTML with CSS for the
construction of the front-end available to the user. The regression module is also encoded in
Javascript, and it is originally obtained from The Interactive Statistical Pages (<http://statpages.
info/>). The prototype and its full source code are made freely available at <https://github.com/
erasmoartur/lrxptool>.

Figure 22 presents the main interface of the prototype. On the left side, a control panel
(see Figure 22a) allows the user to open the data set, define the target attribute, and change visual
attributes panorama settings. The right side contemplates the evaluation and check mechanisms
for generated regression models (see Figure 22c), employing either LoRRViz or ROC curves.
The user selects the evaluation mode from the right control panel (see Figure 22d), as well as the
settings for that view. In the following section, we present a step-by-step procedure applying
our prototype to create and explore LR models. The experiment sequence follows the pipeline
shown in Figure 18, focusing on a practical process over a real data set.

http://statpages.info/
http://statpages.info/
https://github.com/erasmoartur/lrxptool
https://github.com/erasmoartur/lrxptool
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Figure 23 – A comparison of the performance between well-known trauma scores and generated regression
models with the training data set. Score 4 was the most accurate for this data, where its
concept is derived from the traditional TRISS, but it includes the values of the two worst
injury segments instead of the ISS.

Source: Elaborated by the author.

4.3 Usage Scenarios

We present three usage scenarios investigating EHR data sets to reach different purposes.
In the first two scenarios, we employ the same trauma records data set previously presented (see
Subsection 3.6.1). Firstly, we load the data set to explore combinations of relevant attributes to
generate LR models and further confront these models with well-known trauma scores. Then we
show how to take advantage of the generated models to build a query tool and also how to apply
it to gain insights into the presented predictions. In the last scenario, we report a brief analysis
and the construction of LR models for a data set referring to the novel COVID-19 disease.

4.3.1 Scenario One: Predicting Mortality with Trauma Scores

As previously explained, trauma scores are mathematical and statistical models that try to
characterize and document traumatic injuries levels. It can help in predicting the outcome of the
patient and aid in the triage of the trauma patients. We compare the effectiveness of well-known
trauma scores related to the patient risk of morbidity. The scores are TRISS, RTS, and Injury
Severity Score (ISS); then we create and test variations of these scores to check and increase the
prediction efficiency.

Our test/training ratio corresponds to 0.2; the metric for comparison is the AUC; which
is automatically displayed by the approach as soon as the model are created. Our intention here
is not to develop a new improved score; we would like to show the usefulness of the approach
for analysts to investigate and test hypothesis creating their own regression-based models in a
practical and rapid manner.

Figure 23 shows the ROC curves generated by applying the scores to predict mortality.
The ROC curves of RTS, ISS, and TRISS scores are rendered directly as their values are present
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Figure 24 – Attribute selection for three different contexts: survival, final condition, and cause of death
odds; For this purpose, two different target attributes representing outcomes are selected: final
condition and cause of death. (a) Selected attributes for the target attribute “final condition”:
RTS, Age, ISS, AIS-head_1, surgery, previous_pathology, and complication. (b) Selected
attributes for the target attribute “death cause”: AIS-head_1, complication, lengh_of_stay,
AIS-abdomen, AIS-thorax, AIS-external_1, SBP, and RTS.

(a) (b)

Source: Elaborated by the author.

in the source data set. Then, we have generated scores 3, 4, and 5. The score 3 employs the
TRISS concept, which is essentially an LR involving RTS, ISS, and age; the efficiency increase
(AUC equal to 0.977 against 0.968 of the original TRISS) is due to the new regression training,
which adjusts its coefficients according to the local reality of the data under analysis. Domingues
et al. (2017) discuss the applicability of TRISS in different contexts explaining this effect.

Scores 4 and 5 are hypothesis tests that we raised, where we may improve the TRISS
score by changing attributes of its original equation, which is an LR with RTS, ISS, and age, by
their primitive ones. In score 4, we replaced the ISS values – which represent the sum of squares
of the abbreviated injury scale (AIS) values of the three segments with the most severe injuries –
by the two most severe injury segments. Hence, the new LR model contains RTS, AIS-1, AIS-2,
and age. Therefore, in this data set, the efficiency of the score has improved (with an AUC value
of 0.979). The same idea has been extended to Score 5, where instead of RTS – which is the
weighted sum of GCS, SBP, and RR – we insert those values directly to the regression model.
However, no improvement noted in this score compared to the previous ones (AUC value of
0.978).

This scenario has shown how the agile creation and evaluation of regression models
enable analysts to raise and test hypotheses about data efficiently. Additionally, they can model
scores for prediction of events of interest encoded into categorical or numerical attributes in their
own data sets.

4.3.2 Scenario Two: Building a Prediction Interface for Trauma Events

In this scenario, we present how to take advantage of the knowledge gained from the
performed tests and then build a regression model for later queries. We follow each step described
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Figure 25 – Generating and testing binary LR models. Before creating the definitive model for further
queries, we have evaluated the performance of the highest correlated attributes for each label
through ROC curves. (a) Selected attributes for the labels Sepsis, TBI, and Hemorrhagic
shock. (b) Logistic model created after selecting attributes and clicking over the desired DA.
(c) The individual model evaluation through ROC curves. (d) Evaluating the model by the
LoRRViz.

Source: Elaborated by the author.

in Figure 18, showing how the resources available in the approach allow users to create a query
mechanism quickly and effectively.

∙ Feature Selection Step. In the FS step, we try to choose the most relevant attributes for
each label that we would like to predict. Thus, we must interact with the DAs (hovering
the pointer) to discover correlated attributes and then generate its prediction model. We
want to construct a scenario that returns odds of survival, discharge condition (in case of
survival), and cause of death (in case of death). Figure 24 shows the attributes selected
for each of these contexts. We have picked the most correlated attributes for each label,
for example, toward the “hemorrhagic shock” label, the highest correlated ones are the
“AIS-abdomen”, “AIS-thorax”, and “blood pressure”.

∙ Evaluating the Logistic Regression. Selecting attributes and choosing a target label (by
clicking on the DA) generates an LR model. Then its performance as a label predictor
under the already loaded data is immediately presented through ROC curves on the right
side of the prototype. Figure 25c shows ROC curves plotted by the generated models for
prediction of labels “Sepsis”, “TBI”, and “Hemorrhagic shock”. Since we want a scenario
with multinomial regression models, we can use the LoRRViz to evaluate the generated
models. To do so, in the right control panel, we chose LoRRViz. Figure 25d shows the
classification of the models generated so far, including its inconsistencies; the analyst can
investigate such cases and proceed, if necessary, with adjustments in the model.

∙ Multinomial Logistic Regression Set Up. Once we gain a better understanding of the
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Figure 26 – Step by step illustration when generating the definitive model for this scenario. (a) After
clicking in “Panorama”, the prototype prompts for the number of models/graphs to be created
(in this case three), and their respective names. (b) Then, we enter the labels and attributes for
each model. (c) Finally, the prototype returns the file with regression learning.

Source: Elaborated by the author.

data set, and we test the predictive power of the attribute’s subsets related to the labels in
regression models, we can then generate a definitive and generic model. This model should
allow future queries without the need to perform again the steps described previously.

Inside the prototype, we click on the button “panorama” and it requests the number of
graphs we want and their titles, as shown in Figure 26a. Users can choose more than
one graph to make the tool able to display the probabilities of more than one outcome
simultaneously, creating a more comprehensive overview. For example, in our case, we
chose three graphs; the first presenting the probabilities of survival versus death; the
second presenting the most probable discharge condition in case of survival; and the third
presenting the most likely cause of death if the patient does not survive.

Then, we determine which labels and attributes will be part of each model (see Figure
26b). When only one label is chosen for some model, it is assumed that the user wants
the binary LR scenario, where the odds are given for the label’s chance to occur or not.
Here we choose the label death, that is death versus all, consequently death versus survival.
The selected attributes are “RTS”, “Age”, and “ISS”. We click next to proceed to the
second graph set up. Then we exclude the death label (only survival labels left) and choose
the following labels that represent a discharge condition: “Good recovery”, “Moderate
limitations”, and “Severe Limitations.” The attributes selected here are “RTS”, “Age”,
“ISS”, “AIS-head_1”, “surgery”, “previous_pathology”, and “complication”.

For the last graph, we change the target attribute to “cause death”, and we chose the
following labels: “TBI”, “Hemorrhagic shock”, “Sepsis”, and “AKI”. Then, the attributes
“AIS-head_1”, “complication”, “length_of_stay”, “AIS-abdomen”, “AIS-thorax”, “AIS-
external_1”, “SBP”, and “RTS” are selected. Finally, we click next to proceed with the
creation of the model and download of the file containing the regression learning data (see
Figure 26c).

∙ Interacting with the Logistic Regression Query Tool. After the generation of the mod-
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Figure 27 – The query tool loaded with the previously described regression learning data. (a) The graphs
are showing the calculated odds for the queried profile. (b) The submitted profiles (generally
over time) for analysis of outcomes trends. (c) List containing the most similar cases to the last
submitted profile. (d) The streamgraphs are displaying trends related to the states submitted
in (b).

Source: Elaborated by the author.

els, we can perform queries to check the odds of the desired profiles. Inside the tool, we put
the pointer on the top bar to make the input menu appear. Inside it, we insert the previously
downloaded learning data and, optionally, we can add the original data so that the tool
is also able to show the most correlated cases with the queried profile, this is useful for
the user to verify if the results indicated by the models are similar to the cases inside the
original data set.

Since we have created three models, when we restore the file containing the learning data,
the tool requests values of the previously selected attributes of these models to set up
the profile to be queried. As we also inserted the original data set, the average values of
each attribute are automatically filled inside each input box. We then simulate a situation
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witch a patient is admitted in the hospital in a particular condition, but his or her attributes
change dynamically over time, so we submitted three more condition states of the patient.
Figure 27a shows the odds for the last queried state. Figure 27b shows all submitted sates,
where we simulate that the patient underwent a surgical procedure, changed the state
of complication, and naturally spend more few weeks hospitalized. In Figure 27c, a list
presents the cases most correlated with the last submitted state. Finally, in Figure 27d, we
see the streamgraph of the submitted states for each model. In the third streamgraph, it is
possible to observe an increase in the chances of Sepsis, and it may represent a tendency
for the patient to suffer from this condition, which could serve as support to shape the
decisions of the healthcare team.

This scenario has shown that users can apply the tool to jointly identify outcomes as well
as trends in the evolution of the characteristics of the object of interest. This feature assists the
analyst not only in predicting current status but also in supporting complex decision-making
situations. This aspect is difficult to find with the previous tools designed to explore regression
models.

4.3.3 Scenario Three: Investigating the Novel COVID-19 Disease

A recent outbreak of a virus, initially identified in the region of Wuhan, China, at the
end of 2019, has spread and generated turbulence in the global community never seen before
in modern human history. The World Health Organization (WHO) has officially named the
virus as SARS-CoV-2, which means severe acute respiratory syndrome coronavirus 2. The
infection caused by the virus has been named as coronavirus disease 2019 (COVID-19) also by
the WHO (HE; DENG; LI, 2020). Since the spread outside Chinese borders, the global scientific
community has been dedicating efforts to understand the virus and the infection that it causes.

In this scenario, we employed one of the freely available COVID-19 data sets to investi-
gate the correlations of attributes and generate insights about the data. The focus is to understand
how the onset symptoms, patient profile information, and chronic disease historic relate to the
outcome of the treatment. Then, we built an LR model for the prediction of severe cases, and we
compare results with the literature that outlines statistics of different patient profiles.

The data set is available from Kaggle1 and obtained on March 31, 2020. It contains more
than 33,000 reported cases. However, given our objective in this scenario, we have filtered out
cases that do not specify age and symptoms. It reduced the data set to 1,586 occurrences, of
which 56 cases resulted in death, and the others were either still active or cured until the date of
download. We also decompose the symptoms attribute, which describes the set of symptoms for
each report, into individual attributes for each of the most frequent symptoms.

1 https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
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Figure 28 – Investigating the COVID-19 data set. (a) Attribute-RadViz shows correlations to the outcome
labels; in addition, users can consult the dynamic rank. (b) Three binary LR models have
been created; the blue one with only the “age” as an explainable attribute, the red one adds
the set of attributes related to chronic diseases, and the yellow one includes all the previous
ones plus the set of attributes related to the symptoms.

(a) Initial attribute view (b) ROC curves

Source: Elaborated by the author.

Initially, we want to understand the correlations of attributes in relation to the results of
treatments; hence, we chose the “outcome” attribute as the target variable to start the tool. Figure
28a shows the initial rendering. We can quickly observe a group of attributes (the red ones) with
potential to present high correlations with cases of death.

Investigating further, we realize our first relevant observation regarding this data set; the
attributes that represent the history of chronic diseases have a significant correlation with cases
of death, such as hypertension with a 0.38 estimated coefficient. On the other hand, the attributes
that represent the initial symptoms of the disease have a medium-to-low or null correlation, even
the symptoms considered more severe, such as shortness of breath, which has a 0.19 estimated
coefficient.

Given the findings about the correlations of attributes, we have generated three LR
models. The first model predicts death with only the “age” information. The second one contains
the attributes: “Chronic disease binary”, “Hypertension”, “Diabetes”, “Coronary heart disease”,
and “age”. The last model includes all the attributes of the previous one plus the attributes
that represent the most severe (for this data set) symptoms of the disease, which are: “Gasp”,
“Expectoration”, “Shortness of breath”, “Fatigue”, and “Chest distress”. Figure 28b shows the
ROC curves generated by the models, wherewith only age information, the model has shown
good predictive potential. The inclusion of attributes related to chronic diseases has shown a
significant increase in the prediction capacity; however, the further inclusion of the symptoms
attributes produces only a modest increase in the efficiency of the model for this data set. It
emphasizes our first observation, in which the attributes related to the history of chronic diseases
are relevant and have significant predictive power in comparison with attributes that represent
symptoms of the disease.

Although most of the correlations found correspond to the patient’s history and present
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Table 4 – The estimated mortality rate caused by the COVID-19 disease distributed by age groups. The
first record comprises the values determined by the analysis in (SURVEILLANCES, 2020). In
the following, we have estimated rates simulating the absence and presence of comorbidities
and severe symptoms.

Age groups
rate, %

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 ≥ 80
Surveillances (2020) – 0.2 0.2 0.2 0.4 1.3 3.6 8.0 14.8
Our LR model – 0.1 0.1 0.3 0.6 1.3 2.9 6.3 13.1
Hypertension=1 – 0.1 0.1 0.3 0.8 1.8 4.2 9.5 19.8
Diabetes=1 0.2 0.5 1.1 2.3 5.1 10.7 21.1 37.3 57.0
Shortness of breath=1 0.1 0.1 0.3 0.7 1.5 3.3 7.2 14.8 28.1
Cough=1 0.1 0.1 0.3 0.6 1.4 3.0 6.6 13.6 26.1
Chest Distress=1 0.1 0.2 0.4 0.9 1.9 4.3 9.0 18.2 33.1

Source: Research data.

state, other significant correlations are also exposed by the tool such as “city”, “province”, and
extra attributes related to the place of treatment. Factors as the local demographic characteristics,
climatic condition, and medical care quality may generate some correlation of death to the
geo-location of the patient (WANG et al., 2020). In general, it is up to the analyst to investigate
the validity of these findings. In the context of this scenario, the data set has been initially
collected at the peak of the pandemic event in China, so most of the death cases come from
the Wuhan region, but the data set includes many other active cases from different areas and
countries, such as Japan and Italy. This condition generates a false correlation of death with the
patient’s geo-location. Circumstances where hidden confounding attributes (such as the length
of contagion of a region) create spurious correlations often can be detected by analysts, which
highlights the importance of tools that insert the human into the process.

Inside the query tool, after building the LR model, we can observe the prediction of
several profiles according to what the model learned from the data set. For comparison purposes,
we attached results from a reference work in the analysis of reported cases collected in China
on February 11, 2020 and presented by Surveillances (2020). Table 4 shows the acquired rates
by age group. The rates exposed by the annexed work are very similar to those delivered by
the LR model when ignoring comorbidities and severe symptoms. We also attached results by
simulating the presence of two of the most frequent chronic diseases in the data set, as well as by
simulating the presence of three different symptoms. All data we worked in this scenario, as well
as the learning files, are freely available on GitHub 2. If the reader is interested in simulating
other situations, he or she can download the tool and load it on any web browser (we recommend
Chrome or Firefox); there is no need for any installation process.

Much desired information is unavailable in the current freely available COVID-19 data
sets; general data about the patient (such as smoke habits) and data about the provided treatment
(such as the adopted drug administration) could substantially expand the investigation. However,

2 https://github.com/erasmoartur/lrxptool
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this scenario has shown that the approach is already capable of generating relevant insights and
supporting possible decision-making tasks based on predictions using the resulting FS.

4.4 Final Remarks
In this chapter, we have presented an approach coupled with its portable and straight-

forward prototype for generating, applying , and evaluating regression models. The goal is to
allow expert and non-expert users to create LR models with their data sets and make use of
them in a unified tool. The approach works by initially exposing a panorama of correlations
between attributes and a target events (usually outcomes), thus allowing users to choose good
attributes for creating regression models. The approach also disposes of methods to visually
evaluate the generated models; hence, the users can gain insights about the data and proceed
with the production of the final model for later use.

Among the contributions of our work in this type of prediction, we highlight the devel-
opment of a freely available web-based prototype for the transparent exploration of regression
models. Also, report on the development of LoRRViz, an adapted RadViz tool to serve as a visual
evaluation approach for multinomial LR models. It comes as an alternative to the classical ROC
curves, or even to confusion matrices, since it generates a visual overview of how the model is
classifying items.

At present, some limitations of our work still stand. The approach deals only with
numerical attributes as independent attributes. Given the current high availability of categorical
data, it would be interesting to make them available so that the user can perform regressions
and consult the impact of these attributes on predictions. Another limitation is about the target
attribute (dependent variable); it must encode meaningful states of the data set. Inadequately
labeling may destabilize and produce imprecision to the generated models. Finally, the approach
has great scalability potential on the number of attributes, since such attributes are plotted
in a point-based visualization during the initial exploration phase; however, our prototype is
implemented in Javascript with the D3js library, which does not imply the best performance
option. Yet, in our tests, we were able to interactively generate models with hundreds of attributes
with items in the ten thousand mark.
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CHAPTER

5
CONCLUSIONS

In this Thesis, we have introduced interactive approaches to the analysis and selection of
attributes as well as to the prediction of target ones. Such tasks are important since they allow
analysts to explore data sets from the perspective of attributes and, furthermore, key attributes
(often categorical ones) that encode relevant information about the data. Also, since these target
attributes can be frequent in current data sets, a single data set can generate many data viewpoints.
Hence, our proposed approaches hold attributes as first-order elements. The analysis core lies
in the assembly of a correlation matrix, which is based on relationships of attributes and labels
extracted from the target ones.

In chapter 3, we have presented a visual approach for attribute analysis and selection,
including Attribute-RadViz, a correlation-based visualization built over the classic RadViz. The
uniqueness of this work lies in the condensed design in which the relationships of the attributes
and other data entities are presented, including the correlations with the potential data labels
extracted from categorical attributes. The analyst can interactively conduct explorations from
the projection of attributes combined with a set of interactions designed to enhance the RadViz
technique. We also have developed a dual-view model to increase knowledge gain and provide
an immediate evaluation of user-selected attributes. We have demonstrated through two case
studies the performance of the approach in FS tasks and illustrated how the approach can lead to
pertinent observations in the data set.

Taking advantage of the Attribute-RadViz to filter out redundant as well as irrelevant
attributes, we have developed a second approach, presented in chapter 4, for creating, evaluating,
and applying LR models. In the LR modeling, the excess of attributes increases the chances of
de-stabilization of the models, mainly due to the problem of multicollinearity. LR models also
tend to face overfitting problems when combined with multidimensional data. In our approach,
users can explore the many possibilities of creating LR models guided by Attribute-RadViz
and evaluate those models for later use. We have illustrated through three usage scenarios how
analysts can gain insights about their data using the generated prediction models inside the
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available implementation of the approach as a web-based tool.

5.1 Contributions
In summary, the main contributions of this Thesis are:

∙ An attribute visual analysis and selection approach and its fully working web-based
prototype coupled with two case studies to validate and verify its effectiveness; It is shown
that visual analysis can lead to more adequate matching between chosen attributes and
actual patterns in the data effectively;

∙ Attribute-RadViz, an adaptation of the traditional RadViz to make it able to map attributes
under the influence of labels; We have demonstrated how some of the original drawbacks
of the standard RadViz can be overcome and also its applicability in comparing attributes
rather than individual data items;

∙ An approach to explore LR models thought visual attribute analysis and its fully working
web-based prototype coupled with three usage scenarios with real-world contexts showing
its effectiveness;

∙ The LoRRViz, another RadViz adaptation that works jointly with a prediction model
making it able to map data items according to their probability of belonging to each label
rendered as DAs. We have shown its application as a visual evaluation mechanism of
multinomial LR;

∙ Also, we have developed visual and interactive resources to enhance the traditional RadViz,
such as dimensional arcs, positioning distortions control mechanisms, and its integration
with a force scheme model.

5.2 Future Work
Three main aspects shape our intentions for future research; issues of scalability, support

for a larger diversity of data types, and accuracy in the correlation estimates between mixed data.
In the following, we list some topics that can delineate a further investigation:

∙ The FS tasks, despite allowing multi-selection, can be enhanced by the aid of automatic FS
algorithms since users tend to select relevant subsets right at the beginning of the process.
Automated methods can participate by suggesting selections or even complementing the
FS made by the users to the subset size desired by them;

∙ Attribute-RadViz is capable of handling numerical and categorical data. Textual data in
the TF–IDF format can also be manipulated in the most recent versions; however, there
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is a lack of particular functions for this type of data such as topic detection through the
observed clusters showing strongly correlated attributes;

∙ The correlation estimation between mixed data remains a challenge — the two models
adopted in this Thesis try to determine the appropriate correlations in these mixed data.
However, the investigation by more precise methods and how the proportion of each data
type affects these estimates is still an open problem.
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APPENDIX

A
RELEVANT PSEUDOCODES

In the following, we present the pseudocodes of algorithms described in this project.
Algorithm 1 describes the construction of the correlation matrix between attributes and presence
vectors that represent the data labels. Algorithm 2 illustrates the greedy method used to order the
attributes in the form of DAs in the item view. Lastly, Algorithm 3 presents the ordering method
of labels represented by DAs in Attribute-RadViz.

Algorithm 1 – Attribute vs label correlation matrix building
1: procedure BUILDMATRIX(D,L, t) . Data matrix, attribute list, target

attribute index
2: T . Target attribute
3: U . Unique label values
4: B . Binary presence vectors
5: CoM . The correlation matrix
6: D← trasnpose(D) . Transposes to handle attributes
7: T ← D.splice(t,1) . Splits the target attribute from the rest
8: U ← uniques(T ) . Collecting unique values inside the target
9: for i← 0,U.length do

10: for j← 0,T.length do . Building the binary presence vectors
11: if Tj =Ui then
12: Bi j← 1
13: else
14: Bi j← 0

15: B← transpose(B) . Also transposing
16: for i← 0,D.length do
17: for j← 0,B.length do . Building the correlation matrix
18: CoMi j← getCorrelation(Di,Bi)

19: return CoM
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Algorithm 2 – Greedy DA ordering for the item view
1: procedure SORTATTRIBUTEDAS(D,L) . Selected attributes data, attribute

list
2: L′ . New ordered attribute list
3: CoM . Correlation matrix of the selected attributes
4: for i← 0,L.length do . Building the correlation matrix
5: for j← 0, i do
6: CoMi j← PersonCorrelation(Di,D j)

7: L′0← LCoM.indexO f (max(CoM)) . Highest correlation as first element
8: for i← 1,L.length do . For each remaining label
9: mMax,nMax,maxValue← 0

10: for n← 0,L.length do . Search the next highest correlation
11: for m← 0,n do . among the included ones
12: a← Ln ∈ L′? . Ln is already placed?
13: b← Lm ∈ L′? . Lm is already placed?
14: if (maxValue < abs(CoMnm))&(a⊕b) then
15: maxValue = abs(CoMnm)
16: mMax = m
17: nMax = n
18: if CoMmMax,nMax > 0 then . Correlation direction test
19: L′← placeClose(L(mMax),L(nMax)) . Place them close
20: else
21: L′← placeFar(L(mMax),L(nMAx)) . Place them far

22: return L′
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Algorithm 3 – Greedy DA ordering for the attribute view
1: procedure SORTLABELDAS(D,L, t) . Data matrix, label list, and target

attribute index
2: C . The data matrix split by the categories
3: I . Representative item list
4: CoM . Correlation matrix of the representative items
5: L′ . New ordered label list
6: for i← 0,D.length do . Spliting data by categories
7: CL.indexO f (Dit).add(Di) . Splitting data by category

8: for i← 0,L.length do . Getting the medoid of each category
9: Ii← getMedoid(Ci)

10: for i← 0,L.length do . Building the correlation matrix
11: for j← 0, i do
12: CoMi j← PersonCorrelation(Ii, I j)

13: L′0← LCoM.indexO f (max(CoM)) . Highest correlation as first element
14: for i← 1,L.length do . For each remaining label
15: mMax,nMax,maxValue← 0
16: for n← 0,L.length do . Search the next highest correlation
17: for m← 0,n do . among the included ones
18: a← Ln ∈ L′? . Ln is already placed?
19: b← Lm ∈ L′? . Lm is already placed?
20: if (maxValue < abs(CoMnm))&(a⊕b) then
21: maxValue = abs(CoMnm)
22: mMax = m
23: nMax = n
24: if CoMmMax,nMax > 0 then . Correlation direction test
25: L′← placeClose(L(mMax),L(nMax)) . Place them close
26: else
27: L′← placeFar(L(mMax),L(nMAx)) . Place them far

28: return L′
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