• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2023.tde-30082023-150314
Documento
Autor
Nombre completo
Hugo Leonardo França
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2023
Director
Tribunal
Cuminato, José Alberto (Presidente)
Castelo Filho, Antonio
Correa, Maicon Ribeiro
Pereira, Anselmo Soeiro
Título en inglés
Numerical simulation of complex fluid flows with moving interfaces
Palabras clave en inglés
Complex fluids
Free surface flows
Numerical solution
Resumen en inglés
Flows of different types of non-Newtonian fluids are numerically investigated with a focus on complex problems, as for instance confined flows in geometries with singularities and moving interface flows with surface tension. For confined geometries, the novel natural stress formulation is used to represent the polymeric stress tensor in viscoelastic flows, and we show that greater accuracy is obtained near geometrical singularities in comparison to the traditional Cartesian formulation. For flows with a moving interface, we propose and validate a new algorithm based on machine learning to estimate the curvature in Front-Tracking interfaces, showing that it can provide similar results compared to more traditional approaches. Our viscoelastic implementation is tested with the Phan-Thien-Tanner model for the problem of binary droplet colisions. We provide maps of outcomes associated with the categories of Bouncing, Coalescence, and Separation as functions of the dimensionless numbers that govern the problem. In addition to the traditional Newtonian space defined by the Weber and the impact factor, associated with the collision angle, we also explore the Weissenberg number and the extensibility parameter in the PTT model. For non-bouncing scenarios, the results show that surface tension and elasticity act to maintain the integrity of the merged drop and avoid Separation. On the other hand, shearthinning effects induce the Separation outcome. Hence, in the PTT model there are opposite trends associated with elasticity and shear-thinning, what can lead to non-monotonic responses. We also study the spreading of an elastoviscoplastic droplet over a thin-film. By modelling an elastoviscoplastic material using Saramitos model, we perform a nondimensional analysis to understand the competition between surface tension and yield-stress, and how elasticity affects this balance. We can see that, for less viscous fluids, elasticity can greatly increase the spreading of a droplet, since the internal resisting stresses develop more slowly due to the polymeric relaxation time. This effect is more pronounced for materials of high yield-stress, which indicates elasticity has a greater impact for elastic solids than fluids. We believe the results in this thesis could shed light on the importance of elastic parameters in common industrial problems such as 3D printing with spreading of droplets or sprays with droplet coalescence and breakup.
Título en portugués
Simulação numéricos de escoamentos de fluidos complexos com interfaces móveis
Palabras clave en portugués
Escoamentos com superfície livre
Fluidos complexos
Soluções numéricas
Resumen en portugués
Escoamentos de diferentes tipos de fluidos não-newtonianos são numericamente investigados com foco em problemas complexos, como por exemplo escoamentos confinados em geometrias com singularidades e escoamentos com interfaces móveis e tensão superficial. Em geometrias confinadas, a formulação tensão natural é usada para representar o tensor tensão polimérico em escoamentos viscoelásticos. Uma maior precisão é obtida próximo a singularidades geométricas em comparação com a tradicional formulação cartesiana. Em escoamentos com interfaces móveis, um novo algoritmo baseado em aprendizado de máquina é proposto e validado para o cálculo da curvatura de interfaces Front-Tracking. Verifica-se que é possível obter resultados similares aos obtidos por abordagens mais tradicionais. A implementação viscoelástica é testada com o modelo Phan-Thien-Tanner para o problema da colisão binária de gotas. Mapas paramétricos são obtidos, classificando os resultados nas categorias bouncing, coalescência, e separação em função de números adimensionais que governam o problema. Além do espaço tradicional Newtoniano definido pelo número de Weber e o fator de impacto, também explora-se o número de Weissenberg e o parâmetro de extensibilidade PTT. Para casos sem bouncing, os resultados mostram que a tensão superficial e elasticidade mantém a integridade da gota, inibindo a separação da mesma. Por outro lado, efeitos shear-thinning induzem a separação. Deste modo, no modelo PTT existem tendências opostas associadas a elasticidade e ao shear-thinning, o que pode levar a respostas não-monotônicas. Também é estudado o espalhamento de uma gota elastoviscoplástica (EVP) sobre uma camada fina do mesmo fluido. Modelando o material EVP com o modelo de Saramito, realiza-se uma análise adimensional para entender a competição entre tensão superficial e tensão de escoamento, e como a elasticidade afeta este balanço. Observa-se que, para fluidos menos viscosos, elasticidade pode aumentar significativamente o espalhamento de uma gota, pois a tensão interna que resiste o escoamento se desenvolve mais lentamente devido ao tempo de relaxação polimérico. Este efeito é mais evidente em materiais com uma alta tensão de escoamento, o que indica que a elasticidade tem um maior impacto em sólidos elásticos do que em fluidos. Acredita-se que os resultados nesta tese podem esclarecer quanto a importância dos parâmetros elásticos em problemas industriais comuns como impressões 3D com espalhamento de gotas, ou sprays com coalescência de quebra de gotas.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2023-08-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.