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RESUMO

MARTIELLO MASTELINI, S. Algoritmos incrementais e eficientes para árvores e regras de
decisão e algoritmos baseados em proximidade. 2023. 175 p. Tese (Doutorado em Ciências –
Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

O rápido desenvolvimento de tecnologias digitais acarretou a produção constante de grandes
volumes de dados, que se apresentam em diferentes formas e vêm de diferentes fontes. No início
dos estudos de aprendizado de máquina (AM) a escassez de dados era um problema relevante
em muitos domínios de aplicação, atualmente, no entanto, pode-se ter informação em demasia
para tratar com algoritmos tradicionais de AM. Além disso, mudanças ao longo do tempo na
distribuição probabilística que governa o processo de geração dos dados podem fazer com que as
soluções tradicionais de AM se tornem inúteis em aplicações do mundo real. AM online (AMO)
é uma área de estudos que busca criar soluções capazes de processar os dados incrementalmente,
utilizando recursos computacionais limitados e lidando com distribuições de dados que mudam
no decorrer do tempo. Apesar de a literatura em AMO apresentar soluções eficientes que
foram aplicadas em domínios de aplicação diversos, existe uma tendência crescente de se criar
algoritmos que focam apenas no desempenho preditivo, deixando o custo computacional em
segundo plano. Essa observação é ainda mais predominante quando se considera tarefas de
regressão que utilizam árvores e regras de decisão, bem como ensembles desses modelos, que
estão dentre as soluções mais populares em AMO. Diminuir o custo computacional de soluções
de AMO, de um ponto de vista do domínio de aplicação, pode ser mais relevante do que obter um
leve aumento no desempenho preditivo. Assim, nessa tese, busca-se criar algoritmos de AMO
cujo maior foco é a redução do tempo de processamento e do uso de memória em soluções de
regressão baseadas em árvores e regras de decisão, além de ensembles formados por esses tipos
de modelos. Um subproduto desejado é melhorar, ou pelo menos não impactar negativamente,
o desempenho preditivo dos modelos. Na tese também é explorado um algoritmo eficiente
para realizar buscas por vizinhos mais próximos de forma incremental. A tese é organizada
como uma coleção de artigos, que compreende as publicações mais relevantes focadas nos
temas apresentados. São abordadas estratégias para criar ensembles de regressão com baixo
erro preditivo, propostos algoritmos eficientes de regressão incremental baseados em árvores de
decisão, bem como um algoritmo para criação de ensembles baseados em árvores de decisão
para regressão com baixo custo computacional e baixo erro preditivo. Por fim, é apresentado um
algoritmo rápido e versátil para realizar buscas por vizinho mais próximo em janelas deslizantes
de dados.

Palavras-chave: Aprendizado de máquina incremental, aprendizado supervisionado, desempe-
nho computacional, regressão, busca por vizinhos mais próximos. .





ABSTRACT

MARTIELLO MASTELINI, S. Efficient online tree, rule-based and distance-based algo-
rithms. 2023. 175 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

The fast development of digital technologies has given rise to the constant production of data in
different forms and from different sources. While at the beginning of machine learning (ML)
studies, data scarcity was a relevant problem for many application domains, nowadays, we
may have too much information to handle with traditional ML algorithms. Besides, changes
in the underlying data distributions that govern the data generation might render traditional
ML solutions useless in real-world applications. Online ML (OML) aims to create solutions
able to process data incrementally, with limited computation resource usage, and to deal with
time-changing data distributions. Despite successfully creating efficient solutions applied in
diverse domains, we have seen a recent growing trend in creating OML algorithms that only focus
on predictive performance and overlook computational costs. This observation is even more
prevalent when considering regression tasks, using decision trees, decision rules, and ensembles
thereof, which are among the most popular OML solutions. Decreasing the computational costs
of OML solutions could be more relevant than a slight increase in predictive performance from
a real-world application standpoint. Hence, in this thesis, we focus on creating improved and
efficient OML algorithms whose primary focus is decreasing the time and memory costs of
tree and decision rule-based regressors and ensemble-based regressors. The desired bi-product
is improving or, at least, leaving the predictive performance unchanged. We also explore an
efficient algorithm to perform incremental nearest-neighbor searches. This thesis is organized as
an article collection, comprehending our most relevant publications focused on the presented
theme. We tackle strategies to create low-error ensemble-based regressors, efficient strategies
to build incremental decision tree regressors, propose a fast and accurate decision tree-based
ensemble regressor, and explore an efficient and versatile algorithm to perform nearest neighbor
search in sliding windows.

Keywords: Online machine learning, Supervised learning, Computational performance, Re-
gression, Nearest Neighbor Search .
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CHAPTER

1
INTRODUCTION

The last decades have brought a high increase in data production. This expansion in data
availability also increased the demand for automation with technological and innovative solutions
able to make intelligent decisions (GAMA, 2010; RUSSELL; NORVIG, 2016). Intelligence, in
this context, implies being able to mimic in some form the decision process a human, possibly a
field specialist, would follow to find a solution for a given problem. Indeed, replacing human
activities in tedious, fatigue-prone, or dangerous situations can increase productivity, reduce
mistakes and enable specialists to focus on more critical activities (WANG; SIAU, 2019).
Naturally, Machine Learning (ML) has arisen as a popular solution for such demands and has
been applied to a broad selection of areas, ranging from material sciences (MASTELINI et al.,
2022) and biology (LIBBRECHT; NOBLE, 2015) to human resource management (GARG et

al., 2021), among others (RUSSELL; NORVIG, 2016; SARKER, 2021).

Traditional or batch-based ML algorithms expect a fixed amount of training data available
to induce the learning models (GAMA, 2010). Once trained, such models can be applied to
provide predictions. In many practical situations, data is continuously produced, thus potentially
arriving indefinitely. Batch ML algorithms are not well suited to process such massive amounts
of data due to computational restrictions (BIFET et al., 2018). A trivial alternative is to select
data samples for model training by assuming they represent the data distribution. Although a
reasonable assumption broadly adopted in practical applications, this strategy does not cope with
time-changing distributions. Concept drift (GAMA et al., 2014; LU et al., 2018), i.e., changes
in the underlying data distribution, can influence the performance, robustness, and validity of
trained models. Hence, ML algorithms able to learn and adapt themselves incrementally are
desired in a scenario where data is continually produced with high throughput. Creating such
models is the primary goal of Online Machine Learning (OML), which is one of the main tools
used for data stream mining.

According to Bifet and Gavaldà (2009), the desiderata for OML solutions are:
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• to process an example at a time and inspect it only once (at most);

• to be ready to predict at any point;

• to be aware that data may be evolving over time;

• to expect an infinite stream but process it under finite resources (time and memory).

By following these guidelines, there was a constant search for creating new algorithms
able to process data streams. When analyzing the development in this area reported by recent
literature, many researchers successfully created OML models with high predictive performance,
e.g., Gomes et al. (2021). Many of these works created ensembles of OML models and relied
on Decision Trees (DTs) as building blocks. In fact, ensemble learning is a trend in batch
ML and OML (KRAWCZYK et al., 2017; SAGI; ROKACH, 2018; GOMES et al., 2021).
Reducing the computational costs of incremental DTs and similar decision rules (DRs) induction
algorithms have been addressed for classification tasks (PFAHRINGER; HOLMES; KIRKBY,
2008). These improvements directly benefit all the DT-based ensemble classifiers. Historically,
multiple popular OML solutions were proposed for classification tasks and later adapted for
regression, e.g., Domingos and Hulten (2000) and Ikonomovska, Gama and Džeroski (2011b).
This observation is also accurate when considering ensembles of OML models, though regression
has historically received less attention from the research community compared to classification.

Despite the efforts presented, for instance, in Pfahringer, Holmes and Kirkby (2008),
computational performance is often overlooked, though it is a crucial element for OML al-
gorithms. This observation is even more prevalent when considering incremental regression.
Contrary to the need for more computationally efficient OML solutions, we have seen a frequent
number of proposals of algorithms that seek to increase, ever so slightly, predictive performance
with a not uncommon increase in computational costs (KORYCKI; KRAWCZYK, 2020; CANO;
KRAWCZYK, 2022).

In this thesis, this is the main motivation to decide to take the opposite path of the current
trends and focus on creating solutions better suited to real-world applications where computation
resources are usually limited. Therefore, in this thesis, we mainly focused on improving the
running time and memory usage of tree and decision rule-based regressors. Increasing the
predictive performance was also a desired bi-product. We give a general view of our main
contributions in section 1.3 and present a timeline of our proposal and how they complement
each other in section 1.4. Next, we describe the basic aspects of algorithms that induce DTs,
DRs, and ensembles of these models, which are necessary to better comprehend the contents
presented in this thesis.
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1.1 Decision trees, decision rules, and ensembles thereof
DTs induction algorithms are a popular family of ML algorithms applied to multi-

ple learning tasks (LOH, 2011; BISHOP, 2006; GAMA, 2010; RUSSELL; NORVIG, 2016;
BREIMAN et al., 2017). They operate by recursively partitioning the input space, typically by
performing a sequence of tests, one predictive attribute at a time (HO, 1995; BREIMAN, 2001;
BREIMAN et al., 2017). However, other alternatives can be explored, such as applying option
nodes (KOHAVI; KUNZ, 1997; PFAHRINGER; HOLMES; KIRKBY, 2007). DTs fit a simple
decision model within each of their inner partitions.

For such, they follow the “divide-and-conquer” principle (BREIMAN et al., 2017) and
create hierarchical structures. Hierarchical in the sense that a tree has multiple levels and a notion
of ancestor and descendant nodes. This structure is, in fact, a directed acyclic graph, i.e., a tree in
graph theory (WEST et al., 1996). Henceforth, we use the terms DTs and trees interchangeably.

Due to this structural characteristic, DTs can be easily interpreted concerning how they
make decisions. This is an important characteristic and advantage of these models against black-
box decision models, e.g., artificial neural networks, which cannot be easily interpreted (BISHOP,
2006; GAMA, 2010). As an example, Figure 1 presents a hypothetical regression tree that
predicts the chance of rain precipitation given climate descriptions. The decision process is
clearly depicted in the tree structure.

Figure 1 – Hypothetical example of DT that predicts the chance of rain precipitation.

Temperature

HumidityWeather

Precipitation=15% Precipitation=70%

> 25.2 º�≤ 25.2 º�

Low High

Precipitation=9% Precipitation=33%

Sunny Overcast

Source: Elaborated by the author.

The following statements come from classical ML literature (BREIMAN, 2001; BISHOP,
2006; RUSSELL; NORVIG, 2016). The root is the shallowest node in a DT, from which all other
nodes descend. Nodes without descendants are usually referred to as terminal, decision, or leaf
nodes. The remaining nodes can be referred to as inner nodes. Both the root and the inner nodes
are grouped under the name of test nodes. The immediate ancestor of a node is referred to as its



32 Chapter 1. Introduction

parent node. Typically, a decision is made by choosing a path from the root to a leaf node. When
querying a DT model about an incoming instance, we can say that the instance is sorted to the
leaf (GAMA, 2010; BREIMAN et al., 2017). Again, more than one path can be followed in a
tree to produce a prediction (KOHAVI; KUNZ, 1997; PFAHRINGER; HOLMES; KIRKBY,
2007), but this is not the most common approach.

A path in a DT can also be seen as a DR. For this reason, DR induction algorithms are
conceptually very similar to algorithms for the induction of DTs (IKONOMOVSKA; GAMA;
DŽEROSKI, 2011a; IKONOMOVSKA; GAMA; DŽEROSKI, 2015; DUARTE; GAMA, 2015;
DUARTE; GAMA; BIFET, 2016), though their construction differs. Following the regression DT
literature, we can categorize regression tree models into two groups, according to their prediction
strategy: regression and model trees (TORGO, 1997; IKONOMOVSKA; GAMA; DŽEROSKI,
2011b; IKONOMOVSKA; GAMA; DŽEROSKI, 2015). Regression trees, such as the classic
Classification and Regression Tree (CART) (BREIMAN et al., 2017), produce the sample mean
of the target variable at the leaves, i.e., a constant value. On the other hand, model trees use a
more sophisticated functional model in each leaf, i.e., the response for each instance sorted to
a leaf depends on its feature values. If we consider linear model trees, they can be seen as a
form of locally weighted regression, while regression trees are piecewise-constant regression
models (TORGO, 1997; LOH, 2011).

Hoeffding Trees (HT) are the most popular family of tree-based OML algorithms (DOMIN-
GOS; HULTEN, 2000; IKONOMOVSKA; GAMA; DŽEROSKI, 2011b). They receive this
name because they rely on the statistical measure proposed by Hoeffding (1963) to perform split
decisions, i.e., the Hoeffding Bound (HB). Hoeffding Tree Regressors (HTR) are also widely
applied, mainly when instantiated as model trees (IKONOMOVSKA; GAMA; DŽEROSKI,
2011b; IKONOMOVSKA; GAMA; DŽEROSKI, 2015; OSOJNIK; PANOV; DŽEROSKI, 2017).
Many incremental DR algorithms also rely on the HB in their construction. The same hap-
pens when we consider ensemble algorithms (BREIMAN, 1996; BREIMAN, 2001; GEURTS;
ERNST; WEHENKEL, 2006). HTs are the most popular choice in the creation of incremental
ensembles (GOMES et al., 2017; KRAWCZYK et al., 2017). The main idea behind creating
ensemble algorithms is to join the predictions of multiple base models to obtain a combined
performance higher than the one from an individual model. There are varied strategies for com-
posing ensembles in both batch and incremental scenarios. Gomes et al. (2017) and Krawczyk et

al. (2017) categorize ensemble algorithms according to the type of constituent base models, how
the models are trained, and how their predictions are combined, among other aspects.

1.2 Research questions and hypotheses

By surveying the available literature, we identified that most existing online tree regres-
sors and ensembles thereof were too computationally costly for real-world applications. Besides,
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in the specific case of sliding window-based k-NN-based algorithms, we realized that the existing
solutions perform a complete scan of the data buffer elements, which might become impractical
in real-world solutions. We proposed the following research questions to guide our research
during the development of the thesis:

Q1: Can the computational costs of Hoeffding Tree regressors be reduced without significant
impacts on predictive performance?

Q2: Can efficient online tree-based ensembles be created while keeping competitive predictive
performance to state-of-the-art solutions?

Q3: Is there an efficient and alternative strategy to perform nearest neighbor search queries on a
data buffer that is constantly updated using a first-in, first-out data ingestion policy?

Given the research questions and the literature review, we formulated the following
hypotheses to pursue further:

(Hyp. 1) The usage of summarization and data sampling techniques can lead to a significative

reduction in the computation costs for building incremental trees and decision rule-based

regressors.

(Hyp. 2) Efficient and incremental graph-based search structures can be created to perform

nearest neighbor search queries using arbitrary distance measures.

In the next chapters of this thesis, we show how we used Hyp. 1 to answer Q1 and Q2,
and Hyp. 2 as the starting point to address Q3.

1.3 Main contributions

The initial plan for the thesis theme was to investigate multi-target regression problems
in an OML setting and to develop more efficient decision trees and ensembles thereof for that
end. However, by investigating the literature, we realized that, in general, online decision trees
and decision rule solutions for regression needed further investigation.

Hence, we decided to broaden the scope of the thesis by pursuing strategies to decrease
the computation costs of trees and DR-based regressors in general, including both the single-
target and multi-target cases. Toward the end of the thesis development, we also investigated ways
of creating more efficient algorithms for another popular family of OML algorithms, namely,
incremental k-Nearest Neighbors (k-NN). Following, we list the main contributions achieved
during the development of this thesis:
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• We developed strategies to speed up Hoeffding Tree regression construction and save
memory costs while also keeping competitive predictive performance (MASTELINI;
CARVALHO, 2020; MASTELINI; CARVALHO, 2021; MASTELINI et al., 2021);

• We proposed a novel tree-based ensemble regression algorithm that leverages, among other
aspects, sub-bagging to significantly speed up the training step and reduce the memory
costs while also boosting predictive performance (MASTELINI et al., 2022);

• We proposed an algorithm to efficiently perform nearest neighbor search queries in a
sliding window while also being able to handle frequent element addition and removal;

• In collaboration with researchers from multiple countries, the thesis author created the
River (MONTIEL et al., 2021) Python library for OML. River is one of the most popular
tools for researchers and practitioners who want to develop OML solutions.

1.4 Thesis organization

This thesis is organized as a collection of papers. The first part, Chapters 2-6, compre-
hends articles published in the realm of creating efficient tree and decision rule-based regressors,
which was the main goal pursued most of the thesis development. The first part of the thesis
aims at answering research questions Q1 and Q2 by exploring techniques and strategies rooted
at Hyp. 1.

The second part, Chapter 7, is related to the research internship developed at the Univer-
sity of Porto, where the main focus was online nearest neighbor search. This last part is more
general in the sense that there is no specific focus on a single learning task. The developed
solution can be applied to classification, regression, anomaly detection, and clustering, among
others. This second part of the thesis aims to answer the research question Q3, using Hyp. 2.

All the chapters, except for the Chapter 8, which presents the conclusion and final
remarks, are independent and self-contained, i.e., they contain all the background and references
necessary for their comprehension. The first and second parts can be read independently. However,
we suggest reading the chapters of the first part in the order they are presented. Although the
constituent papers are independent, they solve some open issues and challenges that the preceding
works might identify. Therefore, the presented order, which is chronological, also corresponds to
a logical reading order. Below, we describe each chapter and how they are linked.

1.4.1 Chapter 2

Title: “On Ensemble Techniques for Data Stream Regression”. This chapter corresponds
to an article written in collaboration with Prof. Dr. Heitor M. Gomes, Dr. Jacob Montiel, Prof. Dr.
Bernhard Pfahringer, and Prof. Dr. Albert Bifet, which are researchers and former researchers
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from the University of Waikato - New Zealand. The paper was published in the 2020 International
Joint Conference on Neural Networks (IJCNN) (GOMES et al., 2020).

We present a comparative study evaluating popular choices for creating online ensembles
for regression tasks. The published paper introduces Streaming Random Patches Regressor
(SRP-Reg), an ensemble algorithm that combines random subspaces and online bagging to create
diverse and high-performance regressors. The main contributions of the chapter are:

• We compare multiple strategies for prediction aggregation, handling concept drift, and
inducing diversity in incremental ensembles;

• We show that simple, non-reactive, concept drift adaptation strategies can be as efficient as
the reactive ones given proper parameter choice;

• We empirically observe that combining median aggregation and model trees is beneficial
for predictive performance;

• We also conclude that using random patches is less beneficial for regression tasks than for
classification.

1.4.2 Chapter 3

Title: 2CS: Correlation-guided Split Candidate Selection in Hoeffding Tree Regressors.
After the findings reported in Chapter 2 and the experience of running and analyzing the empirical
experiments of that paper, it became clear that the computational costs were an inherent problem
in HTRs. An initial attempt to reduce HTR training time was presented in a paper published at
the 2020 Brazilian Conference on Intelligent Systems (BRACIS), whose content is presented in
this chapter (MASTELINI; CARVALHO, 2020).

In this chapter, we reduce the tree induction cost by limiting the number of features
evaluated during split attempts. For such, we rely on the correlation between each feature and the
target and only select the subset of features most correlated with the target for split attempts. This
strategy significantly reduces the cost of training HTRs, but this comes at the cost of sometimes
increasing the prediction error. One might ignore potentially useful features by selecting only a
subset of features to evaluate splits on. Thus, this chapter identifies that a better research direction
would be to improve the tree-splitting mechanism by itself rather than adding more heuristics on
top of the already greedy-based split strategy used by the trees. The main contributions in this
chapter are as follows:

• We introduce a correlation-based mechanism to speed up HTR training time that just
slightly increases the memory costs of the trees;

• We evaluate the impact of the heuristic on both regression and model trees;
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• We show that even by bypassing some features, the predictive performance of the HTRs is
not significantly impacted, while the running time is significantly decreased;

1.4.3 Chapter 4

Title: Using dynamical quantization to perform split attempts in online tree regressors.
Building upon the findings presented at Chapter 3, we developed an improved strategy to evaluate
split attempts, which is presented in this chapter. The chapter’s content was published at Pattern
Recognition Letters (MASTELINI; CARVALHO, 2021).

Our proposal relies on a simple yet effective quantization technique to significantly
reduce the costs of performing split attempts in HTRs. Our proposal is dubbed Quantization
Observer (QO). Moreover, this chapter introduces more robust incremental variance calculation
formulae used in the HTRs and decision rule regressors to calculate split merit. We show that the
improved equations significantly decrease numerical approximation issues. Below, we list the
main contributions of this chapter:

• We propose a novel, lightweight, and easy-to-set-up HTR split strategy that significantly
decreases both the running time and memory usage;

• QO does not significantly impair the predictive performance and yields split candidates
similar to those obtained via an exhaustive approach;

• The combination of QO and the improved variance calculation formulae results in reliable
and efficient approximate split decisions.

1.4.4 Chapter 5

Title: Fast and lightweight binary and multi-branch Hoeffding Tree Regressors. We relied
on a synthetic evaluation setup in the previous chapter to evaluate the split candidate evaluation
algorithms. We actually isolated the tree-splitting procedure from the remaining aspects of the
HTR algorithm. Hence, we were able to address the costs and performance of split evaluations
directly. We extend the previous work in this chapter by applying QO to HTRs. We also go
a step further and leverage the inherent characteristics of our quantization split evaluations
to create multi-branch trees even for numerical features. The contents of this chapter were
published in the IncrLearn workshop of the 21st IEEE International Conference on Data Mining
(ICDM) (MASTELINI et al., 2021), in collaboration with Dr. Jacob Montiel, Prof. Dr. Heitor
M. Gomes., Prof. Dr. Bernhard Pfahringer, and Prof. Dr. Albert Bifet, from the University of
Waikato.

The main contributions of the chapter as summarized as follows:

• We apply QO to HTRs in a diverse and extensive evaluation setup;
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• We show that HTRs powered by our quantization-based splits are significantly faster than
the original ones, spend a fraction of the memory usage, and have comparative predictive
performance;

• We also show that the multi-branch trees are more efficient than the strictly binary ones
while also significantly shallower, albeit wider. This last characteristic could be potentially
beneficial for interpretation purposes.

1.4.5 Chapter 6

Title: Online Extra Trees Regressor. The works presented in Chapter 4 and Chapter 5
enable building HTRs efficiently and with reduced memory costs. Although HTR ensembles
powered by the quantization-based splits are viable options that ought to be faster than the
original ones, HTR forests’ costs might still become prohibitive in real-world applications.
For that reason, and inspired by a batch-based algorithm, we introduce Online Extra Trees
(OXT). OXT utilize random split points in their modified HTRs, which are substantially faster to
calculate. Our proposed forest algorithm also relies on sub-sampling, i.e., sub-bagging, to train
the trees, which significantly decreases training time with no noticeable impact on predictive
performance. This chapter presents the contents of the paper published at IEEE Transactions on
Neural Networks and Learning Systems (MASTELINI et al., 2022), in collaboration with Dr.
Felipe K. Nakano and Prof. Dr. Celine Vens, from the KU Leuven University - Belgium.

The main contributions of the chapter are listed as follows:

• We introduce a novel incremental tree-based ensemble regressor, which is generally more
accurate than the previous state-of-the-art solutions while being significantly faster and
using significantly fewer memory resources;

• We create a random-based split point selection procedure that has a constant asymptotic
time complexity, a superior result to the one presented at Chapter 4, albeit relying on the
same variance calculation formulae introduced in that chapter;

• We introduce the usage of sub-sampling to create ensembles of HTs, leveraging the
inherent stability of these tree-based models, as described by Gomes et al. (2021);

1.4.6 Chapter 7

Title: SWINN: efficient nearest neighbor search in sliding windows using graphs. Shifting
the focus from DTs and decision rules, we decided to explore the nearest neighbor search during
a research internship developed at the University of Porto under the supervision of Prof. Dr.
João Gama. The limitations of online k-NN algorithms in terms of computational costs were
a constant discussion brought by researchers and practitioners using the River (MONTIEL et
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al., 2021) library. Upon proper inspection of the literature, we realized a need for more efficient
solutions to perform k-NN incrementally, mainly when considering a sliding window-based
buffer. Hence, we proposed Sliding Window-based Incremental Nearest Neighbors (SWINN) to
tackle this issue. SWINN is significantly faster than the traditional approach and can work with
arbitrary distance measures. The resulting paper, written in collaboration with Prof. Dr. Bruno
Veloso, Dr. Max Halford, and Prof. Dr. Gama, and presented in this chapter, was sent for review
in Information Fusion (Elsevier). The paper received minor change requests from the reviewers
and is currently being prepared for resubmission.

The main contributions of the chapter are listed next:

• We introduce SWINN, a graph-based search index that can significantly speed up the
nearest neighbor search when compared to a complete scan of all available data;

• Our solution works with any distance metric and supports frequent element addition and
removal;

• We evaluate SWINN in a broad experimental setup and assess how each hyperparameter
of our proposal affects its final performance;

• We evaluate two case studies to assess the potential of SWINN in realistic situations
compared with state-of-the-art online ML algorithms.

1.4.7 Chapter 8

In this chapter, we present this thesis’ conclusions and discuss the limitations of our
research, open challenges, and possible future studies.

1.4.8 Appendix

We present the supplementary material of Chapter 7 in Appendix A. We also list addi-
tional articles published during the Ph.D. development period in Appendix B.
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ON ENSEMBLE TECHNIQUES FOR DATA
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Joint Conference on Neural Networks. The authors retain the right to use the accepted version
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reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
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to learn how to obtain a License from RightsLink.

Reference: GOMES, Heitor Murilo et al. On ensemble techniques for data stream
regression. In: 2020 International Joint Conference on Neural Networks (IJCNN). © IEEE,
2020. p. 1-8. Reprinted, with permission, from the authors.

2.1 Abstract

An ensemble of learners tends to exceed the predictive performance of individual learners.
This approach has been explored for both batch and online learning. Ensembles methods applied
to data stream classification were thoroughly investigated over the years, while their regression
counterparts received less attention in comparison. In this work, we discuss and analyze several
techniques for generating, aggregating, and updating ensembles of regressors for evolving data
streams. We investigate the impact of different strategies for inducing diversity into the ensemble
by randomizing the input data (resampling, random subspaces and random patches). On top of
that, we devote particular attention to techniques that adapt the ensemble model in response
to concept drifts, including adaptive window approaches, fixed periodical resets and randomly

*<http://www.ieee.org/publications_standards/publications/rights/rights_link.html>

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
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determined windows. Extensive empirical experiments show that simple techniques can obtain
similar predictive performance to sophisticated algorithms that rely on reactive adaptation (i.e.,
concept drift detection and recovery).

2.2 Introduction

The application of machine learning to data streams has grown in importance in recent
years due to a large amount of real-time data generated by networks, mobile phones, and the
wide variety of sensors currently available. Building predictive models from data streams are
central to many applications. One example is the Internet of Things (IoT) applications, where
connected sensors yield a large amount of data in short periods. To build predictive models from
streaming data, we need to either settle for traditional offline learning or employ algorithms
capable of learning incrementally. A significant setback with the offline learning approach is that
it is slow to react to changes in the domain, and these changes can have a catastrophic impact on
the predictive model performance since the patterns in which the model was trained on are no
longer valid.

Often, the application of a single decision model may lead to subpar performance in
online scenarios, given the previously mentioned challenges. As a consequence, algorithms that
combine several models, i.e. ensemble methods, are a trend for supervised learning for both
static and streaming data. Ensembles enable leveraging the power of multiple learners towards
the same goal, whereas alleviating their individual limitations.

Ensemble learning has been thoroughly investigated for data stream classification (GOMES
et al., 2017). Consequently, several methods were proposed (OZA; RUSSELL, 2001a; GOMES
et al., 2017) to this end. Recently, more methods were proposed for data stream regression, such
as the Adaptive Random Forest Regressor (ARF-Reg) (GOMES et al., 2018). There are at least
three relevant aspects to be considered when proposing an ensemble learner, either for regres-
sion or classification: combination, generation, and the update dynamics. The combination (or
voting) strategy describes how the individual predictions are aggregated to obtain the ensemble
prediction. For classification, a common method is majority vote, while for regression, the mean
is commonly used. The generation method defines how the base models are trained, commonly
including some mechanism to enforce diversity among the base learners. A traditional approach
is to train learners on different subsets of instances (e.g., Bagging (BREIMAN, 1996)), features
(e.g., the Random Subspaces Method (HO, 1995)) or both (e.g., Random Patches (HO, 1995) and
Random Forests (BREIMAN, 2001)). The update dynamics is fundamental when dealing with
streaming data, specifically evolving data streams, as it defines how (and when) base models will
be reset or updated to reflect changes to the underlying data distribution.

These three aspects of ensemble learning were thoroughly investigated for data stream
classification. For example, the Adaptive Random Forest (ARF) for classification algorithm (GOMES
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et al., 2017) includes an empirical comparison between majority vote against a weighted major-
ity vote. Conversely, the regression version of ARF, namely ARF-Reg (GOMES et al., 2018),
presents only results considering a simple linear combination (the mean) of the predictions.
Therefore, there is room for the investigation of other combination techniques, the impact of
different reset strategies to deal with concept drifts, and how to generate diverse learners for a
regression problem.

The main contributions of this work are the following:

• We discuss and analyze several techniques to train base learners, combine their predictions
and update them actively (or reactively) to address concept drifts.

• We benchmark existing algorithms and the proposed ensemble variants using 17 datasets.
This lead us to insightful conclusions, such as the high performance obtained by rela-
tively simple models (e.g., k Nearest Neighbors) in comparison to ensemble models that
implement complex drift detection and recovery.

• We provide empirical evidence that indicate that using reactive strategies to adapt to
concept drifts might not be necessary given an ensemble where base learners are trained
using windows of varying sizes, thus reset at different time intervals.

The remainder of this work is organized as follows. In section 2.3, we review ensemble
methods for data stream regression and classification. Section 2.4 contains the description of
strategies to build, combine and update ensemble models designed for evolving data stream
regression. Section 2.5, introduces the four sets of experiments that provide an insightful analysis
of the presented ensemble strategies. Finally, in section 2.6 we present our concluding remarks
and directions for future work.

2.3 Related work

The Fast and Incremental Model Trees (FIMT-DD) (FIMT-DD) (IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b) is the most widely used algorithm to build incremental regression
trees for streaming data. Similarly to the Hoeffding Tree algorithm (DOMINGOS; HULTEN,
2000), FIMT-DD starts with an empty tree that keeps statistics from arriving data until a
grace period is reached. The features are ranked according to their variance w.r.t the target
variable to decide for splits, and if the two best-ranked differ by at least the Hoeffding Bound
(HOEFFDING, 1963), the node splits. FIMT-DD includes a change detection scheme that
periodically flags and adapts subbranches of the tree where significant variance increases are
observed. In Ikonomovska et al. (2011), the authors propose the On-line Regression Trees with
Options (ORTO) algorithm, that introduces ‘option’ nodes, which allow an instance to follow
all the branches available in a tree node. The Adaptive Model Rules (AMRules) (ALMEIDA;
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FERREIRA; GAMA, 2013) learns both an ordered and an unordered rule set from a data stream.
To detect and adapt to concept drifts, each rule is associated with a Page-Hinkley drift detector
(MOUSS et al., 2004), which prunes the rule set given changes in the incoming data.

The development of ensembles of regressors attracted less attention than ensembles
of classifiers for streaming data, even though there is a sizeable amount of literature on this
topic for batch learning (MENDES-MOREIRA et al., 2012). For streaming data, Ikonomovska,
Gama and Džeroski (2015) proposed the online random forest (ORF) and online bagging
(OBag) ensembles that use the FIMT-DD as the base learner. Based on empirical experiments,
the authors concluded that the ORTO-A (online option trees with averaging) outperformed
both OBag and ORF in terms of Mean Squared Error (MSE). More recently, the Adaptive
Random Forest regressor (ARF-Reg) (GOMES et al., 2018), an adaptation of the data stream
classifier (GOMES et al., 2017) of the same name was proposed. ARF-Reg builds a forest of
FIMT-DD trees as ORF, the main difference between both algorithms is that ARF-Reg employs
one instance of the Adaptive WINdow (ADWIN) algorithm (BIFET; GAVALDA, 2007) per
tree to detect concept drifts. The way in which randomization is added during model genera-
tion in a random forest is particular to decision trees. A more general approach is to use the
random subspaces method (HO, 1995) as in Heuristic Updatable Weighted Random Sub-
spaces (HUWRS) (HOENS; CHAWLA; POLIKAR, 2011) and Streaming Random Patches
(SRP) (GOMES; READ; BIFET, 2019) algorithms. SRP trains each base learner on a subset
of features and instances from the original data, namely a random patch (LOUPPE; GEURTS,
2012). This strategy to enforce diverse base models is similar to the one in the random forest,
yet it is not restricted to using decision trees as base learner. Moreover, in Gomes, Read and
Bifet (2019) the overall results (in terms of accuracy) for SRP outperformed the adaptive random
forest (ARF) (GOMES et al., 2017) in a multitude of datasets.

In this work, we introduce techniques that can be applied to ensembles of regressors
for streaming data. We focus on four aspects: combination, generation, base learner, and reset
strategies. For generation, we explore techniques that induce a diverse set of base models by
training them on different subsets of instances (bagging), features (random subspaces) or both
(random patches). To combine the predictions, we investigate the benefits of using the median
instead of the mean. We also investigate the impact of different base learners (incremental trees
and k-nearest neighbors) or variations of these (i.e., adapting the leaves of the tree). Finally,
we challenge the well-established strategy of resetting base learners according to some drift
detection algorithm (GOMES et al., 2017; GOMES et al., 2018; GOMES; READ; BIFET, 2019)
against simpler strategies, such as fixed windows of varying sizes.
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2.4 Ensemble strategies for data stream regression

In simple terms, an ensemble learner is a set of base models and an integration method
to combine their predictions. When applied to stream data, it may also incorporate some reset
dynamics to adapt the ensemble to potential changes in the data distribution. There is a vast
literature concerning strategies to improve ensemble classifiers for streaming data (GOMES
et al., 2017), yet not as many approaches have been thoroughly investigated for ensembles of
regressors. In this section, we discuss strategies that can potentially leverage an ensemble learner
for data stream regression.

2.4.1 Generation - Training and Diversity Induction

There are different approaches for generating (training) base models. The motivation
for the development of such strategies is to enforce diversity into the ensemble. If all the base
models make homogeneous predictions, it is clear that their combination is no better than
just using one of them. Many algorithms provide mechanisms to induce diversity implicitly
by training each base model on different subsets of the data. Canonical examples include bag-
ging (BREIMAN, 1996), the random subspaces method (HO, 1995), random forests (BREIMAN,
2001), and random patches (LOUPPE; GEURTS, 2012). These techniques were successfully
adapted and applied to data stream classification (OZA; RUSSELL, 2001a; HOENS; CHAWLA;
POLIKAR, 2011; GOMES et al., 2017; GOMES; READ; BIFET, 2019), and some of them to
regression (IKONOMOVSKA; GAMA; DŽEROSKI, 2015; GOMES et al., 2018). We employ
generation techniques that do not rely on a specific algorithm as the base learner. Precisely, we
explore Random Subspaces (RS), Bagging (BAG)2, and Random Patches (RP). These generation
techniques enforce that each base model is trained with different subsets of instances (BAG),
features (RS) or both (RP). On top of that, these are techniques that modify the training data
presented to each base learner without explicitly changing the base learner algorithm (e.g.,
random forests manipulate the individual tree construction algorithm). A similar approach is
explored in Gomes, Read and Bifet (2019) for data stream classification.

2.4.2 Combination

We analyze two strategies for aggregating the predictions, the mean and the median.
Aggregating the ensemble prediction as the mean of its members’ predictions is a simple and
often effective strategy used in a multitude of algorithms (MENDES-MOREIRA et al., 2012).
One drawback of the mean as a measure of central tendency is that it can be affected by any single
value that is either too high or too low in comparison to the rest of the sample. In our context, it
is desirable to avoid situations where a single model prediction can have a potentially harmful

2We refer to it simply as BAG. However, we are in fact using the resampling strategy introduced in (BIFET;
HOLMES; PFAHRINGER, 2010) where Poisson(λ = 6) is used instead of Poisson(λ = 1), as in the original Online
Bagging adaptation by Oza (OZA; RUSSELL, 2001a).
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influence on the overall prediction. For example, after resetting a base model, the relatively
‘new’ model may produce predictions that deviate too far from others, simply because it has
not been trained on a sufficiently large amount of data. However, the other way around can be
true as well, i.e., a single learner’s prediction positively influence the overall combined vote. To
investigate further we propose comparing the mean aggregation against a median aggregation.
Using the median to aggregate ensemble predictions was used in the Bragging (bootstrap robust
aggregating) algorithm, a variant of Bagging proposed by Bühlmann in (BÜHLMANN, 2003).

2.4.3 Reset Strategy

The reset strategy in an ensemble, designed to cope with evolving data streams, is an
utterly important component. The strategies for maintaining learning algorithms up-to-date even
when faced with concept drifts are often categorized as explicit (or reactive) and implicit (or
proactive). Reactive methods rely on an algorithm (i.e., drift detector) that indicates the need to
reset the base models, while active methods constantly resets the base models according to some
predefined strategy. Reactive strategies are popular and often employed alongside ensemble
methods for data stream classification (GOMES et al., 2017; BIFET; GAVALDÀ, 2009) and
regression (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; GOMES et al., 2018).

We now describe three strategies for resetting the ensemble model, depicted in Figure 2.
All of them follow the same principles of replacing an active base model with a model that has
been trained without influencing the ensemble decisions (namely, a background model). The
intuition behind training a model before adding it to the ensemble is to avoid an underfitted
model interfering with the ensemble predictions. The differences among these strategies lie on
how they determine the start of the training for the background model (ts) and the replacement
(tr) of the current model.

• Adaptive Window. A drift detection algorithm monitors the error of each base learner,
and whenever a drift is signaled the associated base learner is reset (thus ending its training
window);

• Fixed Window. The length of each training window is predefined, such that each model is
reset after reaching the maximum number of instances.

• Random Window. This approach adds another level of randomization by determining the
window length of each learner randomly.

The adaptive window depends on the change detection algorithm used to identify
potential drifts (warnings) and actual drifts. We use the ADaptive WINdow (ADWIN) (BIFET;
GAVALDA, 2007) algorithm, but other detectors could be used as well. The error of each base
model is monitored by a different instance of ADWIN. A warning signal determines when to
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(c) Random Window.

Figure 2 – Reset model strategies. Let mi denote the i-th model in the ensemble, in all strategies a
background model bi starts training at tsi and it replaces mi at time tri . After a model is replaced,
the reset process starts again. In Fig. 2a the ADWIN drift detector is used, tsi and tri are set
according to changes in the performance of a model i as detected by ADWIN. In Fig. 2b
a fixed-size window is used between tsi and tri . We vary the size of such window for each
member i of the ensemble, to ensure that background models are trained on different number
of instances and to avoid replacing all members of the ensemble at the same time. In Fig. 2c
two adjacent windows Wsi , Wri are defined. These windows correspond to the range in which
the training of the background model starts (tsi) and when the model replacement takes place
(tri). Both events happen at random within the corresponding window.

start training the background model (ts), and a drift signal determines when to replace the model
(tr). Effectively, ts and tr are automatically set, but the detection algorithm itself adds some
hyperparameters (i.e., the confidence λ for ADWIN), thus it is not entirely automatic. This
strategy has been explored in multiple works for both regression (GOMES et al., 2018) and
classification (GOMES et al., 2017; GOMES; READ; BIFET, 2019).

In the fixed window strategy, we avoid simultaneously resetting the base models by
adding a small shift to the hyperparameters ts and tr, such that the training of the background
model and the replacement of the current model are slightly different for each base model. This
way, we also avoid replacing all members of the ensemble at the same time, which effectively
represents resetting the ensemble. We can associate ts and tr with the warning and drift detection
from the adaptive window. This strategy is similar to how data is buffered to sequentially train
batch learners in the Fast and Slow Framework (MONTIEL et al., 2018), where batch and stream
learning methods operate together.

To generate random windows that are neither too short nor too large, we constraint the
length of the window l to be a positive integer approximately in the interval l ∈ (t0−1/W, t0 +

1/W ). Given hyperparameters t0 and W , the probability that the window of training ends after
observing t instances is given by Eq. 2.1.

Pr[reset] = 1/(1+ e−4(t−t0)/W )) (2.1)

As the number of instances observed t approaches t0−W/2, the probability that a reset is
triggered starts increasing, reaching Pr[reset] = 0.5 when t = t0, and approaching Pr[reset] = 1.0
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after t0 +W/2. Other similar approaches, such as uniformly choosing a random number between
t0−W/2 and t0 +W/2, could be used, but we remark that they would produce similar results.

The question that we want to answer with both the fixed and random window approaches
is:

Does signaling when to reset base models using an accurate drift detector positively

influences the predictive performance of the ensemble, OR the positive effects are caused by

periodically resetting the base learners?

In Bifet (2017), the authors presented a similar empirical study to verify the relevance
that a drift detector plays on a classification system. The conclusions obtained by the authors
were that a fine-tuned fixed window length was able to overcome a system that relies on an
adaptive window length (drift detector). The caveat is that it is not trivial to determine the window
length ahead of time in an optimal way. However, one may want to avoid too short or too large
(or infinite) window lengths. Windows that are too short do not allow the base model to learn
any concept effectively, resulting in suboptimal performance. Conversely, windows that are too
large imply the risk of keeping old concepts within the ensemble.

2.4.4 Base learner

We experiment with two popular regression algorithms as the base learners for the
ensemble variations. The first is the Hoeffding Tree Regressor (HTR), which is a variation to
its classifier counter-part by Domingos and Hulten (DOMINGOS; HULTEN, 2000). Similarly
to FIMT-DD (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b), HTR split decisions are based
on the variance information, and the aggregation at the leaves can either be performed by
a linear model (i.e., a perceptron) or the mean target values of examples reaching the leaf.
Nonetheless, HTR does not include mechanisms for concept drift adaptation as FIMT-DD. This
fact, though making HTR not coping with non-stationary distributions when working standalone,
shall improve its computation resource usage over FIMT-DD. The second algorithm is k nearest
neighbors (KNN). KNN is a common baseline for both classification and regression. The basic
kNN regressor searches for the k instances that are closer (w.r.t. a given distance metric) to an
instance whose target value has to be predicted. The predicted value is the unweighted mean of
the k nearest instances found. KNN is known to be a stable learner, i.e., given a small variation
in the training sample for two KNN models, their predictions will be fairly similar. There are
different approaches to enforce instability to KNN models, such as injecting randomness to the
distance metrics (ZHOU; YU, 2005) or using different random subspaces to build the training
samples (HO, 1998).

It was observed in Ikonomovska, Gama and Džeroski (2015) and Gomes, Read and Bifet
(2019) that as Hoeffding trees grow larger they become more similar w.r.t. their predictions. We
shall observe a similar behavior if KNN is employed with bagging. In this work, we refrain
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from applying adaptations to the base models with the sole intention of inducing diversity as we
lack the space for appropriate analysis and discussion of such an important topic. Furthermore,
we rely on ensemble generation strategies to enforce diverse predictions for KNN and HTR,
precisely by using random subspaces and random patches.

2.5 Experiments
For every experiment we apply a test-then-train evaluation strategy, i.e., each instance is

used for testing and then used for training. We analyze how the learning algorithms performs in
terms of Root Mean Square Error (RMSE) in different scenarios including real and synthetic
data. There are 17 datasets used in the experiments, including real (7) and synthetic datasets (10),
such as Hyperplane (Hyper) and Radial Basis Function (RBF) variations. We use three variations
of Hyper and RBF synthetic datasets, each of them simulating a different type of drift. Synthetic
datasets variants identified with (G) and (A) simulates gradual and abrupt drifts every 125K

instances (i.e., 125K, 250K and 375K). The window of change for abrupt drifts is 1, and 20,000
for gradual drifts. Variants (I) simulate incremental concept drifts. The summary statistics of the
datasets are shown in Table 1.

Table 1 – Characteristics of the evaluated datasets. Simulated Drifts: (A) Abrupt, (G) Gradual, (I) Incre-
mental. The first group (top) contains the real-world datasets, and the second group (bottom),
the synthetic datasets.

Dataset #Instances
#Numeric
features

#Categorical
features

Abalone 4977 7 1
Bike 17379 12 0
CalHousing 20500 8 0
House8L 22784 8 0
House16H 22784 16 0
MetroTraffic 48204 4 3
Pol 15600 48 0

Ailerons 13750 40 0
Elevators 16599 18 0
Fried 40768 10 0
MVDelve 40967 7 3
Hyper(A) 500000 10 0
Hyper(G) 500000 10 0
Hyper(I) 500000 10 0
RBF(A) 500000 20 0
RBF(G) 500000 20 0
RBF(I) 500000 20 0

Some hyperparameters were fixed throughout all experiments. The ensemble variants
(e.g., ARF-Reg) were executed with 30 base learners and a subspace size of 60%. Most of the
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base learners are based on variants of a Hoeffding Tree, including the HTR and FIMT-DD. In
these cases, we used a configuration that has been successful for ensemble classifiers, i.e., a
grace period of 50 and a higher confidence (δ = 0.01). BAG, RP, and RS, their variants and base
learners, were executed and implemented3 in scikit-multiflow (MONTIEL et al., 2018)4. The
remaining considered algorithms are available in MOA (BIFET et al., 2018). Unless otherwise
indicated, all the algorithms were performed using their standard hyperparameters, according to
their implementations.

To facilitate the identification of the ensemble variants, we introduce the following
naming convention. Generation: random patches (RP), bagging (BAG), random subspaces (RS);
Combination: mean (µ), median (med); Reset strategy: adaptive window (a), fixed window
(f), random window (r); Base learner: Hoeffding Tree regressor with mean leaves (HTRm);
Hoeffding Tree regressor with perceptron leaves (HTRp); k-Nearest Neighbors regressor with
mean aggregation (KNN). For example, when identifying a variant of Random Patches using
Mean aggregation, Adaptive Window reset strategy, and HTR with perceptron at the leaves, we
write RPa

µ -HTRp.

Our goal is to present and discuss the impact of the strategies discussed in section 2.4,
as well as compare some of them against existing algorithms. It is infeasible to report all
possible configurations due to the large number of combinations. Therefore, we organize the
experiments in four groups to balance a breadth analysis with an in-depth analysis. In the first
set of experiments we analyze the impact of the Generation and Combination strategies. We
follow that experiment with an analysis of the impact of the base learner to some of the ensemble
variations and how they compare against single instances of the base leaner algorithms. The
third experiment was designed to answer the question posed in section 2.4, which challenged
the importance of hybrid solutions that combined drift detectors to the ensemble (i.e., adaptive
window reset strategies). Finally, the last set of experiments compare some of the ensemble
variants against algorithms from the literature.

2.5.1 Generation and Combination

To verify the impact of both the generation and combination strategies we present the
experiments in Table 2. For this analysis, we fixed the base learner as HTRm. We observe that the
BAG variants obtain the best results overall. Therefore, for the given datasets, it is not possible
to conclude that improvements could be observed in terms of RMSE when employing random
subspaces as part of the generation process. One possible cause can be that the majority of the
datasets contain mostly relevant features, i.e., by building models on subsets of the feature set,
it is not possible to obtain reasonably accurate models, which in turn negatively impacts the
aggregated predictions. In general, the median combination approach was not more accurate than

3https://github.com/jacobmontiel/StreamingRandomPatchesRegressor
4The main content from scikit-multiflow, including the contributions of this chapter, have since been ported to

the River library.
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the mean, which shows that even though the mean is a less stable measure of central tendency, it
does not seem to influence the ensemble performance negatively. Therefore, the hypothesis that
extreme values may lead the combination astray could not be observed in these experiments. A
possible explanation is the type of base learner, i.e., HTRm, produced predictions that are more
stable than the predictions from HTRp.

Table 2 – Generation and combination analysis (generation=[BAG | RP | RS], combination=[mean (µ) |
median (med)], base learner=HTRm), reset strategy=adaptive (a).

Dataset BAGa
µ BAGa

med RPa
µ RPa

med RSa
µ RSa

med

Abalone 2.5911 2.6346 2.5230 2.5794 3.0465 3.0629
Bike 81.0924 82.0560 92.1240 89.1398 100.9140 98.1813
CalHousing 63000.7071 63447.0723 66238.8810 65327.8682 72371.6388 73694.5632
House8L 36357.7785 37425.4647 36674.6710 37662.6646 37238.0024 38038.3599
House16H 39807.9324 40503.2810 40974.8801 41893.5338 41366.8500 41694.6820
MetroTraffic 1864.3562 1878.4567 1868.4516 1881.3474 1909.7701 1926.9327
Pol 39.8561 40.9659 40.0456 40.9348 42.5239 43.0442
Ailerons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.0048 0.0050 0.0048 0.0049 0.0046 0.0047
Fried 2.8504 2.8436 3.3891 3.4347 4.7477 5.1362
MVDelve 2.7978 2.3556 3.4039 2.8376 7.2215 7.4087
Hyper(A) 4.7393 4.7695 5.1514 5.2270 5.6156 5.7496
Hyper(G) 4.7314 4.7739 5.1578 5.2315 5.6322 5.7745
Hyper(I) 73.8283 75.1720 75.1034 75.5369 75.7321 76.3416
RBF(A) 24.3243 26.4591 22.6989 23.8939 29.6176 29.9555
RBF(G) 24.5419 26.2645 24.9022 26.5333 29.6681 29.9662
RBF(I) 29.2339 29.2461 29.1266 29.1732 30.4916 30.6660

Avg. rank 1.59 2.88 2.59 3.65 4.65 5.65
Avg. rank real 1.29 3.00 2.57 3.71 4.71 5.71
Avg. rank synth. 1.80 2.80 2.60 3.60 4.60 5.60

2.5.2 Base learners

To analyze the impact of the base learner we compare variations of BAGa
µ with KNN,

HTRm and HTRp. On top of that, we also present the stand-alone results for these three algorithms
with the purpose of presenting a clear baseline (i.e., it is not reasonable to use an ensemble if
a single model is more accurate). The results are depicted on Table 3. We highlight that KNN
obtained a low RMSE for many datasets, and in overall it was on pair with BAGa

µ -HTRp. It
was not possible to leverage the good individual results of KNN in BAGa

µ -KNN. One possible
explanation is that KNN is a stable learner and just by slightly changing the subset of instances
being used by each of the models it was unable to produce better results. In fact, by comparing
KNN and BAGa

µ -KNN, they are quite similar and often the best result is in favor of KNN. When
comparing BAGa

µ -HTRm and BAGa
µ -HTRp against HTRm and HTRp we can observe that the

ensemble models were able to outperform a single base learner. In general, using the perceptron
improves the performance in comparison to using the mean to aggregate the predictions at the
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leaves. This fact can be observed when comparing HTRm and HTRp, as well as their ensemble
versions.

Table 3 – Base learner analysis (generation=BAG, combination=mean (µ), learner=[KNN | HTRm |
HTRp], reset strategy=adaptive (a)).

Dataset KNN HTRm HTRp BAGa
µ -KNN BAGa

µ -HTRm BAGa
µ -HTRp

Abalone 2.3264 3.0540 2.8726 2.3268 2.5911 2.5719
Bike 62.3067 108.0877 85.1775 62.3440 81.0924 69.0090
CalHousing 89876.9806 85204.2071 72327.5408 90212.1338 63000.7071 63307.2304
House8L 51046.4284 40883.3315 40874.6389 51026.8462 36357.7785 35860.5305
House16H 51164.6143 43890.7514 44301.9024 51151.9541 39807.9324 40028.5144
MetroTraffic 1945.0847 1951.2740 1910.3972 1945.8638 1864.3562 1858.1606
Pol 18.2383 26.4236 26.5224 23.1435 39.8561 36.1823
Ailerons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.0069 0.0054 0.0052 0.0068 0.0048 0.0048
Fried 2.6746 2.7908 2.8103 2.6731 2.8504 2.9802
MVDelve 8.3187 3.8745 3.8762 8.4289 2.7978 3.6996
Hyper(A) 3.0400 5.9205 5.0287 9.7130 4.7393 4.5308
Hyper(G) 3.3039 5.9094 5.0714 9.3744 4.7314 4.5717
Hyper(I) 50.9431 79.8120 54.4025 50.9248 73.8283 65.4014
RBF(A) 17.9073 23.2324 20.4353 17.9242 24.3243 14.8843
RBF(G) 18.7157 23.1230 20.5220 18.7317 24.5419 14.5837
RBF(I) 29.2988 28.0289 28.0496 29.2921 29.2339 28.4256

Avg. rank 3.06 4.18 3.65 3.94 3.47 2.71
Avg. rank real 3.43 4.57 3.86 3.86 2.86 2.43
Avg. rank synth. 2.80 3.90 3.50 4.00 3.90 2.90

2.5.3 Reset strategy

We apply three techniques to continuously reset the base models, and, thus, keep the
ensemble up-to-date with the latest concepts. Each of these techniques are highly influenced by
their hyperparameters, which directly influence how many instances will be used for training
each base model before it is reset. We experimented with three variations of hyperparameters for
the fixed and random windows, alongside a version that never resets the base models (no-reset),
and one that uses an ADWIN change detector (adaptive window). More details about these
variations are presented below.

• fixed (fs) and random (rs) small. Trigger background learner creation: ts = 400; Trigger
replace: tr = 700; random window: Ws =Wr = 200

• fixed (fm) and random (rm) medium. Trigger background learner creation: ts = 1500;
Trigger replace: tr = 2500; random window: Ws =Wr = 800

• fixed (fl) and random (rl) large. Trigger background learner creation: ts = 2500; Trigger
replace: tr = 5000; random window: Ws =Wr = 2000

• adaptive. Trigger background and replace according to the drift detector.
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• no-reset. The base models are never reset.

One of the goals of the fixed and random reset strategies was to avoid resetting the base
models simultaneously. The fixed window reset learners at different times and with different
window sizes, the hyperparameters only define the length of the ‘first’ ensemble member, the
others have increasing window lengths. Similarly, the random window strategy reset learners
with about the same window size, but at slightly different times (depending on hyperparameter
W ).

Table 4 presents the results for the different reset strategies. We observe that using larger
windows, for both fixed and random, improve the overall results. Analyzing the RMSE over
time in Figure 2, it is noticeable that the fixed and random windows tend to adapt to concept
drifts fast and without major (and long) variations to the average RMSE. This can be attributed
to the fact that the base learners are reset at different times, which generates a mix of learners
trained only on the latest concept and learners trained on a larger window. A counter-intuitive
result is that no-reset outperforms the adaptive strategy for most of the synthetic datasets with
simulated concept drifts in Table 4. Complementing the analysis with the plots from Figure 2,
we can observe that the adaptive (a) variation closely resembles the no-reset results, and often
recovers from concept drifts faster (Figures 3a and 3b). The ability to adapt to new concepts
even if the base learners are never reset is justified by the use of no-reset with Hoeffding trees
that are allowed to keep growing indefinitely. Even though this allows the trees to adapt to new
concepts, it applies a heavy toll on the computational resources. The best average rankings are
obtained when using a fixed window and the ‘large’ parametrization (fl), which has a reasonable
compromise between smaller and longer windows, i.e., a configuration in-between ‘small’ (fs)
and no-reset (nr).

Table 4 – Reset strategy (generation=RP, combination=median, learner=HTRp, reset strategy=fixed |
no-reset | random | adaptive (a)).

Dataset fs fm fl no-reset rs rm rl adaptive

Abalone 2.2405 2.2851 2.2804 2.2813 2.2154 2.2592 2.2870 2.2862
Bike 92.7782 81.9534 72.1119 67.0228 108.2110 100.1860 93.8778 73.4341
CalHousing 61709.5065 63947.9028 65687.8560 65809.6456 60076.6916 62724.3415 62055.3426 66349.6414
House8L 39343.1472 37711.8951 37184.1753 37137.5179 41328.1239 39208.1627 38596.7054 37718.3326
House16H 43781.4843 42412.0779 42122.2324 43091.4831 45354.9294 43583.8446 42921.1098 41855.8577
MetroTraffic 1811.5875 1824.2094 1842.6123 1852.6115 1782.2871 1811.0393 1818.1665 1859.2225
Pol 25.7078 22.3910 22.8605 23.1437 29.9345 25.1886 24.1786 24.8740
Ailerons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.0054 0.0052 0.0051 0.0050 0.0054 0.0054 0.0054 0.0050
Fried 3.3059 3.0930 2.9059 2.5176 3.6136 3.2882 3.1752 3.0728
MVDelve 4.2186 3.3576 3.3580 4.7204 5.2824 4.1712 3.9506 2.5276
Hyper(A) 4.6818 4.3225 4.1641 5.1618 5.0834 4.6458 4.5177 4.9436
Hyper(G) 4.8392 4.4764 4.2935 5.1692 5.2234 4.8038 4.6746 4.9526
Hyper(I) 51.9050 51.4357 52.1003 67.0243 53.0485 51.6913 51.6470 67.2361
RBF(A) 22.6324 17.8684 15.4194 13.5661 25.8346 22.3086 20.7128 14.8983
RBF(G) 22.9855 18.3157 15.7911 13.6283 26.0139 22.6718 21.1338 15.2901
RBF(I) 28.8979 28.7884 28.7029 28.3937 29.0184 28.8918 28.8548 28.5633

Avg. rank 5.12 3.29 3.00 3.94 6.29 5.12 4.76 4.47
Avg. rank real 4.71 3.86 3.43 4.14 5.00 4.86 4.86 5.14
Avg. rank synth. 5.40 2.90 2.70 3.80 7.20 5.30 4.70 4.00
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Figure 3 – RMSE over time for varying reset strategies.

2.5.4 Comparison against other algorithms

In Table 5, we compare two variations of the ensemble techniques discussed in this paper
against algorithms from the literature. Precisely, we use BAGf-l

µ -HTRp and BAGa
µ -HTRp, which

differ only on the reset strategy used. From these experiments we highlight that ARF-Reg tends
to outperform all others in the synthetic datasets, including those with simulated concept drifts,
while BAGf-l

µ -HTRp obtains the best results for the real datasets. We highlight that, contrary to
what was observed in the experiments varying the reset strategy, the ARF-Reg algorithm, which
includes an active drift detection strategy, was able to outperform other methods in the synthetic
datasets that simulate concept drifts. However, if we compared it against the no-reset (nr) from
Table 4, it would not differ much in terms of RMSE. We also replicate the results for KNN in
Table 5 to highlight how well it performs in comparison to algorithms specially designed to
address evolving data streams, such as FIMT-DD, ORTO, and AMRules.

2.6 Conclusion

Ensembles are a popular approach in supervised learning since they improve performance
by leveraging the predicting capabilities of a group of weak learners. Regression for evolving
data streams, although relevant to many real-world applications and posing specific challenges,
has not received as much attention by the research community as classification. In this paper,
we study ensemble techniques for regression and show that, although performance is improved,
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Table 5 – Comparing BAGa
µ -HTRp and BAGf-l

µ -HTRp against others.

Dataset FIMT-DD ORTO AMRules ARF-Reg KNN HTRm HTRp BAGa
µ -HTRp BAGf-l

µ -HTRp

Abalone 2.6227 8.3230 2.3284 2.8277 2.3264 3.0540 2.8726 2.5719 2.2506
Bike 572.2625 2882.6485 134.5418 93.5983 62.3067 108.0877 85.1775 69.0090 68.3269
CalHousing 77589.2502 141419.9559 72436.8602 64253.7315 89876.9806 85204.2071 72327.5408 63307.2304 62820.2290
House8L 40945.7784 84042.0749 41388.1129 36325.3640 51046.4284 40883.3315 40874.6389 35860.5305 35966.3236
House16H 46798.5857 96237.2919 46072.4447 39435.5565 51164.6143 43890.7514 44301.9024 40028.5144 39461.4041
MetroTraffic 18719714.8607 6017208.9625 8798.4883 1762.3839 1945.0847 1951.2740 1910.3972 1858.1606 1842.0460
Pol 50.3320 90.6362 25.9851 17.8487 18.2383 26.4236 26.5224 36.1823 18.9284
Ailerons 0.0037 0.0070 0.0020 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.3380 0.0715 0.0047 0.0046 0.0069 0.0054 0.0052 0.0048 0.0049
Fried 2.7390 7.8746 2.4735 2.2410 2.6746 2.7908 2.8103 2.9802 2.3569
MVDelve 2.9448 12.0426 3.8574 1.5152 8.3187 3.8745 3.8762 3.6996 2.1918
Hyper(A) 1.8803 15.8049 1.9713 3.3463 3.0400 5.9205 5.0287 4.5308 3.6148
Hyper(G) 2.2675 15.9225 2.3780 3.6790 3.3039 5.9094 5.0714 4.5717 3.7817
Hyper(I) 48.2369 126.0124 50.6482 48.0818 50.9431 79.8120 54.4025 65.4014 48.3118
RBF(A) 17.2946 57.5298 23.0847 13.9592 17.9073 23.2324 20.4353 14.8843 15.6089
RBF(G) 17.3575 58.0759 22.9520 14.9155 18.7157 23.1230 20.5220 14.5837 15.9212
RBF(I) 29.3239 38.9952 29.9269 28.3527 29.2988 28.0289 28.0496 28.4256 28.6819

Avg. rank 5.47 8.88 5.06 2.59 4.76 6.00 5.29 4.00 2.94
Avg. rank real 7.00 8.86 5.57 2.86 4.86 5.86 4.86 3.29 1.86
Avg. rank synth. 4.40 8.90 4.70 2.40 4.70 6.10 5.60 4.50 3.70

special considerations must be taken in the context of regression, e.g., combination techniques
that integrate well with the base learner. To this end, we focused our analysis on techniques for
training the base learners, combining predictions, the role of base learners, and the reset strategy
that provides robustness against concept drifts. We conclude that resetting the base models has a
positive effect in the predictive performance. Based on the experiments, we notice that a reactive
strategy (based on a drift detector) may not produce the best results all the time. Simpler reset
strategies such as periodically replacing members of the ensemble with new models trained on
different windows can also boost performance in the ensemble. Another relevant observation
was that random subspaces and random patches were not as effective for regression as when they
were applied for classification.

For future works, we are considering a further analysis of ensembles of k-Nearest
Neighbors for regression, and how to minimize the impact in the computational resources caused
by an unbounded growth of the Hoeffding Tree algorithms.
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3
2CS: CORRELATION-GUIDED SPLIT

CANDIDATE SELECTION IN HOEFFDING
TREE REGRESSORS

Publication information: this chapter is an article published at Brazilian Conference on
Intelligent Systems (BRACIS), whose proceedings are managed by Springer. According to the
Springer Nature’s Policy*, authors retain the right to reuse the content of a published paper in
their own thesis.

Reference: MASTELINI, Saulo Martiello; PONCE DE LEON FERREIRA DE CAR-
VALHO, André Carlos. 2CS: correlation-guided split candidate selection in Hoeffding tree
regressors. In: Brazilian Conference on Intelligent Systems. Springer, Cham, 2020. p. 337-
351.

3.1 Abstract

Incremental machine learning algorithms have been effective alternatives to deal with
stream data. The Hoeffding Tree framework is one of the most successful solutions for supervised
online prediction tasks. Although online regression tasks are present in several forms, and in
many real-life problems, most of the research efforts have been devoted to classification. Existing
regression tree solutions have strong limitations, mainly regarding their memory usage and
running time. Hence, a new algorithm able to address these aspects in Hoeffding Tree Regressors
is a relevant research issue. In this paper, we propose 2CS, a correlation-guided strategy to
speed up Hoeffding Tree Regressor training. 2CS is conceptually simple and works by avoiding
the exhaustive evaluation of all possible features as split candidates, as occurs in the existing
solutions. Moreover, 2CS can be easily merged into existing incremental tree solutions and online

*<https://www.springer.com/gp/rights-permissions/obtaining-permissions/882>

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882
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tree ensembles algorithms, such as bagging and boosting. Throughout an extensive experimental
evaluation, we show that the induction of 2CS-based models can be significantly faster than the
traditional Hoeffding Tree Regressor algorithms, whereas retaining similar predictive power and
memory use.

3.2 Introduction

Despite recent advances in technologies for data storage and processing, in many ap-
plications, such as big data, the amount of data being produced led to a situation where the
computational power available to process all incoming data may not be enough. This occurs
because most data is produced continuously, and fast, in the form of potentially unbounded
streams (GAMA, 2010). Traditional supervised Machine Learning (ML) algorithms, i.e. in batch

solutions, were not developed to operate in such circumstances (DOMINGOS; HULTEN, 2000;
GAMA, 2010). Hence, more efficient solutions must be developed to cope with the requirements
of big data (FAN; BIFET, 2013). These algorithms must process each incoming datum just once,
and they cannot indefinitely store instances (GAMA, 2010; GOMES et al., 2017).

In the last years, ML research in data streams has expanded at increasing steps. Among
the supervised solutions for data stream mining, the Hoeffding Tree (HT) framework is one of
the most explored (GAMA, 2010; IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; GOMES et

al., 2017). Despite being primarily applied to classification tasks, there are adaptations of this
framework for regression (IKONOMOVSKA; GAMA; DŽEROSKI, 2011a; OSOJNIK; PANOV;
DŽEROSKI, 2018; MASTELINI et al., 2019). However, dealing with continuous targets brings
additional challenges for incremental algorithms. Differently from classification tasks, there is
no well-defined target partitions, i.e., categories. Hence, tree solutions could potentially evaluate
infinite data partition possibilities.

Practical HT solutions typically rely on the observed predictive features of the train-
ing instances to evaluate split decisions (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b;
IKONOMOVSKA; GAMA; DŽEROSKI, 2015). They store input feature values along with
necessary statistics to guide these decisions. The required statistics can be incrementally main-
tained fairly efficiently (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; OSOJNIK; PANOV;
DŽEROSKI, 2018). Nonetheless, the process of seeking for the best split candidates among the
features of the problem is computationally expensive. The tree models have to test all features
values stored between tree expansions as potential thresholds for new branches creation. The
cost becomes even higher as the tree continues processing more instances and gathers more
data. Hence, more efficient strategies for split candidate selection are needed for HT regressors
(HTRs). More efficient solutions would benefit, for instance, ensemble algorithms, which have re-
ceived increasing attention from the data stream mining community (IKONOMOVSKA; GAMA;
DŽEROSKI, 2015; KRAWCZYK et al., 2017; GOMES et al., 2018). This is particularly true for
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Boosting ensembles, as their additive nature make a parallel training difficult.

In this work, we investigate how to reduce the processing time needed to perform split
decisions, without negatively impacting the prediction error and the required memory. For such,
we use a simple yet effective heuristic to speed up split candidate selection in HTRs, named
Correlation-guided Split Candidate Selection (2CS). 2CS uses the correlation between numeric
features and the target as a heuristic to rank predictive features. Hence, only a reduced subset
of features is explored to expand the tree models, avoiding unnecessary computations. This
strategy is conceptually simple and easily coupled within the HT framework. In this work, we
are focused on stationary data streams, but in the future we intend to extend our analysis to non-
stationary environments. Throughout an extensive experimental analysis, we show the capability
of the 2CS-based trees of accelerating split decisions, while keeping predictive performance and
memory use similar to the traditional HTRs.

The remaining of this text is organized as follows. In section 3.3 we present background
information and important related work. In section 3.4 we formally introduce 2CS. In section 3.5
we describe the experimental setup used to compare the 2CS-based tree variants with the
traditional HTRs. We show and discuss the obtained results in section 3.6. We make our final
considerations and discuss possible directions for future research in section 3.7.

3.3 Background and Related Work

In this paper, we deal with data stream regression tasks, as defined next. We denote as S

a possibly unbounded stream of instances in the form S =
{
(xt ,yt)

}∞

t=1. Each instance (xt ,yt)

drawn at a timestamp t comes from an input space X⊂Rm, m ∈ Z+, and a target space Y ⊂R.
The input space can also be referred to as feature space without loss of generality. Formally, a
regression task can be formulated as the search for a function f : X→ Y .

In data stream scenarios, we assume instances arriving continuously over time. Thus, f

must be updated in an online fashion. Besides, in some cases we can expect an arbitrarily long
delay before instances’ labels are available for the incremental learning algorithms (GRZENDA;
GOMES; BIFET, 2019). Nonetheless, in this study, we assume the true labels are available
immediately after the model predicts the incoming instances.

Tree-based solutions have been extensively applied for data stream mining tasks, from
which regression is not an exception (GAMA, 2010; IKONOMOVSKA; GAMA; DŽEROSKI,
2015; OSOJNIK; PANOV; DŽEROSKI, 2018). This comes from the fact that these models are
conceptually simple and naturally interpretable (GAMA, 2010; BARDDAL; ENEMBRECK,
2019). As previously mentioned, the HT framework is the most prominent example of a tree-
based algorithm family used in online prediction tasks. HTs rely on the Hoeffding Bound (HB)
theorem (HULTEN; SPENCER; DOMINGOS, 2001; GAMA, 2010) to verify whether the model
in training gathered enough evidence to enable its growth.
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Nevertheless, research efforts on data stream mining were mostly devoted to classification
tasks, whereas regression tasks were often overlooked (IKONOMOVSKA; GAMA; DŽEROSKI,
2011b; IKONOMOVSKA; GAMA; DŽEROSKI, 2015; GOMES et al., 2018). Ikonomovska,
Gama and Džeroski (2011b) proposed the Fast Incremental Model Tree with Drift Detection
(FIMT-DD) algorithm, tackling for the first time regression tasks within the HT framework.
In the same work, the authors also presented the Fast Incremental Regression Tree with Drift
Detection (FIRT-DD). FIMT-DD uses linear perceptrons as leaf predictors, whereas FIRT-DD
uses the target mean (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; IKONOMOVSKA;
GAMA; DŽEROSKI, 2015). When coupled with the drift detection mechanism (indicated by
the DD suffix), the tree algorithms use the Page-Hinkley (GAMA, 2010) test to detect concept
drifts and grow alternate tree branches for the new concepts, very much alike a preceding HT
solution for classification tasks (HULTEN; SPENCER; DOMINGOS, 2001). This algorithm
is also similar to the Hoeffding Adaptive Tree (BIFET; GAVALDÀ, 2009), which also has a
regression version (MONTIEL et al., 2018). The HTRs were later on applied as base models
for ensemble algorithms (IKONOMOVSKA; GAMA; DŽEROSKI, 2015; GOMES et al., 2018)
and adapted to multi-target regression tasks (IKONOMOVSKA; GAMA; DŽEROSKI, 2011a;
OSOJNIK; PANOV; DŽEROSKI, 2018; MASTELINI et al., 2019).

Both tree algorithms monitor the standard deviation reduction (SDR) in the target space
as a measure for split recommendations (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b;
IKONOMOVSKA; GAMA; DŽEROSKI, 2015). When deciding whether and how to split, HTRs
compare the SDR of the second-best split candidate divided by the SDR of the best one. HTRs
verify whether this ratio plus the HB is smaller than 1 (IKONOMOVSKA; GAMA; DŽEROSKI,
2011b; MASTELINI et al., 2019). In the affirmative case, we can state that the best split candidate
is statistically better than the second one and, as a result, the tree creates new branches.

To decrease computational costs, HTs do not attempt to split after each incoming instance.
Instead, they wait for nmin instances (also referred to as grace period) between split attempts.
Further, in the case where split candidates are equally good, HTs also apply a tie-breaking
mechanism to avoid indefinitely waiting for growth (GAMA, 2010; IKONOMOVSKA; GAMA;
DŽEROSKI, 2011b). If the calculated HB shrinks below a tie-breaking threshold τ , a split is
performed with the current best candidate.

In order to evaluate split candidates, HTRs rely on storing the observed feature values
along with sufficient statistics related to them. The Extended Binary Search Tree (E-BST)
algorithm is applied for this end (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b). At each
of its node, E-BST stores a set of sums related to the elements smaller (at the left side) and
larger (at the right side) than each observed feature value. Hence, E-BST stores for the left and
right sides the count of elements observed (n), the sum of the target values (∑y), and the sum of
squared target values (∑y2). These statistics are enough to calculate the variance and the standard
deviation incrementally (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; IKONOMOVSKA;
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GAMA; DŽEROSKI, 2015). Thus, each stored feature value can be evaluated as a potential split
point.

When considering datasets with an increased number of features, evaluating all the
observed split candidates becomes costly. HTRs calculate the SDR of each observed value
for each feature. This action becomes even more impacting when considering ensembles of
HTRs. In this work, we hypothesize that the features mostly correlated with the target should
provide the best split points. Such idea was previously explored in batch scenarios (HOTHORN;
HORNIK; ZEILEIS, 2006; SALEHI-MOGHADDAMI; YAZDI; POOSTCHI, 2011), but was
not still covered in resource constrained online situations. In our proposal, the HTR traverse just
the E-BST of the features most correlated with the target in search for split points. This action
ought to decrease the processing time of HTRs without negatively affect their prediction power
and memory consumption. This strategy, named 2CS, is detailed in the next section.

3.4 Correlation-guided split candidate selection

The split candidate selection in HTRs is guided by estimating the SDR of each partition
candidate. In fact, the standard deviation is a measure of the spread of the data. Therefore, HTRs,
similarly to traditional batch regression trees (BREIMAN et al., 2017), aim at reducing the spread
of instances lying in each of the created partitions. At the same time, regression trees try to make
data partitions in such way that they become as maximally apart from each other as possible,
following the “divide-and-conquer” principle (BREIMAN et al., 2017; IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b).

In 2CS, we hypothesize that a measure of the relation between the numeric inputs and
the target, such as the linear correlation, could give clues of which among them would be the
most suited to perform a split decision (HOTHORN; HORNIK; ZEILEIS, 2006; SALEHI-
MOGHADDAMI; YAZDI; POOSTCHI, 2011). This conjecture, to the best of our knowledge,
was not explored yet in online learning scenarios. As presented in Gama (GAMA, 2010), we can
easily calculate the linear correlation coefficient using a small set of incrementally maintained
statistics. Most interestingly, almost all of them are inherently maintained by the HTRs. The
correlation calculation is described in Equation 3.1.

r =
∑xy− (∑x)(∑y)

n√(
∑x2− (∑x)2

n

)(
∑y2− (∑y)2

n

) (3.1)

As previously mentioned in section 3.3, HTRs already maintain n, ∑y, and ∑y2. More-
over, ∑x and ∑x2 are also maintained by HTRs to enable feature standardization (IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b; OSOJNIK; PANOV; DŽEROSKI, 2018; MASTELINI et al., 2019).
These measures refer to the sum of observed values for each feature and the sum of their squared
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values, respectively. Here, for simplicity, we omit the indexing for each j-th feature. Therefore,
the only measure missing from Equation 3.1 is ∑xy, i.e., the sum of the product between the
feature values and the corresponding target observations. This additional measure can be easily
added to the set of monitored statistics and just adds a constant increment in memory and time
processing requirements. Now, we are ready to use the linear correlation as a heuristic to guide
split candidate selection. It is important to mention that both positive and negative correlations
are an indication of relationships between features and targets. Thus, in 2CS, we take the abso-
lute value of the calculated correlations when ranking the features. Figure 4 summarizes 2CS’s
operation and how it fits within the HTR split decisions.

[A, B, C, D]

{B, D}

E-BST

Features
Correlation with

target

Absolute correlation
filtering

k=2

Feature Correlation
A 0.3
B 0.7
C 0.5
D -0.8

Split point evaluation

Filtered split candidates

E-BST

Figure 4 – Overview of 2CS’s operation in the HTR framework.

The benefits of using a heuristic of how likely a feature will provide the best split
decision are twofold. Firstly, different from batch algorithms, HTRs observe training examples
incrementally as they arrive. Hence, at the moment of the splits, only partial information is
available to make decisions. Although the HT framework gives us some guarantees that the
trained models will perform similarly to batch ones, given enough observations (GAMA, 2010;
IKONOMOVSKA; GAMA; DŽEROSKI, 2011b), shifting the tree growth too much towards
what the currently available data describe can lead to overfitting (BISHOP, 2006; BARDDAL;
ENEMBRECK, 2019). Secondly, by using a heuristic to select a subset of features to evaluate
as split candidates, we can avoid performing possibly unnecessary processing efforts. The
performance improvements are expected to increase jointly with the number of input features.

The complete functioning of 2CS is straightforward and easily included in the HTR
framework. After nmin instances are observed by a leaf node, and the HTR is ready to attempt a
split, our proposal performs the following three steps:

1. 2CS calculates the linear correlation between the numeric input features and the target
using Equation 3.1;
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2. The features are ranked according to the absolute value of their linear correlation;

3. 2CS selects the k most correlated features to evaluate as split candidates along with
(possibly) existing nominal features.

Here, k is a hyper-parameter that must be adjusted. In our experimental evaluation, we
compare different values for k and their impact on predictive performance (refer to section 3.5 for
more information). It is important to note that the cost to calculate the correlations and rank the
features accordingly to their values is usually negligible compared with the number of operations
commonly performed in split attempts. This claim is supported by our experimental findings.
Besides, measuring linear correlations only makes sense when both the features and the target
are continuous. Hence, we only consider numerical features when applying the 2CS input feature
filtering. Nominal inputs are treated following the strategy proposed by Osojnik, Panov and
Džeroski (2018), where a tree branch is created for each category, in case the feature is used to
split.

3.5 Experimental setup

In this section, we detail our setup to compare the traditional HTRs against the trees
coupled with 2CS. They include the benchmark datasets, the settings for the tree-based algorithms,
and the evaluation metrics. We performed the experiments using the scikit-multiflow Python
framework for data stream mining (MONTIEL et al., 2018). For such, we used a machine
running a 64-bit Debian system with 128 GB of RAM and an Intel Xeon (X5690) CPU at 3.47
GHz.

3.5.1 Datasets

All the evaluated datasets were used in Ikonomovska, Gama and Džeroski (2011b),
where FIMT-DD was first proposed. All of them are related to stationary tasks. The datasets vary
from ≈ 4000 examples to ≈ 41000 instances, as shown in Table 6. The majority of the input
features in these datasets are numeric. All the datasets are publicly available in platforms such as
UCI2 and OpenML3.

3.5.2 Variants of 2CS

We evaluated different settings for 2CS, ranging the correlation rank threshold from
k = 2 to k = 5. For instance, when k = 2, only the two numeric features most correlated with
the target would be evaluated as split candidates. It is important to note, however, that the HTs

2<https://archive.ics.uci.edu/ml/datasets.php>
3<https://www.openml.org>

https://archive.ics.uci.edu/ml/datasets.php
https://www.openml.org
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Table 6 – Datasets used in the experiments.

Dataset #Examples #Numeric
Inputs

#Categorical
Inputs

Abalone 4177 8 0
Ailerons∗ 13750 40 0
Elevators∗ 16599 18 0
House8L 22784 8 0
House16H 22784 16 0
MV∗ 40768 7 3
Pol 15000 48 0
Wind 6574 14 0
Wine 6497 11 0

∗ Synthetic dataset.

include a pre-pruning mechanism when performing splits. They also evaluate the possibility of
not performing a split and maintaining the tree as it is, which here we refer as a null split option.
Thus, HTRs with 2CS considered as split candidates the filtered numerical features, the null split,
and the possibly existing categorical input values (as we discussed in section 3.4).

Here, we want to stress out that some of the evaluated datasets have fewer than 10 input
features. This low number of features can reduce the processing time improvement brought by
our proposal. We will return to this discussion in the result section.

3.5.3 Settings used in the tree predictors

During the experiments, we fixed some hyper-parameters for the tree algorithms with val-
ues commonly used in the literature (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; DUARTE;
GAMA, 2015; OSOJNIK; PANOV; DŽEROSKI, 2018). Split attempts were performed at inter-
vals of nmin = 200 examples. We set the significance level of the HB calculation to δ = 10−7,
and the tie-break hyper-parameter to τ = 0.05.

Besides, in all cases, we used 200 examples to initiate the tree predictors, providing
a “warm” start for the evaluations. Finally, the perceptron weights were started with uniform
random values in the range [−1,1]. In case of splits, new nodes inherit their ancestors’ weights.

Regarding the decision tree induction algorithms, we considered regression versions
of the HT framework, as available in scikit-multiflow. They operate very similarly to FIMT-
DD/FIRT-DD but do not have concept drift adaptation mechanisms, as at this point we only deal
with stationary streams. We denote by HTRm and HTRp tree models that use mean and linear
perceptron as their prediction strategy, respectively. Although very similar, these tree algorithms
have different prediction strategies and might react differently when working along with 2CS.
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3.5.4 Evaluation strategy

In all the performed experiments, we used the prequential strategy for the evaluation
of the HTR models (GAMA, 2010; KRAWCZYK et al., 2017). In this benchmarking strategy,
for each new incoming example, the model first makes a prediction and then learns from it.
All tree-based algorithms were applied ten times to each dataset with different random number
generator seeds. We report the average results obtained to reduce the effects of randomness and
operational system external influences. For all the monitored metrics, we computed their mean
value considering all the data seen until each measurement point and also considered windowed
measurements. For such, we used a non-overlapping sliding window of size 200 (OSOJNIK;
PANOV; DŽEROSKI, 2018).

We chose the Mean Absolute Error (MAE) as the error metric. This metric evaluates the
absolute deviations of the tree’s predictions compared to the expected target values. Furthermore,
we report the amount of time spent by each algorithm (in seconds) and the total of memory
resources consumed by the predictors (in MB).

We also performed statistical tests to verify whether the differences in the predictive
performance of the models are statistically significant regarding the evaluation metrics. The
Friedman test and the Nemenyi post-hoc test were applied with α = 0.05, as described by Demšar
(2006). We considered the windowed measurements for this end, to take into consideration the
different time steps of the stream. We summed all the measurements for the different stream
portions to obtain a single measurement per dataset.

3.6 Results and Discussion

In this section, we present and discuss our experimental results. First, we present the
mean measurements after processing all the considered streams. Next, we discuss in details some
interesting cases found during our analysis. Finally, we compare the performance of 2CS-based
HTRs against traditional solutions, supported by statistical significance tests.

3.6.1 Overall results

We start presenting the MAE values for all the compared algorithm variants, in Table 7.
The best variants obtained by the HTR algorithm are highlighted in bold. The best results per
dataset are underlined. We indicate with k = i, i ∈ {2, ...,5}, the variants of 2CS. The variant all

represents the traditional HTR algorithms. The average ranks for the different algorithms are
also indicated.

As shown in Table 7, in most cases, the 2CS variants performed very similarly to their
traditional counterparts. Despite some ties, MAE differences were observed after the second
decimal place, a piece of information here omitted for visual clarity. Nonetheless, in some cases,
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such as the Pol dataset, the error difference was clear. These differences are a result of distinct
tree structures generated by the 2CS strategy and the original HTR framework. In our proposal,
correlation is applied as an additional heuristic to guide split selection and avoid excessive
computations. Nevertheless, heuristics can sometimes be misleading, as some evaluated cases
indicated. Anyhow, HTRk=5

p obtained the best overall ranking concerning MAE, being closely
followed by HTRall

m .

Table 7 – MAE results. The best results per algorithm are in bold, while the best results per dataset are
underlined.

Dataset HTRm
all k = 2 k = 3 k = 4 k = 5

Abalone 2.24±0.00 2.08±0.00 2.22±0.00 2.40±0.00 2.40±0.00
Ailerons 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Elevators 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
House8L 21237.95±0.00 22466.70±0.00 22010.95±0.00 21965.50±0.00 21933.58±0.00
House16H 24247.50±0.00 25984.76±0.00 26058.76±0.00 24711.80±0.00 24877.13±0.00
MV 1.37±0.00 4.80±0.00 4.42±0.00 2.97±0.00 2.35±0.00
Pol 12.62±0.00 37.31±0.00 37.31±0.00 37.31±0.00 37.31±0.00
Wind 3.63±0.00 4.30±0.00 4.18±0.00 3.71±0.00 4.10±0.00
Wine 0.64±0.00 0.68±0.00 0.68±0.00 0.67±0.00 0.65±0.00

Average rank 3.33 7.67 7.78 6.44 6.67

Dataset HTRp
all k = 2 k = 3 k = 4 k = 5

Abalone 1.66±0.09 1.77±0.12 1.67±0.10 1.58±0.07 1.59±0.08
Ailerons 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00
Elevators 0.02±0.02 0.02±0.01 0.01±0.00 0.01±0.01 0.00±0.00
House8L 21411.20±727.93 21403.59±926.08 21144.45±870.59 20902.70±862.82 20917.15±856.20
House16H 24140.92±1358.02 26152.65±1559.79 26447.92±1693.86 24315.09±1368.92 23987.59±1355.32
MV 1.18±0.22 2.36±0.38 2.12±0.31 1.59±0.26 1.64±0.32
Pol 14.25±1.38 27.88±0.27 27.88±0.27 27.88±0.27 27.88±0.27
Wind 3.44±0.33 3.75±0.46 3.45±0.35 3.74±0.45 3.36±0.31
Wine 0.62±0.04 0.62±0.04 0.62±0.04 0.61±0.03 0.61±0.03

Average rank 4.33 6.56 5.33 3.89 3.00

When considering the resulting model sizes, the 2CS-based variants generally originated
models smaller than those generated by the original HTR algorithm. This fact is evidenced in
Table 8. The best overall solution was HTRk=4

m . Interestingly, the 2CS variants with smaller k

hyper-parameter values did not necessarily result in less memory usage. This, again, comes from
the fact that the correlation filtering for split candidates leads to different tree structures. In some
cases, by evaluating fewer split candidates, the 2CS trees can take longer to split or split with
increased frequency. We could not find a clear pattern relating the k value and resulting model
size. Notwithstanding, excluding HTRk=5

p , all the 2CS variants required, in general, less memory
than the traditional HTR algorithms.

Table 9 presents the running times of the algorithms and their variants. This is the
characteristic where the 2CS-based variants were clearly superior. Our proposal, as expected,
was the fastest method. The improvements, nevertheless, were less pronounced for the datasets
with less input features, as expected. When considering HTRm, the running time increased with
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Table 8 – Model size results (in MB). The best results per algorithm are in bold, while the best results per
dataset are underlined.

Dataset HTRm HTRp
all k = 2 k = 3 k = 4 k = 5 all k = 2 k = 3 k = 4 k = 5

Abalone 1.71 2.79 2.24 0.68 0.01 1.71 2.80 2.25 0.69 0.01
Ailerons 12.09 8.88 10.45 9.88 13.01 12.10 8.90 10.47 9.90 13.03
Elevators 11.71 1.10 13.14 11.18 12.83 11.72 1.10 13.16 11.20 12.86
House8L 28.30 32.41 30.03 32.17 30.83 28.33 32.44 30.06 32.20 30.86
House16H 50.59 48.91 56.99 87.62 60.31 50.62 48.95 57.04 87.65 60.34
MV 61.74 77.12 66.99 57.96 71.38 61.80 77.17 67.04 58.00 71.42
Pol 9.89 1.87 1.87 1.87 1.87 9.94 1.87 1.87 1.87 1.87
Wind 8.39 10.93 7.82 8.00 5.56 8.40 10.94 7.82 8.01 5.56
Wine 5.53 4.37 4.25 3.72 4.65 5.53 4.38 4.26 3.73 4.66

Average rank 5.44 5.00 4.67 3.89 5.33 6.44 6.33 6.00 5.22 6.67

the increase of k, as highlighted by the average ranks. The prediction strategy of this tree variant
is simple and does not require matrix operations, which reflected in the running time. On the
other hand, the same did not occur for HTRp. The fastest HTRp variant was the the one with
k = 3. Hence, we did not observe a clear relation between k and the final model runtime, as it
occurs with HTRm. The costs of updating the trees and making predictions ended up overcoming
the gains in avoiding the evaluation of all features as split candidates.

3.6.2 Analysis

As previously mentioned, the use of correlation as a heuristic to guide split feature
selection can lead to tree structures different from those induced by the original HTR algorithms.
This different growth pattern can have either a positive or a negative impact on the predictive
performance of resulting models. According to the experimental results, the use of 2CS usually
improved the model size and running time. However, there are cases where 2CS uses more
memory or even has a higher runtime than the original solution, e.g., when the 2CS-based trees
are much larger than the original HTRs. At first glance, nonetheless, it seems improbable a tree
structure built on a reduced amount of information results in lower prediction error. However,
we observed this unusual behavior in our experiments. Next, we present our interpretation of this
and other interesting cases. For such, we use two of the evaluated datasets.

First, we present the time-varying results for the Pol dataset, which has 48 input features.
Due to space limits, we will focus on the HTRm-based variants. As can be seen on the top chart
of Figure 5a, the MAE values obtained by the 2CS variants were much worse than those obtained
by HTRall

m . The analysis of memory usage can give us evidence for this sub-par performance. As
showed in the middle chart of the same figure, 2CS variants spent much less memory than the
traditional HTRs variants. In fact, they presented a slowly increasing memory behavior. This
steady memory increase is probably due to the 2CS-based models performing splits frequently,
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Table 9 – Running time results. The best results per algorithm are in bold, while the best results per
dataset are underlined.

Dataset HTRm
all k = 2 k = 3 k = 4 k = 5

Abalone 2.39±0.16 1.14±0.02 2.07±0.13 2.56±0.02 4.74±0.35
Ailerons 12.62±0.43 6.12±0.07 9.74±0.29 6.19±0.08 10.79±0.33
Elevators 7.42±0.45 3.98±0.04 7.45±0.23 4.97±0.10 7.71±0.33
House8L 13.98±0.46 7.25±0.12 11.34±0.31 8.36±0.17 12.90±0.32
House16H 28.08±0.71 14.31±0.37 17.33±0.42 21.48±0.42 21.09±0.54
MV 38.09±0.54 24.56±0.39 27.67±0.46 30.73±0.59 35.08±0.52
Pol 8.00±0.34 6.35±0.18 6.40±0.25 6.42±0.29 6.14±0.16
Wind 5.56±0.24 3.58±0.11 3.96±0.21 3.91±0.16 4.35±0.16
Wine 2.55±0.14 2.59±0.11 2.76±0.12 2.88±0.20 2.96±0.13

Average rank 4.67 1.22 2.89 3.11 4.56

Dataset HTRp
all k = 2 k = 3 k = 4 k = 5

Abalone 3.49±0.22 2.71±0.10 3.03±0.19 4.97±0.23 5.69±0.27
Ailerons 25.12±1.08 22.44±0.55 22.01±0.57 22.08±0.82 22.71±0.52
Elevators 14.84±0.55 13.66±0.63 14.99±0.52 15.11±0.46 14.94±0.30
House8L 19.62±0.54 16.61±0.22 17.05±0.29 17.65±0.31 18.61±0.37
House16H 38.21±0.79 26.64±0.46 27.08±0.66 30.79±0.56 30.14±0.54
MV 49.68±1.18 37.00±0.35 38.38±0.37 42.19±0.55 45.68±0.43
Pol 28.59±1.24 27.32±0.81 16.22±0.09 26.43±0.84 16.26±0.07
Wind 7.34±0.63 5.94±0.24 3.81±0.06 5.99±0.36 4.17±0.02
Wine 4.15±0.46 4.37±0.40 2.89±0.03 4.25±0.62 3.04±0.04

Average rank 9.11 6.89 6.00 8.56 8.00

so the E-BSTs did not gather much data. There are no memory drops, as they occur when a split
is performed, and E-BSTs with multiple stored elements are discarded. In fact, E-BSTs are the
main source of memory consumption, when compared to the other elements of the trees.

As expected, memory increase and drop occurs for HTRall
m , as depicted in the figure. The

bottom chart from Figure 5a shows that smaller models resulted in lower running times. In this
case, we believe that 2CS misguided the tree growth, resulting in undesired performance levels.
To overcome this deficiency, we intend to investigate more sophisticated mechanisms for split
candidate selection. A potential strategy to pursue would be applying meta-learning for split
candidate recommendation (BRAZDIL et al., 2008).

The second case discussed refers to the Elevators dataset, whose performance profiles
are presented in Figure 5b. This time, we will only consider the HTRp variants. Regarding MAE,
after ≈ 8000 instances, the 2CS-based HTRp become more accurate than HTRall

p . Interestingly,
the higher the k, the faster the 2CS-based variants reacted to the sudden error increase. Even
the most limited HTRk=2

p was better than HTRall
p . In this context, we observed the opposite of

what we saw in the previous case. Our proposal avoided overfitting to the current observed state,
as it selected better features for the splits. HTRall

p relies on the currently stored values in the
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(b) Elevators dataset and HTRp
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Figure 5 – Time varying results for the Pol and Elevators datasets.

E-BST to decide the splits. However, the current best split decision might be only valid for the
data observed so far. The best split for future data might be different from the current estimation.
This seems to be the case for the Elevators dataset. Nevertheless, our proposal’s variations were
able to overcome this problem. This type of situation deserves future investigation. We intend
to put special attention to non-stationary problems to evaluate how 2CS might affect the tree
algorithms in these scenarios.

Regarding memory and processing time, the 2CS-based variants performed very similarly
to HTRm in the Elevators dataset. 2CS generated faster trees than HTRall

p . They also used varying,
but similar memory amounts to HTRall

p . The only clear exception was the memory usage of
HTRk=2

p . Following the same reasoning used for the Pol dataset, the 2CS variant splits with
increased frequency in comparison with the other tree models, which resulted in reduced memory
usage. Nonetheless, this time, HTRk=2

p obtained smaller errors than HTRall
p .

3.6.3 Statistical analysis and 2CS variant selection

We present our statistical analysis using critical difference (CD) diagrams (Figure 6).
Regarding MAE, we did not observe a clear pattern for both HTRm (Figure 6a) and HTRp

(Figure 6b). The 2CS trees performed comparably to their original counterparts, with a few
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exceptions. In general, the higher the k, the smaller the error. The memory usage was statistically
equivalent among all the compared algorithms. When comparing the runtime of the models,
however, we observed that some 2CS variants (usually the ones with k ≤ 3) were significantly
faster than their vanilla versions. In the future we intend to increase the number of datasets
to obtain more pieces of evidence for comparison and highlight the differences between the
algorithms.

(a) HTRm (b) HTRp

Figure 6 – Statistical tests results: MAE (top), Model size (middle), Running time (bottom). Tree algo-
rithms whose ranks do not differ by at least the critical distance (CD) value are considered
statistically equivalent (at α = 0.05).

With many algorithm variants and evaluation metrics, it might be difficult to select models
that present a good compromise between error, memory usage, and running time. We generated
a Principal Component Analysis (PCA) biplot (GABRIEL, 1971) to comprise all algorithms
and metrics under evaluation on the same chart, as presented in Figure 7. In the figure, points
represent the compared algorithms, and vectors represent the normalized evaluation metrics. The
direction of the metrics indicates their influence over the algorithms, i.e., the farther the points
are from the origin, the highest their MAE, Memory usage, or Running time (depending on
their placement in relation to the metrics’ vectors). Lastly, the angle between the metrics is an
indication of correlation, in case the vectors have roughly the same or opposite directions (which
configure positive and negative correlations, respectively). Orthogonality is an indication of no
correlation.

The obtained biplot enables us to draw interesting observations. Firstly, MAE and the
Running time are negatively correlated, i.e., the higher the MAE, the smaller the time spent by
the trees, and vice-versa. The resulting tree size does not seem to be related to the error nor
the running time of the models. The least accurate variant was HTRk=2

m , the slowest ones were
HTRk∈{4,5,all}

p , and the biggest ones were the vanilla HTR versions. Towards the origin of the
chart we have variants that offer the best compromise between the tree metrics: HTRk=5

m and
HTRk∈{2,3}

p . We could choose one among them based on which metric is the priority in a specific
application.
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Figure 7 – PCA biplot comprising all the compared algorithms and evaluation metrics.

3.7 Final considerations

Hoeffding Trees represent one of the most prominent algorithmic solutions for incre-
mental supervised learning. They are conceptually simple, easy to interpret, and usually fast to
train. Online regression brings additional challenges as there are no well-defined or trivial target
partitions to guide tree growth, as in classification. Hence, for regression streaming applications,
more efficient strategies for feature split point selection are needed.

In this work, we proposed the use of linear correlation as a complementary heuristic to
select a subset of input features to evaluate as split candidates. Our proposal, 2CS, can be easily
merged into the HTR framework, has just a single hyper-parameter to tune, and does not increase
the amount of the necessary memory. 2CS reduces the processing time by evaluating fewer
input features as split candidates. Experimental results showed that 2CS retain the prediction
capabilities of vanilla HTRs, whereas using a similar memory footprint and being significantly
faster.

As future work, we intend to evaluate the 2CS-based trees as base models for ensemble
algorithms and to consider non-stationary problems. We also intend to evaluate the capabilities
of 2CS by using larger regression datasets regarding both their number of observations and input
features. We also plan to apply more sophisticated strategies for split candidate selection. One
of the possible techniques to explore is the usage of meta-learning to recommend the best split
candidate.
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4.1 Abstract

A central aspect of online decision trees is evaluating the incoming data and performing
model growth. For such, trees much deal with different kinds of input features. Numerical features
are no exception, and they pose additional challenges compared to other kinds of features, as
there is no trivial strategy to choose the best point to make a split decision. Regression tasks are
even more challenging because both the features and the target are continuous. Typical online
solutions evaluate and store all the points monitored between split attempts, which goes against
the constraints posed in real-time applications. In this paper, we introduce the Quantization
Observer (QO), a simple yet effective hashing-based algorithm to monitor and evaluate split
candidates in numerical features for online tree regressors. QO can be easily integrated into
incremental decision trees, such as Hoeffding Trees, and it has a monitoring cost of O(1) per
instance and a sub-linear cost to evaluate split candidates. Previous solutions had a O(logn)

cost per insertion (in the best case) and a linear cost to evaluate split candidates. Our extensive
experimental setup highlights QO’s effectiveness in providing accurate split point suggestions

*<https://www.elsevier.com/about/policies/copyright>
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while spending much less memory and processing time than its competitors.

4.2 Introduction and Background

With the ever growing production of data, data stream mining became a particularly
relevant research area. Data streams might come from different sources, such as the internet,
Internet of Things (IoT) devices, sensors, among others. They are potentially unbounded and
might change through time, thus, multiple specialized unsupervised and supervised learning
algorithms have been proposed to tackle data streams. Regarding supervised data stream learning,
online or incremental Decision Tree (DT) algorithms and ensembles thereof are frequent option
among researchers and practitioners (KRAWCZYK et al., 2017; BIFET et al., 2018). DTs are
flexible, interpretable, and do not make any assumptions about the data’s characteristics.

However, online DT (ODT) models face additional constraints when compared with their
traditional batch counterparts. First, while the data is unbounded, the computational resources are
limited. For this reason, ODTs can neither store instances indefinitely nor process them multiple
times (GAMA, 2010; BIFET et al., 2018). Typical solutions process each incoming datum once,
which is then discarded. Besides, from the start, the trees must be able to predict new instances
and be updated anytime. Hence, ODT models should be maximally accurate, whereas keeping
the memory and processing time usage minimal.

Multiple families of theoretical ODT algorithms have been proposed over the years.
The most popular of them, the Hoeffding Tree (HT), relies on Hoeffding’s inequality (HO-
EFFDING, 1963) to decide when an incremental model has gathered enough information to
expand itself. Instances of HTs were proposed for classification (DOMINGOS; HULTEN, 2000),
regression (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b), structured output tasks (OSO-
JNIK; PANOV; DŽEROSKI, 2018). Other ODTs variants also use the same theoretical frame-
work (PFAHRINGER; HOLMES; KIRKBY, 2007), as well as decision rule systems (ALMEIDA;
FERREIRA; GAMA, 2013). ODT solutions that do not fit in the HT framework were also ex-
plored (RUTKOWSKI et al., 2012; GOUK; PFAHRINGER; FRANK, 2019).

Apart from their core differences, ODTs share a common property: they monitor input
features and perform split attempts. ODTs must process the stream’s features and store statistics
relating each input to the target value as data continuously arrives. These statistics differ for
classification or regression tasks (DOMINGOS; HULTEN, 2000; IKONOMOVSKA; GAMA;
DŽEROSKI, 2011b). The stored statistics enable the models to evaluate split candidates and
decide upon the best feature (and split/cut point) to expand their structure. For such, ODTs rely
on a class of algorithms named Attribute Observers (AO), and carry one AO per feature in each
one of their leaves.

ODTs can efficiently deal with nominal attributes since split enabling statistics can be
directly maintained for each category. Numerical attributes, on the other hand, do not have
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explicit partitions and cannot be trivially manipulated to calculate split points (PFAHRINGER;
HOLMES; KIRKBY, 2008; IKONOMOVSKA; GAMA; DŽEROSKI, 2011b). Usually, batch
DT rely on sorting operations to evaluate split candidates. At each node, the tree has to sort the
numerical input values and evaluate every available binary split decision.

In the online setting, the cost of performing sorting operations is prohibitive. Thus, less
computationally expensive alternatives have been proposed to overcome this limitation (PFAHRINGER;
HOLMES; KIRKBY, 2008; GOUK; PFAHRINGER; FRANK, 2019). Typical ODT solutions
use data structures or attribute distribution estimators to keep the input values and their statistics
sorted with reduced costs. Early ODTs for classification and most of the current versions for
regression use a binary search tree (BST) as AO. This structure is named Extended Binary
Search Tree (E-BST) since it stores both input values and target statistics in its nodes. While
classification E-BSTs store class counts in their nodes (DOMINGOS; HULTEN, 2000), regres-
sion E-BSTs keep variables used for online mean and variance calculation (IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b; OSOJNIK; PANOV; DŽEROSKI, 2018).

Although fairly efficient, E-BST still has an insertion cost of O(logn) per observation,
in the best case, and a memory cost of O(n), where n is the number of stored instances. An
in-order traversal of the BST is needed to account for all monitored input values and evaluate
split candidates. Such traversal, or split point query, has a cost of O(n). Moreover, only partial
information is available for evaluation at the split time, in contrast to batch DT solutions.
Consequently, the split chosen for an input attribute after observing n instances might not be the
same had the tree monitored n+ k instances. If extrapolation can be applied, the obtained split
points might be improved.

More efficient numerical AOs have been investigated for classification (PFAHRINGER;
HOLMES; KIRKBY, 2008). In these tasks, the target attribute has well-defined partitions (cate-
gories) and more effective strategies can be explored. Histograms are used as AOs (PFAHRINGER;
HOLMES; KIRKBY, 2008), and bear a cost of O(logm) per insertion and O(m) of memory and
query costs, where m represents the number of histogram bins. Another popular AO approximates
the probability density distribution of each class using Gaussian distributions (PFAHRINGER;
HOLMES; KIRKBY, 2008). These distributions can be easily constructed in an online fashion
and only require estimating the sample mean and variance. This strategy has a O(1) cost per
insertion, and a sub-linear query cost.

Unfortunately, in regression tasks, more than counts are required to calculate the dis-
persion measure for split candidate evaluation. The Variance Reduction (VR) strategy applied
to evaluate how promising is each split point involves keeping incremental estimations of the
sample mean and variance. These estimators must be kept for each split candidate lying in
the hyper-rectangle defined by a path from the tree root to a leaf. Therefore, incremental tree
regressors must be able to calculate variances for each partition created by dividing the input
space in axis-aligned splits of the form x≤ c (left branch) and x > c (right branch), where x is
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one of the input features, and c is the split threshold (or cut value).

Most of the existing regression ODTs still rely on the E-BST structure, whose disadvan-
tages were previously discussed. Besides, the algorithm commonly used in the E-BST (IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b) for calculating variances is known to be unstable and produce
inaccurate results (FINCH, 2009; KNUTH, 2014). Consequently, all the current regressors
relying on E-BST are prone to intensive memory usage and processing time, as well as yielding
inaccurate results due to the numerical instability of the incremental variance estimators. Ideally,
we would like to obtain AO algorithms for regression whose cost for adding new examples and
querying split candidates is O(1). However, if we can devise an accurate solution with constant
insertion cost and sub-linear query costs, this is already on par with the most advanced AO
solutions for ODT classifiers.

This paper introduces the Quantizer Observer (QO), a dynamical quantization algorithm
to handle numerical features in ODT regressors. QO stores the same kind of targets’ statistics
as those monitored by E-BST. However, QO has a O(1) cost per insertion of elements and
a memory cost of O(n′), where n′≪ n. Despite being much faster than E-BST, QO can still
produce split candidates with similar discriminating capability. To assess its performance, QO is
experimentally compared with the traditional E-BST and a variation of E-BST that truncates
the input values before their insertion in the BST, named Truncated E-BST (TE-BST). TE-BST
aims to reduce the memory usage and processing time of E-BST.

To circumvent the problem of inaccurate incremental variance estimation, we extended
the formulae proposed by Chan, Golub and LeVeque (1982) to handle robust and distributed
variance estimation. The expressions proposed by Chan, Golub and LeVeque (1982) enable
summing partial estimates of the variance. We extend them by also enabling subtracting partial
estimates of variance from each other. All the AOs for regression compared in this work adopt
these enhanced and robust incremental variance estimators.

We benchmark the different AOs using an extensive synthetic data setup and account
for insertion, storage, and query costs. Here, we focus on the AOs rather than on the actual tree
models. This focus allows us to isolate the splitting procedure from other aspects of the ODTs,
such as tree traversal and how the models compute predictions. We vary the sample characteristics,
size, and noise levels to simulate different situations the AOs might face when working in the
trees. According to the experimental results, QO reduced, with statistical significance, the
memory costs and processing time when compared with the existing AOs for regression. The
experimental results also show that QO can produce split points similar to those provided by
E-BST.

The remaining of this work is organized as follows: section 4.3 formalizes the split
point search in regression ODTs. Section 4.4 presents the robust incremental mean and variance
estimators that replace the previous used unstable estimators. Next, section 4.5 presents our
proposed AO, QO. We detail our evaluation setup in section 4.6 and discuss the obtained results
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in section 4.7. Finally, we present our final considerations and possible directions for future
research in section 4.8.

4.3 Problem definition
Suppose an infinite stream S = {(x,y)t}∞

t=0, where each object at time t, (x,y), is com-
posed of numerical input attributes x∈ x, and a scalar target attribute y. Regression ODT induction
algorithms work by creating binary partitions in the numerical features. These partitions take
place at a specific attribute value x = c. Hence, trees grow by creating branches from a decision
node d to leaf nodes l− and l+, which are defined by the tests x ≤ c and x > c, respectively.
To guarantee that the resulting models will be accurate, the tree learning algorithms have to
determine the best (x,c) combination, among all x ∈ x.

As previously discussed, DT regressors typically minimize the MSE of the target value
of points in a leaf node compared to their mean value, i.e., the centroid or prototype point. This
strategy is equivalent to minimizing the variance of the y values belonging to each leaf. For this
reason, when performing a split attempt, DT regressors aim at choosing the partition candidate
that maximally reduces the variance of y, here simply referred to as s2.

The resulting heuristic to guide tree growth, called Variance Reduction (VR), is defined
in Equation 4.1.

VR(d,{l−,l+}) = s2(d)− |l−|
|d|

s2(l−)−
|l+|
|d|

s2(l+) (4.1)

The notation |.| represents the number of instances lying in the tree node inside the
brackets. From Equation 4.1, it is clear that trees must be able to calculate the variance of
the target variable in their nodes. This operation is trivial in batch regression DT induction
algorithms since all data is available beforehand. In online applications, however, the algorithms
must estimate the variance incrementally and at any time for each partition induced by a given
realization of (x,c). AOs, such as E-BST, are used for this end.

Each node in an E-BST represents one of the observed values xv of the monitored feature
x. New observations are added as new leaves in the E-BST, and the order in which the x values are
inserted impact how balanced the BST becomes. Only the nodes accessed when a new instance
is sorted down the E-BST have their statistics updated. Nodes store target statistics accounting
for all x observations that are smaller than or equal to their xv.

Originally, E-BST was designed to operate using the so-called naive incremental vari-
ance estimator (KNUTH, 2014). Hence, each E-BST node stores ∑x≤xv w, ∑x≤xv y, and ∑x≤xv y2,
respectively, the sum of weights, the target values, and the squared target values. These prop-
erties, although producing inaccurate estimates of the variance and being prone to numerical
cancellation (FINCH, 2009), can be easily merged. In other words, we can either add or subtract
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the statistics of two different E-BST nodes and calculate the resulting variance. Finally, by doing
a complete in-order traversal, we can retrieve the statistics necessary to compute the VR value
for the partition induced by each xv in the E-BST.

Next, we discuss how to improve the VR values calculated in the E-BST and any other
AO for regression tasks.

4.4 Robust Variance calculation
Calculating the variance of each candidate partition is a central aspect of ODT regressors.

As previously mentioned, the current solutions rely on an incremental algorithm with well-known
problems (FINCH, 2009; KNUTH, 2014). We start this section by describing the Welford’s
algorithm, a robust and popular alternative for calculating variance incrementally (KNUTH,
2014).

The Welford’s algorithm works by keeping an estimate of the sample mean at the n-th
instance, xn, which is used to update the auxiliary second order statistics M2,n. This auxiliary
value is used, in turn, to calculate the variance. At the beginning of the data monitoring process,
we set both x0 and M2,0 to zero. After each new observation xn arrives, we update the stored
statistics, as follows. The mean estimate update is given by Equation 4.2.

xn = xn−1 +
xn− xn−1

n
(4.2)

The M2,n value is also recursively updated by using Equation 4.3.

M2,n = M2,n−1 +(xn− xn−1)(xn− xn) (4.3)

At any time, one can get an estimate of the monitored sample variance by calculating
s2

n =
M2,n
n−1 , for n > 1.

Chan, Golub and LeVeque (1982) extended the presented formulae to handle parallel
updates. In other words, by using the new expressions presented next, we can process different
parts of the stream separately and then merge the resulting statistics to obtain mean and variance
estimates for the whole sample.

In the following equations, for notation simplicity, we do not show the n subscript.
Instead, we add the subscripts A and B to denote two groups of partially monitored data, whose
statistics are going to be merged. We also denote by AB the resulting merged group. The total
number of observed examples can be directly computed as nAB = nA +nB. By using nAB, we can
calculate the total estimate of the mean, using Equation 4.4.

xAB =
nAxA +nBxB

nAB
(4.4)
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Now, we have all the needed tools to estimate the total second order statistic, as defined
in Equation 4.4. In the expression, δ = xB− xA.

M2,AB = M2,A +M2,B +δ
2 nAnB

nAB
(4.5)

By doing some simple algebraic manipulations in the equations of Chan, Golub and
LeVeque (1982), we obtain expressions to govern the subtraction of the incremental statistics. In
other words, one can get the complement of partially monitored sample statistics if they also
have complete statistics. Therefore, we get the same addition and subtraction properties the naive
incremental variance calculation algorithm has, but still retain superior accuracy in our estimates.

We start by the simplest one, the number of objects, which is given by nA = nAB−nB.
Equation 4.6 presents the expression to retrieve xA, given xAB and xB.

xA =
nABxAB−nBxB

nA
(4.6)

Finally, we can get the complement of partial second order statistic by using Equation 4.7.

M2,A = M2,AB−M2,B−δ
2 nAnB

nAB
(4.7)

4.5 Quantizer Observer

Our proposal, QO, is inspired by Locality Sensitive Hashing (LSH) (DATAR et al., 2004)
algorithms, which are used to approximate nearest neighbor search and also discretize numerical
input features. Our proposal also aims at creating partitions so that similar input values are
grouped. Unlike most LSH algorithms, QO relies on a single hash structure, H, to create hash
slots (also referred to as buckets) for the discretized features. Moreover, QO deals with one
feature at a time, so there is no need to involve multiple random projections to define hash codes,
as in popular LSH solutions. Instead, we simply define a quantization radius, r, to discretize the
incoming input feature. In each of H’s slots, QO keeps the sum of x’s values, and estimations of
the mean and variance of y. QO relies on the equations presented in section 4.4 to update and
combine the target’s statistics.

The functioning of QO is straightforward and can be easily incorporated into existing
regression tree ODT algorithms. QO works as follows. For each i-th observation of a feature x,
we select its corresponding hash code h, i.e., the slot it belongs to in H, by following the simple
projection scheme h =

⌊xi
r

⌋
. If h is not in H, we create a new slot to accommodate the incoming

data, otherwise, we include the values of xi and yi to the existing slot. Algorithm 1 illustrates the
update procedure of QO, i.e., how AO monitors incoming examples.
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Algorithm 1 – QO update.
Input:

r: the quantization radius.
Sx: stream with one numerical feature x and the target y.

Initialization:
Let H be an empty hash table.

for xi,yi ∈ Sx do
Let s2

yi
be a variance estimator with one observation, yi.

Let h← ⌊x
r⌋ be chosen hash slot.

if h ∈ H then ▷ Update statistics and prototype
H[h]x← H[h]x + xi; H[h]s2 ← H[h]s2 + s2

yi
else ▷ Create a new hash slot

H[h]x← xi; H[h]s2 ← s2
yi

end if
end for

Since h is directly proportional to xi, when evaluating split candidates, QO sorts the keys
stored in the hash to get an ordered representation of the whole sample. We retrieve the necessary
information to calculate the VR statistic by computing the cumulative sum of the ordered H’s
elements. Hence, the split candidate query cost is O(n′ logn′), where n′ is the number of slots in
H. We experimentally observed that n′≪ n, where n is the total number of observations.

Split points are defined as the average between the prototype attribute values of two
consecutive slots in the ordered hash. We define the prototype as the mean of the x values
belonging to a slot. Other strategies could also be employed, such as interpolating consecutive
slots with a regression model. Nonetheless, to reduce computational costs, we opted for using
a simple approach. The prototype feature value can be easily obtained using the sum of x’s
values and the number of observations in each slot. We illustrate the split point query of QO in
Algorithm 2.

4.6 Experimental setup

This section describes the simulation protocol used in this study to compare QO against
E-BST and TE-BST, as well as the evaluation metrics and settings used in the AOs.

4.6.1 Simulation protocol

We evaluated the effectiveness of the AOs when monitoring data samples of varying
sizes, whose targets were defined by different functions. After calculating the target’s values, the
inputs were also (in some cases) subject to different levels of noise. The AOs processed the data
sequentially, one instance at a time. After processing the whole sample, the AOs calculated the
best split candidate they could provide, given their inner structures.
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Algorithm 2 – QO split candidate query.
Input:

H: an existing QO realization of feature x.
s2

y : the variance estimation of the target y.
Return:

c: the best found split threshold in x.
cvr: the VR value obtained by partitioning x at c.

Let s2
aux, a variance estimator initialized with zero.

cvr←∅; xaux← 0; i← 0
for h in sorted(H) do

if i > 0 then
Let xp←

H[h]x
H[h]n

be the current prototype x value.

Let ĉ←
xaux + xp

2
be the candidate split point.

Let ĉvr be the VR obtained from
{

s2
y ,s

2
aux,s

2
y− s2

aux
}

.
if cvr =∅ or ĉvr > cvr then

cvr← ĉvr; c← ĉ
end if

end if
xaux← xp; s2

aux← s2
aux +H[h]s2; i← i+1

end for

Table 10 summarizes the settings used in our data generation protocol. Note that one of
the bimodal distributions used in our experiments is asymmetric, i.e., its modes have different
values of standard deviation. We repeated the generation protocol ten times and accounted for
the mean results, varying at each time the random initialization.

Table 10 – Description of the simulation protocol utilized in our experiments.

Property description Property value

Sample size
50, 100, 200, 400, 500, 750, 1000, 2500, 5000, 7000, 10000, 15000,
25000, 50000, 75000, 100000, 200000, 500000, 1000000

Sampling distribution Uniform, Normal, or Bimodal
Target function Linear (lin) or Cubic (cub)
Amount of noisy instances 0% or 10%
Noise characteristics N (0,0.1) or N (0,0.01)a

Distribution name Distribution property

Normal N (0,1), N (0,0.1), N (0,7)
Uniform [−1,1], [−0.1,0.1], [−7,7]
Bimodalb N (−1,1)|N (1,1), N (−0.1,0.1)|N (0.1,0.1),

N (−7,7)|N (7,0.1)

aDepending on the parameters of the generating distribution. We added normally distributed noise with
smaller standard deviation to distributions whose dispersion was also small.
bWe constructed bimodal distributions by sampling from two Normal distributions with equal probability.
We use the “|” symbol to indicate a concatenation operation.
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4.6.2 Settings used in the Attribute Observers

E-BST does not have hyperparameters to setup. TE-BST, on the other hand, was config-
ured to truncate the input values to three decimal places. We evaluated three variants of QO to
evaluate how r impacts on the obtained results, namely:

• QO0.01: uses a fixed value (0.01) to discretize the input features.

• QOσ÷2: uses the standard deviation of the feature divided by 2 as the quantization radius.

• QOσ÷3: uses the standard deviation of the feature divided by 3 as the quantization radius.

Although the standard deviation of the whole monitored sample is not available before-
hand in real-world scenarios, we can rely on incremental variance estimators. These approxi-
mations will be used when applying QO to ODT algorithms. Note that ODT regressors already
keep one incremental variance estimator per leaf node to enable split candidate search. A fixed
radius value, such as 0.01, can be applied at the beginning of the tree construction as a cold-start
choice. Hence, we add the variant that uses a fixed radius in our experimental setup. QO is going
to be integrated into river1, a popular framework for online machine learning.

4.6.3 Evaluation metrics

We selected three performance evaluation metrics to evaluate the AOs. They measure
how accurate were the splits, how much memory the AOs used, and how long the AOs took to
process the data and evaluate the best split candidate.

The first measure was the split merit yielded by each AO, i.e., the obtained VR value.
We also calculated the number of elements stored by each AO to estimate their memory usage.
By element, we mean the number of nodes (E-BST and TE-BST) or the number of hash slots
(QO). Since all the AOs store the same set of target statistics, we can rely on the number of
elements rather than precisely measuring their actual memory usage. The time measurements
were twofold: we measured the time taken by the AO to monitor the whole sample and the time
they spent to produce a split candidate at the end of the stream monitoring.

For all the metrics, the smaller the value, the better. Besides, among all the metrics, the
time measurements are the only ones that have a well-defined scale, i.e., they were measured in
seconds.

4.7 Results and discussion
In Figure 8, we summarize, separately for the tasks lin and cub, the average results

obtained in the experiments. We also created separate plots for each data distribution and
1<https://riverml.xyz>

https://riverml.xyz
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regression task. However, looking at the experimental results, we observed that the differences
in performance between the AOs followed similar patterns, regardless of the data distribution.
Thus, we only present the charts of the averaged results.

Figure 8 – Average results obtained by the compared AOs in the lin and cub tasks. From top to bottom:
VR, and the logarithm of the number of stored elements, observation time (in seconds), and
query time (in seconds).

In the next sections, we discuss each evaluation metric separately and refer to specific
characteristics observed in Figure 8. Differently from Figure 8, when performing our in-depth
analysis of each metric, we did not average the results between the different sampling data
distributions. Instead, we accounted for the results obtained by the AOs, considering each
evaluated sample size, data distribution, and regression task. We relied on Friedman tests and
Nemenyi post-hoc tests (DEMŠAR, 2006) (with α = 0.05) to evaluate the statistical significance
of the different performances obtained by AOs.

4.7.1 Merit

As expected, the exhaustive (or near exhaustive) methods presented the highest VR
values. E-BST and TE-BST consistently surpass the QO variants when it comes to VR, as shown
in our statistical test (Figure 9). Nonetheless, the actual obtained VR values were very similar,
regardless of the AO. We highlight this fact in the top portion of Figure 8, where the average VR
obtained in tasks lin and cub is presented. It can be seen that the bars representing different
AOs’ split merits are similar for equal sample size, even considering that VR has a squared
operation in its formulation, i.e., an operation that stretches the output range of the heuristic.

In Figure 10, we compare the differences between the split points obtained by TE-BST
and QO against the E-BST ones. We observe that as we decrease QO’s quantization radius, its
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CD = 0.23
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E-BST
TE-BST

QOσ÷2
QOσ÷3
QO0.01

Figure 9 – Friedman test and Nemenyi post-hoc test when comparing the merit of the splits (VR) generated
by the different AO algorithms (α = 0.05).

splits become closer to those estimated by E-BST. The radius is directly correlated with both the
obtained merit and the AO size/runtime: the smaller the radius, the higher the merit; similarly,
the larger the radius, the smaller the runtime and memory usage.

Figure 10 – Average differences between the split points found by QO and TE-EBST in comparison with
E-BST.

4.7.2 Number of elements

The amount of memory used by an AO is directly proportional to the number of elements
carried by it. In this study, element means a slot (QO) or node (E-BST/TE-BST) carrying a split
value and target statistics.

The QO variants obtained the best rankings in this analysis. The reader might refer to
the second row of Figure 8 to see how massive the differences were. The results are presented
in log-scale so that we can visually compare the AOs. Without this visualization trick, the QO
results would not be visible in the chart since our proposal used significantly less memory than
its competitors.

The performed statistical test (Figure 11) also highlights the differences in memory usage.
As expected, the larger the quantization radius, the more reduced is QO’s memory footprint.
In our experimental setup, the fixed radius r = 0.01 was smaller than the dynamical choices
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(σ ÷2 and σ ÷3). Hence, QO with a constant quantization radius spent more memory than the
other variants. On the other hand, concerning split merit, the QO0.01 was also the most accurate
variant. Users might use different proportions of the feature’s standard deviation to balance
computational costs and the VR. Lastly, TE-BST stored significantly fewer elements than E-BST,
as expected.

CD = 0.23

1 2 3 4 5

QOσ ÷2
QOσ÷3

E-BST
TE-BST
QO0.01

Figure 11 – Friedman test and Nemenyi post-hoc test when comparing the number of elements stored by
the different AO algorithms (α = 0.05).

4.7.3 Time

We divide the running time analysis into two parts: observation and query costs. When
observing instances, all QO variants performed better than the E-BST variants, as illustrated
in the third row of Figure 8. The differences between the QO variants were minimal in this
analysis. Interestingly, although a smaller quantization radius resulted in increased memory usage,
sometimes we observed that it also resulted in faster insertions. In other words, QOσ÷3 was
faster than QOσ÷2 for monitoring data. Figure 12 illustrates this phenomenon. We hypothesize
that sometimes the addition of new elements in a hash might be faster than handling collisions.
There is, however, a delicate balance between the radius, memory usage, and running time. As
the radius decreased more, the insertions became slower since testing for membership of a hash
code also has a cost. In fact, QO0.01 was the slowest variant of our proposal.

CD = 0.23

1 2 3 4 5

QOσ÷3
QOσ÷2

TE-BST
E-BST
QO0.01

Figure 12 – Friedman test and Nemenyi post-hoc test when comparing the time spent by the different AO
algorithms to monitor the input data (α = 0.05).

Surprisingly, E-BST was generally faster than TE-BST. It might be related to the same
situation of handling "collisions". In some cases, updating the statistics of existing nodes in
the TE-BST is more time consuming than creating a new node. Nonetheless, the actual time
differences observed between AO variants bearing from the same base algorithm were minimal.
Hence, they might not have a high impact on real-world applications. The speed-up gains
obtained by QO over E-BST (and TE-BST) were, however, clear.
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When it comes to querying split points, QO variants were clearly faster than the E-BST
variants. The bottom row of Figure 8 and Figure 13 illustrate how pronounced the differences
were.

CD = 0.23

1 2 3 4 5

QOσ÷2
QOσ÷3

E-BST
TE-BST
QO0.01

Figure 13 – Friedman test and Nemenyi post-hoc test when comparing the time spent by the different AO
algorithms to query for split candidates (α = 0.05).

QOσ÷2 performed faster than QOσ÷3 and QO0.01, as it had fewer points to process.
When querying for split points, the higher the number of stored slots, the slower is the processing.
Finally, TE-BST was faster than E-BST to query split points, as we expected.

4.8 Final considerations
This paper introduced an efficient and effective algorithm for monitoring numerical

input features in online regression trees. Our proposal, QO, requires significantly less memory
and processing time than the current strategy used in practical applications. Moreover, QO can
provide accurate split point suggestions by relying on an approximate algorithm rather than a
greedy approach.

The experimental results suggest that QO could be easily integrated within online
regression decision tree frameworks, such as Hoeffding Trees. In future works, we intend to
evaluate the impact of using QO as attribute observers of such trees. QO can also be easily
extended to deal with multi-target regression. We also intend to seek better alternatives to provide
split candidate suggestions. One possible strategy to follow is the usage of meta-learning to
recommend the split points. QO could be used to monitor data and provide the information
necessary to induce meta-learning split point recommenders.
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5.1 Abstract

Incremental Hoeffding Tree Regressors (HTR) are powerful non-linear online learning
tools. However, the commonly used strategy to build such structures limits their applicability to
real-time scenarios. In this paper, we expand and evaluate Quantization Observer (QO), a feature
discretization-based tool to speed up incremental regression tree construction and save memory
resources. We enhance the original QO proposal to create multi-branch trees when dealing with
numerical attributes, creating a mix of interval and binary splits rather than binary splits only.

*<http://www.ieee.org/publications_standards/publications/rights/rights_link.html>
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We evaluate the multi-branch and strictly binary QO-based HTRs against other tree-building
strategies in an extensive experimental setup of 15 data streams. In general, the QO-based HTRs
are as accurate as traditional HTRs, incurring one-third of training time at only a fraction of
the memory resource usage. The obtained numerical multi-branch HTRs are shallower than the
strictly binary ones, significantly faster to train, and they keep predictive performance similar to
the traditional incremental trees.

5.2 Introduction

Decision trees (DT) are ubiquitous. These supervised Machine Learning (ML) models
have been a popular choice among researchers and practitioners throughout the years. This
observation is valid concerning traditional in-batch or static ML (FERNÁNDEZ-DELGADO
et al., 2014; CHEN; GUESTRIN, 2016; KE et al., 2017) and even more pronounced in stream
mining and online learning (DOMINGOS; HULTEN, 2000; GAMA, 2010; IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b; IKONOMOVSKA; GAMA; DŽEROSKI, 2015; BIFET et al.,
2018).

Different from static DTs, the incremental ones start their building with only one (leaf)
node. The structure is progressively expanded as data is processed. Historically, Hoeffding Trees
(HT) have been the most popular family of incremental DTs for stream mining (DOMINGOS;
HULTEN, 2000; IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; BIFET et al., 2018). HTs use
the Hoeffding bound to determine when enough data was observed to enable splits.

This family of incremental ML algorithms was developed to deal with situations where
data arrives incrementally and can be potentially unbounded (BIFET et al., 2018). The input data
is in the form (⃗x,y)∞

t=0, where x⃗ and y represent realizations of the feature vector and the target at
time step t, respectively. When y belongs to a set of unordered and discrete values, the resulting
ML task is called classification. When y ∈ R, the resulting task is called regression.

Traditionally, classification HTs received more attention from the research community
than regression trees (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; GOMES et al., 2018).
Still, HT regressors (HTR) are powerful algorithms for dealing with massive datasets in an
incremental learning fashion. HTRs grow by creating partitions that minimize the variance in y.
Although data can arrive indefinitely, the amount of computational resources is limited (GAMA,
2010; BIFET et al., 2018). Thus, efficient data structures to keep the variance in y for different
partitions applied to each feature in x⃗, are needed. Partitions in numerical features have been
historically limited to binary tests in both incremental and non-incremental DTs.

Due to the lack of research, for many years, the applicability of HTRs was bounded
by the high costs involved in dealing with numerical attributes (IKONOMOVSKA; GAMA;
DŽEROSKI, 2011b; GOMES et al., 2020; MASTELINI; CARVALHO, 2021). The commonly
used strategy to evaluate split decisions in HTRs works similarly to the non-incremental re-
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gression DTs (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; DUARTE; GAMA; BIFET,
2016; GOMES et al., 2018). In fact, all the observed input points (IKONOMOVSKA; GAMA;
DŽEROSKI, 2011b) or a subset of them (DUARTE; GAMA; BIFET, 2016) are explicitly stored
by the HTRs. This choice can render the HTR building time and memory usage impractical in
real-time applications.

In (MASTELINI; CARVALHO, 2021), the authors introduce an effective feature discretization-
based mechanism to build HTRs. Their proposal improves upon the traditional strategy (IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b) in terms of memory and running time. This new strategy, called
Quantization Observer (QO), was only evaluated in synthetic scenarios and not directly applied
to HTRs. In this paper we extend (MASTELINI; CARVALHO, 2021) in two directions: (1)
we evaluate how QO performs when applied to HTRs; (2) we take advantage of the numerical
feature quantization nature of QO to create multi-branch HTRs.

By using an extensive experimental setup comprising of multiple datasets, evaluation
metrics, and HTR-building algorithms, we explore multiple hyperparameter values for QO and
its competitors in order to answer the following research questions:

Q.1: Is QO able to deliver trees with competitive predictive performance while also speeding
up model construction and reducing memory usage?

Q.2: Are the QO’s multi-branch enabled HTRs appealing in terms of predictive performance
and computational resource usage?

Q.3: Are numerical multi-branch trees more compact than the strictly binary ones in terms of
structure, and thus possibly easier models for manual inspection?

We answer the presented questions throughout the paper. The remainder of this work
is organized as follows: section 5.3 presents related work and contextualize HTR-building
strategies. In section 5.4 we show how numerical multi-branch HTRs can be constructed with
QO. Section 5.5 describes the experimental setup used to compared the different compared
incremental regression models and answer our research questions. Next, we present and discuss
the obtained results in section 5.6. Lastly, we present our final considerations, open issues, and
possible directions for further research in section 5.7.

5.3 Related Work
The seminal Fast Incremental Model Tree with Drift Detection (FIMT-DD) (IKONOMOVSKA;

GAMA; DŽEROSKI, 2011b) adapted from incremental classification tasks the concept of using
binary search trees to keep attribute-target statistics. It paved the way to build incremental
regression trees and rule-based regression models by defining the Extended Binary Search Tree
(E-BST) data structure.



88 Chapter 5. Fast and lightweight binary and multi-branch Hoeffding Tree Regressors

E-BST belongs to a family of algorithms/data structures called attribute observers
(AO)(BIFET et al., 2018), in charge of monitoring the input values and their relationship
with the target variable. HTs carry one AO instance per attribute at each one of their leaves, i.e.,
each AO instance monitors one input feature at the time.

As described in (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b) and (MASTELINI;
CARVALHO, 2021), E-BST carries an incremental variance estimator at each one of its nodes.
Each node represents a distinct monitored input value. By combining mathematical expressions
to merge and divide partial variance estimates, each stored input value can be used as a split
candidate. Therefore, for each stored v value we can estimate the variance of elements smaller
than or equal to v, and the elements greater than v. These tests are the split candidates typically
evaluated by HTRs in numerical features. Although E-BST-based trees are incremental, they
function similarly to batch DTs.

Unfortunately, E-BST has a O(logn) cost per insertion and a O(n) cost for evaluating
split candidates. In the worst case, insertions might be O(n). The memory cost of E-BST is O(n).
In the expressions, n is the number of instances stored in the E-BST structure. If a split attempt
succeeds, the existing AO instances in the leaf node are discarded, and new instances are created
in the descendant nodes. If no split is performed, E-BST keeps gathering more input values, and
the computational cost might become prohibitive.

As alternatives, one can limit the number of stored points (DUARTE; GAMA; BIFET,
2016) or round the values to a given number of decimal places before adding them in the E-
BST (MASTELINI; CARVALHO, 2021). Multiple regression DT-based (IKONOMOVSKA;
GAMA; DŽEROSKI, 2015; OSOJNIK; PANOV; DŽEROSKI, 2017; OSOJNIK; PANOV;
DŽEROSKI, 2018; OSOJNIK; PANOV; DŽEROSKI, 2020), rule-based (SOUSA; GAMA,
2018), and ensemble-based (GOMES et al., 2018; GOMES et al., 2020) solutions proposed in
the past years rely on E-BST or one of its variants to build the learning models. Another alter-
native employed in the literature is the usage of a calibration set to define static split candidate
points (GOUK; PFAHRINGER; FRANK, 2019) that will be used during the whole processing.
While doable, this alternative does not cope with the dynamic characteristics of evolving data
streams.

In (MASTELINI; CARVALHO, 2021) the authors proposed the Quantization Observer
(QO), a new AO algorithm for regression that reduces the costs involved in performing splits in
numerical features. QO has a O(1) cost per insertion, and O(h logh) and O(h) of split evaluation
and memory costs, respectively. In the cost expressions, h represents the number of slots stored
in the QO hash-like structure. Usually, h≪ n. Our proposal is rooted in QO. In the next section
we briefly describe the QO algorithm and how it can be applied to create multi-branch regression
trees.
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5.4 Fast multi-branch enabled numerical attribute splits

Instead of storing all the observations as in E-BST, QO quantizes the incoming data by
creating equal-spaced partitions in the feature values. To do so, a fixed radius parameter r > 0 is
applied in the following quantization rule to obtain a hashing code hc for an observation x of the
i-th input feature xi:

hc =
⌊x

r

⌋
. (5.1)

The hc value determines the slot position x will be mapped to and aggregated in a hash-
like structure. QO’s slots store a mean estimator of xi along with a variance estimator of y. By
relying on the formulae presented in (MASTELINI; CARVALHO, 2021), one can manipulate
the statistics of the monitored segments to estimate the split statistics for the whole monitored
sample.

In the original QO proposal, only binary splits are attempted. In other words, given two
consecutive QO slots (w.r.t. their mean xi value), an intermediate threshold is evaluated, and
from this split, two branches are created. The left branch statistics are calculated by aggregating
all slots’ statistics before the threshold. The remaining statistics (right branch) can be obtained
by subtracting the left branch statistics from a variance estimator computed for the whole sample.
Thus, binary splits can be evaluated at reduced costs in comparison with the usage of E-BST.

Using synthetic experiments, QO’s authors showed their proposal surpasses two variants
of E-BST: the vanilla E-BST and a variant that rounds the incoming data to d decimal places
before adding the instances to the binary search tree. This variant is referred to as Truncated
E-BST (TE-BST). In this paper, we demonstrate the application of QO in the HTRs and evaluate
its performance against E-BST and TE-BST.

QO also enables the exploration of a promising and distinct way to build HTRs. Each
QO slot stores split-enabling statistics concerning a fixed-length interval of the monitored input
feature. Such intervals, which are proportional to r in length, can be mapped to tree branches.
Hence, instead of applying a single binary split test xi ≤ v,v ∈ R and its complement xi > v,
we divide the input feature into equal-sized intervals. The resulting split tests have the form
xi ∈ [a,b), where a = hc× r and b = a+ r. Actually, in practice, incoming xi values are mapped
to their respective branches by using (5.1). By storing the used quantization radius, we can
extrapolate the currently observed intervals and create new branches if samples belonging to
unobserved portions of the feature space arrive.

Therefore, we can create n-ary trees rather than binary ones. The number of created
branches depends on the spread of the feature’s values and the chosen r. Such n-ary trees ought
to be wider than the strictly binary ones, although shallower. Those shallower trees may be
easier to inspect and interpret visually, besides having reduced training costs. We hypothesize
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that although wider, such trees ought to perform fewer splits when compared to the strictly
binary ones. Hence, one could potentially decrease the split attempt frequency, which is a costly
operation and still retain similar predictive performance to the traditional HTRs. Note that both
binary and multi-branch split candidates can be jointly evaluated. In this case, the resulting trees
would have a mix of binary and multi-branch splits.

As a downside, choosing an inadequate r value can lead to the creation of too many
branches and consequently many leaves. Besides making the multi-branch trees require more
memory than the strictly binary ones, surplus leaves might also decrease the predictive perfor-
mance. With fewer instances reaching the leaves, the tree’s predictions can become inaccurate as
the leaf predictors will be rarely updated.

Accordingly, in our experiments, we explore different values of r in both strictly-binary
HTRs and multi-branch enabled ones to identify promising candidates.

5.5 Experimental setup
In this section we present our experimental setup concerning datasets, evaluation metrics

and strategy, and compare incremental learning algorithms. We performed all experiments using
the River (MONTIEL et al., 2021) online learning library2 in a machine with an Intel Xeon
Silver 4114 CPU at 2.20GHz, 128 Gigabytes of RAM, and running Debian 9.13.

5.5.1 Benchmark datasets

We summarize the selected datasets’ characteristics in Table 11. They represent com-
monly used data sources from the incremental regression literature coming from diverse real and
synthetic domains. Datasets marked with “*” are synthetic.

5.5.2 Regression tree variants

In this study, we do not consider model trees, i.e., models that have a decision tree
structure but can use different kind of learning models in their leaves. We limit our analysis to
“pure” regression trees whose leaves predict the target mean. This decision is twofold: firstly,
some of the evaluated datasets have nominal features, which cannot be easily manipulated by
linear regression models, the popular choice for model trees’ leaves. Secondly, we wanted to
avoid external factors that might shadow differences between the performances of different tree
variants. We focus on the tree structure, rather than on its prediction phase’s specifics.

We compared HTRs when using E-BST, TE-BST, and QO as AO algorithms. In the
QO case, we also considered the possibility of evaluating multi-branch splits among the binary
ones. The applied HTRs are similar to FIMT-DD except that they do not have concept drift

2<https://riverml.xyz>

https://riverml.xyz
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Table 11 – Characteristics of the evaluated datasets.

Dataset #Instances #Numeric
features

#Nominal
features

Abalone 4977 7 1
Ailerons 13750 40 0
Bike 17379 12 0
CalHousing 20500 8 0
Elevators 16599 18 0
House8L 22784 8 0
House16H 22784 16 0
Metro 48204 4 3
Pol* 15600 48 0
Wind 6574 12 2
Wine 5298 11 0
Friedman∗ 100000 10 0
MV∗ 100000 7 3
Puma8NH∗ 8192 8 0
Puma32H∗ 8192 32 0

adaptation capabilities. Nonetheless, such an adaptive aspect of FIMT-DD and other adaptive HT
models (BIFET; GAVALDÀ, 2009; MANAPRAGADA; WEBB; SALEHI, 2018) are independent
of the AOs. QO-based adaptive HTRs can be trivially assembled. This kind of exploration is,
however, out-of-the-scope of this work.

Table 12 introduces the HTR variants compared in this study and their evaluated hyperpa-
rameters. We refer to the QO version that evaluates both binary and n-ary splits as QOM. When
no superscript is present, only binary splits are considered. On the other hand, we indicate QO’s
r values as subscripts.

Table 12 – Compared attribute observer algorithms and their hyperparameter values.

AO Hyperparameters

E-BST –
TE-BST d = 2
QO r ∈ {0.1,0.25,0.5,1}
QOM r ∈ {0.1,0.25,0.5,1}

The remaining HTR hyperparameters were kept to their default values, as commonly
used in the literature and implemented in River (MONTIEL et al., 2021).

5.5.3 Evaluation setup

We relied on the test-then-train (prequential) evaluation strategy in all the cases (GAMA,
2010). In this paper, we limit our analysis to stationary streams (without concept drift). Although
concept drift is a pivotal concern in online learning, it does not affect the HTR building mechanics
per se. In this stage, we are primarily concerned with comparing the potential of the different DT
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structures and their building strategy. However, multi-branch HTRs might be affected by concept
changes differently than the strictly binary ones. Combining multi-branch HTRs and concept
drift countermeasures (BIFET; GAVALDÀ, 2009) remains an open issue for future investigation.

Given that the benchmark streams are stationary, we performed a pseudo shuffle of the
datasets’ instances using a Reservoir Sampling technique with a window of 100 instances. We
report the results obtained by averaging five executions using different random seeds. No label
delay was considered in this study.

In all the cases, we assembled an evaluation pipeline comprising of one feature scaler
and one regressor. The chosen online scaler centered numerical features’ values to their mean
and scaled them to unit variance. HTRs can deal with nominal features automatically, by creating
one tree branch per category value. However, the considered baselines (subsection 5.5.4) do
not have this capability. Thus, baseline models used an slightly modified evaluation pipeline,
where nominal features were one-hot-encoded. The source code used in our experiments can be
consulted in <https://github.com/smastelini/icdm2021_multiway_splits>.

We measured the Root Mean Square Error (RMSE) of the compared models, memory
usage (in Megabytes – MB) and running time (in seconds – s). Since we are comparing multiple
regression models and datasets, we cannot guarantee that the observed performance differences
are not a product of chance. Hence, we apply statistical tests to assess the performance differences’
significance. As we do not make assumptions concerning the distribution of the measured
performance metrics, we apply the non-parametric Friedman test (α = 0.05) followed by the post-
hoc Nemenyi test. The results are displayed using critical distance (CD) diagrams (DEMŠAR,
2006).

We also measured some statistics related to the tree structures. Namely, the tree height,
the number of split (decision) nodes, leaves, and the total number of nodes (split + leaves).

5.5.4 Baselines

We ran Passive-Aggressive Regression (PAR) models (CRAMMER et al., 2006) and a
Dummy regressor to compare against the HTRs. PAR is a popular linear regression incremental
learning algorithm applied to stream mining tasks. The Dummy regressor was defined as an
incremental target mean estimator, i.e., it outputs the current mean estimation of y.

5.5.5 Case study

Aside from the datasets used to benchmark the HTR variants and baselines, we also
performed a case study using records encompassing two years (2007-2008) of the Airlines
dataset (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; DUARTE; GAMA; BIFET, 2016).
This case study intended to evaluate how the different HTRs perform when facing a large number

https://github.com/smastelini/icdm2021_multiway_splits
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of instances to process. The Airlines dataset has 13 attributes, 6 of them are numerical. The
selected subset, Airlines07-08, has 13 085 750 instances.

We followed a slightly different evaluation protocol, due to the sheer size of this dataset
and time limitations. Each selected HTR variant processed the Airlines07-08 dataset once (refer
to subsection 5.6.1 for details on the selected HTRs). At intervals of one thousand instances we
recorded the RMSE, total memory usage, and the total training and testing time of the compared
models. We also collected data regarding the characteristics of the HTRs, namely: the number of
nodes, split nodes, leaves, and the tree height.

5.6 Results

This section presents the obtained results when performing the steps described in sec-
tion 5.5. We start by describing how the best QO variants were selected for further comparisons.
Next, we compare the selected tree models with the baselines. Lastly, we present a case study
using the Airlines dataset.

5.6.1 Selecting the best QO variants

When comparing algorithm variants over multiple performance metrics and datasets,
selecting candidates that offer a good compromise between all metrics is not easy. Some metrics
should not be analyzed independently when selecting the best algorithm variant, e.g., sometimes
to reduce the prediction error implies increasing the processing time.

Nonetheless, we still want to find the best balance between predictive capacity and
resource usage. In other words, we want the QO variants yielding the smallest RMSE values
and using the minimum amount of computational resources (memory and processing time). We
relied on a Principal Component Analysis (PCA) biplot (GABRIEL, 1971) to select the best QO
variants among the ones considered.

PCA biplots depict both the placement of the transformed data and the direction of the
original dimensions projected in a two-dimensional visualization. Thus, we can visually inspect
the interactions between performance metrics and the compared models. However, this chart
should not be used as the sole source of information to assess the performance of the HTR
models. Although the biplot is a useful visual aid, one should consult the actual experimental
performance measurements for detailed comparisons.

To build the biplot, we followed the steps:

1. For each dataset, we normalized each metric value of all QO variants between 0 and 1.
For all the considered metrics (RMSE, memory usage, and running time), the smaller
the value, the better. Thus, the worst-performing variant obtained 1, whereas the best one
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Table 13 – RMSE results.

Dataset PAR Dummy HTR + E-BST HTR + TE-BST HTR + QO0.25 HTR + QOM
1

Abalone 5.5440±0.05 3.3412±0.00 3.0944±0.03 3.0779±0.01 3.1511±0.01 2.7823±0.09
Ailerons 1.0216±0.02 0.0004±0.00 0.0003±0.00 0.0003±0.00 0.0003±0.00 0.0003±0.00
Bike 140.4632±0.33 181.5973±0.02 119.8733±5.56 126.1380±6.90 143.2146±2.61 142.7532±1.54
CalHousing 226188.3564±15.86 115229.2171±2.94 85907.8297±1301.72 86408.6345±1739.93 85164.6955±831.31 90327.9694±2747.15
Elevators 0.9345±0.01 0.0067±0.00 0.0053±0.00 0.0053±0.00 0.0058±0.00 0.0056±0.00
House8L 65898.3592±32.82 52868.1757±37.97 40626.4686±760.29 40736.0214±393.84 41244.3914±1984.34 42998.9093±1617.35
House16H 66064.4393±32.26 52868.1757±37.97 44071.0916±880.17 44132.8165±804.91 45975.6889±143.04 47833.6526±82.53
Metro 1999.7060±4.39 1987.2024±0.06 1961.2533±4.18 1958.0165±7.02 1958.4314±4.35 1949.0318±0.64
Pol 39.1908±0.10 41.8120±0.01 24.7070±0.84 24.8886±0.75 25.1798±1.51 30.0638±2.69
Wind 9.6295±0.03 6.6900±0.01 4.9791±0.04 4.9941±0.05 4.9447±0.04 4.8229±0.20
Wine 4.4754±0.03 0.8957±0.00 0.8084±0.02 0.8107±0.01 0.8294±0.01 0.8297±0.01
Friedman 7.5243±0.01 4.9826±0.01 2.5815±0.04 2.6065±0.05 2.7864±0.03 2.6108±0.09
MV 21.8740±0.06 30.6621±0.10 8.7728±0.64 10.0263±1.06 8.6413±0.72 9.8663±0.39
Puma8NH 7.6525±0.05 5.6271±0.00 4.0372±0.02 4.0234±0.01 4.2829±0.05 3.7767±0.01
Puma32H 0.7887±0.01 0.0303±0.00 0.0191±0.00 0.0193±0.00 0.0228±0.00 0.0180±0.00

Avg. rank 5.67 5.20 1.87 2.33 3.20 2.73
Avg. rank real 5.64 5.18 1.82 2.18 3.18 3.00
Avg. rank synth. 5.75 5.25 2.00 2.75 3.25 2.00

received 0. The remaining variants received values between 0 and 1 and proportional to
their performance.

2. We took the mean value of each metric among all the datasets as a representative value of
each QO variant. Hence, three values of mean normalized performance represented each
QO variant.

3. A two-dimensional PCA transformation was applied to the values obtained in the previous
step. The biplot chart used this data transformation.

In the obtained chart, QO variants are represented as points, and the performance metrics
are depicted as vectors (arrows) starting from the origin. The vectors’ directions indicate the
direction in which the metric values increase. The direction also indicates correlation. For
instance, vectors pointing in the same direction are an indication that in the experimental results,
the metrics are positively correlated. The metrics are negatively correlated if two metric arrows
point to opposite directions (one increases while the other decreases, and vice-versa). If the
vectors are approximately orthogonal, the metrics they represent are not strongly correlated.

The placement of the points indicates how biased they are regarding each metric. For
instance, points placed close to a vector extremity indicate that the corresponding QO variants
tend to yield high values in the analyzed metric. If points are placed in the opposite direction of a
vector, then the QO variants tend to obtain low values in the corresponding performance metric.

Our experimental findings are presented in Fig. 14. It is worth noting that the scale is not
meaningful in the figure since we performed multiple normalization and summarization steps.
Instead, we are interested in the placement of the elements in the chart.

We can observe that memory usage and running time are strongly correlated. Hence,
the higher the memory usage, the slower is the tree model. This observation was expected
because bigger tree structures take more time to traverse. Similarly, QO instances where a small
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Figure 14 – PCA biplot comparing QO variants (displayed as dots) w.r.t. performance metrics (displayed
as vectors indicating the growth direction for a metric). The placement of a model (point)
indicates how biased it is towards a metric. Metrics inside the blue circle show the best
compromise between predictive performance and computation resource usage.

discretization radius is used end up storing an increased number of hash slots. Hence, both
the strictly binary trees and multi-branch ones that rely on small quantization radii resulted in
increased computational resource usage. The impact of the radius value is more pronounced on
the multi-branch trees as the number of created branches after each split is directly related to the
quantization radius.

On the other hand, the final RMSE did not appear strongly correlated to the variants’
computational resource usage. Still, the worst performers (the points placed along the RMSE
vector’s direction in Fig. 14) were also the QO variants with strictly binary splits and the highest
radius values (QO1 and QO0.5). Interestingly, creating too many tree branches did not seem to
result in RMSE improvements: QOM

0.1 was the most computational resource-intensive variant,
while also being one of the worst contenders regarding RMSE. We hypothesize that only a few
instances end up reaching each leaf since there are too many partitions. Therefore, the obtained
predictions are not accurate.

We highlight in Fig. 14 the two QO variants that presented the best balance between
predictive performance and computation resource usage. Both QO0.25 and QOM

1 are placed in the
opposite direction of the metrics’ vectors in the chart. Thus, they represent the QO variants that
most effectively jointly minimize RMSE, memory usage, and running time. From here onward,
we will focus on these two variants in our comparisons.
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Table 14 – Memory (MB) results.

Dataset PAR Dummy HTR + E-BST HTR + TE-BST HTR + QO0.25 HTR + QOM
1

Abalone 0.0202±0.00 0.0188±0.00 2.9680±0.41 1.5880±0.23 0.4407±0.01 0.3517±0.05
Ailerons 0.0266±0.00 0.0237±0.00 41.9340±6.05 13.9920±2.20 7.9200±0.59 8.8240±1.91
Bike 0.0201±0.00 0.0186±0.00 18.4140±3.48 5.0680±1.12 2.1160±0.30 0.8842±0.07
CalHousing 0.0184±0.00 0.0173±0.00 15.3700±1.98 8.4240±1.17 2.6800±0.22 2.8000±0.24
Elevators 0.0211±0.00 0.0194±0.00 25.3900±4.77 8.4380±0.51 5.0980±0.44 3.7980±0.93
House8L 0.0184±0.00 0.0173±0.00 20.6560±0.64 10.6040±1.13 3.7180±0.35 3.2220±0.19
House16H 0.0207±0.00 0.0191±0.00 37.1880±1.43 21.2620±1.69 9.2280±0.53 7.1480±0.72
Metro 0.0316±0.00 0.0229±0.00 5.4960±1.14 1.2756±0.20 1.0529±0.20 0.9715±0.11
Pol 0.0318±0.00 0.0276±0.00 32.2800±4.18 7.9400±1.03 7.1000±0.58 6.4160±1.55
Wind 0.0305±0.00 0.0238±0.00 22.0040±0.89 14.9580±0.61 4.0980±0.02 1.4004±0.75
Wine 0.0200±0.00 0.0186±0.00 6.5460±0.62 4.0080±0.54 1.7180±0.21 1.0856±0.25
Friedman 0.0184±0.00 0.0173±0.00 110.2500±6.08 78.8420±2.26 19.8680±0.81 14.7340±1.19
MV 0.0200±0.00 0.0181±0.00 12.1280±1.71 7.9580±1.75 2.8080±0.13 2.4980±0.27
Puma8NH 0.0184±0.00 0.0173±0.00 8.3980±0.91 6.4260±0.79 1.8960±0.16 0.6024±0.00
Puma32H 0.0252±0.00 0.0226±0.00 30.8800±5.87 21.3500±3.77 7.0820±0.53 1.9980±0.08

Avg. rank 2.00 1.00 6.00 5.00 3.87 3.13
Avg. rank real 2.00 1.00 6.00 5.00 3.82 3.18
Avg. rank synth. 2.00 1.00 6.00 5.00 4.00 3.00

5.6.2 Hoeffding Trees against other baselines

We compare the chosen HTR variants against the baselines defined in section 5.5. In
Table 13 we present the results concerning RMSE. In general, E-BST-equipped HTR obtained
the smallest RMSE values in both real-world data and synthetic datasets. This observation was
expected since this AO operates similarly to the non-incremental tree regressors. QOM

1 obtained
the same ranking of E-BST regarding the synthetic datasets. TE-BST appears in the second
general ranking, followed by QO0.25. Interestingly, the Dummy predictor performed slightly
better than PAR.

Regarding memory usage (Table 14), as we expected, the baselines used the smallest
amount of memory resources. Among the HTRs, however, both evaluated QO variants were
the most memory-conservative AOs. Interestingly, QOM

1 obtained the best ranking, closed
followed by QO0.25. We argue that multi-branch HTRs are shallower than the strictly binary ones.
Therefore, HTRs using QOM

1 were able to save memory resources because of the AO choice and
their structure. The HTRs using QO0.25 also benefit from memory savings but ought to be as
deep as the ones using E-BST and TE-BST. As expected, E-BST was the most memory-intensive
AO, followed by TE-BST. The rounding procedure applied to TE-BST reduces memory costs
but does not surpass QO asymptotically, as our experiments demonstrated.

The running time results, presented in Table 15, follow a similar behavior to the memory
usage. Such a result confirms the observations made using Fig. 14. The memory usage and the
running time of HTRs are correlated.

The diagrams in Fig. 15 assess the significance of the obtained performance differences
(top: RMSE, middle: memory, bottom: time). There were no significant differences between
the HTRs’ RMSE. All HTRs were significantly more accurate than the baselines in the bench-
mark datasets. HTRs using QOM

1 used significantly less memory resources than the ones using
other AOs. QOM

1 -equipped HTRs used resources comparable to the baselines, according to the
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Table 15 – Time (s) results.

Dataset PAR Dummy HTR + E-BST HTR + TE-BST HTR + QO0.25 HTR + QOM
1

Abalone 1.2752±0.07 0.9173±0.03 8.7121±1.26 4.3487±0.04 1.3663±0.01 1.1776±0.03
Ailerons 7.3573±0.03 5.4067±0.02 185.8633±18.83 57.9702±8.15 24.4935±1.38 24.6072±3.11
Bike 4.0870±0.02 3.0097±0.02 73.3240±5.16 24.4220±2.98 9.4483±0.69 6.2986±0.12
CalHousing 4.1366±0.15 2.9193±0.01 59.9784±5.66 37.3116±1.89 10.9412±0.34 11.6014±0.92
Elevators 5.2953±0.29 3.6483±0.01 99.1738±8.05 38.8695±2.76 16.8792±1.42 13.7311±2.32
House8L 4.4784±0.02 3.2894±0.01 88.4930±4.04 46.8992±1.88 14.8069±1.54 13.1912±0.63
House16H 6.9056±0.45 4.6849±0.01 163.5159±4.52 95.9075±2.83 34.8241±1.19 27.0146±3.05
Metro 23.9037±0.22 13.9407±0.03 72.6021±4.91 24.6162±1.03 17.6904±1.68 15.2675±0.71
Pol 9.5710±0.12 6.7205±0.01 131.6997±2.74 35.9275±2.33 25.9872±0.69 24.5118±2.66
Wind 3.5233±0.23 2.1191±0.03 29.0415±1.10 21.6813±0.28 6.4846±0.10 2.8160±0.65
Wine 1.2386±0.10 0.8794±0.01 10.2921±0.65 6.1503±0.43 2.4771±0.13 1.8703±0.15
Friedman 21.7654±1.04 15.0029±0.01 1890.2800±84.07 1359.9289±48.97 282.3382±11.75 174.5941±19.93
MV 24.1791±0.66 16.7435±0.04 387.3366±42.35 249.6484±35.35 68.9306±2.00 55.2576±3.54
Puma8NH 1.5949±0.01 1.1712±0.01 15.6673±0.42 11.8548±0.58 3.5492±0.08 2.3482±0.02
Puma32H 3.7236±0.01 2.6284±0.01 62.4950±1.30 51.1534±3.39 12.9202±0.34 7.3944±0.08

Avg. rank 2.27 1.00 6.00 5.00 3.80 2.93
Avg. rank real 2.36 1.00 6.00 5.00 3.73 2.91
Avg. rank synth. 2.00 1.00 6.00 5.00 4.00 3.00

performed statistical tests. QO0.25 also was statistically comparable to PAR regarding memory
usage. Both the considered QO variants were significantly more efficient than E-BST, although
QO0.25 did not use significantly less memory resources than TE-BST. Similar conclusions can be
drawn for the running time. However, the advantage of the QO variants over E-BST and TE-BST
is not as pronounced as in memory usage results.

CD = 1.95
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Figure 15 – Friedman test and Nemenyi post-hoc test analysis of the compared HTR models and baselines.
Top: RMSE, middle: memory, bottom: time.

Therefore, regarding our first research question (Q.1), QO-based HTRs are competitive in
terms of predictive performance while spending much less computation resources in comparison
to E-BST and TE-BST. The same observation holds for the multi-branch HTRs derived from
QO (research question Q.2).

Finally, we present statistics related to the compared HTRs in Table 16. As we had
hypothesized (Q.3), QOM

1 generated shallower HTRs in comparison to the binary ones originated
by E-BST, TE-BST, and QO0.25. On the other hand, E-BST and TE-BST generated trees with a
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reduced number of nodes compared to the QO ones. The number of decision nodes was generally
smaller in QOM

1 in comparison to the other AOs due to the multi-branch tree architecture. The
cases where this observation did not hold were probably due to a mix of binary and multi-branch
splits. This is an open issue for further exploration and inspection. On the other hand, QOM

1 -based
HTRs created more leaves than the strictly binary HTRs as a consequence of using multiple
branches per split.

Table 16 – Structural characteristics of the compared Hoeffding Tree Regressors

Dataset Metrics HTR + E-BST HTR + TE-BST HTR + QO0.25 HTR + QO1 +M

Abalone

# Nodes 15.00±2.00 17.80±2.28 18.60±3.29 24.00±5.96
# Decision nodes 6.00±1.00 7.40±1.14 7.80±1.64 6.00±2.00
# Leaves 9.00±1.00 10.40±1.14 10.80±1.64 18.00±4.06
Height 4.80±0.84 5.20±0.45 5.40±0.55 3.60±0.55

Ailerons

# Nodes 33.00±8.37 33.80±11.88 34.60±2.61 92.00±20.55
# Decision nodes 16.00±4.18 16.40±5.94 16.80±1.30 22.00±3.74
# Leaves 17.00±4.18 17.40±5.94 17.80±1.30 70.00±17.29
Height 7.80±0.84 8.40±1.95 7.80±0.45 7.80±0.84

Bike

# Nodes 74.20±5.40 69.40±16.82 65.00±6.78 33.20±4.71
# Decision nodes 36.60±2.70 34.20±8.41 32.00±3.39 7.80±1.30
# Leaves 37.60±2.70 35.20±8.41 33.00±3.39 25.40±3.44
Height 11.60±0.55 10.40±0.89 10.00±1.41 4.20±0.45

CalHousing

# Nodes 90.20±9.86 92.60±17.05 93.40±7.80 164.80±18.51
# Decision nodes 44.60±4.93 45.80±8.53 46.20±3.90 45.00±4.06
# Leaves 45.60±4.93 46.80±8.53 47.20±3.90 119.80±15.22
Height 10.00±1.22 11.00±1.00 9.80±0.45 7.80±0.45

Elevators

# Nodes 62.20±7.95 66.60±10.14 65.80±4.60 88.40±26.97
# Decision nodes 30.60±3.97 32.80±5.07 32.40±2.30 18.80±5.59
# Leaves 31.60±3.97 33.80±5.07 33.40±2.30 69.60±21.43
Height 10.20±1.30 10.80±0.84 11.60±0.55 6.40±1.14

House8L

# Nodes 125.00±6.48 133.00±5.83 125.40±11.95 217.00±11.64
# Decision nodes 62.00±3.24 66.00±2.92 62.20±5.97 63.40±3.78
# Leaves 63.00±3.24 67.00±2.92 63.20±5.97 153.60±8.26
Height 11.60±0.55 10.60±0.55 12.40±1.67 9.40±0.89

House16H

# Nodes 118.60±8.41 121.80±10.06 137.00±6.16 211.60±23.81
# Decision nodes 58.80±4.21 60.40±5.03 68.00±3.08 56.40±3.21
# Leaves 59.80±4.21 61.40±5.03 69.00±3.08 155.20±20.91
Height 13.20±1.30 15.20±1.48 17.00±1.00 9.40±0.89

Metro

# Nodes 288.20±18.54 287.80±8.98 249.00±8.83 262.60±18.34
# Decision nodes 124.80±8.17 124.60±3.58 106.40±1.67 93.40±7.80
# Leaves 163.40±11.97 163.20±10.01 142.60±7.30 169.20±11.63
Height 13.20±1.64 12.80±0.84 11.80±1.30 12.20±1.79

Pol

# Nodes 64.20±6.42 62.20±5.02 73.80±7.01 74.80±27.54
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# Decision nodes 31.60±3.21 30.60±2.51 36.40±3.51 15.40±8.29
# Leaves 32.60±3.21 31.60±2.51 37.40±3.51 59.40±19.33
Height 10.80±0.45 10.80±1.10 9.60±0.55 5.80±1.30

Wind

# Nodes 34.20±2.28 33.80±3.35 34.20±1.10 35.00±17.38
# Decision nodes 6.60±1.14 6.40±1.67 6.60±0.55 5.40±1.67
# Leaves 27.60±1.14 27.40±1.67 27.60±0.55 29.60±16.46
Height 4.00±0.00 4.00±0.00 4.00±0.00 3.40±0.55

Wine

# Nodes 28.20±4.82 29.40±3.85 29.40±4.34 38.60±10.55
# Decision nodes 13.60±2.41 14.20±1.92 14.20±2.17 9.80±1.92
# Leaves 14.60±2.41 15.20±1.92 15.20±2.17 28.80±9.20
Height 7.00±1.22 6.80±0.45 8.00±0.71 6.20±0.84

Friedman

# Nodes 523.80±22.83 498.60±7.27 475.40±21.65 737.40±66.12
# Decision nodes 261.40±11.41 248.80±3.63 237.20±10.83 184.40±16.43
# Leaves 262.40±11.41 249.80±3.63 238.20±10.83 553.00±49.70
Height 16.80±1.30 16.20±0.84 22.20±1.10 6.40±0.55

MV

# Nodes 366.80±18.63 354.00±14.42 253.60±21.51 261.60±12.01
# Decision nodes 182.40±9.32 176.00±7.21 125.80±10.76 94.00±5.83
# Leaves 184.40±9.32 178.00±7.21 127.80±10.76 167.60±6.58
Height 12.40±0.55 13.00±0.71 14.20±0.84 7.60±0.55

Puma8NH

# Nodes 51.80±5.76 49.80±2.28 48.60±5.55 29.00±0.00
# Decision nodes 25.40±2.88 24.40±1.14 23.80±2.77 7.00±0.00
# Leaves 26.40±2.88 25.40±1.14 24.80±2.77 22.00±0.00
Height 9.40±1.52 9.40±0.89 10.20±1.10 4.00±0.00

Puma32H

# Nodes 43.40±7.54 44.20±8.32 38.60±3.58 22.60±2.61
# Decision nodes 21.20±3.77 21.60±4.16 18.80±1.79 6.20±1.79
# Leaves 22.20±3.77 22.60±4.16 19.80±1.79 16.40±0.89
Height 8.40±0.55 8.40±0.89 8.40±0.55 3.40±0.55

Ranks

# Nodes
Avg. 2.20 2.40 2.27 3.13
Synth. 3.50 3.00 1.50 2.00
Real 1.73 2.18 2.55 3.55

# Decision nodes
Avg. 2.60 3.00 2.93 1.47
Synth. 3.75 3.25 2.00 1.00
Real 2.18 2.91 3.27 1.64

# Leaves
Avg. 2.13 2.33 2.27 3.27
Synth. 3.50 3.00 1.50 2.00
Real 1.64 2.09 2.55 3.73

Height
Avg. 2.53 3.00 3.27 1.20
Synth. 2.25 2.75 4.00 1.00
Real 2.64 3.09 3.00 1.27
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5.6.3 Airlines case study

E-BST did not finish the execution (around 10 million instances were processed) due to
its elevated use of computational resources and time limitations. Nonetheless, most of the dataset
was processed, enabling the reader to extrapolate the missing portions of the plot curves we will
present.

We start our analysis by evaluating the performance metrics, as depicted in Fig. 16.
In general, all HTRs had similar RMSE values, regardless of the chosen AO. The QO-based
trees were much faster to train and spent less memory resources when compared to E-BST and
TE-BST. The TE-BST-based HTR took almost twice the time of the QO-based HTRs to train.
The E-BST-based HTR tree would probably be around three times slower than the QO-based
trees. As previously observed in the benchmark datasets, TE-BST reduced the memory and time
costs compared to E-BST. Once trained, the compared HTRs presented similar traverse times,
regardless of the AO or the number of branches per split.

Figure 16 – Performance of the tree models in the airlines dataset.

Next, we inspect the obtained trees’ characteristics in Fig. 17. Unsurprisingly, the QOM
1 -
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based HTR was shallower than the E-BST and TE-BST ones. The QO0.25-based HTR also did
not reach the same heights as the E-BST variants, which is an unexpected observation. The
split candidates produced by QO0.25 did not offer significant gains in reducing the variance in y

from some point in the processing onward. Nonetheless, as we did not observe an increase in
RMSE, we argue that QO divided the input space more effectively when compared to E-BST and
TE-BST. Hence, fewer split decisions were necessary to achieve similar predictive performance.

As expected, the number of nodes in the multi-branch tree was higher than the strictly
binary ones. QOM

1 created more leaves than the other variants while keeping the number of
decision nodes slightly inferior to the other trees. These observations are aligned with the results
obtained in the previous sections.

Figure 17 – Characteristics of the tree models in the airlines dataset.

Interestingly, we can see that the tree heights plateaued around 2 million processed
instances. From this point onward, the QO-based trees had much more advantages regarding
computational resource usage when compared to the E-BST variants. Indeed, QO has a sublinear
memory cost, whereas E-BST (and to some extent TE-BST) has a linear cost on the number of
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processed instances.

5.7 Conclusion
This paper evaluates the performance of Quantization Observer (QO) when building

Hoeffding Tree Regressors (HTR). We also consider multi-branch HTRs built by using QO’s
partitions as tree branch prototypes. Two state-of-the-art Attribute Observer (AO) algorithms
are compared against QO. Our experimental setup indicated that QO produces HTRs with a
statistically equivalent prediction error while significantly decreasing memory usage and running
time. The multi-branch enabled HTRs are shallower than the strictly binary ones, but their
number of nodes is increased. Multi-branch trees deliver similar predictive performance to
the strictly binary ones while further reducing computational resource usage. However, this
observation depends on an adequate choice of the quantization radius. We evaluate multiple
quantization radii and suggest values that provide a balance between predictive performance and
computation resource usage.

As an open issue for future investigation, the QO’s quantization radius is currently fixed
in advance. Hence, all numerical features must be on the same scale. We intend to explore
alternatives to adjust the radii during the tree-building process dynamically. We also intend to
evaluate the QO usage in ensembles of HTRs to speed up training and reduce computational
resource usage. Another appealing open issue for exploration is the impact of using multi-branch
splits in Hoeffding Trees adapted to deal with concept drift. As we expect the multi-branch trees to
be more compact than the strictly binary ones, concept drift adaptation routines could potentially
impact predictive performance to lesser degrees. Finally, we intend to explore dynamic strategies
to select split attempt intervals using multi-branch trees to save computational resources further.
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6.1 Abstract
Data production has followed an increased growth in the last years, to the point that

traditional or batch machine learning (ML) algorithms cannot cope with the sheer volume of
generated data. Stream or online ML presents itself as a viable solution to deal with the dynamic
nature of streaming data. Besides coping with the inherent challenges of streaming data, online
ML solutions must be accurate, fast, and bear a reduced memory footprint. We propose a new
decision tree-based ensemble algorithm for online machine learning regression named Online
Extra Trees (OXT). Our proposal takes inspiration from the batch learning Extra Trees (XT)
algorithm, a popular and faster alternative to Random Forest (RF). While speed and memory
costs might not be a central concern in most batch applications, they become crucial in data
stream data learning. Our proposal combines sub-bagging (sampling without replacement),
random tree split points, and model trees to deliver competitive prediction errors and reduced

*<http://www.ieee.org/publications_standards/publications/rights/rights_link.html>

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
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computational costs. Throughout an extensive experimental evaluation comprising 22 real-world
and synthetic datasets, we compare OXT against the state-of-the-art adaptive RF (ARF) and
other incremental regressors. OXT is generally more accurate than its competitors while running
significantly faster than ARF and expending significantly less memory.

6.2 Introduction

With the increasing growth in data production, traditional or batch machine learning
(ML) algorithms might be unfeasible for real-world applications due to their computational costs.
Moreover, the generated data streams may change and evolve through time, i.e., the produced
data is non-stationary (BAHRI et al., 2021). This phenomenon, referred to as concept-drift (LU
et al., 2018) quickly renders the trained models outdated and inadequate to the task at hand.
Online, incremental, or data stream-based ML algorithms aim to solve the mentioned challenges.
These algorithms are fast, as each datum is only processed once, and they can deal with the
data’s non-stationary nature.

In the supervised and online ML setting, we assume data streams, DS, from which we
sample instances in the form (x,y)t at a given time or observation increment t. Each x consists of
observations of a finite input feature set. Meanwhile, y represents one observation for the target
value. In the case of continuous values for y, as in our case, the resulting learning task is called
regression. Online ML algorithms seek to model a function h that approximates the unknown
function f : x 7→ y. As we expect the data to be non-stationary, both f , as well as the generating
distribution of x might change over time.

Regarding the incremental ML algorithms, decision trees are among the most pop-
ular ones in stream learning. More specifically, Hoeffding Trees (HT) are the most promi-
nent family of incremental decision tree induction algorithms (DOMINGOS; HULTEN, 2000;
IKONOMOVSKA; GAMA; DŽEROSKI, 2011b). HTs take this name as their tree induction al-
gorithms rely on a statistical measure called Hoeffding bound to make split decisions. Tree-based
ensembles are naturally popular extensions to boost standalone trees’ prediction performance.
In fact, multiple HT-based ensembles were proposed throughout the years (GOMES et al.,
2017; KRAWCZYK et al., 2017; GOMES et al., 2021). Most of the existing solutions target
classification tasks, but a few concern regression tasks (GOMES et al., 2018; GOMES et al.,
2020), which is our focus in this paper.

Ensembles are known to work well, provided that the individual learners are accurate and
diverse (SAGI; ROKACH, 2018). Unfortunately, we cannot treat randomization and diversity
induction the same as in batch learning applications. As showed by Gomes et al. (GOMES
et al., 2021), the ubiquitous HTs are stable learners. Thus, we cannot assume that the same
strategies used by ensembles of Classification and Regression Trees (CART) (BREIMAN et

al., 2017; BREIMAN, 1996), the standard base learner choice for batch tree ensembles, would
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also straightforwardly work for ensembles of HTs. Creating efficient and effective tree-based
ensembles for online learning remains an open issue. The main focus to induce diversity among
the base learners lies in modifying HTs to add some source of randomization. This work goes
one step further towards this objective compared to existing tree-based ensembles.

Many of the popular tree ensemble strategies for batch ML were already adapted to online
scenarios. They include Bagging (OZA; RUSSELL, 2001b; BIFET; HOLMES; PFAHRINGER,
2010), Random Forests (GOMES et al., 2017; GOMES et al., 2018), Random Patches (GOMES
et al., 2020; GOMES et al., 2021), among others. Extra Trees (XT) (GEURTS; ERNST; WE-
HENKEL, 2006) were not to this date adapted for data stream applications. Due to its random
nature, XT is often associated with a reduced memory footprint and training time, whereas
its predictive performance is still competitive or even superior. These characteristics are often
overlooked in batch applications. Nonetheless, they are especially appealing for online ML.

XTs explore random split points when building their base learners. While this is a simple
idea, applying the same strategy in stream learning is not trivial. The data range is unknown
beforehand, and it may change as more data arrives. Therefore, an approximation procedure must
be devised to infer split candidates within the data range. We also explore an instance sampling
alternative to online bagging to reduce computational costs further.

To create random split decisions, as done in the original XT algorithm, we need to
change the splitting strategy utilized by the HT regressors. HTs rely on Attribute Observers
(AO) to enable online splits and allocate an instance of AO per feature in each of their leaves.
AOs are responsible for defining split candidates and maintaining target statistics for them. HT
regressors rely on the Variance Reduction heuristic to perform splits (IKONOMOVSKA; GAMA;
DŽEROSKI, 2011b; MASTELINI; CARVALHO, 2021). Thus they keep incremental estimates
of the target variance for each split candidate. The current best split candidates for each feature
are compared during split attempts. The best split point and feature combination are selected for
expanding the tree structure. In this work, we propose a new AO to keep statistics and perform
random splits in OXT. The proposed AO keeps a small buffer of instances used to estimate the
range of the features and define random split points.

Our main contributions in this work can be summarized as follows:

1. A new algorithm for online regression learning that provides experimental results either
superior or similar to state-of-art related regressors;

2. The first adaptation of Extra-Trees to online learning. Specifically, it combines incremen-
tally defined random splits and sub-bagging to enhance the predictive performance and
decrease computational costs;

3. A comparison using 22 datasets between our proposed algorithm, a state-of-the-art tree-
based incremental ensemble algorithm, and other incremental regressors to assess the
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effectiveness of our proposal using an extensive experimental setup;

4. A publicly available implementation of our proposed algorithm 2.

This work is organized as follows. Section 6.3 introduces background and research
proposals related to our new tree-based online ensemble algorithm. We describe our proposal,
OXT, in section 6.4 and our experimental setup to assessing its performance in section 6.5. The
obtained results are presented and discussed in section 6.6. Finally, we present our concluding
remarks and future works in section 6.7.

6.3 Background

Ensemble learning is a popular topic in both batch ML (SAGI; ROKACH, 2018; DONG
et al., 2020) and Online ML (KRAWCZYK et al., 2017; GOMES et al., 2020; GOMES et al.,
2021). By combining potentially inaccurate base learners, ensembles can reach high predictive
scores, however, at the cost of increased computational cost. Hence, reducing online ensembles’
memory footprint and running time is an important research focus. Online ensemble algorithms
are usually more resilient against concept drift, noisy data, and outliers (KRAWCZYK et al.,
2017; DONG et al., 2020) than standalone predictors. These characteristics make ensembles
even more appealing for dynamic streaming applications.

The literature presents multiple strategies to combine base models. The first distinction
we need to make is about the choice of the base learners. Ensembles can be heterogeneous or
homogeneous regarding their base learners (GOMES et al., 2017). The former option combines
different types of base learners leveraging their individual advantages. It is in charge of the user
to pick a good combination and number of base learners, including their configuration. The
reader may refer to the surveys (KRAWCZYK et al., 2017), and (GOMES et al., 2017) for more
information about this kind of online ensemble solution.

The second group of ensemble algorithms combine base learners of the same type and
apply data perturbations to induce diversity among its constituent models. It is usual to select
unstable learners in this group because their predictions can be highly affected by small changes
in the incoming instances. The two most prominent families of homogeneous ensembles are
bagging and boosting (BREIMAN, 1996; FRIEDMAN, 2001; OZA; RUSSELL, 2001b).

Due to the sequential dependency of its base models, boosting was not thoroughly
explored in data stream learning scenarios (OZA; RUSSELL, 2001b; GOMES et al., 2017).
Online bagging, on the other hand, is one of the most popular choices for online ensemble
learning (BIFET; HOLMES; PFAHRINGER, 2010; GOMES et al., 2017; GOMES et al., 2021).
Although our proposal uses homogeneous base learners, it does not rely on an online bagging

2OXT is available in River.
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strategy, as we discuss in section 6.4. Nonetheless, the trees in OXT also perform instance
sampling, so our proposal is closely related to bagging-based ensembles. Next, we review the
main bagging and tree-based online ensembles algorithms related to our proposal.

6.3.1 Building ensembles via instance re-sampling

The seminal work by Oza and Russel (OZA; RUSSELL, 2001b) introduced the notion of
online bagging. The authors noted that the sampling effect of batch bagging could be approxi-
mated online by sampling instance weights from a Poisson distribution parameterized with λ = 1.
These weights represent the number of times a given base learner will process each instance in
the ensemble. Some weights might equal zero. Thus, the model will ignore these instances, as in
traditional bagging.

Leveraging Bagging (LB) extended online bagging by increasing the λ parameter of the
Poisson distribution to 6 (BIFET; HOLMES; PFAHRINGER, 2010). This change results in an
increased re-sampling rate that potentially increases the predictive performance, as base models
process each datum multiple times. The increase in predictive performance comes at the cost
of increased computational costs. LB also introduces a concept of output codes to decompose
classification tasks into binary strings and train binary classifiers for each portion of the string
code. However, this aspect has no direct application in regression tasks.

As a promising alternative to bagging, sub-bagging (ZAMAN; HIROSE, 2009; YATES;
ISLAM, 2021) presents itself as a lightweight and faster model diversity induction strategy for
batch-based ensembles. To the best of our knowledge, sub-bagging has not yet been evaluated in
online ML scenarios. Different from bagging, when using sub-bagging, instances are sampled
without replacement. At first glance, this difference may appear minimal. Notwithstanding, we
hypothesize that by combining this sampling strategy with the learning stability inherent to HTs,
the tree regressors can process fewer data without losing predictive performance.

6.3.2 Tree-based online ensembles algorithms

Random Forests (RF) are among the most popular bagging and tree-based ensemble
algorithms for batch learning. Naturally, multiple realizations of this algorithm for data stream
learning were proposed in the last years. For instance, the reader may refer to (WANG et al.,
2009), (MOURTADA; GAÏFFAS; SCORNET, 2021), as well as other exemplars mentioned
in (GOMES et al., 2017). Gomes et al. (GOMES et al., 2017) introduces Adaptive Random
Forest (ARF), which combines the strengths of LB with the RF algorithm. A version of ARF for
regression was also proposed (GOMES et al., 2018). ARF is to date the most popular online RF
algorithm, being even used as a building block of incremental Deep Forests (LUONG; NGUYEN;
LIEW, 2020; KORYCKI; KRAWCZYK, 2020).

Another popular bagging-based incremental ensemble is Streaming Random Patches
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(SRP) (GOMES et al., 2020; GOMES et al., 2021). Sharing many similarities with ARF, SRP
can use arbitrary base learners rather than only decision trees. Moreover, SRP applies a different
type of data perturbation to induce its base models. While ARF (and RF) sample random subsets
of input features to be evaluated as split candidates at each tree node, SRP (and its batch version,
Random Patches) selects a single random feature subset to build the entire base model. When
limiting the analysis to decision trees, one may argue that ARF can induce more diversity among
its base learners compared to SRP. However, SRP has the flexibility of applying any kind of base
learner.

Our proposal, OXT, combines random tree splits, similar to those used by ARF, and
sub-bagging sampling to obtain a lightweight, fast, and highly accurate ensemble regressor.

6.4 Online Extra Trees

We will now introduce the characteristics of our proposal, highlighting its differences
from current tree-based ensembles. We follow a top-down explanation where we introduce first
the ensemble as a whole, followed by the general characteristics of the base learners, and lastly,
the split criterion.

6.4.1 Ensemble characteristics

Inspired by the original XT and also by ARF, we present the training procedure of OXTs
in Algorithm 3.

Firstly, OXT relies on sub-bagging (ZAMAN; HIROSE, 2009; YATES; ISLAM, 2021)
rather than online bagging, as employed by ARF, to build its trees (line 17, Algorithm 3). Online
bagging approximates the traditional batch-based bagging approach by sampling the instance
weights from Poisson distributions (OZA; RUSSELL, 2001b). In sub-bagging, instances are
sampled without replacement. Therefore, the trees will only process a subset of the instances
similarly to bagging. However, the selected instances are only processed once rather than multiple
times in this case. In Algorithm 3, rand represents a procedure that samples uniformly between
[0,1]. The approximate percent of instances each tree will observe is controlled by the user as a
hyperparameter, p.

Another crucial step is the selection of appropriate drift detection and countermeasure
strategies. We follow the trend initiated in ARF (GOMES et al., 2017) and then replicated to
SRP (GOMES et al., 2021) and others ensembles to deal with concept drifts. OXT keeps two
levels of detectors for each tree: warning and drift. The former is more sensitive to changes
than the latter one. These differences can usually be achieved by setting different concept drift
confidence levels in the selected detectors.

When a warning is triggered, a new tree begins to be trained in the background (line 11,
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Algorithm 3 – Online Extra Trees training.
Require: Nt : number of trees, p: chance of selecting instance in sub-bagging, DS: data stream

containing input features (x) and target values (y)
1: function OXT-TRAIN(Nt , p, DS)
2: T ← /0 ▷ Empty forest
3: for t← 1,Nt do
4: Initialize t-th empty HT and add it to T
5: end for
6: while DS has instances do
7: (x,y)← next(DS)
8: for t← 0,Nt do
9: ŷ← pred(Tt, x)

10: warn,dri f t← detect_change(y, ŷ)
11: if warn then
12: Build new tree, T b

t , in the background
13: end if
14: if dri f t then
15: Delete outdated tree and replace it by the background tree
16: end if
17: if rand() > p then ▷ Skip training with this instance for this tree
18: continue
19: end if
20: rHT-Train(Tt , x, y) ▷ Train modified HT with the instance
21: if T b

t exists then
22: rHT-Train(T b

t , x, y)
23: end if
24: end for
25: end while
26: return T
27: end function

Algorithm 3). If the warning escalates to drift, the tree is discarded and replaced by the new one
(line 14). The user can select the appropriate warning and drift detectors. Although one could rely
on (randomized) periodic drift detectors, as reported by Gomes et al. (GOMES et al., 2020), and,
thus, potentially add another level of randomness, we decided to use the same state-of-the-art
active drift detection strategy adopted by ARF and SRP. We did not investigate other concept
drift adaptation strategies because our primary goal with OXT is to decrease memory usage and
running time while maintaining predictive accuracy. Nonetheless, one can easily change the drift
detectors used in OXT. In OXT, the drift detectors monitor the absolute deviations between the
true y values and the predictions.

After performing concept drift detection, reacting to it, and sampling instances via sub-
bagging, the next step consists of updating the base learners per se. This is represented by the
procedure rHT-Train, i.e., random HT training. rHT-Train updates a base tree with a single
instance. Both the main base learners (line 20) and the background trees (line 22) rely on this
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procedure.

ARF and OXT share many similarities in their tree induction strategies. However, the
split decisions in OXT’s trees are random, whereas, in ARF, they are deterministic. We detail the
main aspects of OXT’s tree induction, as well as the differences to ARF, in the next subsections.

The final predictions of OXT are obtained by averaging the predictions of individual
trees.

6.4.2 Hoeffding Tree modifications

OXT also modifies the original HT regressor to induce randomness. The first modification
consists in evaluating only a subset of features at each split attempt. Each leaf node only
considers a random subset of features (sampled without replacement) when attempting a split.
ARF modifies its base learners in the same way.

In online ML algorithms, the benefits of using subsets of features are twofold. Firstly,
this action should induce diversity among the base learners as each tree will be built on different
data views. Secondly, this action usually decreases the computational costs of the trees, as AOs
are only kept for the selected subsets of the features in the leaves. As discussed in (MASTELINI;
CARVALHO, 2021), AOs are one of the primary resource-intensive portions of the HTs.

Aside from the mentioned aspects, the remaining elements of OXT’s HTs are the same
as the vanilla HT regressor. For more details on HT regressor construction, the reader is referred
to Ikonomovska et al. (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b) and Mastelini and
Carvalho (MASTELINI; CARVALHO, 2021).

The next main modification OXT applies to its base learners concerns how the split deci-
sions are made. The procedure rHT-Train (lines 20 and 22, Algorithm 3) works by performing
the HT induction algorithm while using subsets of features, as aforementioned, and relying on
the random split-based AO described next.

6.4.3 Performing random splits online

HTs, ARF, and other ensembles of HTs for regression rely on deterministic strategies to
perform split decisions. An exhaustive enumeration-based AO was initially used to build HT
regressors (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b). In this approach, every observed
input and target values are stored in a binary search tree (BST). This AO is dubbed Extended BST
(E-BST), as it relies on BSTs and stores target-related information. Tree traversals retrieve each
entry’s split merit, and the best candidate is selected for splitting. More efficient strategies were
proposed to alleviate the costs of E-BST by Mastelini and Carvalho (MASTELINI; CARVALHO,
2021). These strategies use either BSTs or quantization strategies to speed up HT regressor
building. OXT, inspired by the original XT algorithm, relies instead on randomly defined splits.



6.4. Online Extra Trees 111

It is trivial to create random uniform splits in a batch setting. One only needs to know
the data range beforehand, and this can be done in a single pass over the dataset. However, in an
online setting, data is constantly changing, and the observed range might differ from time to time.
Besides, as tree splits are performed, the regions of the input space become increasingly narrow.

As a solution, we propose a new AO that applies a semi-lazy approach to obtain estimates
of the feature range. We refer to this AO as Random Splitter. Our procedure to update the
Random Splitter is presented in Algorithm 4, and it is called by rHT-Train. When a new split is
performed and new leaves created, each newly instantiated Random Splitter stores a small buffer
with the first arriving observations, as shown in line 9. The size of such buffer, s, is a user-given
parameter. Once the buffer is filled up, the stored elements are used to estimate the range of the
input data (line 12).

Algorithm 4 – Random Splitter update function.
Require: s: buffer size, DS f : a stream consisting of observations from a single feature x f and

the target y
1: function RANDOM-SPLITTER-UPDATE(s, DS f )
2: B← /0 ▷ Empty buffer
3: init← False
4: v≤, v>← var(), var() ▷ Initialize the incremental variance estimators
5: while DS f has instances do
6: (x f ,y)← next(DS f )
7: if not init then
8: if |B|< s then
9: Add (x f ,y) to B

10: continue
11: else
12: Set a threshold φ by sampling uniformly from the range of x f in B
13: Replay elements of B updating v≤ and v> accordingly to φ

14: Delete B
15: init← True
16: end if
17: end if
18: Update v≤ with y if x f ≤ φ else use y to update v>
19: end while
20: return φ , v≤, v>
21: end function

With the approximate range, we can choose a random split point (φ ) uniformly in the
given range. From this point onward, we do not need to store the inputs but update the splitting
enabling statistics for elements smaller than or equal to (≤) or greater than (>) the φ value (line
18). The AO replays the elements stored in the buffer to account for them in the split statistics
(line 13).

In Algorithm 4, var represents the incremental variance estimators built upon the
renowned Welford’s algorithm, as presented in Mastelini and Carvalho (MASTELINI; CAR-
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VALHO, 2021). These estimators can be manipulated to calculate the Variance Reduction
heuristic, which is used to estimate the merit of each split candidate. By using Random Splitter
as its AO, the randomized HT regressors only consider one split candidate per monitored feature,
φ , at the tree leaves.

6.5 Experimental setup

This section describes the experimental setup applied in our empirical comparison of
OXT against its contenders. We detail the used datasets, performance metrics, baselines, and
comparison strategies.

The OXT code was written in Python, and we relied on the River library to perform our
experiments (MONTIEL et al., 2021). Our experiments were performed on a machine running
CentOS with two Intel Xeon E5-2667v4 processors with 8 cores and running at 3.2 GHz. The
machine has 512 Gigabytes of DDR3 (1866MHz) memory. All algorithms ran sequentially in
our comparisons.

6.5.1 Datasets

In our study, we explored synthetic and real-world datasets commonly used in the
data stream regression literature (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; GOMES
et al., 2018; GOMES et al., 2020). In total, we considered 10 real-world stationary datasets
and 12 synthetic datasets, from which 8 are non-stationary. The synthetic datasets Hyper(A),
Hyper(G), Hyper(I), RBG(A), RBF(G) were previously used in Gomes et al. (GOMES et al.,
2020) and contain abrupt, incremental, and gradual concept drifts. The non-stationary Friedman
variants comprise abrupt and gradual concept drifts. These synthetic datasets were proposed by
Ikonomovska et al. (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b). The data generators are
available in River. LEA has three concept drifts (after 25k, 50k, and 75k instances in our case),
while the GRA and GSG variants define two concept drift points (after 35k and 75k instances,
in our case). In the case of the dataset with gradual concept drifts, a transition window of 2000
instances between concepts was utilized.

More details about the considered datasets are summarized in Table 17.

The categorical features were one-hot-encoded in all cases, and we also applied an
incremental version of standard scaling. In other words, all features were firstly centered by
a running estimate of their mean value and scaled by an incremental estimate of the standard
deviation.
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Table 17 – Characteristics of the evaluated datasets. Missing mean and standard deviation of the target
implies generator-based datasets. LEA: Local-expanding Abrupt; GRA: Global Re-occurring
Abrupt; GSG: Global and Slow Gradual.

Dataset #Instances #Numeric
features

#Categorical
features Mean ± SD.

Real-world datasets

Abalone 4977 7 1 10.067±3.325
Ailerons 13750 40 0 −0.001±0.00
Bike 17379 12 0 189.463±181.388
CalHousing 20500 8 0 207502.124±115206.782
Elevators 16599 18 0 0.022±0.007
House8L 22784 8 0 50074.440±52843.476
House16H 22784 16 0 50074.440±52843.476
Metro 48204 4 3 3259.818±1986.861
Wind 6574 12 2 15.600±6.698
Wine 5298 11 0 5.871±0.891

Synthetic datasets

Pol 15600 48 0 29.065±41.795
Puma8NH 8192 8 0 1.162±5.622
Puma32H 8192 32 0 0.00±0.030
Friedman 100000 10 0 –
Friedman(LEA) 100000 10 0 –
Friedman(GRA) 100000 10 0 –
Friedman(GSG) 100000 10 0 –
Hyper(A) 500000 10 0 31.175±7.483
Hyper(G) 500000 10 0 31.176±7.483
Hyper(I) 500000 10 0 −63.574±93.821
RBF(A) 500000 20 0 50.202±28.266
RBF(G) 500000 20 0 50.199±28.271

6.5.2 Evaluation strategy

We have used the prequential evaluation approach throughout our experiments. We
performed five repeated runs of the algorithms and datasets in all the cases. This includes our
general comparisons and other measurements and studies performed to extract information from
the trained ensembles. In the case of the stationary datasets, each dataset was pseudo-shuffled
at each run using reservoir sampling with a window of 100 instances. When evaluating non-
stationary datasets, no data shuffling was applied, although the generator-based datasets were
synthesized using different random seeds for each run.

We measured the Root Mean Square Error (RMSE), the Coefficient of Determination
(R2), the memory usage, and the running time of the compared algorithms. We reported the
results obtained by averaging the measurements of the repeated executions.

No label delay (GOMES et al., 2022) was considered in our setup. Although the evalua-
tion of such scenarios is crucial, it is out of the scope of this work.

6.5.3 Contenders and baselines

We detail next the online regressors compared in our experimental setup:

• Online EXtra Trees: Our proposed algorithm, referred to simply as OXT;

• Adaptive Random Forest: An online tree-based ensemble inspired on the traditional
Random Forest. This algorithm is considered as the current state-of-art (GOMES et al.,
2017; GOMES et al., 2018), and here is referred to as ARF;
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• Adaptive Model Rules: An algorithm that employs the Hoeffding bound and variance-ratio
to build rule sets. Each rule is complemented with an adaptive linear model to perform
predictions (DUARTE; GAMA; BIFET, 2016). Here it is referred to as AMRules;

• Hoeffding Tree regressor: A baseline which consists of an standalone HT (IKONOMOVSKA;
GAMA; DŽEROSKI, 2011b; GOMES et al., 2020). For simplicity, this algorithm is re-
ferred to as HT;

• Passive Aggressive Regressor: A well-renowned incremental linear model referred to as
PAR (CRAMMER et al., 2006);

• Dummy: A simple regressor that always produces an incremental estimate of the mean
target value.

Gomes et al. (GOMES et al., 2020) compare ARF against SRP and other bagging-based
ensemble variants on regression tasks. The authors report that SRP was not better than ensembles
of bagging-based HT regressors. ARF, however, was one of the most accurate algorithms among
those compared. We only consider ARF as the main tree-based ensemble contender to OXT
in our work. Our claim bears from both the results reported in (GOMES et al., 2020) and the
similarities between RF and the batch XT algorithm (GEURTS; ERNST; WEHENKEL, 2006).
Furthermore, we have also considered the prominent rule-based method AMRules, and the HT
regressor as a standalone tree-based baseline comparison.

ARF, AMRules, and HT relied on the Truncated Extended-Binary Search Tree (TE-
BST) (MASTELINI; CARVALHO, 2021) as their AO algorithm. TE-BST works as a wrapper
over the traditional E-BST AO (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b; MASTELINI;
CARVALHO, 2021) and aims at speeding up the latter algorithm. To do so, TE-BST firstly
rounds the inputs to a user-given number of decimal places and then passes the transformed input
to E-BST. E-BST stores the inputs and variance estimates of the target in a BST structure that
enables evaluating split candidates. We set TE-BST to round the inputs to one decimal place.

As the drift detector for OXT, AMRules and, ARF, we have employed ADWIN (BIFET;
GAVALDA, 2007). For ARF and OXT, we set the confidence levels to δ = 0.01 and δ = 0.001
for the warning and drift detectors, respectively. AMRules used the default confidence value
(δ = 0.002), as implemented in River.

Both HT, AMRules, ARF, and OXT use adaptive predictors (target mean or a linear
model). Faded error metrics are used to weigh the influence of past and new observations when
selecting the best predictor. A fading factor of 0.95 was selected, as previously reported in related
literature (OSOJNIK; PANOV; DŽEROSKI, 2018).

When not explicitly stated otherwise, all the compared algorithms’ hyperparameters were
kept fixed to their default values, as defined in River (MONTIEL et al., 2021).
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6.5.4 Ensemble-specific configurations

OXT and ARF used 20 trees for the main experimental evaluation. Their trees adopted
the same set of hyperparameters used in the standalone HT regressor. An exception was the split
attempt interval (grace period) set to 50 in ARF and OXT.

Due to the random nature of the splits performed by OXT, the split merits ought to be less
promising than those obtained from a deterministic strategy, such as the one used by AMRules,
ARF, and HT. For this reason, we set the split significance value, δ , of OXT’s trees to 0.05. ARF
uses δ = 0.01, whereas HT and AMRules use δ = 10−7 by default. Moreover, we disabled the
pre-pruning capabilities of the trees in OXT. HTs, including the ones in ARF, usually consider
the option of not expanding the tree structure during split attempts. Specifically, HTs consider
that the best split candidate should significantly reduce the current target variance accordingly to
the Hoeffding bound. If that is not the case, the tree structure is not changed. We disabled this
test in OXT as we want to deploy multiple random splits of the input space to increase model
diversity.

The remaining hyper-parameters used in the HTs were kept at their standard values (as
implemented in River), and the same values were applied to both ARF and OXT. Both ARF and
OXT use random feature subsets when performing split attempts. The size of these subsets was
set to

√
M, where M represents the number of input features.

Also, ARF aggregated the predictions of individual trees using the median operation. As
reported in the empirical studies of Gomes et al. (GOMES et al., 2018), the median aggregation
might favor model tree-based ensembles. Despite that, we aimed for simplicity and computational
efficiency. Hence, OXT used the straightforward mean aggregation when joining the predictions
of individual trees.

Each tree in OXT used sub-bagging with 50% of the input data (parameter p in Algo-
rithm 3), as suggested by Zaman and Hirose (ZAMAN; HIROSE, 2009). The ARF re-sampling
strategy was the same used in Leveraging Bagging (BIFET; HOLMES; PFAHRINGER, 2010)
(Poisson sampling with λ = 6). Concerning OXT, the size of the buffer used to perform the splits
was set to 5 (parameter s in Algorithm 4).

6.6 Results and discussion

Initially, we present a comparison between our proposed method and its contenders.
Following, we extend our analysis by performing a saturation study between our method and
ARF. Likewise, we also compare the characteristics of the forests generated by ARF and OXT.
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6.6.1 General performance comparison

As can be seen in Tables 18 and 19, our proposed method, OXT, is often associated with
the best performance. More specifically, OXT outperforms its main competitor, ARF, in 14 out
of 22 datasets considering RMSE, whereas ARF yields superior performance only in 4 cases.
Our results are further highlighted in the Friedman-Nemenyi test presented in Figure 18 where
our method is ranked in the first position. The R2 results also support the edge OXT has over
ARF concerning predictive performance, and highlight the goodness of the regression fit our
proposal can deliver in most cases.

Table 18 – RMSE results

Dataset PAR Dummy HT AMRules ARF OXT

Abalone 5.560±0.03 3.341±0.00 2.314±0.02 2.362±0.05 2.363±0.02 2.573±0.03
Ailerons 1.007±0.01 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00
Bike 140.460±0.32 181.597±0.02 130.963±14.08 336.055±235.69 112.434±1.18 110.103±3.61
CalHousing 226188.356±15.86 115229.217±2.94 71177.598±1705.69 81330.050±2600.65 63071.461±376.80 65865.563±116.18
Elevators 0.9308±0.01 0.007±0.00 0.005±0.00 0.006±0.00 0.005±0.00 0.004±0.00
House8L 65898.359±32.82 52868.176±37.97 39948.989±956.62 57164.943±4163.46 37002.294±163.49 35178.489±122.11
House16H 66064.4393±32.26 52868.176±37.97 43745.180±264.19 51024.655±1004.62 40819.751±94.99 41882.176±304.90
Metro 1999.706±4.39 1987.202±0.06 2134.410±60.65 1984.154±1.67 4546.153±408.57 1930.133±8.34
Pol 39.191±0.10 41.812±0.01 24.239±0.45 42.618±1.03 28.197±0.76 24.898±1.08
Wind 9.661±0.04 6.690±0.01 5.079±0.16 6.511±0.11 5.901±3.08 4.326±0.12
Wine 4.481±0.06 0.896±0.00 0.807±0.01 0.830±0.01 0.740±0.01 0.769±0.00
Friedman 7.524±0.01 4.983±0.01 1.929±0.05 2.590±0.03 2.333±0.02 2.0770±0.02
Puma8NH 7.651±0.05 5.627±0.00 3.839±0.08 4.329±0.05 3.848±0.06 3.773±0.03
Puma32H 0.789±0.00 0.030±0.00 0.018±0.00 0.026±0.00 0.029±0.00 0.0176±0.00
Friedman(LEA) 7.815±0.00 5.446±0.00 2.327±0.00 2.915±0.00 2.721±0.03 2.319±0.02
Friedman(GRA) 7.541±0.00 4.981±0.00 2.274±0.00 2.690±0.00 2.465±0.01 2.249±0.01
Friedman(GSG) 7.552±0.00 4.995±0.00 2.150±0.00 2.657±0.00 2.506±0.02 2.275±0.01
Hyper(A) 7.343±0.00 7.483±0.00 2.289±0.00 2.278±0.00 2.442±0.05 1.879±0.01
Hyper(G) 7.553±0.00 7.484±0.00 2.548±0.00 2.650±0.00 2.896±0.04 2.238±0.01
Hyper(I) 44.955±0.00 93.821±0.00 48.785±0.00 47.393±0.14 45.154±0.06 49.655±0.09
RBF(A) 33.902±0.00 28.267±0.00 15.213±0.00 25.299±0.05 20.344±0.05 21.743±0.05
RBF(G) 34.029±0.00 28.271±0.00 15.443±0.00 25.844±0.00 20.500±0.07 21.858±0.08

Avg. rank 5.45 4.91 2.32 3.86 2.68 1.77
Avg. rank real 5.45 4.64 2.73 4.18 2.36 1.64
Avg. rank synth. 5.45 5.18 1.91 3.55 3.00 1.91

Table 19 – R2 results

Dataset PAR Dummy HT AMRules ARF OXT

Abalone −1.779±0.03 −0.005±0.00 0.518±0.01 0.498±0.02 0.497±0.01 0.404±0.01
Ailerons −6086104.578±145810.78 −0.001±0.00 0.467±0.02 −0.293±0.88 0.599±0.01 0.650±0.10
Bike 0.402±0.00 −0.000±0.00 0.475±0.12 −3.772±6.41 0.617±0.01 0.632±0.02
CalHousing −2.855±0.00 −0.000±0.00 0.618±0.02 0.501±0.03 0.700±0.00 0.673±0.00
Elevators −19191.089±309.93 −0.001±0.00 0.371±0.47 0.218±0.50 0.544±0.00 0.658±0.13
House8L −0.554±0.00 −0.000±0.00 0.429±0.03 −0.175±0.17 0.510±0.00 0.557±0.00
House16H −0.562±0.00 −0.000±0.00 0.3150±0.01 0.068±0.04 0.404±0.00 0.372±0.01
Metro −0.013±0.00 −0.000±0.00 −0.155±0.07 0.003±0.00 −4.269±0.97 0.056±0.01
Pol 0.121±0.00 −0.001±0.00 0.664±0.01 −0.040±0.05 0.545±0.02 0.645±0.03
Wind −1.090±0.02 −0.002±0.00 0.422±0.04 0.050±0.03 0.051±0.95 0.581±0.02
Wine −24.287±0.60 −0.010±0.00 0.179±0.01 0.133±0.02 0.3100±0.01 0.255±0.00
Friedman −1.281±0.01 −0.000±0.00 0.850±0.01 0.730±0.01 0.781±0.00 0.826±0.00
Puma8NH −0.851±0.02 −0.002±0.00 0.534±0.02 0.407±0.01 0.532±0.01 0.550±0.01
Puma32H −679.301±1.72 −0.001±0.00 0.631±0.02 0.253±0.11 0.097±0.02 0.663±0.02
Friedman(LEA) −1.060±0.00 −0.00±0.00 0.817±0.00 0.714±0.00 0.750±0.01 0.819±0.00
Friedman(GRA) −1.293±0.00 −0.000±0.00 0.792±0.00 0.708±0.00 0.755±0.00 0.796±0.00
Friedman(GSG) −1.286±0.00 −0.000±0.00 0.815±0.00 0.717±0.00 0.748±0.00 0.792±0.00
Hyper(A) 0.0370±0.00 −0.0000±0.00 0.906±0.00 0.907±0.00 0.893±0.00 0.937±0.00
Hyper(G) −0.019±0.00 −0.0000±0.00 0.884±0.00 0.875±0.00 0.850±0.00 0.911±0.00
Hyper(I) 0.770±0.00 −0.000±0.00 0.730±0.00 0.745±0.00 0.768±0.00 0.720±0.00
RBF(A) −0.439±0.00 −0.000±0.00 0.710±0.00 0.199±0.00 0.482±0.00 0.408±0.00
RBF(G) −0.449±0.00 −0.000±0.00 0.702±0.00 0.164±0.00 0.474±0.00 0.402±0.00

Avg. rank 5.45 4.91 2.32 3.86 2.68 1.77
Avg. rank real 5.45 4.64 2.73 4.18 2.36 1.64
Avg. rank synth. 5.45 5.18 1.91 3.55 3.00 1.91

Despite being regarded as the state-of-art, ARF struggled to outperform HT, a sub-
stantially simpler algorithm. This finding validates HT as a solid baseline since, even in some
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Figure 18 – Friedman test and Nemenyi post-hoc test results. From top to bottom: RMSE, R2, Memory,
and Time. We removed the simplest baselines from the comparison (Dummy and PAR), as
they are expected to always be the most inaccurate, lightweight, and fastest contenders, due
to their simplicity.

non-stationary datasets, it could be competitive or even better. Furthermore, according to both
Friedman-Nemenyi tests, HT was ranked in the second position and ARF in the third. However,
no statistically significant differences were observed between the predictive performance of OXT,
HT, and ARF.

In fact, OXT and HT obtained the same ranking position in predictive performance when
considering the synthetic datasets used in our experiments (Tables 18 and 19). Specifically,
the RBF regression datasets, first introduced by Gomes et al. (GOMES et al., 2020), present a
large gap in RMSE between HT and the remaining algorithms, even though HT has no explicit
mechanisms to deal with concept drifts. We argue that, in such cases, HT kept creating splits to
reflect the changes in the data. This fact, aligned with the linear models at the leaves, made HT
the most accurate algorithm in the RBF datasets.

However, as the analysis of the memory footprint and running time show (Tables 20 and
21, respectively), a single tree became more computationally costly than the ensembles in the
RBF datasets. If we only consider HT and OXT, there are even more cases where the running
time or memory usage of a single tree surpasses the ensemble. AMRules, ARF, and OXT, on
the other hand, reacted to the concept drifts and reset their inner states, as the reduced memory
footprint indicates. Figure 19 illustrates the mentioned behaviors on the RBG(A) dataset.

Despite the apparent advantage of HT when merely considering the RMSE and R2

rankings, we can see that a single tree was worse than ARF and OXT on real-world data
regarding predictive performance. The same is true for the majority of synthetic datasets. OXT
was the best-ranked algorithm in all scenarios, including real and synthetic data and stationary
and non-stationary datasets.

The remaining regressors performed poorly in the majority of the cases, especially in
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Figure 19 – Performance of AMRules, HT, ARF, and OXT on the RBF(A) dataset. As HT has no concept
drift adaptation capabilities, the tree structure keeps growing and becomes more computation-
ally costly than the ensembles.

Ailerons, Elevators, and Puma32H. In these datasets, all methods, except for PAR, performed
very similarly regarding RMSE and R2. We believe this is related to the distribution of the targets
since, as shown in Table 17, their mean and standard deviation revolve around 0. Comparable
results were reported in Gomes et al. (GOMES et al., 2020) for some of the mentioned datasets.
Similarly, the datasets with the highest mean and standard deviation values also yielded the
highest obtained errors: CalHousing, Metro8L, and Metro16H.

Table 20 – Memory (MB) results

Dataset PAR Dummy HT AMRules ARF OXT

Abalone 0.025±0.00 0.023±0.00 0.733±0.08 0.320±0.00 11.546±0.97 2.358±0.32
Ailerons 0.0310±0.00 0.0280±0.00 6.116±1.02 3.276±0.60 129.944±1.78 73.304±2.14
Bike 0.0250±0.00 0.023±0.00 1.662±0.17 0.367±0.04 27.202±4.36 11.352±2.47
CalHousing 0.023±0.00 0.022±0.00 3.444±0.30 0.544±0.17 9.460±1.12 3.258±0.27
Elevators 0.025±0.00 0.024±0.00 5.074±0.86 1.436±0.25 145.286±0.65 36.130±1.54
House8L 0.023±0.00 0.022±0.00 3.850±0.33 0.741±0.07 149.844±8.87 25.188±3.05
House16H 0.025±0.00 0.023±0.00 8.290±0.37 1.502±0.31 155.658±30.57 32.554±2.53
Metro 0.036±0.00 0.027±0.00 1.932±0.11 0.243±0.04 105.994±23.56 6.548±1.27
Pol 0.036±0.00 0.032±0.00 6.004±0.25 1.227±0.38 33.324±1.14 38.332±5.63
Wind 0.035±0.00 0.028±0.00 4.978±0.08 0.664±0.04 112.756±9.35 14.842±4.65
Wine 0.025±0.00 0.023±0.00 1.756±0.18 0.703±0.07 41.556±5.03 6.580±0.67
Friedman 0.023±0.00 0.022±0.00 29.684±0.68 2.960±0.12 115.908±33.35 80.514±10.34
Puma8NH 0.023±0.00 0.021±0.00 2.800±0.23 0.721±0.10 83.556±14.91 11.008±1.62
Puma32H 0.030±0.00 0.027±0.00 10.174±0.97 4.420±0.63 141.002±0.48 43.312±4.31
Friedman(LEA) 0.005±0.00 0.004±0.00 29.910±0.00 2.070±0.00 127.656±30.98 38.630±2.73
Friedman(GRA) 0.005±0.00 0.004±0.00 27.190±0.00 1.950±0.00 108.710±14.94 49.418±6.26
Friedman(GSG) 0.005±0.00 0.004±0.00 27.690±0.00 2.120±0.00 101.126±11.34 42.240±4.92
Hyper(A) 0.005±0.00 0.004±0.00 81.050±0.00 0.409±0.00 324.623±445.89 102.094±11.11
Hyper(G) 0.005±0.00 0.004±0.00 83.570±0.00 1.280±0.00 722.978±96.99 123.940±9.93
Hyper(I) 0.005±0.00 0.0039±0.00 66.710±0.00 0.619±0.09 94.928±22.55 2.042±0.11
RBF(A) 0.008±0.00 0.006±0.00 209.620±0.00 7.574±0.62 25.360±5.07 21.652±4.36
RBF(G) 0.008±0.00 0.006±0.00 218.210±0.00 7.530±0.00 24.750±3.46 21.362±1.54

Avg. rank 2.00 1.00 4.27 3.00 5.86 4.86
Avg. rank real 2.00 1.00 4.09 3.00 5.91 5.00
Avg. rank synth. 2.00 1.00 4.45 3.00 5.82 4.73

A considerable disparity is observed when analyzing the memory footprint of our method.
As shown in Table 20, in all datasets evaluated, except Pol, OXT employed a substantially inferior
amount of memory in comparison to ARF. This difference is further pronounced in the non-
stationary datasets, e.g., in the Hyper(I) dataset, OXT requires, on average, approximately 2MBs,
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whereas ARF utilizes around 95MBs. Naturally, the baseline algorithms were mainly associated
with smaller footprints due to their simplicity. According to the Friedman-Nemenyi test (Figure
18), our method is not statistically different from HT, attesting to its efficiency. As opposed to
that, ARF was ranked in the lowest ranking.

Similar behavior is noticed for the running time (Table 21) where OXT outpaces its direct
competitor algorithm in all datasets evaluated. As prominent results, we can highlight the running
times obtained from all three variants of the Hyper dataset where OXT often managed to be more
than ten times faster than ARF. Surprisingly, there are cases where OXT is more efficient than a
single decision tree (HT), as seen in the datasets with concept drift. As HT has no mechanism
for dealing with concept drifts, the tree model continues to be expanded even after drifts occur.
On the other hand, OXT resets its base models when drifts are detected, thus reducing the
ensemble size and enabling faster executions. In the stationary counterparts, however, OXT is 2
or 3 times slower than HT in most cases. When analyzing the Friedman-Nemenyi, Figure 18,
interchangeable conclusions can be drawn, as our method is significantly more efficient than
ARF but not different from HT.

Table 21 – Time (s) results

Dataset PAR Dummy HT AMRules ARF OXT

Abalone 1.313±0.04 0.976±0.08 2.082±0.05 1.949±0.01 45.433±0.85 9.272±0.11
Ailerons 6.809±0.16 5.161±0.01 28.873±2.21 21.550±0.37 386.010±16.48 98.374±1.92
Bike 4.227±0.02 2.967±0.00 11.149±0.71 8.810±0.28 201.416±10.14 60.484±2.26
CalHousing 4.233±0.02 2.866±0.02 16.585±0.45 8.869±0.50 207.498±3.60 42.943±0.46
Elevators 5.027±0.11 3.595±0.00 20.874±1.58 13.807±0.14 455.661±3.16 69.850±1.56
House8L 4.764±0.15 3.167±0.00 19.303±0.88 10.632±0.14 624.719±44.31 74.512±5.76
House16H 6.407±0.01 4.607±0.02 37.344±0.48 19.523±0.43 860.593±51.25 107.874±2.95
Metro 20.860±0.07 12.835±0.02 24.997±0.80 14.417±0.31 1036.938±93.47 175.541±13.01
Pol 8.524±0.02 6.681±0.01 26.203±0.85 19.862±0.30 219.806±5.90 123.894±6.03
Wind 2.987±0.00 1.985±0.00 8.941±0.02 4.314±0.02 164.089±10.05 22.974±1.67
Wine 1.234±0.00 0.854±0.00 3.443±0.21 2.840±0.01 76.047±1.38 13.132±0.71
Friedman 21.244±0.08 14.652±0.04 483.768±18.00 83.138±2.93 4201.537±217.64 814.193±40.32
Puma8NH 1.679±0.01 1.132±0.00 5.750±0.23 3.726±0.12 178.039±23.75 20.855±0.83
Puma32H 3.470±0.03 2.622±0.05 21.395±1.39 12.276±0.97 270.810±5.13 51.988±1.70
Friedman(LEA) 12.069±0.01 6.213±0.01 440.665±27.27 71.590±0.81 5736.182±239.46 840.524±62.10
Friedman(GRA) 12.794±0.04 6.305±0.02 453.617±1.84 59.129±0.06 2670.361±87.29 526.304±21.03
Friedman(GSG) 12.144±0.02 6.184±0.01 391.634±0.48 61.082±0.20 2850.983±193.38 513.556±23.89
Hyper(A) 62.327±0.14 31.762±0.11 6814.025±67.67 223.004±0.85 46713.597±4566.88 4899.106±447.36
Hyper(G) 63.484±0.08 32.521±0.09 7024.612±114.74 229.853±0.45 31871.921±1563.84 3715.063±176.41
Hyper(I) 62.996±0.19 32.172±0.05 4999.194±114.30 239.656±3.69 21599.186±2295.65 1245.812±36.76
RBF(A) 83.308±0.36 48.259±0.06 21712.278±6143.04 1044.805±5.66 8248.648±119.48 2345.118±28.42
RBF(G) 148.937±25.79 69.309±30.19 17345.020±252.87 826.134±1.68 7557.625±143.39 2514.738±37.67

Avg. rank 2.05 1.00 4.32 2.95 5.91 4.77
Avg. rank real 2.09 1.00 4.00 2.91 6.00 5.00
Avg. rank synth. 2.00 1.00 4.64 3.00 5.82 4.55

It is worth noting that as reported by Mastelini and Carvalho (MASTELINI; CARVALHO,
2021), TE-BST is more efficient than E-BST regarding running time and used memory. OXT
is able to outperform ARF even when the latter ensemble is using an efficient AO. Even more
pronounced disparities between the memory footprint and running time should be observed if
ARF applies the traditional E-BST as its template AO.
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6.6.2 Saturation study

In this section, we perform a saturation study on two datasets with distinctive characteris-
tics: Friedman(GRA) and CalHousing. More precisely, we evaluate the effect of adding more
base learners to the ensemble. Starting from 10 trees, we have sequentially added 10 trees to
each model until the maximum of 100 trees was reached.

Additionally, we also assessed the change in performance when linear models are
replaced by the mean prediction at the tree leaves. The Friedman(GRA) and CalHousing datasets
were selected since Friedman(GRA) is non-stationary and OXT was slightly superior to ARF.
On the other hand, in the stationary CalHousing dataset, ARF had the predictive upper hand over
OXT. For the saturation study, we rely on heatmaps, illustrated by Figure 20. In these charts, the
x axis represents the number of processed instances, and each row in y represents the number of
trees used by ARF or OXT. The color grading is the mean percentual variation of RMSE among
all the experiment repetitions, in relation to the default number of trees used in our experiments
(20). For that reason, the row representing the ensembles with 20 trees (whose label is in green)
always shows a 0% change in RMSE.

As depicted in Figure 20, OXTs saturate faster than ARF. Namely, the addition of more
base learners does not highly impact the performance of the OXTs, as a small number of trees
managed to perform very similarly to larger forests. We perceive this as an indication that OXTs
ended up building more homogeneous models, resulting in rapid convergence. As for the ARFs,
a tenuous but rather visible difference is perceivable when the number of trees increases.

Figure 20 – Assessing the error saturation by adding trees to the algorithms ARF and OXT on the
Friedman(GRA) dataset. The number of trees employed, the value obtained for the evaluation
measure, and the number of instances processed are presented on the left y-axis, right y-axis,
and x-axis, respectively.

By carefully inspecting the presented performances, we notice that ARF requires roughly
60 trees to match the performance obtained by OXT with only ten trees. In order to further
examine their differences, we also compare their memory footprint and running time in Figure 21.
Despite yielding overlapping performances, the computational complexity contrast is perceptible
where OXT is remarkably more efficient and lightweight.

In terms of saturation, very similar conclusions may be drawn from the CalHousing
dataset (Figure 22). However, a different behavior was observed in the predictive performance,



6.6. Results and discussion 121

Figure 21 – Comparing the predictive performance and computation resource usage on the Fried-
man(GRA) dataset using ARF (60 trees) and OXT (10 trees).

Figure 22 – Assessing the error saturation by adding trees to the algorithms ARF and OXT on the Cal-
housing(GRA) dataset. The number of trees employed, the value obtained for the evaluation
measure and the number of instances processed are presented on the left y-axis, right y-axis,
and x-axis, respectively.

as ARF had the upper hand regardless of the number of trees. For brevity, we do not include a
detailed inspection of the performance differences. Nonetheless, we argue that, since CalHousing
contains a relatively small number of features and instances, the size of the dataset may present a
challenge in the early stages of learning. We believe that is due to the random nature of OXTs,
which may result in a cold start problem that primarily affects the models in the leaves.

When conventional regression trees are used as base learners (mean prediction in the
leaves), the difference in performance saturation is more evident. As shown in Figure 23, the
addition of models to the ARF is evidently more beneficial, whereas a less noteworthy change is
seen in the OXT algorithm.

Furthermore, when comparing the performance differences between the ensembles
presented in Figures 20 and 23, we noticed that employing adaptive linear models is associated
to superior results. Likewise, the RMSE decreases considerably faster with the linear models. We
hypothesize that conventional regression trees may be more susceptible to mistakes in the first
iterations since the mean of a relatively large subset is being used as predictions. As opposed to
that, linear models are capable of amending such mistakes by performing an actual prediction.
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Figure 23 – Ablation study: assessing the error saturation on the Friedman GRA dataset when using
regression trees as base learners. The predictions of the were aggregated using the mean
predicted value. The number of trees employed, the value obtained for the evaluation measure
and the number of instances processed are presented on the left y-axis, right y-axis, and x-axis,
respectively.

6.6.3 Understanding the difference in performance between ARF and
OXT: the characteristics of the forest

To further comprehend our experiments, we investigate the properties of the forests
generated using two datasets: Elevators and Friedman(GRA). More precisely, we compare the
number of nodes, number of leaves, average tree height, and total re-sampling weight using 20
trees in both models. The obtained results are presented in Figure 24.

Figure 24 – Comparing the structures and weight amount observed by the forests generated using ARF
and OXT, the Elevators (left) and Friedman(GRA) (right) datasets, and 20 trees. From top to
bottom: number of nodes, leaves, tree height, and total (re-)sampling weight.

In the Elevators dataset, it is noticeable that ARF presents a growing tendency, where
the size of all properties increases as more data is processed. Contrary to that, OXT splits
considerably less often, resulting in shallower and memory-wise smaller models.

These properties are seemly beneficial since the predictive performance remains unaf-
fected, whereas the memory footprint and the running time are severely reduced. As a downside,
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as observed in the last section, the constituent base learners become less diverse.

Intuitively, obtaining shallow trees is a direct result of the selected splitting strategy and
the number of processed instances. Since ARF employs a deterministic strategy to select the
best split candidates, we expect its splits to present marginally superior quality than the random
strategy employed by OXT. Hence, the split candidates in ARF have an increased chance of being
selected and performed. Moreover, as aforementioned, ARF extends the original online bagging
algorithm (OZA; RUSSELL, 2001b) by increasing the instance re-sampling rate, i.e., effectively
increasing the λ parameter as in Leveraging Bagging (BIFET; HOLMES; PFAHRINGER, 2010).
OXT uses sub-sampling, which makes its trees process much fewer instances, as indicated in
Figure 24.

As a possible countermeasure, besides relaxing the split decision restrictions, as we did
(refer to subsection 6.5.4 for details on hyperparameters used in OXT), the sub-bagging rate
could be increased (we kept this value fixed at 50%, as previously mentioned). Hence, each tree
in the OXT forest would process more instances, perform more split decisions, and, potentially,
become more diverse. However, it is worth mentioning that this change can result in higher
computational complexity.

Similarly, an identical behavior is observed in the Friedman(GRA) dataset. However,
sudden decreases are present in this case due to the concept drifts countermeasure mechanism,
which might completely remove trees from the forest.

As observed in the previous subsection, employing adaptive linear models instead of the
mean prediction often provides superior results. Thus, as a positive side-effect of its splitting
criterion, combined with sub-bagging, OXT balances the computational cost and performance
associated with its linear models, thus building relatively small but powerful regression trees.

6.7 Final remarks

In this work, we have proposed a novel online ensemble of regression trees, namely OXT,
which adapts the well-established extra trees algorithm to online learning. More specifically, we
proposed a novel attribute observer, which defines random split points by keeping an initial and
small buffer of observations. This buffer, once used for determining the input range, is discarded
by the AO. OXT also relies on sub-bagging to further decrease the computational costs and boost
predictive performance.

When compared to the current state-of-the-art ARF, our proposed algorithm is signifi-
cantly more efficient. We believe this result is a combination of the splitting criterion employed
by OXT, which builds reasonably smaller trees, and the instance sampling strategy.

Despite relying on a random split strategy (ARF, AMRules, and HT use deterministic
strategies for making splits), OXT is capable of delivering superior or competitive predictive
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performance in most of the evaluated cases. Thus, our proposed model is capable of balancing
the trade-off between computational complexity and performance by imposing a strict yet
lightweight splitting criterion alongside adaptive linear models in the leaves.

As possible future work, we would like to explore different hyperparameter configurations
which would allow the trees to split more often and, possibly, yield better results. Likewise, we
could further investigate our proposed algorithm by including real-world datasets with concept
drift. Finally, we would also like to address the performance of OXT in cases where label delay is
present, that is, applications where the labels of new data are only available after a non-negligible
latency (GOMES et al., 2022).
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7.1 Abstract

Nearest neighbor search (NNS) is one of the main concerns in data stream applications,
since similarity queries can be used in multiple scenarios. Online NNS is usually performed
on a sliding window by lazily scanning every element currently stored in the window. This
paper proposes Sliding Window-based Incremental Nearest Neighbors (SWINN), a graph-based
online search index algorithm for speeding up NNS in potentially never-ending and dynamic
data stream tasks. Our proposal broadens the application of online NNS-based solutions, as
even moderately large data buffers become impractical to handle when a naive NNS strategy
is selected. SWINN enables efficient handling of large data buffers by using an incremental
strategy to build and update a search graph supporting any distance metric. Vertices can be added
and removed from the search graph. To keep the graph reliable for search queries, lightweight
graph maintenance routines are run. According to experimental results, SWINN is significantly
faster than performing a naive complete scan of the data buffer, while keeping competitive search
recall values. We also apply SWINN to online classification and regression tasks, and show that
our proposal is effective against popular online machine learning algorithms.
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7.2 Introduction

Nearest Neighbor Search (NNS) is an essential component of many computer science
applications (AUMÜLLER; BERNHARDSSON; FAITHFULL, 2020). The notion of proxim-
ity can be extended to multiple interpretations and dealt with differently by distinct research
communities. Proximity is also correlated to the concept of learning, e.g., humans learn by
replicating experiences and extrapolating from known similar patterns. In machine learning
(ML), proximity is the pivot of multiple learning paradigms and algorithms: k-Nearest Neighbors
(k-NN), Support Vector Machines, and k-Means, to name a few. Recent works have confirmed
the importance of NNS to ML, such as (DOMINGOS, 2020), which suggested a link between
Deep Neural Networks and NNS. Thus, more evidence highlighting the importance of NNS is
available nowadays.

Nonetheless, using a naive approach for dealing with NNS can rapidly become impracti-
cal, even with moderately sized datasets, e.g., a brute-force strategy or a complete Linear Scan
(LS) (LS) of the data. Therefore, in many applications, more efficient NNS approaches are needed.
ML research leverages discoveries from other research areas to enhance NNS, thus enabling
large-scale computing (DATAR et al., 2004; JEGOU; DOUZE; SCHMID, 2010; ANDONI
et al., 2015; MATSUI et al., 2018; SHIMOMURA et al., 2021). A wide variety of solutions
have been proposed for batch applications, i.e., the training data is available from the start and
does not change over time. Still, NNS is an open challenge, and novel solutions keep being
proposed over the years. The most usual strategy is to devise auxiliary data structures, referred
to as search indices, for which performing NNS is faster than relying on an LS of the data.
Such search indices may provide either exact or approximate search results. A reference tool
for NNS benchmarking was introduced in (AUMÜLLER; BERNHARDSSON; FAITHFULL,
2020), where multiple NNS techniques are compared.

NNS is also relevant for online ML applications. In these scenarios, data arrives continu-
ously and might change its generative distribution over time. Typically, online k-NN algorithms
keep a buffer of the most recent instances where they perform the NNS. This data buffer is
updated using a First in, First out (FIFO) strategy, i.e., a sliding window. To the best of our
knowledge, search via LS is the prevailing strategy in streaming applications, with the user
controlling the data buffer length. Hence, considering the buffer length L, the cost to perform a
single query is O(L). On the other hand, search queries are exact. Reducing the cost of an LS
could be helpful even if it reaches approximate results.

In this study, we want to stress the relevance of k-NN-based algorithms in streaming
applications (BARROS; SANTOS; BARDDAL, 2022). Although k-NN is a straightforward
lazy algorithm, it poses a strong baseline or even the best ML algorithm for multiple tasks.
Moreover, k-NN is also a robust learning algorithm, as it supports user-defined distance measures
and has few hyperparameters for adjustment. This last aspect is especially relevant in online
ML due to the dynamic nature of the learning tasks and the inherent difficulty of adjusting
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hyperparameters online. Besides, the vanilla k-NN algorithm is naturally robust against concept
drift in the online setting. By keeping a buffer of the most recent instances, outdated concepts
are automatically forgotten, whereas new concepts are put to the forefront. Some online k-NN
variants implement long-term memory schemes and sophisticated mechanisms for dealing with
concept drift (LOSING; HAMMER; WERSING, 2018; LOSING et al., 2020). Still, these
solutions do not employ efficient strategies for speeding up NNS.

Some effort has been made to create incremental search indices and, thus, speed up
NNS time. Examples include kd-Trees (JO; SEO; FEKETE, 2018; CAI; XU; ZHANG, 2021),
Product Quantization and related techniques (XU; TSANG; ZHANG, 2018; LIU et al., 2021).
Nonetheless, such solutions are limited to specific distance measures and might offer limited
support for removing data from the search index.

Graph-based NNS has risen as the state-of-the-art in recent years (AUMÜLLER; BERN-
HARDSSON; FAITHFULL, 2020; SHIMOMURA et al., 2021). Besides working with generic
distance or similarity metrics, graphs can be naturally expanded with new nodes, an appealing
feature to online ML applications. Nonetheless, to the best of our knowledge, frequent element
removal and its impact on the search graph structure are still to be explored. This paper proposes
Sliding Window-based Incremental Nearest Neighbors (SWINN) to handle approximate NNS in
sliding windows. Our proposal is inspired by NN-Descent (DONG; MOSES; LI, 2011), one of
the most popular graph-based approximate NNS strategies for batch data. SWINN is significantly
faster than an LS of the sliding window when L is sufficiently large while keeping competitive
search recall.

Our main contributions can be summarized as follows:

• We propose Sliding Window-based Incremental Nearest Neighbors (SWINN) for handling
NNS in sliding windows;

• We compare SWINN against the current state-of-the-art online k-NN models using a
comprehensive and extensive synthetic setup. We show that our proposal can deliver
comparative search recall results while being significantly faster than an LS of the data
buffer;

• We study how each hyperparameter of SWINN impacts its running time, memory footprint,
and search recall. We also suggest a set of default hyperparameter values to use in general
tasks and provide guidelines to select good hyperparameter value combinations if tuning
is required;

• We study in which situations SWINN might be preferable to a LS and in which situations
the opposite holds;

• We perform case studies comparing SWINN against popular online ML models in classifi-
cation and regression tasks, showing more evidence to support our proposal’s effectiveness.
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The remaining of this manuscript is organized as follows. Section 7.3 presents previous
works related to this research and the theoretical foundations needed to support our proposal
and facilitate its understanding. We introduce SWINN and its main aspects in section 7.4. We
present our synthetic setup to compare SWINN against the current prevalent solution, i.e., an LS
of the sliding window, in section 7.5. Next, we discuss the obtained results using the controlled
data in section 7.6 and provide guidelines for selecting hyperparameter values. Complementary
results are available in Appendix A. We perform case studies comparing SWINN and LS in
classification and regression tasks against popular online ML algorithms in section 7.7. Finally,
we present our final considerations and future work directions in section 7.8.

7.3 Background

This section presents the related work closest to our proposal and the theoretical founda-
tions needed to understand better how SWINN works.

7.3.1 Related work

Multiple search index algorithms were proposed in the search for more efficient NNS
strategies, primarily for batch applications. Some of these search indices were also adapted to
allow incremental point addition and, in rare cases, element removal. The usage of partition
trees is a frequent trend. In particular, the kd-Tree (FRIEDMAN; BENTLEY; FINKEL, 1977)
and Ball-tree (OMOHUNDRO, 1989) models are widely employed to create query structures
for NNS. Ball-trees can deal with high-dimensional data, whereas kd-trees are better suited
for datasets with a small or moderate number of dimensions. A few attempts to adapt kd-Tree
to incremental environments were proposed in the last years (JO; SEO; FEKETE, 2018; CAI;
XU; ZHANG, 2021). These adaptations can deal with data insertion and element removal.
Nonetheless, frequent insertion/removal of elements (as in a sliding window regimen) makes
these tree-based solutions impractical to our application setup due to the frequent need to re-
balance the tree structures. Besides, kd-Trees are not well-suited to high-dimensional scenarios.
Ball-trees could be used instead. However, their construction can become costly, even in batch-
based applications. Another limitation of existing partition tree solutions is that they cannot work
with arbitrary distance metrics.

A popular alternative trend in batch-based NNS is Locality Sensitive Hashing (LSH) (DATAR
et al., 2004; ANDONI et al., 2015). Unlike traditional hashing techniques, LSH aims to map
similar inputs to the same hash table position. Multiple families of mapping functions suited
to different distance metrics were proposed throughout the years. Effectively, LSH acts as a
discretization technique: query points will be mapped to the same positions as their nearest
neighbors with high probability. LSH has been effectively used in multiple real-world applica-
tions (ANDONI et al., 2015). Although LSH’s projection scheme is naturally incremental, LSH
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techniques cannot be easily set up online due to the high dependence on the correct choice of
hyperparameter values. Non-stationary scenarios might make this problem even more evident.
Besides, data projection might be too costly to perform constantly. Lastly, LSH solutions also
cannot work with arbitrary distance metrics.

Random Partition Trees (RPT) were effectively applied to real-world NNS problems by
combining aspects from the two previous NNS solutions. One of the most popular versions of
RPTs is implemented in the Spotify-backed library, Annoy (AUMÜLLER; BERNHARDSSON;
FAITHFULL, 2020). Annoy creates ensembles of oblique trees whose partitions are hyperplanes
equidistant to two randomly sampled points. Therefore, the RPTs use a partition scheme similar
to many LSH solutions rather than applying axis-aligned splits like kd-Trees. RPTs can be
independently created because the partitions do not depend on data-driven statistics. Moreover,
tree construction is comparatively cheaper than in the vanilla kd-Tree algorithm. On the other
hand, RPTs are also limited to a restricted group of distance metrics and are static by design.
Once the RPT forest is created, it should be used to perform all search queries. Element addition
and removal are not trivial, as we deal effectively with multiple search indices, i.e., the individual
trees, rather than a single search index.

Vector Quantization (VQ) is another strategy used for NNS (JEGOU; DOUZE; SCHMID,
2010; MATSUI et al., 2018). This family of solutions can efficiently deal with high-dimensional
data but can be comparatively less accurate than the other presented strategies. The efficiency and
performance trade-off is dependent on the correct hyperparameter choice. VQ-based solutions are
also limited to specific distance metrics. The most popular VQ strategy is Product Quantization
(PQ), which relies on batch clustering to create data partitions and encode the original data using
the created partitions’ information. Variations of VQ, including Product Quantization, have been
proposed for dealing with online learning scenarios (XU; TSANG; ZHANG, 2018; LIU et al.,
2021). The online PQ strategy can be applied to a sliding window learning regimen but might be
too restrictive regarding distance measures.

Graph-based methods have become a synonym for NNS effectiveness in the last few
years (SHIMOMURA et al., 2021). Among the existing solutions, small-world graph-based
methods (MALKOV; YASHUNIN, 2018; SHIMOMURA et al., 2021) have received special
attention from the research community. Nonetheless, the cost of graph construction renders this
kind of solution impractical in online learning scenarios. Still, early baselines for graph-based
NNS have interesting properties that enable their adaptation to online NNS. In particular, the
pivotal NN-Descent algorithm (DONG; MOSES; LI, 2011) is especially appealing because its
construction is inherently incremental. NN-Descent also works with arbitrary distance metrics
and could be adapted to handle frequent element addition and removal. Our proposal, SWINN,
is inspired by the NN-Descent search index-building algorithm. Nonetheless, we extend the
original algorithm to enable performing local changes in the search index. Such changes are
necessary to add and remove new elements and to keep the graph reliable for search queries.
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7.3.2 Preliminaries

Next, we present definitions used throughout the paper that help to describe the function-
ing of SWINN. We start by formalizing the concept of a graph.

Definition 1: a weighted graph, G, is defined by the tuple G = (V,E), where V represents the
set of vertices and E = {(o,d,w) | o ∈V,d ∈V,w ∈R,and o ̸= d} is the edge set. In the cases
where the weight information is irrelevant, we will use (o,d) as a shorthand for (o,d,w).

If the edges in E are directed, then (o,d) ̸= (d,o). If the ordering of the edges is irrele-
vant, the graph is undirected. SWINN uses directed graphs weighted by the distance between
the instances in the sliding window. For such, we need to define the concept of the direct
neighborhood.

Definition 2: the direct neighborhood, Nv ⊂ V , of a vertex v ∈ V is defined as Nv = {n ∈
V \{v} | (v,n) ∈ E}, i.e., the nodes for which v have direct edges.

In our setting, we consider a first-in, first-out (FIFO) data buffer with limited size, i.e., a
sliding window. We denote by L the sliding window length, which is a user-defined parameter.

7.4 Sliding Window-based Incremental Nearest Neighbors

We propose Sliding Window-based Incremental Nearest Neighbor (SWINN), which
is a modified version of the NN-Descent (DONG; MOSES; LI, 2011) algorithm suited for
incremental learning scenarios. SWINN is based upon the assumption that “the neighbor of my
neighbors might as well be my neighbor”. Each instance in the sliding window data buffer is
mapped to a vertex in the neighborhood graph. New vertices are added as new instances arrive,
and the oldest instances (and their corresponding vertices) are dropped from the graph using the
FIFO strategy. SWINN uses an iterative process to create and keep a NN graph. The high-level
basic steps for graph construction are given as follows:

1. Start with a random neighborhood graph;

2. For each node in the search graph:

a) Refine the current neighborhood by checking if there are better neighborhood options
among the neighbors of the current neighbors;

3. If the total number of neighborhood changes is smaller than a given stopping criterion,
then stop.
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Although simple, the above-presented general lines for NNS graph construction are
powerful in multiple aspects. First, there are no limitations in the type of distance measure used
to build the search index, which is not the case when considering LSH, trees, or quantization-
based search indices (JEGOU; DOUZE; SCHMID, 2010; MATSUI et al., 2018). Second, the
graph-building process is incremental by design. Moreover, unlike tree-based indexes, e.g.,
kd-trees (JO; SEO; FEKETE, 2018; CAI; XU; ZHANG, 2021), we can perform searches from
any starting vertex, making index update procedures easier.

We can improve the above graph construction strategy by directly joining the neighbors
of a given node. Instead of performing two graph hops, i.e., checking whether the neighbors’
neighbors are better candidates than the current ones, we make all the neighbors of a given node
consider each other as possible new neighbors. Hence, we perform a single traversal hop.

The proposed strategy to build the search graph was first introduced in the original
NN-Descent paper (DONG; MOSES; LI, 2011). This strategy promotes neighborhood joins,
i.e., vertices consider other vertices as potential new neighbors. We work with directed graphs;
each vertex must have at most K direct neighbors. We use a capital letter to differentiate the
number of neighbors used for graph building (K) and the number of neighbors used during
search queries (k). The former value is fixed for SWINN’s graphs, whereas the second may vary
for each query. Although the number of direct neighbors, K, is fixed, we also need to consider
the reverse neighborhood, as defined next.

Definition 3: the reverse neighborhood, N′v ⊂ V , of a vertex v ∈ V is defined as N′v = {nr ∈
V \{v} | (nr,v) ∈ E}, i.e., the vertices with direct edges to v.

Considering the reverse neighborhood, the number of edges might increase considerably
to a value higher than K. As we work in a sliding window regimen, the maximum number of
vertices the search graph will have is limited by the length of the sliding window (L), i.e., L = |V |.
A vertex’s maximum number of reverse neighbors is bounded by L−1. The input data define
reverse neighborhood characteristics. Some works discussed different phenomena related to
the placement of points in the search space and how these factors influence graph-based search
indices (BRATIĆ et al., 2018; BRATIĆ et al., 2019). For instance, vertices with a high number
of direct and reverse neighbors, i.e., the so-called hubs, might increase the chance of a search
reaching local minima. Given the typically reduced number of instances considered in the sliding
window learning regimen, discussing the mentioned influencing factors is out of the scope of the
current work and will be addressed in future research.

Next, we define the total neighborhood as follows:
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Definition 4: the total neighborhood, Tv, of a vertex v ∈V is defined as Tv = Nv∪N′v, i.e., the
union between the direct and reverse neighbors of v.

When presenting the high-level description of the graph-building mechanism, we as-
sumed that a set of instances was previously available. In online ML scenarios, learning occurs
as soon as new instances arrive. SWINN has a warm-up period when instances are buffered, and
no graph is built. During this stage, searches are performed using the LS for all the data. After
the warm-up period, SWINN builds an initial graph and keeps updating the search index by
adding and removing instances. From this point onward, only the NN graph is used to perform
search queries.

We will detail in the following subsections each aspect of SWINN, including graph
refinement, how to perform search queries using the NN graph, how to remove vertices from the
graph, and possible ways to reduce the memory footprint of the search index. In the end, we will
combine the description of each component to describe how the whole SWINN algorithm works.

7.4.1 Refinement

The refinement procedure sequentially exchanges edges to make the search index con-
verge to the NN graph. For such, SWINN performs neighborhood joins considering combinations
of reverse neighbors and direct neighbors related to a reference vertex, i.e., select all combinations
among their reverse and direct neighbors for a given vertex.

Since the number of reverse neighbors a vertex can have is unbounded, the number of
possible combinations may become too high. Limiting the number of neighbors joined at each
refinement step can decrease costs. This strategy was proposed for NN-Descent, and we adopted
it for SWINN. Specifically, SWINN takes a sample of the total neighborhood from a reference
vertex when its total number surpasses a user-given threshold, maxc.

Even by limiting the number of vertices involved in neighborhood joins, NN-Descent
can still perform redundant neighborhood change checks. This may happen when a previously
attempted edge connection occurs during neighborhood joins. To reduce this problem and save
processing time, NN-Descent keeps track of edges already tried by keeping binary flags for each
vertex. Thus, each time a new direct neighbor is added to a vertex, a binary flag corresponding to
the new neighbor is set to true. If this neighbor is used in a neighborhood join, its binary flag is
set to false.

Neighborhood joins are performed by simultaneously exploring the following combina-
tions: (1) both vertices involved in the join have their flags set to true; (2) the origin of the edge
has a true flag, whereas the destination has a false flag.

These two constraints ensure that the left side of the join, i.e., the origin of the directed
edge, was not previously involved in a neighborhood join. Note that reverse neighbors also have a
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binary flag corresponding to the reference vertex. Although the binary flags add a slight memory
overhead, they avoid trying to link vertices that were previously evaluated. Such as NN-Descent,
SWINN applies an incremental version of this optimization.

Figure 25 presents an example illustrating how the refinement procedure works in
SWINN. We start our example in step A, where an initial graph built with K = 2 is presented.
In this state, the vertices are not necessarily linked to their NNs. In step B, the vertex green is
the target vertex, and its neighbors (direct and reverse) are selected for the neighborhood join.
In steps B, C, and D, the edges of vertices blue, gray, and red, respectively, are updated. In all
the cases, better neighbors are selected by computing the distances from the vertex in focus
(signaled by the red arrow) to the other vertices involved in the neighborhood join. SWINN
deletes previous edges to make room for the new ones in case the new options are closer in the
distance.

Figure 25 – An example of the SWINN refinement procedure. From steps A to M, one iteration of
neighborhood refinement is illustrated. Step N shows the search index after the neighborhood
refinement converges. Vertices with a bold T are the target during the refinement steps.
Vertices with a darker color shade are the neighbors of the target vertex, i.e., the vertices
involved in the neighborhood join. Arrows indicate the vertex whose neighbors are updated
in each step.

The refinement proceeds by shifting the target vertex to blue in step E. Similarly, the
neighborhood of vertex green is improved in step E. However, in steps F and G, the existing
connections do not change, as gray and red are already connected to their best neighboring
vertices. The same happens to blue when gray becomes the target vertex (step H). At this point,
purple has only one reverse neighbor (gray) and no direct neighbors. Thus, in step I, purple adds
a new edge to blue, as the latter is the only available option.

During step J, red becomes the new target. At this stage, the neighborhood does not
change for green since blue is already its direct neighbor. Next, blue adds an edge to green in
step K. SWINN does not limit reciprocal edges between vertices. The benefits of applying such
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a constraint to the size of the edge set are surpassed by the additional actions needed to keep the
NN connections as more data are monitored.

Notwithstanding, if it were not by the edge (purple, blue), in step K, two sub-graphs
would be generated by removing the connection (blue, gray). This situation is problematic and
might happen when K is not sufficiently large. The search can fail if there is more than a single
connected component, as not every vertex is accessible from any given starting point in the
search index. We will discuss the implications of the choice of K in the experimental results.

Steps L and M also do not imply changes in the search index, as the existing connections
are already the best options compared to the joined vertices. At the end of step M, all the existing
vertices acted as the reference vertex. Therefore, one iteration of the refinement process was
performed. The process is repeated until the convergence criteria are met. Step N shows the
example graph after convergence. SWINN applies two tests to stop performing the refinement
process:

1. The maximum number of iterations is reached (maxiter);

2. The total number of edge changes during an iteration of refinement is smaller than δKL,
where δ is a convergence tolerance parameter.

We present the neighborhood refinement procedure in Algorithm 5. Next, we explain
how the search is performed in SWINN.

Algorithm 5 – Graph refinement procedure.
Require:

Vr ⊆V : a list of vertices to perform the graph refinement procedure;
maxc: the maximum number of candidates to consider in local neighborhood joins;
δ : convergence criterion;
maxiter: the maximum number of iterations allowed for graph refinement.

1: procedure SWINN-REFINEMENT(Vr, maxc, δ , maxiter)
2: for i ∈ {1, ...,maxiter} do
3: for v ∈Vr do
4: Retrieve Tv and its corresponding binary flags Bv ▷ total neighborhood
5: Take a random sample, S(Tv), of size maxc out of Tv
6: for every v′ ∈ S(Tv)|Bv(v′) = true do
7: Attempt to create edges between v′ and vertices whose binary flags are true
8: Attempt to create edges between v′ and vertices whose binary flags are false
9: end for

10: Finish the procedure if the total number of edge changes is smaller than δK|Vr|
11: end for
12: end for
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7.4.2 Search

SWINN relies on a simple greedy search strategy to look for the NNs of a given query
point. We start by explaining how search works in the 1-NN case. Afterward, we expand our
discussion to include the cases where k > 1. Although we select a specific K value to build the
index, during the search, the number of returned NNs (k) is only bound by L.

Figure 26 illustrates how SWINN carries out the search. In step A, we take the same
graph obtained after the refinement performed in the last illustrative example. The query instance
is signaled by x on the left side of the graphs. The search starts in step B by randomly choosing
a starting seed vertex (the purple vertex). To reduce the search space, SWINN defines a search
bound, given by the distance from the current best solution to the query. Step B represents the
search bound by a circle centered in purple. The circle’s radius corresponds to the distance from
purple to the query point. Later, we will relax the definition of the search bound to decrease the
chance of falling into local minima during the search.

Figure 26 – Illustration of the search procedure on an already constructed search graph (step A). The
search procedure starts on a random seed vertex (step B). The dashed circle represents the
distance bound given by the current best solution. Candidates whose distance to the query
point (represented by x) is larger than the distance bound are ignored.

The search procedure proceeds by selecting the best option among the current neighbors
of the starting vertex. In our example, blue is the closest available vertex. In step C, we shift our
focus to blue and update the distance bound. The vertex gray was not yet explored (step D), as it
is also a neighbor of the seed vertex. However, the distance between gray and the query is larger
than the updated distance bound. Therefore, gray is not further explored.

Next, in step E, blue becomes the target vertex, the current best solution. The search
continues by exploring the neighbors of blue, which were not yet visited (green and red). The
first selected neighbor is green. SWINN’s vertices keep an unordered list of neighbors, so, in our
example, green is first selected for illustration purposes. The red vertex could also come first if
it were the first element in the list of total neighbors. As green is closer than blue to the query
point, the distance bound is updated in step F. There is only one remaining vertex to explore
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(step G), i.e., red. Nevertheless, the search ignores this vertex because the distance of red to the
query is larger than the current distance bound.

The search process stops in step H when green is selected as the query result. It must
be observed that, in this toy example, all the nodes were visited during the search. Thus, the
search cost was asymptotically equivalent to a LS. However, in practice, the number of available
vertices is much higher, and the combination of the greedy search strategy and the distance
bound significantly reduces the search space and speedup graph traverse.

In the illustrated search process, the distance bound is the distance from the best vertex
found so far to the query item. Nonetheless, by relying on this approach, the search process
might end up in local minima. For example, suppose there was an even closer vertex to the query
only accessible via red. The search would not reach this vertex by using the strict distance bound.

Alternatively, we can set a ε ≥ 0 parameter to extend the distance bound, i.e., during the
search, the distance bound will be defined as (1+ε)db, where db represents the distance between
the current best solution and the query. Hence, vertices can still be explored, even though their
distance to the query is (slightly) higher than the current best solution. We experiment with
different values of ε in our experimental setup.

So far, we have only discussed how to search for the 1-NN element in the graph. We can
generalize the search for the k-NN case using two binary heap data structures. The first heap,
Hmin, is a min-heap and keeps a pool of vertices whose neighborhood is yet to be explored. This
heap first explores the vertices with the smallest distances to the query element. The second heap,
Hmax, is a max-heap and stores the search results. The head of Hmax carries the farthest among
the k-NNs.

During the search, elements are removed from the head of Hmin and have their total
neighborhood explored, as described in the search example illustrated in Figure 26. Each vertex
in the total neighborhood of the head of Hmin is a candidate to be added to both Hmin and Hmax.
The distance bound, previously described, is calculated using the head element of Hmax. A new
vertex is added to Hmax only if its distance to the query is smaller than the distance bound. In
this case, the head element of Hmax is removed, and the new candidate is added to both Hmin and
Hmax. Note that Hmax always carries at most k elements, whereas Hmin is not bounded in length.
The distance bound is also updated with the new head element in Hmax. The search concludes
when there are no remaining elements to explore in Hmin. At this point, Hmax has k elements
partially sorted in the reverse order. These items can then be quickly sorted in increasing order
according to their distance to the query and returned as the search result.

7.4.3 Vertex addition

We already have tools to refine the neighborhood of a random graph, and we can also
perform search queries once the k-NN graph is created. Hence, we can add new elements to the
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search graph using a simple strategy. When a new data point arrives, SWINN uses the existing
graph to find the instances’ K neighbors. SWINN then creates a new vertex to accommodate
the new instance and adds direct edges to the K found vertices. Our proposal also updates the
reverse neighborhood of the selected neighbors to account for the newly added vertex.

7.4.4 Element removal

In SWINN, instances are supposed to be constantly removed from and added to the
graph in a sliding window. Hence, we need to ensure that the search index remains reliable,
even though some of its nodes and edges will constantly change. As previously discussed, new
elements can be added by using the current search graph to find the direct neighborhood of the
new vertex. Vertex removal is more challenging than element addition.

A possible option for removal is to apply the needed changes in the index, i.e., remove
nodes/edges, and then run the refinement procedure (subsection 7.4.1) using the whole graph.
However, this action has a cost of O((maxc)

2L). Following this strategy is more costly than
performing a linear scan (LS) in the data buffer. Another option is to perform graph refinements
at predefined intervals. Even so, there are no guarantees that the graph will be reliable for NNS
during the intervals between refinements. Besides, there is not even a guarantee that the graph
will be reliable for performing searches after removing a single vertex and all its edges. We need
to balance search index efficiency and reliability. For such, let us first define search reliability.

Lemma: a graph-based search index is reliable when there is only a single connected component,
i.e., every node in the graph can be reached from any given starting point.

If this is not the case, the search is deemed to fail with a wrong choice of the starting point.
Even if a seed vertex close to the query is selected, some vertices might become inaccessible. In
SWINN, we perform local adjustments to the graph after each element removal. Therefore, only
the local neighborhood of the removed vertex is updated.

We get the list of reverse and direct neighbors of the vertex to be removed, i.e., the oldest
element in the sliding window. The oldest element is removed from the graph together with its
edges. We then perform two filtering procedures in the previously retrieved neighborhood lists.

1. From the list of reverse vertices, only keep those with no direct neighbors;

2. From the list of direct neighbors, only keep those with no reverse neighbors.

On the one hand, we have a list of reverse neighbors without direct neighbors. On the
other hand, we have vertices without reverse neighbors. Although none of the situations is
inherently problematic, as long as there are alternative paths to reach one group starting from the
other, we cannot directly guarantee that both groups are not separate, i.e., the two lists might
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contain border vertices in two sub-graphs. We could verify if that is the case using a Minimum
Spanning Tree algorithm (MST), such as Kruskal’s (KRUSKAL, 1956), and verify whether a
single MST or a forest thereof is obtained. Notwithstanding, Kruskal’s algorithm has a cost of
O(E logV ), which in our case is O(KL logL), due to the nature of the search index. Running
an MST building algorithm after almost every vertex removal is too costly. We propose an
alternative solution to keep the graph reliable and computationally efficient.

For such, we first check if there is any intersection between the two filtered lists. If so,
these vertices are isolated in the search graph. We fix this situation by re-adding them to the
index. Next, for each node in the list of filtered reverse neighbors, we add new K neighbors using
the graph search procedure. However, instead of randomly selecting a random search seed vertex
among all those available, we randomly select a vertex from the second filtered list, i.e., the list
of direct neighbors of the removed vertex. As a result, we might create connections between two
separate sub-graphs. In case the second list is empty, we still add new neighbors to the members
of the first list using random search seed vertices. After creating the new connections, SWINN
applied the graph refinement procedure to the vertices from the two filtered lists.

7.4.5 Edge pruning

As vertices can have mutual edges and intersecting (undirected) neighborhoods, the
resulting search index might contain multiple and, potentially, redundant paths between two
given vertices. Even though some edges, at first glance, are worse than others, they still can be
helpful during index searches, e.g., a given vertex’s worst edge, w.r.t. distance, might provide the
most direct path toward the search query. On the other hand, if paths are redundant, they will
increase the search time and the memory footprint of the search index.

As discussed in subsection 7.4.2, SWINN relies on greedy search, as many of the
preceding batch-based graph solutions. For this reason, at each step of the search, the total
neighborhood of the current node must be expanded to select the potential best path to follow.
At this point, the impact of having multiple paths between two vertices is twofold: (1) they can
boost search accuracy by enabling faster hops towards the target vertex; (2) redundant paths
increase the neighborhood exploration time with no direct benefits to the search accuracy.

The search graph can be pruned to reduce the number of edges and speed up the
search. However, care must be taken when removing edges to avoid creating multiple connected
components, i.e., sub-graphs. Due to the incremental nature of the underlying search process, we
should avoid calculating distances between vertices to save computational resources. Hence, we
propose a simple edge pruning procedure that accounts for calculated distances between vertices.

The main idea is akin to the refinement procedure employed to create the search graph.
This time though, we want to “remove connections to neighbors of my neighbors if they are
closer to my neighbor than they are from myself”. SWINN creates a min-heap during the pruning
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procedure to track the direct and reverse neighbors of a focus vertex v, ordered by their distance.
The best neighbor is retrieved from the min-heap and added to a set of selected neighbors
S. For each remaining candidate c in the neighborhood heap, SWINN first checks if an edge
exists between c and one of the selected neighbors s ∈ S. When it is not the case, c is added to
S. If an edge exists between c and an element s ∈ S, the farthest among the undirected edges
(v,s) and (s,c) is discarded. Therefore, if we imagine a triangle formed by vertices v, s, and c,
SWINN effectively removes the polygon’s longest side. Following this strategy, v, s, and c are
still mutually reachable even after removing the longest edge among them.

We illustrate how the pruning procedure works with Figure 27. This pruning procedure
can be applied to all vertices in the search index, but in SWINN, we only apply it after performing
(local) graph refinements. Figure 27 shows a hypothetical search graph where edge pruning is
applied to the green vertex, which we refer to as the focus vertex. Step A shows the starting
search index. At the beginning of the procedure, we create an empty list of selected neighbors.
All the existing neighbors of the focus vertex are candidates for either removal from or addition
to the list of selected neighbors. Only the selected neighbors will remain at the end of the pruning
procedure. We compare each neighbor of green against the list of selected neighbors accordingly
to their distance. If a candidate vertex is also a neighbor of one vertex in the list of selected
vertices, only the best edge among two compared vertices is kept.

Figure 27 – Illustration of the edge pruning capabilities starting from the green vertex. Starting from the
top left to the bottom right: each edge of green is selected, and the smallest are kept. Edges
(green, red) and (purple, blue) are removed by the procedure. Note that two hops will be
needed to reach red starting from green after removing the edges. Similar cases happen for
the other affected vertices.

In step B of Figure 27, the best available edge, blue, is selected for analysis (highlighted
in bold). As there are no selected neighbors yet, blue is added to the list of selected neighbors
(step C). Next, in step D, the second best edge (purple, green) is analyzed, and the list of selected
nodes is checked for possible redundant paths. In fact, purple is also a neighbor of blue, which
was previously selected. As the edge between purple and green is shorter than that between
purple and blue, the latter edge is removed (step E). In step F, the third and last neighbor of green
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is selected (red) for analysis. Indeed, red is also a neighbor of blue. Again, the shortest edge
among the two compared vertices is kept, leading to the removal of red as a neighbor of green
(step G). The procedure stops at step H, as there are no more edges to explore from the focus
vertex.

Even though the previous procedure guarantees that vertices are accessible and the index
is not split into multiple connected components, care must be taken to remove edges. Due to the
usage of a greedy search algorithm, long edges might help to avoid local minima. Hence, neither
keeping all the edges nor removing all possible redundant paths might be optimal depending
on the considered performance measure. For this reason, we add the parameter pruneprob to
control the probability of removing a redundant edge. Therefore, the pruning procedure works
as previously described, with the difference that each time a redundant edge is found, there
is a probability, 1−pruneprob, of not removing it from the graph. The value of pruneprob is a
user-given parameter. When pruneprob = 0, no edges are removed, whereas when pruneprob = 1,
all possibly redundant edges are going to be removed.

7.4.6 The complete SWINN functioning

In this section, we show how each previously presented element of SWINN works
in combination with the others. The complete SWINN updating procedure is presented in
Algorithm 6.

7.5 Experimental setup on simulated data

In this section, we describe the experimental setup used in our experiments, including
the data, the evaluation measures, the baseline, and the settings used in SWINN. SWINN was
implemented in Python and will be incorporated into River (MONTIEL et al., 2021) for ease of
public use and access. All the reported experiments were performed sequentially in a CentOS
machine with 2 Intel Xeon E5-2667v4 processors with eight cores running at 3.2 GHz and
512GB of DDR3 RAM.

7.5.1 Baseline, data and evaluation metrics

For the baseline, we compared the performance of SWINN to a linear scan (LS) of the
data buffer. LS is also sometimes referred to as an exhaustive search. First, we compared our
proposal against the baseline by using synthetic data. Our goal was to understand better how the
hyperparameters involved in the design of SWINN affect its predictive performance.

In our experiments, we generated 10 uniformly sampled features and 50 000 instances for
each case study. This experimental setup did not consider concept drift, as sliding window-based
learning models are naturally adaptive by keeping only the most recent data. The evaluation
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Algorithm 6 – The complete SWINN update function.
Require:

D: the data stream;
K: the number of direct neighbors each vertex must have;
maxc: the maximum number of candidates to consider in local neighborhood joins;
pruneprob: the probability of removing a long edge;

1: function SWINN-UPDATE(D, K, maxc, pruneprob)
2: Let Q be a queue with at most L elements and G be an empty graph
3: while D has instances do
4: item← next(D)
5: Let vnew be a new vertex containing item and no edges
6: if G is empty and |Q|< L then
7: Add vnew to Q
8: if |Q| is equal to the warm-up period then
9: Create a random graph G = (V,E) using all elements in Q

10: Refine G using all the vertices (subsection 7.4.1)
11: Skip to the next instance
12: end if
13: end if
14: if |Q|= L then
15: Remove the oldest vertex, vold, from the graph
16: Fix the previous neighborhood, Tvold , of vold (subsection 7.4.4)
17: Apply the graph refinement procedure to the vertices in Tvold

18: for v ∈ Tvold do
19: if |Tv|> maxc then
20: Prune redundant edges of v with probability pruneprob
21: end if
22: end for
23: end if
24: Find the K nearest neighbors of vnew using G (subsection 7.4.2)
25: Add vnew along with edges to its K nearest neighbors to G
26: Add vnew to Q
27: end while
28: return G
29: end function

strategy followed a test-than-train approach (BLUM; KALAI; LANGFORD, 1999), i.e., the
popular prequential evaluation approach used in data stream learning (GAMA; SEBASTIAO;
RODRIGUES, 2009). In this strategy, for every incoming instance, we first retrieve the position
of its k-NN in the sliding window and then add the new example to the buffer.

The query results of the LS baseline are used as the ground-truth values to calculate the
Search Recall (SR) values, which vary between [0,1], where 1 is the best possible value. Thus,
SR represents the mean percent of the true NNs that SWINN can retrieve. As LS checks every
possible example in the data buffer, its SR is always 1. Ideally, we want to obtain values as close
to 1 as possible with SWINN while being faster than LS performing search queries. Hence, we
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measure the running time of both LS and SWINN in seconds, considering element insertion,
search query, and the total run time. We also measure the memory footprint of the compared
algorithms for NNS.

7.5.2 Graph configurations

Table 22 presents the list of hyperparameters assessed for SWINN. We separate the
hyperparameters into two categories: index building and search. We left the hyperparameters
values of the two convergence criteria fixed during our experiments, following guidelines defined
in the literature (DONG; MOSES; LI, 2011; BRATIĆ et al., 2019). Moreover, we set SWINN
to use the first 100 instances in the stream to warm-up. We discuss the impact of changing the
values of the remaining hyperparameters in the experiments’ discussion section. The values of L

(window length) were applied to both SWINN and the LS baseline.

Table 22 – List of SWINN hyperparameters considered in our experimental setup. The choice of L and k
also applies to the Linear Scan baseline.

Stage Name Description Value(s)

Build

δ Convergence criterion 0.001
maxiter Maximum number of iterations for graph refinement 10
L Sliding window length {100,250,500,1000,5000}
K Number of neighbors during graph construction {5,10,20,30}
maxc Maximum number of candidates to consider during local neighborhood joins {20,30,50,100}
pruneprob Probability of pruning a long edge {0.0,0.3,0.5,0.7,1.0}

Search
ε Tolerance hyperparameter for the distance bound {0.0,0.1,0.5,1.0}
k Number of neighbors to retrieve during search queries {1,2,3,4,5,6,7,8,9,10}

7.6 Results and discussion
In this section, we evaluate the performance of SWINN in the synthetic data described in

subsection 7.5.1. We start by analyzing how each hyperparameter affects SWINN’s performance
and later compare SWINN against the LS of the data buffer. In section 7.7, we apply our findings
in classification and regression case studies using synthetic and real-world data.

Multiple aspects have an impact on the performance of the search index, e.g., it is widely
known that distance-based methods suffer the so-called “curse of dimensionality”. The NN-
Descent authors mention in the original paper that their method works better for data with less
than 20 features (DONG; MOSES; LI, 2011). Besides, the efficacy of a search index is closely
related to the characteristics of the data. In this section, we limit our analysis to a controlled
experimental setup to better understand each aspect of SWINN and its impact on predictive
performance.

External factors, such as data dimension and hubness (DONG; MOSES; LI, 2011;
BRATIĆ et al., 2018; BRATIĆ et al., 2019), remain open questions and should be addressed
in the future. However, as we operate in a sliding window environment, possible sources of
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search instability are transient. For example, it is known that nodes with an increased number
of total neighbors affect NN-Descent in a negative way (BRATIĆ et al., 2018; BRATIĆ et al.,
2019). In SWINN, as more data are observed, these nodes are eventually removed from the
graph. Therefore, some challenges faced by batch applications might not affect SWINN to the
same extent.

We organize our discussion by formulating the following research questions, which will
be addressed in the next subsections:

Q1: Is SWINN effective regardless of the sliding window size?

Q2: Does the number of requested nearest neighbors impact the search recall during graph
search?

Q3: How ε value impacts search recall and running time during search queries?

Q4: What is the impact of the chosen number of neighbors used to build SWINN’s graph on
search recall and running time?

Q5: What is the impact of neighborhood sampling when performing local joins during graph
refinement?

Q6: What is the impact of edge pruning on the overall search recall and memory and time
costs?

7.6.1 Sliding window size

We ran every hyperparameter combination described in subsection 7.5.2 and checked
the effectiveness of SWINN accordingly to the running time and SR. We report our findings in
Table 23 accounting for hyperparameter value combinations that were faster than a LS while
also delivering SRs larger than 0.9. When considering only time, no gains were observed for
L = 100. In fact, in our experiments, we set the warm-start period to 100 instances, as reported
in subsection 7.5.2. As shown in the table, gains in processing time are only noticeable starting
at L = 250. SWINN time efficiency becomes more apparent as the window length increases, and
our proposal was always faster than an LS when L = 5000.

Table 23 – Overall performance of SWINN compared to a linear scan of the data window, considering
time and search recall.

Window length 100 250 500 1000 5000

TimeSWINN < TimeLS 0.00% 21.31% 48.72% 77.56% 100.00%
SRSWINN > 0.9 100.00% 65.62% 61.87% 55.37% 46.78%
Both 0.00% 0.00% 13.72% 32.97% 46.78%
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Still, considering L = 250 and SR, no hyperparameter value combination delivers SR
values higher than 0.9 while also being faster than a LS. We only start to observe hyperparameter
value combinations able to be faster than LS and with SR > 0.9 when using L= 500. Nonetheless,
the amount of hyperparameter value combinations able to deliver the combined gains are minimal
(13.72%). Therefore, answering the research question Q1, we conclude that SWINN is better
suited for windows with more than 500 instances. Hence, by setting the warm-up period to 500,
one can achieve a good compromise in performance. In the following sections, we investigate
the effect of the other hyperparameters of our technique and check how they impact SWINN’s
performance. We will, from here onward, limit our analysis to L = 1000 and L = 5000.

7.6.2 The impact of ε on graph search

The greedy search used in SWINN might become stuck in local minima. To deal with this
limitation, we include the ε hyperparameter, which allows SWINN to explore vertices slightly
worse than the available nearest vertex at each search step. Nonetheless, overextending the
number of explored vertices during the search has a toll on the running time. Hence, a balance
must be achieved by setting a proper ε value.

We analyze how the ε hyperparameter influences the running time and SR of SWINN in
general. For such, we select the most unconstrained version of SWINN among our experimental
setup, employing K = 30 neighbors to build the search index, using maxc = 100, and disabling
edge-pruning. We select this combination to minimize other parameters’ effects on the SR. In
particular, the choice of the highest evaluated K value guarantees a single connected component
in the search index and multiple redundant paths between vertices.

In Figure 28, we present our analysis considering queries for the 1-st until the 10-th
nearest neighbor. When analyzing the left side of the figure (first column), the choice of ε = 0
has a negative impact on SR, especially when k = 1. SWINN produces SR values close to 0 when
searching the 1-NN, regardless of the window length. There is a significant jump in SR for every
selection of ε > 0. Still, we observe that the higher the value of k, the higher the SR, a finding
that answers the research question Q2. This behavior is related to how the search is performed in
the graph. The distance bound, described in subsection 7.4.2, is defined by the worst neighbor
among the current best candidates. Thus, when k = 10, the 10-th nearest neighbor at any given
point of the search will define the threshold to either explore or ignore the neighborhood of
a candidate node. When k = 1, only a candidate will be kept as a solution, and the inclusion
criterion will become more restrictive. In these cases, increasing the ε value is mandatory.

Overall, ε = 0.1 provides the best balance between SR and running time, especially as
the number of queried neighbors increases. Nonetheless, other values of ε might be selected
depending on the primary goal. When searching for an increased number of neighbors, the choice
of ε has little impact on SR, although it saves computation time. These observations answer the
research question Q3. From this point onward, we select ε = 0.1 to analyze the impact of K,
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Figure 28 – The impact of ε on the total search recall (left) and search time (right). From top to bottom:
window lengths of 500, 1000, and 5000 instances. Each color represents a ε value, and each
group of bars represents the number of neighbors searched in each query.

maxc, and pruneprob in SWINN.

7.6.3 The impact of the value of K on the search index

So far, we have only analyzed factors external to the search index building. These factors
directly impact the search graph’s performance but do not dictate how it is built. We now analyze
how the choice of the value of K impacts the SR, the running time, the memory footprint, and
the number of connected components in the search graph. We present our results in Figure 29
considering L = 1000. Similar results were observed with L = 5000 and can be checked in the
Appendix.

To answer the research question Q4, we start by considering the running time measure-
ments, depicted in the first column of Figure 29. As expected, the running time to add elements to
the graph and perform search queries increases as the value of K increases. Nonetheless, we also
must consider how the choice of the value of K impacts the other performance measurements.
Looking at the top-right chart of Figure 29, we perceive that K = 5 yields significantly smaller
values of SR in comparison with the other values of K. The bottom-right chart gives us the
possible reason. Every value of K, except for K = 5, results in a graph with a single connected
component. On the other hand, K = 5 generates more than one sub-graph on multiple occasions.
Hence, SR results are expected to degrade as not every vertex will be reachable. For K > 5, a
single connected component is always obtained. To answer the research question Q4, in general,
the higher the K, the more accurate SWINN becomes, at the cost of increased computational
resource usage.

Our goal is to find the best balance between time, SR, and search reliability. We believe
that K = 20 represents a good compromise between all the metrics and will be used from this
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Figure 29 – The effect of increasing the value of K in SWINN, when L = 1000.

point onward. The downside of this choice, depicted in the middle chart on the right side of
Figure 29, is the increased use of memory to store the graph. As expected, the memory footprint
of SWINN using K = 20 is smaller than the version with K = 30. Still, it is more costly than
performing an LS in the data buffer. SWINN spends additional memory resources to keep all the
vertices and edges in addition to all the instances in the buffer. However, our primary focus is to
improve the running time performance and keep competitive SR values.

7.6.4 The impact of neighborhood sampling during local joins

We also evaluate the impact of maxc in the overall performance of SWINN. We used
K = 20, as previously mentioned, and disabled edge-pruning. We present the results for L = 5000
in Figure 30, while the results for L = 1000 are included in the Appendix.

As it can be observed, the running time differences between different values of maxc are
negligible. In fact, versions that bound the number of neighbors in local joins to 20 and 30 are
slightly slower than the less restrictive versions of SWINN. This is due to the cost of performing
vertex sampling during the local joins. These differences are also hard to notice when using
L = 1000.

To answer the research question Q5, we believe that limiting the number of vertices
participating in local joins is useful when the total neighborhood is high, i.e., when the value
of K is high, and vertices have an increased number of reverse neighbors. The user controls the
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Figure 30 – The effect of increasing the value of maxc in SWINN, when L = 5000.

first factor, while the second is data-dependent. As a compromise, we select maxc = 50 to have a
possible balanced solution, regardless of the window length.

7.6.5 The impact of edge pruning

Finally, we evaluate the impact of edge pruning in SWINN, illustrating the effect of
increasing the chance of removing possibly redundant edges in Figure 31. For such, we selected
L = 5000, but similar observations can be made to L = 1000.

It is difficult to observe changes in the running time and SR in this figure. The number of
connected components remains unchanged, as desired. We cannot perceive significant variations
in the memory footprint of SWINN. Unlike the batch graph-based search index, the edges in
SWINN have a transient characteristic. Edge pruning could be helpful in cases where the value
of K is higher than the values we evaluated in our experimental setup. Even in these cases, every
node is eventually removed, even the so-called hubs in related literature (BRATIĆ et al., 2018;
BRATIĆ et al., 2019). To answer the research question Q6, the benefits and drawbacks of edge
pruning are shadowed by the naturally evolving characteristics of sliding windows-based nearest
neighbor search. Therefore, we adopt pruneprob = 0 in the follow-up experiments, i.e., no edge
pruning.
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Figure 31 – The effect of increasing the value of pruneprob in SWINN when L = 5000.

7.6.6 Comparing SWINN against a linear scan of the data

We also compare the performance of SWINN against a complete LS of the data buffer
using the hyperparameter values combination obtained in the last section. In other words, we use
SWINN with K = 20, maxc = 50, and pruneprob = 0. We present the obtained results in Table 24,
considering windows of 1000 and 5000 instances. It is no surprise that the memory usage of
SWINN is higher than LS’. This occurs because SWINN uses additional memory resources to
store the search index, whereas LS only stores the instances per se. Notwithstanding, our primary
focus is the running time, and even for large data windows, the amount of memory used by
SWINN is easily manageable in traditional data stream setups.

Regarding SR, SWINN cannot match LS, regardless of the L value. This comes from
relying on a greedy search strategy to perform queries in the search graph. Hence, the search
is prone to be stuck in local minima, as it is primarily noticed when searching and using k = 1.
As discussed in subsection 7.6.2, ε can be used to enhance the greedy search and significantly
improve the SR when the value of k is small. Still, when k ≤ 2, the choice of ε = 0.1 is not
enough to make the SR values approach those obtained when k > 2, usually over 0.97. As an
alternative, the user could increase ε further when searching for a small number of nearest
neighbors. Nonetheless, in the future, we intend to search for alternatives to the greedy search
currently used in SWINN and its batch counterpart.

Running time was the characteristic where SWINN truly shined. In Table 24, we highlight
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Table 24 – Mean Search Recall, memory usage, and running time of LS and SWINN when considering
L = 1000 and L = 5000. We indicate the mean memory usage of LS and SWINN alongside
the window length. The number around parenthesis in the time measurements indicates how
much faster SWINN performed in comparison with LS.

k
L = 1000 (LS: 1.22MB, SWINN: 5.76MB) L = 5000 (LS: 6.11MB, SWINN: 28.86MB)

SR Time SR Time
LS SWINN LS SWINN LS SWINN LS SWINN

1 1.00±0.00 0.81±0.00 218.57±13.87 146.63±3.45 (×1.49) 1.00±0.00 0.75±0.00 1370.13±18.67 179.00±3.72 (×7.65)
2 1.00±0.00 0.92±0.00 218.77±13.98 150.86±3.48 (×1.45) 1.00±0.00 0.87±0.00 1369.02±20.62 184.05±3.31 (×7.44)
3 1.00±0.00 0.95±0.00 218.17±13.85 155.14±3.59 (×1.41) 1.00±0.00 0.92±0.00 1367.35±19.23 188.87±3.19 (×7.24)
4 1.00±0.00 0.97±0.00 218.52±13.78 159.22±3.69 (×1.37) 1.00±0.00 0.95±0.00 1348.04±19.71 193.50±3.19 (×6.97)
5 1.00±0.00 0.98±0.00 218.99±13.30 163.22±3.82 (×1.34) 1.00±0.00 0.96±0.00 1359.93±19.66 198.09±3.22 (×6.87)
6 1.00±0.00 0.98±0.00 218.55±14.49 167.07±3.88 (×1.31) 1.00±0.00 0.97±0.00 1350.87±18.44 202.61±3.24 (×6.67)
7 1.00±0.00 0.99±0.00 220.07±13.89 170.83±3.97 (×1.29) 1.00±0.00 0.97±0.00 1368.97±21.69 207.02±3.29 (×6.61)
8 1.00±0.00 0.99±0.00 218.33±13.90 174.36±4.05 (×1.25) 1.00±0.00 0.98±0.00 1352.17±19.21 211.29±3.40 (×6.40)
9 1.00±0.00 0.99±0.00 219.44±14.60 177.91±4.08 (×1.23) 1.00±0.00 0.98±0.00 1366.96±20.72 215.59±3.37 (×6.34)

10 1.00±0.00 0.99±0.00 218.58±13.58 181.19±4.24 (×1.21) 1.00±0.00 0.98±0.00 1355.69±20.67 219.78±3.47 (×6.17)

the number of times SWINN was faster than LS inside parenthesis. When L = 1000, SWINN
was always faster than LS, though sometimes the speedup of our proposal was at most 20%.
However, when we move to windows of 5000 instances, SWINN is generally at least 6 times
faster than the LS. We believe SWINN is a solid choice to perform k-NN for larger window
sizes, which would be impractical using LS.

7.7 Case studies

We investigated two case studies to assess how SWINN performs when applied to
supervised ML tasks. Unsupervised learning is also viable, e.g., anomaly detection, but we
wanted straightforward ways of comparing predictive performance. Our idea is to define a
limited time to allow different classification and regression algorithms to run and verify their
effectiveness in predictive performance and data processing throughput.

In these studies, we used data generators for classification and regression tasks. Data
generators can produce synthetic instances indefinitely and allow the user to control the data
characteristics. We allowed each compared algorithm to run for one hour in the same machine1,
in which each datum from the data generators was processed sequentially, using the prequential
strategy. We also used similar classification and regression algorithms in both cases. All the
algorithms are available in River (MONTIEL et al., 2021) and were instantiated with their
default hyperparameter settings, as implemented in River. For the k-NN models, we set k = 5
in all the cases, which is also the default in River. As for SWINN, we selected the same set of
hyperparameters reported in section 7.6. Table 25 presents a list of the compared algorithms
used in the classification and regression tasks.

Next, we provide more details about the experiments carried out and the results obtained
for each case study.

1We used the same computer described in our experimental setup.
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Table 25 – Compared Classification and Regression algorithms and their acronyms.

Acronym Meaning Reference

LR Linear Regression (R) or Logistic Regression (C) -
HAT Hoeffding Adaptive Tree (BIFET; GAVALDÀ, 2009)
ARF Adaptive Random Forest (GOMES et al., 2017; GOMES et al., 2018)
LS(L) k-NN using LS and a window with L instances -
SWINN(L) k-NN using SWINN and a window with L instances -

7.7.1 Regression

We start by discussing a regression task. For such, we have chosen the Friedman Drift
data generator (IKONOMOVSKA; GAMA; DŽEROSKI, 2011b), which is available in the River
library. We selected the variant with Local and Expanding Abrupt (LEA) concept drifts, denoted
by Friedman(LEA). This variant of the data generator implements three concept drifts affecting
the feature space locally. The affected portions expand after each drift. Hence, the last concept
drift is the most pronounced. We set the drifts to occur after 250 000, 450 000, and 1 500 000
instances.

The selected performance metrics were the Root Mean Squared Error (RMSE) and the
Coefficient of determination (R2), due to their popularity and complementary nature. For the
former metric, the smaller its value, the better, whereas the opposite happens with the latter
metric. The best possible value of R2 is 1, when the regression model perfectly captures the
underlying regression patterns. When R2 equals 0, there is no correlation between the regressor
output and the ground truth.

We added an incremental standard scaling procedure at the beginning of the processing
pipeline of each regressor. The default behavior of Hoeffding Tree-based regressors in River is
to build model trees, i.e., decision trees whose leaves carry LR models to provide predictions.
That is the case with ARF and HAT regressors. The LR and NNS models work better when all
the features are on the same scale. Therefore, all regressors had the input data scaled before
processing each datum.

We present the results of the regression case study in Figure 32. We adopted the logarith-
mic scale for the x-axis due to the large gap in the number of processed instances by the different
algorithms. LR and HAT were the fastest algorithms due to their simplicity and efficiency. These
were the only two regressors that reached the last concept drift point. Indeed, we can perceive
an increase in the predictive error of LR and HAT past 106 instances due to concept drift. How-
ever, only HAT could start reacting to the drift and gradually reduce the predictive error. LR is
not equipped to deal with concept drifts, and its RMSE presents a pronounced increase. The
remaining regressors did not reach the last concept drift point.

Table 26 details the differences between the compared regression models. In the table,
we can see the large gap between the number of processed instances by LR and the remaining
regressors. On the other hand, LR yielded the worst values of RMSE and R2 among the com-
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Figure 32 – Results of different regressors when processing an instance of the Friedman(LEA) data
generator for one hour. The x-axis is in a logarithmic scale due to the large differences
between the compared models. Vertical lines denote the maximum number of instances each
model could process during the allowed time.

pared regressors. HAT was around nine times faster than the fastest NNS-based regressor, i.e.,
SWINN(1000). Tree-based models had the edge in predictive performance, being ARF the most
accurate algorithm. LR, HAT, LS(1000), and all the SWINN variants processed more instances
than ARF during the allowed time.

By increasing the L parameter, SWINN-based k-NN regressors could surpass LS(1000)
in predictive performance and still process a considerable number of instances. Among the k-NN
models, LS(5000) was the most accurate, although also the slowest model. In all the cases,
SWINN was over four times faster than LS(5000). The SWINN-based k-NN regressors obtained
RMSE and R2 values close to those obtained by the LS variants. By tweaking the values of ε

and K, the predictive performance gap between LS and SWINN could be reduced, while the
speed differences could be increased even further. Notwithstanding, we acknowledge that more
efficient and effective graph query strategies must be applied to the search index. The greedy
nature of the graph search, allied with a simple strategy to select the query starting point, might
cause the search to be stuck in local minima. Still, SWINN has shown potential to be an efficient
strategy for performing NNS in regression tasks.

7.7.2 Classification

In the classification case, we relied on the data generator, denoted Random Radial Basis
Function (RBF), with gradual concept drifts (RBF-GD). We set up RBF-GD to create 20 features,
2 classes, and 50 micro-clusters from which 10 slowly shift (the change speed was set to 0.01).

Feature scale does not impact the classification version of HAT and ARF. Hence, we
only applied feature scaling to LR and the NNS-based classifiers. We know that keeping an
incremental feature standardization pipeline component and scaling all the features incurs extra
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Table 26 – Regression case study using the Friedman(LEA) dataset. The reported RMSE and R2 values
correspond to the measurements after processing incoming data for one hour.

Algorithm Instances processed LS(5000) speed up RMSE R2

LR 45 957 500 258.92× 3.94 0.60
HAT 9 762 500 55.00× 2.67 0.81
ARF 231 500 1.30× 1.99 0.84
LS(1000) 949 500 5.35× 2.98 0.66
LS(5000) 177 500 1.00× 2.34 0.78
SWINN(1000) 1 186 500 6.68× 3.07 0.65
SWINN(5000) 871 000 4.91× 2.65 0.73
SWINN(10000) 764 000 4.30× 2.47 0.77

running time costs. Nonetheless, that is the nature of linear and NNS models: feature scale
matters. As we aimed for a realistic comparison of the algorithms, we opted to evaluate the
classifiers in the same way they would be applied in real-world scenarios.

We present the evolving performance curves for Accuracy and the F1 score in Figure 33.
Once again, LR and HAT were the fastest approaches, as expected. The ARF classifier, differently
from its regression counterpart, was able to surpass the k-NN models in terms of the number of
processed instances. Hoeffding Trees for classification store counters as split-enabling statistics
and rely on highly efficient approximation techniques (PFAHRINGER; HOLMES; KIRKBY,
2008) to evaluate split candidates. Regression trees keep variance estimators as split-enabling
statistics and rely on more costly split evaluation procedures due to the continuous nature of the
labels. For that reason, the classification version of ARF is faster than the ARF regressor. The
same holds when comparing the HAT classifier and regressor.

Figure 33 – Results of different classifiers when processing an instance of the RBF-GD for one hour.
The x-axis is a logarithmic scale due to the large differences between the compared models.
Vertical lines denote the maximum number of instances each model was able to process
during the allowed time.

Looking at the final results in detail, as reported in Table 27, we realize that the per-
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formance differences between SWINN and LS were more apparent in classification tasks. We
argue that the number of selected features impacted the predictive performance. Also, due to the
discrete nature of the labels, the approximation nature of SWINN’s NNS might have a higher
impact on the final performance. This observation comes from the fact that the most common
label among the returned neighbors is the final answer. In regression, the average label value is
the output. Hence, the influence of false positives in a search query might be more pronounced
in classification tasks.

With the increase in dimensions, hubness (BRATIĆ et al., 2019) might also impact the
graph structure. The curse of dimensionality might also influence the greedy search applied
in SWINN. The influence of the number of features on performance has been addressed by
NN-Descent authors (DONG; MOSES; LI, 2011) and subsequent works (BRATIĆ et al., 2018;
BRATIĆ et al., 2019). It remains an open issue to further study in online ML scenarios. Increasing
the value of ε may increase SWINN’s recall in these cases at the cost of slightly higher running
time. Even in such settings, SWINN ought to be faster than performing an LS of the data buffer
when the value of L is high, as the final results reported in Table 27 hint at. Even when using
L = 10000, our proposal processed almost the same number of instances as the LS(1000) The
differences in predictive performance between LS and SWINN give us more pieces of evidence
to support focusing on graph search as the next step.

Table 27 – The classification case study’s results using an instance of the Random RBF with gradual drifts
dataset. The reported accuracy and F1 values correspond to the measurements after processing
incoming data for one hour.

Algorithm Instances processed LS(5000) speed up Accuracy F1

LR 4 090 500 134.11× 0.79 0.83
HAT 1 198 000 39.28× 0.89 0.91
ARF 368 000 12.07× 0.92 0.93
LS(1000) 132 500 4.34× 0.97 0.98
LS(5000) 30 500 1.00× 0.97 0.98
SWINN(1000) 317 000 10.39× 0.89 0.91
SWINN(5000) 180 000 5.90× 0.88 0.90
SWINN(10000) 130 500 4.28× 0.89 0.91

7.8 Final considerations
In this paper, we proposed Sliding Window-based Incremental Nearest Neighbors

(SWINN), an online and graph-based nearest neighbor search (NNS) algorithm. SWINN is
primarily meant to work in a sliding window regimen, where new instances arrive, and the old
ones are discarded. Nonetheless, any vertex of SWINN’s search graph can be removed, and new
vertices can be added. Therefore, other types of data ingestion can also be explored.

Our experiments show that SWINN effectively deals with online NNS when the sliding
window size is sufficiently large (L≥ 1000). SWINN is significantly faster than a complete linear
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scan (LS) of the sliding window while keeping competitive search recall to the LS approach.
Furthermore, SWINN can deal with arbitrary distance metrics and copes with concept drift
similarly to the LS strategy. Our proposal is also effective when applied to online ML tasks, from
which we give classification and regression examples. We compare SWINN-based k-NN models
against popular online classification and regression algorithms.

In future work, we intend to further explore search strategies in SWINN. SWINN relies
on a simple bounded greedy search to perform graph searches. Moreover, search initialization
is performed by selecting a single random vertex as the starting point. Both the search strategy
and the search initialization can be further improved. An example would be using a multi-vertex
search start and exploring additional search heuristics to perform graph traversal.

Additionally, applying SWINN as the building block of more complex k-NN-based
solutions could be an exciting venue to explore. For instance, our proposal could be used in
multi-memory solutions, where two levels of data buffering are applied, namely, short and long-
term memories. The short-term memory holds the most recent data items in a sliding window
fashion, while a larger window, possibly populated via reservoir sampling, carries examples
of old concepts. Decisions are taken by performing NNS in both windows and combining the
answers found in each memory level. Last, we intend to explore other distance metrics and
investigate how the choice of the metric impacts the performance of online ML tasks.

Acknowledgments
This research was supported by the São Paulo Research foundation, grant #2021/10488-

7. The experiments were carried out using the computational resources from the Center for
Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP (grant 2013/07375-
0).



155

CHAPTER

8
CONCLUSION AND FINAL REMARKS

In this thesis, we sought to answer the three main research questions presented in
section 1.2. To that end, we formulated hypotheses that guided us in the publications that
compose each chapter that comprehends the present study. Most of these research questions
concern reducing the computational costs of the incremental decision trees, decision rules, and
ensemble models, primarily when considering regression tasks.

In Chapter 2, we evaluated different strategies to create incremental ensemble regressors
and how such methods impact predictive and computational performance. We also introduced
SRP-Reg, which combines instance re-sampling and feature sub-sampling to create diverse and
accurate regressors. We show that, in regression tasks, passive concept drift detection techniques
can be as effective as the active ones, e.g., resetting the base learners at predefined intervals rather
than relying upon concept drift detectors. We also verified that combining the prediction of model
trees using the median value leads to improved predictive performance. Notwithstanding, the
costs of the base models in regression tasks are a limiting factor to the application of ensembles.

Chapter 3 attempted to address this issue by employing the correlation between features
and the target as a heuristic to guide splits. Our proposal is dubbed 2CS, and it can speed up
Hoeffding Tree regressor (HTR) construction at the cost of decreasing predictive performance
at some times. Memory usage is also slightly increased. Due to these limitations, we realized
that we should focus on decreasing their construction costs directly instead of adding additional
heuristics to the HTRs.

Hence, in Chapter 4, we focused on creating an improved mechanism to perform splits
attempts in HTRs. Besides that, we also introduce improved formulae to keep incremental
variance estimators, which the HTRs use. Our quantization-based split strategy and the improved
variance estimators significantly decreased the time needed to calculate the split decisions while
also using significantly fewer memory resources. The split points found by our proposal, QO,
are on par with the exhaustive strategy commonly applied in the literature. In Chapter 5, we
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expand the work of the previous chapter and apply QO in HTRs to assess the effectiveness of our
proposal in the situations it was designed to work. We also evaluate the possibility of creating
multi-branch numerical HTRs that are as efficient and effective as the strictly binary ones while
being shallow and broader than the traditional HTRs. We show that the QO-powered HTRs are
significantly faster than the original ones while using a significantly reduced memory footprint
and still delivering comparable predictive performance.

Although the creation of individual HTRs, and decision rule regressors, by consequence,
was sped up significantly, joining the regressors into ensembles was still problematic. The
joint computational performance of multiple HTRs constructed deterministically might not
be fast enough for real-world applications. Therefore, in Chapter 6, we proposed OXT and
incremental ensemble whose HTRs are built randomly. Besides, OXT explores sub-bagging to
induce diversity in the ensemble members. Our proposal is significantly faster than the state-of-
the-art ensembles of HTRs, uses substantially fewer memory resources, and is generally more
accurate than the competitors.

Thus, by combining the insights obtained in Chapter 2 and Chapter 3, and the gains
obtained in individual HTR building (Chapter 4 and Chapter 5) and the creation of incremental
ensemble regressors (Chapter 6), we believe we addressed the research questions that concerned
decision tree, decision rules, and tree ensemble building.

Lastly, we tackled another primary concern in Chapter 7, which is incremental nearest
neighbor search. In this chapter, we propose SWINN, a graph-based incremental search index that
can significantly speed up nearest neighbor search in sliding window buffers. SWINN works with
arbitrary distance measures and delivers competitive search recall results. We perform realistic
case studies to assess the performance of SWINN against popular OML models. SWINN can
process significantly more instances than the traditional nearest neighbor algorithms while
delivering comparative predictive performance.

8.1 Limitations and future work

This thesis was primarily focused on the theoretical development of solutions for speeding
up and reducing the memory footprint of OML models. The effectiveness of the developed
solutions was assessed via empirical evaluation setups and asymptotic algorithm analysis. In
all of our proposals, extending the number of compared datasets would be beneficial to better
comprehend the impact of our proposal on real-world applications. Real-world applications
where the algorithms would possibly process data indefinitely are crucial scenarios for evaluation
that are not considered in this thesis aside from a theoretical perspective. Besides that, we did
not investigate the impact of label delay (GOMES et al., 2022) on our proposals. In realistic
supervised OML scenarios, labels are not expected to be available shortly after predicting a
new instance in most applications, since the labeling process might be expensive and too slow.
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Instead, the labels have an expected delay in arriving. The learning capabilities of the OML are
clearly impacted by label scarcity.

As for future research directions, each chapter delineates open challenges concerning
each associated proposal. However, when looking at the thesis as a collective research, we can
envision possible future works that would join the published results. A first and direct step
in future work would be joining some of the proposed strategies into a single algorithm. For
instance, we can build ensembles using the findings from Chapter 2 and powered by the trees
defined in Chapter 4 and Chapter 5. The heuristic defined in Chapter 3 could also be applied to
the combined ensemble. We would compare this resulting ensemble algorithm against the one
presented in Chapter 6.

Concerning the contents of Chapter 7, we intend to explore other tasks that could be
benefited from the speed-ups brought by our proposal. Examples include anomaly detection,
structured multi-output tasks (XU et al., 2019), and clustering. This last task can be performed
by setting a small number of neighbors to construct the search graph. Thus, the resulting search
index ought to have multiple sub-graphs, i.e., multiple clusters of nodes.
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APPENDIX

A
SUPPLEMENTARY MATERIAL FOR: “SWINN:

EFFICIENT NEAREST NEIGHBOR SEARCH
IN SLIDING WINDOWS USING GRAPHS”

A.1 Impact of K in the search graph for windows of 5000
instances

We present the results obtained when varying the values of K and using L = 5000 in
Figure 34.

Figure 34 – Results obtained when varying K and using sliding windows of length 5000.
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A.2 Impact of maxc in the search graph for windows of
1000 instances

Figure 35 presents the results obtained when varying the values of maxc and using
L = 1000.

Figure 35 – Results obtained when varying maxc and using sliding windows of length 1000.

A.3 The impact of pruneprob in the search graph for win-
dows of 1000instances

Figure 36 presents the results obtained when varying the values of pruneprob and using
L = 1000.
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Figure 36 – Results obtained when varying pruneprob and using sliding windows of length 1000.
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