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ABSTRACT
PEREIRA, G. T. Meta-Learning applied to Neural Architecture Search. Towards new inte-
ractive learning approaches for indexing and analyzing images from expert domains . 2024.
218 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

A critical factor for the Deep Learning progress over the years was the proposal of novel
architectures that enabled considerable advancements in the learning capabilities of Neural
Networks. However, experts still mainly define neural architectures in a time-consuming trial-
and-error process. As a result, the need for optimizing this process led to the emergence of
Neural Architecture Search (NAS), which has two main advantages over the status quo: It
can optimize practitioners’ time by automating architecture design, and enables the discovery
of novel architectures. The NAS framework has three main components: (i) Search Space,
which defines the space of candidate architectures; (ii) Search Strategy, which specifies how
the Search Space is explored; and the (iii) Performance Estimation Strategy that defines how
an architecture’s performance is estimated. While the Cell-based Search Space has dominated
popular NAS solutions, the same is not true for Search and Performance Estimation Strategies
where no dominant approach is used. Many NAS methods explore architectures’ space using
Reinforcement Learning, Evolutionary Computation, and Gradient-based Optimization. As a
Performance Estimation Strategy, the so-called One-Shot models and the more recent Training-
Free and Prediction-based methods have also gained notoriety. Despite presenting good predictive
performance and reduced costs, existing NAS methods using such approaches still suffer from
model complexity, requiring many powerful GPUs and long training times. Furthermore,
several popular solutions require large amounts of data to converge, involve inefficient and
complex procedures, and lack interpretability. In this context, a potential solution is the use
of Meta-Learning (MtL). MtL methods have the advantage of being faster and cheaper than
mainstream solutions by using previous experience to build new knowledge. Among MtL
approaches, three stand out: (i) Learning from Task Properties; (ii) Learning from Model
Evaluations; and (iii) Learning from Prior Models. This thesis proposes two methods that
use prior knowledge to optimize the NAS framework: Model-based Meta-Learning for Neural
Architecture Search (MbML-NAS) and Active Differentiable Network Topology Search (Active-
DiNTS). MbML-NAS learns from both task characteristics encoded by architectural meta-
features and performances from pre-trained architectures to predict and select ConvNets for
Image Classification. Active-DiNTS learns from model evaluations, prior models, and task
properties in the form of an Active Learning framework that takes information from model
outputs, uncertainty estimations, and newly labeled examples in an iterative process. Experiments
with MbML-NAS showed that the method was able to generalize to different search spaces and
datasets using a minimum set of six interpretable meta-features. Using a simple approach with



traditional regressors, MbML-NAS reported comparable predictive performances with the state-
of-the-art using at least 172 examples or just 0.04% and 1.1% from the NAS-Bench-101 and
NAS-Bench-201 search spaces. Active-DiNTS obtained state-of-the-art results in segmenting
images in the Brain dataset from the MSD challenge, surpassing the main baseline DiNTS by up
to 15%. In terms of efficiency, alternative configurations achieved comparable results to DiNTS
using less than 20% of the original data. Furthermore, Active-DiNTS is computationally efficient
as it generates models with fewer parameters and better memory allocation using one GPU.

Keywords: Neural Networks, Neural Architecture Search, Meta-Learning, Convolutional Neural
Networks, Computer Vision.



RESUMO
PEREIRA, G. T. Meta-Aprendizado aplicado à Busca de Arquitetura Neural. Rumo à novas
abordagens de aprendizagem interativa para indexação e análise de imagens de domínios
especializados. 2024. 218 p. Tese (Doutorado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2024.

Um fator crítico para o progresso de Deep Learning ao longo dos anos foi a proposta de novas
arquiteturas que permitiram avanços consideráveis nas capacidades de aprendizagem de Redes
Neurais. No entanto, especialistas ainda majoritariamente definem arquiteturas neurais em um
processo demorado de tentativa e erro. Como resultado, a necessidade de otimização deste
processo levou ao surgimento da Busca de Arquitetura Neural (NAS), que apresenta duas
vantagens principais sobre o status quo: Pode otimizar o tempo de profissionais ao automatizar
o projeto das arquiteturas, e permite a descoberta de novas arquiteturas. A estrutura de NAS
tem três componentes principais: (i) Espaço de Busca, que define o espaço das arquiteturas
candidatas; (ii) Estratégia de Busca, que especifica como o Espaço de Busca é explorado; e (iii)

Estratégia de Estimativa de Performance, que define como o desempenho de uma arquitetura
é estimado. Embora o Espaço de Buca baseado em célula tenha dominado soluções NAS
populares, o mesmo não acontece com as Estratégias de Busca e Estimativa de Performance,
onde nenhuma abordagem dominante é usada. Muitos métodos de NAS exploram o espaço das
arquiteturas usando Aprendizado por Reforço, Computação Evolucionária e Otimização Baseada
em Gradiente. Como Estratégia de Estimativa de Performance, os chamados modelos One-Shot
e os mais recentes métodos Training-Free e Prediction-based também ganharam notoriedade.
Apesar de apresentar bom desempenho preditivo e custos reduzidos, os métodos de NAS
existentes que utilizam tais abordagens ainda sofrem com complexidade de modelo, exigindo
muitas GPUs poderosas e longos tempos de treinamento. Além disso, diversas soluções populares
exigem grandes quantidades de dados para convergir, envolvem procedimentos ineficientes e
complexos, e carecem de interpretabilidade. Neste contexto, uma solução potencial é a utilização
de Meta-Aprendizado (MtL). Os métodos de MtL têm a vantagem de serem mais rápidos
e baratos que soluções convencionais, pois utilizam experiência prévia para construir novos
conhecimentos. Dentre as abordagens MtL, três se destacam: (i) Aprendizado a partir de
Propriedades de Tarefa; (ii) Aprendizado a partir de Avaliações de Modelos; e (iii) Aprendizado
a partir de Modelos Anteriores. Esta tese propõe dois métodos que utilizam conhecimento prévio
para otimizar o framework NAS: Model-based Meta-Learning for Neural Architecture Search
(MbML-NAS) e Active Differentiable Network Topology Search (Active-DiNTS). O MbML-
NAS aprende tanto com características de tarefas codificadas por meta-atributos arquitetônicos
quanto com desempenhos de arquiteturas pré-treinadas para prever e selecionar ConvNets para
Classificação de Imagens. O Active-DiNTS aprende com avaliações de modelos, modelos
anteriores e propriedades de tarefas na forma de uma estrutura de Aprendizado Ativo que obtém



informações de resultados de modelos, estimativas de incerteza e novos exemplos rotulados
em um processo iterativo. Experimentos com o MbML-NAS mostraram que o método foi
capaz de generalizar para diferentes espaços de busca e conjuntos de dados usando um conjunto
mínimo de seis meta-atributos interpretáveis. Usando uma abordagem simples com regressores
tradicionais, o MbML-NAS relatou desempenhos preditivos comparáveis com o estado-da-arte
usando pelo menos 172 exemplos ou apenas 0,04% e 1,1% dos espaços de busca do NAS-Bench-
101 e NAS- Bench-201. O Active-DiNTS obteve resultados estado-da-arte na segmentação
de imagens do conjunto de dados Brain do desafio MSD, superando a linha de base principal
DiNTS em até 15%. Em termos de eficiência, configurações alternativas alcançaram resultados
comparáveis ao DiNTS usando menos de 20% dos dados originais. Além disso, o Active-DiNTS
é computacionalmente eficiente pois gera modelos com menos parâmetros e melhor alocação de
memória usando uma GPU.

Palavras-chave: Redes Neurais, Busca de Arquitetura Neural, Meta-Aprendizado, Redes
Neurais Convolucionais, Visão Computacional.



RÉSUMÉ

PEREIRA, G. T. Méta-Apprentissage appliqué à la Recherche D’Architecture Neuronale
– Vers de nouvelles approches d’apprentissage interactif pour faciliter l’indexation et
l’analyse d’images de domaines experts . 2024. 218 p. Tese (Doutorado em Ciências –
Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

Un facteur essentiel dans les progrès de l’apprentissage profond au fil des années a été la propo-
sition de nouvelles architectures qui ont permis des avancées considérables dans les capacités
d’apprentissage des réseaux neuronaux. Cependant, les experts définissent encore principalement
les architectures neuronales au cours d’un processus d’essais et d’erreurs chronophage. Par
conséquent, la nécessité d’optimiser ce processus a conduit à l’émergence de la Recherche d’Ar-
chitecture Neuronale (NAS), qui présente deux avantages principaux par rapport au statu quo: Il
peut optimiser le temps des praticiens en automatisant la conception d’architectures et permet
la découverte de nouvelles structures. Le cadre NAS comporte trois composants principaux:
(i) L’Espace de Recherche, qui définit l’espace des architectures candidates; (ii) La Stratégie
de Recherche, qui spécifie comment l’Espace de Recherche est exploré; et (iii) La Stratégie
d’Estimation des Performances qui définit comment les performances d’une architecture sont
estimées. Alors que l’Espace de Recherche basé sur les cellules a dominé les solutions NAS
populaires, il en va autrement pour les Stratégies de Recherche et d’Estimation des Perfor-
mances, où aucune approche dominante n’est utilisée. De nombreuses méthodes NAS explorent
l’espace des architectures en utilisant l’Apprentissage par Renforcement, le Calcul Évolutif et
l’Optimisation basée sur les Gradients. En tant que Stratégie d’Estimation des Performances,
les modèles dits One-Shot et les méthodes plus récentes Training-Free et Predicion-based ont
également gagné en notoriété. Malgré de bonnes performances prédictives et des coûts réduits,
les méthodes NAS existantes utilisant de telles approches souffrent toujours de la complexité des
modèles, nécessitant de nombreux GPU puissants et de longs temps d’entraînement. De plus,
plusieurs solutions populaires nécessitent de grandes quantités de données pour parvenir à la
convergence des modèles, impliquent des procédures inefficaces et complexes et un manque
d’interprétabilité. Dans ce contexte, une solution potentielle est le recours au Méta-Apprentissage
(MtL). Les méthodes MtL ont l’avantage d’être plus rapides et moins coûteuses que les solutions
traditionnelles en utilisant l’expérience antérieure pour acquérir de nouvelles connaissances.
Parmi les approches MtL, trois se démarquent: (i) Apprendre à partir des Propriétés de la
Tâche; (ii) Apprendre des Évaluations Modèles; et (iii) Apprendre des Modèles Antérieurs.
Cette thèse propose deux méthodes qui utilisent des connaissances antérieures pour optimiser
le cadre NAS: Le Model-based Meta-Learning for Neural Architecture Search (MbML-NAS)
et Active Differentiable Network Topology Search (Active-DiNTS). MbML-NAS apprend à
la fois des caractéristiques des tâches encodées par des méta-fonctionnalités architecturales



et des performances de modèles pré-entraînés pour prédire et sélectionner des ConvNets pour
la Classification d’Images. Active-DiNTS apprend des évaluations de modèles, des modèles
antérieurs et des propriétés de tâche sous la forme d’un cadre d’Apprentissage Actif qui utilise
des informations issues des sorties du modèle, des estimations d’incertitude et des exemples
nouvellement étiquetés dans un processus itératif. Les expériences avec MbML-NAS ont montré
que la méthode était capable de se généraliser à différents espaces de recherche et ensembles
de données en utilisant un ensemble minimum de six méta-fonctionnalités interprétables. En
utilisant une approche simple avec des régresseurs traditionnels, MbML-NAS a rapporté des per-
formances prédictives comparables à celles de l’état de l’art en utilisant au moins 172 exemples
ou seulement 0,04% et 1,1% des espaces de recherche NAS-Bench-101 et NAS-Bench-201.
Active-DiNTS a obtenu des résultats de pointe dans la segmentation d’images dans l’ensemble
de données cérébral du défi MSD, surpassant le principal modèle de référence DiNTS jusqu’à
15%. En termes d’efficacité, des configurations alternatives ont obtenu des résultats comparables
à ceux de DiNTS en utilisant moins de 20% des données d’origine. De plus, Active-DiNTS est
informatiquement efficace car il génère des modèles avec moins de paramètres et une meilleure
allocation de mémoire en utilisant un seul GPU.

Mots clés: Réseaux de neurones, Recherche d’architecture neuronale, Méta-apprentissage,
Réseaux de neurones convolutifs, Vision par ordinateur.
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CHAPTER

1
INTRODUCTION

Research on Machine Learning (ML) has shown considerable progress over the years
in a series of complex tasks, such as in Image Recognition, Speech Translation, and Text
Generation (LECUN; BENGIO; HINTON, 2015; GOODFELLOW; BENGIO; COURVILLE,
2016; DONG; WANG; ABBAS, 2021). Especially on Deep Learning (DL), such progress was
possible due to three major technological advances (HUTTER; KOTTHOFF; VANSCHOREN,
2019): (i) the larger amount of data currently available and the quality improvement of such
data, which made it possible to train a Neural Network (NN) with enough examples to extract
useful knowledge; (ii) the necessary hardware to process the data, in particular, the availability
of more powerful Graphics Processing Units and their adoption for training NNs, allowing
greater optimization in terms of data usage and training time; and (iii) the increasing complexity
of neural architectures, changing the status quo from shallow NNs to Deep Neural Networks
(DNNs) containing hundreds of layers with different types and configurations and, quite often,
composing architectures with a variety of topology patterns (HE et al., 2016).

Especially when considering the latter technological advances in modern architectures, it
becomes clear that a key factor for their success is the automatic feature extraction embedded
in these models (HUANG et al., 2017). A classic example of this mechanism is seen in Con-
volutional Neural Network (ConvNet), where features automatically extracted from images or
grid-like data in the format of simple patterns, such as contours and lines, are identified in the
first layers to be later combined in deeper layers, forming more complex patterns (LECUN et al.,
1989). These procedures, combined with the high intrinsic parallelism of ConvNets, not only
give these models the ability to learn from larger amounts of data but often generate improved
performance when more data is available (ZEILER; FERGUS, 2014). Consequently, DNNs
have a considerable advantage over other ML algorithms as they can manage to learn complex
relationships from larger datasets without having to do manual feature engineering, which can
be a long and costly process for learning systems (HAYKIN, 1998).
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With the growing popularity of NNs, an interest in automating their entire design has
arisen (ZOPH; LE, 2016). Neural architectures are traditionally defined in an iterative process
often guided by expert knowledge via trial-and-error or based on heuristics, which presents
several challenges (BAKER et al., 2016). Manual architectural design can be time-consuming
and inefficient, requiring specialists to adjust various architectural parameters iteratively (WANG
et al., 2020). Furthermore, this process tends to be highly subjective and dependent on the
expert’s intuition, making it difficult to find optimal solutions (REAL et al., 2017). This manual
design also leads to limited or sub-optimal exploration of the architectural space, which tends to
be quite broad, thus potentially missing out on more effective configurations (LIU et al., 2018).
Additionally, manual approaches can struggle to capture complex relationships and dependencies
in the data, leading to lower performance (WHITE et al., 2021). Motivated by these problems and
the impracticality of the process, automated methods have emerged to address these limitations
and efficiently discover architectures that overcome the ones designed by humans, leading to a
research topic known as Neural Architecture Search (NAS).

NAS methods aim to automate the entire process of architecture design, which often
starts with a pre-defined search space of candidate models and search algorithms such as Ge-
netic Algorithms and Reinforcement Learning to explore the spaces (REAL et al., 2019). In
addition, these search strategies are usually used alongside strategies to accurately estimate the
performance of sampled architectures, thus speeding up the process and discovering optimized
architectures for the task at hand (DENG; YAN; LIN, 2017). In recent years, various NAS meth-
ods have been proposed and promising results across various tasks have been reported, including
Image Classification, Medical Image Segmentation, and Natural Language Processing (SIEMS
et al., 2020; ZHU et al., 2019). Initially, most NAS methods relied on Bayesian Optimization,
Reinforcement Learning, and Evolutionary Algorithms (ELSKEN; METZEN; HUTTER, 2018;
KANDASAMY et al., 2018; BAKER et al., 2016). However, Gradient-based search methods
have gained attention over the years (LUO et al., 2018). Additionally, several performance esti-
mation strategies have emerged, which may or may not be used along with the aforementioned
search algorithms. These performance estimation approaches include the so-called One-shot
models, Prediction-based NAS, and Training-free NAS, which are increasingly being adopted in
the field (BENDER et al., 2018; CHEN; GONG; WANG, 2021; SUN et al., 2019).

Although recent solutions have alleviated some of the common problems in NAS, existing
methods still suffer from complex issues that must be addressed (WEI et al., 2022; MELLOR et

al., 2021). One of the most crucial is the high training complexity, which often involves dozens or
hundreds of GPU hours to generate suitable architectures even when using small datasets (ZOPH
et al., 2018). Combined with the need for powerful hardware, this limits NAS accessibility to
researchers or practitioners with limited computing resources. Another challenge lies in the
complexity associated with pipeline and model design. Simplifying the NAS pipeline is vital
for enhancing its usability and scalability, where intricate procedures and complex models are
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common, making it difficult to understand, reproduce, and interpret the outcomes (MOLNAR,
2020). Furthermore, another problem that affects reproducibility and reliability is the lack of
interpretability of these models (RU et al., 2020). Both NAS methods and generated architectures
are often difficult to interpret, which limits the insights into the decision-making process of the
design choices. Another limiting factor of mainstream NAS is that it is task-specific, thus lacking
the ability to generalize knowledge across different tasks (LI et al., 2021). Consequently, for
each new task, it is necessary to conduct a new search from scratch without any basic knowledge
to assist in the current task. In this context, and considering the aforementioned problems, an
approach called Meta-Learning (MtL) or Learning to Learn can be used (BRAZDIL et al., 2008).
This type of learning consists of using experiences acquired in previous tasks and, with such
prior knowledge, building a more general knowledge to learn new tasks more quickly using
fewer training examples and computational resources (THRUN; PRATT, 1998).

There are at least three well-known MtL approaches: Learning from Tasks, Learning
from Model Evaluations, and Learning from Prior Models (ELSKEN; METZEN; HUTTER,
2019). Examples of such approaches can be found by the name of popular ML techniques, such
as Transfer Learning (TL) (DONAHUE et al., 2014), a closely related topic to MtL. TL is widely
employed to initialize DNNs’ weights for new tasks after training on large datasets such as
ImageNet 1. Thus, TL can be seen as a specific instance of MtL, where knowledge acquired by
an NN’s initial layers works as a meta-model of knowledge (PERRONE et al., 2018). Therefore,
this meta-model is leveraged to facilitate learning on new tasks by transferring the learned
representations from the pre-trained layers. Another powerful technique related to MtL is Active
Learning (AL) (COHN; ATLAS; LADNER, 1994), which also uses prior knowledge to enhance
learning. However, this knowledge comes in the form of an Oracle or Expert figure to address
the challenges of labeled data scarcity and model data inefficiency. By selecting and labeling
the most informative samples from a large unlabeled dataset, an AL strategy can considerably
reduce the amount of labeled data required for training and can often reduce related costs such
as training time and computational resource consumption. Additionally, AL can save experts’
labeling efforts, which in domains such as the medical field is an important issue to consider.
Thus, by actively querying the most informative instances, AL effectively maximizes model
learning efficiency and can even lead to increased predictive performance (DASGUPTA, 2011).

To validate the proposal of novel NAS methods, many studies have been using Computer
Vision (CV) problems as proof-of-concept and benchmarks (LIU; SIMONYAN; YANG, 2018;
WISTUBA; RAWAT; PEDAPATI, 2019; WHITE et al., 2023). Likewise, DNNs have a long
history of being validated on image datasets, as were the cases of popular architectures such
as AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), VGG (SIMONYAN; ZISSER-
MAN, 2014), and GoogLeNet (SZEGEDY et al., 2015), originally introduced in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (RUSSAKOVSKY et al., 2015). Image

1 http://www.image-net.org/
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Classification, in particular, remains one of the most popular tasks in CV, and this popularity
stems from the relative simplicity of classifying images when compared to other tasks, such as
Object Detection and Segmentation (LIU et al., 2019; REN et al., 2021). Nonetheless, Image
Classification still holds relevance to practical applications and is challenging enough, enabling
reliable state-of-the-art assessments for both NAS and DNNs (GOODFELLOW; BENGIO;
COURVILLE, 2016; DONG; WANG; ABBAS, 2021).

Despite the significant advancements made in these fields, the validation of new proposals
continues to rely heavily on classification tasks (WHITE et al., 2021). However, it is crucial to
consider other tasks, particularly those that fall outside the mainstream, to determine the actual
robustness of these new proposals. Among alternative tasks, Image Segmentation possesses
considerable scientific and practical appeal, although it receives far less attention from the
research community (WHITE et al., 2023). Especially for Medical Image Segmentation, a
sub-field of Image Segmentation that remains relatively unexplored, with only a handful of
recent NAS works making progress in this matter (ANTONELLI et al., 2022). Nevertheless,
even these works are limited in number and lack certain essential aspects, such as the absence
of more realistic methods that can be readily applied in practical scenarios (LIU et al., 2019).
Many proposals prioritize performance while disregarding other crucial factors such as labeled
data scarcity, the necessity for lightweight models with fast training, less complex pipelines, and
interpretable models (ISENSEE et al., 2019). Hence, there is a need to address these aspects and
develop comprehensive solutions that encompass such challenges.

This introductory chapter has provided a brief context and established the domain in
which this Ph.D. thesis operates. The subsequent sections of this chapter are structured as follows:
Section 1.1 introduces the underlying motivations behind this doctoral research; Section 1.2
outlines the central research question that served as the guide for the development of this thesis;
Section 1.3 presents the hypothesis formulated to answer the research question throughout the
course of this Ph.D.; Section 1.4 elucidate the general and specific objectives of this thesis; Lastly,
Section 1.6 provides a comprehensive overview of this document’s organizational structure.
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1.1 Motivation

A few motivations guide this thesis, which mainly covers the subjects of NAS and
MtL. The first motivation lies in the problems related to the manual process of designing
NN architectures. Neural architectures are commonly defined by experts in a trial-and-error
process, often guided by empirical evaluations and heuristics. Although several hand-designed
architectures have been successful over the years, this practice tends to limit the quality of the
generated architectures since the process is mediated by the experts’ knowledge. In addition, such
a process is frequently not data-oriented, thereby missing the opportunity to generate customized
or optimized architectures for the task at hand. Another related issue is the amount of precious
time spent by specialists in defining and fine-tuning neural hyper-parameters. Especially in
real-world scenarios where resources are scarce, spending long and tedious periods of time could
be crucial. Overcoming these limitations is essential to explore automated approaches, such as
NAS, which can harness the power of ML algorithms to find and optimize NN architectures.

The second motivation concerns the investigation and optimization of NAS. In recent
years, numerous NAS methods have been proposed and promising results reported. However,
existing methods still suffer from data inefficiency, high training times, complex pipelines,
and a lack of interpretability. Another common problem is reproducing such state-of-the-art
methods. For many popular NAS solutions, reproducing experiments requires thousands of
GPU hours worth of training with high-end GPUs. Moreover, certain NAS methods exhibit
significant instability during architecture search and lack flexibility when applied to different
tasks. Consequently, each new task requires the search process to be started from scratch. Given
the exorbitant costs involved, which can include days of search time and multiple GPUs, this
entire process poses a significant predicament for ML practitioners and researchers who lack
such infrastructure. Therefore, a NAS method needs to be optimized to be used on a large scale,
and a possible solution for this problem is the usage of MtL.

This thesis’s third and final motivation centers around the comprehensive study and
investigation of MtL approaches. MtL provides the opportunity to leverage prior knowledge
acquired from different and/or diverse tasks in order to enhance learning. Consequently, it
facilitates faster and optimal generalization to new tasks, often using fewer examples and
reducing the required computation power when compared to mainstream solutions. Additionally,
the possibilities offered by the MtL approaches, along with their various forms and applications,
introduce a complex decision-making challenge that requires careful exploration. Nevertheless,
before delving into the application of MtL on NAS, it is imperative to explore the different forms
of MtL to establish its feasibility. In addition, it is crucial to carefully analyze and assess the
gains brought by the MtL approaches to determine its adoption justification. Furthermore, it is
also important to identify the most effective way of applying the MtL methodology to address
the specific challenges inherent to the NAS problem.
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1.2 Research Question

In view of what was presented, the following research question is formulated:
How to automatically find neural architectures for Image Recognition with comparable predictive

performances using fewer data and less complex procedures than popular NAS methods?

1.3 Hypothesis

To answer the research question, the following hypothesis is formulated:
A Meta-Learning approach can leverage prior knowledge to reduce the computational burden

and simplify the search for Image Recognition architectures with good predictive performance

using fewer data samples than NAS state-of-the-art methods.

1.4 Objectives

In addition to seeking evidence that validates the hypothesis and, consequently, answers
the research question that guides the development of this research, this thesis aims to investigate
and propose MtL methods to find neural architectures for Image Recognition and related MtL
tasks. More precisely, the tasks of Image Classification and Image Segmentation are explored, in
addition to the co-related task of Algorithm Recommendation. Such developed methods should
be able to generate results with comparable predictive performance to the NAS state-of-the-art
using fewer training examples, shorter training times, and more simplified pipelines with a
limited amount of hardware. The specific objectives of this thesis are:

• Investigate the applicability of MtL approaches in the NAS framework;

• Investigate the impact on predictive performance, data efficiency, and pipeline complexity
caused by MtL approaches on NAS;

• Propose and maintain MtL methods to support ML researchers and practitioners on
decisions related to NNs’ design, training, and tuning;

• Propose new meta-datasets for NAS suitable to standard and modern ML methods;

• Create and maintain an updated literature review with a focus on NAS and MtL applied to
Image Recognition and Algorithm Recommendation tasks.
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1.5 Main Results

The main contributions, and therefore, the principal results of this thesis revolve around
the proposal and experimental validation of two novel methods: Model-based Meta-Learning for
Neural Architecture Search (MbML-NAS) and Active Differentiable Network Topology Search
(Active-DiNTS). These new solutions address distinct challenges within NAS, each providing
unique insights and advancements in the field, but both focus on efficiency and simplicity.

MbML-NAS, introduced in Chapter 5, is a novel Prediction-based NAS method that
leverages meta-characteristics from neural architectures to select the most promising models for
Image Classification. The primary objective of MbML-NAS is to overcome challenges related
to data efficiency, model complexity, and interpretability in NAS. Through the incorporation
of interpretable meta-features and simplified meta-predictors, MbML-NAS efficiently selects
optimal neural architectures. The results obtained through extensive experimentation demonstrate
MbML-NAS’s capability to achieve comparable predictive performance to intricate state-of-the-
art models while utilizing only a minimal fraction of the search space. In its most cost-effective
configuration, MbML-NAS employs a mere 0.04% and 1.1% of the search spaces of NAS-Bench-
101 and NAS-Bench-201, respectively. Moreover, the interpretability analysis sheds light on how
meta-information extracted from cell-based spaces influences the learning of meta-predictors.
The comprehensive assessment, including meta-error analysis, standalone performances, and
meta-feature correlations, underscores MbML-NAS as a well-balanced solution, offering a
favorable compromise between predictive performance, data efficiency, and interpretability.

Active-DiNTS, introduced in Chapter 6, is a One-shot model that focuses on the chal-
lenging task of Medical Image Segmentation. The method combines the power of NAS with
an Active Learning (AL) framework that allows for iterative labeling of the most impactful
examples to improve learning and address the scarcity of labeled data in medical imaging. On top
of that, Active-DiNTS explores a flexible network topology search space using gradient-based
optimization, which makes it possible to discover architectures with many topology patterns.
The experimental results reveal the effectiveness of Active-DiNTS in generating state-of-the-art
architectures for segmenting medical images. Through a Pool-based Sampling strategy using
Uncertainty functions, Active-DiNTS was able to significantly reduce search time by up to 27
times and training data by up to 5 times compared to a non-active version and other baselines,
showcasing its potential for resource-efficient architecture discovery. Additionally, the analysis of
the Uncertainty functions further contributed to understanding example importance in the active
labeling process. The comparisons with various segmentation methods, including NAS models
and hand-crafted methods, highlight the superiority of Active-DiNTS in terms of predictive
performance, computational efficiency, and resource utilization.
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1.6 Outline

The rest of this document is organized as follows: Chapter 2 introduces the main concepts
for the understanding of this thesis in addition to a literature review of NAS and MtL. Chapter 3
presents the first experiment formulated to explore some capabilities of the MtL framework.
Chapter 4 is a continuity where the characteristics of the meta-datasets and their generalization
power were explored. Chapter 5 presents the novel MbML-NAS method, where some of the
previous findings are applied in order to advance towards the validation of the research hypothesis.
Chapter 6 presents the novel Active-DiNTS method, a proposal that goes beyond the mainstream
Image Classification task in NAS by addressing Medical Image Segmentation, in addition to
exploring other forms of MtL. Lastly, Chapter 7 concludes this thesis by presenting the main
contributions, limitations, and prospective work.
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CHAPTER

2
FOUNDATIONS

This chapter introduces the fundamental concepts necessary for a better understanding of
the proposals and discussions presented in this thesis. The formal definitions and assumptions of
ML and ML tasks involved in this thesis are presented in Section 2.1. An introduction to NNs is
presented in Section 2.2, describing a brief history of the area and pointing out some important
types of NNs, such as the Multi-Layer Perceptron, Convolution Neural Networks, and U-Nets. In
Section 2.3, the concept of NAS is presented, a recent research field dedicated to the discovery
and optimization of novel neural architectures. In Section 2.4, the introduction of a different type
of learning, known as Meta-Learning (MtL) or Learning to Learn, is presented together with
three MtL approaches. In Section 2.5 and Section 2.6, the concepts of Transfer Learning and
Active Learning, related topics to MtL, are introduced along with their respective approaches
and details. Lastly, the final considerations for the chapter are presented in Section 2.7.

2.1 Machine Learning

Being one of the most popular sub-areas of Artificial Intelligence, Machine Learning
focuses on developing algorithms that can learn how to make decisions from data without being
explicitly programmed (SAMUEL, 1967). Through an iterative learning process, such learning
algorithms can extract patterns from input information and adjust their decision functions over
time. According to Mitchell (1997), an algorithm can learn from experience E concerning a
class of tasks T and regarding a performance measure P, if its performance at T as measured
by P improves with E. For instance, consider an algorithm that learns to classify cats in images.
In this case, the following components of the learning problem can be defined: (i) Task T :
Classifying cats in images; (ii) Performance measure P: Accuracy of correctly identifying cats;
(iii) Experience E: Training the learning algorithm with a dataset of labeled images containing
cats and non-cat objects. Thus, by providing the algorithm with a training dataset of labeled
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images, where each image is categorized as either a cat or a non-cat object, the learning algorithm
can learn from this experience and improve its performance in classifying cats in images. After
being trained, the learning algorithm has its final performance measured in a test dataset, which
would be the percentage of accurately identified cat images in this specific case.

The previously described scenario corresponds to the learning paradigm of Supervised
Learning and the Classification task. However, this is not the only possible case, as ML encom-
passes various learning paradigms and associated tasks. Each paradigm plays a crucial role in the
continued advancement of ML, where the most popular paradigms are Supervised, Unsupervised,
and Reinforcement Learning, in addition to Semi-Supervised Learning (GAMA et al., 2011). In
Supervised Learning, models learn from labeled examples, with Classification and Regression
being the most popular tasks in this paradigm (DONG; WANG; ABBAS, 2021). On the other
hand, Unsupervised Learning involves discovering patterns and structures in unlabeled data,
with Clustering and Anomaly Detection being typical examples (JORDAN; MITCHELL, 2015).
Reinforcement Learning involves training agents to make sequential decisions using rewards and
punishments, and it is typically applied to robotics or simulations (RUSSELL; NORVIG, 2009).
Additionally, there is Semi-Supervised Learning, which combines labeled and unlabeled data
and aims to make the most of supervised feedback, presenting great flexibility since it can be
used with Classification, Regression, and Clustering, among others (MITCHELL, 1997).

Among various ML paradigms and tasks, Supervised Learning, along with the tasks of
Classification and Regression, is the most elementary and popular subject in the field even to
this day (HASTIE et al., 2009). Classification is a supervised task that involves assigning input
data to pre-defined categories or classes (BISHOP, 2006). Formally, it can be defined in terms of
a dataset D = {(xi,yi)}n

i=1, where xi ∈ 𝒳 represents the feature vector of the i-th instance, and
yi ∈ 𝒴 is its corresponding class label from a set of classes C = {c1,c2, ...,ck}, being k the finite
number of classes. Thus, the goal is to learn a function c : 𝒳 →𝒴 that maps the input space 𝒳
to the corresponding output space. Regression aims to estimate or predict a continuous target
variable based on the patterns observed in the input data (JORDAN; MITCHELL, 2015). This
target variable can represent a wide range of real-valued quantities, such as housing prices, stock
market prices, temperature, or any other continuous quantity of interest (MICHIE et al., 1995).
Similar to Classification, Regression can be formally defined by a dataset D = {(xi,yi)}n

i=1,
where xi ∈ 𝒳 represents the feature vector of the i-th instance, and yi ∈ 𝒴 , which in this case
is the corresponding continuous target variable. The goal is then to learn a function r : 𝒳 →𝒴 ,
where 𝒳 represents the input space and 𝒴 represents the output space.

Another relevant factor when talking about learning paradigms and tasks is the choice of
ML models and evaluation metrics. For Classification, popular algorithms include Decision Trees
(DT), Logistic Regression (LR), Support Vector Machines (SVM), Naive Bayes (NB), K-Nearest
Neighbors (KNN), and Feed-Forward Neural Networks (FFNN) (GAMA et al., 2011). For
Regression, several of these same algorithms can be used with minor modifications, such as DTs,
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SVMs, Naive Bayes, KNN, and FFNNs (MCLACHLAN, 2005). As for the evaluation metrics,
the performance of a classification model is typically evaluated using Accuracy, Precision,
Recall, and/or F1-score (RUSSELL; NORVIG, 2009). For Regression, however, performance
is commonly measured using Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and R-squared (R2) (HASTIE et al., 2009).

2.1.1 Algorithm Recomendation

It is common in ML that traditional and well-known tasks such as Classification and
Regression present several variations and often being called by different names for handling very
specific problems and priors. One example is the so-called Algorithm Recommendation (AR)
task, which can be treated either as Classification or Regression and consists of learning to select
the best algorithm among a range of possible candidates for a set of tasks or datasets considering
a specific performance metric (VILALTA; DRISSI, 2002). The first known formulation of the AR
problem is seen in Rice (1976), sometimes referred to as the Algorithm Selection problem. Given
a set of problem instances P from a distribution D, a set A of algorithms, and a performance
measure m: P X A→ R, the AR problem is concerned with finding a mapping f : P→ A that
optimizes the expected performance measure m for instances P with a distribution D.

While it may seem intuitive that similar datasets might be solved by the same algorithm,
the question of whether a single algorithm can perform optimally across all problem domains
remains open. This question was addressed by Wolpert (1996) in the famous "no free lunch"
theorems, which demonstrates that given a set of algorithms applied to all possible domains,
the average performance of these algorithms remains the same. This implies that a single
learning algorithm with significantly superior performance across all domains does not exist
for supervised ML. To cope with this limitation, AR emerges as an approximate solution to
intelligently select the most appropriate algorithm for each specific task or dataset given its
inherent characteristics (VILALTA; DRISSI, 2002). By learning from past experiences, AR is
much closer to MtL since it benefits from leveraging prior data to optimize model performance
and efficiency for different scenarios. Even though AR is a well-known problem, using MtL
to explore prior knowledge and accelerate inference is relatively recent and is a potential trend
that still requires exploration (ALCOBAÇA et al., 2018). Through AR, ML systems can make
data-driven decisions on algorithm selection, tailoring their approach to each unique problem
and ultimately improving overall predictive accuracy and generalization (LEMKE; BUDKA;
GABRYS, 2015). This approach proves valuable in handling various challenges posed by real-
world data, making ML more robust and adaptable in diverse applications.
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The Algorithm Recommendation problem is significantly similar to the Performance
Estimation facet of NAS, where the ultimate objective lies in the automatic discovery of optimal
neural architectures tailored for specific tasks (THORNTON et al., 2013). In the context of
the Performance Estimation component, its core principle revolves around the utilization of
approximations to determine the performance of different neural architectures before embarking
on their actual end-to-end training (GIRAUD-CARRIER; PROVOST, 2005). This strategic
approach serves to speed up the exploration of the usually large and complex NAS search spaces,
effectively curbing resource-intensive costs. Therefore, akin to AR, the principal aim within the
NAS domain is to achieve cost reduction by acquiring a deep understanding of the most fitting
algorithms or neural architectures that align with the specific problem at hand (LIU et al., 2018).

2.1.2 Image Classification

Figure 1 – Illustration of popular Computer Vision Tasks. Adapted from the Convolutional Neural Net-
works for Visual Recognition Stanford Course, 2020 2.

Image Classification is perhaps the most popular task in the field of Deep Learning (RUS-
SAKOVSKY et al., 2015). Originally from the interdisciplinary area of Computer Vision (CV),
this task involves Image and Signal Processing, Physics, Biology, and ML. However, CV has
been seen as a sub-area of ML in recent years, in which the main objective is to make computers
capture and understand the content of images (PRINCE, 2012). Although CV problems seem
simple at first glance, since even children can extract knowledge from a single image and gen-
eralize reasonably well to unseen examples, they are challenging tasks for algorithms (DENG
et al., 2009). As seen in Figure 1, the broad problem of understanding images can be divided
into several sub-problems that aim to answer specific questions, some of which are (FORSYTH;
PONCE, 2002): (i) Image Classification: What category does the object or objects in this image
belong to? (ii) Object Detection: What broad category does the object or objects in this image
belong to, and where are they located? (iii) Instance Segmentation: Which pixels belong to the
individual instance object from a broad category in the image? (iv) Semantic Segmentation:
Which pixels belong to a broad category in the image?
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Image Classification is arguably the most fundamental among the different CV tasks, as
it involves assigning a class label to an input image based on its visual content (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012). Formally, given an input image I, the objective is to learn a
mapping function f : I→C, being C a label class from a predefined set of classes. These classes
represent different objects, scenes, or concepts that the model needs to recognize (WITTEN et

al., 2016). An input image I is often represented as a 4D tensor1 I ∈ RN×H×W×C, where N is
the number of input images in a dataset, H and W are the height and width of the images, and
C is the number of channels (e.g., 3 for RGB images). The output for this task is a probability
distribution over L classes denoted as P(Y |I), where Y represents the class label. To obtain
P(Y |I), a classification model M consisting of learnable parameters θ is used, which takes I and
produces a class probability distribution P(Y |I,θ). To train M, a loss function L is defined to
quantify the difference between the predicted probability distribution and the ground truth labels.
The loss function measures the model’s performance on a given image-label pair. Typically, the
Cross-Entropy loss is used for Image Classification (DUDA; HART; STORK, 2000; DONG;
WANG; ABBAS, 2021), as seen in Equation 2.1,

L(I,Y,θ) =−
N

∑
i=1

Yi logP(Yi|I,θ) (2.1)

where L is the total number of class labels, Yi is the ground truth label, and P(Yi|I,θ) is the
predicted probability of the i-th class. During training, the model’s parameters θ are learned by
minimizing the overall loss across a training dataset 𝒟, as seen in Equation 2.2,

θ
* = argmin

θ

1
|𝒟| ∑

(I,Y )∈𝒟
L(I,Y,θ) (2.2)

where θ * represents the optimized parameters, and |𝒟| is the number of samples in the training
dataset. After training, the model M can be used for inference by taking an unseen image Itest

and predicting its class label using Equation 2.3,

Ŷ = argmax
Y

P(Y |Itest,θ
*) (2.3)

where Ŷ represents the predicted class label for the input test image Itest.

In addition to its great popularity and wide range of comparison baselines, Image
Classification is a good and versatile task, serving as a valuable validation platform for new
methods due to its simplicity and yet challenging nature towards the current state of ML
algorithms (LECUN; BENGIO; HINTON, 2015). Despite being a relatively simple problem
compared to other CV tasks, such as Object Detection and Image Segmentation, its moderate level
of difficulty makes it an excellent reference for evaluating cutting-edge solutions and assessing
the current state-of-the-art (HE et al., 2016). In fact, many traditional and even recent NAS
1 A mathematical object that generalizes scalars, vectors, and matrices to higher-dimensional arrays with

support for autograd operations
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proposals use Image Classification as a benchmark (WHITE et al., 2023). As a widely studied
problem with reference datasets such as ImageNet, this task provides a controlled environment
for evaluating the performance of new methods. Furthermore, due to its relative simplicity, it
allows researchers to focus on optimizing new NAS architectures without the need for excessive
complexity to comprehend essential image features and patterns, making it a significant test for
advancing the state-of-the-art in CV research (WISTUBA; RAWAT; PEDAPATI, 2019).

2.1.3 Medical Image Segmentation

Figure 2 – Glioma sub-regions from BraTS dataset. Image patches show tumor annotations across different
modalities (Top left) and final dataset labels (Right). From left to right: (A) the whole tumor in
FLAIR; (B) the tumor core in T2; (C) the enhancing tumor structures in T1Gd (Blue) around
the core’s cystic/necrotic components (Green); and (D) Where the combined segmentations
produce the final labels: Edema (Yellow), Non-enhancing solid core (Red), Necrotic/Cystic
core (Green), and the Enhancing core (Blue). Adapted from Menze et al. (2014).

Another widely popular, and perhaps one of the most important tasks in CV is Image
Segmentation, which consists of partitioning an input image into one or more regions of interest
based on visual characteristics (PRINCE, 2012). In practical terms, this task can be seen as
an extension of the Image Classification task since each pixel is assigned to a class of inter-
est (FORSYTH; PONCE, 2002). As output, these pixels are combined to generate the so-called
Segmentation Masks, which are then compared to the real class labels (YU et al., 2020). Besides,
within the general task of Image Segmentation, there are sub-categories, the most popular be-
ing called Instance Segmentation and Semantic Segmentation, both involving classifying each
image pixel into specific object categories (WENG et al., 2019). However, the key difference
between the two lies in their level of granularity. Instance Segmentation goes beyond Semantic
Segmentation by identifying object categories and providing precise pixel-level masks for each
individual object instance (ISENSEE et al., 2019). In contrast, Semantic Segmentation focuses
solely on partitioning the image into different regions corresponding to distinct object categories
without distinguishing between multiple instances of the same category (KIM et al., 2019). In
summary, Instance Segmentation offers fine-grained object instance delineation, while Semantic
Segmentation provides a coarser image-level segmentation.
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In the Image Semantic Segmentation task, given a 2D or 3D image input, the aim
is to assign a semantic label to each pixel or voxel in the image, classifying them into a
specific category or class (ZHU et al., 2019). Mathematically, this problem can be defined in
terms of an input image I represented as a 2D matrix for I ∈ RH×W×C for 2D segmentation,
where H is the height, W is the width, and C is the number of channels (e.g., 3 for RGB
images). The output of the Semantic Segmentation task is a pixel-wise label map represented
as S ∈ {0,1, . . . ,N−1}H×W . To obtain the pixel-wise label map, a segmentation model M fully
defined by its learnable parameters θ is used. Thus, the model M takes the input image I and
produces the pixel-wise label map S as output, denoted as S = M(I,θ). Figure 2 exemplifies
the Image Semantic Segmentation scenario where a brain has its tumor regions identified at the
pixel/voxel level, thus forming the segmentation masks for each class of the problem.

To train a model M, a loss function L is defined to quantify the difference between the
predicted pixel-wise label map and the ground truth segmentation Sgt. Various loss functions
such as Cross-Entropy Loss, Dice Loss, or Intersection over Union (IoU) can be used (DUDA;
HART; STORK, 2000; PRINCE, 2012). As seen in Equation 2.4,

L(I,Sgt,θ) = Loss(S,Sgt) (2.4)

Loss(S,Sgt) computes the dissimilarity between the predicted segmentation S and the ground
truth Sgt. In turn, the model’s parameters θ are learned by minimizing the overall loss across a
training dataset 𝒟. As seen Equation 2.5,

θ
* = argmin

θ

1
|𝒟| ∑

(I,Sgt)∈𝒟
L(I,Sgt,θ) (2.5)

θ * represents the optimized parameters, and |𝒟| is the number of samples in the training dataset.
After training, the model M can be used for inference by taking an unseen input image Itest and
predicting its pixel-wise label map Spred using Spred = M(Itest,θ

*).

One of the most popular Image Segmentation applications is in the Medical field (AN-
TONELLI et al., 2022; MENZE et al., 2014). Seen as of great importance both in industry
and academia, Medical Image Segmentation plays a crucial role in clinical applications and
healthcare practices where precise segmentation capabilities are required (RONNEBERGER;
FISCHER; BROX, 2015; YAN et al., 2020b). Exams such as Computerized Tomography (CT)
and Magnetic Resonance Imaging (MRI) are used in such applications, helping professionals to
accurately identify and delineate anatomical structures (OLSON et al., 2016). Such information
is vital for early disease detection, treatment planning, surgical interventions, and post-treatment
evaluations (ÇIÇEK et al., 2016). In the context of segmenting medical images, especially MRIs,
it is common to deal with volumetric data, often referred to as voxels, where the goal is to assign
a semantic label to every pixel in the 3D volume (PERSLEV et al., 2019). Mathematically, it
can be defined in terms of an input image represented as a 3D voxel volume V ∈ RH×W×D×C,
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where H is the height, W is the width, D is the depth (number of slices), and C is the number
of channels representing different imaging modalities. As generated output, a 3D segmentation
voxel label mask is represented as L ∈ {0,1, . . . ,N−1}H×W×D, where N is the total number of
semantic classes, and Li, j,k denotes the class label of the voxel at position (i, j,k).

2.2 Neural Networks

Artificial Neural Networks or simply Neural Networks are learning models slightly
inspired by the human brain (GOODFELLOW; BENGIO; COURVILLE, 2016). Like their
inspiration, these models are composed of processing units called Neurons, but in the case of
artificial neurons, these are much simpler abstractions of their biological counterparts. Such
artificial neurons are also linked, where the signal strength is represented through numerical
weights. In addition, these neurons can be stacked in layers, and within each layer, neurons can
be connected to each other or to neurons from other layers, with auto-connections also being
possible. These multiple information flow possibilities allow Neural Networks to represent both
linear and non-linear types of functions, which is one of the main aspects that make neural
architectures such powerful and flexible learning models for a wide range of problems (NIELSEN,
2015). A representation of what an artificial neuron looks like is seen in Figure 3.

Figure 3 – Basic structure of an artificial neuron. Adapted from Haykin. (2010).

As seen in Figure 3, a neuron k receives a set of inputs xm ∈ X associated with weights
wkm ∈W , where each input x1,x2, ...,xm will have a weight wk1,wk2, ...,wkm linked to it, be-
ing these weights the free parameters of the Neural Network which are learned during train-
ing (HAYKIN., 2010). These inputs and their respective weights are then linearly combined by
a sum function, in the form of υk = ∑

m
j=1 wk j x j. After such combination, the generated υk is

transformed by an ϕ activation function that limits the neuron’s activation potential, which is
generally a non-linear function (HAYKIN, 1998). Many activation functions are used in modern
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Figure 4 – Dynamics of bias in a neuron over a Cartesian plane. Adapted from Haykin. (2010).

Neural Networks, with Sigmoid, Hyperbolic Tangent, and Rectified Linear Unit (ReLU) being
some of the most popular (LECUN; BENGIO; HINTON, 2015). In addition, these models use
an external parameter to the input data called bias bk. The bias applies an affine transformation
to the sum function’s input values, increasing or decreasing the activation potential υ depending
on whether its value is negative or positive (HAYKIN, 1998). In practical terms, the effect of
bias is to modify the origin of the neuron output, as shown in Figure 4.

In the early stages of Neural Networks research, the foundational work of McCulloch
and Pitts (1943) in the 1940s led to the creation of the first mathematical model to simulate the
behavior of biological neurons, capturing their binary firing mechanism. The McCulloch-Pitts
neuron model, represented by Figure 3, laid the groundwork for the subsequent development
of the Perceptron by Rosenblatt (1958) in the late 1950s, introducing weighted inputs and an
activation function. Although modern networks are easily composed of millions or billions
of neurons, this was not the case with the Perceptron, known as the first Neural Network
described algorithmically and the first neural model to learn via supervised learning (FORSYTH;
PONCE, 2002). The Perceptron is often referred to as a ”single-layer network”, as it consists of
a single neuron with adjustable weights and a bias, similar to the one shown in Figure 3. The
main difference between this neuron model and the Perceptron is that instead of an arbitrary
activation function, the Perceptron uses a hardbound function known as the Heaviside step
function (HAYKIN, 1998), as shown in Equation 2.6.

f (x) =

1 if w . x + b≥ 0,

0 otherwise
(2.6)
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The Perceptron holds a special place in the history of Neural Networks not only for its
pioneering work but because of its limitations (HAYKIN., 2010). Designed to learn linearly
separable patterns with two classes only, the Perceptron is the simplest example of a Neural Net-
work (ROSENBLATT, 1958). In fact, Rosenblatt (1958) proves via the Perceptron Convergence
Theorem that if the patterns used to train the Perceptron are drawn from two linearly separable
classes, the model converges and positions the decision boundary in the form of a hyperplane
between the two classes. However, it was proved years later that Perceptron did not generalize
toward the notion of binary parity. Among many other mathematical proofs and experiments pre-
sented in their book Perceptrons (MINSKY; PAPERT, 1969), Minsky and Selfridge demonstrate
the Perceptron’s limitation via the XOR problem. This classic problem consists of predicting the
outputs of XOR logic gates given two binary inputs. An XOR function returns True if the two
inputs are not equal and False if they are equal. Although this problem seems simple, Minsky
and Papert (1969) showed that it was a big problem for the Perceptron architecture, given its
limitations of linear nature. Since XOR is a non-linear separable problem, Perceptron could
not draw a single hyperplane that separates the XOR classes. Such discovery discouraged the
ML community from working with Neural Networks, which stagnated the research field for
years (GOODFELLOW; BENGIO; COURVILLE, 2016). However, this would change with
the emergence of Multi-layer Networks and the adoption of gradient descent applied to the
backpropagation algorithm to train such networks (LECUN et al., 1998).

2.2.1 Feed-Forward Neural Networks

Multi-Layer Neural Networks or Feed-Forward Neural Networks (FFNN) are fundamen-
tal architectures in modern ML, comprising interconnected neurons with non-linear activation
functions in multiple layers (GAMA et al., 2011). In addition to the input and output layers,
these networks have what are called hidden layers, as they are hidden from the input and output
signals (HAYKIN., 2010). FFNNs usually have at least two hidden layers, which allows them
to capture complex patterns and deal with non-linearly separable data. In addition, this type of
architecture often has a high degree of connectivity, as each neuron is connected to all neurons
in the previous layer (NIELSEN, 2015). An example of a fully connected FFNN architecture
with two hidden layers can be seen in Figure 5.

In the NNs literature, it is common to see a misunderstanding with the terms FFNN and
Multi-Layer Perceptron (MLP). Although MLP is an example of an FFNN, the original MLP used
Sigmoidal neurons (CYBENKO, 1989). More precisely, and despite not using the same activation
function, the MLP is defined as an extension of the Perceptron where there is an arbitrary number
of neurons arranged in multiple layers instead of a single neuron (HASTIE et al., 2009). The
addition of hidden layers and the activation function non-linearity allowed MLPs to overcome
some of the known limitations of the base model, such as the binary parity problem (NIELSEN,
2015). Another difference between Perceptron and MLP/FFNNs is how these models are trained.
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Figure 5 – Feed-Forward Neural Network with two hidden layers. Adapted from Haykin. (2010).

While Perceptron is trained by calculating the prediction error directly, as it has a single neuron,
MLP/FFNNs cannot have their errors calculated directly for the entire network due to the
existence of multiple hidden layers (ROSENBLATT et al., 1962; HASTIE et al., 2009). Therefore,
these networks are commonly trained with an algorithm called Backpropagation (RUMELHART;
HINTON; WILLIAMS, 1985). Another important distinction is that the activation functions
used by MLP/FFNNs are differentiable, which allows the calculation of gradients and enables
the use of Backpropagation to learn the weights (BENGIO; DUCHARME; VINCENT, 2000).

The development and successful application of Backpropagation and Stochastic Gra-
dient Descent (SGD) are of vital relevance to the success of Deep Learning and Deep Neural
Networks (GOODFELLOW; BENGIO; COURVILLE, 2016). SGD is an optimization algorithm
used to minimize a Neural Network’s loss function by iteratively updating its parameters (weights
and biases) based on the function’s gradient with respect to the parameters (AMARI, 1967). The
"stochastic" aspect refers to the random mini-batches used for computing the gradients, as it does
not use the entire training dataset at once (WERBOS, 2005). On the other hand, Backpropagation
is the algorithm used to compute the loss function’s gradients that SGD then uses to update the
neural network parameters to improve its performance (LINNAINMAA, 1970). Backpropagation
involves two main steps: (i) the forward pass, where input data is passed through the network
to compute predictions and calculate the output error; and (ii) the backward pass, where the
chain rule of calculus is used to calculate the gradients of the output error layer by layer and
then propagated back from the output to the input layer (LEIBNIZ, 2012). In essence, SGD and
Backpropagation, as well as FFNNs, are the cornerstones for almost any type of neural network,
and both their composition and how they are applied nowadays are the fruit of an extended list
of works over the years (LECUN; BENGIO; HINTON, 2015).
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2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets) or CNNs are a type of neural architecture
specialized in processing data with a grid-like topology (LECUN et al., 1998). The most common
use of this type of network is for pattern recognition in images, as they can be viewed as a 2D, 3D,
or higher dimensional grid-like structure of pixels. However, the application cases for ConvNets
are quite broad, and it is not uncommon to see them being applied to other types of data, such as
Audio and Text (ELSKEN; METZEN; HUTTER, 2019). The name "Convolutional" in ConvNets
refers to the mathematical operation called convolution, a specialized type of linear operation
used by convolutional layers (LECUN et al., 1989). In essence, Convolutional Networks are
Neural Networks that use convolution in at least one of their layers and are not limited to general
matrix multiplication, as is the case with FFNNs (KRIZHEVSKY; HINTON et al., 2009).

An example of what a ConvNet architecture looks like can be seen in Figure 6. This
specific network, called LeNet-5 (LECUN et al., 1998), was a pioneering architecture and one
of the first examples of what became the modern convolutional architectures known today. As
seen in Figure 6, the LeNet-5 is composed of two convolutional layers interspersed with pooling
layers that subsample the feature maps generated by the convolution operations. At the end of
the network, fully connected layers, similar to FFNNs, are trained with the outputs of the feature
maps reduced by pooling, feeding the output layer that classifies the examples according to a
probability distribution function. Although some authors claim that fully connected layers are
not part of ConvNets but an add-in, it is quite common to see works nowadays that consider
them as any other part of the ConvNet architecture.

Figure 6 – LeNet-5 architecture. Adapted from LeCun et al. (1998).

Convolutional architectures employ three essential components with specific roles: local

receptive fields, shared weights, and subsampling (NIELSEN, 2015). As in an FFNN, the layers
of a ConvNet also contain neurons. However, unlike the neurons of a regular NN connected to
all the input signals, neurons in a ConvNet are only connected to small regions of the input data.
These regions are called local receptive fields and determine the spatial extent of the input that
the neurons will process. The filters or kernels are the learnable parameters of those neurons that
extract specific features from the local regions. As shown in Figure 7, when a filter is convolved
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through the input data, it slides over the input by computing dot products between the filter’s
weights and values in the receptive field. This process results in a feature map, or activation

map, that highlights the presence of the learned features. In addition, as the input data is passed
through successive layers, the receptive fields of higher-level neurons capture more complex
patterns by combining information from lower-level receptive fields. This hierarchical processing
enables the ConvNet to learn increasingly abstract and meaningful features (REN et al., 2021).

Figure 7 – Convolution operation with a 5x5x3 kernel over a 32x32x3 image. Adapted from the Convolu-
tional Neural Networks for Visual Recognition Stanford Course, 2020 2.

Opposite to what happens with FFNNs, where each neuron has its own weights in a grid
of dense connections, the neurons of a convolutional layer have their learned weights (kernels)
shared among themselves (HAYKIN., 2010). The weight sharing used by ConvNets makes it
necessary to learn only one set of weights per layer instead of learning a separate set of weights for
each input location. This causes the number of weights to be drastically reduced when compared
to a traditional FFNN, making it less dense and, consequently, lighter and with more local
features. Therefore, the convolution operation is dramatically more efficient than dense matrix
multiplication in terms of memory requirements and statistical efficiency (GOODFELLOW;
BENGIO; COURVILLE, 2016). In a traditional neural network, each element of the weight
matrix is used precisely once, and after calculating the output of a layer, it is never revisited.
In ConvNets, however, they share kernels and local receptive fields, which creates certain
redundancy between neurons and, often, feature maps (NIELSEN, 2015).

The last key component of ConvNets is the subsampling or, as it is commonly called,
the Pooling operation (WITTEN et al., 2016). The Pooling is responsible for reducing the
input dimensions of previous layers, and this operation is usually applied after a convolution,
condensing the previously extracted information. In short, the most common pattern to observe
is to have a sequence of convolutional layers followed by pooling layers, reaching the fully
connected layers at the end of the feature extraction part of the network. As a convolutional
layer usually generates multiple feature maps and its dimensions grow quickly, pooling is
extremely important to keep the training of Convnets feasible, which is thus applied to each
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Figure 8 – General effect of the Pooling/Subsampling operation. Adapted from the Convolutional Neural
Networks for Visual Recognition Stanford Course, 2020 2.

map separately. Figure 8 illustrates how pooling works in practice. There are different ways to
perform pooling, and two popular operators are Max Pooling and Average Pooling (LECUN et

al., 1998). Max Pooling captures the maximum activations in a specific region according to the
size of the pooling kernel. In turn, Average Pooling extracts an average of the activations in a
kernel. Figure 9 illustrates how these two operators work in practice. Given an activation map
(Left), Max Pooling extracts the maximum activations using a 2x2 kernel with stride 2, moving
two positions horizontally and two vertically. On the other hand, the Average pooling (Right)
takes an average of activations over a 2x2 kernel with stride 2.

Figure 9 – Max and Average Pooling operations. Adapted from Yani et al. (2019).

2 http://cs231n.stanford.edu/2020/
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2.2.3 U-Net

The U-Net architecture proposed by Ronneberger, Fischer and Brox (2015) has emerged
as a groundbreaking ConvNet-like model developed for biomedical image segmentation tasks.
This architecture was specifically designed to excel in per-pixel segmentation, exhibiting excep-
tional optimization and performance (RONNEBERGER; FISCHER; BROX, 2015). In fact, its
impact and application extend beyond the field of medical imaging, reshaping the landscape
of semantic segmentation in general (YAN et al., 2020b). The U-Net’s effectiveness lies in
its fusion of a contracting path for capturing context and a symmetrical expanding path for
precise localization. Consequently, the expansive path exhibits a symmetrical relationship with
the contracting counterpart, yielding a distinct U-shaped architectural configuration which is
similar to the idea of an autoencoder, as can be observed in Figure 10. This synergy between the
two paths enables U-Net to deal with tasks like image segmentation and generation by capturing
contextual information and producing precise results. The reason why encoder-decoders are
relevant is that they can capture the abstract representations from the input and preserve the
original dimensions. While the encoder extracts relevant features from images, the decoder takes
those features and reconstructs them in segmentation masks.
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Figure 10 – U-Net architecture. Adapted from Ronneberger, Fischer and Brox (2015).

Another inspiration for the U-Net can be traced back to the Fully Convolutional Network
introduced by Long, Shelhamer and Darrell (2015). This Neural Network effectively enhanced a
standard contracting ConvNet by adding sequential layers with upsampling operators instead
of pooling operations to incrementally boost output resolution. Another distinctive feature of
U-Net is the incorporation of a significant number of feature channels in the upsampling segment
path (WENG et al., 2019). This enhancement facilitates the propagation of context information
to higher-resolution layers, which results in an expansively symmetric architecture that mimics
the contracting counterpart. In particular, this neural network exclusively uses convolutional
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layers to generate segmentation outputs in the form of segmentation masks, thus avoiding the
usage of fully connected or dense layers. For pixel-accurate prediction along the border region
of the images, contextual information gaps are filled by extrapolating the missing context by
mirroring the inputs. This strategy allows training the network with larger images and helps to
overcome resolution size limitations linked to GPU memory consumption.

2.3 Neural Architecture Search

Neural Architecture Search or NAS is a recent research topic that arose from works that
explored the automated design of Neural Networks (ZOPH; LE, 2016). This research field covers
the automatic definition of various hyper-parameters related to neural architectures, such as layer
operations, activation functions, and how layers are connected, among others (ZOPH et al., 2018).
Thus, NAS methods aim to automate the entire engineering process of neural architectures, and
their functioning can be seen as the result of three principal components (HUTTER; KOTTHOFF;
VANSCHOREN, 2019): Search Space, Search Strategy, and Performance Estimation. Figure 11
illustrates these components and how they usually interact with each other. In the following
sections, each of them is explored in more detail.

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A ∈ A

performance
estimate of A

Figure 11 – The three basic components of the NAS framework. From a Search Space𝒜, a Search Strategy
selects an architecture A which has its performance estimated by a Performance Estimation
Strategy. Adapted from Hutter, Kotthoff and Vanschoren (2019).

2.3.1 Search Space

The Search Space in the context of NAS defines which architectures can be found or
learned in principle (LIU et al., 2017). Depending on how the architecture space is defined, the
search can be simplified, and the computational cost associated with finding good architectures
can be reduced. However, this is not a trivial task since oversimplifying the search space
can compromise the quality of candidate architectures. On the other hand, finding suitable
architectures in a large and complex space can be computationally infeasible. Therefore, there
is a trade-off between architecture’s quality and the feasibility of searching in the space of
solutions (BAKER et al., 2017). In Figure 12, two search spaces commonly used in the literature
are illustrated: a relatively simple one called Chain-structured space (REAL et al., 2019); and a
more complex one called Multi-branch space (LIU et al., 2018).
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Figure 12 – Types of Search Space: (Left) Chain-structured space; and (Right) Multi-branch space.
Colored nodes represent hidden layers, edges represent layers’ inputs and outputs, and
each color represents a layer type. Adapted from Hutter, Kotthoff and Vanschoren (2019).

A Chain-structured space consists of a sequence of n layers, where a layer i receives the
output of a layer i−1 as input and, consequently, its output is used as input for a layer i+1. This
space can be customized by: (1) maximum and minimum number of hidden layers; (2) type of
layers; and (3) specific hyper-parameters of each layer. Since the layers’ hyper-parameters (3) are
dependent on their type (2), the search space changes to a variable size, making the search more
difficult (REAL et al., 2019). In turn, a Multi-branch space is made of conditional connections
that allow the building of more complex neural networks. In the current NAS literature, the
Multi-branch space is frequently adopted for CV tasks (LIU et al., 2018). Moreover, there is a
third search space called Cell-based (LIU et al., 2019), which is illustrated in Figure 13.

Motivated by the recurrence of certain mechanisms observed in popular architectures,
such as convolutional layers followed by pooling operations in ConvNets, the Cell-based Search
Space emerged as a novel approach that consisted of searching for such motifs (LIU et al., 2020).
In works such as (ZOPH et al., 2018) and (ZHONG et al., 2018), the focus has shifted from
optimizing entire architectures to the optimization of individual mechanisms, referred to as
"blocks" or "cells." This optimization strategy often involves two types of cells: A normal cell
that preserves input dimensionality, and a reduction cell that applies a transformation that reduces
the input’s dimensions (LUO et al., 2018). After being searched and optimized, these cells are
systematically stacked in a predetermined manner to compose the final architectures. Overall, the
Cell-based space has two main advantages over the Chain-structured and Multi-branch search
spaces (ZHONG et al., 2018): (i) the search space is considerably smaller, leading to searching
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Figure 13 – Cell-based Space: (Top Left) normal cell; (Bottom Left) reduction cell; (Right) an architecture
built by stacking the cells.

speed-up; And (ii) it offers greater flexibility for transferring knowledge across similar tasks
once cells can be easily added or removed. However, the Cell-based space introduces new meta-
architecture hyper-parameters, including possible cell types, the minimum and maximum number
of cells in an architecture, and how cells are connected. Defining these new parameters adds
extra difficulty to the problem and requires a solution by itself. According to Hutter, Kotthoff
and Vanschoren (2019), to avoid search oversimplification and ensure automation feasibility, it is
necessary to adjust the meta-parameters along with the NAS process.

2.3.2 Search Strategy

Once a Search Space is defined is necessary to establish how searching for architectures
in such space will be performed (LUO et al., 2018). The Search Strategy thus defines how
architectures will be sampled in the space of possible configurations, and, in some cases, even
determines how this space is modified during search and optimization (ELSKEN; METZEN;
HUTTER, 2019). Algorithms with different learning paradigms have been used to explore
the space of candidate architectures, the most common being Reinforcement Learning (RL),
Evolutionary Algorithms (EAs), Bayesian Optimization (BO), and Gradient Descent (GD) (WIS-
TUBA; RAWAT; PEDAPATI, 2019). Although a considerable amount of work has been reporting
advances in NAS for various tasks, it seems that a unanimous superiority of one family of
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algorithms over others has not yet been proven (WHITE et al., 2023). This may be the case
because the NAS framework involves different components and associated hyperparameters,
making it difficult to conduct reliable ablation studies (LI; TALWALKAR, 2020).

The first Search Strategy to become widely used in NAS was Reinforcement Learn-
ing (ELSKEN; METZEN; HUTTER, 2019), where its algorithms and paradigm were used
as a framework to generate models and guide the search for optimal architectures, as seen in
Figure 14. In the pioneering work of Zoph and Le (2016), in which the term "Neural Architecture
Search" was coined, Reinforcement Learning was applied to find novel and competitive archi-
tectures to rival the best hand-crafted architectures designed for CIFAR-10. Recurrent Neural
Networks (RNN) were used to generate model descriptions of neural architectures, and these
same RNNs were trained with the REINFORCE algorithm to maximize the expected accuracy
of such generated architectures. However, the proposed method showed efficiency problems,
requiring about 800 GPUs running for three to four weeks to completely train the models. After
this work, many other methods were proposed with the concern of reducing the computational
cost of NAS. In Zoph et al. (2018), an improvement of Zoph and Le (2016) was proposed
using a different RL policy called Proximal Policy Optimization (PPO), which generated better
predictions for CIFAR-10 using 450 GPUs and less than half of the parameters. Another example
of RL application is seen in Pham et al. (2018), where a controller LSTM is trained with a
policy gradient to select a subgraph from a large graph of neural architectures that maximizes
the expected reward on a validation set. Experimental results on CIFAR-10 showed a 1000x
speed-up compared to Zoph and Le (2016) using one GPU only.

Figure 14 – NAS from a Reinforcement Learning perspective. Adapted from Zoph and Le (2016).

Evolutionary Algorithms used as Search Strategies to generate neural architectures
have been used since the mid-1980s (THRUN; PRATT, 1998). One of the first attempts to
evolve architectures through Genetic Algorithms (GAs) is seen in Miller, Todd and Hegde
(1989), in which new architectures are discovered via evolutionary process and trained using
Backpropagation (LECUN et al., 1989). More recent works have used GAs to optimize neural
topologies and weights, differing in how individuals are selected, which crossovers are used, and
how mutations are performed (WEI et al., 2022). In Real et al. (2017), Liu et al. (2017), and Real
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et al. (2019), Tournament Selection is employed (WETZEL, 1983), while in Elsken, Metzen and
Hutter (2018), architectures are selected according to the Pareto Front (BANDARU; NG; DEB,
2017). In Real et al. (2017), the worst individual in a population of candidate architectures is
removed at the end of each generation, whereas in Real et al. (2019), only the oldest individual
is removed, and in Liu et al. (2017), there are no removals. In Elsken, Metzen and Hutter (2018),
the creation of a new offspring or child models occurs through Morphisms (WEI et al., 2016),
where weights from parent architectures are transferred to the offspring architectures. Morphism
is also applied in Real et al. (2017), but offspring architectures only receive parameters that were
not affected by mutation in the parent models.

Bayesian Optimization (BO) has a long history of successful applications in ML, par-
ticularly in the context of fine-tuning learning algorithms’ hyperparameters (BRAZDIL et al.,
2008). In the field of NAS, BO solutions have also shown promising results, as evidenced by the
pioneering works of Bergstra, Yamins and Cox (2013) and Domhan, Springenberg and Hutter
(2015), where state-of-the-art performance on well-known image datasets was demonstrated.
However, it is worth noting that BO methods face fierce competition from Evolutionary and Rein-
forcement Learning approaches. An example is the work of Kandasamy et al. (2018), who made
notable strides by deriving kernel functions to adapt Bayesian methods for architectural search
spaces. Nevertheless, achieving new state-of-the-art in NAS remains a challenge for BO-based
methods. In this dynamic landscape, BO continues to hold promise, and further advancements
may enhance its efficacy in NAS optimization, ultimately contributing to the field.

Gradient Descent plays a pivotal role in NAS by enabling the efficient discovery of
optimal neural network architectures (XIE et al., 2018). Recent advancements have introduced
innovative approaches like combining the weight-sharing paradigm with continuous relaxation
of the search space, thus allowing for the use of gradient-based optimization techniques (XIE
et al., 2018). This approach, collectively known as differentiable NAS, has proven to be highly
efficient in exploring the vast neural architecture search spaces. DARTS is one of the popular
methods that stands out as one of the most prominent algorithms among the gradient-based NAS
solutions (LIU; SIMONYAN; YANG, 2018). Nevertheless, DARTS faces challenges such as
performance collapse due to skip connection aggregation and limited generalization (XIE et al.,
2018). Fortunately, numerous subsequent algorithms have addressed these issues (XIE et al.,
2018). For instance, some focus on enhancing DARTS’ robustness and smoothing the landscape
of validation accuracy through Hessian norm-based regularization and random smoothing/adver-
sarial attacks (XIE et al., 2018). Further investigation into the performance degradation aspect is
undertaken from the architecture selection perspective (XIE et al., 2018). Differentiable NAS has
demonstrated its ability to achieve competitive results with a fraction of the search time required
by traditional reinforcement learning-based search methods. Additionally, other gradient-based
NAS techniques, such as SNAS (XIE et al., 2018), ProxylessNAS (DONG; YANG, 2019),
and GDAS (CAI; ZHU; HAN, 2018), have emerged as promising alternatives, offering diverse
strategies to streamline architecture search and deliver efficient neural models.



2.3. Neural Architecture Search 61

2.3.3 Performance Estimation
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Figure 15 – Performance Prediction example on NAS. Adapted from Wen et al. (2020).

NAS methods aim to automatically find good neural architectures in a limited time, and
since most search spaces can easily contain thousands or millions of architectures, evaluating each
candidate’s actual performance becomes a complex and sometimes computationally unfeasible
process (BAKER et al., 2017). Therefore, one important component of the NAS framework is the
Performance Estimation Strategy, which determines how to estimate one architecture candidate’s
performance without actually training it enterily (WHITE et al., 2021). Figure 15 exemplifies
one possible configuration for this component, which consists of collecting data from sampled
architectures and training a model that predicts the real performance of unseen models. In that
regard, recent research has been looking for alternatives to reduce the computational burden and
improve architectural performance estimation quality. In the current literature, some strategies
have stood out (ELSKEN; METZEN; HUTTER, 2019): (i) Partial estimations; (ii) Learning
curve exploration; (iii) One-shot models; (iv) Prediction-based NAS; and (v) Training-free NAS.
In the following, each one of these strategies is presented in more detail.

Partial estimates or Low fidelities are the most basic performance approximators, includ-
ing everything from reduced training times to training on subsets of data or training on data
with reduced dimensions (ELSKEN; METZEN; HUTTER, 2019). In Zela et al. (2018), both the
neural architecture and its weights are optimized jointly, where different training epochs were
used to verify the performance correlation of adjusting the weights or not. In Klein et al. (2016a),
optimization is accelerated through training on subsets from the original dataset. First, prelimi-
nary explorations were made in the subsets as a form of validation, and, in a second moment, if
promising results were generated, extrapolations in the complete dataset were performed. In turn,
in Chrabaszcz, Loshchilov and Hutter (2017), the performance estimation strategy is based on
simplified versions of the ImageNet dataset (KRIZHEVSKY; SUTSKEVER; HINTON, 2012),
in which the image resolutions were decreased to speed up the search and validation process.
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Learning curve exploration is another way to estimate the performance of candidate
models, in which, as well as Partial estimates, it is based on partial information from the real
output signals related to performances (RIJN et al., 2015). Learning curves are basic graphical
representations that show how a metric changes over time. In the context of ML and NAS, these
curves are often the progress of a performance metric, such as accuracy or error, throughout the
training or search (WISTUBA; PEDAPATI, 2020). Thus, the Learning curve exploration strategy
consists of analyzing the history values of a metric (curve) from candidate architectures to select
the most promising (KLEIN et al., 2016b). In Domhan, Springenberg and Hutter (2015), a method
speeds up deep neural network hyperparameter search with a probabilistic learning curve model.
It predicts network performance early, improving hyperparameter optimization on benchmarks
like CIFAR-10. "F-Hyperband" by Baker et al. (2017) predicts neural network performance using
architecture features, hyperparameters, and data, accelerating optimization without disruption.
Rawal and Miikkulainen (2018) enhances neural architecture via evolutionary optimization on
LSTM nodes, outperforming manual designs in language modeling and music prediction. Finally,
Liu et al. (2018) introduces PNAS, efficiently designing CNNs with progressive search and a
performance predictor, achieving results comparable to existing methods with fewer resources.

One-Shot Architecture Search stands out as another estimation strategy that aims to speed
up the search for high-performance neural architectures (BENDER et al., 2018). In this approach,
candidate architectures are treated as different sub-graphs within a super-graph known as the
One-shot model, where weights are shared between sub-graphs with common edges (WHITE et

al., 2023). Notably, since this technique requires only the One-shot models’ weights to be learned,
this significantly accelerates the performance estimation while eliminating the need for isolated
training of each architecture in the super-graph (SIEMS et al., 2020). Two pioneering works in
this field that use this approach are the Efficient Neural Architecture Search (ENAS) (PHAM
et al., 2018) and Differentiable Architecture Search (DARTS) (LIU; SIMONYAN; YANG,
2018). ENAS is the pivotal work to achieve efficient training by weight-sharing among child
models in the super-graph during architecture search, reducing computational complexity and
enhancing stability and architectural diversity through the combination with Reinforcement
Learning (PHAM et al., 2018). On the other hand, DARTS employs a continuous relaxation of
the architecture space, enabling Gradient-based optimization. This approach delivers competitive
performance compared to non-differentiable methods, particularly in Image Classification and
Language Modeling tasks (LIU; SIMONYAN; YANG, 2018). DARTS’ simplicity, scalability,
and efficiency enhancements solidify its position as a significant contribution to automated
architecture search, making it a mainstream paradigm and a frequent baseline in the field.

Prediction-based NAS emerged as an alternative strategy to tackle the complex chal-
lenges seen in other NAS performance estimation methods (KLEIN et al., 2016b; DUDZIAK
et al., 2020). By leveraging ML models to predict the performances of candidate architectures,
this strategy offers a compelling solution to reduce computational costs and accelerate archi-
tectural search while using a small number of sampled architectures(LI et al., 2021). Although
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Prediction-based NAS shows promising results in minimizing computational burden by making
informative predictions on a limited number of sampled architectures, it comes with an additional
set of associated challenges (WHITE et al., 2021). Accurately estimating neural architecture
performance is a complex task that requires well-designed and tuned models able to capture
the intricate relationships between architecture designs and their performances (NING et al.,
2020). Moreover, the quality and diversity of the sampled architectures significantly influence
the reliability of these predictions (BAKER et al., 2016). Furthermore, the Prediction-based
strategy may have limitations in exploring architectures beyond the sampled pool, potentially
restricting its ability to uncover innovative designs outside the sampled domain (LIU; TANG;
SUN, 2021). However, with just a few data points, Prediction-based NAS can achieve better or
competitive results with the most complex techniques in the area, such as One-shot models, and
often in less training time and fewer computational resources.

Training-free NAS is a recent paradigm that aims to speed up architecture selection
based on surrogate metrics of real performances instead of extensive training (WHITE et al.,
2023). Mellor et al. (2021) introduced this pioneering concept by extracting linear mappings of
untrained networks at initialization to create a distinctive kernel matrix. Therefore, a ranking of
the candidate architectures is determined by scores derived from the kernel matrix, with higher
values indicating the potential for improved accuracy post-training. While Training-free NAS
promise to reduce computational costs while accelerating the architectural search process, they
often rely on heuristics, which limits their ability to capture complex relationships within network
components and potentially leads to sub-optimal solutions. To address these challenges, Chen,
Gong and Wang (2021) presents an innovative approach to create optimized architectures for
trainability and expressiveness. Leveraging two key metrics κ𝒩 and R̂𝒩 , this proposal evaluates
and enhances architectures by assessing their trainability and capacity to capture complex data
relationships. κ𝒩 evaluates a network’s capability to undergo stable and efficient training by
examining the spectral characteristics of the Jacobian matrix, where lower values of κ𝒩 represent
architectures that facilitate smooth training processes. In contrast, R̂𝒩 measures a network’s
expressiveness by quantifying its aptitude for capturing intricate data relationships, where higher
values of R̂𝒩 reflect the effectiveness of the architecture in modeling complex patterns.
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2.4 Meta-Learning
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Figure 16 – Meta-Learning applied to NAS.

Human beings hardly start from scratch or without any prior knowledge when solving an
unknown problem (THRUN; PRATT, 1998). Human behavior is inherently predisposed to reuse
previous and successful strategies, either to solve tasks quickly or to acquire new skills (LAKE et

al., 2017). Even when confronted with unfamiliar territories, the ability to generalize behaviors
across diverse tasks assists the speeding up of problem-solving and skill acquisition (FINN;
ABBEEL; LEVINE, 2017). According to Thrun and Pratt (1998), these factors are regarded
as the pivotal reason why humans can efficiently adapt to novel challenges and adversities. An
approach that allows using prior knowledge to optimally solve new tasks is known as Meta-
Learning. Figure 16 exemplifies the Meta-Learning framework applied to the NAS problem, with
a particular emphasis on the Prediction-based approach. Starting from a Dataset, a Search Space
of possible models is meticulously defined for the task at hand. With such a Dataset and defined
Search Space, an array of meta-information is systematically gathered from these sources. This
includes extracting meta-features from the task, such as image-based characteristics when dealing
with images, architectural meta-features when using Neural Networks, and performance-related
statistics from the models, to name a few examples. Therefore, a meta-dataset can be built by
combining all this meta-information, which can be used to induce a meta-predictor capable of
estimating the performance and selecting unseen ConvNets/UNet.

In contrast, traditional learning algorithms find it difficult to reuse acquired knowledge,
requiring the arduous process of training the models from scratch for every single task (VI-
LALTA; DRISSI, 2002). Another common difficulty is learning from fewer examples (RAVI;
LAROCHELLE, 2016). For many algorithms, large volumes of data are needed to effectively
learn something and the gained knowledge can only be transferred to very closely resembling
tasks. This data inefficiency and lack of transferability make it challenging to apply these models
in applied scenarios where data is scarce or expansive to collect, such as in medical and biomed-
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ical tasks in which the data volume is usually low (BRAZDIL et al., 2008). Meta-Learning,
sometimes referred to as “Learning to Learn” (FINN; LEVINE, 2017), on the other hand, distin-
guishes itself from the traditional learning paradigms, or Base-Learning, by taking advantage of
previous experiences in tasks, algorithms, and performance metrics to learn how to solve new
tasks faster, using fewer examples, and less computational resources. In addition, Meta-Learning
has a higher abstraction level and knowledge generalization power, not being conditioned to a
specific learning process, task, or dataset (PAVEL; SOARES, 2002).

A task in Meta-Learning is fundamentally defined in the same way as in Base-Learning,
and it comprehends a diverse range of domains such as Classification, Regression, Segmentation,
among others (BRAZDIL et al., 2008). Thus, what distinguishes these two learning paradigms
is the level at which the learning process takes place. While Base-Learning involves learning
from data features and knowledge is built from scratch, Meta-Learning leverages prior learning
experiences represented by meta-features. In fact, Meta-Learning starts from the idea that once
some knowledge is acquired, building new knowledge becomes easier (LAKE et al., 2017).
Thus, it aims to smooth empirical processes like trial-and-error and encourage decision-making
grounded on the knowledge extracted from known data. To train a meta-model, it is first
necessary to collect meta-data and build a meta-dataset, and there are at least three sources of
meta-knowledge (HUTTER; KOTTHOFF; VANSCHOREN, 2019): (i) Learning from Tasks;
(ii) Learning from Model Evaluations; and (iii) Learning from Prior Models. In the following
sections, each Meta-Learning approach is presented in detail.

2.4.1 Learning from Tasks

This first source of meta-knowledge consists of learning from meta-characteristics
directly extracted from the tasks or, more precisely, from the datasets. Each learning task t j ∈ T

can be characterized by a meta-features vector m j = {m1, ...,mk} where k represents a single
meta-feature in the K set of all known meta-features (HUTTER; KOTTHOFF; VANSCHOREN,
2019). From this meta-feature vector m, it is possible to train a meta-model to make predictions
based on these meta-features instead of relying on the original data, thereby often enhancing
the model’s generalization capacity. As the process of extracting meta-features is typically fast
and computationally cheap, applying such a Meta-Learning approach is not only feasible but
often beneficial in terms of efficiency and performance (BRAZDIL et al., 2008). Furthermore,
even a dimensionality reduction while maintaining or improving predictive performance can be
expected to happen in some cases (ALCOBAÇA et al., 2018).

Meta-features describe more general characteristics inherent to the data. These charac-
teristics can range from elementary attributes, like the enumeration of classes within a dataset,
to more complex descriptors, such as the Skewness and Kurtosis statistical metrics of a sample
distribution (RIVOLLI et al., 2018). As a matter of fact, the realm of meta-features includes a
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broad and diverse range of categories, encompassing metrics from Clustering, Data Complexity,
Information Theory, Model-based, and Landmarking 3, to name a few (ALCOBAÇA et al.,
2020). These categories encapsulate a rich tapestry of meta-features that enable comprehensive
data characterization (RIVOLLI. et al., 2022). Table 1 presents several of these meta-features
commonly employed in the Meta-Learning literature along with their categories.

Table 1 – Types of meta-features often used in the literature.

Description Type Reference

No. of Examples General Michie et al. (1995)
No. of Features General Kalousis and Theoharis (1999)
No. of Numerical Features General Engels and Theusinger (1998)
Correlation Coef. Statistical Castiello, Castellano and Fanelli (2005)
Covariance Statistical Castiello, Castellano and Fanelli (2005)
Kurtosis Statistical Michie et al. (1995)
Shannon’s Entropy Info. Theory Michie et al. (1995)
Features Noisiness Info. Theory Michie et al. (1995)
Mutual Information Info. Theory Michie et al. (1995)
Imbalance Ratio Complexity Lorena et al. (2019)
Collective Feature Efficiency Complexity Lorena et al. (2019)
Overlapping Region Volume Complexity Lorena et al. (2019)
Calinski and Harabasz index Clustering Caliński and Harabasz (1974)
Mean Silhouette Value Clustering Rousseeuw (1987)
Dunn index Clustering Dunn (1974)
Linear Discriminant Performance Landmarking Bensusan and Giraud-Carrier (2000)
Naive Bayes Performance Landmarking Bensusan and Giraud-Carrier (2000)
1-Nearest Neighbor Performance Landmarking Bensusan and Giraud-Carrier (2000)
No. of Leaves Model-based Pavel and Soares (2002)
No. of Branches Model-based Pavel and Soares (2002)
Tree Depth Model-based Pavel and Soares (2002)

2.4.2 Learning from Model Evaluations

The second source of meta-knowledge lies in the Learning from Model Evaluations or,
more precisely, from the intricate mapping between the attributes of tasks and the corresponding
model performances on those tasks. This approach can be defined in terms of tasks t j ∈ T ,
algorithms ai ∈ A, their associated hyper-parameters θi ∈Θ, and a set of real-valued evaluations
pi, j = P(θi, t j), according to previously defined performance measures. Hence, it becomes fea-
sible to induce a meta-model capable of leveraging the attributes of an incoming task drawing
from the repository of prior experiences encapsulated in T to offer recommendations encom-
passing an algorithm ai which is fully defined by θi (HUTTER; KOTTHOFF; VANSCHOREN,
2019). Although this Meta-Learning approach primarily revolves around leveraging past model
performances and is typically employed to make model recommendations for specific tasks, its
methodology shares similarities with both the Learning from Tasks and Learning from Prior
Models approach, as it can use information from these two sources.

3 Quick estimates obtained by simplified versions of the algorithms or reduced datasets
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When it comes to recommending models, a broad spectrum of Machine Learning mod-
els can be effectively employed as meta-models (PFAHRINGER; BENSUSAN; GIRAUD-
CARRIER, 2000). This repertoire spans everything from traditional algorithms like Support
Vector Machines, Random Forests, and Decision Trees to contemporary models such as UNets
and Transformers. Augmenting these meta-models, repositories composed of rich meta-data,
including the popular Aslib (BISCHL et al., 2016) and OpenML (VANSCHOREN et al., 2014),
emerge as invaluable troves of information. Meta-models can thus leverage the extensive data on
optimization problems, such as the Algorithm Recommendation (AR) Problem, the Traveling
Salesman Problem (TSP), and the Satisfiability Problem (SAT), among other records regarding
tasks, algorithms, and performances (RICE, 1976; KANDA et al., 2011; DAVIS; LOGEMANN;
LOVELAND, 1962). Beyond the recommendation of algorithms with fixed hyper-parameters, it
is also possible to recommend the hyper-parameters of learning algorithms.

Typically, recommending hyper-parameters entails the initial learning of an optimal
standard set of values followed by a subsequent assessment of each hyper-parameter impor-
tance (PROBST; BISCHL; BOULESTEIX, 2018). Such importance is often based on the
performance gain when adjusting a specific hyper-parameter instead of leaving it with the default
value. Usually, default values for the algorithms’ hyper-parameters are learned for each task
before being assessed. Therefore, the resulting configurations are sampled and the setting that
minimizes the average risk across all tasks is recommended as default (MANTOVANI et al.,
2015). Another possibility is to independently learn hyper-parameters’ default values and the
necessity of tuning them (WEERTS; MEULLER; VANSCHOREN, 2018). Through a ranking
approach, default values can be established according to the frequency of appearance at the
top-K positions for each task. Subsequently, statistical tests can determine whether to tune or not
to tune the default value of a hyper-parameter based on the decrease in performance observed
when all but the hyper-parameter under analysis is adjusted (MANTOVANI et al., 2015).

2.4.3 Learning from Prior Models

The third and final source of meta-knowledge explored in this thesis is the Learning from
Prior Models or, more specifically, leveraging pre-trained models to enhance the learning pro-
cess (HUTTER; KOTTHOFF; VANSCHOREN, 2019). Unlike previous approaches relying on
pre-defined meta-data, this Meta-Learning approach primarily focuses on unsupervised learning
of meta-features from existing knowledge. Transfer Learning is a prominent technique example
within this category, which has garnered considerable attention across diverse domains (WONG
et al., 2018). Transfer Learning often involves the usage of pre-trained models on a source task as
a warm-start for training on novel and related tasks, or it is used as a feature extractor. Previous
works have explored Transfer Learning and Meta-Learning in Bayesian models (BAKKER;
HESKES, 2003), Kernel-based methods (EVGENIOU; MICCHELLI; PONTIL, 2005), and even
Clustering algorithms (THRUN; PRATT, 1998), showcasing its versatility.
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Few-Shot Learning (RAVI; LAROCHELLE, 2016) is another paradigm that harnesses
prior models’ knowledge to boost learning efficiency. When prior knowledge is available, Few-
Shot Learning can leverage such information to facilitate rapid adaptation to unseen similar tasks.
For example, it can tackle the Classification K-shot N-way problem, where the objective is to
classify N new classes with only K instances of each. Other examples are the few-shot models that
learn how to rapidly adapt to novel tasks with minimal labeled examples, ultimately mitigating
the data scarcity challenge prevalent in Machine Learning (FINN; LEVINE, 2017). Techniques
such as Siamese Neural Networks (KOCH et al., 2015), Matching Networks (VINYALS et al.,
2016), and Relation Networks (SUNG et al., 2018) have demonstrated impressive performance in
Few-Shot Learning tasks. By learning effective representations from prior models, these models
facilitate generalization to new classes or tasks with only a few instances per class.

Some meta-learning models, like Model-Agnostic Meta-Learning (MAML) (FINN;
ABBEEL; LEVINE, 2017) and Reptile (NICHOL; ACHIAM; SCHULMAN, 2018), aim to
learn how to learn an entirely base model from prior models’ knowledge. MAML centers on
learning effective weight initializations for neural networks. It recommends weight initializations
that generalize well to similar tasks while allowing quick adaptation to new similar tasks with
minimal adjustments. This model iteratively refines these weight initializations by training on a
subset of tasks, enhancing the adaptability of base-model weights to novel tasks. Furthermore,
MAML recommends initializations that exhibit robustness against overfitting in small datasets
and possess broad generalization capabilities (FINN; ABBEEL; LEVINE, 2017). On the other
hand, Reptile adopts a different approach by repeatedly fine-tuning a base model across a
sequence of tasks. During each iteration, the base model’s parameters are updated to minimize
the loss on a novel task, fostering increased adaptability. Over multiple iterations, the base model
accumulates knowledge from these task-specific adaptations, enhancing its ability to generalize
to novel tasks efficiently (NICHOL; ACHIAM; SCHULMAN, 2018).
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2.5 Transfer Learning

Figure 17 – Transfer Learning practical example. Adapted from Zhuang et al. (2020).

Transfer Learning (TL) is a powerful and related technique to MtL that has gained
substantial popularity over the years, especially in the CV domain (PAN; YANG, 2009). This
learning technique aims to leverage knowledge acquired from one or more source tasks to
enhance or accelerate the learning on a related target task (KUMAGAI, 2016). TL gained
significant notoriety in Image Classification, where knowledge obtained from large databases
such as ImageNet is effectively transferred to recognize visual patterns in smaller datasets like
CIFAR (ZHUANG et al., 2020). In scenarios where data is scarce or the learning models are
resource-intensive, TL proves to be especially advantageous since it can both speed up and cut
off the costs of the learning process (DU et al., 2017). Figure 17 provides a visual representation
of the Transfer Learning framework, illustrating knowledge transfer from source tasks to closely
related target tasks and highlighting its adaptability across diverse domains and contexts.

Given a source domain Ds, a target domain Dt , learning tasks Ts and Tt , TL can be
formally defined in terms of the learning enhancing on Tt with knowledge obtained from a
different but similar target domain Ds and learning task Ts, where Ds ̸= Dt and Ts ̸= Tt (HUTTER;
KOTTHOFF; VANSCHOREN, 2019). This definition allows for versatility in TL’s application
across various domains and contexts, providing a framework for efficient knowledge transferring
and adaption to new tasks (WONG et al., 2018). However, it is important to take notice that TL
tends to be most effective when the source and target tasks exhibit a close similarity (KUMAGAI,
2016). Thus, this approach may not yield the desired results when transferring between entirely
dissimilar concepts, such as using the learning patterns of animal identification to vehicle
recognition, for example (DU et al., 2017). Nevertheless, several works in the field explore the
transferring of fundamental knowledge even when considering quite different target datasets.
Therefore, such methods focus on simple and more general pattern representations like lines,
contours, and basic geometric shapes in the context of images (SCOTT; RIDGEWAY; MOZER,
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2018). The practice of transferring simple patterns was shown to help the learning of following
layers in a network or sequential models, thus often speeding up recognition by providing initial
insights and avoiding the need to start the learning process from scratch (PERRONE et al., 2018).

It is also worth highlighting that the application of TL is broad and flexible, with different
ways of doing TL and not limited to applications with Neural Networks. Previous works have
been using traditional ML models like Support Vector Machines, Bayesian Networks, and
Ensembles to transfer lower or higher dimensional representations (ZHUANG et al., 2020).
Also, TL is not limited to only serving as a warm-start for model training. In some cases, TL
is harnessed to build fixed feature extractors from pre-trained models, preserving the initial
learning representations while fine-tuning only the final layers responsible for task-specific
operations (PERRONE et al., 2018). Others adopt a mixed approach, preserving the initial layers’
knowledge while utilizing TL to initialize subsequent layers during training, offering flexibility
and adaptability in ML applications (YANI et al., 2019). Some works even use TL with different
data formats and patterns instead of transferring across different concepts, like transferring
knowledge between CT and MRI data (ANTONELLI et al., 2022; AZIZI et al., 2017). This
cross-modal property of TL further highlights its versatility and ability to accommodate different
data modalities, highlighting its role as a powerful tool in the ML scenario and showing its
potential to improve performance across multiple domains, thus contributing to the advancement
of fields like NAS and MtL (SCOTT; RIDGEWAY; MOZER, 2018; PAN; YANG, 2009).
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2.6 Active Learning

Figure 18 – Typical Active Learning loop. Adapted from Settles (2009).

Active Learning (AL) offers a pragmatic solution for tasks marked by the abundance of
unlabeled data and prohibitive cost associated with manual labeling (COHN; ATLAS; LADNER,
1994). It consists of an iterative paradigm of Supervised Learning where algorithms learn in an
active way by querying samples and consulting expert knowledge to label data from unlabeled
datasets (SETTLES, 2009). Figure 18 illustrates a typical Active Learning loop. Starting with an
ML model that fits samples from an unlabeled pool dataset, uncertainty scores are calculated
based on model outputs and ranked. Thus, the examples that exhibit the highest levels of un-
certainty are presented to an expert entity commonly referred to as the "Oracle". The Oracle’s
task is to label these uncertain examples with the expectation that they will provide the most
valuable insights for enhancing the model’s capacity to fit the input data (COHN; GHAHRA-
MANI; JORDAN, 1996). Subsequently, these queried and labeled samples are incorporated into
a labeled training dataset that is used to train the initial learning model. This cyclical process
thus continues until the unlabeled pool is empty or another predetermined criterion is met.

A notable advantage of AL is that it allows the learner to strategically choose which exam-
ples to query for labeling (LEITE; BRAZDIL, 2010). Consequently, this significantly reduces the
number of examples required to fit particular data points when compared to traditional Supervised
Learning methods, as learning is directly related to the model learned parameters. Therefore,
the capacity to actively select examples to label enables AL algorithms to accelerate model con-
vergence while minimizing the amount of labeled data needed. Even though this is a secondary
objective, even an increase in predictive performance can be expected in some cases. To achieve
this, AL considers a range of scenarios to select examples for labeling, including Membership
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Query Synthesis, Pool-Based Sampling, and Stream-Based Selective Sampling (DASGUPTA,
2011). These scenarios are designed to maximize learning performance considering different
ML task requirements. However, all of them share the goal of identifying informative examples
while minimizing the dependence on labeled data (COHN; GHAHRAMANI; JORDAN, 1996).
Therefore, the selection of examples directly depends on multiple factors, including the AL
scenario, the sampling strategy, the query function, and the representation learned by the model.

Of the various AL scenarios, Pool-based Sampling is perhaps the most popular given
its simple framework and flexibility (SETTLES, 2009). As seen in Figure 18, it consists of
submitting samples from an unlabeled data pool to the learner and, based on its knowledge,
choosing the examples for labeling. This example selection usually occurs through a query
function that will assign confidence scores. Thus, the examples with the lowest confidence scores
are chosen for labeling, and by focusing on examples that the learner is least confident about,
one can expect to maximize the potential for information gain which will enhance the learning
process (DASGUPTA, 2011). Therefore, through a series of queries to an Oracle, the learner
gradually reduces uncertainty regarding the dataset (LEITE; BRAZDIL, 2010).

The Pool-based Sampling scenario of AL can be mathematically defined as follows: Let
X represent the input space, and Y denote the output space. Given a training set D = (xi,yi)i = 1n,
where the pair xi ∈ X and yi ∈Y are input features and labels for each example, and an unlabeled
pool set U = x j j = 1m, where m > n, the goal is to iteratively select a subset S ⊆U of size k,
with k≪ m, to query for their labels and integrate them into the training set D. At each iteration
t, a query function qt : U → St is utilized to select the most informative instances from U based
on the current model’s knowledge. The labeled examples (x,y) obtained through queries are
then appended to D, and the learning algorithm can use D to update its model parameters θt .
In addition to choosing the AL scenario, it is necessary to define the query function that will
determine which data points should be submitted to the Oracle to be labeled. In turn, this query
function depends on the specific AL scenario employed and the nature of the sampling, such as
Uncertainty Sampling, Committee query, or Expected model change (SETTLES, 2009).
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2.7 Chapter Remarks

This chapter presented a comprehensive theoretical foundation necessary to promote
a deeper understanding of subsequent research contributions and the discussions articulated
throughout this thesis. Section 2.1 focused on establishing some of the fundamental concepts
of Machine Learning, such as the learning paradigms, ML tasks, learning algorithms, and
various evaluation metrics used in the proposals. Additionally, the problems addressed by this
thesis’ proposals are also discussed thoroughly, those being the Algorithm Recommendation
problem and the Computer Vision problems of Image Classification, Image Segmentation, and
Medical Imaging Segmentation. Building on this solid foundation, Section 2.2 focused on Neural
Networks, offering a succinct historical record of some crucial milestones and advances that have
shaped the field. In addition to tracing the trajectory of NNs, highlights were given to key models
such as Feed-Forward Neural Networks, Convolutional Neural Networks, and U-Nets, which all
serve as building blocks for several experiments presented later in this document. Section 2.3
introduced the growing field of Neural Architecture Search, one of the main focuses of this
thesis. Besides introducing the premises, concepts, motivations, and challenges of the field, the
three basic components that comprise most NAS methods, Search Space, Search Strategy, and
Performance Estimation, along with several related baselines, were presented in detail.

Coming from the context of NAS and its challenges, Section 2.4 addressed one of the
possible solutions to such problems in the concept of Meta-Learning. In addition to presenting
details of the Meta-Learning framework, this section elucidated its unique place in the ML
landscape by differentiating it from conventional ML and presenting three popular and diverse
MtL approaches, each leveraging prior knowledge to streamline the learning process. The
introduction of these approaches, called Learning from Tasks, Learning from Model Evaluations,
and Learning from Prior Models, is essential for understanding the subsequent research chapters
shaping the basis for innovative solutions at the intersection between MtL and NAS. In the
following, Section 2.5 and Section 2.6 presented the concepts of Transfer Learning and Active
Learning, respectively. These topics, closely related to MtL, enrich the understanding of the
broader ML ecosystem and prepare for the proposals in subsequent chapters that use such
concepts. While in Section 2.5, the concept, advantages, disadvantages, and applications of
Transfer learning, such as its use as a warm-start and as a fixed feature extractor for similar tasks
is presented, Section 2.6 introduces some of the Active Learning scenarios, in particular the
Pool-based Sampling, and the Query Strategies such as the Uncertainty sampling-based. In the
next chapters, the main research contributions of this thesis are presented in detail.
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CHAPTER

3
TRANSFER LEARNING AT THE

META-LEARNING LEVEL

This chapter shows the initial experiment of this thesis. Before diving into the application
of Meta-Learning (MtL) to search for neural architectures, a proper exploratory study of its
applicability was necessary. Consequently, this first experiment aims to assess meta-knowledge
effectiveness through different meta-datasets using Transfer Learning (TL), a closely related
concept to MtL. Thus, meta-datasets related to the popular Algorithm Recommendation (AR)
problem were adopted for the usage of various TL configurations. By leveraging prior knowledge
from multiple ML algorithms trained on various meta-datasets, the goal is to determine the
appropriate algorithm for unseen meta-datasets.

In summary, this chapter presents the following contributions:

• A proof-of-concept TL experiment demonstrating that meta-knowledge encoded as meta-
features associated with the task of Algorithm Recommendation exhibits generalization
capabilities across various datasets and models;

• An analysis comparing different configurations within a TL setup establishing that freezing
all layers often produces the most favorable outcomes;

• A comprehensive performance comparison analysis reveals that TL incorporating meta-
data not only demonstrates generalization across multiple datasets but also enhances
accuracy and minimizes loss.

The rest of the chapter is organized as follows: Section 3.1 describes the research
contribution. Section 3.2 details the experimental setup for reproducibility purposes. Section 3.3
discusses the main results. The final considerations for the chapter are presented in Section 3.4.
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3.1 Transfer Learning for Algorithm Recommendation

This section introduces an experiment with different approaches of TL to solve the MtL
problem of AR. For this purpose, meta-datasets related to classical optimization problems are
employed in the training of a shallow Neural Network used as a meta-classifier along with
three TL setup variations. Furthermore, this experiment also includes standalone training and
knowledge transfer between all meta-datasets. In the following, an illustrative overview of the TL
procedure using MtL datasets is shown in Figure 19, followed by a comprehensive elucidation
of the TL framework procedure in Algorithm 1. Moreover, essential details regarding the meta-
datasets and the FFNN meta-classifier are presented in Table 2 and Table 3, respectively, along
with a thorough explanation of the underlying concepts.

sample transfer knowledge

Meta-dataset A
Neural Network

Meta-dataset C
Training Black-box

Meta-dataset D

Meta-dataset B

transfer knowledge

transfer knowledge

Figure 19 – Illustration of the Transfer Learning process considering similar Meta-datasets.

As seen in Figure 19, the TL at the MtL level follows the same workflow as in the
traditional or Base-Learning level. The process starts with a Meta-dataset A that serves as the
central source dataset used to train a meta-classifier in the form of a Neural Network. This
model thus learns patterns and gains knowledge from Meta-dataset A that will be transferred to
enhance the learning on other meta-datasets, such as Meta-datasets B, C, and D. Hence, such
meta-datasets symbolize distinct target datasets that will benefit from knowledge transfer, sharing
some common patterns with Meta-dataset A. In fact, this is a requirement for the successful
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application of a TL approach since the more similar a dataset or meta-dataset is, the better will
be the observed impacts on learning. Therefore, by fine-tuning its prior knowledge based on the
target meta-datasets’ unique characteristics while retaining common patterns from Meta-dataset
A, the meta-classifier can speed up the learning or improve performance on the target data. In the
following, the specific steps of the TL experiment with meta-data are shown in Algorithm 1.

The specific steps of the TL experiment shown in Algorithm 1 begin by defining the
three primary inputs S as the source meta-dataset, T as the target meta-dataset, and Meta as
the FFNN, where the goal is to recommend a set of algorithms A for T as an output. The
meta-classifier Meta is initially trained on the source meta-dataset S, enabling the acquisition of
meta-knowledge from optimization algorithms and their performances, in addition to statistics of
the optimization problem to which these algorithms were applied. Subsequently, the TL setup
loop starts and three TL configurations are assessed: (i) freezing the first hidden layer, thus
preserving prior knowledge on low-level features while adjusting deeper layers; (ii) freezing
the two hidden layers, thus using the learned weights as a feature extractor for the target task
at hand; and (iii) freezing no hidden layers, thus using the learned weights as a warm-start for
the end-to-end fine-tuning of Meta on T . Once the layer freezing procedure is terminated, Meta

undergoes end-to-end training on the target meta-dataset T , updating its weights and biases
with the target data’s characteristics. Finally, having trained Meta on the target meta-dataset, the
model is employed to predict a set of algorithms A based on its acquired knowledge from the
source meta-dataset S and fine-tuning performed on the target meta-dataset T .

Algorithm 1: Algorithm Recommendation with Transfer Learning.
Input :Source meta-dataset S, Target meta-dataset T , Neural Network Meta

Output :Selection of Algorithms A

1 A← /0
2 train(Meta,S)

3 foreach Transfer Learning setup do

4 if First layer frozen then
5 freeze(Meta,1HL)

6 else if Both layers frozen then
7 freeze(Meta,2HL)

8 else
9 Use Meta as warm-start

10 end

11 train(Meta,T )
12 A← predict(Meta,T )

13 end
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A successful TL application is dependent on the degree of shared knowledge between
source and target tasks, which can even dictate the setup definition. The practice of freezing
neural layers during TL, in particular, is a common procedure when layers contain general or
task-agnostic representations, allowing an efficient adaption to target tasks and making the choice
of which layers to freeze extremely important (GOODFELLOW; BENGIO; COURVILLE, 2016).
Freezing the first layers might be suitable when low-level features from the source are likely
to be transferable to a target dataset. On the other hand, freezing the deeper layer allows a
model to adapt at a slightly higher level since such layers tend to learn more complex patterns
as they concatenate knowledge learned by initial layers. The decision to not freeze any layers,
however, provides a complete fine-tuning opportunity by enabling a model to adapt to more
dataset-specific features. In this setup, a prior model used as a warm start is justified when there
is limited prior knowledge of the source and target dataset’s relationship.

3.2 Experimental Setup

This section presents the complete experimental setup involved in the TL procedures and
training of meta-classifiers. To guarantee the transparency of experiments and facilitate their
reproducibility, Section 3.2.1 introduces the employed meta-datasets, while Section 3.2.2 presents
the evaluation methodology that includes data pre-processing, tuning procedure, implementation
details, software, and hardware specifications used to train and validate the models.

3.2.1 Meta-Datasets

This section presents four meta-datasets adopted for training the meta-learners and
assessing the various TL configurations employed. Table 2 highlights the meta-datasets along
with their statistics. Such meta-data were collected from the Aslib benchmark (BISCHL et

al., 2016), a repository associated with optimization problems such as the Traveling Salesman
Problem (TSP), Quantified Boolean Formula (QBF), and Propositional Satisfiability Problem
(SAT). All employed meta-datasets are related to the AR task, where the same optimization
problem but with different priors is addressed. Furthermore, these meta-data were selected not
only due to their wide usage but for their various characteristics and complexities, making them
a simple but powerful tool for validating TL configurations at the MtL level.

Table 2 – Meta-datasets’ statistics.

Meta-Dataset Examples Meta-Features Classes
CSP-2010 2024 67 2
CSP-Minizinc-Obj-2016 100 123 3
CSP-Minizinc-Time-2016 100 117 4
CSP-MZN-2013 4636 117 10
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The meta-datasets presented in Table 2 are closely tied with the Constraint Satisfaction
Problem (CSP), a class of problems renowned for its NP-completeness (LECOUTRE, 2013).
CSPs revolve around finding solutions that adhere to predefined rules and constraints, play-
ing a crucial role in tasks such as resource allocation, scheduling, and decision-making. The
problem consists of three key components: variables, domains, and constraints. To tackle CSPs,
algorithms like backtracking and forward checking are employed to systematically explore
solutions by assigning variable values and backtracking when necessary, ensuring rule adherence.
Additionally, constraint propagation algorithms efficiently reduce the search space to find valid
CSP solutions. Therefore, CSP was chosen as a use case for its relevance and being particularly
difficult among other Aslib problems (MISIR; SEBAG, 2017).

Furthermore, several factors influenced the selection of these meta-datasets in partic-
ular. CSP-2010, with 2024 examples, 67 meta-features, and 2 classes, offers an ideal starting
point for exploratory analysis given its moderate size and simplified binary classification. In
contrast, CSP-Minizinc-Obj-2016, featuring 100 examples, 123 meta-features, and 3 classes,
elevates complexity with a multi-class classification challenge and higher feature dimensionality.
Similarly, CSP-Minizinc-Time-2016 further amplifies the multi-class classification comprising
100 examples, 4 classes, and 117 meta-features, thus testing the model’s capacity to handle
higher-dimensional data. In particular, CSP-Minizinc-Obj-2016 and CSP-Minizinc-Time-2016
present a severe issue regarding their dimensionality with an example : feature ratio of 0.81
and 0.85, respectively. Given the curse of dimensionality (BELLMAN, 1966), this can be really
troublesome for ML models in general. Lastly, CSP-MZN-2013, the largest meta-dataset with
4636 examples, 117 meta-features, and 10 classes, serves as a robust benchmark for assessing
model performance in a more realistic application. This progressive complexity ensures a compre-
hensive evaluation of the meta-learner’s adaptability to a variety of meta-dataset characteristics,
enhancing external validity and applicability to real-world scenarios.
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3.2.2 Evaluation Methodology

This section briefly presents the evaluation methodology adopted to conduct experiments
with different TL setups. Given that the employed meta-classifiers consist of FFNNs, and Neural
Networks frequently benefit from normalized features (HAYKIN., 2010), all numerical meta-
features from all four meta-datasets were normalized to the [0, 1] interval, and meta-targets were
transformed into discrete numerical values. In addition, as TL requires certain standardization
and not all meta-datasets present the same amount of predictive features, a Feature Selection
procedure was employed. The Select K Best method (PEDREGOSA et al., 2011) was used to
filter the K meta-features with the highest score for a specific metric. The metric used was the
F-ANOVA value (FISHER; MACKENZIE, 1923), and K was the number of features from the
meta-dataset with fewer meta-features, in this case, CSP-2010 composed of 67 meta-features.
Another problem observed in those meta-datasets was the class imbalance. To handle this, a
Stratified Hold-out validation method was used (PEDREGOSA et al., 2011), where 80% of the
original data was partitioned for training and 20% for testing.

As highlighted in Algorithm 1, three configurations of TL were adopted in this experi-
ment: (i) Freeze 1 two hidden layers, thus setting them to be not trainable and just using their
weights as a feature extractor; (ii) Freeze only the first hidden layer, thus setting only the second
hidden layer to be trained and re-using the hyper-planes of the first layer; and (iii) Freeze no
hidden layer, thus using the learned weights to warm-start the training on the target meta-datasets.
Therefore, each meta-dataset was used as both a source meta-dataset and as a target meta-dataset
at a given moment, and each of these TL approaches was used and compared.

As for the meta-learner, an FFNN classifier composed of two hidden layers was applied
for recommending algorithms using the CSP meta-datasets. Table 3 introduces the related
hyperparameter configurations for this model optimized through Grid search during the TL
process. More specifically, the tuning of the meta-classifiers was done using 20% of the training
split. The choice for using a simplified and shallow FFNN architecture was defined in order to
minimize the costs for this initial exploratory experiment. Thus, a minimum budget necessary
to answer the research questions and thus advance toward the general objective of the thesis
was defined. Despite these deliberately streamlined configurations, extensive and rigorous
experimentation was conducted. This entailed training the meta-classifiers across 30 iterations
for each TL setup, where averages and standard deviations were calculated for accuracy and loss,
ensuring comprehensive and robust validation results.

1 Layers’ weights will not change; they will just be used



3.2. Experimental Setup 81

Table 3 – Hyperparameter tuning space.

Hyperparameter Range
Neurons 1st HLayer (Input features, Input features*2, 100)
Neurons 2nd HLayer (Input features, Input features*2, 100)
Dropout Input Layer (0, 0.5, 0.9)
Dropout 1st HLayer (0, 0.5, 0.9)
Dropout 2nd HLayer (0, 0.5, 0.9)
Activation (ReLU, Leaky ReLU, Sigmoid)
Initialization (Uniform, Normal, He et al, Xavier)
Optimizer (SGD, Adam, RMSProp)
Batch size (16, 32, 64)
Epochs (25, 50, 100)

Table 3 hyperparameters encompass essential factors for the trainability of the FFNN
meta-learners. Each hyperparameter choice has been meticulously made to ensure model adapt-
ability and robustness across diverse scenarios. Notably, the number of neurons in the first and
second hidden layers have a well-considered range, striking a balance between model capacity
and overfitting avoidance. Dropout was adopted to collaborate with the prune to overfitting,
where rates for different layers were systematically varied. A diverse set of activation functions,
including the popular ReLU, Leaky ReLU, and Sigmoid, helped to examine the balance between
linearity and non-linearity. Multiple weight initialization methods were also considered, includ-
ing the Uniform, Normal, He et al., and Xavier, aiming to explore the model’s sensitivity at
initialization and generalization. Various optimization algorithms, including the standard SGD
and other popular choices such as Adam and RMSProp, were included in the Grid search to find
the most suitable for computational efficiency and convergence. Lastly, Batch size and Training
epoch ranges were defined based on a balance between memory efficiency and gradient accuracy,
whereby their impact on the learning curve and final model performance were closely examined.

When it comes to Software, a few details should be mentioned. The four meta-datasets
related to CSP were collected from the Aslib repository (BISCHL et al., 2016), and all pre-
processing procedures, including Feature Selection, were done by using the popular Scikit-
learn (PEDREGOSA et al., 2011) and Pandas (TEAM, 2020) libraries. For implementing and
training the FFNNs, the high-level Keras library (CHOLLET et al., 2015) was used with a
TensorFlow backend (ABADI et al., 2015). In addition, it is worth mentioning that the entire
codebase was constructed using Python language and relied only on open-source libraries. The
complete experimental setup encompassing method implementation and associated documenta-
tion has been made openly available to the public through a GitHub repository 2. In terms of
Hardware, all training was conducted on a single Linux server with an Intel Xeon CPU E5-2620
v2 2.10GHz, 128GB of RAM, and no GPU, showcasing a lite and accessible approach.

2 https://github.com/geantrindade/TL_MtL
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3.3 Results and Discussion

The experiments presented in this section were designed to answer the following re-
search questions: (i) How does applying TL impact MtL performance across meta-datasets? (ii)

Which TL configuration yields the best MtL performance gain, and what are the differences in
effectiveness? (iii) To what extent can TL generalize across meta-datasets and provide insights
into compatibility for different problem characteristics? The following sections address these
questions through analysis and comparisons of the three TL configurations applied to an FFNN
meta-classifier with two hidden layers trained in four meta-datasets.

Accuracy (Acc) and Loss are displayed for every meta-dataset in Tables 4 to 7. The
pre-trained models that were later submitted to TL were induced using the meta-datasets listed
in the headers of these tables. Table 4, for example, displays results obtained with the CSP-2010
meta-dataset. The final test accuracy and loss obtained via end-to-end training on CSP-2010
without TL are indicated in the top row’s column labeled "Normal". However, results using pre-
trained models on each of those source meta-datasets are displayed in columns CSP-MZN-2013,
CSP-Minizinc-Obj, and CSP-Minizinc-Time. Such pre-trained models were then refined on the
target meta-dataset CSP-2010 using the three TL setups, designated 0HL, 1HL, and 2HL.

Table 4 – CSP-2010 results. Column Normal stands for no Transfer Learning, and 2HL, 1HL, and 0HL
stands for Two, One, and Zero hidden layers frozen, respectively (PEREIRA et al., 2019).

Normal CSP-MZN-2013 CSP-Minizinc-Obj CSP-Minizinc-Time

- 0HL 1HL 2HL 0HL 1HL 2HL 0HL 1HL 2HL

Acc 0.87 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.85 ± 0.01
Loss 0.64 ± 0.15 0.56 ± 0.12 0.84 ± 0.08 1.01 ± 0.06 0.65 ± 0.15 0.90 ± 0.04 1.01 ± 0.09 0.65 ± 0.17 1.00 ± 0.06 1.07 ± 0.09

As mentioned, Table 4 shows the outcomes of three TL setups applied to CSP-2010 meta-
dataset: freeze two, one, and zero hidden layers. After pre-training on CSP-MZN-2013, 0HL
setup slightly surpassed the baseline with an 0.88 accuracy, whilst the Normal setup with no TL
attained an accuracy of 0.87. The accuracies of other TL combinations, which ranged from 0.85
to 0.87, were comparable or somewhat worse. The Normal setup yielded a loss of 0.64, whereas
the best-performing TL variation, the 0HL setup from CSP-MZN-2013, obtained a reduced loss
of 0.56. With the exception of 0HL from CSP-Minzinc-Obj which had a slightly higher loss of
0.65, other TL settings had comparable loss values. Notably, some setups exhibited considerably
higher losses, reaching up to 1.07 as seen in the 2HL configuration from CSP-Minizinc-Time.
These results demonstrate that TL can improve accuracy and decrease loss in comparison to
the Normal baseline, especially when zero hidden layers are frozen after pre-training on the
CSP-MZN-2013 meta-dataset. Nevertheless, freezing two hidden layers or only the first hidden
layer did not consistently lead to improvements in accuracy or loss. These results thus emphasize
the impact of pre-trained models and TL setups on the learning of meta-classifiers.
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Table 5 – CSP-Minizinc-Obj results. Column Normal stands for no Transfer Learning, and 2HL, 1HL, and
0HL stands for Two, One, and Zero hidden layers frozen, respectively (PEREIRA et al., 2019).

Normal CSP-2010 CSP-MZN-2013 CSP-Minizinc-Time

- 0HL 1HL 2HL 0HL 1HL 2HL 0HL 1HL 2HL

Acc 0.91 ± 0.02 0.87 ± 0.04 0.90 ± 0.00 0.90 ± 0.00 0.66 ± 0.02 0.70 ± 0.00 0.70 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.90 ± 0.00
Loss 0.77 ± 0.06 1.01 ± 0.16 1.37 ± 0.11 1.55 ± 0.06 3.26 ± 0.06 3.30 ± 0.01 3.27 ± 0.01 0.79 ± 0.11 1.01 ± 0.10 1.37 ± 0.15

Table 5 presents the results of TL setups on the CSP-Minizinc-Obj meta-dataset. While
the Normal baseline yielded an 0.91 accuracy, the best TL runs from both CSP-2010 using 1HL
and 2HL configurations, and all CSP-Minizinc-Time TL setups obtained an accuracy of 90%.
Interestingly, these results from applying TL to CSP-Minizinc-Obj are the only instance in this
entire experiment where TL did not lead to improved performances. Notably, the worst perfor-
mances were obtained when utilizing CSP-MZN-2013 as the source dataset, where accuracy
results spanned from 0.66 to 0.70 across various TL configurations. Concerning the loss metric,
the Normal baseline registered a value of 0.77, while the best configurations of TL using 0HL
and 1HL with CSP-Minizinc-Time achieved lower loss values of 0.79 and 1.01. Remarkably,
when the source meta-dataset was CSP-MZN-2013, loss values ranged from 3.26 to 3.30 across
different TL setups, the worst performing results among all. In summary, these findings indicate
that while TL did not significantly enhance the learning for the target task CSP-Minizinc-Obj, the
usage of CSP-Minizinc-Time as a source with zero hidden layers frozen has produced the best
results among TL variations, closely approaching the performance of the Normal baseline. These
observations align with the results analyzed in Table 4 concerning the CSP-2010 meta-dataset.

Table 6 – CSP-Minizinc-Time results. Column Normal stands for no Transfer Learning, and 2HL, 1HL,
and 0HL for Two, One, and Zero hidden layers frozen, respectively (PEREIRA et al., 2019).

Normal CSP-2010 CSP-MZN-2013 CSP-Minizinc-Obj

- 0HL 1HL 2HL 0HL 1HL 2HL 0HL 1HL 2HL

Acc 0.65 ± 0.00 0.65 ± 0.01 0.65 ± 0.00 0.65 ± 0.00 0.67 ± 0.03 0.70 ± 0.00 0.73 ± 0.02 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
Loss 4.11 ± 0.60 3.78 ± 0.92 5.24 ± 0.18 5.59 ± 0.04 3.27 ± 0.30 3.81 ± 0.10 4.04 ± 0.03 3.87 ± 0.74 4.54 ± 0.07 4.60 ± 0.02
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Table 6 outlines results from TL setups submitted to the CSP-Minizinc-Time meta-
dataset. The Normal configuration recorded an accuracy of 0.65, in pair with TL setups of
CSP-2010 pre-trained models. Remarkably, these CSP-2010 results were the worst among TL
runs. When TL was applied with the 2HL configuration of CSP-MZN-2013 pre-trained model,
it resulted in the highest accuracy of 0.73, surpassing the Normal setup by the largest margin
in this entire experiment. In terms of loss, the Normal configuration recorded a high value
of 4.11, being comparable with the rest of the TL models. Conversely, the best result from
TL with CSP-MZN-2013 pre-training using the 0HL setup led to a substantial reduction in
loss of 3.27, indicating the potential for enhancing model performance. The configuration that
generated the best accuracy, however, 2HL from CSP-MZN-2013, resulted in a higher loss
of 4.04. Interestingly, even though both metrics are inverted correlated, this is the first time
in the whole experiment that the model with the highest accuracy did not generate the lowest
loss. At the same time, TL generated the largest margin from the normal baseline, obtaining an
8% improvement in performance. In alignment with past observations, these results highlight
CSP-MZN-2013 as the most suitable source of meta-data for the current AR problem, yielding
higher performance compared to the Normal baseline.

Table 7 – CSP-MZN-2013 results. Column Normal stands for no Transfer Learning, and 2HL, 1HL, and
0HL stands for Two, One, and Zero hidden layers frozen, respectively (PEREIRA et al., 2019).

Normal CSP-2010 CSP-Minizinc-Obj CSP-Minizinc-Time

- 0HL 1HL 2HL 0HL 1HL 2HL 0HL 1HL 2HL

Acc 0.71 ± 0.01 0.71 ± 0.01 0.70 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.01
Loss 1.23 ± 0.19 1.27 ± 0.22 1.71 ± 0.07 1.95 ± 0.07 1.25 ± 0.21 1.71 ± 0.08 1.98 ± 0.08 1.18 ± 0.18 1.63 ± 0.11 1.92 ± 0.06

Table 7 provides results for the three employed TL setups on CSP-MZN-2013 meta-
dataset. The differences in performances for CSP-MZN-2013 were similar to the ones on
CSP-2010, where TL setups varied around 1%-2% accuracy. Being more specifically, the pre-
training on CSP-Minizinc-Obj using 2HL and on CSP-Minizinc-Time using 1HL yielded the
best accuracies of 0.72, overcoming the Normal configuration baseline with a 0.71 accuracy.
Regarding loss, the gap differences were larger, with Normal obtaining a 0.64 loss while the
best-performing TL variation CSP-Minizinc-Time yielded a loss of 1.18. An interesting fact of
these results is the recurrence of a low correlation between accuracy and loss regarding the best
models. As seen in Table 6, models with the best accuracies did not obtain the lowest losses, and
vice-versa. As already mentioned, the tendency is for these measures to have a strong negative
correlation. However, the phenomenon observed here can still occur, and some explanations
are viable. While accuracy measures how accurate the meta-model is in relation to the original
data, and higher values indicate better performance, the loss measures how far the predictions
are from the real signal, thus quantifying the errors made by the model according to a specific
criterion. For this experimental setup, the loss used was the cross-entropy loss, which measures
the dissimilarity between predicted and actual class probability distributions. Therefore, in cases
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where the distribution of one class is denser than another, or if there is an overlapping decision
boundary, it is possible to minimize the cross-entropy loss and not necessarily increase the
accuracy, as the loss is a smooth function whilst the accuracy is not.

3.4 Chapter Remarks

This chapter presented an exploratory experiment on the Meta-Learning applicability
in the context of NAS. Before applying Meta-learning to the search for neural architectures,
it was essential to check how representative and generalist meta-features and meta-learners
are in recommending learning models. To this end, employed meta-datasets from a specific
problem known as Algorithm Recommendation were used, which, instead of neural architectures,
deals with the problem of recommending optimization algorithms or ML algorithms in general.
Together with a Transfer Learning approach, a technique that, like Meta-Learning, uses prior
knowledge to accelerate or enhance learning in unseen tasks, this experiment served as a proof
of concept of the applicability and effectiveness of MtL for NAS in several scenarios.

The experiments carried out in this chapter were specific to answering the research
questions that guided this study. Three research questions were defined, "How does applying
TL impact MtL performance across meta-datasets?", "Which TL configuration yields the best
MtL performance gain, and what are the differences in effectiveness?", and "To what extent can
TL generalize across meta-datasets and provide insights into compatibility for different problem
characteristics?", addressed by the analyses shown in Tables 4, 5, 6 and 7. In these analyses,
three variations of the TL setup were applied to four meta-datasets in order to mitigate results
variations when evaluating the effectiveness of meta-knowledge and its generalization in the
model recommendation task. Such variations include the knowledge transfer from a pre-trained
model used as a warm-start on the target dataset (zero hidden layers), the reuse of hyperplanes
learned in the first layer only and adjusting the remaining (1HL), and the reuse of hyperplanes of
the entire architecture, thus adjusting only the output classification layer (2HL).

The results demonstrated that TL at the meta-level is not only feasible but is significantly
valuable, consistently matching or surpassing the performance achieved through the original data
training. Among the three variations tested, the optimal TL configuration involved reusing the
learned internal representations and adjusting the final classification layer to the task at hand,
which led to increased accuracy and reduced losses. It was also found that meta-knowledge
from meta-datasets of the same domain or problem tends to generalize more, as expected.
However, the effectiveness of TL configurations is context-dependent, influenced by variables
such as the choice of pre-trained models, frozen layers, and specific datasets, requiring careful
examination and experimentation to avoid misleading interpretations of the results. The following
chapter investigates a detailed subsequent exploratory experiment of this thesis, advancing the
understanding of Meta-Learning and the properties of metadata.
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CHAPTER

4
DIMENSIONALITY REDUCTION OF

META-INFORMATION

This chapter presents the follow-up exploratory experiment on the analysis of meta-data
but now focusing on its dimensionality. Once it was verified that simple models such as Feed-
Forward Neural Networks (FFNNs) could leverage Meta-Learning (MtL) data to recommend
algorithms, the next logical step was to study the properties of such meta-data. This experiment
was then designed to assess the representativeness and redundancy of meta-features from various
sources. The AR problem is again addressed for this purpose, where Dimensionality Reduction
(DR) methods are applied to meta-datasets and their impact is validated on three criteria:
predictive performance, dimensions reduction, and pipeline runtime.

In summary, this chapter presents the following contributions:

• A proof-of-concept experiment using DR demonstrates the redundancy within meta-
datasets and indicates that approximately 80% of the original data can be discarded;

• An investigation of Feature Selection (FS) and Feature Extraction (FE) methods demon-
strates that with DR, it is possible to use only about 20% of the data and achieve perfor-
mance comparable to those using the original dataset while reducing pipeline runtimes;

• Comparison of FS methods to a more intricate FE baseline revealed that FS could achieve
slightly superior dimension reduction and predictive performance but statistically signifi-
cant evidence of better runtime attributed to their simplicity.

The rest of the chapter is organized as follows: Section 4.1 describes the research
contribution. Section 4.2 details the experimental setup for reproducibility purposes. Section 4.3
discusses the main results. Lastly, the final considerations are presented in Section 4.4.
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4.1 Meta-Feature Selection for the AR problem

This section introduces an experiment with different DR techniques, where the goal is
two-fold: to analyze how representative or redundant the meta-datasets can be and to assess the
impact on meta-model learning when reducing feature dimensions. Therefore, four DR methods
applied to twenty-eight meta-datasets used in the training of four meta-classifiers are employed.
Such meta-data comes from combinatorial optimization problems related to the MtL problem
of AR. The following sections present each DR method in detail. Section 4.1.1 introduces the
first and simplest Variane Threshold method for DR. Section 4.1.2 describes Univariate Feature
Selection, the broader category to which Chi-squared and Analysis of Variance (ANOVA) belong.
Finally, Section 4.1.3 presents the popular Feature Extraction method, Principal Component
Analysis, adopted as the main baseline for the more simple DR techniques.

There has been a long history of research in the field of MtL that explores meta-level prob-
lems of different natures and the development of meta-models (FILCHENKOV; PENDRYAK,
2015; PARMEZAN; LEE; WU, 2017; BOMMERT et al., 2020). Nevertheless, there is a no-
ticeable gap in works that focuses on the discriminative potential of meta-datasets and the
identification of critical meta-features that could contribute to good performance gains in meta-
models (ALCOBAÇA et al., 2018; PEREIRA et al., 2019). One of the possible solutions for
these concerns is centered around the extraction of the most representative sets of meta-features
within problematic meta-datasets. For this reason, it is applicable to use Feature Selection (FS), a
DR technique known for its ability to reduce the number of feature dimensions to a manageable
size for effective processing and analysis (LAZAR et al., 2012).

When considering a DR method, it is essential to understand the differences between
FS and other DR methods, particularly when concerning the so-called Feature Extraction (FE)
perspective, which fundamentally changes the composition of the input data. FE techniques trans-
form the original data to enhance specific characteristics and reduce feature dimensions (GUYON
et al., 2008). FS, on the other hand, meticulously selects a sub-group of relevant features while
systematically eliminating those features whose presence does not positively affect the learn-
ing model (LAZAR et al., 2012). Another difference between FS and FE is that the first is
interpretable-oriented, as it can be used to inspect the relevant and irrelevant features, something
that, in most cases, cannot be done with FE (MOLNAR, 2020).

The use of DR becomes particularly important when a dataset is overloaded with noisy
features, unfavorable example-feature ratios, and redundancy, factors that greatly hinder model
learning (GAMA et al., 2011). Therefore, finding an optimal feature subset that faithfully repre-
sents the original dataset is not a trivial task. Selecting too many features increases time and space
complexity, overloading the learning model and decreasing performance (GUYON; ELISSEEFF,
2003). On the other hand, opting for few features has the risk of losing valuable information,
which also leads to model performance reduction (FLACH, 2012). Another important point to
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consider is the DR methods’ nature. Within DR techniques, in particular, for FS, two broad
categories are model-based and filter-based FS, which include Recursive Feature Elimination
and Chi-squared, respectively (FLACH, 2012). In this present study, the focus is on filter-based
FS methods due to their lower computational overhead. Subsequent sections provide a concise
overview of specific techniques within this filter-based category and FE methods.

4.1.1 Variance Threshold

The Variance Threshold is a simple FS method that systematically removes features
characterized by a low variance (GUYON; ELISSEEFF, 2003). It achieves this by first computing
each individual feature variance and subsequently discarding the features whose variances fall
below a defined threshold. Another important quirk of this process is the method’s ability to
ensure a consistent scale among the selected features, which can boost model learning (BOM-
MERT et al., 2020). While the method itself is straightforward in its application, its motivation
is notably compelling. Its fundamental premise is rooted in the idea that features displaying low
variance contain no valuable information or relevance (PEDREGOSA et al., 2011). Furthermore,
the Variance Threshold method is inherently unsupervised, as it solely assesses feature values
without consideration for the target output. This intrinsic unsupervised quality renders it highly
versatile and well-suited for scenarios where external labels or supervisory information is either
limited or absent, making it a valuable tool in various data analysis and pre-processing contexts.

Given a meta-dataset matrix X , where columns are meta-features and rows are data
points, the goal is to select a subset of meta-features xi from X using the Variance Threshold
VarT h method seen in Equation 4.2. Firstly, the variance Var of a meta-feature xi have to be
calculated according to Equation 4.1,

Var(xi) =
1
n

n

∑
j=1

(xi j− x̄i)
2 (4.1)

VarTh(X) = p(1− p) (4.2)

where Var(xi) is the Variance of xi, n is the number of data points, xi j is the value of xi for
the j-th data point, and x̄i is the mean value of meta-feature xi. Since the Variance Threshold
method works by removing features whose variance falls below a threshold, if Var(xi) is less
than the threshold p, the meta-feature xi is considered to have low variance and is removed from
meta-dataset X . For this current experiment, Variance Threshold was employed to remove meta-
features where values do not change in more than 80%, 85%, 90%, or 95% of the observations.
All these configurations were tested and the one which generated the best results was reported.
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4.1.2 Univariate Analysis

The so-called Univariate Feature Selection is a broad category of methods that encom-
passes the process of strategically choosing the most pertinent features through the application
of rigorous statistical tests (KOHAVI et al., 1995). Its operational principle hinges on deploying
a battery of statistical tests to evaluate the intrinsic relationships between each individual input
feature and the output target (PARMEZAN; LEE; WU, 2017). Thus, features that exhibit robust
statistical associations with the output variable are selectively retained for subsequent analysis,
while the rest is discarded. This Univariate Analysis offers a diverse array of statistical tests for
consideration, including but not limited to the Chi-squared test and the ANOVA F-value test.
These versatile tests empower the ability to tailor FS according to the unique dataset charac-
teristics, thereby optimizing model performance while reducing computational overhead. The
following describes two of these statistical tests in detail.

4.1.2.1 Chi-squared

The Chi-squared is a statistical test that can assess the dependency between two variables.
Although it has common similarities with the coefficient of determination, this test is primarily
used to examine whether two categorical variables have some kind of association. The Chi-
squared test finds application in various domains, with a notable use being the identification of
features that exhibit strong relationships with a target variable, contributing to better-informed FS.
Initially, the test involves calculating the Chi-square statistic that quantifies the difference between
observed and expected frequencies under the null hypothesis of no association. Subsequently,
features are assessed based on their chi-square statistic values, with higher values meaning greater
relevance to the target variable, making them essential for further analysis or modeling. At the
same time, features that exhibit weaker dependencies with the target are systematically excluded
from further consideration. The process then starts by constructing a contingency table for each
feature, where each cell represents the observed frequency for a specific combination of feature
values and classes. These observed frequencies are compared to the expected frequencies under
the independence assumption. The chi-square statistic is computed by summing the squared
differences between observed and expected frequencies and normalizing them by the expected
frequencies. Features with low p-values are considered strongly associated with the target variable
and are chosen for further analysis. In short, Chi-squared is simple, computationally efficient,
and widely used for FS, making it an advantageous tool for handling complex datasets and
identifying key features. Equation 4.3 shows its computation,

χ
2 = ∑

i
∑

j

(Oi j−Ei j)
2

Ei j
(4.3)

where χ2 is the Chi-squared statistic, Oi j is the observed frequency (i, j), and Ei j is the expected
frequency in (i, j) under the assumption of independence between the feature and target variable.
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The expected frequency Ei j for each cell is calculated according to Equation 4.4,

Ei j =
(row total)× (column total)

grand total
(4.4)

where (row total) is the total number of observations in the i-th row (feature category), (column total)
is the total number of observations in the j-th column (target category), and grand total is the total
number of observations in the entire dataset. The Chi-squared statistic quantifies how much the
observed frequencies deviate from what would be expected under this independence assumption,
where larger chi-squared values indicate a stronger association between features and targets.

4.1.2.2 ANOVA

The statistical method known as ANOVA uses the F test to evaluate the linear dependence
between input variables and targets, being designed mainly to evaluate quantitative data (LO-
MAX; HAHS-VAUGHN, 2013). Thus, the ANOVA metric assigns higher scores to features that
exhibit a robust correlation with a target variable (JR, 1997). In turn, the F value (F) generated
by the F test plays a key role in examining whether different groups, formed by categorizing
numerical features based on the target vector, demonstrate statistically significant differences in
their means. Essentially, the ANOVA F test evaluates the significance of variance between groups
and, consequently, the relevance of individual characteristics to the target variable. These tests
are commonly used in FS, facilitating the identification of the most informative characteristics
and thus improving model performance and even interpretability. In short, F ANOVA or ANOVA
F-test is an essential test statistic used to determine equality of means across multiple groups,
typically corresponding to multiple features relative to a categorical target variable.

The F-value can be calculated as in Equation 4.5,

F =
Between-group variability
Within-group variability

(4.5)

where F is the ANOVA F-value, Between-group variability measures the variation between
different feature groups (classes), and Within-group variability measures the variation within
each feature group (class). This calculation involves comparing the variance among group means
to the variance within each group. A larger F-value indicates a greater difference between the
group means relative to the variability within each group. In its most basic form, ANOVA extends
the scope of the t-test beyond two means by offering a statistical test to determine whether two or
more population means are equal. The ANOVA F-value is computed by comparing the variance
among the means of different feature groups to the variance within each group. In the context
of FS, one can use the F-value to rank or select features based on their ability to discriminate
between classes or groups represented by the target variable, proving to be a valuable tool for
enhancing the FS process in ML applications. For this current experiment, both Chi-squared and
F ANOVA were used to select meta-features according to a percentile with the highest score for
each FS method. The percentiles considered were 80%, 85%, 90%, and 95%.
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4.1.3 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical technique used for dimen-
sionality reduction and data transformation (PEARSON, 1901). Given a dataset with a set of
data points, each represented by a vector of multiple features, PCA aims to find a new set of
orthogonal axes called the Principal Components (PC) in which the variance of the data is
maximized (JOLLIFFE; CADIMA, 2016). Thus, PCA does so by transforming the original
data into a new coordinate system, where the PCs are orthogonal and ordered by the amount
of variance they capture. These PCs are linear combinations of the original features, and PCA
ensures that the first PC captures the maximum variance in the data. Consequently, each subse-
quent component captures the maximum remaining variance while remaining orthogonal to the
previous components (WOLD; ESBENSEN; GELADI, 1987).

PCA can be defined in terms of a data matrix X of N data points with D features,
where it seeks to find a set of orthogonal vectors, PCs, that can best explain the variance in
the data. The first PC corresponds to the direction of maximum variance, and subsequent PCs

capture decreasing amounts of variance. The first PC can be found by identifying the eigenvector
corresponding to the largest eigenvalue of the covariance matrix of X , as seen in Equation 4.6,

Σv = λv (4.6)

where, Σ is the covariance matrix of X, v represents the eigenvector associated with PC, indicating
the direction, and λ is the eigenvalue corresponding to PC, indicating the amount of variance it
captures. The projection of the original data X onto the PCs results in a reduced-dimensional
representation Z, as seen in Equation 4.7,

Z = X ·V (4.7)

where V is the matrix of PCs. Subsequent principal components can be obtained in a similar
manner, with the constraint that they are orthogonal to the previously found components.

Although known for reducing data dimensionality while preserving most of the original
variance and sometimes even boosting ML performance, PCA can also be employed for tasks
such as Data Visualization and Noise Reduction (FILCHENKOV; PENDRYAK, 2015). When
dealing with data visualization, PCA can project data into a lower-dimensional space, making it
easier to visualize and interpret the data (WOLD; ESBENSEN; GELADI, 1987). At the same
time, by focusing on the top PCs, one can effectively remove noise from data. In the experiments
of this chapter, PCA, as an FE technique, is adopted as the principal baseline to the more simple
FS methods for being a more complex DR technique and the most popularly used. Thus, the
selected components correspond to that maintain 80%, 85%, 90%, or 95% of the original data
points, following the standards of (ALCOBAÇA et al., 2018). Each of these configurations was
tested for the present experiments and the one which yielded the best results was reported.
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4.2 Experimental Setup

This section presents the complete experimental setup for the experiments with four
dimensionality reduction techniques applied to twenty-eight meta-datasets related to the AR
problem. To guarantee transparency across experiments and comparisons and to facilitate repro-
ducibility, details are given in the following. Section 4.2.1 introduces the employed meta-datasets
related to many classical optimization problems. Section 4.2.2 describes the baseline methods
used as meta-classifiers in the comparative analyses. Lastly, Section 4.2.3 presents the evalua-
tion methodology that includes data pre-processing, evaluation metrics, implementation details,
software, and hardware specifications used to train the meta-models.

4.2.1 Meta-Datasets

This section briefly presents the twenty-eight meta-datasets collected from Aslib (BIS-
CHL et al., 2016), a benchmark library used in the experiments of this chapter. This benchmark
provides data on the Algorithm Selection/Recommendation problem considering a range of clas-
sical optimization problems, such as the Constraint Satisfaction Problem (CSP), Propositional
Satisfiability Problem (SAT), Travelling Salesman Problem (TSP), among others. Furthermore,
Aslib contains information concerning various algorithms and their performances when applied
to solving these problems, thus culminating in a rich source of meta-data. Such meta-datasets
were chosen due to their widespread usage in the current literature, in addition to presenting
interesting and diverse characteristics. This includes a wide range of optimization problems,
different numbers of samples, meta-features, and classes, ranging from simple binary problems
to complex multi-class problems. Table 8 shows statistics from these meta-datasets.

Table 8 provides a comprehensive overview of the AR meta-datasets, showing the
diverse nature of the employed data across a broad spectrum of real-world scenarios. These
meta-datasets exhibit notable heterogeneity, spanning a wide range of attributes. Notably, the
number of examples within these datasets varies significantly, with examples ranging from
a minimum of 100 in CSP-Minizinc-Obj-2016 and CSP-Minizinc-Time-2016 to a maximum
of 9714 in TTP-2016. Additionally, the meta-features that capture high-level characteristics
display substantial variability, ranging from as few as 22 in CPMP-2015 to a substantial 157 in
OPENML-WEKA-2017. These meta-datasets also demonstrate diversity in the number of classes.
The CSP-2010, for instance, is the only meta-dataset that encompasses a binary classification
problem, while others handle a broader array of multi-class problems, as seen in SAT12-ALL
and PROTEUS-2014 with 29 and 22 distinct classes, respectively. The selection of such meta-
datasets for evaluating dimensionality reduction techniques was supported by several factors.
Their high diversity allowed for a comprehensive evaluation of DR methods across varying
scenarios. The representation of real-world datasets ensures the relevance and applicability of
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Table 8 – AR Meta-datasets’ statistics (PEREIRA; SANTOS; CARVALHO, 2021).

Meta-dataset Examples Meta-Features Classes
ASP-POTASSCO 1294 139 11
BNSL-2016 1179 93 8
CPMP-2015 527 22 4
CSP-2010 2024 67 2
CSP-Minizinc-Obj-2016 100 123 3
CSP-Minizinc-Time-2016 100 117 4
CSP-MZN-2013 4636 117 10
GRAPHS-2015 5723 36 6
MAXSAT-PMS-2016 596 44 12
MAXSAT-WPMS-2016 630 53 10
MAXSAT12-PMS 876 31 6
MAXSAT15-PMS-INDU 601 57 16
MIP-2016 214 120 3
OPENML-WEKA-2017 105 157 3
PROTEUS-2014 4021 32 22
QBF-2011 1368 46 5
QBF-2014 1248 46 13
QBF-2016 825 67 14
SAT03-16_INDU 2000 139 10
SAT11-HAND 296 66 9
SAT11-INDU 300 67 11
SAT11-RAND 592 53 8
SAT12-ALL 1614 58 29
SAT12-HAND 767 70 22
SAT12-INDU 1167 74 21
SAT12-RAND 1362 98 9
SAT15-INDU 300 87 10
TTP-2016 9714 58 18

the study’s findings. These meta-datasets also have served as benchmarks in prior AR research,
providing greater reliability (ALCOBAÇA et al., 2018; BENGIO; LODI; PROUVOST, 2021).
Therefore, their differing levels of dimensionality, volume, and complex class structures provide
a comprehensive assessment of DR techniques under diverse data conditions.
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4.2.2 Baseline Methods

This section presents a concise overview of the foundation meta-classifiers employed
in experimental comparisons with all four DR techniques. Such models were selected for their
distinct learning paradigms, simplicity, data efficiency, and fast convergence. Among them, there
is K-Nearest Neighbors (KNN), an instance-based and lazy learning algorithm, the tree-based
models, C4.5 Decision Tree (DT) and Random Forest (RF), the latter being an ensemble model,
and the Support Vector Machine (SVM), a kernel-based model. Table 9 lists these models used
as meta-classifiers with their respective hyperparameters and tuning space ranges.

Table 9 – Meta-classifiers and their hyperparameters (PEREIRA; SANTOS; CARVALHO, 2021).

Meta-Classifier Hyperparameter Range
K-Nearest Neighbors Nº of nearest neighbors (1, 51)

C4.5 Decision Tree
Min samples split (2, 51)
Min samples leaf (2, 51)
Max depth (2, 31)

Support Vector Machine
C (1, 32769)
Gamma (1, 32769)

Random Forest
Nº of estimators (1, 1025)
Max depth (1, 21)

In addition to what was previously mentioned, the selection of meta-classifiers seen in
Table 9 is substantiated by their prevalent usage in AR and their role as established models
for the problem. This, combined with the diversity of paradigms and learning biases, offers a
practical relevance for validation concerning real-case AR scenarios, contributing to a more
robust assessment of which models and configurations obtain the most benefits from DR. And
regarding such models, some details should be mentioned.

For SVM, it was employed the Radial Basis Function (RBF) kernel, a versatile and
popular choice that allows to modeling complex, non-linear relationships in the data, especially
for classification tasks (VAPNIK, 1999). The RBF kernel, also known as the Gaussian kernel, is
defined as in Equation 4.8,

K(x, x’) = exp
(
−‖x− x′‖2

2σ2

)
(4.8)

where x and x′ are data points in the feature space, and σ is a hyperparameter that controls the
kernel’s width and influences the smoothness of the decision boundary. Assigning high similarity
to data points that are close in the feature space, and lower similarity to points that are farther
apart, the RBF function allows SVMs to model intricate decision boundaries. The RBF kernel is
also flexible, thus being applicable to a wide range of applications. Its ability to map data into
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higher-dimensional spaces without explicitly computing the transformations makes it suitable
for a variety of datasets. For this, the σ hyperparameter plays a crucial role in determining the
smoothness of the decision boundary. A small σ results in a more complex and wiggly boundary,
while a large σ leads to a smoother decision boundary, thus providing control over the trade-off
between overfitting and underfitting. In addition, the RBF kernel is highly effective when there
are no strong assumptions about the data distribution, as it can adapt to a wide range of data
types and is particularly useful when the decision boundary is not a simple geometric shape.

For both decision C4.5 DT and RF tree-based models, the Gini criterion is used to assess
the quality of a split when constructing the DTs (OLSON; MOORE, 2016). Gini is a measure of
impurity that quantifies how often a randomly chosen element would be incorrectly classified.
This Gini impurity, denoted as Gini(D) for a dataset D with K unique classes can be calculated
using Equation 4.9,

Gini(D) = 1−
K

∑
i=1

(pi)
2 (4.9)

where pi is the probability of randomly selecting an element of class i from D. In turn, the Gini
criterion for a split in a DT is calculated as in Equation 4.10,

Gini Criterion = ∑
j

|D j|
|D| ·Gini(D j) (4.10)

where D j is the subset of D after the split, |D j| is the number of elements in D j, and |D| is the
total number of elements in D. Therefore, the Gini criterion quantifies the impurity reduction
achieved by a split, as it measures the difference between Gini impurity from a dataset and the
weighted sum of Gini impurities for the subsets after splits. A lower Gini criterion indicates
a purer split and is desirable when constructing DTs, helping to find the best splits during
construction by minimizing impurity and maximizing classification purity.

To calculate the distances between data points in the instance-based KNN, the Minkowski
distance was adopted and adjusted, a metric considered to be a generalization of both Euclidean
and Manhattan distances (BISHOP, 2006). The distance is given by Equation 4.11,

Minkowski(P,Q) =

(
n

∑
i=1
|Pi−Qi|p

)1/p

(4.11)

where P and Q are two points in a n-dimensional space, n is the number of dimensions in that
space, Pi and Qi are the values of the i-th dimension, and p is a parameter that determines
the order of the Minkowski distance. When p = 1, it corresponds to the Manhattan distance,
and when p = 2, it corresponds to the Euclidean distance. In essence, the Minkowski distance
calculates the distance between two points by taking the absolute differences of each dimension,
raising them to the power of p, then summing them and taking the 1/p-th root of the result. This
allows for a customization of the distance metric based on p, making it a flexible choice for
measuring dissimilarity between points in different dimensions.
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4.2.3 Evaluation Methodology

This section briefly presents the evaluation methodology defined to conduct the exper-
iments in this chapter. Given the aim of comparing and assessing the impact of different DR
techniques on meta-data, and since the employed meta-datasets varied in terms of feature cardi-
nality, all features were scaled to the [0, 1] interval using the Minimum-Maximum scaler (HAN;
PEI; KAMBER, 2011). This re-scaled also helped to facilitate the meta-classifiers fitting. Con-
cerning the meta-models, their hyperparameter tuning process was conducted using Random
Search with K-Fold Cross-Validation, in which data is split into K subsets of equal size for
training and tuning (BERGSTRA; BENGIO, 2012). The standard split size of K = 10 was
employed (RUSSELL; NORVIG, 2009), where training and tuning were done on the K = 9 folds,
and performance metrics were calculated on the left testing fold. Given a hyperparameter space
of a specific ML model, this process is repeated thirteen times until all folds have been evaluated,
each time with a random sampling of the hyperparameter space. Thus, the hyperparameters set
with the best performance is selected to be applied to test data.

As previously mentioned, every DR technique was evaluated according to its impact on
three criteria: Predictive Performance, Dimensionality Reduction, and Pipeline Runtime. For
measuring the performances, the Balanced Accuracy metric was adopted (BRODERSEN et

al., 2010). Balanced accuracy is a fair version of the original accuracy metric for multi-class
problems, used to mitigate the class imbalance problem observed in the employed meta-datasets.
Regarding dimensionality reduction, this reduction is simply the difference between the number
of dimensions in the original meta-dataset and the resulting feature dimensions after applying a
feature selection or feature extraction technique. Lastly, the pipeline execution time corresponds
to the average time to perform the entire end-to-end training setup, which includes the application
of a DR method and the induction of the meta-classifier.

To assess if performance differences are statistically reliable when using DR methods,
appropriate statistical tests are essential. Given the scenario involving multiple meta-classifiers,
meta-datasets, and DR techniques, the Friedman test is employed as it accommodates depen-
dencies among samples and does not assume any particular distribution (FRIEDMAN, 1937).
The Friedman test is a non-parametric statistical test used to determine if there are significant
differences between multiple related groups. It assesses whether there are differences in the dis-
tributions of several paired samples and is particularly useful when dealing with non-independent
data or when data distribution is unknown. To complement it, the Nemenyi test is also applied.
The Nemenyi test is a post-hoc test commonly used alongside the Friedman test, performing pair-
wise comparisons between groups to identify specific differences in performance (NEMENYI,
1962). When the Friedman test indicates that there are significant differences among groups,
the Nemenyi test helps pinpoint which groups differ from each other. This combined approach
provides a comprehensive understanding of the relationships and differences between groups in
a multi-group comparison, making it a powerful tool for statistical analysis.
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Bar and box plots were used to analyze result distributions and their properties, while
Critical Difference (CD) diagrams were employed to illustrate the statistical comparisons between
distributions. CD diagrams are powerful graphical tools to compare two or more distribution
populations after a statistical test (DEMŠAR, 2006). In this chapter, a Friedman-Nemenyi test
with 95% confidence level is applied and the generated result distributions for Balanced Accuracy,
Dimensionality Reduction, and Pipeline Runtime are plotted using CD diagrams. A higher
position toward 1 on the diagrams indicates superior method performance, implying that methods
on the left outperform the remaining. It is also worth mentioning that CD intervals that intersect
with method lines indicate statistically equivalent results. Consequently, no method exhibits
significant superiority over the others when connected, being statistically indistinguishable.

The entire experimental setup for this chapter, encompassing meta-classifiers and DR
methods implementation alongside the associated documentation, is available at GitHub 1. All
code was written in Python, and only open-source libraries were used. The popular Scikit-
learn (PEDREGOSA et al., 2011) was used for implementing both meta-classifiers and DR
methods, including Feature Selection techniques and PCA. In addition, meta-data extracted from
the benchmark library Aslib (BISCHL et al., 2016) was manipulated and pre-processed using
Pandas (TEAM, 2020). In terms of hardware resources, all training and validation was conducted
on a single Linux server with an Intel Xeon CPU E5-2620 v2 2.10GHz 24 cores processor and
128GB of RAM. It is noteworthy that experiments were conducted without any GPU usage,
emphasizing the efficiency and computational accessibility of this experiment.

1 https://github.com/geantrindade/DR_MtL
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4.3 Results and Discussion

The experiments presented in this section were designed to answer the following research
questions: (i) Does applying dimension reduction methods on meta-data associated with the AR
problem yield any predictive performance enhancements? (ii) What is the efficiency of dimension
reduction methods in reducing meta-data dimensionality? (iii) Are there any observable impacts
on pipeline runtime when employing dimensionality reduction methods? The following sections
address these questions through analysis and comparisons from 4.480 end-to-end training
runs considering the full setup of four meta-learners, twenty-eight meta-datasets, four DR
techniques, plus the original setup without DR, everything executed ten times through K-Fold
Cross-Validation. The four meta-learners employed were SVM, KNN, DT, and RF, all trained
with meta-datasets from the Aslib benchmark. Throughout the process of training, these meta-
datasets were submitted to three feature selection methods, Variance threshold, Chi-squared, and
F-ANOVA, in addition to one Feature Extraction method, the PCA.

4.3.1 Predictive Performance
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Figure 20 – Balanced Accuracy comparison (PEREIRA; SANTOS; CARVALHO, 2021).
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In order to verify whether DR methods yield any improvements in terms of predictive
performance, an analysis was conducted on the resulting balanced accuracy distributions from
the application of DR techniques to every meta-dataset used in the training of meta-learners. As
illustrated by the box plots of Figure 20, some findings indicate that all DR methods demon-
strated similar performance levels, even in comparison to the original meta-datasets. Notably,
PCA and F-ANOVA showed slightly better median results. Another interesting and expected
observation is that the Variance threshold exhibited slight variance reductions in performances
across meta-datasets and meta-classifiers, thereby presenting a narrower range of values. It is
worth mentioning, however, that this method produced a higher number of sparse maximum
outliers. Furthermore, with regard to outliers, a noteworthy observation is that their prevalence
remained relatively consistent across the different DR methods applied, and such outliers were
consistently localized within the range of maximum values only.

CD = 0.58
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F ANOVA

Chi-squared
Variance
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Figure 21 – Balanced Accuracy’s Critical Difference (PEREIRA; SANTOS; CARVALHO, 2021).

For complementing the distribution analysis of the predictive performances, Figure 21
presents the Critical Diagram results from the Nemenyi post-hoc statistical test. By examining
these results, it is revealed that despite the observed stability of the Variance method, with the
exception of its outliers, the statistical evaluation establishes that F-ANOVA presented slightly
superior performance among DR techniques, as seen in the previous case. However, a CD interval
analysis indicates that none of the DR methods produced statistically significant improvements
in overall predictive performance for the AR problem. Nevertheless, it is worth highlighting
that the use of DR techniques demonstrated performance comparable to that achieved with
the original, unaltered data. Nevertheless, this outcome can be viewed as positive feedback,
as it aligns with the expectations of achieving comparable results to the original data while
simultaneously reducing the input data’s dimensionality in this experiment.

4.3.2 Dimensionality Reduction

The following-up experiment consists of a comprehensive analysis of the Feature Selec-
tion methods’ effectiveness in reducing meta-dataset dimensions. This encompassed the percent-
age reduction examination across all pipelines involving each meta-dataset and all meta-learners.
As seen in Figure 22, the distribution outcomes indicate that the DR methods consistently
achieved substantial reductions, with all methods, except for the Variance Threshold, surpassing
an impressive 80% reduction rate on average for all meta-datasets. In particular, Chi-squared,
PCA, and F-ANOVA exhibited similar and stable reduction averages, with the latter showing
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slightly better results among all. On the other hand, the Variance Threshold demonstrated the
worst performance on average in addition to having greater variability, as evidenced by the higher
standard deviation. Still, the amount of reduction was considerably relevant.
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Figure 22 – DR percentage comparison (PEREIRA; SANTOS; CARVALHO, 2021).
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Figure 23 – DR’s Critical Difference (PEREIRA; SANTOS; CARVALHO, 2021).

Upon a meticulous statistical analysis comparison using the CD diagrams shown in
Figure 23, a close examination reaffirms the excellence of F-ANOVA and the limitations of Vari-
ance Threshold as the top-performing and underperforming models, respectively. Furthermore,
it becomes evident that F-ANOVA, PCA, and Chi-squared methods demonstrate statistically
similar performance, with F-ANOVA maintaining a slight edge. Notably, it is worth noting
that the lighter-weight Feature Selection methods, namely F-ANOVA and Chi-squared, yield
comparable statistical outcomes to the more complex Feature Extraction method, PCA. This
underscores the effectiveness of Feature Selection in reducing the original data dimensions while
incurring minimal computational costs. In addition, Variance Threshold emerges as a statistically
inferior choice for dimensionality reduction when compared to its counterparts. These findings,
complemented by the insights from Section 4.3.1, also point to a significant redundancy within
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these meta-datasets, as it is possible to yield remarkably similar outcomes to those using the
original meta-datasets while utilizing only 20% of the meta-features.

4.3.3 Pipeline Runtime

This final analysis aims to assess the potential impacts on pipeline runtimes associated
with the application of dimensional reduction techniques. Thus, runtimes from all pipelines
executed within our experiments were collected. This includes the time required for both meta-
feature sub-set extraction, in the case of Feature Selection methods, and the original meta-feature
space transformation when using a Feature Extraction method. Additionally, the runtime for
data fitting was also considered since it is a dependent variable in this whole process. Figure 24
displays the runtime distributions for each DR method along with the original setup. The
findings indicate that pipeline runtimes were relatively short in general, with maximum values
approximately approaching 2 seconds. The median values across these distributions exhibited
similar values and were in close proximity to the first quartile (Q1) and the minimum values. An
intriguing observation is that the variations primarily occurred within the range of maximum
values, while minimum values, Q1, and the interquartile range remained notably consistent.
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Figure 24 – Pipeline Runtime comparison (PEREIRA; SANTOS; CARVALHO, 2021).
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CD = 0.58
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Figure 25 – Pipeline Runtime’s Critical Difference (PEREIRA; SANTOS; CARVALHO, 2021).

When analyzing the statistical comparisons through the CD diagram shown in Figure 25,
a closer look at the pipeline execution times reveals notable insights. Specifically, the runtimes
for Variance, Chi-Square, and F-ANOVA have shown to be statistically similar and notably
shorter than the pipelines using the original data and PCA. Adopting feature selection methods,
in particular, emerges as a superior strategy to reduce overall pipeline runtime compared to
not adopting the approach. These results suggest that despite the additional time required for
dimensionality reduction, the total execution time covering the training process remains shorter.
On the other hand, the presence or absence of PCA in pipelines does not confer statistically
significant changes in execution time. However, it is important to highlight that although these
statistical analyses prove that it is beneficial to use DR methods from the perspective of pipeline
execution time, the runtime using the original data is already low. Therefore, future analyses
with larger meta-datasets and with longer processing times are necessary in order to validate
whether the observed differences are scalable and behave similarly.
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4.4 Chapter Remarks

This chapter presented the second exploratory experiment with Meta-Learning as a
foundation step to optimize NAS. More specifically, it focused on the study of meta-data
dimensionality through the usage of several dimensionality reduction techniques applied to
the Algorithm Recommendation problem used again as proof of concept. Once it was verified
that meta-knowledge is effective for recommending models and that it can generalize across
algorithms and meta-datasets, analyzing the properties of such meta-data was necessary. To this
end, this subsequent study relied on an expanded set of twenty-eight meta-datasets related to
AR encompassing a wider range of optimization problems. As it is common for the problem
of the curse of dimensionality to occur in meta-bases, and a high dimensionality was observed
in the AR meta-data, in addition to a high ratio in relation to the number of examples, it was
necessary to study the relevance of meta-features in such databases. To check how representative
and relevant the meta-features are, Feature Selection and Feature Extraction methods were used.
Such Feature Selection methods were chosen based on their simplicity and fast processing,
namely Variance Threshold, F-ANOVA, and Chi-squared. As the objective was not the study of
DR techniques per se, Feature Selection methods were prioritized for being simpler and having
interpretability, as they do not transform the feature space like Feature Extraction methods. For
this reason, only the Principal Component Analysis (PCA) was adopted as a baseline, given its
wide usage and to counter Feature Selection methods.

The performed experiments in this chapter were designed to answer the following
research questions: "Does applying dimension reduction methods on meta-data associated with
the AR problem yield any predictive performance enhancements?", "What is the efficiency
of dimension reduction methods in reducing meta-data dimensionality?", and "Are there any
observable impacts on pipeline runtime when employing dimensionality reduction methods?".
These questions were addressed in analysis and discussions encompassing three evaluation
criteria, respectively: (i) Predictive performance, where through Figures 20 and 21 is analyzed
the impact of dimensionality reduction on model performance; (ii) Dimensionality reduction,
where Figures 22 and 23 compare the percentages of dimensionality reduction in relation to
the original data; and (iii) Pipeline runtime, where through Figures 24 and 25 is analyzed the
reductions in pipeline execution times caused by the application of DR techniques.

In a comprehensive empirical investigation, the presented chapter sheds light on the
effectiveness of Dimensionality Reduction techniques. As a result, it was shown that DR methods
may not notably enhance predictive performance, but their effectiveness shines through in
reducing meta-feature or feature dimensionality as well as overall pipeline runtimes while
achieving comparable performance with the original data. This is especially the case for meta-
datasets with a high number of non-informative features. Feature Selection methods F-ANOVA
and Chi-squared demonstrated comparable performance to the more complex Feature Extraction
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method PCA in predictive performance and dimensionality reduction efficiency but were superior
in reducing pipeline runtime. This highlights the feasibility of adopting lightweight techniques
for dimensionality reduction in Algorithm Recommendation, emphasizing the trade-offs between
various methods. The study also showcases that, despite not universally improving predictive
performance, applying dimensionality reduction reduces around 80% of meta-features, achieving
comparable performance with shorter runtimes. Therefore, this concludes that various meta-
datasets have many non-informative meta-features and that it is possible to obtain high predictive
performance using around 20% of the original meta-features. Therefore, due to their natural
trend for high dimensionality, DR methods should be used for Meta-Feature Selection and
Meta-Feature Extraction. In conclusion, the insights from this chapter contribute to the discourse
on ML techniques in Algorithm Recommendation, laying a foundation for further research and
the development of more efficient Meta-Learning approaches, NAS included. The following
chapter presents in detail a new method resulting from the combination of knowledge generated
from the previous and current chapters called MbML-NAS.
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CHAPTER

5
MODEL-BASED META-LEARNING FOR NAS

This chapter presents a novel method called Model-based Meta-Learning for Neural
Architecture Search (MbML-NAS) to address the challenges of data efficiency, model complexity,
and interpretability in NAS. After examining the applicability of Meta-Learning (MtL) and the
dimensionality issues of meta-datasets, this chapter advances the study of MtL applicability
to NAS by introducing a simplified MtL method that uses few representative meta-features to
predict ConvNets’ performances and select candidate models. To this end, MbML-NAS leverages
prior knowledge from neural architectures and task-specific information through interpretable
meta-features and simple meta-predictors to efficiently select suitable architectures.

In summary, this chapter presents the following contributions:

• A novel and simple Prediction-based NAS method that uses few interpretable meta-features
with traditional regression models to attain comparable predictive performance to more
intricate state-of-the-art models using only 0.04% and 1.1% of the search spaces;

• Novel meta-datasets comprising interpretable meta-features that characterize the general
attributes of architectures from NAS-Bench-101 and NAS-Bench-201;

• A comprehensive assessment encompassing an examination of predictors’ errors, stan-
dalone performances, and comparative analyses with traditional regression models, RL,
EA, BO, Gradient/One-shot, Training-free, and Prediction-based models;

• A thorough interpretability analysis providing insights into how meta-information extracted
from NAS-Bench-101 and NAS-Bench-201 influences the learning of meta-predictors.

The remaining content of this chapter is organized as follows: Section 5.1 presents the
related literature. Section 5.2 describes the research contribution in detail. Section 5.3 details the
experimental setup for reproducibility purposes. Section 5.4 discusses the main results. Lastly,
the final chapter considerations are presented in Section 5.5.
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5.1 Related Work

Research on NAS emerged from the urging necessity to automate NN design (HUTTER;
KOTTHOFF; VANSCHOREN, 2019). This field revolves around the automated specification of
various hyperparameters within neural architectures, encompassing layer operations, activation
functions, layer interconnections, among others (ZOPH; LE, 2016). NAS methods, therefore, aim
to automate the complete process of engineering NNs. Many learning strategies have been em-
ployed to discover promising neural architectures, including approaches such as Reinforcement
Learning (RL), Evolutionary Algorithms (EAs), Bayesian Optimization (BO), Gradient-based
Optimization, Training-Free NAS, and Prediction-based NAS. In Zoph and Le (2016), RL is ex-
plored with the REINFORCE algorithm to train candidate architectures generated by a controller
LSTM network. In turn, Falkner, Klein and Hutter (2018) proposed to use a Bandit-based strategy
for hyperparameter optimization using BO, the HyperBand (BOHB), a combination for efficient
NAS. Luo et al. (2018) proposed a One-shot model named Neural Architecture Optimization
(NAO) that uses gradient-based optimization to approximate a continuous decision space for
finding good architectures. Liu, Simonyan and Yang (2018) also developed a One-shot model
called Differentiable Architecture Search (DARTS) that uses gradient descent and continuous
relaxation but with a different search space than NAO, which leads to distinct performance and
scalability trade-offs. Real et al. (2019) go back to classical EAs by using Regularized Evolution
(RE) to evolve a neural architecture population regularized by a limited search space, in which
the fitness function is their validation performance. Lastly, the pioneering work of Mellor et

al. (2021) introduced the concept of Neural Architecture Search without Training (NASWOT),
where linear maps of untrained networks are extracted to derive a score that, when high at
initialization, indicates improved final accuracy after training.

Another NAS avenue involves the use of Performance Prediction models, an emerging
research area known as Prediction-based NAS (DUDZIAK et al., 2020; LI et al., 2021). In Tang
et al. (2020) is introduced SSANA, a semi-supervised method that uses an auto-encoder and a
Graph Convolutional Network (GCN) to predict performances based on learned architecture
representations. Lukasik et al. (2021) present SVGe, a comprehensive two-sided graph Varia-
tional AutoEncoder (VAE) used to reconstruct architectures from different search spaces and
predict architectures beyond those seen during training. They also adapt the generative model
DGMG (LI et al., 2018) as a VAE with a single decoder for evaluating their encoder architecture.
Deng, Yan and Lin (2017) propose Peephole, a method employing a dense layer and an LSTM
with a block-based generation scheme to predict network performance based on architecture and
past performances. Zhang et al. (2019) introduce D-VAE, a deep generative model leveraging
Graph Neural Networks to encode DAGs into a continuous latent space, facilitating the search for
DAGs with improved performance through Bayesian Optimization. Sun et al. (2019) introduce
E2EPP, an integrated performance predictor based on a Random Forest and an evolutionary
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DNN to forecast the performance of ConvNets. Wen et al. (2020) propose a GCN-based Neural
Predictor that learns from one-hot encodings representing architectural layers and adjacency
matrices denoting layer connections. This two-stage model includes a classifier to filter out
unstable and underperforming architectures and a GCN regressor for performance predictions.
Additionally, Li et al. (2021) put forth GenNAS-N, a generic NAS framework designed to address
the limitations of task-specific methods. This approach uses regression on synthetic signal bases
for architecture evaluation, enabling a self-supervised task focused on capturing the inherent
capabilities of architectures in modeling and transforming input signal patterns.

Although popular, these approaches entail several drawbacks. RL, for instance, can be
resource-intensive and data-inefficient, demanding multiple iterations for an in-depth search space
exploration and optimal policy acquisition so that it can yield suitable architectures (WILLIAMS,
1992). Similarly, EAs may be computationally expensive and prone to premature convergence,
especially when facing a fitness landscape abundant in local optima, a prevalent challenge in
several NAS search spaces (REAL et al., 2019). In turn, BO shows sensitivity to prior and
acquisition function configurations. Often, BO incurs high computational costs when dealing
with high-dimensional search spaces due to the numerous iterations requirement for updating its
belief in promising architectures (FALKNER; KLEIN; HUTTER, 2018). Despite being fast, One-
shot models present high computational costs as they require training a super-graph composing
all architectures in a search space (LI; TALWALKAR, 2020). Besides, One-shot models may
struggle to effectively generalize beyond the super-graph, thus demanding careful regularization
and sampling strategies for diverse and high-quality architecture generation (BENDER et al.,
2018). Conversely, Training-free models rely on heuristics for architecture generation, limiting
their ability to capture network component relationships and resulting in sub-optimal solutions
and premature convergence, as they cannot incorporate feedback from the training data (CHEN;
GONG; WANG, 2021). The Prediction-based approach, although promising in reducing the
computational cost of identifying optimal architectures through performance predictions from
a limited set of sampled architectures, comes with its own set of challenges (DUDZIAK et

al., 2020). Predicting architecture performance is a complex task that requires well-designed
prediction models to capture the intricate relationship between architectural configurations and
performances (NING et al., 2020). Besides, such predictions’ quality heavily depends on the
representativeness and diversity of the sampled architectures. Additionally, this approach may
face limitations in discovering architectures beyond the scope of the sampled pool, especially
when the target range significantly deviates from the training data (LIU; TANG; SUN, 2021).

A possible solution to these issues lies in the use of Meta-Learning (MtL), which can
reduce computational burden and accelerate the search process by leveraging prior experiences
to build new knowledge faster using a small number of sampled architectures. Wang et al.

(2020) propose an MtL method featuring a task-aware architecture controller to generate task-
specific architectures, where MtL is used to learn meta-weights that efficiently adapt to new
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tasks on corresponding architectures with only a few gradient descent steps. Lee, Hyung and
Hwang (2021) address the limitations of conventional NAS on generalization across multiple
tasks by proposing a framework trained on a database of datasets and pre-trained networks,
where by using a cross-modal latent space learned through amortized MtL, it can generate
architectures for novel datasets. Li et al. (2021) introduce GenNAS-N, another MtL method
that aims to be task-agnostic and, for this, adopts a self-supervised regression task that relies on
synthetic signal bases for architecture evaluation. Although these methods use MtL in various
ways and share similarities with MbML-NAS, they address distinct issues and pose different
research questions, hypotheses, and objectives than our proposal. Wang et al. (2020) deal with a
toy regression example and few-shot classification problems, Lee, Hyung and Hwang (2021)
consider priori models to generalize to unseen target datasets, and Li et al. (2021) centers around
a semi-supervised task with synthetically generated data. In contrast, MbML-NAS focuses on
generalizing to different search spaces and datasets by learning from general sets of interpretable
meta-features and straightforward meta-predictors through prior performance evaluations.

5.2 Interpretable Meta-NAS with Fast Predictors

This section introduces a novel MtL-based method named Model-based Meta-Learning
for Neural Architecture Search (MbML-NAS), designed to find promising ConvNets in Cell-
based Search Spaces such as the popular NAS-Bench-101 and NAS-Bench-201 benchmarks. To
predict architecture performances, MbML-NAS employs simplified yet effective linear models,
such as Linear Regression and Stochastic Gradient Descent, and non-linear models, such as Tree-
based models and Ensembles, to name a few. Thus, as a Prediction-based approach, MbML-NAS
can serve a dual purpose as a Search Strategy and a Performance Estimation tool to speed up
NAS. MbML-NAS learns from neural architecture performances and interpretable meta-features
extracted directly from the architectures to predict the most promising candidates within the vast
space of possible models. To the best of our knowledge, this is the first attempt to show that
by using simple and interpretable meta-features and classical regression models, it is possible
to find accurate neural architectures. In the following, an illustrative overview of MbML-NAS
is shown in Figure 26, followed by a comprehensive elucidation of its framework procedure
in Algorithm 2. Furthermore, essential details regarding the meta-features and meta-predictors
employed in the proposal are presented in Tables 10 and 25, along with a thorough explanation
of underlying concepts used in this new approach.
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Figure 26 – MbML-NAS overview (PEREIRA et al., 2023).

The MbML-NAS workflow starts by sampling a pre-defined number M of neural archi-
tectures at uniformly random, drawn from an expansive and intricate search space encompassing
a wide variety of ConvNets configurations. Various simple statistics are then extracted from
each sampled architecture within the compact sub-space, including but not limited to the number
of convolutional layers, maximum kernel size, and validation accuracy. This systematic pro-
cedure effectively results in a meta-dataset, wherein each row corresponds to a meta-example
encoded by a set of meta-features and a meta-target, encapsulating the extracted statistics and
the predictive performance, respectively. The meta-dataset serves as the foundation for training
a meta-predictor, which exhibits the flexibility to employ any regression model. Once a meta-
predictor is fully trained, it undertakes the pivotal task of predicting and ranking the incoming
and unseen ConvNets, and from the ranked list, the top-performing K architectures are selectively
chosen for final validation. Each K chosen architecture is then trained and validated from scratch
on the designated target dataset. Consequently, the architecture that achieves the highest test
accuracy is selected, and its test performance is reported. In the following, more detailed insights
into the intricate workings of MbML-NAS are shown in Algorithm 2.
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Algorithm 2: MbML-NAS Procedure (PEREIRA et al., 2023).
Input :Search Space S, Nº of architectures to train M, Training dataset Tr,

Validation dataset Va, Test dataset Te, Meta-model Meta, Meta-features to
extract M f , Nº of architectures to predict P, Nº of architectures to select K

Output :highest test accuracy architecture from K_best_archs

1 K_best_archs← /0
2 Meta_dataset← /0
3 Train_archs← sample(S,M)

4 for each arch in Train_archs do
5 Meta_ f eatures← meta_extraction(arch,M f )

6 while arch is untrained do
7 train(arch,Tr)
8 end

9 meta_target← val(arch,Va)
10 Meta_dataset←Meta_dataset + (Meta_ f eatures, meta_target)
11 end

12 while Meta is untrained do
13 train(Meta,Meta_dataset)
14 end

15 Predict_archs← sample(Train_archs,P)
16 K_best_archs← predict(Meta,Predict_archs,K)
17 Acc_test← /0

18 for each arch in K_best_archs do

19 while arch is untrained do
20 train(arch,Tr)
21 end

22 Acc_test← Acc_test + test(arch,Te)
23 end

24 K_best_archs← sort_by(K_best_archs,Acc_test)

Algorithm 2 comprises five main phases that characterize MbML-NAS workflow: (i)
Meta-dataset Creation (Lines 4-11): The process begins by selecting M architectures at uniformly
random from a Search Space S (line 3). Each architecture has its meta-features M f (line 5) and
meta-target (line 9) extracted, which are then combined to form a comprehensive Meta_dataset

(line 10); (ii) Meta-model Training (Lines 12-14): With a built meta-dataset, the meta-predictor
can be trained to approximate the validation accuracy of unseen ConvNets, where a diverse set
of linear and non-linear regression models can be used; (iii) Selection of K Best Architectures
(Lines 15-16): Built on the predictions of trained meta-predictors, the top K architectures are
selected; (iv) End-to-End Training of K Architectures (Lines 18-23): The K selected architectures
are then trained from scratch on the target dataset; and (v) Ranking and Reporting (Line 24):
The final phase involves the ranking of K best architectures based on their test accuracy, where
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the one with the highest test performance is selected and its performance reported (Line 24).
It is essential to mention that this is the generic and abstract procedure of MbML-NAS, which
does not change for other search spaces or datasets. However, it is worth highlighting that
neural architectures are not trained from scratch in this study. Instead, performance metrics are
queried from NAS-Bench-101 and NAS-Bench-201 pre-computed tabular benchmarks, which
already contain such information. Furthermore, Table 10 provides detailed information on the
interpretable meta-features extracted and used by MbML-NAS.

Table 10 – Meta-Features extracted from NAS benchmarks. Columns NAS-Bench-101 and NAS-Bench-
201 show the range values [min, max] for each meta-feature, parameter refers to the whole
architecture, while the remaining are meta-information concerning the neural cells. All values
were normalized before training (PEREIRA et al., 2023).

Meta-Feature Description NAS-Bench-101 NAS-Bench-201
parameters Architecture’s parameters [227274, 49979272] [0.0805, 1.5387]
conv_num_layers Number of convolutional layers [0, 5] [0, 6]
conv_kernel_min Minimum kernel size [0, 3] [0, 3]
conv_kernel_max Maximum kernel size [0, 3] [0, 3]
conv_kernel_mode Most common kernel size [0, 3] [0, 3]
pool_num_layers Number of pooling layers [0, 5] [0, 6]

Table 10 showcase the six meta-features extracted from NAS-Bench-101 and NAS-
Bench-201 neural cells that encode fundamental ConvNets characteristics: Notably, parameters

exhibits different scales across benchmarks. In NAS-Bench-101, it is the trainable parameters in
a complete architecture, while it is the total architecture size in megabytes in NAS-Bench-201. In
practice, they are comparable since the more trainable parameters, the larger the model size. This
discrepancy is mitigated through Min-Max Normalization that re-scales all values to the [0, 1]
interval. Additionally, cells from these benchmarks may lack convolutional or pooling layers, as
seen in the meta-features range. Furthermore, distinctions between benchmarks exist regarding
pooling layers (pool_num_layers). While NAS-Bench-101 employs max pooling (maxpool_-

num_layers), NAS-Bench-201 uses average pooling (avg_pool_num_layers). However, they are
the same for MbML-NAS, being analogous to the parameters interpretation. Each cell is also
characterized by its validation accuracy, which serves as a meta-target for MbML-NAS. The
NAS-Bench-10’s meta-target is named f inal_validation_accuracy, while NAS-Bench-201’s is
acc_valid. Despite the distinct nomenclature, the targets are functionally equivalent, as meta-
datasets are standardized across benchmarks and datasets. For simplicity, original benchmark
names are retained for meta-features and meta-targets, with alternative references in the text.
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MbML-NAS employs traditional regression models as meta-predictors whose choosing
was based on several factors such as their distinct learning paradigms, data efficiency, rapid
convergence, simplicity, and interpretability. These models fall into two main categories: regu-
larized linear models, and non-linear models. Table 25 in Appendix A shows all models used
by MbML-NAS and their respective hyperparameters tuned via Random Search. Consider-
ing the linear models, MbML-NAS uses Linear Regression (LR), Bayesian Ridge (BR), and
Stochastic Gradient Descent (SGD). Linear Regression is a foundation model that learns linear
relationships between input features and target variables, offering simplicity, computational
efficiency, and interpretable feature coefficients (HASTIE et al., 2009). In turn, Bayesian Ridge
introduces Bayesian inference for parameter estimation of a linear regression model, providing
a probabilistic perspective and regularization to prevent overfitting (BISHOP, 2006). As for
Stochastic Gradient Descent, it extends Linear Regression by employing stochastic optimization
to efficiently handle larger datasets (RUSSELL; NORVIG, 2009).

On the other hand, the tree-based models used in MbML-NAS capture non-linear relation-
ships. These models include C4.5 Decision Tree (DT), Random Forest (RF), Gradient Boosting
(GB), and AdaBoost (AB). C4.5 constructs decision rule hierarchies based on input feature
that ensures straightforward interpretability (DUDA; HART; STORK, 2000). Random Forest
combines multiple decision trees and, by using bootstrapping and random feature subsampling,
it can improve generalization (MITCHELL, 1997). As the Random Forest, Gradient Boosting
is an ensemble method, but it iteratively trains weak decision tree learners to create a strong
predictive model (GAMA et al., 2011). AdaBoost is another ensemble but with higher flexibility
since it combines various weak classifiers, such as decision trees or even linear models, with
adaptive boosting for enhanced performance (WITTEN et al., 2016). Therefore, the choice for
these regression models reflects a careful balance between several criteria that include model
complexity, predictive performance, and suitability for the target task.
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5.3 Experimental Setup

This section presents the entire experimental setup involved in the training and validation
of MbML-NAS meta-predictors. To guarantee the transparency of experiments and facilitate their
reproducibility, details are given in the following. Section 5.3.1 introduces the employed image
datasets and NAS benchmarks. Section 5.3.2 describes the baseline methods used in the com-
parative analyses. Lastly, Section 5.3.3 presents the evaluation methodology that includes data
pre-processing, evaluation metrics, implementation details, software and hardware specifications
used to train all MbML-NAS meta-predictors, and baselines.

5.3.1 Datasets and Benchmarks

This section briefly presents the three datasets and two NAS benchmarks used for the
creation of meta-datasets, training of MbML-NAS meta-predictors, and comparisons with state-
of-the-art NAS methods. All datasets are related to the Image Classification task, chosen due
to their widespread usage in the current literature. In addition, they exhibit simplicity but are
shown to be powerful for validating new proposals both in NAS and in ML as a whole. The NAS
benchmarks were also chosen based on the same criteria.

CIFAR-10 1: Proposed by Krizhevsky, Hinton et al. (2009) as a labeled subset of the
Tiny Images dataset (TORRALBA; FERGUS; FREEMAN, 2008), CIFAR-10 is a widely
popular dataset used for training CV methods and as a proof-of-concept for ML models
in general. It contains 60.000 colorful images of 32x32 pixels partitioned into 50.000 and
10.000 instances for training and testing, respectively. These images are categorized into 10
classes comprehending objects and animals, whose variety of shapes and concepts aligned
with simplicity makes it one of the most valuable resources for practical applications.

CIFAR-100: Seen as a CIFAR-10 extension, it has the same standardization and number of
instances as its predecessor (KRIZHEVSKY; HINTON et al., 2009). However, it presents
increased complexity with a broader range of 100 classes, 500 training images, and 100
test images per class. The real richness of CIFAR-100 lies in how its 100 classes are
grouped into 20 superclasses. Each image has two labels, a "fine" label specifying its
precise class, and a "broad" label denoting its superclass. These superclasses provide a
higher-level categorization, facilitating a more comprehensive understanding of the data.

ImageNet16-120 2: ImageNet16-120 is built from the down-sampled ImageNet16×16
dataset (CHRABASZCZ; LOSHCHILOV; HUTTER, 2017), a variant of the original
ImageNet. Proposed by Deng et al. (2009) as a substantial resource for training learning

1 https://www.cs.toronto.edu/ kriz/cifar.html
2 http://image-net.org/download
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algorithms, the ImageNet dataset comprises over 20.000 classes and 14.000.000 colorful
images of various sizes. Its popularity dramatically increased with the ILSVRC competi-
tion, fostering the development of CV methods to this day. Therefore, ImageNet16-120
was built by selecting a data subset of ImageNet16×16, thus resulting in a dataset with
151.007 training images, 3.000 validation images, 3.000 test images, and 120 classes.

NAS-Bench-101 3: Introduced by Ying et al. (2019) as a tabular benchmark to facilitate
research on NAS, this dataset stands as a valuable resource to enhance the reproducibility
of NAS experiments while minimizing computational overhead. The dataset efficiency
lies in the possibility of querying the pre-computed information, which empowers re-
searchers to evaluate a diverse range of models within milliseconds, speeding up the NAS
experimentation process dramatically. NAS-Bench-101 is composed of 423.000 unique
Convolutional architectures trained and evaluated multiple times on the CIFAR-10 dataset,
culminating in an expressive collection of over 5.000.000 pre-trained models.

NAS-Bench-201 4: Proposed by Dong and Yang. (2020) as an extension to NAS-Bench-
101, it extends the pioneering work with a different and larger Search Space, performance
records on CIFAR-10, CIFAR-100, and ImageNet16-120, on top of supporting more recent
NAS methods such as NASNet, ENAS, and DARTS. NAS-Bench-201’s search space is
inspired by the popular Cell-based space, and it contains a total of 15.625 neural cell
candidates. Notably, it offers a comprehensive array of logged metrics for each dataset,
including training loss, validation loss, test loss, training accuracy, validation accuracy,
and test accuracy. All this extended data helps researchers delve into a rich performance
data repository across various neural architecture experiments.

Table 11 provides statistics from the two NAS benchmarks. NAS-Bench-101 composes
423.000 models trained only on CIFAR-10, while NAS-Bench-201 encompasses 15.625 models
trained on CIFAR-10, CIFAR-100, and ImageNet16-120. From NAS-Bench-101 is possible to
query statistics from the training of all models after 4, 12, 36, and 108 epochs. Such data were
collected to construct the four meta-datasets referred to as the number of each epoch subset
(e.g., 4 epochs subset) in the presented analyses. From NAS-Bench-201 is possible to query
statistics from 1 to 200 epochs, but not all epochs have statistics on the test split. To standardize
the experimental setup, the same number of subsets built from NAS-Bench-101 with CIFAR-10
was used for NAS-Bench-201 with CIFAR-10, these being the subsets of all models trained
for 4, 12, 36, and 108 epochs. In addition, subsets using the maximum epochs available were
also built, which are usually the ones used by the community, totaling seven meta-datasets from
NAS-Bench-201 data and four from NAS-Bench-101.

3 https://github.com/google-research/nasbench
4 https://github.com/D-X-Y/NAS-Bench-201
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Table 11 – NAS benchmarks/datasets statistics.

Benchmark Models Datasets Subsets Meta-Features Epochs
NAS-Bench-101 423k 1 4 6 {4, 12, 36, 108}
NAS-Bench-201 15k 3 7 6 [1, 200]

Table 12 presents more data processing and experimental setup specifications. Such
details include the two NAS benchmarks used to create the meta-datasets employed in the
training of all meta-predictors, the target Datasets present in these benchmarks, the Subsets
(from different epochs in the benchmarks), the Train Size for each sampled subset, and the
used random Seeds adopted to run experiments multiple times. As previously mentioned, the
subsets 4, 12, 36, and 108 were also created from NAS-Bench-201 with CIFAR-10 to maintain
consistency with NAS-bench-10. Furthermore, for the other datasets in NAS-Bench-201, subsets
were created with the final performances from epoch 200. Regarding the different sample sizes,
the standards of the strong baseline Neural Predictor were followed throughout all experiments.
Finally, the seeds used for the entire NAS process of each repeated experiment, from sampling
through tuning and end-to-end training of the models, are also specified.

Table 12 – General setup details for all the experiments with NAS-Bench-101 and NAS-Bench-201.

Benchmark Dataset Subset Train Size Seed

NAS-Bench-101 CIFAR-10

4 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
12 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
36 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}

108 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}

NAS-Bench-201
CIFAR-10

4 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
12 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
36 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}

108 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
200 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}

CIFAR-100 200 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
ImageNet16-120 200 {43, 86, 129, 172, 344, 860} {0, 1, 10, 42, 100, 123, 1000, 1234, 12345}
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5.3.2 Baseline Methods

This section provides a concise overview of foundation models employed in the exper-
imental comparisons within and with MbML-NAS. Within the suite of meta-predictors used
by MbML-NAS, one encounters traditional regression models, a lower bound, and an upper
baseline. As mentioned in Section 5.2, MbML-NAS uses regularized linear models and tree-
based models to predict the performances of ConvNets. Such algorithms were selected for their
different learning paradigms, simplicity, data efficiency, fast convergence, and interpretability.
The linear models are Linear Regression (LR), Stochastic Gradient Descent (SGD), and Bayesian
Ridge (BR). From tree-based models, there are C4.5 Decision Tree (DT), Random Forest (RF),
AdaBoost (AB), and Gradient Boosting (GB). Table 25 lists these models with their respective
hyperparameters, with the addition of Neural Predictor reproduction from the original study. All
model’s hyperparameters were adjusted using Random Search multiple times, where different
random seeds were used, as specified in Table 12.

In order to establish robust baselines for evaluation, a lower bound known as the Dummy
regressor 5 and an upper bound baseline known as the Oracle were also adopted. The Dummy
regressor adopts a straightforward approach by applying simple rules to fit the training dataset
and predict outputs. There are three key strategies: (i) Mean: This rule consistently predicts
the target’s mean value, providing a direct and minimally informative prediction strategy; (ii)
Median: Similarly, this strategy adheres to a constant prediction, consistently forecasting the
median value of the target distribution; and (iii) Quantile: This approach takes a specified
quantile from the target distribution and consistently predicts it, offering a more flexible yet static
prediction method. Given that Random Search was employed to fine-tune the hyperparameters
of MbML-NAS’s meta-predictors, this regressor configures the most effective among these pre-
defined rule-based strategies. In short, this lower bound baseline serves as a critical benchmark
to assess the performance and effectiveness of MbML-NAS’s predictive capabilities.

Following the evaluation methodology outlined in Wen et al. (2020), an upper bound
baseline commonly referred to as Oracle was established. This baseline has the distinct advantage
of having free access to the true validation accuracy signals of each architecture in the dataset.
With such privileged information, the Oracle can then select the architecture with the highest
conceivable validation accuracy value without training. However, it is essential to recognize
that even the Oracle can potentially make sub-optimal choices. This is due to the fact that the
architecture with the highest validation accuracy is not always guaranteed to have the highest test
accuracy, a phenomenon observed in both NAS-Bench-101 and NAS-Bench-201 benchmarks.
This discrepancy arises due to the inherent differences between validation and test dataset
target distributions. Consequently, a meta-predictor can potentially outperform the Oracle if
it accurately infers the architectures with the highest test accuracies. Such instances highlight

5 https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor
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the need for NAS methods that can effectively bridge the gap between validation and test
performances, contributing to more informed and robust architecture selections.

The GCN-based Neural Predictor proposed by Wen et al. (2020) serves as a promi-
nent baseline for MbML-NAS, as both methods present similarities in predicting ConvNets
performances based on neural hyperparameters information. Such a Neural Predictor is a two-
stage model consisting of a classifier and a predictor that shares the same GCN architecture
but with different output layers. The classifier’s role is to filter unstable and poorly performed
architectures that cannot surpass a predefined minimum accuracy threshold. Meanwhile, the
predictor estimates the validation accuracies for these pre-selected architectures. In summary,
the method operates in three key steps: (i) it trains a set of N random architectures to establish
pairs of (architecture, validation accuracy); (ii) it predicts the accuracy of the N architectures
and identifies the top K most promising candidates; and (iii) it trains the leading K architectures
and deploys the one with the highest validation accuracy. For such, the Neural Predictor relies
on input arrays representing architecture layers and an adjacency matrix denoting connections
between layers to encode and learn the architectures. To be able to reproduce its results, the
Neural Predictor was replicated using a publicly available third-party repository 6 which was
modified accordantly since the authors released no official code.

Following Wen et al. (2020), the Neural Predictor was trained on NAS-Bench-101 only
and with and without a classification stage, as it is the benchmark for which the proposal was
initially designed and tuned. The training was performed using the same set of N, D, and K used
in the original study. For each N, models were randomly sampled from NAS-Bench-101 using
different random seeds. Besides, additional experiments were run with other NAS-Bench-101
subsets (besides 108 epochs used initially), train splits, and seeds, as described in Section 5.3.3.
A threshold of 0.91 was used for the classifier’s training, which is compatible with the median of
validation accuracy on the 108 epochs subset. Although not mentioned by the authors, it was
assumed that using the median was the adopted strategy. Consequently, the median of validation
accuracies was used as the minimum threshold for the remaining subsets of NAS-Bench-101,
resulting in the values of 0.23, 0.54, 0.86, and 0.91 for subsets 4, 12, 36, and 108 epochs,
respectively. Despite the authors mentioning the adoption of Mean Squared Error (MSE) loss
during the predictor’s training, it is unclear if the same is applied to the classifier’s training.
Although it is not prohibitive to use MSE for classification, given that maximizing entropy in
binary classification is more appropriate, the Binary Cross-Entropy (BCE) loss was adopted to
train the classifier. Furthermore, the Sigmoid on the predictor’s output layer was shifted to output
values ranging from 0.1 (10%) to 1.0 (100%).

6 https://github.com/ultmaster/neuralpredictor.pytorch
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The selection of remaining baselines spans a range of NAS paradigms, each focusing on
the automated exploration and generation of ConvNet architectures. These NAS techniques are
categorized into distinct groups, including Reinforcement Learning, Evolutionary Algorithms,
Bayesian Optimization, One-shot models, and the more recent Training-free and Prediction-based
strategies. Therefore, the selected third-party methods are the final class of baselines used to
assess MbML-NAS performance. These adopted methods were introduced in section 5.1, namely
REINFORCE (WILLIAMS, 1992), RE (REAL et al., 2019), BOHB (FALKNER; KLEIN;
HUTTER, 2018), NAO (LUO et al., 2018), DARTS (LIU; SIMONYAN; YANG, 2018), NAS-
WOT (MELLOR et al., 2021), GenNAS-N (LI et al., 2021), SSANA (TANG et al., 2020),
E2EPP (SUN et al., 2019), Peephole (DENG; YAN; LIN, 2017), D-VAE (ZHANG et al., 2019),
DGMG (LUKASIK et al., 2021), and, finally, SVGe (LUKASIK et al., 2021). It must be men-
tioned that such baselines are well-recognized for their strong performance on the two adopted
NAS benchmarks. Thus, comparing MbML-NAS against these well-established baselines allows
for a robust evaluation of the method’s search efficiency and predictive capabilities.

5.3.3 Evaluation Methodology

This section briefly describes the evaluation methodology used in experiments with
MbML-NAS and baselines. In alignment with Wen et al. (2020), this study follows a consistent
approach for data splitting and hyperparameter tuning. A 1

3 -fold Cross-validation was employed
on a random subset of size M, where Random Search was used for hyperparameters tuning. Upon
completing the tuning process, the set of M examples was used to train the final meta-predictors
where M is the entire training split. Since the aim was to ensure a less noisy performance
estimation, all the remaining architectures (i.e., ALL - N) from the respective search spaces were
employed for testing. Ten iterations of training/testing were conducted, each time with different
random seeds using both NAS-Bench-101 and NAS-Bench-201 to enhance results reliability.
Furthermore, six distinct training split sizes (43, 86, 129, 172, 344, and 860) were explored.

In order to comprehensively assess the performance prediction capabilities of MbML-
NAS, an evaluation framework guided by prior Prediction-based NAS methodologies and
widely used state-of-the-art NAS models was established. In line with the standard practices for
Prediction-based techniques, MbML-NAS predictive performance was assessed by computing the
Mean Squared Error (MSE) for each of its meta-predictors. Additionally, conventions prevalent
in the NAS literature were adhered to by comparing the individual or standalone performances
of MbML-NAS meta-predictors against other state-of-the-art NAS baselines. Thus, this involved
evaluating the performance of architectures generated by various NAS methods in an end-to-end
training setting. To provide a broader perspective, independent assessments of MbML-NAS
standalone performances were also conducted, in addition to comparisons with the ones from
the prominent baseline, Neural Predictor, across varying values of K in Figure 27.
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A methodology based on the nature of tree-based and linear meta-predictors, alongside
the numerical meta-features in use, was also defined to evaluate MbML-NAS interpretability. The
first tool is the Feature Importance based on the Mean Decrease in Impurity (MDI) (LOUPPE,
2014). This impurity is quantified by the splitting criterion of tree-based models, being the
MSE in this setup. Although the MDI can be calculated on either training or test split, the
latter was used since it has more data samples and, thus, enhances reliability. In the case of
linear models, the coefficient values assigned to the meta-features were extracted and treated as
indicators of Feature Importance (RIBEIRO; SINGH; GUESTRIN, 2016; LIPTON, 2018). Since
all meta-features were normalized, it is safe to compare the magnitudes of different coefficients,
contributing to a thorough and straightforward assessment of interpretability.

To address the limitations inherent in Feature Importance methods, such as their bias
towards high-cardinality features and the assumption of linear relationships between independent
and dependent variables, the Permutation Importance method (BREIMAN, 2001) have been
incorporated in this interpretability analysis. Such a tool assesses the reduction in a model’s
performance when feature values are randomly shuffled, unveiling a non-linear relationship
between input features and targets. To enhance results reliability, the Permutation Importance
of all the models and each meta-feature were calculated and averaged from ten repetitions,
effectively reducing variance and producing more robust findings. Furthermore, Spearman
correlations (SPEARMAN, 1961) were also computed to gain insights into the informativeness
of meta-features and their relation with meta-targets, thus providing a more complete evaluation.

The complete experimental framework encompassing method implementation and associ-
ated documentation has been made openly available to the public through a GitHub repository 7.
The entire codebase was constructed using the Python language and relied on open-source
libraries. Specifically, the popular Scikit-learn library (PEDREGOSA et al., 2011) was em-
ployed for implementing the meta-regression models, while PyTorch (PASZKE et al., 2019) was
adopted to reproduce the Neural Predictor baseline (WEN et al., 2020). In terms of hardware
infrastructure, all the training and validations were conducted on a single Linux server equipped
with an Intel Xeon CPU E5-2620 v2 2.10GHz processor with 24 cores and 128GB of RAM.
It is noteworthy that the performed experiments were conducted without any GPU utilization,
emphasizing the proposal efficiency and computational accessibility.

7 https://github.com/geantrindade/MbML-NAS
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5.4 Results and Discussion

Experiments presented in this section were designed to answer the following research
questions: (i) Can simple meta-features effectively encode neural architectures so that traditional
regression models can accurately predict their performances? (ii) Is it feasible to discover high-
performing architectures through Meta-Learning with limited training examples? (iii) Can simple
meta-features lead to generalization across diverse search spaces and datasets? (iv) Is it possible
to effectively use interpretable meta-features and meta-predictors to get insights into the intrinsic
characteristics of neural architecture search spaces? The next sections address these questions
through analysis and comparisons between MbML-NAS and state-of-the-art NAS methods on
both NAS-Bench-101 and NAS-Bench-201. As for the methods included in these comparisons,
only the GCN-based Neural Predictor was reproduced, whilst the remaining baselines were cited
for reference. Additional results, including more standalone comparisons, MSE analysis, data
exploratory studies with the NAS benchmarks, among others, can be seen in the Appendix A.

5.4.1 Standalone Predictive Performance Analysis

This section presents a comparative analysis of standalone performances from the top-K
architectures selected meta-predictors and baseline methods. Figure 27 provides insights into
these comparisons by displaying the average top-1 test accuracy along with standard deviations
across ten experimental runs. To ensure clarity and readability, results from some of the best
linear and tree-based models have been incorporated alongside the lower and upper-bound
baselines, which are consistently included in all plots. For a fair assessment, the Neural Predictor
(GCN) baseline was exclusively trained on NAS-Bench-101, the benchmark for which it was
originally designed and tuned. Additionally, the training set size of M = 172 was maintained, as
outlined in Wen et al. (2020), as the best trade-off between computational budget and predictive
performance. Regarding K values, K = 10 was used instead of the K = 5000 considered by the
Neural Predictor. This choice is driven by practical considerations, reflecting a more feasible and
cost-effective scenario for NAS, especially when computational resources are limited.

Figure 27 shows that the performances of MbML-NAS meta-predictors consistently
exhibited a remarkable closeness to the Oracle across various scenarios. Especially on the
ImageNet16-120 dataset, all meta-predictors showed competitive performances with the Oracle
even when using smaller values of K such as K = 3 and K = 4. When compared to the lower
bound Dummy, all MbML-NAS meta-predictors exhibited significantly superior performance.
Even when Dummy’s performance improves with increasing the value of K, it still lags behind
all the compared meta-predictors. This inferiority of Dummy can be attributed to its simplistic
approach of relying on simple rules, such as predicting the mean or median performance from
a distribution, which fails to capture the intricate relationship between architectures and their
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Figure 27 – Test Accuracy Averages and Standard Deviations from the K best architectures selected by
meta-predictors on NAS-Bench-101 (Top left), NAS-Bench-201 with CIFAR-10 (Top right),
CIFAR-100 (Bottom left), and ImageNet16-120 (Bottom right) (PEREIRA et al., 2023).
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performances. Furthermore, it can be seen that regression models are less sensitive to changes in
K, showing only a marginal increase in performance. This is not the case with Dummy, which
displays greater sensitivity to changes in K. When using larger values of K, the likelihood of
identifying superior architectures becomes higher. In the extreme scenario of K being equal to
the number of architectures in the test sample, the standalone performance equals that of the
Oracle. Consequently, when a model’s predictions are less accurate, increasing the number of
top architectures K tends to lead to a significant enhancement in its standalone performance.
This trend is observable in the case of Dummy but not for the other predictors.

Except for Dummy, MbML-NAS meta-predictors exhibit comparable performances
overall with consistent improvements as K increased. BR and GB achieved slightly superior
results in the resource-intensive setup (K = 10), which were closely followed by RF and LR.
Conversely, LR emerged as the top performer in NAS-Bench-101 and NAS-Bench-201 with
ImageNet16-120 in the cost-effective scenario (K = 1) but had the worst performance among the
leading meta-predictors on both CIFAR-10 and CIFAR-100 from NAS-Bench-201, suggesting a
higher overall variance. This discrepancy may indicate that these datasets possess greater non-
linearity that LR could not effectively capture for being a linear model. Another possibility might
be that the meta-examples used for LR were not sufficiently representative for generalization.
Additionally, when comparing the meta-predictors’ performances with the Neural Predictor
(GCN), the latter outperformed RF but presented slightly inferior results on NAS-Bench-101
than LR and BR. Given that both MbML-NAS and Neural Predictor were trained with the same
M = 172 and standardized experimental details, it can be inferred that MbML-NAS boasts a more
effective feature representation than the GCN-based method that relies on topological information.
Furthermore, MbML-NAS demonstrates superior usage of limited examples for selecting the best
architectures. In the following Tables 13 and 14, detailed performance comparisons of the top-
K = 1 architectures identified by all MbML-NAS meta-predictors and paired with state-of-the-art
baselines using the most expensive setup (M = 860).

Table 13 shows results on NAS-Bench-101 and demonstrates that all MbML-NAS predic-
tors, excluding Dummy, achieved performance levels akin to those state-of-the-art NAS methods.
While the MbML-NAS primary focus lies not in predictive performance but in simplicity, fast
convergence, data efficiency, and interpretability, it still achieved comparable results with several
well-established NAS baselines that prioritize high performance. The top-performing method
overall was GenNAS-N with a test accuracy of 93.92% using 500 training samples. Following
closely, MbML-NAS delivered commendable results of 93.26% test accuracy with GB using
860 samples. In addition, MbML-NAS demonstrated comparable or superior performance to the
recent NAO and NASWOT, even though they used 1000 training samples. In the case of NAO, it
was expected to achieve superior results since it utilizes a super-graph encompassing all potential
architectures from the search spaces and undergoing lengthy training. GenNAS-N also employs
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Table 13 – State-of-the-art methods on NAS-Bench-101. Values are standalone test accuracy averages and
standard deviations from MbML-NAS and baselines, Optimal is the best test accuracy possible
to achieve in the benchmark, and Time is the training time in seconds (PEREIRA et al., 2023).

Method CIFAR-10 Time Strategy
REINFORCE (WILLIAMS, 1992; YAN et al., 2020a) 93.72±0.00 1000000 reinforcement
BOHB (FALKNER; KLEIN; HUTTER, 2018; YAN et al., 2020a) 93.72±0.00 1000000 bayesian
RE (REAL et al., 2019; MELLOR et al., 2021) 93.87±0.22 12000 evolution
NAO (LUO et al., 2018; WHITE et al., 2021) 93.74±0.00 1000000 gradient
NASWOT (MELLOR et al., 2021) 91.77±0.05 23 training-free
GenNAS-N (LI et al., 2021) 93.92±0.01 20700 prediction-based
Neural Predictor (GCN) (WEN et al., 2020) 93.15±0.01 55 prediction-based

Ours
MbML-NAS (Dummy) 88.99±0.03 0.01 random
MbML-NAS (LR) 93.19±0.01 0.12 prediction-based
MbML-NAS (SGD) 93.03±0.01 1.82 prediction-based
MbML-NAS (BR) 93.11±0.01 0.63 prediction-based
MbML-NAS (DT) 92.55±0.01 0.12 prediction-based
MbML-NAS (RF) 93.16±0.01 6.65 prediction-based
MbML-NAS (AB) 92.60±0.01 3.44 prediction-based
MbML-NAS (GB) 93.26±0.01 5.89 prediction-based

Optimal 94.32

a more intricate approach of generating synthetic data from the original benchmark to learn
representations and then transferring the knowledge to the target task, incorporating GPU training
in the process. In contrast, MbML-NAS follows a more straightforward procedure with GPU-free
usage to achieve competitive outcomes. As for the individual MbML-NAS meta-predictors,
no clear superiority of one model family was evident, which may suggest that this benchmark
exhibits a more linear nature since even linear models achieved reasonable results.

Table 14 – State-of-the-art methods on NAS-Bench-201. Values are standalone test accuracy averages and
standard deviations from MbML-NAS and baselines, Optimal is the best test accuracy possible
to achieve in the benchmark, and Time is the training time in seconds (PEREIRA et al., 2023).

Method CIFAR-10 CIFAR-100 ImageNet16 Time Strategy
REINFORCE (WILLIAMS, 1992; MELLOR et al., 2021) 93.85±0.37 71.71±1.09 45.24±1.18 12000 reinforcement
RE (REAL et al., 2019; MELLOR et al., 2021) 93.92±0.30 71.84±0.99 45.54±1.03 12000 evolution
BOHB (FALKNER; KLEIN; HUTTER, 2018; MELLOR et al., 2021) 93.61±0.52 70.85±1.28 44.42±1.49 12000 bayesian
DARTS (MELLOR et al., 2021; LIU; SIMONYAN; YANG, 2018) 54.30±0.00 15.61±0.00 16.32±0.00 10890 gradient
NASWOT (MELLOR et al., 2021) 92.96±0.81 69.98±1.22 44.44±2.10 306 training-free
GenNAS-N (LI et al., 2021) 94.18±0.10 72.56±0.74 45.59±0.54 1080 prediction-based

Ours
MbML-NAS (Dummy) 85.41±5.96 57.01±8.46 28.41±9.24 0.01 random
MbML-NAS (LR) 91.68±1.54 69.36±0.69 44.47±1.01 0.01 prediction-based
MbML-NAS (SGD) 91.95±1.45 69.66±0.66 43.46±1.27 0.31 prediction-based
MbML-NAS (BR) 91.88±1.41 69.77±0.47 43.66±0.62 0.01 prediction-based
MbML-NAS (DT) 92.88±0.71 68.88±1.69 43.49±1.73 0.01 prediction-based
MbML-NAS (RF) 93.36±0.20 70.33±0.85 42.99±4.21 1.31 prediction-based
MbML-NAS (AB) 92.60±1.61 70.04±1.40 43.40±2.79 0.25 prediction-based
MbML-NAS (GB) 93.03±0.52 70.02±1.17 44.28±1.42 1.41 prediction-based

Optimal 94.37 73.51 47.31
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Table 14 presents some findings concerning the NAS-Bench-201. These results demon-
strate the superior performance of MbML-NAS across all datasets against two robust baseline
methods, namely DARTS and NASWOT. Notably, within the various meta-predictors utilized by
MbML-NAS, RF and GB emerge as the top-performing choices, where RF achieved 93.36% test
accuracy on CIFAR-10 and 70.02% on CIFAR-100, while GB attained 44.28% on ImageNet16-
120. These performance results can be attributed to the distinctive non-linear characteristics
exhibited in NAS-Bench-201, in contrast to NAS-Bench-101, where all tree-based models sur-
pass their linear counterparts, except for Logistic Regression (LR) on ImageNet16-120. In terms
of remaining baselines, GenNAS-N was the lead performing with a test accuracy of 94.18% on
CIFAR-10, 72.56% on CIFAR-100, and 45.59% on ImageNet16-120, closely followed by RE
which demonstrates the comparable results of 93.92% on CIFAR-10, 71.84% on CIFAR-100,
and 45.54% on ImageNet16-120. It is essential to note that these baseline approaches are non-
interpretable and use more complex models that prioritize predictive performance, in addition to
utilizing approximately 1000 examples. At the same time, MbML-NAS achieves competitive
results with a more modest dataset of 860 examples.

A training time comparative of MbML-NAS meta-predictors in Tables 13 and 14 reveals
intriguing insights. On NAS-Bench-101, Dummy and LR emerge as the fastest models, boasting
training times of 0.01 and 0.12 seconds, respectively. In contrast, RF lags significantly, with
a training time of 6.65 seconds. However, a notable shift occurs on NAS-Bench-201, where
Dummy, LR, BR, and DT uniformly exhibit a swift time of 0.01 seconds, establishing themselves
as the benchmark’s fastest meta-predictors. Contrastively, RF and GB demonstrate relatively
extended training of 1.31 and 1.41 seconds, marking them as the slowest models on NAS-Bench-
201. Generally, training times vary across different meta-predictors, benchmarks, and datasets,
but it is important to note that these variations are consistent. The models with the worst predictive
performances exhibit lower training times, with the inverse occurring with the best-performing
methods. We believe these differences can be attributed to each meta-predictor’s underlying
algorithms and computational requirements. Meta-predictors such as Dummy, LR, and DT adopt
simpler algorithms with minimal computational overhead, resulting in shorter training times.
Inversely, meta-predictors such as RF and GB leverage more complex algorithms and require
additional computational resources, which leads to a longer training process. Furthermore, it is
worth highlighting that the present approach generates lighter models than the primary baseline,
Neural Predictor, which has a training time of 55 seconds on NAS-Bench-101.

Furthermore, upon examining the training times of MbML-NAS as seen in Tables 13
and 14, it becomes apparent that they rank as the most time-efficient among all baselines, even
surpassing the Training-free approach. However, it is imperative to note that despite the lower
training times, MbML-NAS relies on meta-data from the prior training of NAS-Bench-101 and
NAS-Bench-201 architectures. Despite that, it is worth mentioning that such incorporation of pre-
existing knowledge is a standard premise of all Meta-Learning (MtL) approaches (DUDZIAK
et al., 2020; WANG et al., 2020; MUÑOZ et al., 2018). Furthermore, in alignment with prior



5.4. Results and Discussion 127

research in the domains of NAS and MtL (LI et al., 2021; DUDZIAK et al., 2020; LEE;
HYUNG; HWANG, 2021), it is assumed that the performance metrics of existing models serving
as learning source material are readily available during the search process. In an analogous
situation, the training times for GenNAS-N, markedly shorter both in NAS-Bench-101 and
NAS-Bench-201 when compared to evolutionary, reinforcement, and gradient-based approaches,
are derived from prior knowledge. More specifically, the training times on NAS-Bench-201
stem from a task search initially conducted on NAS-Bench-101, wherein the search model
was transferred. Additionally, it is noticed that the longest training times are attributable to
exhaustive and frequently time-consuming exploration approaches, exemplified by evolutionary
and reinforcement techniques, in addition to the One-shot/Gradient models.

5.4.2 MSE Analysis

This section presents a comparative analysis involving all MbML-NAS meta-predictors
and various Prediction-based NAS methods from the current literature. This comprehensive
analysis is focused not on the standalone performances of selected architectures as in Figure 27
and Tables 13 and 14, but on the prediction accuracy of the NAS methods themselves. As each
predictor tries to approximate the actual performances of candidate architectures, the accuracies
of such predictors are measured by the Mean Squared Error (MSE) along with its corresponding
standard deviations. Table 15 and 16 then present the MSE averages and standard deviations
from ten runs of MbML-NAS and state-of-the-art NAS baselines.

Table 15 – MSE averages and standard deviations of NAS methods on NAS-Bench-101. Train/Test is the
train and test sample size used for training and testing the models (PEREIRA et al., 2023).

Model Train/Test CIFAR-10
SSANA (TANG et al., 2020) 1000/422625 0.0031±0.0003
E2EPP (SUN et al., 2019) 1000/422625 0.0042±0.0003
Peephole (DENG; YAN; LIN, 2017) 1000/422625 0.0071±0.0005
D-VAE (ZHANG et al., 2019) 1000/- 0.0039±0.0003
DGMG (LUKASIK et al., 2021) 1000/- 0.0037±0.0001
SVGe (LUKASIK et al., 2021) 1000/- 0.0028±0.0001
Neural Predictor (GCN) (WEN et al., 2020) 860/422765 0.0047±0.0001

Ours
MbML-NAS (Dummy) 860/422765 0.0034±0.0001
MbML-NAS (LR) 860/422765 0.0031±0.0001
MbML-NAS (SGD) 860/422765 0.0032±0.0001
MbML-NAS (BR) 860/422765 0.0031±0.0001
MbML-NAS (DT) 860/422765 0.0030±0.0001
MbML-NAS (RF) 860/422765 0.0029±0.0001
MbML-NAS (AB) 860/422765 0.0030±0.0001
MbML-NAS (GB) 860/422765 0.0030±0.0002
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Results in Table 15 showcase MbML-NAS outperforming all baseline methods except
for SVGe, which yielded comparable results. Notably, the Random Forest (RF) meta-predictor
achieved the lowest MSE of 0.0029, closely followed by SVGe with an MSE of 0.0028, a
remarkable feat considering that RF used a smaller training dataset. Unfortunately, SVGe and the
other baselines do not report the test sample sizes for comparisons, which negatively impacted
the reproducibility of these methods. MbML-NAS also demonstrated superior efficiency when
compared to the more complex Neural Predictor (GCN) since it employs the same number of
architectures for training but achieves a lower MSE. Furthermore, an additional and interesting
pattern similar to what was observed in the standalone performances on NAS-Bench-201 was
noted in the results of 15, where total dominance of tree-based models occurs over linear models
in terms of achieving lower MSE values. However, patterns are not seen for NAS-Bench-101
regarding the standalone performances of selected architectures, where mixed dominance is
observed. This disparity suggests that while some meta-predictors excel in minimizing the errors,
occasional discrepancies arise in selecting the optimal architectures that elucidate the models’
context-dependent performance. In any case, Gradient Boosting (GB) and Random Forest
(RF) still appear as the best-performing meta-predictor for NAS-Bench-101, both regarding
standalone performances and MSE, with Dummy retaining its status as the least effective model.
Subsequently, Table 16 presents a comprehensive MSE comparison for NAS-Bench-201.

Table 16 – MSE averages and standard deviations of NAS methods on NAS-Bench-201. Train/Test is the
train and test sample size used for training and testing the models (PEREIRA et al., 2023).

Model Train/Test CIFAR-10 CIFAR-100 ImageNet16-120
HAAP (LIU; TANG; SUN, 2021) 1000/- 0.0003±0.0001 - -
MbML-NAS (Dummy) 860/14765 1.6459±0.0156 1.4786±0.0100 0.8560±0.0031
MbML-NAS (LR) 860/14765 1.3213±0.0122 0.9914±0.0077 0.4674±0.0025
MbML-NAS (SGD) 860/14765 1.3287±0.0175 0.9965±0.0126 0.4691±0.0036
MbML-NAS (BR) 860/14765 1.3235±0.0128 0.9923±0.0078 0.4676±0.0025
MbML-NAS (DT) 860/14765 1.3083±0.0296 0.9761±0.0161 0.4708±0.0049
MbML-NAS (RF) 860/14765 1.2931±0.0169 0.9594±0.0098 0.4640±0.0041
MbML-NAS (AB) 860/14765 1.3216±0.0487 0.9640±0.0228 0.4706±0.0061
MbML-NAS (GB) 860/14765 1.3223±0.0301 0.9757±0.0282 0.4657±0.0048

As showcased by Table 16, results on NAS-Bench-201 include only one baseline method
named HAAP (LIU; TANG; SUN, 2021), which, to the best of our knowledge, it is the one
single method that reports MSE values for this benchmark. However, the authors only report
performances on the CIFAR-10 dataset, ignoring CIFAR-100 and ImageNet16-120. When
compared to the best-performing MbML-NAS (RF), HAAP exhibits a lower MSE compared.
However, this advantage comes at the cost of using more training examples. In addition, HAAP’s
paper does not disclose the test set’s sample size, which can lead to misleading results. Among
the different MbML-NAS variations, the lowest MSE of 1.2931 on CIFAR-10, 0.9594 on CIFAR-
100, and 0.4640 on ImageNet16-120 were achieved by the Random Forest meta-predictor. It
is worth emphasizing that, in line with previous observations on NAS-Bench-201, tree-based
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meta-predictors consistently outperform linear models. This reinforces the non-linearity of
NAS-Bench-201 and highlights the robustness of these predictors in capturing the complex
relationship between meta-representations and predictive performances of architectures.

Upon an extensive examination of MbML-NAS meta-predictors across multiple scenarios
and datasets, it became clear that two models have distinctly stood out from the remaining:
Gradient Boosting (GB), which demonstrated the best standalone performances on NAS-Bench-
101 with CIFAR-10 and NAS-Bench-201 with ImageNet16-120, and Random Forest (RF),
which achieved the top overall results on NAS-Bench-201 with CIFAR-10 and CIFAR-100
datasets. While GB exhibited commendable performances, RF managed to achieve a lower MSE,
showcasing greater robustness to more substantial prediction errors. Consequently, it can be
confidently concluded that RF stands as the best overall model for the selection of high-quality
neural architectures within the search spaces of NAS-Bench-101 and NAS-Bench-201.

In light of these promising findings, it is crucial to clarify that MbML-NAS, as a MtL
method, fundamentally relies on using prior outcomes from pre-trained ConvNets to construct
the meta-dataset that guides NAS. This reliance on prior data aligns with the principles of
Meta-Learning, where leveraging prior knowledge facilitates the ability to generalize to novel
tasks and datasets (BRAZDIL et al., 2008). Similar to other NAS methods, such as GenNAS-N,
MbML-NAS embraces this approach to navigate diverse search spaces and datasets effectively.
While achieving superior performance is certainly a desired outcome, the foremost objective
of this proposal lies not solely in surpassing existing models but in prioritizing simplicity and
interpretability. By opting for a smaller number of input neural architectures for training, the aim
is to furnish a pragmatic, efficient, and easy-to-implement method. This emphasis on simplicity
ensures that both researchers and practitioners can readily embrace and comprehend the proposal.
Furthermore, it is noteworthy that MbML-NAS demonstrates the advantage of employing fewer
training samples compared to other NAS baselines. For instance, GenNAS-N relies on a set of 500
neural architectures from NAS-Bench-101 for its pre-training phase. In contrast, MbML-NAS
requires only 172 neural architectures for training in its most resource-efficient configuration.
This reduction in sample utilization not only streamlines computational requirements for training
but also alleviates the burden associated with data collection and processing.
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5.4.3 Interpretability Analysis

This section presents an interpretability experiment concerting meta-predictors and
meta-features used by MbML-NAS in order to gain deeper insights into the influence of meta-
information on the learning models. The adopted tools for inspecting and analyzing interpretabil-
ity were chosen based on their fast computation and for being as simple and effective as possible.
These selected methods, including the Mean Decrease in Impurity (MDI) and Feature Coeffi-
cient Importance, are readily obtainable from the trained tree-based and linear meta-predictors,
respectively. Thus, they offer valuable insights into the models’ interpretability without requiring
additional procedures or reliance on third-party tools. Moreover, it is worth noting that these
methods extend beyond the scope of MbML-NAS and can be applied to a diverse range of
models. The analysis of Feature Importance is adequate for any tree-based or linear model, and,
at the same time, the Permutation Importance, as a model-agnostic tool, can be employed with
virtually any ML model. This flexibility underscores the versatility and broader applicability of
the interpretability assessment framework employed in this experiment.

Starting from Figure 28, bar plots and box plots representations of Feature and Per-
mutation Importances are shown for the Random Forest, the best overall meta-predictor in
MbML-NAS. In order to consolidate the findings regarding the impact of all meta-features on
the performance of meta-predictors, a summarization based on the Permutation Importance
analysis is shown in Table 20. Additionally, Spearman correlations between meta-features and
meta-targets are seen in Table 18, which also contributes to understanding the real impact of
those meta-features on the prediction and selection process of architectures. Nonetheless, before
entering into the specific details of interpretable regression models and meta-features, it is
essential to clarify and establish the concept of interpretability adopted in this proposal.

Interpretability in the field of ML often revolves around the capacity to comprehend
and elucidate a model’s decision-making process (MOLNAR, 2020). Nevertheless, it is note-
worthy that there is no universal agreement on the definition of interpretability, and its sig-
nificance may vary across different domains and scenarios (RIBEIRO; SINGH; GUESTRIN,
2016; BAEHRENS et al., 2010). Some scholars assert that interpretability offers a qualitative
understanding of the relationship between input features and outputs (LIPTON, 2018). Oth-
ers underscore the importance of aligning interpretability with the user’s cognitive limitations,
emphasizing the need for ease of understanding (MOLNAR, 2020). Consequently, whether a
linear model or decision tree is deemed interpretable hinges on both the number of influential
features contributing to predictions and the complexity of those features in terms of human
comprehension (BAEHRENS et al., 2010). This proposal considers meta-features to be inter-
pretable because they hold clear and discernible meanings within the context of DNNs and NAS,
making them accessible to individuals with at least a basic understanding of neural architectures.
Additionally, we consider our models interpretable because their decision-making processes can
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Figure 28 – Feature and Permutation Importance of the Random Forest on NAS-Bench-101 (CIFAR-10)
(Top row), NAS-Bench-201 (CIFAR-10) (Second row), NAS-Bench-201 (CIFAR-100) (Third
row), and NAS-Bench-201 (ImageNet16-120) (Bottom row) (PEREIRA et al., 2023).
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be inspected by examining coefficient values in the case of linear models, and one can trace the
hierarchical decision flow of tree-based models. Furthermore, such models do not compromise
human comprehension since a minimal input consisting of six meta-features is used.

Figure 28 presents box plot distributions based on ten runs of the Permutation Impor-
tance analysis using the overall best model, Random Forest. These plots illustrate the resulting
percentage reduction in accuracy from the permutation of individual meta-features. The vertical
demarcation lines within these plots serve the purpose of discerning the impact of each meta-
feature on the model’s performance, with those positioned to the left indicating no observable
impact. It is important to emphasize that the influence of a meta-feature is intricately linked to the
specific model and its learning process, and the insignificance of a particular meta-feature in one
context should not be hastily extrapolated to other tasks or models. In the context of NAS-Bench-
101 with CIFAR-10, the Impurity-based Feature Importance ranked trainable_parameters as
the most influential meta-feature, closely followed by conv_kernel_max while designating
conv_kernel_min as the least important. Nevertheless, the Permutation Importance analysis re-
vealed a contrasting ranking for these two vital meta-features, with conv_kernel_max emerging
at the top spot and inducing an approximate 12% reduction in accuracy. On the other hand,
conv_kernel_min was found to be irrelevant in the Random Forest decision-making process.

On the NAS-Bench-201 benchmark using the CIFAR-10 dataset, both Feature Impor-
tance and Permutation Importance analyses consistently identified conv_num_layers as the most
relevant meta-feature, leading to an accuracy reduction of approximately 12.5%. Conversely,
three other meta-features, named conv_kernel_min, conv_kernel_mode, and conv_kernel_max,
were deemed irrelevant in terms of performance impact. Similar patterns emerged when con-
sidering the NAS-Bench-201 benchmark with CIFAR-100, where conv_num_layers emerged
as the most important meta-feature, inducing a nearly 20% accuracy decline. Except for these
two standout meta-features, the remaining exhibited minimal impact. When considering NAS-
Bench-201 with ImageNet16-120, conv_num_layers was the most impactful, closely followed
by params, resulting in an approximately 14% and 12% of performance decrease, respectively.
Therefore, these findings highlighted a consistent and slight variance in meta-feature impor-
tance across diverse datasets and benchmarks. In most cases, the impact of conv_num_layers

and params remained prominent, while conv_kernel_min was consistently ranked as the least
influential meta-feature. To better understand the impact of all meta-features on the performance
of MbML-NAS meta-predictors, a comprehensive summary is shown in Table 20.

Results shown in Table 20 reveal significant disparities between meta-features, with some
consistently emerging as the most important and never ranking as the least influential. Notably,
parameters (comprising trainable_parameters and params) appeared as the top relevant twice,
while conv_num_layers took the lead a remarkable seventeen times, firmly establishing itself as
the predominant meta-feature. In contrast, conv_kernel_min was consistently found to be the
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Table 17 – Meta-features relevance in twenty-eight use cases from the Permutation Importance analysis.
Columns represent the number of times a meta-feature was found to have the most or least
impact on model performance, respectively (PEREIRA et al., 2023).

Meta-Feature Most relevant Least relevant
parameters 2 0
conv_num_layers 17 0
conv_kernel_min 0 13
conv_kernel_max 6 3
conv_kernel_mode 1 6
pool_num_layers 2 6

least impactful, featuring in this role thirteen times but never rising to the most relevant. Moreover,
some meta-features exhibited mixed performance outcomes. For instance, conv_kernel_max

was at the top spot six times but occupied three times the least influential position. Simi-
larly, conv_kernel_mode was deemed the most important on one occasion but considered six
times the less relevant. Meanwhile, pool_num_layers (encompassing maxpool_num_layers or
avg_pool_num_layers) showcased dual roles by emerging as the most impactful twice and on six
occasions ranking as the least influential. Therefore, these findings provide valuable information
for future model design by indicating the differing impact of various meta-features on predictive
performance. In the following, a Spearman correlation between meta-features and the meta-target
is presented in Table 18 to complement the interpretability analysis.

Table 18 – Spearman correlations between meta-features and meta-target (architectures’ validation accu-
racy) on NAS-Bench-101 and NAS-Bench-201 datasets. † is the CIFAR-10 from NAS-Bench-
101, while ‡ represents the CIFAR-10 from NAS-Bench-201 (PEREIRA et al., 2023).

Meta-Feature CIFAR-10† CIFAR-10‡ CIFAR-100 ImageNet16-120
parameters 0.44 0.71 0.73 0.68
conv_num_layers 0.42 0.70 0.74 0.71
conv_kernel_min 0.02 0.06 0.04 0.03
conv_kernel_max 0.52 0.53 0.52 0.51
conv_kernel_mode 0.24 0.28 0.27 0.23
pool_num_layers -0.46 -0.49 -0.44 -0.43

Table 18 provides an overview of Spearman correlations among extracted meta-features,
encapsulating neural cells’ statistics, and the meta-target representing the validation accuracy of
candidate architectures. It is essential to emphasize that this is a post-hoc analysis, meaning that
no information derived from such correlations influenced model training or the inference/selec-
tion process. Notably, parameters, conv_num_layers, and conv_kernel_max consistently exhibit
the strongest correlations with the meta-target across various datasets and benchmarks. On the
other end of the spectrum, conv_kernel_min and conv_kernel_mode consistently emerged as the
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least strongly correlated meta-features with validation accuracy. Another intriguing observation
is noted when analyzing the correlation relationship of poolnumlayers, which showed a unique
negative correlation with validation accuracy. Consequently, this suggests that architectures
with fewer pooling layers tend to produce higher predictive performance, offering a distinctive
perspective on the relationship between this type of layer and model outcomes.

In a broader context, such correlation analyses unveiled a discernible non-linear mono-
tonic relationship between meta-features and validation accuracies. The most influential meta-
features exhibited moderate to high correlations with the target performance, where the top-
ranking meta-feature conv_kernel_max attained a correlation coefficient of 0.52 in NAS-Bench-
101, while parameters achieved a substantial 0.71 correlation in NAS-Bench-201 with CIFAR-
10. Additionally, conv_num_layers showed the highest correlation strength of 0.74 in NAS-
Bench-201 with CIFAR-100, as well as 0.71 in NAS-Bench-201 with ImageNet16-120. These
findings offer compelling evidence that these meta-features hold the potential to empower meta-
predictors to capture the intricate non-linearity inherent in the data. Additionally, it can facilitate
more accurate predictions of architectural performance, a conclusion consistently substantiated
by other experiments within this study. Furthermore, such correlations align with empirical obser-
vations in the community (HUTTER; KOTTHOFF; VANSCHOREN, 2019), where architectures
characterized by an abundance of convolutional layers and trainable parameters, fewer pooling
layers, and smaller kernel sizes have often demonstrated superior performance.
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5.5 Chapter Remarks

This chapter presented a novel and simplified Prediction-based method called Model-
Based Meta-Learning for Neural Architecture Search (MbML-NAS). By leveraging meta-
knowledge from a small set of training examples, MbML-NAS can effectively select near-optimal
ConvNets using traditional regression models and only six interpretable meta-features directly
extracted from neural architectures. Among these regressors employed as meta-predictors are
the linear models, Linear Regression, Stochastic Gradient Descent, and Bayesian Ridge, and
the non-linear models, C4.5 Decision Tree, Random Forest, AdaBoost, and Gradient Boosting.
Of the statistical measures used by meta-predictors to approximate the actual performance of
candidate architectures, they were simple statistics collected from the neural layers, including
the number of convolutional and pooling layers, minimum, maximum, and most common kernel
size, in addition to the total number of trainable parameters.

The proposal of MbML-NAS was well concerned with standardization and reproducibil-
ity. For this reason, extensive experimentation was conducted to ensure rigorous evaluation,
which included standalone performance analysis, meta-predictive error comparisons, and inter-
pretability inspections, with each experiment being repeated multiple times to increase reliability.
All relevant details were also reported to guarantee reproducibility, including data splitting
procedures, hyperparameter tuning, implementation specifications, evaluation metrics, hardware
specs, and the official code. Consequently, the presented results inspire strong confidence in the
robustness and high-quality evaluation of MbML-NAS.

As mentioned in Section 5.4, each experiment was designed to answer one of this study’s
fourth research questions. The first question, "Can simple meta-features effectively encode neural
architectures so that traditional regression models can accurately predict their performances?"
and the second, "Is it feasible to discover high-performing architectures through Meta-Learning
with limited training examples?", were addressed individually through the analysis of predictive
performance comparisons seen in Figure 27 and in Tables 13, 14, 15, and 16. As discussed,
MbML-NAS generated results with predictive performance comparable to the state-of-the-art
using at least 172 examples in its cheapest configuration, representing 0.04% and 1.1% of
NAS-Bench-101 and NAS-Bench-201 search spaces. In the most expansive configuration, using
860 examples and representing only 0.2% and 5.5% of the original search spaces, MbML-NAS
generated even better results, showing that it can take advantage of more meta-data, if available.

By using the same meta-features for the two most popular NAS search spaces and the
three most used image classification datasets, it is possible to safely state that MbML-NAS
provides a reasonable generalization across search spaces and datasets, thus answering the third
research question: "Can simple meta-features lead to generalization across diverse search spaces
and datasets?". Finally, we were able to answer the fourth and final research question, "Is it
possible to effectively use interpretable meta-features and meta-predictors to get insights into
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the intrinsic characteristics of neural architecture search spaces?", through the analysis of meta-
feature correlations in Tables 18 and 20, and Feature Importances and Permutation Importances
in Figure 28. These analyses provided insights into how meta-features helped meta-predictors
accomplish the tasks, also highlighting the most important meta-features to consider when trying
to achieve the best-performing architectures. Such analysis is valid not only for this study but
also for future work that may use meta-learning to predict or recommend neural architectures.

These rigorous experiments with state-of-the-art methods highlight MbML-NAS’s ability
to discover superior architectures with minimal data. Complementary to the predictive per-
formance discussions, interpretability analyses elucidated the MbML-NAS decision-making
process, demonstrating the generalization potential of simple meta-features. Despite adopting a
straightforward pipeline with inspectable models and interpretable meta-features, MbML-NAS
showed a slight performance disadvantage compared to baselines that prioritize predictive perfor-
mance. However, it still achieves strong performance results when comparable to more complex
and uninterpretable models, such as the Neural Predictor baseline. Extensive experimentation
validates MbML-NAS as a well-balanced solution, achieving a favorable compromise between
predictive performance, data efficiency, and interpretability. Furthermore, it offers a significantly
simpler approach than other NAS baselines, showing its potential as an effective and practical
method for NAS research. The following chapter takes a step forward toward the goal of opti-
mizing the NAS framework by presenting a novel method suitable to the more complex task of
Image Segmentation, where the focus is to find good architectures using little label data.
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CHAPTER

6
ACTIVE DIFFERENTIABLE NETWORK

TOPOLOGY SEARCH

This chapter presents a novel method called Active Differentiable Network Topology
Search (Active-DiNTS) that addresses the challenge of finding architectures with high predictive
performance using limited data. After exploring the conventional tasks of Classification and
Regression with simplified models, this chapter takes a step further in exploring Meta-Learning
(MtL) to optimize NAS by targeting the more complex task of Image Segmentation using
meta-knowledge of prior models, performances, and task properties. Unlike previous chapters
that addressed more theoretical applications, such as recommending algorithms for well-known
optimization problems and neural architectures for natural image classification, this chapter
focuses on the more applied problem of Segmenting Medical Images. Given that the medical field
suffers from data scarcity and high-cost labeling, Active-DiNTS introduces an Active Learning
(AL) framework in order to maximize the performance of architectures while minimizing labeled
data usage. Differing from other NAS methods, the proposal also uses a highly flexible Topology
Search Space explored with Gradient-based optimization. By jointly using an AL approach to
iteratively label the most impactful examples with a flexible and diverse topological search space,
Active-DiNTS can optimize the search and learning process while encouraging the search for
architectures with good generalization to fewer labeled examples.

In summary, this chapter presents the following contributions:

• A novel One-shot NAS method that uses an Active Learning framework to reduce search
time by up to 27 times and training data by up to 5 times while finding state-of-the-art
architectures for Medical Imaging Segmentation;

• Exploration of a Pool-based Sampling Scenario with multiple setups to assess the impact
of active labeling on adjusting the weights and topology of candidate architectures;
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• Implementation and evaluation of uncertainty functions, Entropy, Variance, and Standard
Deviation, used to measure example importance in the selection process for active labeling

• An in-depth analysis of the proposal and baselines encompassing both predictive per-
formance and model efficiency comparisons, such as the number of parameters, FLOPs,
memory and hardware usage, and search time, in addition to qualitative analysis of seg-
mentation masks and searched cell complexity.

The remaining content of this chapter is organized as follows: Section 6.1 presents the
related literature. Section 6.2 describes the research contribution in detail. Section 6.3 details the
experimental setup for reproducible purposes. Section 6.4 discusses the main results. Lastly, the
final considerations for the chapter are presented in Section 6.5.

6.1 Related Work

The field of Medical Imaging Segmentation has seen a significant integration of NAS
techniques in response to the pressing demand for automated design. Even outside the NAS
domain, several notable approaches have emerged as solutions for automated, efficient segmen-
tation. Each of these solutions offers unique contributions to address the complex challenges
associated with anatomical structure delineation, both in 2D and 3D imaging modalities. These
methods can be broadly categorized into various architectural innovations such as NAS ap-
proaches, hand-crafted U-Net-like models, techniques for incorporating multi-planar 2D views,
3D models, supervised, and semi-supervised segmentation, among others.

As with mainstream Image Segmentation, many of the major contributions in the Medical
Imaging field involve the use of U-Net architectures. In Perslev et al. (2019) is proposed Multi-
Planar U-Net (MPUnet) 1, an architecture capable of accurately segmenting anatomical structures
in medical images across a diverse range of image modalities without task-specific modifications.
The authors combine a fixed U-Net model topology with multi-planar augmentation, allowing the
architecture to consider multiple 2D views during training and inference. By doing this, MPUnet
can make use of a single 2D architecture to perform 3D volume segmentation while maintaining
computational efficiency. Consequently, the model’s robustness and ability to outperform 3D
ConvNets on various tasks highlight its potential as an open-source alternative for medical image
segmentation, particularly in settings with limited computational resources. In Isensee et al.

(2019) is proposed nnU-Net, a versatile and efficient framework that offers a rich set of U-Net-
based architectures optimized for a wide range of 2D and 3D medical imaging segmentation. By
adaptively configuring architectures based on specific characteristics of the input data, such as
image resolution and anatomical structures, nnU-Net significantly reduces the need for manual
intervention in the network setup process and reliance on domain-specific expertise, accelerating
1 CerebriuDIKU as referred in He et al. (2021)
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research and clinical applications within the field. nnU-Net accomplishes this by effectively
capturing dataset and pipeline characteristics, generating a pipeline fingerprint that leads to high-
quality segmentation. By dividing parameters into blueprint, inferred, and empirical categories,
nnU-Net automatically handles hyperparameter settings and network configurations.

There are also models that deal with 3D segmentation directly, sharing a common
emphasis on improving segmentation for challenging scenarios. In Çiçek et al. (2016), a 3D
U-Net is used for addressing sparse annotation challenges in 3D volumetric segmentation.
The authors introduce a versatile architecture applicable for both semi-automated and fully-
automated scenarios, where users provide sparse annotations on specific slices in the semi-
automated setup so the network can generate detailed 3D segmentations. Additionally, in the fully
automated setting, the network is trained on sparsely annotated datasets, enabling generalization
to new volumetric images. This 3D U-Net employs on-the-fly elastic deformations for data
augmentation and can be trained from scratch without relying on pre-trained models, offering
a promising solution to alleviate the volumetric data annotating burden. In Xia et al. (2020) is
introduced Uncertainty-aware Multi-view Co-Training (UMCT) 2, an approach tailored for 3D
semi-supervised medical image segmentation. UMCT extends dual-view and deep co-training
methods from 2D to multi-view 3D training, enhancing robustness by using asymmetrical 3D
kernels initialized from 2D pre-trained models. The authors also introduce an Uncertainty-
weighted Label Fusion Module (ULF) for improved multi-view predictions. UMCT addresses
both semi-supervised and Unsupervised Domain Adaptation (UDA) in volumetric medical image
segmentation, which helps promote consensus among different views on unlabeled data. By
employing Bayesian Deep Networks with the ULF for pseudo-label generation on unlabeled
data, UMCT is adaptable to UDA scenarios even without source domain data. In Oktay et al.

(2018), an Attention U-Net is proposed for organ localization and segmentation without relying
on external modules. The Attention U-Net shows great potential for improving the localization
of tissues and organs, especially for smaller structures such as the pancreas. This model can
implicitly learn to suppress irrelevant regions in the input image while highlighting important
features for the current task. The introduction of an Attention Gate in medical images is notable
as they autonomously emphasize target structures of various sizes and shapes. Furthermore, such
models show high adaptability for integration with standard ConvNets and U-Net models without
considerable computational overhead, while increasing segmentation sensitivity and precision.

The remaining class of models covered encompasses NAS approaches, whose models
share the goal of optimizing architectures to increase efficiency in 3D segmentation tasks. Kim
et al. (2019) present Scalable NAS (SCNAS), a comprehensive NAS framework tailored for 3D
segmentation and designed to automatically optimize architectures capable of handling high-
resolution 3D medical images. SCNAS systematically explores architectural configurations in a
discrete search space, such as neural connections and layer operations, using encoder and decoder

2 NVDLMED as referred in He et al. (2021)
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components. To address the complexities of searching through a vast and discrete architectural
space while maintaining scalability, the authors introduce an innovative stochastic sampling
algorithm based on continuous relaxation. This allows SCNAS to perform efficient gradient-
based optimization while reducing computational demands. In Yu et al. (2020) is proposed
Coarse-to-Fine Neural Architecture Search (C2FNAS), a two-stage NAS method designed for
3D image segmentation that tackles the inconsistency challenge between search and deployment
stages, a common issue in NAS algorithms. C2FNAS incorporates a coarse-to-fine strategy
to effectively explore the search space of architectures, dividing it into two stages: a coarse
stage, which focuses on macro-level topologies exploration, and a fine stage, focused on optimal
operations selection within individual neural cells. To effectively manage memory limitations,
C2FNAS employs a single-path, One-shot NAS approach with uniform sampling during the fine
stage. Consequently, C2FNAS outperforms prevalent 3D models in terms of performance while
simultaneously maintaining a relatively compact model size.

In He et al. (2021) is proposed Differentiable Network Topology Search (DiNTS), the
main baseline for Active-DiNTS and a method to search for multi-resolution and multi-path
network topologies for 3D medical segmentation. Through a feature node conversion technique,
DiNTS focuses on both macro and micro search of operations and connection patterns in a cell-
based space, generating multiple topologies that span various architecture types, including but
not limited to U-Nets. By efficiently exploring flexible network topologies through continuous
relaxation and discretization techniques, DiNTS significantly reduces search time while managing
GPU memory within a budget constraint. The authors also introduce a topology loss to bridge the
gap between continuous and discrete models, which is crucial in memory-constrained scenarios
and helps optimize network connection for feasibility and effectiveness.

6.2 Active Differentiable NAS with Pool-based Sampling

This section presents a novel method named Active-Differentiable Network Topology
Search (Active-DiNTS) that uses a Pool-based Sampling strategy and Uncertainty measures to
find promising ConvNet-like architectures for 3D Image Segmentation. Inspired by DiNTS (HE
et al., 2021), Active-DiNTS adapts the former method to include an Active Learning framework
on top of the bi-level optimization process that updates both the macro and micro structures of
architectures in order to reduce costs such as data usage and search time. As seen in Section 6.1,
related works contribute to improving the efficiency and accuracy of 3D segmentation while
addressing specific challenges related to data availability, robustness, and sensitivity. However,
such methods still struggle to achieve good performance with limited data. Therefore, Active-
DiNTS is proposed with the goal of learning from fewer examples using active sampling
strategies to minimize the use of labeled data while maximizing predictive performance in the
Medical Image Segmentation task. An overview of Active-DiNTS’ pipeline is seen in Figure 29.
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Figure 29 – Active-DiNTS overview.

Figure 29 shows the Pool-based Sampling Scenario adopted by Active-DiNTS. This con-
ventional AL framework starts with an untrained Active-DiNTS only being aware of the number
of classes. As input, Active-DiNTS receives an Unlabeled Pool UW dataset and produces predic-
tions, which are then fed to an uncertainty estimation function that measures their confidence.
The most uncertain pool samples are then given to the Oracle, an entity that has knowledge of
the original labels. In real-life scenarios, this Oracle is a domain expert, such as a physician who
will label medical images with their pathologies or, as in the case of Active-DiNTS application,
segment tumors presented in unlabeled images. Here, this Oracle, represented by the complete
dataset, labels these samples and creates a new Labeled dataset LW , simultaneously removing
such samples from UW . This entire process constitutes a query, and with each query, labeled
examples composing LW are used to update Active-DiNTS’ weights. This iterative process
continues until the Unlabeled Pool UW is exhausted or the expert user (Oracle) is satisfied with
the sample in a practical scenario. Additionally, this framework contains a second interconnected
AL loop that updates Active-DiNTS’ topology. The inner loop also follows a traditional AL
procedure, emptying an Unlabeled Pool UT while feeding a Labeled dataset LT using Pool-based
Sampling and Uncertainty functions. However, this internal loop occurs every training epoch
after adjusting Active-DiNTS’ weights with LW , and only one representative sample at a time is
selected from UT to update LT . As there will naturally be more removals from UT than from UW ,
UT is restarted every time it is emptied, in case the number of queries, and therefore of UW , has
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not been emptied too. Therefore, Active-DiNTS first learns the architectural weights with LW for
N training epochs using Q queries in UW and, subsequently, learns the architectural topology
with LT fed from UT . Next, Algorithm 3 details the Active-DiNTS process.

Algorithm 3: Active-DiNTS Procedure.
Input: Search Space S, Active-DiNTS Model, Oracle dataset O, Labeled dataset LW ,

Unlabeled Pool UW , Labeled dataset LT , Unlabeled Pool UT , Query Setup QS, Query
Function QF , Nº of Samples per Query SQ, Nº of training Epochs E

Output: Final discrete and trained Active-DiNTS Model

1 Model← init(S)
2 LW ← /0
3 LT ← /0

4 while UW is not empty do
5 predictions← inference(Model,UW )

6 if QS is on topology only then
7 QF ← Random

8 samples← selection(predictions,QF ,SQ)
9 samples← labeling(samples,O)

10 LW ,UW ← update_datasets(samples)

11 foreach epoch in E do
12 train(Meta,LW )
13 end

14 if UT is empty then
15 UT ← Refill

16 predictions← inference(Model,UT )

17 if QS is on weights only then
18 QF ← Random

19 samples← selection(predictions,QF ,SQ)
20 samples← labeling(samples,O)
21 LT ,UT ← update_datasets(samples)

22 sample← subsample(LT ,B)
23 train(Meta,sample)
24 end

Algorithm 3 has as inputs a cell-based Search Space S; an Active-DiNTS Model instance
sampled from S and composed of a flexible topology; an Oracle dataset O containing knowledge
for labeling examples; labeled and pool empty sets to be filled in the AL process, LW , LT , UW ,
and UT ; a query function QF that measures examples uncertainties; the number of samples per
query SQ that dictates AL updates pace and duration; and the number of training epochs E.
The process starts by instantiating both Active-DiNTS Model and empty datasets LW and LT

in lines 1 to 3. From lines 4 to 23, the complete AL training process occurs, which continues
until the Unlabeled Pool UW is empty. First, the untrained Model predicts samples from UW in
line 5, which are used to select the most uncertain examples by the selection function in line
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8. This query function QF returns a number of samples according to SQ, which are submitted
to the Oracle O labeling function in line 9. Once labeled, the LW dataset is updated with new
samples that are also removed from the gradually emptied UW . Finally, Model is trained with the
Labeled dataset LW for E epochs in lines 11 to 13. It is important to highlight that such training
becomes heavier as AL continues, as LW is filled in each round of active labeling. However,
the prediction and estimation of uncertainties in UW go in the opposite direction as it becomes
lighter as examples are labeled, causing the entire process to have a constant cost. After updating
the weights, the second AL loop focuses on adjusting the network topology on lines 16 to 23.
After being trained on LW , Model generates predictions for the Unlabeled Pool UT on line 16,
which are used to select and label samples by the Oracle O in lines 19 to 21, updating both LT

and UT datasets. Finally, the topology is adjusted to take into account the new examples in line
23. However, this training occurs differently than training with LW . Instead of the entire LT set,
only one sample is used to tune the topology, thus being an incremental bi-level optimization
popularly used in NAS (LIU; SIMONYAN; YANG, 2018; LIU et al., 2019; HE et al., 2021).

6.2.1 Active Learning Setups and Query Functions

Active-DiNTS iteratively queries the labels of the most relevant examples from a large
unlabeled dataset to find suitable architectures. Such a strategy, combined with bi-level NAS
optimization, encourages the search for architectures that generalize well using fewer labeled
data. Active-DiNTS tries different feedback loops for the AL setup: (i) Updating the weights
of searched architectures with new labeled examples; (ii) Updating the topology of searched
architectures with new labeled examples; and (iii) updating both weights and topology of
searched architectures with new labeled examples. In combination with such configurations,
choosing a function to measure example relevance is of utmost importance. The choice for a
query function QT depends on the specific AL strategy employed, such as Uncertainty sampling,
Query-by-committee, or Expected model change (LEITE; BRAZDIL, 2010). AL aims to select
examples that provide the most valuable information to improve model performance while
minimizing labeling efforts to achieve a desired level of generalization. In addition to the Random
baseline, Active-DiNTS considers Uncertainty sampling to select representative examples, and,
for the sake of simplicity and reproducibility, it adopts the measures of Entropy, Variance, and
Standard Deviation, which are among the most simple and used approaches in the literature.

Entropy is a measure of disorder within a system, indicating the uncertainty associated
with its content (DASGUPTA, 2011). In the context of this work, it quantifies the level of
unpredictability of a segmentation mask generated by the learned model after receiving an
MRI image as input. Without considering outliers, a higher entropy implies greater uncertainty,
indicating that a data point (input image) is more informative and, thus, should be prioritized for
labeling in order to improve model performance and reduce uncertainty. The Entropy for an AL
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process can be defined according to Equation 6.1,

H(D) =−∑
y∈Y

P(y) log2 P(y) (6.1)

where H(D) denotes the entropy of the segmentation mask D with respect to the set
of possible labels Y (tumor, or no tumor) for each input pixel, and P(y) as the probability of a
particular label y occurring in D.

Variance is a statistical measure that quantifies the spread or dispersion of data points
(samples), or in Active-DiNTS case, dispersion within a segmentation mask, in relation to its
mean (FRIEDMAN, 1937). In the context of AL, variance can be used to measure the variability
of predictions caused by different training samples or pixels in an image, quantifying how
sensitive the model is to changes in the training data. High variance suggests that the model’s
predictions can vary significantly with different labeled samples, making it valuable in AL for
selecting diverse and informative data points to improve model robustness and generalization.
The Variance can be obtained calculated as in Equation 6.2,

σ
2 =

1
N

N

∑
i=1

(xi−µ)2 (6.2)

where σ2 denotes the variance, N is the number of pixels in a segmentation mask, xi

represents each individual pixel, and µ is the mean of the whole mask.

Standard Deviation is also a statistical measure that assesses the amount of variation or
dispersion in a dataset or segmentation mask, being the square root of Variance (MCLACHLAN,
2005). Standard Deviation provides a more interpretable measure of how data points deviate
from the mean and it is expressed in the same units as the original data. In the context of AL, both
Standard Deviation and Variance quantify the uncertainties based on the variability of predictions.
However, while Variance quantifies overall prediction uncertainty, Standard Deviation measures
individual prediction uncertainty since it can indicate how much individual data points deviate
from the mean. Besides, Standard deviation is sensitive to extreme values, which could help to
identify outlier examples to actively label. Its calculation is seen in Equation 6.3,

σ =

√
1
N

N

∑
i=1

(xi−µ)2 (6.3)

where σ denotes the standard deviation, N is the number of pixels in a segmentation
mask, xi represents each individual pixel, and µ is the mean of the whole mask.
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6.2.2 Active-DiNTS Search Space

(a) Topology space.

(b) Cell space.

Figure 30 – Active-DiNTS Search Space. Adapted from He et al. (2021).

Figure 30 presents the Search Space of DiNTS (HE et al., 2021), a topology and cell-
based space also used by Active-DiNTS. This space supports the search for multiple input image
scales and complex multi-path topologies, encompassing L=12 layers and O=5 operation cells
on the edges connected to nodes representing the resulting feature maps, dictating the feature
flow from input to output and creating a network topology. The blue edges 2x downsample/up-
sample, 3x3x3 convolution, 1x1x1 convolution, 3x3x3 convolution with stride 2, and direct pass
(skip connection) are the predefined operations that form the final architectures. The O=5 cell
operations are defined on the green dashed edges, while the green nodes are feature maps. This
unique Search Space differentiates itself by featuring fully connected edges that link adjacent
resolutions, providing flexibility for exploring various input image scales and complex multi-path
topologies. The feature spatial changes are performed by the upsample/downsample operations
in the edges searched from the topology level. Together with the original image, four 3×3×3
3D convolutions with stride 2 can be used to create D=4 resolution features. In addition, for
each edge containing a cell operation, a 2x downsample/upsample operation is used before the
cell. Except for skip connection operators, a cell also includes ReLU activation and Instance
Normalization before and after its operations. Thus, a feature node is the summary of all these
pre-defined operations and the output features from each input edge.
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This cell-based Search Space is defined by a set of basic operations where input and
output feature maps preserve the same spatial resolution. Unlike the Search Spaces of popular
methods such as DARTS (LIU; SIMONYAN; YANG, 2018) and Auto-Deeplab (LIU et al.,
2019), where cells and connections can be searched, but they are repeated at the topology level,
the DiNTS space allows searching cells independently. In addition to relying on pseudo-3D
convolution (P3D) (ZHU et al., 2019), Active-DiNTS also searches for: (0) skip connections;
(1) 3D convolution 3x3x3; (2) P3D 3x3x1 (3x3x1 convolution followed by 1x1x3 convolution);
(3) P3D 3x1x3 (3x1x3 convolution followed by 1x3x1 convolution); and (4) P3D 1x3x3 (1x3x3
convolution followed by 3x1x1 convolution).

𝜷𝟐

𝜷𝟑

𝜷𝟏

0.1 0.9

0.9

0.8

0.1

0.1

0.9
0.1

0.1

0.8

0.1

0.9

0.1

0.1

𝜷𝟏+𝜷𝟐+𝜷𝟑=1

Search Discretization

Continuous Model Discrete Model

Gap

Figure 31 – Discretization gap problem between the feature flow of a searched continuous model and its
final discrete version. Adapted from He et al. (2021).

In addition to providing an alternative solution to the limited search spaces with simple
repetitive cells and inflexible topologies, Active-DiNTS space addresses the discretization gap
problem as illustrated in Figure 31. Similar to other NAS One-shot methods, Active-DiNTS
relaxes the discrete search space into a continuous representation so that O=5 candidate operations
can be associated with trainable parameters (probabilities) optimized by gradient descent. After
optimization, the continuous model is discretized, where operations with higher probabilities are
selected while low-probability operations are discarded, even those that contribute significantly
to the computation graph and subsequent layers. By directly discarding operations with non-zero
probabilities, the feature maps information flow can be significantly disturbed, generating a gap
between the feature flow of the continuous model and the final discrete model. This problem
is known as the "Discretization gap", and is caused mainly by topology restrictions such as the
single path restriction that limits possible architectural arrangements.

As seen in Figure 31, most One-shot models search for edges in a competitive and
exclusive matter, assuming a single incoming path for each node. After discretization, a single
path is maintained while other edges, even with high β probabilities, are discarded, meaning that
the feature flow in the searched continuous architecture has a significant gap with the feature flow
of the final discrete model. Although previous research has addressed the discretization problem,
overcoming topology restrictions requires the search process to be aware of the discretization
algorithm as it imposes topology restrictions. This restriction means that certain edges, even



6.2. Active Differentiable NAS with Pool-based Sampling 147

with substantial probabilities in the continuous model, cannot be incorporated into the final
discrete model. To avoid generating topologically infeasible edges that would eventually be
removed in the discretization process, thus causing the discretization gap problem, a topology
loss is introduced by DiNTS and also used in Active-DiNTS. This loss topology encourages
connections with high probabilities to be viable and not discarded, reducing the gap between
continuous and discrete models. Another interesting point about this loss is that it becomes more
important when the parameter RAM factor is smaller. Using small values for this parameter
makes the architecture more sparse and with fewer connections, thus being more likely to have
topology unfeasibility. In experiments with Active-DiNTS, variations of the memory constraints
[0.2, 0.5, 0.8] are tested, in which when increasing the parameter, the researched model is more
dense in terms of connection and can achieve better performance at the cost of GPU memory.
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6.3 Experimental Setup

This section presents the complete experimental setup for the training and validation
of Active-DiNTS in its various configurations. To guarantee experiments’ transparency and
to facilitate reproducibility, details are given in the following. Section 6.3.1 introduces the
employed medical image dataset. Section 6.3.2 lists the baseline methods used in the comparative
analyses. Finally, Section 6.3.3 presents the evaluation methodology, which includes data pre-
processing procedures, evaluation metrics, implementation details, software tools, and hardware
specifications used in the training of Active-DiNTS and baselines.

6.3.1 Medical Image Segmentation Dataset

This section briefly presents the Task01_BrainTumour dataset used for the training and
validation of Active-DiNTS. This employed Brain dataset is a subset extracted from the Medical
Segmentation Decathlon (MSD) competition (ANTONELLI et al., 2022), which comprises an
extensive collection of biomedical data from a vital collaborative initiative of various research in-
stitutions. The MSD competition database encompasses an array of challenging medical imaging
tasks, each involving intricate segmentation objectives such as organ delineation, tumor localiza-
tion, and anatomical structure identification within medical images. Moreover, these datasets
contain a diverse range of multi-modal data, including CT and MRI scans, spanning multiple
clinical domains. The rich and complex nature of such datasets facilitates the development of
precise and innovative segmentation algorithms, signifying its profound impact on the field of
medical image analysis and healthcare applications in clinical practice (LI et al., 2023).

In particular, the MSD subset identified as Task01_BrainTumour, which focuses on
the challenging task of brain tumor segmentation, is the one relevant to Active-DiNTS. This
training dataset comprises 484 multiparametric-Magnetic Resonance Images (mp-MRI) derived
from patients diagnosed with glioblastoma or lower-grade glioma. It also includes diverse
MRI sequences containing the modalities of Fluid-Attenuated Inversion Recovery (FLAIR),
T1-weighted image (T1w), post-Gadolinium (Gd) contrast T1-weighted image (T1 wGd), and
T2-weighted image (T2w). With such data, the main focus of the original challenge related
to this dataset is the precise delineation of complex and heterogeneously located brain tumor
sub-regions, where the corresponding Regions of Interest (ROIs) consist of Edema, Enhancing
and Non-Enhancing Tumor sub-regions, reflecting its segmentation task complexity. Notably,
Task01_BrainTumour is inspired by the Brain Tumor Segmentation (BraTS) challenges (MENZE
et al., 2014) and involves cases from the 2016 and 2017 editions. However, to prevent case
mapping between the two challenges, filenames suffered alterations and shifting.
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6.3.2 Baseline Methods

This section presents an overview of the baseline methods used for experiments and
comparisons with the proposed Active-DiNTS. These baselines are categorized into manually
defined U-Net architectures and NAS methods that automatically discover the architectures, with
such methods covering a variety of approaches like semi-supervised learning, attention models,
2D, pseudo-3D, and pure 3D models. Details about these works have been previously discussed
in Section 6.1, but are listed here for reference. Furthermore, setup variations of Active-DiNTS
are detailed in this section, including different targets for active sampling, uncertainty function
configurations, and hyperparameter adjustment as seen in Table 19.

Two examples of 2D or pseudo-3D methods adopted for comparisons are Cerebri-
uDIKU (PERSLEV et al., 2019), which combines a U-Net architecture with multi-planar 2D
augmentations, and nnU-Net (ISENSEE et al., 2019), an adaptable framework to 2D/3D seg-
mentation with U-Net architectures for diverse medical imaging datasets. On the other hand,
examples of 3D hand-crafted segmentation models include NVDLMED (XIA et al., 2020),
a semi-supervised learning model that uses multi-view data augmentation with dual-view co-
training, 3D U-Net (ÇIÇEK et al., 2016), an adaptation of U-Net designed for scenarios with
sparse annotations, and Attention U-Net (OKTAY et al., 2018), which uses an attention gate
model for organ localization and identification. Among NAS-based models for 3D medical
imaging segmentation, there is the main baseline for Active-DiNTS, the original DiNTS (HE
et al., 2021), which employs a search for multi-resolution and multi-path network topologies,
SCNAS (KIM et al., 2019), another efficient NAS framework featuring stochastic sampling
algorithms for fast optimization, and C2FNAS (YU et al., 2020), a two-stage NAS method that
addresses the inconsistency between search and deployment stages efficiently.

As seen in Section 6.2, uncertainty functions used by Active-DiNTS include: (i) Entropy,
which measures the randomness or disorder of segmentation masks generated from specific
input examples; (ii) Variance, which measures the average squared difference of each voxel
from the mean in a segmentation mask; and (iii) Standard Deviation, which measures data
dispersion by quantifying the square root of Variance to select uncertainty samples. Along with
each uncertainty function, associated hyperparameters are tuned during architecture search and
training, as seen in Table 19. The Variance function from the MONAI package has a background
variable that controls the inclusion of the spatial image background (segmentation mask) to
calculate the metric. Besides, it is possible to return the spatial variation/uncertainty map instead
of a single scalar value resulting from calculating the mean or sum of variations in the uncertainty
map. Additionally, as input data are 4D MRI images (modalities, width, height, slices), it is
necessary to define which dimension to apply the uncertainty functions. Applying it to Axis 0 or
in_channels would calculate uncertainties regarding all image modalities, namely FLAIR, T1w,
T1 wGd, and T2w. On the other hand, opting for Axis 3 would take the entire dimension of voxel
slices into consideration, thus calculating uncertainties based on the 3D depth of MRI images.
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Active-DiNTS applies different AL setups along with uncertainty functions, as Sec-
tion 6.2 previously explored. This macro configuration of AL update targets consists of three
possibilities: (i) Perform active labeling to optimize the weights of the neural architecture while
updating the architecture topology with randomly chosen labels; (ii) Perform active labeling to
optimize the architecture topology while updating the weights of the neural architecture with
randomly chosen labeled examples; and, finally, (iii) exclude any random processes and update
both the weights and the topology of the neural architecture according to the chosen uncertainty
function. The remaining hyperparameters shown in Table 19 were tuned via Grid Search along
with a 5-Fold Cross-validation adopted for training and testing. Some of these hyperparameter
ranges, such as Epochs and Warm-up epochs, were defined after the He et al. (2021) setup.

Table 19 – Active-DiNTS hyperparameter space.

Hyperparameter Range
Input channels (FLAIR, T1w, T1 wGd, T2w)
Query function (Random, Entropy, Variance, Std)
Axis query (modalities, slices)
AL setup (Weights, Topology, Weights and Topology)
AL samples [2, 100]
Epochs [1, 1430]
Warm-up epochs [1, Epochs/2]

Active-DiNTS additional technical details follow the standards outlined in He et al.

(2021). Unlike DiNTS, which searches and retrains its architecture, Active-DiNTS employs
the same searched architecture on the Brain MSD dataset. After the search, the discretized
DiNTS model is randomly initialized and retrained with doubled filter numbers and batch sizes.
In contrast, Active-DiNTS uses the searched model as it is, following the same 5-fold Cross-
validation split as DiNTS. To train the architecture weights W , SGD with a 0.9 momentum,
weight decay of 4e− 5, and a Cosine Annealing learning rate scheduler is employed, while
the topology parameters are trained with Adam, all initialized with Gaussian distribution. A
RAM cost factor of 0.8, representing the most resource-intensive DiNTS version, is also adopted
for Active-DiNTS. While DiNTS trains W for the first 1k warm-up and then 10k iterations
without updating the architecture, Active-DiNTS only undergoes an initial warm-up of Epochs/2
iterations. The loss function for updating W combines Dice and Cross-entropy losses, while
a complex loss is used to update the architecture topology. This loss includes a topology loss,
a weighted scheme based on the number of epochs, an entropy loss to encourage topology
parameter binarization, a RAM cost loss, and a scaled term. To generate the segmentation
masks, a Sigmoid activation is applied to convert the convolution outputs into masks. Lastly,
multi-channel pre-processing following the BraTS classes is applied to the Brain MSD dataset,
with additional augmentations aligned with DiNTS procedures.
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6.3.3 Evaluation Methodology

This section presents the evaluation methodology used to conduct experiments with
Active-DiNTS and baselines. In alignment with He et al. (2021), all experiments followed a
consistent approach for data splitting and validation. Active-DiNTS hyperparameters shown in
Table 19 were tuned via Grid Search, and of the 484 public MRI images from the Brain MSD
dataset, 388 are used for training and 96 for testing in 5-Fold Cross Validation, following the
original dataset splitting patterns. From the training dataset, half of the examples are used to
train the architecture weights and the remaining to adjust their topologies. Differing from He
et al. (2021) that search and re-train on the source dataset, Active-DiNTS’ final architecture
is deployed after searching on the Brain MSD dataset without re-training. This procedure was
implemented due to the achievement of satisfactory performance of Active-DiNTS even in the
search phase, surpassing the baselines, including DiNTS, and because of the significant costs
associated with re-training each one of the generated architectures.

To evaluate segmentation performance, Dice or the Dice-Sørensen Coefficient (DSC) was
adopted, a common metric to evaluate performance in image segmentation tasks. In simple terms,
Dice measures the similarity or overlap between predicted and ground truth segmentation masks,
ranging from 0 to 1, where 1 indicates perfect overlap. Dice is computed as DSC = 2|X∩Y |

|X |+|Y | , where
X is the set of pixels in the predicted segmentation mask, Y are the pixels in the ground truth
segmentation mask, |X | and |Y | are the cardinality of X and Y , and |X ∩Y | is the cardinality of
sets X and Y intersection. Additionally, other indicators were used to measure the computational
efficiency of segmentation models: The GPU memory required to search/train the models,
architectural learnable parameters, and the Floating Point Operations (FLOPs) that represent the
number of arithmetic operations performed during neural computations.

The complete experimental setup covering the entire Active-DiNTS implementation, the
datasets used, and all associated documentation have been made openly available via GitHub 3.
The entire codebase was written in Python and only open-source libraries were used. In particular,
the popular PyTorch (PASZKE et al., 2019) was used to customize Active-DiNTS and to
train its neural architecture. Scipy (VIRTANEN et al., 2020), another widely used library
for scientific computing, was employed to implement some of the active sampling strategies.
Finally, MONAI (CARDOSO et al., 2022), a PyTorch-based open-source framework for DNN
in healthcare imaging, was adopted for manipulation, preprocessing, and evaluation with the
medical imaging datasets used in this proposal. Regarding the hardware infrastructure, all training
and validation were conducted on a single Linux server equipped with an Intel Xeon Silver
4215 CPU 2.50GHz 8-core processor and 126GB of RAM. Furthermore, only one GPU was
used, the Tesla V100 with 32GB VRAM, used to search and train the architectures generated by
Active-DiNTS, thus emphasizing the computational efficiency and accessibility of the proposal.

3 https://github.com/geantrindade/Active-DiNTS
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6.4 Results and Discussion

The experiments presented in this section were designed to answer the following research
questions: (i) Can simple active sampling strategies used by Active-DiNTS present comparable or
better performances than traditional segmentation models? (ii) Can Active-DiNTS with varying
AL strategies offer improved computational efficiency when compared to other segmentation
models? (iii) Can different AL strategies produce significantly divergent results?
The following sections address these questions through analysis and comparisons between
Active-DiNTS and state-of-the-art segmentation models on Task01_BrainTumour from the
Medical Segmentation Decathlon (MSD) competition dataset. As for the third-party methods
included in the comparative analyses, original results have been cited for reference.

6.4.1 Active Sampling Analysis

This section shows a comparative analysis of AL setups and uncertainty sampling
strategies used in Active-DiNTS. Figure 32 provides comparisons between uncertainty functions
on the best overall AL setup of Weights and Topology. At the same time, Figure 33 presents
comparisons between all AL setups considering an average of the uncertainty sampling strategy
models. Additional results for all sampling functions and AL setups are included in Appendix B.

0 20 40 60 80 100
Queries

0.0%

20.0%

40.0%

60.0%

80.0%

Di
ce

 sc
or

e

Task01_BrainTumour from MSD challenge (AL=Wt. & Topo)

Active-DiNTS (Random)
Active-DiNTS (Entropy)
Active-DiNTS (Variance)
Active-DiNTS (Std)
DiNTS

Figure 32 – Active-DiNTS learning curves over the number of Queries. Active Learning was used to
select samples to train both the Weights (Wt.) and Topology (Topo) of neural architectures.
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Figure 32 shows the consistent progress of Active-DiNTS with different uncertainty
functions. At first glance, it is seen that Active-DiNTS outperforms the baseline DiNTS relatively
early in the process. Entropy, Variance, and Std versions also outperform the Random baseline
with some margin, whose performance is consistently inferior throughout the entire process. In
the initial queries, uncertainty functions present comparable performance with a slight superiority
of Variance and Entropy when Active-DiNTS surpasses DiNTS, but from query 20 onwards,
Std shows a slight superiority. DiNTS, in particular, is outperformed with approximately 18
queries, representing less than 20% of the original dataset that it uses entirely. Another important
observation concerns the abrupt performance drops of some queries. Such degradation suggests
that these queries can disrupt the training data distribution and make the model substantially
adjust its weights, which, due to the short training epochs after each query, is unable to adapt
in time, causing the observed performance drops. When observing the Dice curve, there is a
substantial increase in performance, especially in the initial queries 1 to 20. This is expected
given the limited labeled training set, where each new uncertain sample significantly impacts the
data distribution and, consequently, the model’s learning. After query 20, performance continues
to improve up to the 97th query, with consistent and substantial improvement up to about 60% of
data usage, after which progress becomes more gradual. It is also worth mentioning that Random
presents greater instability and variability of results throughout the process, while the uncertainty
techniques display greater variability in initial queries.
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Figure 33 – Active-DiNTS learning curves over the number of Queries. Every curve is an Average (Avg)
of each Active Learning setup (Weights, Topology, and Weights & Topology) over all the
Query strategies models (Entropy, Variance, and Std).
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Figure 33 shows the average outcomes of uncertainty functions for each AL setup, provid-
ing a more precise assessment of each configuration’s impact. Similar to previous observations,
distinct patterns emerge with initial high Dice scores followed by gradual improvements and
Active-DiNTS surpassing DiNTS using less than 20% of the original data. On average, the
Weights and Topology configuration consistently outperforms others, showcasing the highest
Dice scores, especially in the crucial phase of initial queries. Additionally, the Topology-only
configuration demonstrates favorable results comparable to the Weights and Topology setup at
certain points. In contrast, the Weights-only configuration exhibits comparable performance ini-
tially but experiences a decline around the 40th query, maintaining this trend thereafter. Notably,
despite Random appearing inferior to Weights after the mid-process, it displays higher variability
with a considerable standard deviation, questioning its partial superiority. When assessing the
overall results of all AL configurations, the most effective approaches involve actively training
the topology, whether by adjusting the topology alone or simultaneously updating both topology
and architecture weights. Merely adjusting weights with AL does not yield sustained improve-
ment, but it shows comparable results to the best configurations up to approximately the 35th
query. In summary, akin to uncertainty functions, all AL setups demonstrate state-of-the-art
results utilizing only about 20% of the original labeled data.
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6.4.2 Searched Architectures Analysis

This section presents a qualitative analysis of the architectural topologies found by
Active-DiNTS and its uncertainty sampling strategies, along with a topology discovered by the
original DiNTS baseline. Based on comparisons between topologies, this section aims to analyze
their particularities in order to identify the biases of each generating approach, their similarities,
and the complexities of searched cells. Therefore, Figure 34 showcases the architectural topology
generated by DiNTS, while Figure 35 presents the topologies discovered by the sampling
strategies of Entropy, Variance, Standard Deviation, and Random used in Active-DiNTS.
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Figure 34 – Original DiNTS (HE et al., 2021) searched architecture on Pancreas dataset. Edges are: 0 =
Skip, 1 = 3x3x3, 2 = P3D 3x3x1, 3 = P3D 3x1x3, 4 = P3D 1x3x3.

The DiNTS topology shown in Figure 34 contains a total of 97 connections, where each
of the 5 possible layer operations is employed. The first operation, the skip connection (0), known
for preserving information flow between layers and boosting gradient flow, is used in 24 out
of 97 connections, representing 24.7% of the total connections. The 3D convolution operation
3x3x3 (1), which constitutes a 3D convolution with a 3x3x3 kernel, plays a significant role in
feature extraction across the entire voxel volume, appears in 33 connections, or approximately
34% of the total number of connections, thus being the most commonly used operation in the
topology. Another possible operation is the so-called P3D, which represents the popular pseudo
3D used in other NAS works in the literature (HE et al., 2021; ZHU et al., 2019). The P3D 3x3x1
operation (2) is used in 14 connections and consists of a 3x3x1 convolution followed by a 1x1x3
convolution. In turn, the P3D 3x1x3 operation (3) consists of a 3x1x3 convolution followed by
a 1x3x1 convolution, and it is found in 12 connections, representing approximately 12.4% of
the total connections and, therefore, the least used operation. Finally, the P3D 1x3x3 operation
(4) that consists of a 1x3x3 convolution followed by a 3x1x1 convolution is also used in a total
of 14 connections. Therefore, it is concluded that among the valid operations, the most chosen
operation in the topology obtained by DiNTS is the 3D 3x3x3 convolution, present in 33/97
connections and thus being the most prominent feature extractor. On the other hand, the P3D
3x1x3 was the least used operation, appearing on only 12/97 connections and making it the least
dominant choice for data processing within the architecture.



156 Chapter 6. Active Differentiable Network Topology Search

(in,0) (0, 0)3

(0, 1)

1

(in,1)

3
4

(0, 2)

1

(in,2)

2
4

(0, 3)

3

(in,3)

1
4

(1, 0)0

(1, 1)

1
4
1

(1, 2)

1
1
4

(1, 3)

2
0
1

(2, 0)1

(2, 1)

0
1
0

(2, 2)

3
4
4

(2, 3)

2
0
1

(3, 0)3

(3, 1)

1
1
2

(3, 2)

4
3
3

(3, 3)

2
3
1

(4, 0)1

(4, 1)

1
3
0

(4, 2)

4
1
3

(4, 3)

2
0
1

(5, 0)1

(5, 1)

4
1
0

(5, 2)

4
0
3

(5, 3)

3
1
1

(6, 0)0

(6, 1)

0
2
3

(6, 2)

0
0
3

(6, 3)

1
0
2

(7, 0)2

(7, 1)

0
2
2

(7, 2)

4
3
1

(7, 3)

2
0
2

(8, 0)0

(8, 1)

4
2
1

(8, 2)

2
4
2

(8, 3)

3
3
3

(9, 0)2

(9, 1)

3
1
3

(9, 2)

1
3
3

(9, 3)

2
2
4

(10, 0)3

(10, 1)

4

3
1

(10, 2)

3

3
2

(10, 3)

4

3
4

(11, 0)0

(11, 1)

3
1
4

(11, 2)

1
3
1

(11, 3)

1
3
4

(a) Random at Query 41/97 (82/194 examples).
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(b) Entropy at Query 35/97 (70/194 examples).
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(c) Variance at Query 36/97 (72/194 examples).

(in,0) (0, 0)3

(0, 1)

1

(in,1)

3
4

(0, 2)

1

(in,2)

2
4

(0, 3)

3

(in,3)

1
4

(1, 0)0

(1, 1)

1
4
1

(1, 2)

1
1
4

(1, 3)

2
0
1

(2, 0)1

(2, 1)

0
1
0

(2, 2)

3
4
4

(2, 3)

2
0
1

(3, 0)3

(3, 1)

1
1
2

(3, 2)

4
3
3

(3, 3)

2
3
1

(4, 0)1

(4, 1)

1
3
0

(4, 2)

4
1
3

(4, 3)

2
0
1

(5, 0)1

(5, 1)

4
1
0

(5, 2)

4
0
3

(5, 3)

4
1
1

(6, 0)0

(6, 1)

0
2
3

(6, 2)

0
0
3

(6, 3)

1
0
2

(7, 0)2

(7, 1)

0
2
2

(7, 2)

3
3
1

(7, 3)

2
0
2

(8, 0)0

(8, 1)

4
2
1

(8, 2)

2
4
2

(8, 3)

3
3
0

(9, 0)2

(9, 1)

3
1
3

(9, 2)

1
3
3

(9, 3)

2
2
4

(10, 0)3

(10, 1)

4

3
1

(10, 2)

3

3
2

(10, 3)

4

3
4

(11, 0)0

(11, 1)

3
1
4

(11, 2)

1
3
1

(11, 3)

1
3
4

(d) Std at Query 37/97 (74/194 examples).

Figure 35 – Active-DiNTS generated architectures from the least number of queries that surpass DiNTS
(Brain). Edges are: 0 = Skip, 1 = 3x3x3, 2 = P3D 3x3x1, 3 = P3D 3x1x3, 4 = P3D 1x3x3.

In contrast to the topologies generated by DiNTS, those discovered by Active-DiNTS
uncertainty functions are fully connected, as depicted in Figure 35. Across the uncertainty strate-
gies of Entropy, Variance, Std, and the Random baseline, the 3D convolution 3x3x3 operation
(1) consistently emerged as the most common, coinciding interestingly with its prominence in
DiNTS topologies. Notably, the skip connection operation (0) was the least frequent for both
Random and Std, while for Entropy, it was the P3D 1x3x3 operation (4), and for Variance, it was
the P3D 3x3x1 operation (2), diverging from DiNTS that featured P3D 3x1x3 operation (3) as
the least frequent. Further comparisons between Random and Std revealed identical operation
rankings, with P3D 3x1x3 operation (3) in second place, followed by P3D 3x3x1 operation (1)
and P3D 1x3x3 operation (4), despite variations in usage, connection sequences, and information
flow. Surprisingly, Variance exhibited a topology distinct from Std, aligning more closely with
Entropy. Both shared the P3D 3x1x3 operation (3) as the second most popular, followed by the
skip connection operation (0), differing slightly in connection quantity. Remarkably, relative
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to the original DiNTS, the uncertainty strategies most akin in topology were Std and Random,
sharing common top-used operations. These observations highlight the nuanced differences
and similarities in topology generation strategies employed by Active-DiNTS and the original
DiNTS, providing insights into their structural preferences and variations.

Table 20 – Cell operation frequency on Active-DiNTS best performance models and original DiNTS.
Columns represent the number of times an operation was considered the most or least frequent
given all search cells in an architecture.

Method Most frequent Least frequent Total operations
DiNTS 3x3x3 3D convolution (34.0%) P3D 3x1x3 (12.4%) 97/120
Active-DiNTS (Random) 3x3x3 3D convolution (26.7%) skip connection (15.0%) 120/120
Active-DiNTS (Entropy) 3x3x3 3D convolution (27.5%) P3D 1x3x3 (15.0%) 120/120
Active-DiNTS (Variance) 3x3x3 3D convolution (29.2%) P3D 3x3x1 (13.3%) 120/120
Active-DiNTS (Std) 3x3x3 3D convolution (26.6%) skip connection (15.8%) 120/120

To complement the qualitative analysis, the statistics from Table 22 elucidate distinct
architectural preferences and complexities between methods. All methods showed a reliance on
a standard 3x3x3 convolutional operation, suggesting a preference for capturing spatial features
in a three-dimensional space. DiNTS, in particular, was the method that proportionally most
depended on this 3D convolution operation, emphasizing the extraction of spatial features. In
contrast, its less frequent operation, P3D 3x1x3, suggests limited use of a specific convolutional
pattern with a horizontal shape followed by a vertical one. Within Active-DiNTS variations,
despite a common preference for the 3x3x3 convolutional operation, they do not share the
same least frequent operations. Random and Std strategies exhibit a tendency to avoid skip
connections, while Entropy uses fewer P3D 1x3x3 operations, suggesting a strategic bias against
certain spatial patterns captured by this pseudo-3D convolutional sequence. In turn, the Variance
strategy has another P3D operation, the 3x3x1, as the least frequent, reinforcing a shared aversion
to these specific convolutional sequences. Another pattern that proved to be constant in all Active-
DiNTS variations was the presence of fully connected models, which, as discussed in Table 22,
resulted in models with a large number of FLOPs. Thus, this suggests potential challenges
in terms of inference speed, particularly in mobile scenarios where latency is important and
computationally intense models are less used. However, these same models present reduced
memory usage and fewer trainable parameters that could compensate for that. Notably, Active-
DiNTS models employ lighter operations than DiNTS, showcasing variations in architectural
choices and backtracking costs, with implications for model adaptation and performance, despite
some variations such as Active-DiNTS (Std) using fewer skip connections that have minimal
cost. These nuanced findings contribute to a comprehensive understanding of shared trends and
distinctive features of Active-DiNTS and the baseline DiNTS, offering insights into the strategic
preferences of methodologies across cellular operating frequencies.
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6.4.3 Segmentation Analysis

This section provides an in-depth qualitative analysis concerning some of the segmenta-
tion masks generated by Active-DiNTS. This examination focuses on highlighting qualitative
aspects related to precision and recall in brain tumor segmentation, encompassing a fair range of
anatomical variations and geometrical patterns, as demonstrated in Figures 36 and 37. The pre-
sented MRI scans offer a diverse perspective, incorporating multiple acquired slices and covering
the four distinct modalities of FLAIR, T1w, T1 wGd, and T2w, usually employed in the medical
field for comprehensive brain analysis. By comparing the predicted segmentation masks from
Active-DiNTS with the actual segmentation masks, this examination seeks to provide a thorough
understanding of the model’s segmentation capabilities, its ability to accurately delineate various
brain structures, and its robustness in the face of diverse geometric patterns observed in MRIs.
Thus, this analysis is pivotal for assessing Active-DiNTS’s performance beyond the quantitative
and its potential application in real-world medical image segmentation tasks.
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Figure 36 – Brain MRIs and Tumor Segmentation Masks. (Top row) Input image modalities FLAIR,
T1w, T1 wGd, and T2w in the 70/150 slice. (Middle row) Ground-truth Segmentation Masks
where label channels are Non-enhancing Tumor, Edema, and Enhancing Tumor. (Bottom
row) Predicted Segmentation Masks where output channels are for the corresponding classes.
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Figure 36 displays a sequence of MRIs and segmentation masks where rounded or
elliptical tumor lesions can be clearly detected. These MRI images and segmentation masks
are associated with a specific slice of the 3D volume in an axial view, which is the 70th of a
total of 150 slices. This specific slice corresponds to the central portion of the brain, where
the number of voxels showed the highest concentration of the tumor, displaying a prominent
tumor pattern that is visibly denser. This pattern is discernible across all imaging modalities,
allowing precise localization of various glioma classes. In these masks, the segmentation process
appears to be highly effective. The Edema or entire tumor region in channel 1 exhibits high recall
and good precision, successfully identifying subtle patterns. Furthermore, the Non-enhancing
Tumor or Tumor core of channel 1 is well captured with good recall and precision. Even the
Enhanced Tumor in channel 2, known for its considerably smaller dimension and more complex
non-convex shape, exhibits good recall and reasonable precision, although some finer details
may be missing. It is worth highlighting that the challenge of the Enhanced Tumor class is
attributed to its atypical size and shape compared to other classes of tumors, in addition to being
less present in the voxels, requiring greater granularity in segmentation.
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Figure 37 – Brain MRIs and Tumor Segmentation Masks. (Top row) Input image modalities FLAIR, T1w,
T1 wGd, and T2w in the 110/150 slice. (Middle row) Ground-truth Segmentation Masks
where label channels are Non-enhancing Tumor, Edema Enhancing Tumor. (Bottom row)
Predicted Segmentation Masks where output channels are for the corresponding classes.
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Unlike the previous case, Figure 37 presents MRI images where it is not possible to detect
the tumor lesions clearly, except for channel 0 where it is most evident. Furthermore, as seen in
the actual segmentation masks, tumors in this present case show a different pattern, appearing to
be sparser, not dense, and following a V-shape. These MRI images and segmentation masks are
associated with a slice closest to the end of the 3D volume for the axial view. More precisely, it
corresponds to the 110th of a total of 150 slices. Therefore, it is possible to notice a decrease
in the number and size of the voxels. Despite the mixed and fuzzy appearance variations, the
predicted segmentation masks continue to achieve accurate localization of the tumors, exhibiting
high recall and good precision, with only a few errors, such as small fine-grained patterns along
the edges of the gliomas. Both the Edema and the Non-enhancing core of the tumor are captured
with good recall and precision, where subtle patterns were successfully identified. Lastly, even
the most challenging Enhanced core class is well segmented. Active-DiNTS effectively captures
the sparse bipartite pattern, similar to the Non-enhanced Tumor pattern, with good recall and
precision. In short, considering the two cases in Figures 36 and 37, it was demonstrated that
Active-Dints is versatile and can effectively highlight the precise delineation of complex tumor
regions across different brain slices, sub-regions, and image modalities, even when dealing with
varied patterns and challenging tumor classes.



6.4. Results and Discussion 161

6.4.4 State-of-the-art Comparative Performance Analysis

This section presents a comprehensive comparative analysis of the best results from all
Active-DiNTS variations, along with state-of-the-art methods for the task of Medical Image
Segmentation with the Brain MSD dataset. Table 21 showcases a comparison of Dice scores
between several Uncertainty strategies used in Active-DiNTS and other baseline methods, while
Table 22 compares the relationship of model performances with their complexity measured
through FLOPs, trainable parameters, and GPU memory used for training.

Table 21 – Average Dice Score (DSC) results on Task01_BrainTumour from the MSD challenge. DSC1
is for Edema, DSC2 is for Enhancing Tumor, and DSC3 is for Non-enhancing Tumor.

Method DSC1 DSC2 DSC3 Average
CerebriuDIKU (PERSLEV et al., 2019) 69.52 43.11 66.74 59.79
NVDLMED (XIA et al., 2020) 67.52 45.00 68.01 60.18
SCNAS (KIM et al., 2019) 67.40 45.75 68.26 60.47
nnU-Net (ISENSEE et al., 2019) 68.04 46.81 68.46 61.10
C2FNAS (YU et al., 2020) 67.62 48.60 69.72 61.98
DiNTS (Pancreas) (HE et al., 2021) 69.28 48.65 69.75 62.56
DiNTS (Brain) (HE et al., 2021) 80.20 61.09 77.63 72.97

Ours
Active-DiNTS (Entropy)* 90.65 60.04 82.81 77.83
Active-DiNTS (Entropy)† 84.58 38.71 67.67 63.65
Active-DiNTS (Entropy)‡ 87.45 54.24 78.86 73.52
Active-DiNTS (Variance)* 90.11 59.58 82.50 77.40
Active-DiNTS (Variance)† 81.96 39.64 69.70 63.77
Active-DiNTS (Variance)‡ 88.19 53.25 79.25 73.56
Active-DiNTS (Std)* 90.27 60.14 82.89 77.77
Active-DiNTS (Std)† 83.16 36.69 69.32 63.06
Active-DiNTS (Std)‡ 87.80 54.42 78.85 73.69

* Best final performance
† Overcome DiNTS (Pancreas)
‡ Overcome DiNTS (Brain)

Along with literature methods outlined in Section 6.3.2, the primary DiNTS baseline is
presented in two versions in Tables 21 and 22. Both versions are reported in He et al. (2021),
where DiNTS (Pancreas) is the final model used in most comparisons and obtained through a
search on the MSD Pancreas dataset, while DiNTS (Brain) is the alternative version searched in
the Brain MSD dataset and reported in only one specific analysis, referenced here to provide
broader comparisons on a more equitable basis for analysis. Such comparison analysis also
encompasses variations of Active-DiNTS representing final and intermediate models that surpass
DiNTS baselines while using fewer resources in terms of training examples, parameters, and
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search time. There are three versions for each uncertainty function. Considering the Entropy, for
example, there is Active-DiNTS (Entropy)* that is the final model trained with all the data (as
the baselines) or, in other words, after all queries. On the other hand, Active-DiNTS (Entropy)†
is the intermediate model that overcomes DiNTS (Pancreas) in terms of Average Dice, and
Active-DiNTS (Entropy)‡ is the intermediate model that overcomes DiNTS (Pancreas). By
intermediate models, it means that not all the data or not all queries were used to search the
models. More details regarding those models are discussed after Table 22.

Nearly all Active-DiNTS variations outperform the baselines considering the three tumor
classes (DSC1, DSC2, DSC3) and on average in Table 21, except for DiNTS (Brain) in DSC2.
Active-DiNTS (Entropy)* achieves the best performance in segmenting the DSC1 class Edema
with a Dice of 90.65 and the highest Average Dice of 77.83 across the three classes, proving to be
the superior method in predictive performance. The second-best performer, Active-DiNTS (Std)*,
stands out on the DSC3 class Non-enhancing Tumor with a Dice of 82.89 and the second-highest
Average Dice of 77.77, followed by Active-DiNTS (Variance)* with a 77.40 Average Dice.
Among the baselines, DiNTS (Brain) attains the highest results with an Average Dice of 72.97,
even securing the top score result for the DSC2 class Enhancing Tumor with a Dice of 61.09.
However, when comparing the magnitude of differences, Active-DiNTS clearly outperforms
its baseline DiNTS (Brain) with differences exceeding 10% on the DSC1 class, over 5% on
DSC3, over 4% on the Average Dice, and on the DSC3 class where DiNTS surpasses the best
versions of Active-DiNTS, the difference is only around 1%. For the remaining baselines, they
lag significantly behind even compared to DiNTS (Brain). Among Active-DiNTS variations,
Entropy and Std consistently achieved the best Dice scores on average, showing their robustness
and effectiveness. Specifically, Entropy leads among all variations with the highest average
Dice, showing its effectiveness in treating complex tumor structures. Notably, all Active-DiNTS
variations consistently demonstrate superior segmentation performance compared to state-of-
the-art methods, highlighting its effectiveness in segmenting brain tumors and its ability to take
advantage of few multi-modality MRI data, computational resources, and training time.

Table 22 presents a comprehensive evaluation of segmentation models focusing on the
computational efficiency attributes discussed previously. At first glance, baseline methods seem to
surpass Active-DiNTS in efficiency, generating models with lower FLOPs, trainable parameters,
and memory usage. However, these methods consume considerably more resources such as the
number of GPUs and the proportional GPU memory usage during search, in addition to the
search/re-training time. In contrast, Active-DiNTS generates suitable models already during the
search phase, thus not needing to perform the re-training phase. Both DiNTS variations, which
have fewer FLOPs and memory usage, have a number of trainable parameters comparable to
or higher than some Active-DiNTS variations. Furthermore, DiNTS employs 8 GPUs in a 5.8
GPU days search, while C2FNAS, the most efficient method from a model perspective, also uses
8 GPUs and has the longest search in the comparison, lasting 333 GPU days. In comparison,
Active-DiNTS models were obtained in a small fraction of the time, where the fastest, Active-
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Table 22 – Models comparison on FLOPs (GigaFLOPs), trainable Parameters (Millions), retraining GPU
Memory (MegaBytes), used GPU(s), search Time (GPU days), and Average Dice.

Method FLOPs Parameters Memory GPU(s) Time Average
CerebriuDIKU (PERSLEV et al., 2019) - 62 - - - 59.79
3D UNet (ÇIÇEK et al., 2016) 658 18 9176 1 TitanX 3 -
Attention UNet (OKTAY et al., 2018) 1163 104 13465 - - -
SCNAS (KIM et al., 2019) 425 - - 4 V100 1 60.47
C2FNAS (YU et al., 2020) 151 17 5730 8 V100 333 61.98
DiNTS (Pancreas) (HE et al., 2021) 334 152 13018 8 V100 5.8 62.56
DiNTS (Brain) (HE et al., 2021) 334 152 13018 8 V100 5.8 72.97

Ours
Active-DiNTS (Entropy)* 8500 127 17249 1 V100 5.5 77.83
Active-DiNTS (Entropy)† 8690 123 14802 1 V100 0.33 63.65
Active-DiNTS (Entropy)‡ 8770 152 15483 1 V100 1.1 73.52
Active-DiNTS (Variance)* 8360 153 17283 1 V100 6.4 77.40
Active-DiNTS (Variance)† 8720 125 14835 1 V100 0.21 63.77
Active-DiNTS (Variance)‡ 9650 126 15577 1 V100 1.4 73.56
Active-DiNTS (Std)* 8500 127 17307 1 V100 4.6 77.77
Active-DiNTS (Std)† 8220 124 14736 1 V100 0.42 63.06
Active-DiNTS (Std)‡ 8750 154 15545 1 V100 1.5 73.69

* Best final performance
† Overcome DiNTS (Pancreas)
‡ Overcome DiNTS (Brain)

DiNTS (Variance)†, the model that surpasses both C2FNAS and DiNTS (Pancreas) in Dice, had a
search time up to 27 times faster than DiNTS. Additionally, Active-DiNTS (Entropy)‡, the model
that surpasses DiNTS (Brain) in Dice, had a search up to 5 times faster. This search speed-up
was mainly attributed to the Active Learning framework, which helped find the smallest set of
examples needed to discover suitable architectures. Unlike DiNTS and other models that search
using the entire dataset, Active-DiNTS follows an incremental approach that allows training the
models with a small but valuable labeled dataset fed with the most informative examples for the
current learned model at each query. As a result, unnecessary costs could be reduced, and search
time could be shortened. Furthermore, compared to the best Active-DiNTS (Entropy)* variation,
C2FNAS lags significantly behind in predictive performance, more precisely, with a difference
of 15% in Dice. It is also worth mentioning that the Active-DiNTS search and training is done
with a single 32 GB Tesla V100 GPU, which uses less than half the memory in the intermediate
versions that surpass DiNTS and just over half the memory in the final versions, ranging from
17GB on the heaviest configurations to around 15GB on configurations that surpass DiNTS
(Brain). In turn, DiNTS uses 8 16GB Tesla V100 GPUs and, in comparison, generates models
that consume up to 13GB or 81.25% of the available memory, while Active-DiNTS uses around
54% in its heaviest configuration and 48.44% in the version lighter than both versions of DiNTS.
Despite generating more computationally intensive models, Active-DiNTS models also have
fewer trainable parameters than DiNTS variations in intermediate configurations that outperform
them in segmentation performance, with 127 million versus 152 million parameters.



164 Chapter 6. Active Differentiable Network Topology Search

In terms of FLOPs, Active-DiNTS generate denser models, which can be attributed to the
RAM factor parameter that controls cell connections and the optimization process that prioritizes
performance before computational efficiency. Thus, Active-DiNTS models present 8684 FLOPs
on average, with Active-DiNTS (Std)† being the lightest and Active-DiNTS (Variance)‡ the
heaviest configuration, generating architectures with 8220 and 9650 FLOPs, respectively. The
searched architectures contain 134 million trainable parameters on average, varying from 123
million on Active-DiNTS (Entropy)† to 154 million on Active-DiNTS (Std)‡. Regarding GPU
memory usage, the average usage is 15.8GB of VRAM among Active-DiNTS variations, ranging
from 14.7GB to 17.3GB from the intermediate model Active-DiNTS (Std)† and the final model
Active-DiNTS (Std)*. In summary, Entropy and Variance present higher FLOPs compared to
Std, the latter being the most efficient. Memory efficiency varies slightly, with Variance being the
most efficient while Std is the most expansive. Notably, despite the computational intensity of
Active-DiNTS variations, they provide competitive performance and meet diverse computational
resources using only one GPU with reduced search time.

Unlike the baseline methods that search and re-train the discovered architectures with
increased complexity, Active-DiNTS already generates sufficiently good models that eliminate
the need for retraining and increasing model complexity. In addition, Active-DiNTS offers a
collection of possible models from each uncertainty function, whose selection of appropriate
variation depends on the available computational resources and the specific requirements of the
segmentation task. Furthermore, observing the evolution curve of these efficient indicators reveals
a linear correlation between average performance and memory usage, showing greater GPU
usage for superior performance. However, this pattern does not apply to FLOPs and trainable
parameters. It is also worth highlighting that low FLOPs and fewer parameters are more relevant
in mobile configurations. For medical image analysis, a lightweight and low latency model is
less important than a better use of the little data commonly available in medical applications and
the precision in segmentation, both criteria met by Active-DiNTS.
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6.5 Chapter Remarks

This chapter presented a novel NAS method for 3D Medical Image Segmentation called
Active Differentiable Network Topology Search (Active-DiNTS). Going beyond conventional
Meta-Learning in typical tasks such as Classification, this chapter extended the exploration of
meta-knowledge derived from an Active Learning framework applied to Image Segmentation.
Distinguished from other NAS methods, Active-DiNTS features a flexible network topology
search space explored through fast gradient-based search. This proposal considers a Pool-based
Sampling Scenario where training examples are sampled from a large base of unlabeled examples,
the pool set. These sampled examples are given as input to Active-DiNTS, which generates
predictions and, based on such outputs, selects the most informative examples to be labeled
and trained with. To be more precise, Active-DiNTS uses uncertainty functions to evaluate the
predictions of unlabeled examples, thus selecting the examples where the model had the most
difficulty in predicting. This is done with the idea that these examples are the most informative
and, therefore, the most useful for improving and accelerating learning. For such labeling to
occur, the selected examples are sent to the Oracle or expert user, an agent that has knowledge
of how to label incoming unlabeled examples. Thus, throughout this Active Learning process,
Active-DiNTS iteratively receives more labeled examples with the expectation of generating the
greatest gain in predictive performance with each new example and, at the same time, aiming to
maintain a minimum number of labeled examples for training.

Experiments with Active-DiNTS included comparisons with several segmentation meth-
ods from the literature and between variations of the proposed method. These methods included
NAS models, such as the original DiNTS, and hand-crafted models that used fixed architecture,
such as the popular nn-Unet. Among Active-DiNTS variations are the different AL setups used,
as mentioned in Section 6.2: (i) Weights update; (ii) Topology update; and (iii) Both weights
and topology update. Among the uncertainty functions adopted to select the most informative
examples during the search/training process are Entropy, Variance, and Standard Deviation, in
addition to the Random method used as a lower bound baseline.

As mentioned in Section 6.4, this chapter’s experiments were designed to answer three
research questions. The first question, "Can simple active sampling strategies used by Active-
DiNTS present comparable or better performances than traditional segmentation models?", is
covered in the class-by-class analyses of Table 21, where predictive performances measured
by Dice are compared and discussed. As seen, Active-DiNTS outperforms baselines such as
C2FNAS and nn-UNet by a large margin, also extending its superiority to the main baseline
DiNTS. More precisely, in the Edema and Non-enhancing Tumor classes, Active-DiNTS sur-
passes the best version of DiNTS searched in the Brain dataset by 10% and 5%, respectively, and
approximately by 5% in the overall average, falling behind only in the Enhancing Tumor class
by approximately 1%. Compared to the originally reported DiNTS searched on the Pancreas
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dataset, the overall average Dice difference is even greater, being more than 15%. Additionally, a
qualitative analysis was carried out to corroborate the Active-DiNTS effectiveness through the
inspection of segmentation masks in Figures 36 and 37, highlighting the predictions’ reliability
and great similarity with ground truth segmentation masks.

The second question, "Can Active-DiNTS with varying AL strategies offer improved
computational efficiency when compared to other segmentation models?", is addressed by the
analysis of Table 22 that compares computational efficiency indicators such as the number of
trainable parameters, FLOPs, and memory usage. At first glance, Active-DiNTS appeared as
computationally expensive due to its high FLOPs caused by the denser and more computationally
intense models, in addition to an optimization prioritizing performance rather than resource
efficiency. Despite such characteristics, models generated by Active-DiNTS presented greater
efficiency in other criteria. Active-DiNTS variations had fewer trainable parameters than DiNTS
variations, with 127 million compared to 152 million in the best configuration. In terms of
hardware and memory usage, Active-DiNTS also presented more efficient solutions. While
Active-DiNTS results are obtained using only one Tesla V100 32GB, both DiNTS and C2FNAS
perform their searches using eight Tesla V100 16GB GPUs. In terms of GPU memory usage
for search, Active-DiNTS uses more memory in absolute values, but in perspective, it uses less
or just over half the memory of the single 32GB GPU, ranging from 17GB on the heaviest
configurations to about 15GB on configurations that surpass DiNTS (Brain). DiNTS, meanwhile,
uses around 13GB out of the 16GB GPU capacity. When the matter is search efficiency, DiNTS
takes 139.2 hours or 5.8 GPU days to search, while Active-DiNTS achieves the same result in
about 10.4 hours or 0.43 GPU days. Furthermore, to achieve the same results as DiNTS, less than
20% of the original dataset was used by Active-DiNTS. Although some literature methods such
as C2FNAS are excellent FLOPs-wise, memory usage, and model size, they lag significantly in
predictive performance, falling behind Active-DiNTS (Entropy) with more than 15% difference.

The third research question, "Can different AL strategies produce significantly divergent
results?", is discussed in both Figures 32 and 33, where performance curves for each uncertainty
function and AL configuration are compared, and in Figure 35 which discusses the different
architectural patterns generated by Active-DiNTS variations. Uncertainty functions presented
similar results among themselves regarding Dice progress curves over the number of queries in
the Active Learning framework, differing more considerably at the beginning of the process to
around 30% of queries, and stabilizing during the rest of the learning process. This pattern is
observed both when considering a specific AL setup and evaluating each uncertainty function
curve, and when considering the uncertainty function averages and evaluating each curve AL
setup separately. Additionally, the differences in performance and resource efficiency of Active-
DiNTS variations were also addressed in the analyses of Table 22. When observing the evolution
of efficiency indicators in Active-DiNTS final and intermediate models, a linear correlation
between average Dice performance and memory usage was observed, showing greater use of
GPU for superior performance. However, this standard does not apply to FLOPs and trainable
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parameters, which are optimized later in the process. The trainable parameters of Active-DiNTS
models remained consistent, with small differences between configurations. Memory usage also
varies little and consistently, with Active-DiNTS (Std) being the highest in terms of consumption,
and Active-DiNTS (Entropy) being the cheapest on average. While Active-DiNTS (Std) has the
shortest search time in the final best performance configuration, Active-DiNTS (Variance) and
Active-DiNTS (Entropy) are the most efficient for intermediate configuration models that outper-
form DiNTS (Pancreas) and DiNTS (Brain), respectively. Active-DiNTS variations, despite their
computational intensity, provided competitive performance and addressed diverse computational
resources. Notably, the Entropy and Variance variations demonstrated slightly higher memory
efficiency, which indicates that selecting the appropriate Active-DiNTS configuration depends
on the available computational resources and the specific task requirements.

By using an Active Learning process to select the most informative examples to up-
date its internal structure, Active-DiNTS was able to generate architectures using less data, in
shorter search times, using comparable or less computational resources, presenting better overall
predictive performances than state-of-the-art methods. This showcase

In the following, the final chapter concludes this thesis by discussing the main contribu-
tions, limitations, and future research directions.
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CHAPTER

7
CONCLUSION

This doctoral thesis investigated Meta-Learning approaches and related topics, such as
Transfer Learning and Active Learning, in order to optimize the Neural Architecture Search
framework. In addition to proof-of-concept experiments that validated hypotheses involving
Meta-Learning and helped define the building blocks for NAS solutions, two architecture search
methods were proposed: Model-based Meta-Learning for Neural Architecture Search (MbML-
NAS), and Active Differentiable Network Topology Search (Active-DiNTS).

While MbML-NAS consists of a Prediction-based method that selects ConvNet architec-
tures for Image Classification, Active-DiNTS is a One-shot method that generates ConvNet-like
architectures such as U-Nets focused on Image Segmentation. Another difference is that the
first proposal focuses on natural 2D images, while the second focuses on the more complex 3D
images in the medical domain. Furthermore, both methods are built on fundamental ideas from
the field of NAS and Meta-Learning, like exploring cell-based search spaces and performance
estimation strategies based on meta-knowledge to optimize the search for architectures.

To answer the overall research question that guided the development of this Ph.D., How

to automatically find neural architectures for Image Recognition with comparable predictive

performances using fewer data and less complex procedures than popular NAS methods?, and to
validate the formulated hypothesis, A Meta-Learning approach can leverage prior knowledge to

reduce the computational burden and simplify the search for Image Recognition architectures with

good predictive performance using fewer data samples than NAS state-of-the-art methods, several
experiments encompassing the design, implementation, and evaluation of the novel methods
tailored to address the challenges posed by the research question were performed. Initially,
exploratory experiments served as a proof-of-concept that helped advance the application of
Meta-Learning to optimize NAS. These validations, although exploratory and of low complexity,
had a large and extremely important impact on what later became the main methods of this
doctoral research, the MbML-NAS and Active-DiNTS models. The performed experiments
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focused on evaluating setups and methods according to various criteria, such as predictive
performance indicators and efficiency metrics. Thus, and to also fulfill the research objective
of proposing and investigating MtL methods, the proposals were analyzed according to their
predictive performances, quantity of used training data, search and training time, overall use of
computational resources, pipeline, and model complexity.

As a result, the research hypothesis was not rejected since both MbML-NAS and Active-
DiNTS could take advantage of prior knowledge from tasks, performances, and models to
generate architectures with good predictive performances while using fewer computational
resources, less training data, shorter search times, and lower model complexity. The objectives of
the thesis were also achieved, as it investigated the applicability of MtL in NAS, and its impact
on performance and data efficiency, in addition to the creation of new meta-datasets suitable for
NAS and the presentation of an updated literature review on the topics covered.

The motivations raised were also addressed incrementally and iteratively. For example,
the problem of manually defining neural architectures has been addressed by employing suitable
NAS approaches. As for the NAS simplification problem, it was mainly addressed by MbML-
NAS which employed a simplified and direct approach that achieves comparable or superior
results to more complex literature methods. Additionally, the NAS framework optimization was
better exemplified in Active-DiNTS, which, through an Active Learning framework, was able
to overcome several strong methods focused on predictive performance using only 1/4 of the
original labeled data and a small fraction of computational resources. Finally, the third problem
involving the study of Meta-Learning approaches applied to NAS was addressed throughout
all the experiments in this thesis, where in each chapter, more than one approach was explored,
often combinations of different approaches, showing that meta-knowledge is not only applicable
but also beneficial to NAS. In essence, this thesis contributed to the fields of NAS optimization
and Meta-Learning by introducing new methods that facilitate data-driven architecture design
and efficient hyperparameter tuning. Furthermore, it also showed that related approaches, such
as Transfer learning and Active Learning, had room for application in NAS and could generate
interesting solutions. These findings lay the groundwork for future research and highlight the
synergistic potential of Meta-Learning approaches to optimize NAS even further.
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7.1 Main Contributions

The main contributions of this doctoral research were the proposals and investigations
of two efficient NAS methods based on different Meta-Learning approaches, the MbML-NAS,
which learns from task properties and model evaluations, and Active-DiNTS, which leverages
knowledge from task properties, previous evaluations, and prior models.

MbML-NAS is a Prediction-based method that uses a small set of six interpretable
meta-features representing semantic knowledge about the NAS task. Along with such meta-
knowledge in the form of meta-features from ConvNet layers, previous performances from
pre-trained architectures are used. Another striking feature of this proposal is the use of few data
for training combined with the usage of several traditional and simple inspectable regressors.
Such algorithms are categorized into regularized linear models and methods based on decision
trees, which turn MbML-NAS into a cheap solution in comparison to its competitors. Therefore,
MbML-NAS is trained to generate models capable of predicting the performances of incoming
architectures based on architectural characteristics and, based on these predictions, it selects
the most promising candidate architectures to accelerate the NAS process. As a result of the
experiments carried out with MbML-NAS, the following publication was generated:

• PEREIRA, G. T.; SANTOS, I. B.; GARCIA, L. P.; URRUTY, T.; VISANI, M.; CAR-
VALHO, A. C. de. Neural architecture search with interpretable meta-features and fast
predictors. Information Sciences, Elsevier, p. 119642, 2023

Active-DiNTS is a One-shot method that uses a flexible topology search space capable
of finding architectures with different topological patterns using an efficient Active Learning
framework. This Cell-based search space, in addition to allowing the discovery of popular
architectures such as the U-Net and Auto-DeepLab, enables exploring the space of models using
fast gradient-based search, generating an efficient method for finding adaptable architectures.
Furthermore, Active Learning strategies help to optimize the method even further, which assumes
a Pool-based Sampling Scenario to select the most relevant examples for training. Consequently,
a drastic reduction in the amount of data is needed for NAS. These training examples are selected
using a simple but very popular Uncertainty sampling strategy, where functions such as the
calculation of Entropy, Variance, and Standard Deviation are used to select the samples in which
the model has the most difficulty in segmenting. The main idea behind this selection process is
that the most uncertain examples are possibly the most valuable for learning. Therefore, several
experiments carried out with Active-DiNTS and compiled in this thesis are being formatted into
a scientific paper to be submitted to an indexed international conference.

As previously mentioned, the experiments with TL and DR also brought important
contributions, especially to the proposal of the main methods presented in this thesis. The TL
experiments verified that the meta-knowledge related to model recommendation has adequate
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generalization capacity across model spaces and multiple datasets. In turn, experiments with
DR showed that many meta-databases have redundancy, and thus, by using fewer meta-features,
if well selected, it is possible to achieve comparable results when using the original datasets,
at the same time that fewer data is used and shorter training times are required. From these
two proofs-of-concept experiments, hypotheses were formulated that were later confirmed with
MbML-NAS experiments, where few meta-features can generate results comparable to the
state-of-the-art while generalizing across datasets, models, and search spaces. In addition, these
experiments generated two papers:

• PEREIRA, G. T.; SANTOS, M. d.; ALCOBAÇA, E.; MANTOVANI, R.; CARVALHO, A.
Transfer learning for algorithm recommendation. arXiv preprint arXiv:1910.07012, 2019

• PEREIRA, G. T.; SANTOS, M. R. d.; CARVALHO, A. C. P. d. L. F. de. Evaluat-
ing meta-feature selection for the algorithm recommendation problem. arXiv preprint
arXiv:2106.03954, 2021

Throughout the development of this thesis, some software artifacts were also produced.
This includes all the original code written for MbML-NAS, Active-DiNTS, and the TL and DR
experiments, everything well documented and open to the public via the GitHub repositories. In
addition, the meta-datasets created and used for training, pre-trained models, and a vast variety
of experiments and analyses were also made publicly available.

In the initial phase of the Ph.D., other papers were also produced due to the exploration
of potential problems related to the primary research theme:

• PEREIRA, G. T.; CARVALHO, A. C. de. Bringing robustness against adversarial attacks.
Nature Machine Intelligence, Nature Publishing Group UK London, v. 1, n. 11, p. 499–500,
2019

• TONON, V.; SILVA, T. da; FERREIRA, V.; PEREIRA, G.; REZENDE, S. Evaluating
vector representations from user’s reviews in a recommendation task. In: SBC. Anais do
XVI Encontro Nacional de Inteligência Artificial e Computacional. p. 286–296, 2019.

• ALCOBAÇA, E.; SANTOS, D. P. d.; SANTOS, M. R. d.; PEREIRA, G. T.; MANTOVANI,
R. G.; GARCIA, L. P. F.; MASTELINI, S. M.; CARVALHO, A. C. P. d. L. F. de. End-to-
end data science (pajé). Resumos, 2019.

Furthermore, the preliminary proposal for this thesis in summary format was internation-
ally recognized by the 2021-2022 Microsoft Research PhD Fellowship award, which helped to
validate some of the initial ideas that latter became the main contributions of this Ph.D.
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7.2 Prospective Works

While all the experiments and proposals presented in this thesis have successfully
achieved their intended purposes, some avenues for potential extensions remain. One possible
extension for the Transfer Learning experiments is to increase the model complexity by employ-
ing deeper Feed-Forward Networks. Additionally, exploring other types of neural architectures,
such as ConvNets and U-Nets, presents a complementary extension to the existing experiments
carried out throughout this thesis. Naturally, the application domains would also be extended
beyond the Algorithm Recommendation problem to encompass Computer Vision challenges
for exploring larger and more complex datasets. As the TL experiment was the simplest possi-
ble and of an exploratory nature to validate elementary ideas for the implementation of NAS
solutions, increasing its complexity in a proportional matter would be the next logical step.
Another interesting avenue would be a detailed examination of individual layers within the TL
framework. Although the TL setup already examined the impact of individual layers, it was
limited by the simpler models and the low variety of TL configurations. Thus, expanding the
experimental setup to include deeper models and more TL configurations, such as freezing more
layers or specific groups of layers to observe specific layer behaviors or groups of layers in a
more detailed analysis, would be possible. This analysis of individual layers can help identify
layers that best encapsulate metaknowledge, presenting the potential for optimizing models by
pruning redundant or less valuable layers. Moreover, it can serve as a model inspection tool, or
for identifying layers that best transfer meta-knowledge.

Although the investigation of meta-data dimensionality included a wide range of meta-
datasets, the experiment focused on the niche domain of recommending algorithms for optimiza-
tion problems. Thus, a possible future work would be to expand the scope of the experiment
to include other domains such as the Image Classification and Image Segmentation problems
already addressed in this thesis, also considering both natural images and medical images. Even
though the employed meta-datasets presented a good variety of meta-features and classes, and
even a good range in the number of examples with datasets of up to 9000 examples, these
are small numbers when considering today’s state of ML research. Therefore, scaling these
experiments to larger databases and analyzing the differences in dimensionality reduction would
provide a more comprehensive understanding of the impact of such practice on the model recom-
mendation task. Another natural extension would be to expand the list of FS methods, including
the unsupervised and very simple Person or Spearman correlations that do not depend on supervi-
sion and are very simple, and expand the supervised FS methods, both those based on statistical
filters such as Mutual Information and False Positive Rate test, as well as the model-based that
use feature importance such as L1-based and Tree-based FS. Also, expanding FE methods would
bring robustness to the study, including popular and more contemporary baselines such as Linear
Discriminant Analysis (LDA) (MIKA et al., 1999), t-distributed Stochastic Neighbor Embedding
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(t-SNE) (MAATEN; HINTON, 2008), and Uniform Manifold Approximation and Projection
(UMAP) (MCINNES; HEALY; MELVILLE, 2018).

The first natural point of improvement for MbML-NAS would be to extend the number
of employed meta-features beyond the employed Model-based and Statistical groups, including
Information Theory metrics (ALEXANDROS; MELANIE, 2001), Landmarking (BENSUSAN;
GIRAUD-CARRIER, 2000), and Complexity Measures (LORENA et al., 2019) to encode and
approximate the quality of neural architectures. Additionally, exploring unsupervised ways to
extract meta-knowledge from the internal representations of neural architectures using these
meta-features as a basis may have great potential to improve the performance of MbML-NAS in
more complex tasks. An interesting path involving such meta-features would be to investigate
their behavior throughout training, monitoring, and extracting knowledge from their evolution
during the end-to-end process. Another promising direction is to extend MbML-NAS to cover
other performance measures, such as Precision and Recall, which are especially suitable when
dealing with imbalanced tasks. Finally, applying MbML-NAS to other tasks, such as Image
Segmentation and exploring different Search Spaces and datasets to validate the effectiveness of
the proposal in different domains is also a possibility.

A possible extension for Active-DiNTS is in 2D Image Segmentation with natural images,
where popular datasets such as the Common Objects in COntext (Coco) (LIN et al., 2014) and
the PASCAL Visual Object Classes (PASCAL VOC) (EVERINGHAM; WINN, 2011) could be
used. These widely used benchmarks present a good opportunity to test the generalization power
and efficiency of Active-DiNTS against the best segmentation models in the literature. Even
though it may be a simple adaption, experiments with natural images could lead to interesting
insights into how Active-DiNTS behaves under different data distributions and image patterns
different from those of MRIs. Furthermore, adapting the method to treat 2D images instead of
3D may also be interesting to evaluate how robust Active-DiNTS is, whether it may not be able
to find more simplistic architectures, or whether the search cost is constant regardless of the
complexity of the data. Although Pool-based Sampling is one of the most popular AL scenarios,
other popularly used scenarios are also interesting candidates to be adopted in Active-DiNTS. In
particular, the Stream-based Sampling Scenario emerges as a viable option due to its proximity
to the current Active-DiNTS approach. In this scenario, labels are not queried from a pool of
examples but are instead provided one by one for the learner. The learner then queries the label if
it deems the example useful, and this usefulness can be measured by prediction uncertainty, for
instance. Another possibility is to adapt the Membership Query Synthesis scenario, where the
learner generates their own examples from an underlying distribution. This is particularly useful
when data is scarce or expensive to label, as is the case with the majority of medical applications
for which Active-DiNTS is proposed. In the case of images with multiple complex patterns,
the learner could send the Oracle a cropped image of one of these patterns and query if this
appendage belongs to the most general class of patterns. Another point of improvement would be
in the query strategies for example selection. Within the group of uncertainty sampling functions,
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popular options are the Least confidence, Margin confidence, and Ratio confidence methods. In
addition to Uncertainty sampling, Query by Committee, where selected examples are determined
by the degree of disagreement between a variety of voting models, and Expected Model Change,
which as the name suggests, selects examples that will generate the greatest change in model
behavior, have great potential for application in future variations of Active-DiNTS.
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APPENDIX

A
MBML-NAS: COMPLEMENTARY RESULTS

This Appendix presents complementary results for MbML-NAS. This includes more
standalone performances, MSE and MAE of meta-predictors, runtime analysis, and additional
data exploration analysis of benchmarks, datasets, meta-features, and data distributions.
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A.1 More Standalone Performances
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Figure 38 – Averages and Standard Deviations of the best Top-1 Validation and Test Accuracy from K
best architectures selected by meta-models on NAS-Bench-101 with CIFAR-10 (108 epochs).
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Figure 39 – Averages and Standard Deviations of the best Top-1 Validation and Test Accuracy from K
best architectures selected by meta-models on NAS-Bench-201 with CIFAR-10 (200 epochs).
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Figure 40 – Averages and Standard Deviations of the best Top-1 Validation and Test Accuracy from K best
architectures selected by meta-models on NAS-Bench-201 with CIFAR-100 (200 epochs).
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Figure 41 – Averages and Standard Deviations of the best Top-1 Validation and Test Accuracy from K
best architectures selected by meta-models on NAS-Bench-201 with ImageNet16-120 (200
epochs).
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A.2 MAE/MSE Comparisons and Statistical Tests

Table 23 – MAE and MSE results from pre-trained meta-predictors on CIFAR-10 dataset by 4, 12, 36,
and 108 epochs, all from NAS-Bench-101.

Model Train Size 4 epochs 12 epochs 36 epochs 108 epochs
MAE MSE MAE MSE MAE MSE MAE MSE

Dummy

43 0.1217±0.0021 0.0209±0.0008 0.1713±0.0018 0.0395±0.0006 0.0548±0.0040 0.0088±0.0002 0.0233±0.0003 0.0035±0.0001
86 0.1232±0.0031 0.0207±0.0005 0.1707±0.0011 0.0393±0.0006 0.0548±0.0032 0.0087±0.0002 0.0233±0.0007 0.0035±0.0001

129 0.1224±0.0025 0.0206±0.0003 0.1708±0.0013 0.0392±0.0005 0.0555±0.0024 0.0086±0.0001 0.0237±0.0009 0.0035±0.0001
172 0.1227±0.0021 0.0206±0.0002 0.1706±0.0013 0.0391±0.0004 0.0576±0.0040 0.0086±0.0002 0.0243±0.0021 0.0035±0.0001
344 0.1229±0.0016 0.0205±0.0001 0.1702±0.0007 0.0389±0.0002 0.0568±0.0026 0.0085±0.0001 0.0248±0.0020 0.0035±0.0001
860 0.1228±0.0005 0.0204±0.0001 0.1699±0.0002 0.0388±0.0001 0.0562±0.0007 0.0085±0.0001 0.0245±0.0003 0.0034±0.0001

LR

43 0.1243±0.0054 0.0229±0.0023 0.1723±0.0090 0.0428±0.0060 0.0616±0.0141 0.0096±0.0035 0.0260±0.0133 0.0041±0.0028
86 0.1203±0.0041 0.0209±0.0009 0.1644±0.0029 0.0377±0.0014 0.0533±0.0023 0.0079±0.0002 0.0218±0.0019 0.0032±0.0001

129 0.1179±0.0028 0.0200±0.0006 0.1627±0.0013 0.0363±0.0009 0.0540±0.0031 0.0078±0.0002 0.0223±0.0018 0.0032±0.0001
172 0.1180±0.0025 0.0199±0.0005 0.1623±0.0016 0.0360±0.0009 0.0542±0.0037 0.0078±0.0003 0.0225±0.0016 0.0032±0.0001
344 0.1182±0.0015 0.0195±0.0002 0.1613±0.0007 0.0353±0.0003 0.0530±0.0022 0.0076±0.0001 0.0215±0.0015 0.0031±0.0001
860 0.1178±0.0007 0.0193±0.0001 0.1606±0.0003 0.0349±0.0001 0.0520±0.0011 0.0075±0.0001 0.0206±0.0008 0.0031±0.0001

RF

43 0.1212±0.0021 0.0211±0.0011 0.1702±0.0035 0.0398±0.0022 0.0533±0.0043 0.0083±0.0003 0.0200±0.0013 0.0032±0.0001
86 0.1204±0.0043 0.0208±0.0009 0.1657±0.0031 0.0375±0.0016 0.0510±0.0029 0.0080±0.0003 0.0191±0.0005 0.0031±0.0001

129 0.1190±0.0028 0.0202±0.0004 0.1645±0.0026 0.0371±0.0011 0.0515±0.0025 0.0078±0.0002 0.0190±0.0010 0.0031±0.0001
172 0.1193±0.0029 0.0204±0.0007 0.1632±0.0024 0.0366±0.0012 0.0525±0.0038 0.0077±0.0002 0.0188±0.0017 0.0032±0.0001
344 0.1187±0.0016 0.0198±0.0004 0.1591±0.0011 0.0352±0.0005 0.0508±0.0031 0.0075±0.0002 0.0185±0.0015 0.0030±0.0001
860 0.1168±0.0010 0.0192±0.0002 0.1546±0.0010 0.0330±0.0004 0.0491±0.0019 0.0070±0.0002 0.0179±0.0018 0.0029±0.0001

BR

43 0.1217±0.0017 0.0208±0.0004 0.1684±0.0030 0.0387±0.0011 0.0552±0.0056 0.0081±0.0003 0.0235±0.0089 0.0037±0.0017
86 0.1201±0.0045 0.0200±0.0007 0.1651±0.0031 0.0371±0.0015 0.0526±0.0025 0.0079±0.0002 0.0209±0.0014 0.0032±0.0001

129 0.1189±0.0034 0.0199±0.0004 0.1641±0.0013 0.0364±0.0006 0.0540±0.0030 0.0078±0.0002 0.0215±0.0014 0.0031±0.0001
172 0.1188±0.0028 0.0198±0.0004 0.1634±0.0013 0.0361±0.0007 0.0543±0.0036 0.0078±0.0002 0.0220±0.0016 0.0031±0.0001
344 0.1189±0.0017 0.0196±0.0002 0.1620±0.0009 0.0354±0.0003 0.0530±0.0022 0.0076±0.0001 0.0213±0.0014 0.0031±0.0001
860 0.1181±0.0007 0.0193±0.0001 0.1610±0.0005 0.0350±0.0002 0.0520±0.0010 0.0075±0.0001 0.0206±0.0007 0.0031±0.0001

SGD

43 0.1229±0.0069 0.0220±0.0026 0.1744±0.0076 0.0433±0.0056 0.0688±0.0122 0.0112±0.0045 0.0397±0.0143 0.0063±0.0050
86 0.1215±0.0041 0.0208±0.0010 0.1652±0.0028 0.0373±0.0015 0.0584±0.0087 0.0086±0.0008 0.0278±0.0058 0.0036±0.0004

129 0.1184±0.0030 0.0202±0.0003 0.1650±0.0022 0.0372±0.0013 0.0567±0.0066 0.0082±0.0005 0.0287±0.0131 0.0040±0.0019
172 0.1187±0.0030 0.0200±0.0005 0.1648±0.0027 0.0370±0.0017 0.0624±0.0098 0.0086±0.0005 0.0243±0.0036 0.0034±0.0003
344 0.1194±0.0036 0.0199±0.0005 0.1627±0.0012 0.0359±0.0007 0.0574±0.0077 0.0080±0.0005 0.0228±0.0059 0.0033±0.0002
860 0.1177±0.0011 0.0194±0.0001 0.1613±0.0006 0.0350±0.0001 0.0518±0.0014 0.0076±0.0002 0.0228±0.0044 0.0032±0.0001

KNN

43 0.1259±0.0087 0.0230±0.0045 0.1706±0.0023 0.0402±0.0021 0.0577±0.0084 0.0090±0.0014 0.0210±0.0015 0.0032±0.0001
86 0.1244±0.0050 0.0214±0.0024 0.1675±0.0051 0.0392±0.0038 0.0522±0.0022 0.0081±0.0004 0.0212±0.0018 0.0033±0.0003

129 0.1214±0.0034 0.0207±0.0011 0.1652±0.0018 0.0376±0.0012 0.0524±0.0020 0.0078±0.0002 0.0209±0.0021 0.0033±0.0004
172 0.1212±0.0025 0.0209±0.0006 0.1646±0.0025 0.0377±0.0014 0.0551±0.0038 0.0082±0.0007 0.0213±0.0013 0.0032±0.0002
344 0.1206±0.0013 0.0204±0.0006 0.1615±0.0009 0.0361±0.0009 0.0519±0.0023 0.0076±0.0002 0.0210±0.0015 0.0031±0.0001
860 0.1178±0.0008 0.0198±0.0003 0.1567±0.0012 0.0344±0.0007 0.0505±0.0014 0.0072±0.0002 0.0200±0.0012 0.0030±0.0001

DT

43 0.1230±0.0034 0.0221±0.0016 0.1734±0.0070 0.0415±0.0038 0.0574±0.0059 0.0088±0.0006 0.0214±0.0014 0.0034±0.0002
86 0.1246±0.0035 0.0225±0.0019 0.1686±0.0039 0.0399±0.0023 0.0524±0.0028 0.0084±0.0005 0.0202±0.0010 0.0032±0.0001

129 0.1220±0.0040 0.0214±0.0012 0.1682±0.0037 0.0398±0.0022 0.0528±0.0038 0.0080±0.0003 0.0197±0.0010 0.0032±0.0001
172 0.1206±0.0036 0.0210±0.0006 0.1651±0.0037 0.0378±0.0020 0.0555±0.0054 0.0083±0.0011 0.0202±0.0022 0.0032±0.0001
344 0.1199±0.0019 0.0204±0.0004 0.1616±0.0018 0.0364±0.0006 0.0525±0.0026 0.0077±0.0002 0.0201±0.0024 0.0032±0.0004
860 0.1184±0.0006 0.0197±0.0004 0.1581±0.0013 0.0346±0.0005 0.0513±0.0015 0.0074±0.0002 0.0185±0.0014 0.0030±0.0001

SVM

43 0.1234±0.0111 0.0228±0.0048 0.1754±0.0110 0.0445±0.0070 0.0738±0.0045 0.0101±0.0011 0.0398±0.0127 0.0046±0.0013
86 0.1196±0.0051 0.0206±0.0015 0.1658±0.0028 0.0391±0.0019 0.0684±0.0037 0.0090±0.0004 0.0492±0.0143 0.0053±0.0012

129 0.1201±0.0045 0.0211±0.0021 0.1649±0.0035 0.0383±0.0025 0.0702±0.0039 0.0092±0.0009 0.0576±0.0116 0.0068±0.0020
172 0.1194±0.0039 0.0207±0.0015 0.1647±0.0029 0.0383±0.0024 0.0718±0.0050 0.0093±0.0007 0.0730±0.0662 0.0213±0.0491
344 0.1178±0.0015 0.0198±0.0004 0.1608±0.0018 0.0361±0.0010 0.0709±0.0026 0.0089±0.0003 0.0564±0.0110 0.0057±0.0008
860 0.1163±0.0009 0.0193±0.0002 0.1582±0.0012 0.0347±0.0006 0.0702±0.0008 0.0087±0.0001 0.0588±0.0061 0.0060±0.0007

AB

43 0.1251±0.0045 0.0237±0.0019 0.1723±0.0070 0.0421±0.0039 0.0563±0.0045 0.0092±0.0011 0.0226±0.0047 0.0038±0.0011
86 0.1230±0.0053 0.0215±0.0009 0.1658±0.0028 0.0384±0.0023 0.0532±0.0034 0.0086±0.0011 0.0206±0.0030 0.0034±0.0007

129 0.1214±0.0039 0.0209±0.0006 0.1636±0.0013 0.0364±0.0007 0.0532±0.0026 0.0081±0.0006 0.0215±0.0027 0.0038±0.0011
172 0.1213±0.0047 0.0208±0.0008 0.1637±0.0023 0.0361±0.0008 0.0578±0.0077 0.0094±0.0023 0.0218±0.0035 0.0040±0.0015
344 0.1203±0.0014 0.0200±0.0003 0.1607±0.0019 0.0350±0.0004 0.0527±0.0045 0.0077±0.0005 0.0209±0.0017 0.0037±0.0009
860 0.1186±0.0011 0.0194±0.0001 0.1584±0.0007 0.0339±0.0002 0.0517±0.0011 0.0073±0.0001 0.0200±0.0008 0.0030±0.0001

GCN

43 0.1273±0.0011 0.0229±0.0003 0.1785±0.0023 0.0427±0.0007 - - - -
86 0.1403±0.0138 0.0257±0.0049 0.1779±0.0012 0.0445±0.0027 0.0552±0.0082 0.0099±0.0004 0.0296±0.0139 0.0052±0.0011

129 0.1827±0.0128 0.0439±0.0062 0.1868±0.0126 0.0534±0.0117 0.0504±0.0018 0.0098±0.0004 0.0237±0.0021 0.0047±0.0001
172 0.1708±0.0194 0.0381±0.0095 0.1909±0.0119 0.0573±0.0101 0.0503±0.0018 0.0101±0.0006 0.0226±0.0032 0.0046±0.0001
344 0.1598±0.0148 0.0331±0.0049 0.1890±0.0019 0.0568±0.0016 0.0501±0.0011 0.0102±0.0008 0.0205±0.0026 0.0047±0.0001
860 0.1667±0.0027 0.0355±0.0012 0.1916±0.0020 0.0592±0.0016 0.0508±0.0014 0.0103±0.0009 0.0202±0.0016 0.0047±0.0001
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Table 24 – MAE and MSE results from pre-trained meta-predictors on CIFAR-10 by 108 and 200 epochs,
CIFAR-100 for 200 epochs, and ImageNet16-120 for 200 epochs, all from NAS-Bench-201.

Model Train Size CIFAR-10 (108 epochs) CIFAR-10 (200 epochs) CIFAR-100 (200 epochs) ImageNet16-120 (200 epochs)
MAE MSE MAE MSE MAE MSE MAE MSE

Dummy

43 0.1030±0.0134 3.0436±0.1643 0.0580±0.0138 1.7709±0.0578 0.0709±0.0091 1.6120±0.0728 0.0694±0.0034 0.8944±0.0512
86 0.1059±0.0130 2.9861±0.1646 0.0602±0.0127 1.7438±0.0779 0.0732±0.0086 1.5711±0.0931 0.0697±0.0033 0.8706±0.0145

129 0.1131±0.0067 2.8490±0.0367 0.0619±0.0074 1.6792±0.0666 0.0774±0.0069 1.5099±0.0566 0.0697±0.0027 0.8723±0.0252
172 0.1117±0.0071 2.8523±0.0229 0.0601±0.0023 1.6481±0.0192 0.0733±0.0045 1.5038±0.0434 0.0692±0.0019 0.8630±0.0081
344 0.1125±0.0051 2.8414±0.0189 0.0621±0.0044 1.6464±0.0143 0.0763±0.0030 1.4785±0.0109 0.0695±0.0013 0.8573±0.0038
860 0.1128±0.0027 2.8324±0.0121 0.0625±0.0023 1.6459±0.0156 0.0760±0.0016 1.4786±0.0100 0.0696±0.0005 0.8560±0.0031

LR

43 0.0973±0.0093 2.2868±0.1826 0.0649±0.0174 1.6236±0.1576 0.0653±0.0100 1.2113±0.0930 0.0525±0.0035 0.5594±0.0250
86 0.0924±0.0106 2.0387±0.1671 0.0630±0.0181 1.5042±0.2968 0.0622±0.0117 1.1180±0.1842 0.0498±0.0039 0.5096±0.0419

129 0.0926±0.0078 2.0117±0.0870 0.0622±0.0107 1.4311±0.0955 0.0614±0.0068 1.0745±0.0615 0.0497±0.0030 0.5018±0.0177
172 0.0906±0.0061 1.9558±0.0505 0.0592±0.0079 1.3878±0.0490 0.0593±0.0048 1.0414±0.0332 0.0489±0.0025 0.4908±0.0100
344 0.0889±0.0034 1.9142±0.0229 0.0567±0.0045 1.3443±0.0172 0.0574±0.0027 1.0078±0.0136 0.0479±0.0016 0.4742±0.0047
860 0.0879±0.0015 1.8829±0.0069 0.0536±0.0023 1.3213±0.0122 0.0554±0.0015 0.9914±0.0077 0.0473±0.0006 0.4674±0.0025

RF

43 0.0857±0.0062 2.2854±0.1352 0.0478±0.0076 1.5128±0.0692 0.0537±0.0036 1.1575±0.0575 0.0504±0.0020 0.5590±0.0375
86 0.0840±0.0078 2.0873±0.1277 0.0457±0.0100 1.4551±0.1238 0.0520±0.0069 1.0730±0.0902 0.0485±0.0030 0.5228±0.0264

129 0.0847±0.0082 2.0760±0.1918 0.0497±0.0099 1.4221±0.0508 0.0535±0.0064 1.0737±0.0489 0.0484±0.0034 0.5196±0.0327
172 0.0840±0.0081 1.9986±0.1851 0.0470±0.0065 1.3680±0.0476 0.0505±0.0042 1.0202±0.0422 0.0462±0.0022 0.4901±0.0168
344 0.0794±0.0050 1.9013±0.0994 0.0476±0.0060 1.3615±0.0560 0.0507±0.0033 1.0044±0.0459 0.0462±0.0017 0.4836±0.0193
860 0.0788±0.0013 1.8055±0.0213 0.0482±0.0017 1.2931±0.0169 0.0510±0.0012 0.9594±0.0098 0.0455±0.0005 0.4640±0.0041

BR

43 0.0936±0.0082 2.2341±0.1378 0.0581±0.0124 1.5171±0.0747 0.0599±0.0070 1.1341±0.0590 0.0511±0.0029 0.5353±0.0196
86 0.0904±0.0091 2.0279±0.1038 0.0578±0.0150 1.4520±0.1872 0.0589±0.0095 1.0824±0.1159 0.0492±0.0035 0.4999±0.0257

129 0.0912±0.0074 1.9888±0.0807 0.0585±0.0091 1.3993±0.0615 0.0593±0.0060 1.0529±0.0425 0.0494±0.0028 0.4950±0.0121
172 0.0897±0.0057 1.9563±0.0572 0.0565±0.0069 1.3764±0.0384 0.0578±0.0044 1.0333±0.0284 0.0486±0.0026 0.4875±0.0086
344 0.0886±0.0033 1.9198±0.0276 0.0554±0.0041 1.3425±0.0166 0.0567±0.0026 1.0066±0.0134 0.0479±0.0016 0.4740±0.0043
860 0.0877±0.0015 1.8835±0.0068 0.0532±0.0022 1.3235±0.0128 0.0551±0.0014 0.9923±0.0078 0.0473±0.0006 0.4676±0.0025

GB

43 0.0940±0.0104 2.6830±0.3376 0.0514±0.0099 1.5830±0.0879 0.0590±0.0064 1.2990±0.2049 0.0532±0.0021 0.5930±0.0435
86 0.0863±0.0078 2.2565±0.2505 0.0496±0.0125 1.5332±0.1753 0.0557±0.0096 1.1634±0.1318 0.0485±0.0024 0.5474±0.0482

129 0.0841±0.0088 2.0653±0.1177 0.0490±0.0096 1.4466±0.0564 0.0517±0.0050 1.0908±0.0451 0.0477±0.0023 0.5191±0.0284
172 0.0826±0.0089 2.0334±0.0743 0.0447±0.0062 1.4187±0.0631 0.0502±0.0039 1.0769±0.0540 0.0469±0.0025 0.5119±0.0216
344 0.0795±0.0041 1.9510±0.1262 0.0476±0.0067 1.3884±0.0248 0.0513±0.0036 1.0294±0.0261 0.0470±0.0025 0.4967±0.0194
860 0.0772±0.0040 1.8286±0.0363 0.0480±0.0048 1.3223±0.0301 0.0494±0.0023 0.9757±0.0282 0.0446±0.0012 0.4657±0.0048
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A.3 Runtime Analysis
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Figure 42 – Runtime comparison of all meta-predictors and Neural Predictor (GCN) on NAS-Bench-101
(CIFAR-10) subsets (epochs) from training with 172 examples.
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Figure 43 – Runtime comparison of all meta-predictors on NAS-Bench-201 datasets (CIFAR-10, CIFAR-
100, and ImageNet16-120) and subsets (epochs) from training with 172 examples.
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A.4 MbML-NAS Hyperparameter Tuning Space

Table 25 – Meta-predictors and their hyperparameters tuned via Random Search. “{}” in Range represents
a discrete set of options, while “[]” represents a continuous inclusive interval of values.

Model Hyperparameter Range

Linear Regression
fit_intercept {false, true}
normalize {false, true}

Bayesian Ridge

n_iter {1000, 3000, 9000}
tol {0.001, 0.0001, 0.00001}

compute_score {false, true}
fit_intercept {false, true}
normalize {false, true}

Random Forest

n_estimators {100, 300, 900}
criterion {mse, mae}

min_samples_split [2, 50]
min_samples_leaf [1, 50]

max_features {auto, sqrt, log2}
oob_score {false, true}
warm_start {false, true}

Dummy
strategy {mean, median, quantile}
quantile {0.0, 0.25, 0.75, 1.0}

Stochastic Gradient Descent

loss {sqrt, huber, ep_insensitive,sqrt_ep_insensitive}
penalty {l2, l1, elasticnet}

fit_intercept {false, true}
max_iter {1000, 3000, 9000}
shuffle {false, true}

learning_rate {constant, optimal, invscaling, adaptive}
early_stopping {false, true}

n_iter_no_change {5, 15, 45}
warm_start {false, true}

Decision Tree

criterion {mse, friedman_mse, mae}
splitter {best, random}

max_depth [2, 51]
min_samples_split [2, 51]
min_samples_leaf [1, 51]

max_features {auto, sqrt, log2}

Gradient Boosting

loss {ls, lad, huber, quantile}
learning_rate {0.1, 0.01, 0.001}
n_estimators {100, 300, 900}
subsample {0.1, 0.5, 1.0}
criterion {friedman_mse, mse, mae}

min_samples_split [2, 51]
min_samples_leaf [1, 51]

max_depth [3, 51]
max_features {auto, sqrt, log2}
warm_start {false, true}

n_iter_no_change {10, 30, 90, None}

Neural Predictor

classifier {false, true}
D {48, 72, 96, 144, 210, 320}

epochs 300
weight_decay 0.001

dropout 0.1
train_batch_size 10

val_acc_thld {0.23, 0.54, 0.86, 0.91}

AdaBoost
n_estimators {50, 150, 450}
learning_rate {1, 0.1, 0.01}

loss {linear, sqrt, exponential}
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A.5 Meta-datasets’ Correlations
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Figure 44 – Spearman Correlations of meta-features extracted from NAS-Bench-101 subsets (4, 12, 36,
and 108 epochs) regarding CIFAR-10 and which were used to train and evaluate meta-
predictors.
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Figure 45 – Spearman Correlations of meta-features extracted from NAS-Bench-201 subsets (4, 12, 36,
and 108 epochs) regarding CIFAR-10 and which were used to train and evaluate meta-
predictors.



A.5. Meta-datasets’ Correlations 207

co
nv

_n
um

_la
ye

rs

co
nv

_k
er

ne
l_m

in

co
nv

_k
er

ne
l_m

ax

co
nv

_k
er

ne
l_m

od
e

av
g_

po
ol

_n
um

_la
ye

rs

pa
ra

m
s

ac
c_

tra
in

ac
c_

va
lid

conv_num_layers

conv_kernel_min

conv_kernel_max

conv_kernel_mode

avg_pool_num_layers

params

acc_train

acc_valid

1 -0.11 0.46 0.16 -0.39 0.8 0.69 0.7

-0.11 1 0.45 0.74 0.032 0.26 0.084 0.055

0.46 0.45 1 0.55 -0.18 0.77 0.55 0.53

0.16 0.74 0.55 1 -0.067 0.57 0.31 0.28

-0.39 0.032 -0.18 -0.067 1 -0.31 -0.36 -0.49

0.8 0.26 0.77 0.57 -0.31 1 0.72 0.71

0.69 0.084 0.55 0.31 -0.36 0.72 1 0.94

0.7 0.055 0.53 0.28 -0.49 0.71 0.94 1
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
nv

_n
um

_la
ye

rs

co
nv

_k
er

ne
l_m

in

co
nv

_k
er

ne
l_m

ax

co
nv

_k
er

ne
l_m

od
e

av
g_

po
ol

_n
um

_la
ye

rs

pa
ra

m
s

ac
c_

tra
in

ac
c_

va
lid

conv_num_layers

conv_kernel_min

conv_kernel_max

conv_kernel_mode

avg_pool_num_layers

params

acc_train

acc_valid

1 -0.11 0.46 0.16 -0.39 0.8 0.75 0.74

-0.11 1 0.45 0.74 0.032 0.26 0.073 0.039

0.46 0.45 1 0.55 -0.18 0.77 0.55 0.52

0.16 0.74 0.55 1 -0.067 0.57 0.32 0.27

-0.39 0.032 -0.18 -0.067 1 -0.31 -0.32 -0.44

0.8 0.26 0.77 0.57 -0.31 1 0.77 0.73

0.75 0.073 0.55 0.32 -0.32 0.77 1 0.94

0.74 0.039 0.52 0.27 -0.44 0.73 0.94 1
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
nv

_n
um

_la
ye

rs

co
nv

_k
er

ne
l_m

in

co
nv

_k
er

ne
l_m

ax

co
nv

_k
er

ne
l_m

od
e

av
g_

po
ol

_n
um

_la
ye

rs

pa
ra

m
s

ac
c_

tra
in

ac
c_

va
lid

conv_num_layers

conv_kernel_min

conv_kernel_max

conv_kernel_mode

avg_pool_num_layers

params

acc_train

acc_valid

1 -0.11 0.46 0.16 -0.39 0.8 0.72 0.71

-0.11 1 0.45 0.74 0.032 0.26 0.035 0.026

0.46 0.45 1 0.55 -0.18 0.77 0.52 0.51

0.16 0.74 0.55 1 -0.067 0.57 0.25 0.23

-0.39 0.032 -0.18 -0.067 1 -0.31 -0.39 -0.43

0.8 0.26 0.77 0.57 -0.31 1 0.7 0.68

0.72 0.035 0.52 0.25 -0.39 0.7 1 0.98

0.71 0.026 0.51 0.23 -0.43 0.68 0.98 1
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 46 – Spearman Correlations of meta-features extracted from NAS-Bench-201 (with 200 epochs)
regarding CIFAR-10 (left), CIFAR-100 (center), and ImageNet16-120 (right), which were
used to train and evaluate meta-predictors.
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A.6 Benchmarks Validation Accuracy Distributions
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Figure 47 – Validation Accuracy distributions from NAS-Bench-101 (CIFAR-10) at 4, 12, 36 and 108
epochs.
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Figure 48 – Validation Accuracy distributions from NAS-Bench-201 (CIFAR-10) at 4, 12, 36 and 108
epochs.

0% 20% 40% 60% 80% 100%
Subset 200 epochs, Validation accuracy

0

1000

2000

3000

4000

5000

Co
un

t

NAS-Bench-201 (Cifar10-valid)

0% 20% 40% 60% 80% 100%
Subset 200 epochs, Validation accuracy

0

500

1000

1500

2000

2500

Co
un

t

NAS-Bench-201 (Cifar100)

0% 20% 40% 60% 80% 100%
Subset 200 epochs, Validation accuracy

0

200

400

600

800

1000

1200

Co
un

t

NAS-Bench-201 (Imagenet16-120)

Figure 49 – Validation Accuracy distributions from NAS-Bench-201 regarding CIFAR-10 (left), CIFAR-
100 (center), and ImageNet16-120 at 200 epochs.
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APPENDIX

B
ACTIVE-DINTS: COMPLEMENTARY

RESULTS

This Appendix presents a complementary results analysis of Active-DiNTS. This includes
more learning curves of Dice generated by each uncertainty function variation and more searched
cells with varying patterns.

B.1 More Learning Curve Performances
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Figure 50 – Learning curves of Active-DiNTS over the number of Queries. Active Learning (AL) was
used to select samples to update the Weights of the neural architectures.



212 APPENDIX B. Active-DiNTS: complementary results

0 20 40 60 80 100
Queries

0.0%

20.0%

40.0%

60.0%

80.0%

Di
ce

 sc
or

e

Task01_BrainTumour from MSD challenge (AL = Topology)

Active-DiNTS (Random)
Active-DiNTS (Entropy)
Active-DiNTS (Variance)
Active-DiNTS (Std)
DiNTS

Figure 51 – Learning curves of Active-DiNTS over the number of Queries. Active Learning (AL) was
used to select samples to update the Topology of the neural architectures.
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Figure 52 – Learning curves of Active-DiNTS over the number of Queries. Curves are averages of each
Entropy run over all the Active Learning (AL) setups (Weights, Topology, and Wt. & Topo).
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Figure 53 – Learning curves of Active-DiNTS over the number of Queries. Curves are averages of each
Variance run over all the Active Learning (AL) setups (Weights, Topology, and Wt. & Topo).
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Figure 54 – Learning curves of Active-DiNTS over the number of Queries. Curves are averages of each
Std run over all the Active Learning (AL) setups (Weights, Topology, and Wt. & Topo).
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Figure 55 – Active-DiNTS learning curves over the number of Queries. Every curve is an Average (Avg)
of each Query strategy model (Entropy, Variance, and Std) over all the Active Learning setups
(Weights, Topology, and Weights & Topology).
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B.2 More Searched Cells
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(a) Random at Query 10/97.
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(b) Random at Query 14/97 (overcome DiNTS (Pancreas)).
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(c) Random at Query 20/97.
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(d) Random at Query 30/97.
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(e) Random at Query 41/97 (overcome DiNTS (Brain)).
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(f) Random at Query 50/97.
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(g) Random at Query 94/97 (best Dice).

Figure 56 – Generated neural architectures on Task01_BrainTumour using the Random strategy. Edges
are: 0 = Skip, 1 = 3x3x3, 2 = P3D 3x3x1, 3 = P3D 3x1x3, 4 = P3D 1x3x3.
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(a) Entropy at Query 10/97.
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(b) Entropy at Query 13/97 (overcome DiNTS (Pancreas)).
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(c) Entropy at Query 20/97.
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(d) Entropy at Query 30/97.
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(e) Entropy at Query 35/97 (overcome DiNTS (Brain)).
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(f) Entropy at Query 40/97.
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(g) Entropy at Query 50/97.
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(h) Entropy at Query 91/97 (best Dice).

Figure 57 – Generated neural architectures on Task01_BrainTumour using the Entropy strategy. Edges
are: 0 = Skip, 1 = 3x3x3, 2 = P3D 3x3x1, 3 = P3D 3x1x3, 4 = P3D 1x3x3.
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(a) Variance at Query 10/97.
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(b) Variance at Query 14/97 (overcome DiNTS (Pancreas)).
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(c) Variance at Query 20/97.
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(d) Variance at Query 30/97.
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(e) Variance at Query 36/97 (overcome DiNTS (Brain)).
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(f) Variance at Query 40/97.
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(g) Variance at Query 50/97.
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(h) Variance at Query 96/97 (best Dice).

Figure 58 – Generated neural architectures on Task01_BrainTumour using the Variance strategy. Edges
are: 0 = Skip, 1 = 3x3x3, 2 = P3D 3x3x1, 3 = P3D 3x1x3, 4 = P3D 1x3x3.
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(a) Std at Query 10/97.
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(b) Std at Query 11/97 (overcome DiNTS (Pancreas))
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(c) Std at Query 20/97.
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(d) Std at Query 30/97.
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(e) Std at Query 37/97 (overcome DiNTS (Brain)).
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(f) Std at Query 40/97.
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(g) Std at Query 50/97.
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(h) Std at Query 93/97 (best Dice).

Figure 59 – Generated neural architectures on Task01_BrainTumour using the Std strategy. Edges are: 0
= Skip, 1 = 3x3x3, 2 = P3D 3x3x1, 3 = P3D 3x1x3, 4 = P3D 1x3x3.
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