• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2020.tde-29072020-092812
Documento
Autor
Nombre completo
Sidgley Camargo de Andrade
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2020
Director
Tribunal
Delbem, Alexandre Cláudio Botazzo (Presidente)
Campelo, Claudio Elizio Calazans
Maciel, Carlos Dias
Santos, Leonardo Bacelar Lima
Título en inglés
Mining of rainfall patterns from social media for supporting flood risk management
Palabras clave en inglés
Flood risk management
Rain patterns
Social media
Spatial data mining
Spatio-temporal analysis
Resumen en inglés
Context. The widespread use of social media platforms and mobile phones in recent years has increased the capability of people to share information anytime, anywhere, and about anything. The past few years have witnessed a growing interest in social media data as a supplementary data source for disaster risk management. Most studies have aimed at extracting spatio-temporal thematic patterns from social media to support the wide range of tasks that comprise disaster risk management. Substantial advances have been made towards the understanding patterns of several natural phenomena, such as floods and earthquakes. Gap. However, scant attention has been given to rain patterns, which are fundamental inputs in many rainfall-runoff models for flood modeling and forecasting, as well as early warning systems of extreme weather. Furthermore, issues such as selection of a representative areal unit of aggregation, temporal validation/calibration with conventional data, and improvement in information retrieval processes have not been thoroughly investigated, and can still be raised as challenges for the establishment of more sophisticated social signals that reflect natural phenomena. Contribution. This doctoral thesis contributes to the extraction of rain patterns from Twitter data for supporting monitoring and forecasting in flood risk management. It advances in establishing (i) a systematic method for the selection of an optimal areal unit, (ii) an approach for the evaluation of the temporal validity of social media activity related to a given phenomenon of interest, (iii) a conceptual specification model for characterization of the spatial units where social signals accurately mirror a given phenomenon of interest, and (iv) a sensitivity analysis of the spatio-temporal patterns of keywords related to a given phenomenon of interest. A series of empirical case studies conducted in Sao Paulo city, Brazil, evaluated such contributions. Results. The results showed the viability of extraction of rain patterns from Twitter data and their potential use to improve the fault tolerance of traditional solutions of flood risk management, especially in areas of lack of conventional data. Conclusions. Social media data can be used as a supplementary data source for rainfall monitoring. Moreover, discussions have provided useful guiding principles to be followed by spatial analysts using social media data as a proxy data source of natural phenomena.
Título en portugués
Mineração de padrões de chuvas das redes sociais para apoiar a gestão de risco de inundação
Palabras clave en portugués
Análise espaço-temporal
Gestão de risco de inundação
Mineração de dados espaciais
Padrões de chuva
Redes sociais
Resumen en portugués
Contexto. O uso generalizado de plataformas de rede social e telefones celulares nos últimos anos tem aumentado a capacidade das pessoas de compartilhar informações a qualquer hora, em qualquer lugar, e sobre qualquer tópico. Os últimos anos testemunharam um interesse crescente em dados de rede social como uma fonte suplementar para a gestão de risco de desastres. A maioria dos estudos teve como objetivo extrair padrões temáticos espaço-temporais das redes sociais para apoiar as tarefas de gestão de risco de desastres. Avanços foram feitos no entendimento de padrões temáticos espaço-temporais de fenômenos naturais, tais como padrões de inundações e terremotos. Lacuna. No entanto, pouca atenção foi dada aos padrões de chuva, que são entradas fundamentais em muitos modelos chuva-vazão para a modelagem e previsão de inundação, bem como para sistemas de alerta precoce de condições meteorológicas extremas. Questões como a seleção de uma unidade de agregação de área representativa, validação/calibração temporal com dados convencionais, e melhoria do processo de recuperação de informação não foram investigadas exaustivamente e ainda podem ser levantadas como desafios para o estabelecimento de sinais sociais mais sofisticados que são capazes de refletir fenômenos naturais. Contribuição. Esta tese de doutorado contribui para a extração de padrões de chuva dos dados do Twitter para apoiar o monitoramento e a previsão de riscos de inundação. Também avança no estabelecimento de (i) um método sistemático para a seleção de uma unidade de área ideal, (ii) uma abordagem para a avaliação da validade temporal da atividade de rede social relacionada a um determinado fenômeno de interesse, (iii) um modelo conceitual para caracterizar as unidades espaciais em que o sinal social espelha com precisão um determinado fenômeno de interesse, e (iv) uma análise de sensibilidade dos padrões espaço-temporais de palavras-chaves relacionadas ao fenêmeno de interesse. Uma série de estudos de caso foram conduzidos na cidade de São Paulo, Brasil, a fim de avaliar as contribuições. Resultados. Os resultados mostraram a viabilidade de extrair padrões de chuva dos dados do Twitter e seu uso na tolerância a falhas de soluções tradicionais de gestão de risco de inundação, especialmente em áreas onde há ausência de dados convencionais. Conclusões. Os dados de redes sociais podem ser usados como uma fonte de dados suplementar para monitoramento de chuvas. Além disso, discussões fornecem princípios orientadores úteis a serem seguidos por analistas espaciais ao usar dados de redes sociais como uma fonte de dados proxy de fenômenos naturais.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.