
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Fast Outlier Detection Using Similarity Self-Join Techniques

Eugênio Ferreira Cabral
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Eugênio Ferreira Cabral

Fast Outlier Detection Using Similarity Self-Join Techniques

Dissertation submitted to the Institute of Mathematics
and Computer Sciences – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Master in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Robson Leonardo Ferreira Cordeiro

USP – São Carlos
April 2021

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

F117f
Ferreira Cabral, Eugênio
 Fast Outlier Detection Using Similarity Self-
Join Techniques / Eugênio Ferreira Cabral;
orientador Robson Leonardo Ferreira Cordeiro. --
São Carlos, 2021.
 99 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2021.

 1. outlier detection. 2. similarity self-join.
I. Leonardo Ferreira Cordeiro, Robson, orient. II.
Título.

Eugênio Ferreira Cabral

Detecção Rápida de Casos de Exceção Utilizando Técnicas
de Auto-Junção por Similaridade

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Robson Leonardo
Ferreira Cordeiro

USP – São Carlos
Abril de 2021

To those who inspired it and will not read it.

ACKNOWLEDGEMENTS

Special thanks and love to my family, who always valued my education and supported
me continuously throughout this project with encouragement and patience. All my efforts are
dedicated to them.

To my dear friend Vinícius Ferreira da Silva – thank you for your support, kindness, and
invaluable friendship. A very special thanks to Isabela Martins for her incredible patience and
motivation through this experience.

Thanks to all members of GBDI, in special those who gave me the opportunity to learn
from their incredible minds; Cézanne Alves, Gabriel Spadon, Jadson José, Lucas Scabora,
Willian Dener - in alphabetical order.

To my advisor Robson Cordeiro for his trust, dedication, support and great guidance in
the development of this project.

This work was supported in part by the Coordination for Improvement of Higher
Education Personnel (CAPES) – Grant No 132788/2018-7, São Paulo Research Foundation
(FAPESP) – Grant No 2018/05714-5, 2016/17078-0 and 2020/07200- 9, and the National Council
for Scientific and Technological Development (CNPq).

“We have to remember that what we observe is not nature in itself,

but nature exposed to our method of questioning.”

(Werner Karl Heisenberg)

RESUMO

CABRAL, E. F. Detecção Rápida de Casos de Exceção Utilizando Técnicas de Auto-Junção
por Similaridade. 2021. 99 p. Dissertação (Mestrado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2021.

A democratização dos dispositivos eletrônicos ao longo dos anos incentivou indivíduos e indús-
trias a produzirem dados a um baixo custo. Como consequência, a produção de dados aumentou
globalmente em ritmo acelerado. Com essa produção de dados cada vez maior, as indústrias
exigiram melhores ferramentas para encontrar padrões e melhorar seus processos de tomada
de decisão. Alguns eventos em particular podem não encaixar em nenhum padrão e ainda
assim trazerem informações importantes. São usualmente eventos raros que não correspondem
à maioria dos dados, também conhecidos como anomalias, exceções ou outliers. Eles podem
representar falhas, fraudes, invasões ou condições anormais em sistemas. Detectar esses eventos
o quanto antes é crucial em aplicações reais, como finanças, redes sociais e controle de qua-
lidade. Vários algoritmos fornecem excelentes resultados em termos de qualidade, porém na
prática, se mostram ineficientes para lidar com dados volumosos. Abordagens mais eficientes
pressupõem que uma exceção pode ser identificada buscando por instâncias similares, também
conhecidas como vizinhas devido à proximidade espacial entre as instâncias. As estruturas de
dados armazenam dados e realizam sucessivas operações de busca por vizinhança para obter
informações sobre a densidade da vizinhança, a qual é usada na detecção de exceções. Essa
operação tem sido muito pesquisada na comunidade de busca por similaridade ao longo dos anos.
Nessa comunidade, é sabido que essas sucessivas operações podem ser substituídas por uma
junção por similaridade, mas essa observação não parece óbvia na literatura de detecção de casos
de exceção porque praticamente todos algoritmos criam suas próprias estratégias de busca por
similaridade. A junção por similaridade é uma operação que, dado dois conjuntos de dados e
um limite de similaridade, o objetivo é encontrar todos os pares de instâncias similares. Porém,
quando apenas um conjunto de dados é fornecido, essa operação é denominada auto-junção por
similaridade. Os algoritmos para essa operação visam melhorar a eficiência em uma ampla gama
de aplicações. Como casos de exceção são eventos raros e divergentes da maioria, instâncias
com poucos pares podem ser uma exceção. Neste trabalho, propomos investigar como essa
sobreposição de conceitos pode ser benéfica para melhorar o desempenho e a escalabilidade
de algoritmos de detecção de exceção. Propomos dois novos algoritmos baseados em técnicas
de junção por similaridade - ODSSJ e HySortOD. Os resultados experimentais sugerem que as
soluções são 3 ordens de magnitude mais rápida que os algoritmos estado da arte existentes.

Palavras-chave: detecção de casos de exceção, junção por similaridade.

ABSTRACT

CABRAL, E. F. Fast Outlier Detection Using Similarity Self-Join Techniques. 2021. 99 p.
Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2021.

The democratization of electronic devices over the years encouraged individuals and industries
to produce data at a cheap price. As a consequence of this phenomenon, the data production
increased globally at a fast pace. With this ever-growing data production, industries demanded
better tools to find patterns in the large volume of data available and improve their decision-
making processes. Some particular events might not fit in any existing pattern and yet bring
important business insights. They are usually rare events that do not conform with the majority
of the data, often classified as anomalies, exceptions or outliers. They can represent failures,
frauds, scamming, invasions or abnormal conditions in systems. Detecting this type of event
as soon as possible is crucial for real-world applications such as in finance, healthcare, social
networks and quality control. Several algorithms have been introduced in the literature providing
outstanding results in terms of effectivity, but, in practice, the existing alternatives are still very
much expensive in terms of runtime. The most efficient approaches assume that an outlier can be
identified by searching for similar instances, also known as neighbors due to their close proximity
in the feature space. Data structures are used to store the instances and perform successive
neighborhood search operations as a way to take advantage of neighborhood properties and detect
outliers. Such type of operation has been strongly researched in the community of similarity
search over the years. It is well-known by this community that successive neighborhood searches
can be replaced by a single similarity join operation, but this observation does not seem obvious
in the outlier detection literature because virtually all algorithms develop their own strategies
to search for similar instances. Similarity join is a fundamental operation in database systems;
given two datasets and a similarity threshold, the goal is to find all pairs of similar instances.
When only one dataset is given, this operation is named similarity self-join; it returns a set of
similar pairs for each instance. In this context, since outliers are rare events and diverge from the
majority, the instances with few similar pairs are potential outliers. Many join-based algorithms
aim to improve the efficiency of the operation in a diverse range of applications. In this work,
we investigate how this overlap of concepts can improve the runtime and scalability of outlier
detection algorithms. We propose two novel outlier detection algorithms that use join-based
techniques - ODSSJ and HySortOD. Our experimental results suggests that our solutions are 3
orders of magnitude faster than existing state-of-the-art algorithms.

Keywords: outlier detection, similarity join.

LIST OF FIGURES

Figure 1 – Illustration of inliers, noise and outliers . 30
Figure 2 – Illustration of an input dataset . 31
Figure 3 – Basic outlier detection pipeline . 31
Figure 4 – Example of global and local outlier . 32
Figure 5 – Example of clustering-based outlier detection 34
Figure 6 – Example of angle-based inlier and outlier 35
Figure 7 – Example of neighborhood-based outlier detection 36
Figure 8 – Example of the EGO-sort procedure . 42
Figure 9 – Hypercube coordinates and immediate neighbors example 70
Figure 10 – Hypercube coordinates represented in a tree hierarchy 73
Figure 11 – Quality vs. runtime in log scale for 12 real-world datasets and 7 algorithms . 79
Figure 12 – HySortOD scalability evaluation . 80
Figure 13 – HySortOD parameter influence on quality results 81

LIST OF ALGORITHMS

Algorithm 1 – ODSSJ() . 56
Algorithm 2 – Create_hypercubes() . 69
Algorithm 3 – Construct() . 72
Algorithm 4 – Neighborhood_density() . 74
Algorithm 5 – HySortOD() . 76

LIST OF TABLES

Table 1 – Summary of state-of-the-art algorithms in outlier detection 50
Table 2 – Summary of datasets . 58
Table 5 – Results of the statistical significance test for ODSSJ 62
Table 3 – Accuracy results for ODSSJ and 7 algorithms in 12 benchmark datasets . . . 64
Table 4 – Runtime results for ODSSJ and 7 algorithms in 12 benchmark datasets 65
Table 6 – Quality results for HySortOD and 8 algorithms in 12 benchmark datasets . . 83
Table 7 – Runtime results for HySortOD and 8 algorithms in 12 benchmark datasets . . 84
Table 8 – ODSSJ ’s best parameters found for each dataset. 95
Table 9 – HySortOD ’s best parameters found for each dataset. 97
Table 10 – Related work’s best parameters found for each dataset. 99

LIST OF SYMBOLS

ε — Range search radius

k — Number of neighbors in kNN

f (. . . , . . .) — Distance or similarity function

rng(. . . , . . . , . . .) — Range search function

q — Query center instance

τ — Threshold for minimum number of neighbors to be flagged as outlier

X — Array of numerical instances

m — Number of instances in X

d — Number of dimensions

p — Array index of X

j — Column index

xp — p-th instance in X

xp, j — p-th index in dimension j

C — Array of counts

ci — Number of instances in the neighborhood of i-th object in C; where object means instance
(ODSSJ) or hypercube (HySortOD)

O — Array of outlier output; where outlier output means flag (ODSSJ) or score (HySortOD)

op — p-th outlier output in O

t — Join threshold value for Super-EGO

b — Number of bins

l — Hypercube side size (or length)

H — Array of hypercubes

n — Number of hypercubes in H

i — Array index of H

hi — i-th hypercube in H

hk — k-th hypercube neighbor

hi, j — i-th index in dimension j

W — Array of densities

wi — Density value for i-th hypercube

wmax — Maximum density value

N(hi) — Set of neighbors for hypercube hi

MinSplit — Minimum threshold value for creating node branches

P — Parent node

Pvalue — Value stored in parent node

Pbegin — First mapped index in the parent node

Pend — Last mapped index in the parent node

CONTENTS

1 INTRODUCTION . 25
1.1 Context . 25
1.2 Problem and Motivation . 26
1.3 Contributions . 27
1.4 Organization . 27

2 FUNDAMENTAL CONCEPTS . 29
2.1 Outlier Detection . 29
2.1.1 Clustering-based Outlier Detection . 34
2.1.2 Angle-based Outlier Detection . 35
2.1.3 Neighborhood-based Outlier Detection 36
2.2 Similarity Join . 38
2.2.1 Index-based Similarity Join . 41
2.2.2 Hash-based Similarity Join . 41
2.2.3 Sort-based Similarity Join . 42
2.3 Final Considerations . 44

3 RELATED WORK . 45
3.1 Outlier Detection . 45
3.2 Similarity Join in Data Mining . 49
3.3 Final Considerations . 50

4 OUTLIER DETECTION WITH SIMILARITY SELF-JOIN 53
4.1 Outlier Detection meets Similarity Self-Join 53
4.2 Problem Statement . 55
4.3 The ODSSJ Algorithm . 56
4.4 Experimental Setup . 58
4.5 Results and Discussion . 59
4.5.1 Evaluation of Effectiveness . 59
4.5.2 Evaluation of Efficiency . 60
4.5.3 Statistical Evaluation . 61
4.6 Conclusion . 63

5 OUTLIER DETECTION WITH SORTED HYPERCUBES 67

5.1 Problem Statement . 68
5.2 The HySortOD Algorithm . 68
5.2.1 Creating Hypercubes . 69
5.2.2 Sorting Hypercubes . 70
5.2.3 Neighborhood Search . 70
5.2.3.1 Construction . 71
5.2.3.2 Search . 73
5.2.4 Outlierness Score . 74
5.2.5 Proposed Algorithm . 75
5.2.5.1 Time Complexity . 75
5.3 Experimental Setup . 76
5.4 Results and Discussion . 77
5.4.1 Effectiveness Evaluation . 78
5.4.2 Efficiency Evaluation . 78
5.4.3 Scalability Evaluation . 79
5.4.4 Parametrization . 80
5.4.5 Case Study: Breast Cancer Detection 81
5.5 Conclusion . 82

6 CONCLUSION . 85

BIBLIOGRAPHY . 87

APPENDIX A BEST PARAMETER VALUES FOR ODSSJ 95

APPENDIX B BEST PARAMETER VALUES FOR HYSORTOD . . 97

APPENDIX C BEST PARAMETER VALUES FOR THE STATE-OF-
THE-ART ALGORITHMS 99

25

CHAPTER

1
INTRODUCTION

1.1 Context

The increasing volume of data produced in today’s world offers challenges in many
areas, especially for databases and data analysis (CHE; SAFRAN; PENG, 2013). Database
systems have undergone a dramatic evolution in recent decades to accommodate several industry
needs due to the large volume of data, and the data analysis has also played a vital role in the
decision-making and optimization process. As a consequence of this evolution, many companies
have adopted the data-informed culture to guide their decisions to gain competitive advantage
and offer better products and services (STRIPHAS, 2015).

To achieve the benefits of this culture, the specialists must ask the business questions, and
their answers must be obtained and supported by data. The process of searching for particular
events or patterns in data is known as data mining, and several algorithms have been proposed to
facilitate this process. An example of a question that could be answered through data mining
would be Who are the users who commit fraud? and What are their characteristics? Since
fraudulent actions are rare events with particular behaviors that diverge from the majority, such
actions can be seen as exceptions, anomalies or outliers; therefore, outlier detection algorithms
could be employed in this context to find the expected answer. Another example of a question
that could be answered by outlier detection is What are the defective products in an industrial

production line? Most items in a production line usually meet the quality standard of the business,
but rare problematic events can cause defects or malfunctioning in the production machinery and
consequently the production of defective products. Detecting such cases can help the operation
staff to develop diagnostics to improve the quality control and minimize future material waste.
The detection of these cases allows companies to plan preventive actions or improve their
processes so that they can offer more appropriate services. As the industry increases its data
production, it becomes manually impractical to detect rare events that can provide new insights
or understand unexpected behaviors in systems. In this context of a large volume of data and the
crucial task of outlier detection, our work aims to propose more efficient and scalable solutions.

26 Chapter 1. Introduction

1.2 Problem and Motivation

The research on outlier detection has its origins a few decades ago when statistical
methods were employed, and a primary requirement was to assume the underlying data distribu-
tion (HAWKINS, 1980). However, to spot the correct data distribution is not always trivial in
most real-world applications, especially in this constantly changing world. To work around this
issue, part of the research community started to interpret the detection of outliers as a search
problem; then, a distance-based notion was adopted and required to perform searches for every
instance using a distance function, e.g., Euclidean distance, without the need to assume the data
distribution (KNORR; NG, 1998; BREUNIG et al., 2000). The neighborhood concept is the
basis of these searches, which assumes that instances that are close to each other in the feature
space are considered neighbors, i.e., similar instances. The intuition behind this approach is that
“normal” instances would have several neighbors, while the outliers would be the rare cases with
few neighbors.

The neighborhood concept can have two common interpretations; for example, given
a random instance, it is possible to define the k-nearest neighbors (kNN) or all instances that
are within a ε distance (ε-neighborhood). These two definitions inspired several algorithms
to achieve high-quality results (GOLDSTEIN; UCHIDA, 2016; CAMPOS et al., 2016) by
only performing successive neighborhood search operations, one operation per instance, and
then evaluating the instance neighborhood based on some criterion. However, they often strive
to provide scalable solutions (ORAIR et al., 2010; GOLDSTEIN; UCHIDA, 2016; KIRNER;
SCHUBERT; ZIMEK, 2017). It is well known by the similarity search community that successive
neighborhood search operations can be replaced by one single similarity join operation, which
is a fundamental operation in database systems (SILVA; AREF; ALI, 2010). In this context, a
ε-join is equivalent to successive ε-neighborhood search operations, and a k-nearest neighbors
join (kNN-join) is equivalent to successive kNN search operations, where ε-join and kNN-join
are particular types of similarity join. These types of joins have been a popular topic of research
by the similarity search community for many years in a wide range of applications, mainly
focused on the analysis of large volumes of data.

In this work, we are interested in taking advantage of the techniques employed by simi-
larity join algorithms to improve the efficiency of the outlier detection task. We first demonstrate
how these two tasks are related and how to adapt an existing join-based algorithm to detect
outliers. As a byproduct of our adaptation, we propose a novel algorithm named ODSSJ. Then,
we revisit the hypercube-based notion for outlier detection and combine it with a sorting strategy
employed by join-based algorithms to propose a novel algorithm named HySortOD that can
scale to large volumes of data. To the best of our knowledge, the link between outlier detection
and similarity self-join has not been explicitly investigated previously in the literature. This
observation and the need for scalable solutions are the sources of motivation for our hypothesis
that aims to improve the performance and the scalability of outlier detection algorithms.

1.3. Contributions 27

Hypothesis: The use of similarity self-join techniques
makes it possible to detect outliers more efficiently.

1.3 Contributions
This work proposes two novel algorithmic approaches based on the aforementioned

hypothesis. We conducted extensive experiments using several real-world datasets from different
domains, like Chemistry, Biology, Healthcare, Remote Sensing and Networking. According to
our experimental results, we highlight the following contributions:

C1 Generality: Our proposed algorithms are designed based on the well-known neighborhood
assumption that provides flexibility to be used in a wide range of applications.

C2 Simplicity: Our approach does not require labels to learn how to detect outliers and
parameter intuitiveness allow our algorithms to be used straightforwardly in most real-
world scenarios.

C3 Interpretability: The neighborhood-based approach allows specialists to easily interpret
and disseminate the results.

C4 Speed: We take advantage of similarity join techniques to avoid unnecessary computations,
and show that this approach is a powerful tool to reduce the outlier detection runtime.

1.4 Organization
The next chapters of this work are organized as follows. Chapter 2 provides the funda-

mental concepts that are used as basis for this work regarding outlier detection and similarity join.
Chapter 3 summarizes the relevant existing work in the literature that inspires this present work.
Chapter 4 discusses about the relationship between similarity self-join and outlier detection; it
also introduces the mechanisms and experiments of our join-based algorithm named ODSSJ.
Chapter 5 introduces our novel sorted hypercube algorithm named HySortOD and presents the
experiments that demonstrate its efficiency. Finally, in Chapter 6, we provide the concluding
remarks and highlight the contributions of this work with respect to our findings.

29

CHAPTER

2
FUNDAMENTAL CONCEPTS

2.1 Outlier Detection
The detection of outliers has been researched in many areas over the years, and several

applications benefit from the algorithms developed by this research, such as in quality con-
trol (JAUHRI; MCDANEL; CONNOR, 2015), sensor networks (SHAHID; NAQVI; QAISAR,
2015), cyber intrusion (JABEZ; MUTHUKUMAR, 2015), healthcare (ANBARASI; DHIVYA,
2017), social networks (BINDU; THILAGAM; AHUJA, 2017) and finance (TRIPATHI et al.,
2018). As a consequence of such a variety of applications, alternative names like abnormalities,
discordant, deviants or anomalies emerged to contextualize with the application domain. How-
ever, in general, they serve the same purpose: to identify instances that are significantly different
from the others. In Ayadi et al. (2017, p. 3), the authors list several attempts to define an outlier
precisely, but the consensus is not clear.

Two of the first known definitions state that "an outlier is an observation which deviates
so much from the other observations as to arouse suspicions that it was generated by a different
mechanism" (HAWKINS, 1980), and "an observation (or subset of observations) which appears
to be inconsistent with the remainder of that set of data" (BARNETT; LEWIS, 1994). In
these examples, the challenge is the interpretation of "deviates so much" and "appears to be
inconsistent", because they are both vague definitions that leave room for discussion. In order to
deal with this issue, the alternative is to make assumptions based on the target application.

A high-level definition concerning the degree of outlierness of an instance can be helpful
to consider while tackling an outlier detection problem; it is known as outlierness score (AG-
GARWAL, 2017, p. 3). This score is usually a continuous value in the [0,1] interval where high
values represent a high degree of an instance being an outlier, and vice versa as it is illustrated in
Figure 1. The interval can be intuitively divided into three instance types:

• Inliers describe what is considered to be a normal behavior for the application;

• Noise represent the semantic boundary between what is normal and the outliers;

• Outliers are considered significantly different from the normal behavior.

30 Chapter 2. Fundamental Concepts

In some algorithms, noise instances are usually reported as outliers because they might
provide significant insights for the specialist. The threshold values (or sub-intervals) for each of
the previous types depend on the application. In practical terms, every application imposes some
limitations, and to find a general definition for outliers that copes with all scenarios might not be
a straightforward task. Therefore, to understand the application goals and constraints is crucial
in the outlier detection problem.

Inlier Noise Outlier

Figure 1 – Illustration of instances scattered in a 2-dimensional space (top) with their respective type (bot-
tom). Inliers indicate the lowest outlierness scores while outliers indicate the highest ones;
noise instances are in between inliers and outliers.

Part of these limitations is associated with the dataset that is used as input. Figure 2
illustrates an overview of the basic structure of the input data. The datasets for outlier detection
consist of a collection of instances (also known as observations, objects, tuples or vectors) with
one dimension (unidimensional) or more (multidimensional). The terms dimension, attribute,
feature and variable are often used interchangeably in the literature. Dependency between
instances might exist in problems that have sequential data, such as audio or time series, where a
given instance depends explicitly or implicitly from the previous instance. To develop outlier
detection algorithms, one must consider not only the instance dependency, whenever it exists, but
the data type of each dimension as well. Each dimension can be either numerical (quantitative)
or categorical (qualitative), for which different metrics can be used to distinguish instances in
the space. For example, numerical dimensions often use Minkowski distance functions (LESOT;
RIFQI; BENHADDA, 2009) for this task, although other distance functions can also be employed.
Categorical dimensions commonly require a semantically meaningful distance function that
is constructed for each application. Also, there might exist a special type of dimension that
indicates the label of each instance; it specifies whether a given instance is an outlier or not.
However, not all datasets provide labels for any instance, and the availability of this information
changes the strategy of how the algorithm must learn about the problem.

2.1. Outlier Detection 31

Dataset

Instance

AttributeDimension
Numerical

Categorical

Figure 2 – The structure of an input dataset. A dataset contains a set of instances, where each instance has
a set of dimensions that can be either numerical or categorical.

Figure 3 illustrates the most common learning schemes that can be employed depending
on the input data. They are briefly described in the following:

• Unsupervised Learning is when the algorithm does not require the label dimension and
the learning relies only on the knowledge extracted from the other dimensions;

• Supervised Learning takes advantage of the label dimension and learns by example to
distinguish future unlabeled instances in outliers and inliers;

• Semi-Supervised Learning is when only a few (not all) instances are labeled as outliers,
then, the algorithm can mix strategies from the previous two learning schemes to distin-
guish future unlabeled instances in outliers and inliers.

Additionally, these learning schemes must consider the mode of analysis, between offline

and online detection. The offline mode is when there is one static dataset available, while the
online mode considers a stream of data. Both cases impose different algorithmic strategies and
limitations that should be treated during the algorithm design and application.

Dataset

Supervised

Semi-supervised

Unsupervised

Score

Label

Label

Input Learning Scheme Output

Figure 3 – Illustrates the pipeline components for the task of outlier detection: input, learning scheme
and output. The input dataset (left) can optionally contain labels, and it is used in the proper
learning scheme (center) to finally report the output (right) that can be either a score or a label.

32 Chapter 2. Fundamental Concepts

For any learning scheme, it is also important to define beforehand the type of outlier to
look for. In this work, we focus on unsupervised learning scheme and proximity-based outliers
due to its conceptual affinity with similarity join; we provide an in-depth analysis in such affinity
in Section 4.1. According to Aggarwal (2017) proximity-based outliers can be distinguished as
global and local outliers, as it is described in the following and illustrated in Figure 4.

• Global outlier (or point outlier) is when an instance deviates from the rest of the dataset. For
example, when errors or malfunctioning is recorded in data, such instances are considered
unusual compared with other instances, as it is illustrated in Figure 4a.

• Local outlier is when an instance has few neighbors relative to its surroundings, but not
necessarily from the rest of the dataset. For example, identifying businesses that are out of
a certain radius in a neighborhood, as it is illustrated in Figure 4b.

x

y

(a) Global outlier
x

y

(b) Local outlier

Figure 4 – Illustration of global and local outliers. In Figure 4a, the outlying instance is far from most
instances in the dataset, while, in Figure 4b, the outlier has only one instance in its surroundings.

The main challenge for both the global and the local types is to define how far from
the other instances a given instance must be to be considered an outlier. Note that, despite the
aforementioned differences among types of outliers, some algorithms can detect multiple types,
and the interpretation of the results is commonly up to the specialist.

Aside from the algorithm and its applicability, there are two ways to indicate whether
an instance is an outlier or not: it can be done either by using a score or by using a label, as
it is illustrated in Figure 3. Scores are continuous values that quantify the outlierness of an
instance. In other words, they describe the instance’s degree of outlierness. They can express
distances, probabilities or some relative measure in the interval [0,1]. On the other hand, labels
are binary values stored in categorical attributes to indicate whether or not an instance is an
outlier. Furthermore, a score value can be converted to a label if a threshold value is set. Thus,
when the score value is higher than the threshold, the corresponding instance is labeled as an
outlier; otherwise, it is labeled as not an outlier, i.e., an inlier or noise.

The aforementioned concepts about outliers compose the essential building blocks to
design most outlier detection algorithms. Since this MSc work focuses on unsupervised learning

2.1. Outlier Detection 33

algorithms, let us introduce in the following some common strategies found in the literature,
such as Extreme Value Analysis, Probabilistic models and Proximity-based algorithms.

Extreme Value Analysis (PICKANDS, 1975) assumes that the dataset values that are
either too small or too large should be flagged as outliers. Thus, the main idea here is to find
statistical tails of the distribution. Despite being intended for unidimensional problems, it can
also be applied to multidimensional ones. For example, Leys et al. (2018) developed a simple
approach to handle outliers in multidimensional datasets with a small sample size from the
psychology domain. However, this algorithm should not be used as a generic outlier detection
tool because it is designed to detect specific types of outliers, i.e., global outliers, and it is also
incapable of identifying outliers in sparse interior regions of a dataset. Nevertheless, it can be
used as a final step in algorithms that quantify the deviations or distances of instances in the form
of a numerical score. For those cases, the usage of Extreme Value Analysis can be effective.

Probabilistic models rely on a closed-form probability distribution, and the parameters
of the probability models must be learned from the dataset. The assumption for these models
depends on the choice of data distribution. Whenever all mixture components have a generative
model available, this approach can be applied in any data type. However, the major challenge here
is to find the appropriate distribution for the dataset. For unidimensional problems, to identify
the distribution might not be so challenging. However, to select the appropriate distribution
for multidimensional cases is not a simple process, and overfitting can become a problem as
the number of parameters increases. Depending on the model, the parameters cannot be easily
interpreted by a specialist, and it becomes an issue if a diagnostic is required to justify why
an instance was flagged as an outlier. Like it happens with the Extreme Value Analysis, the
Probabilistic models can also be used as a final step in outlier detection algorithms. For example,
to convert outlierness scores into probability estimates can be a powerful strategy to provide
high-grade result interpretation (GAO; TAN, 2006).

The proximity-based approach is often a source of inspiration for many algorithms.
Its popularity is mainly due to the simplicity of implementation and the easiness of result
interpretation. The notion of proximity assumes as outliers the instances that are isolated from the
remaining ones. There are many variations of this approach and we provide as follows the details
for three common alternatives: Clustering-based (Section 2.1.1), Angle-based (Section 2.1.2) and
Neighborhood-based (Section 2.1.3). Note that there are other proximity-based ways to detect
outliers, such as Linear Models (MA; PERKINS, 2004), Information Theoretic Models (WU;
WANG, 2013) and Spectral Models (SATHE; AGGARWAL, 2016), but these are not covered in
this monograph since they are often used in very particular contexts.

34 Chapter 2. Fundamental Concepts

2.1.1 Clustering-based Outlier Detection

Clustering algorithms share a complementary relationship with outlier detection algo-
rithms. The clustering process groups similar (or dense) instances from a dataset into clusters, i.e.,
subsets of similar instances, while outlier detection identifies instances that do not conform with
any of these clusters. Many clustering algorithms detect outliers as a byproduct of their analyses.
However, the non-membership of an instance regarding all clusters can be noise rather than an
outlier because the clustering algorithm is not necessarily measuring the deviation level from
regular instances, but rather its (dis-)similarities with other instances. On the other hand, once the
clusters are created the detection of outlying instances tends to be faster because the algorithm
must compare whether the new instance belongs to the cluster or not. Instead of comparing the
new instance against all cluster instances, it can be done by just checking the distance from the
cluster centroid or whether the instance lies within the cluster boundaries. Figure 5 shows an
example of this approach, where the red instance is compared against two cluster centers rather
than comparing it with the instances that are clustered.

Figure 5 – Example of clustering-based outlier detection. Illustration of two clusters and an outlier instance
that does not belong to any cluster.

According to Chandola, Banerjee and Kumar (2009), there are three categories of
clustering-based outlier detection algorithms that are distinguished by their assumptions. The
first one assumes that "regular instances belong to a cluster, while outliers do no belong to any
cluster". A classical algorithm that implements such an assumption is DBSCAN (ESTER et

al., 1996). When an instance cannot be reached by other instances from a maximum distance
ε or it does not have enough instances (MinPts) in its ε-neighborhood, then this instance does
not belong to any cluster. Therefore, it is flagged as an outlier. GLOSH (CAMPELLO et al.,
2015) was developed based on the same clustering principles, but focused specifically on outlier
detection. The second category of algorithms assumes that "regular instances lie close to their
closest cluster centroid, while outliers are far away from their closest cluster centroid". This
assumption can be implemented with KMeans (LLOYD, 1982) by flagging as outliers instances
that exceed a distance threshold α from their closest cluster centroid. Finally, the third category
assumes that "regular instances belong to large and dense clusters, while outliers belong either
to small or sparse clusters". For example, CBLOF (HE; XU; DENG, 2003) spots outliers by
measuring the probability of an instance to belong to a given cluster with respect to its distance
to the cluster and the cluster size.

2.1. Outlier Detection 35

To summarize, different assumptions allow a clustering algorithm to spot outliers as a
byproduct of its process, and these assumptions must be considered beforehand according to
the desired types of outliers. All three approaches allow a clustering algorithm to detect outliers,
but they are not optimized for outlier detection in terms of effectivity and efficiency. Besides
that, there are algorithms such as KMeans that force all instances to belong to a cluster, which
is not desirable for outlier detection. Instead, algorithms such as DBSCAN can produce more
interesting results because not every instance has an assigned cluster. Most clustering algorithms
can operate in an unsupervised mode and can be adapted to handle mixed data types.

2.1.2 Angle-based Outlier Detection

Another interesting approach to detect outliers is based on the divergence in the direction
of instances relative to one another. It assumes that instances at the boundaries of the feature
space are likely to enclose the entire dataset within a small angle, whereas instances in the
interior are likely to have other instances around them at very different angles. In other words, it
is expected that inliers have a large variation of angles and outliers a small variation of angles.
In Figure 6, the highlighted instance illustrates the difference between angle variation in inlier
and outlier instance. When comparing angles with two pairs of other instances, it is possible to
note that the outlier instance encloses several other instances, and the angle variation is low in
contrast to those instances that are in the interior of the feature space.

β

ᶿ ⍺

𝜑

(a) Angle-based inlier

𝛼
β

(b) Angle-based outlier

Figure 6 – Illustration of angle-based inlier and outlier. In Figure 6a, the highlighted instance has a large
angle variation indicating an inlier instance, while, in Figure 6b the highlighted instance
encloses the entire dataset within a small angle variation indicating an outlier instance.

The first algorithm to implement this idea is ABOD (KRIEGEL; SCHUBERT; ZIMEK,
2008). The authors introduce a metric named Angle-Based Outlier Factor (ABOF) that describes
the variance over the angles between the difference vectors from an instance to all possible pairs
of other instances in the dataset weighted by the instances distances. This strategy arguably
provides better results for high-dimensional datasets because the variance of angles does not
deteriorate as the number of dimensions increase, differently from what happens to distance
measurements. However, the proposed metric requires a triple of instances to determine the
angle. Thus, to perform the angle computation of all instances, the algorithm requires a cubic

36 Chapter 2. Fundamental Concepts

time complexity to assign the ABOF value for each instance. In order to tackle this issue, the
authors proposed the FastABOD algorithm, which is based on samples of the dataset considering
the calculation of angles only with the k-nearest neighbors of each instance. This approximation
improves the time complexity of the original algorithm significantly, but the accuracy of results
depends on the value of k, and, according to the original experiments, the results become worse
as the data dimensionality increases. Besides, the authors also provide a conservative (lower
bound) approximation of ABOF, named LB-ABOF, that reduces to quadratic the time complexity,
but the quality does not necessarily improve. Other algorithms explore this angle-based idea to
reduce even more the time complexity. FastVOA (PHAM; PAGH, 2012) proposes a near-linear
approximation based on the ABOD algorithm; it introduces the metric Variation Of Angles (VOA)
as an alternative to ABOF without the normalization factor. The authors argue that ABOF is
normalized by the distances between instances, and, in high-dimensional spaces, it becomes less
meaningful due to the curse of high dimensionality (BELLMAN, 1961).

Angle-based algorithms are indeed an original idea in outlier analysis. Nevertheless, their
assumption is not applicable in many datasets, because outliers can also lie in the interior of
the feature space. In contrast, the neighborhood-based algorithms aim to explore these interior
cases in depth. Furthermore, the trade-off between time complexity and accuracy is a challenging
problem to solve in the angle-based approach.

2.1.3 Neighborhood-based Outlier Detection

The notion of neighborhood is based on the similarity between instances, that is, instances
in a given neighborhood are considered to be similar to each other due to their closeness in the
feature space. It requires a distance-based similarity function to distinguish between neighboring
and non-neighboring instances, besides a comparison criterion between neighborhoods to detect
outliers. This criterion is usually a density measure that considers ratios between the density
around an instance of interest and the density around its closest neighbors. The neighborhood of
an instance can be defined as ε-neighborhood or k-nearest neighborhood (kNN).

ε

(a) ε-neighborhood-based outlier (b) kNN-based outlier

Figure 7 – Illustration of neighborhood-based outlier detection. The outlying instance in Figure 7a has no
neighbors in the ε radius, while, in Figure 7b, the 2 nearest neighbors are far away.

2.1. Outlier Detection 37

As it is illustrated in Figure 7a, the ε-neighborhood is equivalent to a range query with
a given query instance as the center, and all neighboring instances are at most ε distant from
the center. The kNN defines as neighbors the k-nearest instances. Figure 7b shows an example
of a 2NN query. Moreover, in Figure 7 we can observe that in the same data distribution the
ε-neighborhood (Figure 7a) does not identify any neighbors for the red instance, but in the 2NN
strategy (Figure 7b) identifies two neighbors for the red instance. Based on this observation, it is
crucial to notice that, in some situations, the kNN might find that its nearest neighbors are too far
away and such cases must be considered when designing algorithms based on this strategy. A
more general view of these definitions is that, for a given instance, the distance to its kth nearest
neighbor is equivalent to the radius ε of a hypersphere centered at the given instance that contains
k other instances (CHANDOLA; BANERJEE; KUMAR, 2009, p. 24). Since the search process
is performed in a local region, i.e., it is either limited by ε or by k, these algorithms are known as
local outlier detectors. The similarities among the definitions allow the concept to be generalized.
There is a generalized view of several algorithms in the literature to allow a clear theoretical
comparison among the existing algorithms (SCHUBERT; ZIMEK; KRIEGEL, 2014).

To the best of our knowledge, the first algorithm to use a distance-based approach was
DB-Out (KNORR; NG, 1998). The idea is to provide an outlierness score for a given query
instance by counting the number of nearest neighbors that are at no more than a ε distance
from the query instance. This approach can only handle numerical data. As an alternative,
algorithm CNB (LI; LEE; LANG, 2007) introduced a common-neighbor-based distance function
to measure the similarity between categorical instances. Nevertheless, real-world datasets contain
missing values, and specific distance functions are required to meet this need. Thus, algorithm
HOT (WEI et al., 2003) uses the connectivity property to replace distance metrics so to better
handle missing values and mixed data types.

LOF (BREUNIG et al., 2000) further explores the idea of counting instances in a ε-
neighborhood to compute the neighborhood density. It introduces the Local Outlier Factor (LOF),
which assigns an outlierness score for each instance. The algorithm compares the local, ε-
neighborhood-based density of each instance with the corresponding neighborhood density of
each of its k nearest neighbors; instances with high LOF value are considered to be outliers.
However, to determine an appropriate value for parameter k is not a trivial task. Therefore,
LOCI (PAPADIMITRIOU et al., 2003) introduced the concept known as Multi-granularity
DEviation Factor (MDEF). In this approach, the main difference from LOF is that instead of
comparing local densities of an instance with those of its k nearest neighbors, it compares with
those instances in a ε-neighborhood. Although the approaches are substantially similar in the
theoretical sense, LOCI’s implementation introduces several challenges in time complexity.

38 Chapter 2. Fundamental Concepts

The algorithms in this category usually perform a comprehensive analysis in the dataset
to find outliers, which can lead to high computational costs. Thus, several algorithms employ
different strategies to improve efficiency. DB-Out uses a hypercube-based approach to discretize
and summarize the space so to reduce the number of instances to be analyzed. RBRP (GHOT-
ING; PARTHASARATHY; OTEY, 2008) uses a recursive approach that iteratively partitions
instances into k bins with a fixed number of iterations. Then, it scans through the bins to find the
approximate nearest neighbors of each instance. When the number of nearest neighbors does not
exceed a threshold, then the instance is flagged as an outlier. This strategy allows the specialist
to retrieve the top n outliers by approximating the computation and consequently speeding-up
the outlier detection process.

One of the main advantages of the neighborhood-based algorithms is that no prior
knowledge about the data distribution is required. As long as it is provided a distance function
that is well suited to compare the instances of a dataset of interest, this approach can be
employed. Also, the level of interpretability that this approach provides is a positive aspect; even
approximate solutions deliver a high level of detail. This characteristic allows many specialists to
better understand outliers in real applications. However, the major drawback of this approach is
the computational cost to detect outliers. A naïve implementation requires that n instances must
be compared against to n−1 instances leading to a O(n2) time complexity, which significantly
increases the computational cost of this approach. Thus, neighborhood-based algorithms usually
need to address this issue to become suitable for real-world large datasets.

2.2 Similarity Join

The Similarity Join (SJ) operation is widely used in data mining. For instance, it has
already been used in entity resolution (CHEN; KALASHNIKOV; MEHROTRA, 2009), near
duplicate document identification (WANG et al., 2011), gene sequences comparison (WANDELT
et al., 2013), query autocompletion (ISHIKAWA et al., 2013), document clustering (LIN; JIANG;
LEE, 2014), record linkage (ADHAV; KUMAR, 2015) and data cleaning (GIANNAKOPOULOU
et al., 2017). For clarity, this section describes the similarity join in terms multiple executions of
a simpler operation, i.e., the Similarity Search (SS). For both operations, in order to determine
whether any two instances x and y are similar to each other, two components must be defined
beforehand: a similarity function f (x,y) and a similarity condition.

The similarity function returns a continuous score representing how similar two instances
are based on the specific rules to handle different data types. For example, the most common
functions are the Euclidean distance (LESOT; RIFQI; BENHADDA, 2009) for numerical in-
stances, the LEdit distance (LI et al., 2015) for string instances, and the Jaccard distance (MANN;
AUGSTEN; BOUROS, 2016) for categorical/set instances. Some similarity functions have a
fundamental property known as metric that is useful for many applications. A function is said to
be a metric iff the following properties are valid for any possible instance x, y and z:

2.2. Similarity Join 39

(1) Symmetry: f (x,y) = f (y,x)

(2) Non-negativity: f (x,y)≥ 0

(3) Identity: f (x,y) = 0 ⇐⇒ x = y

(4) Triangle inequality: f (x,y)≤ f (x,z)+ f (z,y)

A similarity condition compares the similarity score with a similarity threshold ε using a
logical comparator, such as "less than". When the similarity condition is satisfied, the x and y

instances are said to be similar to each other. Thus, a clear understanding of what is said to be
similar must align with the requirements of the application. Note that a similarity condition can
also be expressed in terms of k instead of ε , for the kNN-based similarity search, but, for brevity,
we express it in the following only in terms of ε .

Formal definitions for both the Similarity Search (SS) and the Similarity Join (SJ)
operations are provided in the following.

Definition 1 (Similarity Search). Given a dataset X , a query instance q, a similarity function
f and a similarity threshold ε , the Similarity Search (SS) returns all instances from X whose
distances to instance q are smaller than ε , according to function f . Formally, it is given by:

SS f ,ε(X ,q) = {x | f (x,q)< ε; x ∈ X}

Definition 2 (Similarity Join). Given two datasets X and Y , a similarity function f and a
similarity threshold ε , the Similarity Join (SJ) returns all pairs of instances whose distances
to each other are smaller than ε , according to function f , where the first instance of each pair
belongs to X and the second instance belongs to Y . Formally, it is given by:

SJ f ,ε(X ,Y) = {(x,y) | f (x,y)< ε; x ∈ X , y ∈ Y}

A particular case of the SJ operation has a central role in this MSc work. Being known
as the Similarity Self-Join (SSJ) operation, it happens when the datasets X and Y are exactly
the same, so there is actually only one dataset to be analyzed. Let us present a formal definition
for the SSJ operation in the following.

Definition 3 (Similarity Self-Join). Given a dataset X , a similarity function f and a similarity
threshold ε , the Similarity Self-Join (SSJ) returns all pairs of instances from X whose distances
to each other are smaller than ε , according to function f . Formally, it is given by:

SSJ f ,ε(X) = {(x,y) | f (x,y)< ε; x, y ∈ X}

Based on the previous definitions, one can easily rewrite the definition of the SSJ
operation in terms of successive executions of SS operations, which obviously obtain the exact

40 Chapter 2. Fundamental Concepts

same result set. Let us express the similar pairs in an equivalent form, where the second element
y of the tuple is a set of similar instances instead of a single instance, that is:

SSJ f ,ε(X) = {(x, SS f ,ε(X ,x)) | x ∈ X}

Although the goal of the SSJ operation is to find all similar pairs of instances, it is also
possible to restrict this operation to only find the top-N similar pairs of instances. However,
to meet the scope of this work, our interest is to investigate algorithms that find all pairs of
similar instances using a metric similarity function and a similarity threshold for the context of
numerical instances. Specifically, we are interested in the SSJ operation using the L2 norm as the
similarity function. Formally, it is given by:

f (x,y) = ||x − y||2 =

√√√√ d

∑
j=1

(x j− y j)2

In the equation, D is the number of dimensions; x and y are D-dimensional numerical
instances, and; x j and y j are the jth coordinate values of x and y, respectively.

As it can be seen, the “building blocks” of similarity-based operations are flexible enough
to be extended to other applications and goals. For example, in the k-nearest neighbors similarity
join (kNN-join) (XIA et al., 2004; DU; LI, 2013), the goal is to join a given query instance with
its k-nearest neighbors. This approach is usually faster than the ε-join because the number of
instances in the result set is predictable by the value of k. Moreover, there are attempts to estimate
the result set size of a ε-join to speed up the operation (LEE; NG; SHIM, 2011). Nevertheless,
the SJ concepts can be further explored in matching similar strings (YU et al., 2016), performing
SSJ on streaming data (MORALES; GIONIS, 2016), or finding all similar pairs of sets in a
collection of sets (JIA et al., 2018).

The simplest way to implement a SJ operation is by creating two nested loops that
evaluate the similarity between all instances of datasets X and Y . This strategy is often referred
to as brute force, nested loops or naïve search, and its time complexity is O(n2), which exposes
a strong limitation in processing large datasets, becoming not feasible for most real-world
applications. Due to the vast applicability of the SJ operation in the literature, researchers
proposed novel approaches to improve its runtime so to perform at scale. The major challenge is
how to organize the instances in such a way that neighboring instances are stored close to each
other so to avoid unnecessary comparisons, since the search cost increases significantly when
instances that are far away from each other need to be compared. Thus, several approaches to
reduce such complexity have been studied. They are classified into three types, as it is explained
in the following sections: Index-based (Section 2.2.1), Hash-based (Section 2.2.2) and Sort-based
(Section 2.2.3).

2.2. Similarity Join 41

2.2.1 Index-based Similarity Join

One of the earliest attempts to mitigate the runtime of the SJ operation is to index the
dataset instances. Brinkhoff, Kriegel and Seeger (1993) presented well-known algorithms to join
two existing R-trees considering several strategies to mitigate CPU and I/O costs. However, the
traversal cost is high because many leaf nodes need to be visited, and the contribution is limited to
data of low dimensionality. To overcome these issues, algorithm ε-kdB-tree (SHIM; SRIKANT;
AGRAWAL, 2002) introduced strategies to find appropriate branches in internal nodes and reduce
the traversal cost. The authors reported promising experimental results for high-dimensional data.
However, the tree construction has a high computational cost, and distributed strategies to join
two R-trees are not straightforward, which makes it difficult to process large volumes of data.
There is a more recent proposal for kNN-join using R-trees in a parallel, distributed environment
with MapReduce1 (DU; LI, 2013). The idea is to partition the dataset into buckets and then build
an R-tree for each bucket to find the kNN, but the lack of empirical results and the limited scope
of the experiments do not suggest significant improvements. Another algorithm that attempts to
handle large volumes of data is MR-DSJ (SEIDL; FRIES; BODEN, 2013); it uses a basic index
structure (grid) to partition the dataset with MapReduce and many pruning techniques to speed
up the SSJ operation, but a significant drawback is the intense network communication. All of
these proposals attempt to mitigate the runtime cost by providing efficient strategies in contexts
where indexing can be advantageous.

2.2.2 Hash-based Similarity Join

Another approach to organize instances is employed by the hash-based algorithms. The
idea is to use a hash function to allocate instances to partitions and then perform the join on pairs
of partitions in a recursive fashion. The first algorithm to employ hashing for similarity join is
SHJ (LO; RAVISHANKAR, 1996); it consists of a pool of buckets, an assignment function, and
a recursive bucket-join step. The main advantage of this approach is that no index is required,
but often the buckets end up with unbalanced numbers of instances, and the join performance
is compromised. The most successful employment of this approach uses MapReduce (SILVA;
REED, 2012; SARMA; HE; CHAUDHURI, 2014; MCCAULEY; MIKKELSEN; PAGH, 2018).
Some algorithms for multidimensional data may suffer from a high replication rate. Thus,
an additional step is required to eliminate the duplicates. Also, these algorithms may perform
network-intensive communication to coordinate the join process. The recent algorithm C2Net (LI;
SHAO; FU, 2018) shows advancements in solving this issue by considering a collision counting
strategy based on locality-sensitive hashing. In contrast to index-based algorithms, it allows the
SJ to operate at scale by distributing the instances across several nodes without the additional
cost of maintaining an index structure.

1 MapReduce is a programming model to process large datasets with a parallel, distributed algorithm
running on large clusters of commodity machines.

42 Chapter 2. Fundamental Concepts

2.2.3 Sort-based Similarity Join

An alternative approach to organize data in such a way that neighboring instances are
stored close to each other is to use a sorting strategy. Several algorithms apply different sorting
criteria to search for neighbors more efficiently, and the main advantage is that no advanced
data structure is required because these approaches exploit the instances’ ordering properties.
ZC2 (ORENSTEIN, 1991) is one of the first algorithms to use the sort-based approach. It takes
advantage of the space-filling z-curve to compress the space into a single dimension and per-
forms the sorting based on the values of this dimension. A similar algorithm is MSJ (KOUDAS;
SEVCIK, 2000), where the data is sorted with respect to the space-filling Hilbert curve. Another
algorithm that combines space-filling curves and ordering is LSS (LIEBERMAN; SANKARA-
NARAYANAN; SAMET, 2008); it casts a SJ operation as a GPU sort-and-search problem, where
a set of shifted space-filling curves is used to enclose several instances and narrow down the
search space. The main problem with approaches based on space-filling curves is that, for data of
moderate-to-high dimensionality, some neighboring instances may be stored far away from each
other, which makes the neighborhood property irrelevant. Thus, to tackle this dimensionality
issue, GESS (DITTRICH; SEEGER, 2001) introduced a sorting criterion based on the lexico-
graphical order for numerical datasets. A similar idea is used in GORDER (XIA et al., 2004),
which sorts grid cells lexicographically and allows the dataset to be partitioned to improve the
join execution. Both algorithms employ different strategies to overcome the high computational
cost associated with the join operation, but the main difference between them is that GORDER
proposes a kNN-based solution while GESS uses a ε-neighborhood-based solution.

(a) Random instances

0
1
2
3
4
5
6
7

(2,0)
(3,1)
(2,2)
(2,3)
(6,4)
(4,6)
(3,6)
(4,7)

0 1 2 3 4 5 6 7

(b) Virtual grid

(2,0)
(2,2)
(2,3)
(3,1)
(3,6)
(4,6)
(4,7)
(6,4)

(c) EGO-sorted cells

Figure 8 – Example of the EGO-sort procedure

The idea of lexicographical ordering is investigated in depth by the Epsilon Grid Or-
der (EGO) family of algorithms, which is based on the ε-neighborhood variant of similarity join.
The first of such algorithms is EGO-Join (BÖHM et al., 2001). It provides strategies to improve
the runtime by prioritizing relevant dimensions; the main idea is to lay an equi-length grid with
cells of length ε over the data space and sort the grid cells lexicographically, i.e., to perform
an operation named by the authors as EGO-sort, thus allowing the algorithm to load chucks of

2 The algorithm is named after the Z-Curve.

2.2. Similarity Join 43

neighboring instances in main memory for efficiency. This process is illustrated in Figure 8. Let
us assume that there are random instances in a 2-dimensional space, as it is shown in Figure 8a.
Then, a virtual grid is laid over the data space to create cells where there exists at least one
instance, as it is shown in Figure 8b. Note that the grid is considered to be virtual because it is
never materialized in practice. Each cell is represented by its coordinates in each dimension; for
example, cell (2,0) means that its coordinate in the first dimension is 2, and it is 0 in the second
dimension. As it can be seen in Figure 8b, all non-empty cells are stored as a list; in this example,
it is: [(2,0),(3,1),(2,2),(2,3),(6,4),(4,6),(3,6),(4,7)]. The next step is to sort the set of cells
lexicographically, thus resulting in: [(2,0),(2,2),(2,3),(3,1),(3,6),(4,6),(4,7),(6,4)]. This
sorting strategy has the time complexity of a regular sorting algorithm, which is O(n log n), and
it is one of the core concepts of the EGO-family of join algorithms that allow fast SJ operations.

The main advantage of this approach is that direct neighbors of any cell tend to be close to
each other in the ordered set. For example, a direct neighbor of cell (2,2) is any other cell that sat-
isfies the constraint (2±1,2±1), which means that cells {(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),
(3,2),(3,3)} are all potential neighbors, as long as the they exist. For the join of two EGO-
sorted datasets, say A and B, the naïve implementation basically splits in half each dataset.
Let us assume that dataset A is split into A1 and A2; similarly, dataset B leads to B1 and B2.
Then, the algorithm performs d recursive calls, where d is the number of dimensions, and
computes the union of join executions in all portions of the dataset; specifically, it computes
J(A1,B2)∪J(A2,B1)∪J(A1,B1)∪J(A2,B2) where the join operation is denoted as function J().
The first recursive call filters all cells that do not exceed±1 grid cell length in the first dimension;
the second call filters the cells by the second dimension, and so on until the dth dimension. The
join operation implements several optimizations to avoid unnecessary computations.

Later, the EGO*-Join (KALASHNIKOV; PRABHAKAR, 2007) algorithm was intro-
duced with focus on the evaluation of appropriate execution strategies depending on the number
of dimensions and on their selectivity. The authors developed several heuristics to speed up the
join process. Finally, Super-EGO (KALASHNIKOV, 2013) proposed data-driven dimensionality
reordering heuristics that considerably avoid unnecessary computation, and also provided a
parallel version of the algorithm. Despite all advancements of this approach, the fundamental
concept has not changed. The solution is based on a particular criterion to sort instances, and
further developments explore in depth how to do it more efficiently. One of the main advantages
is that many heuristics can be employed, and no advanced data structure is required. Thus, we see
the use of sort-based join methods as a promising strategy to speed up the detection of outliers.

44 Chapter 2. Fundamental Concepts

2.3 Final Considerations
In this chapter, we introduced the fundamental concepts of two subjects; outlier detection

and similarity join operation. For outlier detection, we covered the definitions, learning schemes,
pipeline components, outlier types, and conventional strategies in the literature. Regarding
the similarity join operation, we provided details about definitions, naive implementation, and
conventional strategies in the literature that aims to overcome the performance challenges.

One interesting and crucial overlapping concept in both subjects is the proximity-based
approach for solving problems. In outlier detection, virtually all algorithms rely on the Euclidean
distance function for measuring the similarity among instances. Likewise, the similarity join also
relies on the same function due to its useful metric property. Besides, the neighborhood notion
of range and kNN is a common approach for finding similarity based on how close instances
are in the dataset. Thus, these overlapping concepts allow us to investigate novel ways to detect
outliers taking advantage of both subjects.

A more practical observation comes from the seminal algorithms DB-Out and aLOCI
that are based on multiple executions of the range search (a.k.a. ε-neighborhood search or
similarity search) operation on hypercubes. These algorithms rely on data structure’s efficiency
for fast outlier detection, however, the similarity join literature introduces the Super-EGO
algorithm proposing an efficient way for sorting hypercubes to perform fast range searches in
high-performance database systems. Therefore, considering these observations we notice there is
room for performance improvement in the hypercube-based outlier detection approach which is
also investigated in this work.

In the following chapters we present the related work (Chapter 3) for both subjects
followed by our two novel algorithms (Chapter 4 and Chapter 5) that combines similarity join
techniques with outlier detection that outperforms existing state-of-the-art algorithms in terms of
performance and yet reporting high-quality results.

45

CHAPTER

3
RELATED WORK

3.1 Outlier Detection

The research on outlier detection started a few decades ago by the statistical community,
where the fundamental concepts were developed. During all those years, several approaches
have been introduced in the literature, but one that had a notorious contribution to the research
community was the algorithm DB-Out (KNORR; NG, 1998). After this algorithm, a paradigm
shift occurred in the community, and several alternative approaches were proposed, allowing
them to achieve impressive results. The main idea of DB-Out is to interpret the detection of
outliers as a spatial search problem that does not necessarily require knowledge about the
underlying data distribution. This spatially oriented view allows algorithms to be employed
in multidimensional spaces with greater ease compared with what was possible before, but it
requires a distance function to distinguish instances in the space, so it is commonly referred to
as a distance-based approach. Despite the significant benefits, DB-Out required the parameters
p and D, and a distance function to be defined beforehand in order to detect outliers, where a
given instance is said to be an outlier if at least a fraction p of all instances has distance greater
than D from the given instance. The detection step is essentially one range query operation per
instance to retrieve its neighboring instances. Since each instance is compared against all other
instances, the time complexity is O(n2). Thus, the authors also introduced an approximation
version with linear time complexity at the expense of large memory consumption and lower
detection accuracy. The quadratic time complexity is not ideal for most applications, and neither
it is the large memory consumption with low accuracy. Therefore, a number of attempts to tackle
these issues have been made, as we describe in the following.

LOCI (PAPADIMITRIOU et al., 2003) is another algorithm that follows a similar
idea based on the range search operation. It uses a deviation factor considering the same
neighborhood concept of DB-Out and also requires intensive range search operations to calculate
the neighborhood density. Due to its superlinear computational complexity, the authors presented
an approximation version named aLOCI that creates multiple shifted copies of the dataset and
indexes these copies in Quad-trees (FINKEL; BENTLEY, 1974) using the data structures as box-

46 Chapter 3. Related Work

countings to estimate the neighborhood density. However, the algorithm uses three user-defined
parameters, where L is the number of levels for the quad-trees, g is the number of quad-trees and
nmin is the minimum number of instances in a leaf node to be split. The authors recommend g to
be defined in the range 10≤ g≤ 30, which means that several trees must be created in memory,
but it can lead to inefficiencies in the algorithm due to high memory consumption. In terms of
accuracy, aLOCI presents inferior results compared with its non-approximated version.

Comparing all instances against each other to identify outliers is impractical because
it leads to quadratic time complexity. To circumvent this situation, algorithm kNN-Out (RA-
MASWAMY; RASTOGI; SHIM, 2000) adopts a more efficient approach, which consists in
finding the kNN of each instance using some metrics to assign an outlierness score to the instance.
It can be done by using the distance to the kth neighbor or the mean distance to the kNN. In
this algorithm, the scores are sorted in descending order with time complexity O(n log n), and
only the top-N instances with the highest outlierness scores are returned. A naïve approach for
this algorithm might take a time complexity O(n2); thus, the authors propose the use of some
efficient data structures to search for the kNN, e.g., R-tree, but more efficient data structures
that were posteriorly developed can be employed as well, like the INNA (LEE; PARK, 2005)
that allows searching for the kNN in O(log n). The authors also suggest the use of a clustering
algorithm as a pre-processing tool for better data partitioning; however, this process can insert
bias of the clustering algorithm into the result and potentially limit the detection of outliers.

In order to reduce the quadratic time complexity in outlier detection, LOF (BREUNIG et

al., 2000) further explores the idea of using kNN. It considers the ratios between the neighborhood
of an instance and the neighborhoods of its neighbors. These ratios determine how dense a
neighborhood is by assuming that outliers exist in regions with low density. This approach
introduced the concept of a local outlier, which refers to a local evaluation considering a limited
neighborhood instead of a global evaluation to determine the outlierness score of an instance.
The authors also introduced a function named Local Outlier Factor (LOF) to assign such score.
The original implementation is based on an X-tree (BERCHTOLD; KEIM; KRIEGEL, 1996) to
perform fast kNN queries and allows the algorithm to run in O(n log n). However, the authors
also argue that other index-based approaches can be employed for large datasets.

Algorithm ODIN (HAUTAMÄKI; KÄRKKÄINEN; FRÄNTI, 2004) presents an alterna-
tive way to detect outliers. It performs the all-k-nearest neighbor operation and creates a graph in
which each instance is represented by a vertex, and directed edges connect it with the vertices of
the instance’s k nearest neighbors. The outliers are therefore identified by those vertices that have
the in-degree lower than a threshold D. According to the authors, the time complexity for the
graph construction is O(n log n), and the detection is O(n) because it only checks the in-degree
of each vertex.

The efficiency of these kNN-based algorithms typically depends on the data structures
that they adopt. However, the approximate nearest neighbor search can also be used (ORAIR

3.1. Outlier Detection 47

et al., 2010). HilOut (ANGIULLI; PIZZUTI, 2002) uses the concept of Hilbert space-filling
to linearize the data space and to approximate the kNN search; then, it performs multiple data
scans to refine the search. The parameter k and the approximation precision h must be specified
beforehand. Recently, approximate outlier detection has also been investigated in the context of
ensembles to obtain diversified results (KIRNER; SCHUBERT; ZIMEK, 2017).

In recent years, the volume of data collected or generated in many scientific and commer-
cial areas has increased considerably, and the number of dimensions has also followed this growth
bringing new challenges for the outlier detection community. The issues of high dimensionality
had already been noticed in the literature, but, only recently, they have become more evident
to the scientific community. Indeed, the term curse of high dimensionality was coined decades
ago in dynamic optimization problems (BELLMAN, 1961). In the context of outlier detection,
the curse of high dimensionality has become evident in distance-based approaches known as
concentration of distances, which assume that: “the ratio of the variance of the length of any

point vector with the length of the mean point vector converges to zero with increasing data

dimensionality”, and, as a consequence “the proportional difference between the farthest-point

distance and the closest-point distance (the relative contrast) vanishes” (ZIMEK; SCHUBERT;
KRIEGEL, 2012). This observation suggested that distance-based algorithms would become
insignificant to distinguish instances in high-dimensional spaces.

Due to this reason, algorithms based on angles were proposed as an attempt to mitigate
the contrast problem. The parameter-free ABOD (KRIEGEL; SCHUBERT; ZIMEK, 2008)
algorithm is well known for introducing this concept in the outlier detection literature. The
goal is to measure the variation of the angles of triplets of instances by performing pairwise
computations of angles, assuming that outlier instances have a smaller variation of angles than
regular instances. The major drawback of this approach is its cubic time complexity on the data
cadinality, which is recognized by the authors. Thus, approximate solutions were proposed in
order to reduce such complexity. Besides that, other techniques like FastVOA (PHAM; PAGH,
2012) propose more efficient algorithms and draw criticism about the metric Angle-Based Outlier
Factor (ABOF), arguing that the algorithm ABOD should not be considered a truly angle-based
method because its metric ABOF is weighted by distances.

The aforementioned algorithms inspired many others to evaluate the local density for
outlier detection, aiming to improve the detection runtime and accuracy (JIN et al., 2006;
KRIEGEL et al., 2009; KRIEGEL; KRÖGER; ZIMEK, 2009; ZHANG; HUTTER; JIN, 2009).
Recently, Schubert, Zimek and Kriegel (2014) presented a generalized view on locality to
unify the different (mis)interpretations of local outlier detection and improve the understanding
of this type of approach in the literature. Although this paradigm is well established in the
literature, other approaches attempt to solve issues that remain open. For example, some authors
argue that the mere fact of adding new dimensions does not necessarily result in a difficulty in
distinguishing points in space, since only the addition of irrelevant dimensions can reduce the

48 Chapter 3. Related Work

contrast of instances (HOULE et al., 2010). In other words, this observation assumes that outliers
can be identified in subspaces of lower dimensionality, i.e., subsets of the original dimensions or
linear combinations thereof. Thus, the use of distance-based approaches can still be a reasonable
strategy for ranking instances according to the distances to their neighbors, as long as it is
performed in relevant subspaces that must be identified beforehand. Based on this observation,
algorithm PINN (VRIES; CHAWLA; HOULE, 2010) exploits random projections based on
nearest neighbors to reduce the space dimensionality and approximately find outliers.

Following this trend, Keller, Müller and Böhm (2012) introduced a search method named
HiCS to select subspaces of high contrast for posterior density-based outlier ranking, assuming
that an outlier has a low density of points in its neighborhood compared with the density of
each of its closest neighbors’ neighborhood. HiCS is a preprocessing tool to be applied before
the use of an outlier ranking algorithm. Thus, such an approach requires a high computational
cost when processing large volumes of data, especially because each of the subspaces of high
contrast identified by HiCS must be analyzed in separate. There are several challenges when
considering subspaces for outlier detection methods, but many interesting possibilities are open
to investigation (KRIEGEL et al., 2011; ZIMEK; SCHUBERT; KRIEGEL, 2012).

Although many solutions for outlier detection have been proposed over the years, they
are commonly scattered in code repositories, or even different implementations of the same
algorithm end up being created. As a consequence, a relevant issue occurs when the comparison
between algorithms needs to be performed, and no common implementation environment is
available. With that in mind, tools like ELKI (ACHTERT et al., 2011) and PyOD (ZHAO;
NASRULLAH; LI, 2019) have been created to facilitate fair comparison among algorithms in
several datasets and to better ground the advancements in the field. Additionally, it is essential to
offer graphical interface tools that provide interactivity to specialists in order to reduce coding
time and accelerate the achievement of interpretable results. Following this trend, REMIX (FU et

al., 2017) automates the data exploration process and provides a variety of visual and interactive
tools to help humans to interpret results.

Finally, although the authors of the existing algorithms have attempted to tackle many
problems, new challenges continue to emerge. With the rise of smart devices and the Internet-of-
Things (IoT), new approaches need to be developed to address the needs of devices with limited
resources regarding both storage and processing. With that in mind, algorithm ACE (LUO; SHRI-
VASTAVA, 2018) proposed a locality-sensitive-hashing-based strategy for ultra-low memory
devices considering privacy issues, while Yu, Wang and Shami (2017) proposed an algorithm
for the analysis of sequential events in real time based on the recursive Principal Component
Analysis (PCA). This new trend may be able to take advantage of all accumulated knowledge of
the current literature to push the research on outlier detection towards new solutions.

3.2. Similarity Join in Data Mining 49

3.2 Similarity Join in Data Mining

In recent years, the use of data mining has become crucial for most businesses. It allows
teams to uncover hidden patterns or ensure the data quality in large datasets so to make more
well-grounded decisions. In this setting, similarity self-join algorithms are often applied to
support data mining in several tasks aimed at delivering valuable results efficiently.

Whenever heterogeneous sources of data are merged together into a single dataset, non-
identical duplicate entities may emerge. In this case, the entities are referred to by non-unique
descriptions, which cause ambiguity and reduce the quality of the data. For example, in a
given dataset, the person “John Snow” (entity) might have the name (description) misspelled or
abbreviated as “J. Snow”. In both cases, the same entity is differently referred to. Two related
processes aim to tackle this problem: Record Linkage (RL) and Entity Resolution (ER). The
former consists of determining whether two records of interest are the same or not, and the latter
consists of ensuring that references in a dataset point to the correct entities. Since both processes
are tightly related, the existing RL approaches can be adapted for ER (KALASHNIKOV;
MEHROTRA, 2006). A common approach for both RL and ER is to apply similarity self-
join by computing pairs of references using a similarity function and comparing the similarity
score with the threshold ε (KALASHNIKOV; MEHROTRA, 2006; CHEN; KALASHNIKOV;
MEHROTRA, 2009; WANG et al., 2011; ADHAV; KUMAR, 2015; GIANNAKOPOULOU
et al., 2017). When the similarity score is higher than the threshold, the corresponding pair
is flagged as being coreferent. This approach provides flexibility to exploit textual similarity
functions (WANDELT et al., 2014) or the interdependence between references (CULOTTA;
MCCALLUM, 2005; DONG; HALEVY; MADHAVAN, 2005).

Clustering is another data mining task that may take advantage of the similarity self-join
operation. Seminal clustering algorithms such as DBSCAN (ESTER et al., 1996) inspired many
researchers to develop clustering techniques that heavily rely on successive similarity search
operations. With that in mind, Böhm et al. (2000) proposed a generic schema to transform these
algorithms into an adapted representation that uses the similarity self-join operation. This schema
produced significant improvements compared with the original algorithms. Also, the authors
mention other data mining tasks as examples were their ideas could be successfully applied,
including outlier detection.

The similarity self-join operation has been successfully applied in several data min-
ing tasks, and the use of such operation for outlier detection has been mentioned over the
years (BÖHM et al., 2000; BÖHM et al., 2001; XIA et al., 2004; KALASHNIKOV; PRAB-
HAKAR, 2007; BRYAN; EBERHARDT; FALOUTSOS, 2008; LU et al., 2012; LUO et al.,
2012). However, to the best of our knowledge, the details regarding the implementation of this
idea to detect outliers and experiments in real-world datasets remain missing in the literature.
In order to fill this gap, we aim at taking advantage of the efficiency of the similarity self-join
operation to demonstrate that it can be a compelling alternative in the outlier detection task.

50 Chapter 3. Related Work

3.3 Final Considerations

In this chapter, we described different algorithms that detect outliers and discussed some
popular tools that implement several state-of-the-art algorithms aimed at benchmark evaluation.
In order to summarize the discussion, Table 1 highlights the main aspects of relevant algorithms
including the time complexity and other important characteristics.

Algorithm Time Complexity Approach # Parameters Deterministic Data Structure

aLOCI O(ndgL) Density 3 No Quad-Tree
LOF O(nd log n) Density 1 Yes X-Tree

ODIN O(nd log n) Distance 2 Yes Graph
kNN-Out O(nd log n) Distance 1 Yes R*-Tree
DB-Out O(n2d) Distance 1 Yes -
HilOut O(n2d2) Distance 2 Yes -
ABOD O(n3d) Angle1 0 Yes -

Table 1 – Summary of state-of-the-art algorithms in outlier detection. The number of instances n, the
number of dimensions d, the number of trees g and the number of tree levels L denote the
variables that affect the time complexity of each algorithm.

The algorithms are sorted in ascending order of time complexity. The first one is aLOCI,
which has a O(n) time complexity due to its approximate way of detecting outliers. It assumes
that there is a gaussian data variation in the neighborhood of each instance. Even so, it is
essential to note that the input parameters L and g, that is, the tree depth and the number of
trees, respectively, can also affect the runtime. For instance, the authors recommend the creation
of 10 to 30 independent tree structures to index the data instances, i.e., 10 ≤ g ≤ 30. These
parameters can increase the algorithm runtime dramatically, thus making aLOCI impractical for
large datasets. As each tree is generated by randomly shifting instances in the space, this causes
the algorithm to return different results at each execution and to depend on randomness for
accurate results. Besides, the fact that there are 3 user-defined parameters makes the algorithm
more sensitive, especially with regard to parameter g that must be carefully defined. Moreover,
for each neighborhood search, the algorithm needs to evaluate 2d cells in the worst-case scenario.

The kNN-based algorithms that use indexing data structures, that is, LOF, ODIN and
kNN-Out, show a worse time complexity compared with aLOCI. However, except for ODIN,
they require only the parameter k to detect outliers. Here, the main challenge is to mitigate the
indexing costs for large datasets. For example, ODIN requires a kNN-graph to be constructed as
a preprocessing step so that later the algorithm evaluates the in-degree of each instance/vertex to
find the outliers. Moreover, to test if a new instance is an outlier or not, the entire graph needs to
be reconstructed, which is not desired for real-world applications that prioritize performance.

HilOut is also kNN-based and relies on approximate results according to the Hilbert
space-filling curve, which can be efficiently computed. Another strategy that helps the algorithm

1 It also considers distances as weights in the process.

3.3. Final Considerations 51

to reduce the runtime is to report only the instances that show a high outlierness score, i.e., the
top-N outliers, instead of reporting the outlierness score for every instance. In scenarios where
the outlierness score for every instance is required, the algorithm may have a quadratic time
complexity with respect to the number of instances and dimensions. Finally, DB-Out and ABOD
do not use any indexing structure and show quadratic and cubic time complexities, respectively.

As a concluding remark, let us highlight the facts that: (i) outlier detection is commonly
posed as a similarity search problem, and; (ii) the use of indexing data structures to reduce
the time complexity is a popular strategy among the state-of-the-art algorithms. However, the
index-based approach may struggle to offer scalable and distributed solutions to process large
volumes of data. As it was previously mentioned in this work, the similarity self-join operation
is designed to efficiently handle the costs of intense search operations in large datasets. Here,
it is important to note that the index-based approach is solely one alternative among others for
the join operation; see the previous Section 2.2 from Chapter 2 for details. With that in mind, in
the following chapter we discuss the link between outlier detection and similarity self-join, and
introduce the first main contribution of this MSc work: one novel algorithm to efficiently and
accurately detect outliers by following a join-based approach.

53

CHAPTER

4
OUTLIER DETECTION WITH SIMILARITY

SELF-JOIN

Similarity self-join is a fundamental operation in database systems that is used in many
data mining tasks due to its high performance. On the other hand, outlier detection is an
important data mining task that strives to achieve low runtime in large datasets. Here, we detail
the missing link between both concepts and introduce a novel similarity-self-join-based algorithm
for outlier detection that can reduce the detection runtime considerably without compromising the
accuracy of results. Specifically, this chapter is organized as follows: in Section 4.1, we present
the link between outlier detection and similarity self-join by demonstrating their relationship
from theoretical and practical standpoints; Section 4.2 formalizes our targeted outlier problem;
Section 4.3 introduces in detail a framework that takes advantage of existing similarity self-join
algorithms to spot outliers using a threshold-based approach; in Section 4.4, we describe the
setup of a comprehensive experimental evaluation that was performed to validate our proposals;
Section 4.5 reports and discusses the results obtained when comparing our proposed algorithm
with the state of the art; finally, the concluding remarks of the chapter are presented in Section 4.6.

4.1 Outlier Detection meets Similarity Self-Join

In the previous chapters, we have introduced the fundamentals of outlier detection and
similarity search, which notably share concepts among each other. In the outlier-related literature,
algorithms that are based on similarity search are often named as neighborhood-based (CHAN-
DOLA; BANERJEE; KUMAR, 2009) or proximity-based algorithms (AGGARWAL, 2017),
and, depending on the aspect taken into account, they may also be named as density-based
algorithms (CHANDOLA; BANERJEE; KUMAR, 2009; AGGARWAL, 2017). In this section,
we describe our understanding of the shared concepts and exemplify from a theoretical standpoint
the reason why similarity self-join can improve the efficiency of outlier detection.

For clarification, we understand as neighbor, aka nearest, closest or proximal, any instance
that lies in the neighborhood of a query instance q. The neighborhood or vicinity is the region
where all neighbors of q lie in the feature space. This region can be understood in many ways, but

54 Chapter 4. Outlier Detection with Similarity Self-Join

it is usually defined in terms of the radius from the query instance. For example, the neighborhood
radius in a range search is defined by the parameter ε , while in the kNN search it is given by the
distance to the kth neighbor. Therefore, the neighborhood radius may be different for distinct
query instances when using the kNN search. On the other hand, in the range search the radius is
always the same for any query instance.

A similar instance is any instance that resembles an instance of interest q. Note that
identical instances can or cannot be taken as similar depending on the application. However,
resemblance is a vague concept that can be defined in many ways. In our formulation, we
consider to be similar any instance that lies in the neighborhood of q; that is, if two instances are
close enough so that they share the same neighborhood in the feature space, they are similar to
each other. Thus, the definition of neighbor and similar share the same semantics, and we use
both terms interchangeably.

Many similarity search tasks rely on the properties of the metrics to find neighboring
instances efficiently, and the outlier detection task often depends on metric distance functions,
e.g., the Euclidean distance (AGGARWAL, 2017, p. 117). With that in mind, we shall argue that
these outlier detection approaches do not take full advantage of the metric properties because
they do not use the symmetry property to prune the space search. For example, let X denote a
dataset and x,y ∈ X be neighboring instances that are within a range of radius ε . In this setting,
the outlier detectors would require one similarity search operation to discover that x (as query
center) is a neighbor of y, and another one to detect that y (as query center) is a neighbor of x.
On the other hand, the similarity self-join would perform a single operation to find out that x is a
neighbor of y and vice versa, so it does not require a second operation. This pruning is possible
for two reasons: (i) under the self-join formulation it is known beforehand that the goal is to find
all neighboring instances of X , and; (ii) the symmetry property is satisfied. Thus, we see this
theoretical observation as one major contributor to support the hypothesis of our work.

As it was discussed in the previous Chapter 2, successive similarity search operations
may be replaced by one single similarity self-join operation – see Section 2.2, which aims to
take advantage of metric properties to prune the search space and produce the same result more
efficiently (DOHNAL; GENNARO; ZEZULA, 2003; KALASHNIKOV, 2013; FREDRIKSSON;
BRAITHWAITE, 2015). Meanwhile, the neighborhood-based outlier detection literature heavily
depends on the range and the kNN search operations – see Section 2.1.3, just like it happens with
the similarity search literature. Since both tasks rely on the same fundamental search operations
and differ in their goal, we believe that a better comprehension of the differences would clarify
how to use similarity self-join to speed up outlier detection.

The major difference between these tasks is that the similarity self-join aims at finding all
pairs of similar instances, that is, all pairs of neighbors. On the other hand, neighborhood-based
outlier detection spots instances that do not appear in any of these pairs or appear only in a few of
them, i.e., instances with no neighbor or few neighbors, which could be outliers due to their lack

4.2. Problem Statement 55

of resemblance to other instances. Note that in both tasks it is required to find the neighbors of
each instance. It means that a naïve neighborhood-based outlier detector would use all instances
of the dataset as query centers for similarity search operations, which is exactly the same as one
similarity self-join operation. Thus, the main challenge to develop a join-based outlier detector is
to adapt the similarity self-join algorithm to identify only part of the pairs of neighbors, and not
all pairs, in such a way that it stops looking for additional neighbors of instances that already
have many neighbors identified. By this observation, it is expected for the adapted solution to be
even faster than the original join operation because not every pair of similar instances must be
identified. Note that most similarity join algorithms aim specifically at improving the operation
efficiency, since the query result is always the same for exact algorithms, and still, in the context
of outliers, this efficiency can be improved even further by considering the narrower goal of
outlier detection. In this sense, we believe that many neighborhood-based outlier detectors may
benefit from the similarity self-join operation to reduce their runtime. In the following sections,
we provide the problem statement, introduce our proposal and show how to adapt any similarity
self-join algorithm to spot outliers efficiently while reporting highly accurate results.

4.2 Problem Statement
Our problem follows the well-accepted (SCHUBERT; ZIMEK; KRIEGEL, 2014; CAM-

POS et al., 2016; GOLDSTEIN; UCHIDA, 2016) assumption that instances with few neighbors
are very likely outlying instances, and their closest instances may also be outliers. We consider
that the dataset to be analyzed is represented in a d-dimensional space, and that it includes m

instances, which are distinguished among each other using a distance function. In this setting,
an instance is flagged as an outlier when the number of instances in its neighborhood is smaller
than or equal to a predefined threshold τ . This concept is formalized in Definitions 4 and 5.

Definition 4 (Range Search). The range search operation is expressed by a function rng(X ,q,ε)

that returns all instances of a dataset X whose distances to a given query center instance q are
within a predefined radius ε , according to a distance metric function f . Formally, it is given by:

rng(X ,q,ε) = {x : x ∈ X ∧ f (x,q)≤ ε}

Definition 5 (Outlier Flagging). An instance q in a dataset X is flagged as an outlier when the
number of instances in its neighborhood of radius ε is smaller than or equal to a predefined
threshold τ , where 1≤ τ ≤ m. Formally, it is given by:

Flag(X ,q,ε) =

True, if |rng(X ,q,ε)| ≤ τ

False, otherwise

These definitions describe the exact solution for the outlier detection problem that we
investigate. The following section provides the details of our proposed algorithm.

56 Chapter 4. Outlier Detection with Similarity Self-Join

4.3 The ODSSJ Algorithm

This section provides the details of our proposed Outlier Detection algorithm based on
Similarity Self-Join – the ODSSJ algorithm. A generic pseudocode that illustrates our approach
is presented in Algorithm 1. Note that we use functions in the pseudocode as placeholders for
specific algorithms. That is, function SSJ is a placeholder for any similarity self-join algorithm;
similarly, function OD is a placeholder for the criterion to be used to identify outliers. The
functions’ parameters were omitted because they depend on the specific algorithms to be
selected for the implementation, and, in practice, their values must be defined by specialist
users in the application. Note that our pseudocode focuses on an in-memory and single-thread
implementation, but the same idea could be used in a building-block fashion for other settings.

Algorithm 1 is a generic approach that uses similarity self-join for outlier detection. In
our notation, we assume that the input dataset X = [x1, x2, . . . xm] has m instances, where each
instance xp = [xp,1, xp,2, . . . xp,d] is itself a d-dimensional data point. One array of boolean
values O = [o1, o2, . . . om] is the output; each element op indicates whether the instance xp is an
outlier or not, so op is the outlier flag. Our join-based proposal for outlier detection is divided
into two steps. At first, function SSJ is responsible for finding the neighbors of each instance
xp ∈ X with respect to Definition 4. Since we are interested in the numbers of neighbors, and
not in the neighbors themselves, there is no need for SSJ to return pairs of similar instances as
usual. Instead, we consider that function SSJ returns an array C = [c1, c2, . . . cm], where each
element cp is the number of neighbors of instance xp. Then, function OD evaluates the number of
neighbors cp of each instance xp and reports the corresponding boolean flag op as in Definition 5.

Algorithm 1 – ODSSJ()
Input: Dataset X .
Output: Array O of outlier flags.

1: C← SSJ(X);
2: for each cp in C do
3: op← OD(cp);
4: Store op as the value for the pth position of array O;
5: end for
6: return O;

To implement function OD, we follow Definition 5 and compute outlier flags according
to the number of neighbors of each instance. As in the definition, we consider the existence
of a threshold τ that sets the maximum number of neighbors accepted for outliers. When the
number of neighbors cp is smaller than or equal to τ , the corresponding instance xp is flagged as
an outlier, that is, its label is True; otherwise, the label is False. Formally, it is given by:

OD(cp) =

True, if cp ≤ τ

False, otherwise
(4.1)

4.3. The ODSSJ Algorithm 57

A naïve implementation for function SSJ would perform multiple range search operations,
one per instance xp ∈ X . It would compare all instances against each other, and, any two
instances with distance smaller than or equal to the threshold ε would be considered neighbors
or similar to each other. Such implementation would lead to a quadratic time complexity, which
is unacceptable for most applications. Thus, we propose to implement function SSJ by carefully
adapting the Super-EGO similarity join algorithm for fast outlier detection. As it was described
in Section 2.2.3 from Chapter 2, Super-EGO employs strategies to mitigate the quadratic time
complexity by sorting the instances in a way that similar instances are stored close to each other,
and, recursively partitioning the set of instances into subsets until the subsets have a minimum
cardinality, so that they are efficiently joined using a naïve join function named SimpleJoin. The
minimum cardinality number is the threshold parameter t defined by the specialist beforehand.

Provided that function OD uses counts of neighbors instead of the neighbors themselves,
and it flags as inliers all instances with more than τ neighbors, no matter how many more
neighbors they have, one can speed-up Super-EGO for outlier detection. Specifically, we propose
to incorporate two optimizations into its SimpleJoin function. The first one is to only store
(in-memory) the number of neighbors for each instance, as opposed to the original algorithm that
stores all the neighbors themselves. In the second optimization1, the threshold τ is incorporated
into function SimpleJoin to avoid unnecessary comparisons; that is, whenever it is known that
an instance has more than τ neighbors, the join process stops because to look for additional
neighbors would not change the decision of the outlier detector. These optimizations allow the
adapted Super-EGO to require considerably smaller amounts of main memory, compared with
the requirements of the original algorithm, and they also avoid the identification and output of
huge sets of pairs of similar instances that commonly occur in dense regions of the feature space.

In this way, our proposed algorithm ODSSJ follows the general idea of Algorithm 1,
considering that function OD is implemented as in Equation 4.1 and that function SSJ uses
an adapted version of the Super-EGO algorithm, which incorporates the aforementioned opti-
mizations. Note that our proposal could be extended for distributed and multi-thread settings
because the neighborhood counting only requires readings from dataset X and the evaluation
only requires a predefined threshold. In the following sections, we provide the experimental
setup, report and discuss the results, and present the final remarks of this chapter.

1 Note that this optimization is described by Aggarwal (2017) as counting neighborhoods in histogram-
based techniques.

58 Chapter 4. Outlier Detection with Similarity Self-Join

4.4 Experimental Setup

This section presents the experimental setup. Our proposed algorithm ODSSJ was
implemented in plain Java. We compared it with 7 state-of-the-art algorithms, namely kNN-Out,
DB-Out, LOF, ODIN, HilOut, aLOCI and ABOD, which are also implemented in Java under
the framework ELKI (ACHTERT et al., 2011). For the related works’ algorithms that can take
advantage of an indexing data structure, we used ELKI’s default in-memory hashtable that is
expected to be faster than the other alternatives2. Also, we used the Euclidean distance for all
applicable algorithms. To ensure a fair comparison among the competitors, we performed an
exhaustive parameter search for each algorithm and dataset pair to identify the result with the
highest accuracy, which is reported. Appendices A and C present the best parameter configuration
identified for each algorithm and dataset. Observation: for the purpose of reproducibility, all
codes, detailed results, parameter values tested and datasets used in this chapter are freely
available for download online3.

Table 2 has a summary of the 12 real-world datasets that we studied. They were all
obtained from the UCI Machine Learning Repository (DHEERU; TANISKIDOU, 2017), being
selected for this evaluation due to their constant use in the literature on benchmarks for outlier
detection (EMMOTT et al., 2015; CAMPOS et al., 2016). All datasets are labeled indicating
whether each instance is an outlier or not. Obviously, the labels are only used for accuracy evalu-
ation as we focus on unsupervised learning. Moreover, the preprocessing used for each dataset is
described in Rayana (2016). For our proposed algorithm, we also performed a normalization in
all datasets to set an interval for parameter ε and to facilitate the parameter search.

Dataset # Instances # Dimensions # Outliers % Outliers

parkinson 50 22 2 4.00
hepatitis 70 20 3 4.29

glass 214 9 9 4.21
ecoli 336 7 9 2.68

ionosphere 351 33 126 35.90
breastw 683 9 239 34.99

pima 768 8 268 34.90
thyroid 3,772 22 93 2.47

satimage2 5,803 36 71 1.22
mammography 11,183 6 260 2.32

shuttle 49,097 9 3,511 7.15
http 567,479 3 2,211 0.39

Table 2 – Summary of datasets

The experiments were performed on one machine that has a processor Intel© Core™ i7-
2600S with 4 cores at 2.8GHz and 8GB of RAM, running GNU/Linux Ubuntu Xenial x86-64. To
evaluate accuracy, we used the ROC AUC (AUC) metric due to its popularity in the unsupervised

2 <https://elki-project.github.io/releases/current/doc/de/lmu/ifi/dbs/elki/database/StaticArrayDatabase.html>
3 <https://github.com/eug/odssj>

https://elki-project.github.io/releases/current/doc/de/lmu/ifi/dbs/elki/database/StaticArrayDatabase.html
https://github.com/eug/odssj

4.5. Results and Discussion 59

outlier detection literature (CAMPOS et al., 2016). The AUC score ranges from 0 to 1, where
a perfect detection has value 1, and a random detection has value ∼ 0.5. For the evaluation of
efficiency, the runtime in seconds of each execution was aggregated by average and standard
deviation after 10 independent executions, always considering the parameter configuration that
leads to the highest AUC value for each algorithm and dataset pair. Note that the loading time
and the index-building time (whenever it is applicable) of each algorithm were ignored.

4.5 Results and Discussion
This section reports and discusses the results of our experimental evaluation under the

setup of Section 4.4. We aimed at answering the following questions:

Q1 Compared with 7 of the recent and related works, how accurate is our proposed ODSSJ ?

Q2 How efficient are the techniques studied?

Q3 How different is the behaviour of ODSSJ compared with that of the other techniques, that is,
are the differences statistically significant regarding runtime and accuracy measurements?

Here, it is important to note that we tested every one of the techniques studied in every
dataset, but ABOD, aLOCI and HilOut failed to run in the largest dataset http because they
exceeded the main memory capacity in every possibility of the exhaustive parameter search that
we performed. ABOD also presented the same behaviour for the second largest dataset shuttle.
In our opinion, none of the datasets studied is large enough to justify a need for more than 8GB
of RAM. Therefore, we do not report results regarding these particular cases.

4.5.1 Evaluation of Effectiveness

This section investigates Question Q1: “Compared with 7 of the recent and related

works, how accurate is our proposed ODSSJ?”. To make it possible, Table 3 provides the AUC
score values obtained from testing the algorithms in each dataset; remember that we report the
highest score obtained with exhaustive parameter search from each algorithm and dataset pair.
The average of these highest scores for each algorithm is also shown in Table 3 to highlight
the general trends. Note that the average values only consider the reported measurements, so
they disregard dataset http for algorithms HilOut, aLOCI and ABOD, besides dataset shuttle

for ABOD. With that being said, it can be seen in Table 3 that our proposed ODSSJ provided
the highest average value among the algorithms studied, and HilOut reports similar results on
average, but unable to process the http dataset.

60 Chapter 4. Outlier Detection with Similarity Self-Join

Regarding the results for each dataset in particular, our ODSSJ delivered the highest
scores for 4 out of the 12 datasets studied, while ABOD obtained the best results for 3 datasets
each, HilOut and kNN-Out was the most accurate algorithm for 2 datasets, and LOF was
victorious in only 1 dataset. Note that all algorithms reported scores close to 0.5 in at least one
dataset, which is the score expected for a random detection; that is, no algorithm consistently
delivered accurate results regardless of the dataset. Many of the near-random results were
obtained with dataset hepatitis, so it can be considered as the most challenging one. In this
particular dataset, the highest score was 0.6567, which was obtained by algorithm HilOut, while
our ODSSJ obtained a very similar score of 0.6493. To summarize, the aforementioned results
indicate that the new algorithm ODSSJ is highly accurate; compared with 7 algorithms from
the state of the art, it was the most accurate on average considering 12 well-known benchmark
datasets.

4.5.2 Evaluation of Efficiency

This section investigates Question Q2: “How efficient are the techniques studied?”. To
make it possible, Table 4 provides the average runtime in seconds and the corresponding standard
deviation for 10 independent executions of the studied algorithms in each dataset. The overall
average runtime of each algorithm, i.e., the average of the averages, is also reported to highlight
the general trends. Remember that we were unable to run algorithms HilOut, aLOCI and ABOD
in dataset http, as well as ABOD in dataset shuttle due to main memory exceed. In spite of
that fact, we still report the overall average values for these particular algorithms, but it must
be remembered that these values disregard the largest datasets, so they tend to be considerably
smaller than those that would have been obtained if all datasets were taken into account.

With that being said, note that there is a substantial difference in the overall average
runtime among the algorithms studied; in particular, the values for algorithms HilOut, aLOCI
and our proposed ODSSJ are at least 2 orders of magnitude smaller than those of the other
algorithms. Since the results of HilOut and aLOCI disregard the largest dataset http, we argue
that our ODSSJ is the most efficient algorithm among the ones studied. In fact, we performed
an additional experiment to estimate the effects of the inclusion of dataset http in the overall
average values of HilOut and aLOCI. Specifically, we created and processed smaller versions
of http with random samples of increasing sizes up to the full dataset, i.e., 1%, 10%, 15%,
25%, 50%, 75% and 100%. Note that we randomly sampled proportional percentages of inlier
and outlier instances to keep the original data characteristics. In this particular experiment,
aLOCI and HilOut exceeded the main memory capacity after the 15% and the 75% sample sizes,
respectively, and the average runtime of 10 independent executions with the largest sample size
that they managed to analyze is respectively ∼ 400 and ∼ 1,750 seconds. More details about
this experiment are given latter, in Section 5.4.3 of Chapter 5. Provided that the aforementioned
runtime measurements are substantially larger than the ∼ 27 seconds required by our ODSSJ to

4.5. Results and Discussion 61

process the whole dataset http, we conclude that the overall average runtime of HilOut and
aLOCI would be considerably larger than the values reported in Table 4 if all datasets were taken
into account.

Regarding the results for each dataset in particular, our ODSSJ delivered the lowest
runtime in all cases, except for dataset shuttle in which HilOut obtained the best result with
1.08±0.05 seconds versus the 3.11±0.07 seconds required by our algorithm. Note that in Table 4
the datasets are shown in ascending order according to the number of instances. For datasets with
less than 5K instances, i.e., before satimage2, the results are similar for all algorithms, including
ODSSJ . The only exception is ABOD, for which we observe a substantial runtime increase
in datasets with more than 1K instances, i.e., after pima, until it can no longer process larger
datasets under the same conditions as the other algorithms. One can justify such behavior due
to ABOD’s well-known cubic time complexity and the lack of strategies to optimize its search
operation. In the dataset with the largest number of instances, that is, http, the algorithms usually
take thousands of seconds to detect outliers. The only exception is our proposed algorithm
ODSSJ , which detects outliers in less than thirty seconds. Note that our algorithm aims to find
neighboring instances for all instances, and yet it is up to 3 orders of magnitude faster than the
existing approaches. This is due to the efficiency of the self-join algorithm combined with our
optimization strategies described in Section 4.3. Here, it is important to note that the optimization
strategies that we propose are one of the major contributors to reduce the runtime. In order
to corroborate this fact, we performed an additional experiment using the largest dataset http.
Without our optimizations, the runtime of ODSSJ was nearly 100 times larger than the values
reported, and yet our algorithm’s runtime would remain similar to those of the state-of-the-art
algorithms. To summarize, the aforementioned results indicate that the new algorithm ODSSJ is
very efficient; compared with 7 algorithms from the state of the art, it was up to 3 orders of
magnitude faster than the fastest related works considering 12 well-known benchmark datasets.

4.5.3 Statistical Evaluation

This section investigates Question Q3: “How different is the behaviour of ODSSJ compared

with that of the other techniques, that is, are the differences statistically significant regarding

runtime and accuracy measurements?”. To make it possible, we conducted a pairwise compari-
son between our proposed algorithm and each one of the other algorithms to determine whether
or not the differences in accuracy from Table 3 and in runtime from Table 4 are statistically
significant. We used a two-tailed t-test with a significance level of 0.05 for this task. For runtime
and accuracy we consider the results of 10 independent executions in each dataset and algorithm
pair, although the accuracy results remains the same in all 10 executions.

Table 5 summarizes our findings for accuracy in the left column and runtime in the right
column; it reports the count of datasets where our ODSSJ wins/loses/ties compared with the
related work indicated in each row. The largest counts are highlighted in bold. Note that we

62 Chapter 4. Outlier Detection with Similarity Self-Join

count as win for ODSSJ when the related algorithm fails to detect outliers in a given datasets.

As it can be seen, the results indicate that our proposed algorithm is statistically superior
to all other algorithms in terms of runtime and it is also very competitive with regard to accuracy.
HilOut and kNN-Out perform better than our ODSSJ in accuracy, with 5/7/0 wins/loses/ties for
ODSSJ versus HilOut and 5/7/0 wins/loses/ties for ODSSJ versus kNN-Out, but note that there
are actually minor differences in most of the accuracy results shown in Table 3 for these three
algorithms, while our ODSSJ outperforms the 5 remaining related works in accuracy. On the
other hand, our ODSSJ is able to process all datasets and in terms of runtime it is statistically
superior to all state-of-the-art algorithms, being up to 3 orders of magnitude faster than the
fastest related works considering 12 well-known benchmark datasets. Therefore, the statistical
evaluation corroborates the conclusions of the previous two sections, i.e., that our ODSSJ is
considerably more efficient than the existing techniques, and still it is as accurate as them.

ODSSJ
AUC score Runtime

(wins/loses/ties) (wins/loses/ties)

kNN-Out 5/7/0 12/0/0
DB-Out 8/4/0 12/0/0

LOF 8/4/0 12/0/0
ODIN 8/4/0 12/0/0

HilOut 5/7/0 11/1/0
aLOCI 10/2/0 12/0/0
ABOD 10/2/0 12/0/0

Table 5 – Results of a pairwise comparison between ODSSJ and each one of the other algorithms studied.
We report the count of datasets where ODSSJ wins/loses/ties compared with the related work
indicated in each row. A two-tailed t-test with a significance level of 0.05 was used for this task.
The largest counts are highlighted in bold.

4.6. Conclusion 63

4.6 Conclusion
This chapter introduced the first main contribution of the MSc work: one novel algorithm

named ODSSJ that efficiently and accurately detects outliers by following a join-based approach.
Our specific contributions are listed in the following:

C1 Outlier detection meets similarity self-join: we highlighted the fact that the similarity
self-join operation has a strong conceptual correlation with outlier detection. It turns out
to be relevant because outlier-related researches are generally focused on the accuracy
aspect of the problem, while the join community has been focusing on efficiency issues for
decades. With that in mind, we demonstrated both in theory and in practice how to take
advantage of the knowledge acquired by the join community to detect outliers faster;

C2 Efficiency, effectiveness and versatility: we presented a novel framework for fast and
accurate outlier detection by taking advantage of the fundamental database operation
similarity self-join. In theory, our framework is general enough to allow distributed and
multi-thread implementations due to its independence in the computation. It can also
be implemented as a database management system’s physical operator due the strong
correlation with the similarity self-join;

C3 Experimental evaluation: we reported experimental results using 12 real-world datasets
with up to ∼500k instances that are largely used in benchmarks by the outlier detection
community. These results indicate that our proposed ODSSJ is hundreds or even thousands

of times faster than 7 state-of-the-art algorithms, especially when considering large datasets,
and it still obtains similar accuracy of results.

In the following chapter we revisit the hypercube-based notion for outlier detection and
combine it with a sorting strategy that is commonly employed in similarity join algorithms. As a
result, we present another outlier detection algorithm named HySortOD that scales to even larger
volumes of data, and still provides highly accurate results.

64 Chapter 4. Outlier Detection with Similarity Self-Join

D
ataset

O
D

SSJ
kN

N
-O

ut
D

B
-O

ut
L

O
F

O
D

IN
*H

ilO
ut

*aL
O

C
I

*A
B

O
D

parkinson
0.9896

0.8958
0.9271

0.7917
0.7188

0.9688
0.5000

0.8438
hepatitis

0.6493
0.5473

0.6219
0.5124

0.6517
0.6567

0.5000
0.4328

glass
0.8488

0.7824
0.7897

0.6043
0.6724

0.8423
0.6382

0.7572
ecoli

0.9557
0.8899

0.6096
0.6070

0.9018
0.8964

0.7851
0.9059

ionosphere
0.9108

0.9303
0.8910

0.9067
0.8526

0.9467
0.5000

0.8961
breastw

0.9632
0.9782

0.9785
0.5989

0.8166
0.9730

0.9430
0.9960

pim
a

0.7973
0.6864

0.6790
0.6240

0.6692
0.7185

0.5608
0.6688

thyroid
0.8182

0.9793
0.9624

0.8913
0.6896

0.9779
0.9110

0.9508
satim

age2
0.9904

0.9924
0.9919

0.9875
0.9931

0.9852
0.4152

0.9972
m

am
m

ography
0.8071

0.8597
0.8772

0.8285
0.8551

0.8405
0.7572

0.8844
shuttle

0.9054
0.9953

0.6688
0.9827

0.9883
0.9335

0.9638
-

http
0.9892

0.9987
0.9891

0.9995
0.9746

-
-

-

Average
0.8969

±
0.09

0.8779
±

0.19
0.8321

±
0.20

0.7778
±

0.24
0.8153

±
0.18

*0.8854
±

0.10
*0.6794

±
0.19

*0.8333
±

0.17

*
T

he
average

values
only

considerthe
reported

m
easurem

ents.

Table
3

–
T

he
A

U
C

scores
obtained

from
O

D
SSJ

and
7

related
w

orks
on

12
benchm

ark
datasets.T

he
largestvalues

are
highlighted

in
bold.

4.6. Conclusion 65

D
at

as
et

O
D

SS
J

kN
N

-O
ut

D
B

-O
ut

L
O

F
O

D
IN

*H
ilO

ut
*a

L
O

C
I

*A
B

O
D

A
vg
±

St
d

A
vg
±

St
d

A
vg
±

St
d

A
vg
±

St
d

A
vg
±

St
d

A
vg
±

St
d

A
vg
±

St
d

A
vg
±

St
d

pa
rk

in
so

n
0.

01
±

0.
01

0.
02
±

0.
01

0.
02
±

0.
01

0.
03
±

0.
01

0.
02
±

0.
01

0.
03
±

0.
01

0.
02
±

0.
01

0.
06
±

0.
01

he
pa

tit
is

0.
01
±

0.
01

0.
02
±

0.
01

0.
02
±

0.
01

0.
04
±

0.
01

0.
02
±

0.
01

0.
03
±

0.
01

0.
02
±

0.
01

0.
06
±

0.
01

gl
as

s
0.

01
±

0.
01

0.
03
±

0.
01

0.
02
±

0.
01

0.
04
±

0.
01

0.
03
±

0.
01

0.
05
±

0.
01

0.
03
±

0.
01

0.
25
±

0.
03

ec
ol

i
0.

01
±

0.
01

0.
04
±

0.
01

0.
05
±

0.
01

0.
05
±

0.
01

0.
06
±

0.
01

0.
10
±

0.
01

0.
02
±

0.
01

0.
54
±

0.
02

io
no

sp
he

re
0.

02
±

0.
01

0.
05
±

0.
01

0.
04
±

0.
01

0.
06
±

0.
02

0.
05
±

0.
01

0.
09
±

0.
01

0.
03
±

0.
01

0.
71
±

0.
01

br
ea

st
w

0.
01
±

0.
01

0.
06
±

0.
01

0.
07
±

0.
01

0.
08
±

0.
01

0.
06
±

0.
01

0.
10
±

0.
01

0.
07
±

0.
01

1.
80
±

0.
13

pi
m

a
0.

02
±

0.
01

0.
11
±

0.
02

0.
07
±

0.
01

0.
19
±

0.
03

0.
12
±

0.
02

0.
06
±

0.
01

0.
03
±

0.
14

4.
40
±

0.
19

th
yr

oi
d

0.
04
±

0.
01

0.
27
±

0.
01

0.
32
±

0.
01

0.
46
±

0.
03

0.
28
±

0.
01

0.
22
±

0.
01

0.
16
±

0.
01

1x
10

3
±

29
.2

9
sa

tim
ag

e2
0.

14
±

0.
01

1.
42
±

0.
05

2.
61
±

0.
07

1.
93
±

0.
10

2.
70
±

0.
04

0.
61
±

0.
01

0.
49
±

0.
02

3x
10

3
±

1x
10

2

m
am

m
og

ra
ph

y
0.

17
±

0.
02

7.
76
±

1.
09

7.
70
±

0.
72

2.
98
±

0.
26

9.
59
±

0.
76

0.
59
±

0.
07

6.
26
±

0.
10

3x
10

4
±

1x
10

4

sh
ut

tle
3.

11
±

0.
07

1x
10

2
±

0.
78

2x
10

2
±

3.
87

1x
10

2
±

9.
05

2x
10

2
±

2.
31

1.
08
±

0.
05

8.
59
±

0.
13

-
ht

tp
27

.1
4
±

0.
85

5x
10

3
±

6x
10

2
2x

10
4
±

7x
10

2
2x

10
3
±

63
.9

0
5x

10
3
±

1x
10

2
-

-
-

Av
er

ag
e

2.
55
±

7.
45

4x
10

2
±

1x
10

3
2x

10
3
±

6x
10

3
1x

10
2
±

5x
10

2
3x

10
2
±

1x
10

3
*0

.2
7
±

0.
34

*1
.4

3
±

3.
01

*4
x1

03
±

1x
10

4

*
T

he
av

er
ag

e
va

lu
es

on
ly

co
ns

id
er

th
e

re
po

rt
ed

m
ea

su
re

m
en

ts
.

Ta
bl

e
4

–
T

he
ru

nt
im

e
in

se
co

nd
s

ob
ta

in
ed

fr
om

O
D

SS
J

an
d

7
re

la
te

d
w

or
ks

on
12

be
nc

hm
ar

k
da

ta
se

ts
.T

he
sm

al
le

st
va

lu
es

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

67

CHAPTER

5
OUTLIER DETECTION WITH SORTED

HYPERCUBES

The use of hypercubes in outlier detection has its origins in the seminal paper of Knorr
and Ng (1998) where the DB-Out algorithm was introduced. The hypercubes are used in an
optimized version of DB-Out as a way to reduce the number of entities to process by grouping
close instances together into the same hypercube; it speeds the neighborhood counting up by
using a naïve search strategy. Another example is aLOCI (PAPADIMITRIOU et al., 2003) that
uses hypercubes indexed in a quad-tree-like structure as a way to approximately identify the
neighborhood density of an instance. In both algorithms, the use of hypercubes was introduced
as an approximation strategy to mitigate the costs of the detection of outliers. Yet, the major
challenge for these algorithms was to reduce the elevated runtime with focus on relatively small
datasets. In other words, the use of hypercubes and naïve search was not enough to create
scalable algorithms. On the other hand, the similarity search community has been tackling the
neighborhood detection challenge in database systems with the similarity join operator. As
it was shown in Section 2.2 from Chapter 2, there are three general approaches to perform a
similarity join. All of them are potentially useful for outlier detection, as we demonstrated in the
previous Chapter 4. It is interesting to note that the sorting procedure from the EGO family of
join algorithms, i.e., the EGO-sort procedure, is a major contributor to perform join operations at
scale.

With that in mind, this chapter introduces the second and last main contribution of this
MSc work: one novel outlier detector named HySortOD that takes advantage of the EGO-sort
idea to further speed up the detection without compromising accuracy. Additionally, we provide
a default parameter configuration so to allow our algorithm to be truly unsupervised. Specifically,
this chapter is organized as follows. In Section 5.1, we formally define the outlier detection
problem investigated here. Section 5.2 introduces our novel algorithm HySortOD that takes
advantage of hypercube sorting using a novel search strategy for fast and accurate detection. In
Section 5.3, we describe our experimental setup and also report our findings. The discussions are
in Section 5.4. Finally, the concluding remarks for the chapter are presented in Section 5.5.

68 Chapter 5. Outlier Detection with Sorted Hypercubes

5.1 Problem Statement
Likewise the problem statement of our ODSSJ algorithm, which was described in

Section 4.2 from Chapter 4, here we also rely on the well-accepted assumption that instances
with few neighbors are very likely outlying instances, and their closest instances may also be
outliers. Once more, we consider that the dataset is represented in a d-dimensional space with m

instances, and that a distance function is used to distinguish the instances. In contrast, instead
of classifying instances as outliers and inliers, this chapter considers the use of an outlierness

score that indicates the likelihood of each instance to be an outlier. Therefore, the neighborhood
concept is formalized as in Definition 4, from the previous Chapter 4, while the additional
concept of outlierness score is formally specified in the following with Definition 6.

Definition 6 (Outlierness Score). The outlierness score of an instance q in a dataset X is given by
the number of neighbors of q within radius ε normalized by the maximum number of neighbors
existing for any other instance in dataset X . Formally, it is given by:

Outlierness(X ,q,ε) =
|rng(X ,q,ε)|

max({|rng(X ,x,ε)| : x ∈ X})

These definitions describe the exact solution for the outlier detection problem that we
investigate in this chapter. The following section provides the details of our proposed algorithm.

5.2 The HySortOD Algorithm
This section presents our proposed algorithm HySortOD . In a nutshell, it has four

sequential phases. The first phase creates an array of bounded regions, known as hypercubes, to
store counts of instances that lie within each region. Next, the EGO-sort procedure is used to
organize the hypercubes in such a way that neighboring hypercubes with regard to the feature
space get close to each other also in the array. Then, a novel neighborhood-search procedure
is performed for each hypercube to compute its neighborhood density, that is, the number of
instances that lie within the neighborhood. Once the densities are calculated, the last phase
reports an outlierness score for each hypercube. Every instance that lies within a hypercube
receives the same score – as it happens in virtually all hypercube-based algorithms found in the
literature. The next sections detail our proposal.

5.2. The HySortOD Algorithm 69

5.2.1 Creating Hypercubes

The hypercubes are essentially bounded regions of the space where at least one instance
exists. Without loss of generality, we assume that the dataset X = [x1,x2, . . .xm] has m normalized
instances, where each instance xp = [xp,1,xp,2, . . .xp,d] is within the d-dimensional hypercube
[0,1)d and d is the data dimensionality. The bin parameter b ∈ N>1 represents the number of
equi-length partitions to be considered in each dimension and dictates the hypercube granularity.
The hypercube side size is given by l = 1

b , which means that the greater the value of b, the
smaller are the hypercubes.

As it is shown in Algorithm 2, we represent the hypercubes in an array H = [h1,h2, . . .hn].
Each hypercube hi = [hi,1,hi,2, . . .hi,d] is itself an array that stores d coordinates hi, j ∈{0,1, . . .b−
1}. Note that H could also be understood as a n×d matrix, but we decided to use the aforemen-
tioned notation because it allows us to describe the rest of our proposal in an easier and clearer
manner. We map an instance xp ∈ X to hypercube coordinates as follows hi = [hi,1,hi,2, . . .hi,d] =

[bxp,1/lc,bxp,2/lc, . . .bxp,d/lc]. Each instance lies within only one hypercube boundaries - see
Line 2 - and we denote as ci the count of instances that lie within hi - see Lines 5, 6 and 8. The
counts are stored in an array C = [c1,c2, . . .cn]. The hypercubes are then used as box-countings
to estimate their neighboring densities, as we describe latter in Section 5.2.3.

Algorithm 2 – Create_hypercubes()
Input Dataset X ; number of bins b.
Output Hypercubes H; Countings C.

1: for each xp ∈ X do
2: Let hi be the hypercube that xp is within;
3: if hi is an uninitialized hypercube then
4: Create a new hypercube hi in H;
5: Create a new count ci in C;
6: ci← 0;
7: end if
8: ci← ci +1;
9: end for

10: return H,C;

Intuitively, one can see this process as overlaying a grid into the data space to discretize
and group instances. Figure 9a illustrates the mapping process of dataset instances to hypercube
coordinates in a toy 2-dimensional dataset using b = 4, so the grid has up to 16 cells1. Note that
empty hypercubes are not represented in memory nor processed, so the maximum number of
hypercubes is always limited by the data cardinality.

1 We use the word cell to refer to 2-dimensional hypercubes.

70 Chapter 5. Outlier Detection with Sorted Hypercubes

0 1 2 3

0
1
2
3

length (0,3)=h4
(0,2)=h3
(2,2)=h7
(3,2)=h8
(0,1)=h2
(1,1)=h6
(0,0)=h1
(1,0)=h5

(a) (b)
0 1 2 3

0
1
2
3

y

x

Figure 9 – (a) A grid using b = 4, and 8 cells with their coordinates. Cells in gray are not stored nor
processed. (b) The immediate neighbors of cell (2,2) are highlighted in green.

5.2.2 Sorting Hypercubes

Once the hypercube array H is created, the hypercubes are sorted considering their coor-
dinates so that neighboring hypercubes with regard to the feature space get close to each other
also in the array. In practice, it is one usual sorting procedure that considers d-dimensional hyper-
cube coordinates in numerical order. For example, in Figure 9a, the hypercubes H = [(0,3),(0,2),
(2,2),(3,2),(0,1),(1,1),(0,0),(1,0)] are sorted to [(0,0),(0,1),(0,2),(0,3),(1,0),(1,1), (2,2),
(3,2)]. This is a simple, yet powerful strategy that can mitigate the costs of a naive neighborhood
search by limiting the search space with respect to the neighborhood definition. The sorting pro-
cedure also does not require any advanced indexing structure still allowing an efficient approach
in terms of space complexity. The following section presents how to take advantage of the sorted
array by means of our novel neighborhood search strategy.

5.2.3 Neighborhood Search

The goal of this phase is to efficiently count the number of instances in the neighborhood
of each hypercube as a way to measure its neighborhood density. We perform approximate range
search operations using hypercubes and their coordinates rather than dataset instances. Thus, for
each hypercube hi ∈ H, we spot its immediate neighbors based on Definition 7.

Definition 7 (Hypercube Neighborhood). Given the hypercube array H and a hypercube hi

of interest, the hypercube neighborhood N(hi) includes all hypercubes with coordinates that
are at no more than 1 unit of distance distant from the coordinates of hi. That is: N(hi) =

{hk | |hk, j−hi, j| ≤ 1,∀1≤ j ≤ d;∀hk ∈ H}, where hk, j and hi, j are respectively the coordinates
of hypercubes hk and hi in dimension j.

Note that Definition 7 can be seen as an approximation of a range search for dataset X

with ε = 3l/2 and the query center being the centroid of hi, as it is specified in Definition 4 from
the previous Chapter 4, but the maximum distance between instances within the neighborhood

5.2. The HySortOD Algorithm 71

of hi is actually 3l
√

d. Definition 8 denotes the neighborhood density wi of a hypercube hi based
on the number of instances that exist in its neighborhood N(hi). The densities are stored in an
array W = [w1,w2, . . . ,wn].

Definition 8 (Neighborhood Density). Given a hypercube hi and its neighbors N(hi), the neigh-
borhood density wi is the count of instances that lie in hi or in one of its neighbors. Formally, it
is given by:

wi = ∑
hk∈N(hi)

ck

Let us name as prospective neighbor of hi any hypercube hk ∈ H that satisfies the condi-
tion |hi,1−hk,1| ≤ 1. Similarly, we name as immediate neighbor of hi any prospective neighbor of
hi that satisfies the full condition in Definition 7. Let us illustrate it considering the example sorted
array H = [h1,h2,h3,h4,h5,h6,h7,h8] = [(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(2,2),(3,2)] from
Section 5.2.2 and a search operation centered at cell h7 = (2,2) from Figure 9. By sequentially
scanning the sorted hypercubes in H, we can find the immediate neighbors h6 = (1,1), h7 = (2,2)
and h8 = (3,2), thus, the neighborhood density is w7 = c6 + c7 + c8 = 1+1+1 = 3. Thanks to
the sorting strategy, the prospective neighbors are already clustered together in array H. Note
that the neighborhood search and the neighborhood density computation of a hypercube hi are
performed simultaneously.

However, during a linear scan many prospective neighbors would be tested which can
increase the runtime. An ideal solution would minimize such tests and yet find all immediate
neighbors. We observe that, it is expected to have a sequential range of hypercubes – beginning
and ending position – that share the same coordinate value for the first dimension, then fixing the
first dimension, we expect for the following dimension other sequences sharing values within the
range of the previous dimension, and so on until no more coordinate values are shared. Based on
this observation, we can map the hypercubes dimension-wise in a tree-based structure, where
each level represents a dimension; the child nodes at each level contain the existing coordinate
values for the given dimension as well as the starting and ending positions where the values
are shared. This structure allows the algorithm to perform the density computation by simply
traversing the appropriate branches of the tree instead of a full scan over array H. We describe
the construction of the tree and the search algorithm in the following sections.

5.2.3.1 Construction

Algorithm 3 constructs the dimension-wise tree by recursively scanning array H. For
each recursion call, a parent node P and a dimension j must be specified. Each node stores three
attributes about the mapping: the coordinate value denoted as Pvalue, besides the beginning and
ending positions in H where the coordinate value is the same for all hypercubes at dimension j,
denoted as Pbegin and Pend , respectively. A node cannot map more hypercubes than its parent node.
The root node encloses all hypercubes and does not map a coordinate value of any dimension,

72 Chapter 5. Outlier Detection with Sorted Hypercubes

that is: Pvalue = /0, Pbegin = 1 and Pend = n. The first recursion call creates a node for each unique
coordinate value at the first dimension, and maps the contiguous interval where each coordinate
value is the same. In the following recursion calls, for each of the nodes created by the previous
calls, the same procedure is performed to map the hypercubes for the respective dimension.

The algorithm starts by testing the two recursion base cases - see Lines 1 and 2, when
the current dimension is greater than the total number of dimensions and when the number of
hypercubes mapped by a node P is smaller than a predefined threshold MinSplit. This threshold
aims to balance the trade-off between the number of hypercubes to scan during the search and
the granularity of the mapping. Depending on the data distribution, scanning hypercubes might
be faster than traversing the tree branches or scanning leaf nodes that map a single hypercube.

Next, we obtain the first position of the mapped sequence and the coordinate value of
the first hypercube at dimension j - see Line 3. The main loop scans over the hypercubes in
H from the beginning to the ending position mapped by the parent node P - see Lines 4 to 13.
During the scan, when the coordinate value changes - see Line 5, a child node is created to map
the beginning and ending position where the coordinate value is the same for all hypercubes
within the sequence at dimension j - see Line 7. Next, we add the created node as a child of
the current parent node P - see Line 8. Then, a recursion is called passing the child node to
map the coordinate values of the next dimension - see Line 9. Finally, the beginning and ending
positions of the last coordinate value are added to the parent node aside from the main loop - see
Lines 14 to 16. The root node containing all sub-trees is then returned in Line 17.

Algorithm 3 – Construct()
Input Hypercubes H; Value MinSplit; Parent node P; Column j.
Output Root node P containing all sub-trees.

1: if j > d then return;
2: if Pend−Pbegin < MinSplit then return;
3: i← Pbegin; value← hi, j;
4: while i≤ Pend do
5: if hi, j > value then
6: begin← Pbegin; end← i−1;
7: Create child node mapping from begin to end;
8: Add child node into P;
9: Construct(H, MinSplit, child node, j+1);

10: begin← i; value← hi, j;
11: end if
12: i← i+1;
13: end while
14: end← i−1;
15: Add child node mapping from begin to end in P;
16: Construct(H, MinSplit, child node, j+1);
17: return P;

5.2. The HySortOD Algorithm 73

In Figure 10, we illustrate how our tree would be constructed based on the 2-dimensional
dataset presented in Figure 9. On the left side, there is the root node that has no coordinate value
associated with it mapping all existing sorted hypercubes in H, i.e., from position h1 to h8. Then,
the dashed lines point to the child nodes that map the positions for each coordinate value of the
first dimension (i.e., dimension x). For the second dimension (i.e., y), there are four child nodes
for the coordinate value 0 of the first dimension because the MinSplit parameter is set to 4, which
means that nodes mapping less than 4 hypercubes are not split into child nodes - see Line 2 in
Algorithm 3. The nodes of the second dimension map only one hypercube each, as well as those
nodes with coordinate values 1, 2 and 3 from the first dimension.

Note that the idea of constructing a dimension-wise tree is sensitive to the dimension
ordering because some dimensions might provide more information gain than others, and
potentially allow to prune more branches during the search step. This can directly affect the
runtime of the neighborhood search. We shall state that we used the original dimension ordering
for all datasets studied in this chapter, and we aim to investigate this point further in future work.

0 h1
h2
h3
h4
h5
h6
h7
h8

1

2

3

0

1

2

3

∅

x y

[h1,h8]

[h1,h4]

[h5,h6]

[h7,h7]

[h8,h8]

[h1,h1]

[h2,h2]

[h3,h3]

[h4,h4]

Figure 10 – Constructed tree mapping 8 hypercubes with MinSplit = 4. Dashed lines indicate the tree
hierarchy and solid lines indicate the mapped hypercubes in array H.

5.2.3.2 Search

The search operation spots all immediate neighbors of a given hypercube and returns
the total neighborhood density. Each level of the constructed tree represents a dimension and
the child nodes of each level store the existing coordinate values with respect to the tree level,
beginning and ending positions of prospective neighbors. Thus, the strategy is to traverse the
tree branches and only scan over hypercubes mapped by the leaf nodes.

In Algorithm 4 the goal is to return the neighborhood density of a given hypercube. It
starts by assigning the number of instances in hypercube hi to the total density - see Line 1. When
P is a leaf node - see Line 2, then, it proceeds to scan over the mapped interval Pbegin to Pend -
see Lines 3 to 5. Within this interval, we test if the hypercube is an immediate neighbor; if so,
we increment the total density - see Line 4. When P is not a leaf node, we recursively traverse

74 Chapter 5. Outlier Detection with Sorted Hypercubes

through the branches that are at most at 1 unit of distance distant from the given hypercube for
each dimension - see Lines 7 to 9 and update the total density. Then, the total density is reported
- see Line 11. In cases where no neighboring hypercube exists for hi, the total density is ci.

Algorithm 4 – Neighborhood_density()
Input Hypercubes H; Countings C; Position i; Node P; Dimension j.
Output Neighborhood density wi.

1: wi← ci;
2: if P is leaf then
3: for k← Pbegin to Pend do
4: if hi, j is an immediate neighbour of hk, j then wi← wi + ck;
5: end for
6: else
7: for each node mapping the coordinates hi, j±1 do
8: wi← wi + Neighborhood_density(H, C, node, i, j+1);
9: end for

10: end if
11: return wi;

5.2.4 Outlierness Score

The final phase uses the neighborhood density of the hypercubes to assign an outlierness
score to every data instance. As it happens in virtually all hypercube-based algorithms found
in the literature, we approximate the score of individual instances by reporting the same score
for instances that share the same hypercube. Our score is based on Definition 6, but adjusted to
the hypercube context, it becomes the ratio of the hypercube density to the maximum existing
density, as it is shown in Definition 9.

Definition 9 (Hypercube-based Score). Given a hypercube neighborhood density wi and the
maximum neighborhood density wmax, the outlierness score is defined as:

Score(wi, wmax) = 1− wi

wmax

The neighborhood density of a hypercube hi is wi, so the score measures the outlierness

of hypercube hi based on how dense its neighborhood is relative to the maximum neighborhood
density wmax = max(W), where W = [w1,w2, . . .wn] is the array with all neighborhood densities.
The score values range in the closed-interval [0,1]. High outlierness means scores close to 1,
while low outlierness is represented by near-zero scores.

5.2. The HySortOD Algorithm 75

5.2.5 Proposed Algorithm

Algorithm 5 is the full pseudo-code of our proposed HySortOD. As we described before,
it receives as input the dataset X , besides one intuitive parameter b that represents the number
of bins to be created per dimension and the MinSplit value that sets the minimum number of
hypercubes that a tree node must map to be split into subnodes; consequently, b also defines
how close any two instances must be to be considered neighbors. Latter in Section 5.4.4, we
analyze the impact of b in the accuracy and the MinSplit values in the runtime of HySortOD;
also, we identify default values for both parameters that allow our proposal to be parameter-free
and yet report fast high-quality results. Algorithm 5 starts by creating the hypercubes H and
computing their counts of instances C in Line 1. The hypercubes are then sorted in Line 2 using
the procedure described in Section 5.2.2. In Line 3, the hypercubes are mapped into a tree-based
structure. Lines 4 to 9 compute the neighborhood densities W , and identify the largest one wmax.
Finally, a data scan on X is performed in Lines 10 to 15 to obtain and report the outlierness
scores O to the user - see Line 16.

5.2.5.1 Time Complexity

The total time complexity is the sum of the complexity of HySortOD ’s individual phases.
Time complexity of hypercube creation is O(m) because we process only once each instance
of dataset X to output the set of hypercubes of size n, where n ≤ m. The sorting phase takes
O(dn log n) time as traditional sorting algorithms. For the neighborhood density computation, it
is required to make assumptions about the data distribution because the distribution of hypercubes
might differ considerably depending on the application. Assuming the worst-case scenario where
the coordinate values of H are uniformly distributed, we expect, for the first dimension, b distinct
values and n

b hypercubes sharing the same coordinate value. Based on that, the tree construction
takes O(bn

b) time for the first dimension, and within each node in the first dimension, the child
nodes of the second dimension takes O(b n

b2) time, and so on until dimension d. This process
can be represented by the series ∑

d
i=1 b n

bi , where its complexity can be expressed in its closed

form O(n(b−b1−d)
b−1) or simply O(3dn). Since at least one instance lies within a hypercube region,

the upper bound number of immediate neighbors is also limited by n, besides 3d; that is, the
maximum number of immediate neighbors is s = min({3d,n}). Thus, searching all immediate
neighbors for all hypercubes takes O(sn). To report the outlierness of each instance, when
efficiently implemented, the process takes O(m). Therefore, the final time complexity is O(sn)

when sn > m; otherwise, it is O(m). Note that this analysis is based on the assumption that
all instances are uniformly distributed in the data space, which is the worst-case scenario for
any outlier detection algorithm, however, in practice such distribution is not expected to occur
because the algorithm would not be able to distinguish outlying instances. After all, instances
would be equidistant from each other. In our experiments, the worst-case scenario seems to have
a much lower upper bound when analyzing the runtime results. The next section describes the
experimental setup used to evaluate our algorithm.

76 Chapter 5. Outlier Detection with Sorted Hypercubes

Algorithm 5 – HySortOD()
Input Dataset X ; Number of bins b; MinSplit threshold.
Output Outlierness scores O for instances of X .

1: H, C← Create_hypercubes(X, b); . Algorithm 2
2: Sort H and adjust C accordingly;
3: Construct(H, MinSplit, root node, 1); . Algorithm 3
4: Create empty density array W ;
5: for each hi ∈ H do
6: wi← Neighborhood_density(H,C, root node, i,1); . Algorithm 4
7: Insert wi into array W ;
8: end for
9: wmax←max(W); . largest density value

10: Create empty outlierness array O;
11: for each xp ∈ X do
12: Let hi be the hypercube that xp is within;
13: op← Score(wi,wmax); . Definition 9
14: Insert op into array O;
15: end for
16: return O;

5.3 Experimental Setup

This section presents our experimental setup. HySortOD was implemented in plain
Java. We compare our proposal with 8 other algorithms: ODSSJ from the previous Chapter 4,
which is also implemented in plain Java, and 7 state-of-the-art algorithms, i.e., kNN-Out, DB-
Out, LOF, ODIN, HilOut, ABOD and aLOCI, which are coded in Java under the framework
ELKI (ACHTERT et al., 2011). For the related work’s algorithms that can take advantage of an
indexing data structure, we used ELKI’s default in-memory hashtable that is expected to be faster
than the other alternatives2. Also, we used the Euclidean distance for all applicable algorithms.
To ensure a fair comparison among the competitors, we performed an exhaustive parameter
search for each algorithm and dataset pair to find the highest result quality, which is reported.
Appendices A, B and C present the best parameter configuration identified for each algorithm and
dataset. Observation: for the purpose of reproducibility, all codes, detailed results, parameter
values tested and datasets used in this chapter are freely available for download online3,4.

Note that we report the results of two versions of our proposal. The first one, named
HySortOD, uses a fixed parameter b = 5 as a default value for all datasets and we consider it to
be our parameter-free proposal. MinSplit is set to 100 for all datasets because in our experiments
it was able to reduce significantly the algorithm runtime. Latter in Section 5.4.4, we provide the
details on how the default values were chosen. The second version, named HySortOD (Best),

2 <https://elki-project.github.io/releases/current/doc/de/lmu/ifi/dbs/elki/database/StaticArrayDatabase.html>
3 <https://github.com/eug/hysortod.java>
4 <https://github.com/eug/hysortod.py>

https://elki-project.github.io/releases/current/doc/de/lmu/ifi/dbs/elki/database/StaticArrayDatabase.html
https://github.com/eug/hysortod.java
https://github.com/eug/hysortod.py

5.4. Results and Discussion 77

uses the value of parameter b that maximizes the AUC score to allow a fair comparison with the
other algorithms tested, since we also do this fine tuning for them.

In our experiments, we studied 12 labeled real-world benchmark datasets available
in (RAYANA, 2016). These well-known datasets are commonly used by the outlier detection
community to evaluate the quality and runtime results of the algorithms. We used the original
version of these datasets and did not perform any form of pre-processing. Note that these are the
same datasets that we studied in the previous Chapter 4, which are summarized in Table 2. We
decided to split the datasets into two groups: (a) small datasets – the first 10 datasets in Table 2,
except for satimage2, and; (b) large datasets – satimage2, shuttle and http. The groups were
defined with respect to the data cardinality and dimensionality. Note that satimage2 is considered
to be large due to its largest dimensionality and medium-sized cardinality.

For the effectiveness evaluation, we used the well-accepted ROC AUC (AUC) metric,
which ranges between 0 and 1, where a perfect result is scored 1 and a random result is around
0.5. For the efficiency evaluation, we conducted 10 independent executions of each algorithm
and dataset pair, recording the total runtime in seconds, so we always report average and standard
deviation results. Note that we do not record the time spent to find the best parameter for each
algorithm, which is a time-consuming task based on our experience. All experiments were
performed in GNU/Linux Ubuntu Xenial x86-64 running on a machine with processor Intel©

Core™ i7-2600S @ 2.80GHz x 4 cores and 8GB of RAM.

5.4 Results and Discussion
This section reports and discusses the results of our experimental evaluation under the

setup of Section 5.3. We aimed at answering the questions as follows:

Q1 Compared with 8 other algorithms, how efficient and effective is our proposed HySortOD on
benchmark datasets?

Q2 How scalable are these techniques?

Q3 What are the effects of varying our parameters b and MinSplit, and how to obtain highly-
accurate results from HySortOD in a parameter-free fashion?

Q4 Compared with 8 other algorithms, how well our HySortOD performs when used as an
out-of-the-box solution for a real-world, non-benchmark problem?

78 Chapter 5. Outlier Detection with Sorted Hypercubes

5.4.1 Effectiveness Evaluation

This section investigates Question Q1: "Compared with 8 other algorithms, how efficient

and effective is our proposed HySortOD on benchmark datasets?". Table 6 summarizes the
quality-related results for all algorithms and datasets. As it can be seen, ABOD reported the
highest scores in 3 datasets, but it failed to run in the two largest datasets shuttle and http

because of exceeded main memory capacity. Similarly, HilOut and aLOCI also exceeded the
main memory available for dataset http. In our opinion, none of the datasets studied is large
enough to justify a need for more than 8 GB of RAM. kNN-Out reported the highest score in 2
datasets, while LOF and HySortOD (Best) reported the highest score in 1 dataset each. Finally,
DB-Out, ODIN and aLOCI did not report the highest score in any dataset.

Aside from the related works’ algorithms, our approach ODSSJ reported similar results as
HySortOD , being able to obtain the highest score among all other algorithms in 4 datasets. These
high-quality results of ODSSJ can be justified by its exact approach on counting the number
of neighbors combined with a fine-tuned threshold. The minor differences from ODSSJ ’s best
quality results compared with those of HySortOD indicate that our approximation strategy is
well-suited to detect outliers effectively. Note that our HySortOD (Best) reported the highest
average result overall compared with the other 8 algorithms. Additionally, its parameter-free
version HySortOD reported similar results compared with the best algorithms using its default
parametrization, which shows a significant advantage in real-world applications by not requiring
any parameter tuning.

5.4.2 Efficiency Evaluation

This section further investigates Question Q1: "Compared with 8 other algorithms,

how efficient and effective is our proposed HySortOD on benchmark datasets?". Now, we are
focused on efficiency. Table 7 summarizes the runtime results obtained from all algorithms
and datasets. As it can be seen, both versions of our algorithm outperformed all related works’
algorithms in terms of runtime, obtaining expressive efficiency gains in nearly all datasets. The
runtime difference between our versions HySortOD (Best) and HySortOD was insignificant in
all cases. Note that the overall average results of HilOut, aLOCI and ABOD do not consider
all datasets, since they failed in the largest ones, but still our proposal presented considerable
efficiency improvements regarding the average runtime. Algorithms kNN-Out, DB-Out, LOF
and ODIN reported high runtime values for datasets larger than 40k instances. Also, ABOD had
huge runtime requirements for any dataset larger than 1k instances. It makes these algorithms
impractical for many real-world applications. Nevertheless, when comparing HySortOD with
our algorithm ODSSJ , we note that both report similar results for small datasets while in the
larger ones the runtime of ODSSJ starts to increase significantly, and yet, it is still very efficient
compared with the state-of-the-art algorithms.

5.4. Results and Discussion 79

Figure 11 shows the big picture regarding both efficiency and effectiveness of all state-
of-the-art algorithms considered in our study, thus truly answering Question Q1, where a
fictitious, ideal algorithm would obtain perfect quality instantly. As it can be seen, our pro-
posed HySortOD reported similar quality (AUC) scores in small and large datasets compared
with 7 state-of-the-art algorithms, still being the fastest algorithm in every single case with
improvements that refer to 3 or 4 orders of magnitude in many cases. Also, note that these
results were obtained using our fixed default value for parameters b and MinSplit, i.e., the results
of HySortOD (Best) are not shown in Figure 11. This is a massive advantage over the other
algorithms studied when processing large real-world datasets that do not have labels available.

Figure 11 – Quality of results vs. runtime in log scale for 12 real-world datasets and 7 algorithms. Results
from small and large datasets are presented in separate, respectively on the left and the
right sides. Top: average of results. Bottom: detailed results. Our HySortOD consistently
outperformed 7 state-of-the-art algorithms, being up to 4 orders of magnitude faster, while 3
competitors failed in large datasets.

5.4.3 Scalability Evaluation

This section investigates Question Q2: "How scalable are the techniques studied?". One
of the main challenges in outlier detection is scalability to process large datasets. To the best
of our knowledge, there is no labeled dataset for outlier detection that is larger in cardinality
than http. For this reason, we decided to demonstrate the scalability of our HySortOD by further
investigating this dataset. Specifically, we created and processed smaller versions of http with
random samples of increasing sizes up to the full dataset, i.e., 1%, 10%, 15%, 25%, 50%,
75% and 100%, and report the corresponding average runtime of each algorithm. Note that we
randomly sampled proportional percentages of inlier and outlier instances to keep the original
data characteristics. Figure 12 reports the corresponding results for HySortOD and for the 7
state-of-the-art competitors studied. Regarding the related work, the results show a superlinear
trend in virtually all cases. ABOD ran successfully with 1% sample size, but it took a massive
runtime that exceeds the plot area; the main memory was not enough for samples larger than
10%. aLOCI and HilOut exceeded the main memory capacity after 15% and 75% sample sizes,
respectively. The remaining algorithms required massive amounts of time to complete.

80 Chapter 5. Outlier Detection with Sorted Hypercubes

ABOD exceeded 2.5K seconds
with 1% sample size and
exceeded main memory
capacity after 10%

HilOut exceeded main
memory capacity with
100% sample size

Figure 12 – Runtime on random samples from http. Our HySortOD scales much better than 7 competitors.

In contrast, our HySortOD was able to keep a much better scalability on the sample size.
We conducted an in-depth analysis of these results and noted that distinguishing outlier and inlier
instances in http is relatively easy, since they are commonly far away from each other. Therefore,
our HySortOD only created around 20 hypercubes for this dataset, which is a huge advantage
compared with other algorithms that needed to perform neighborhood searches in more than 500k

instances. These findings suggest that the use of our proposed hypercube-ordering-and-searching
strategy to detect outliers is indeed a powerful scale-up tool.

5.4.4 Parametrization

This section investigates Question Q3: "What are the effects of varying our parameters b

and MinSplit, and how to obtain highly-accurate results from HySortOD in a parameter-free

fashion?". The general intuition behind our parameter b is that, as the number of bins increases,
the hypercube length l = 1

b decreases, and so does the neighborhood radius. Therefore, b indeed
influences the quality of HySortOD. For large values of b, it is expected all instances to be
reported as outliers, because they will lie alone in their hypercube neighborhood. By contrast,
it is expected for small values of b that all instances may be reported as inliers, because the
hypercubes will likely be close enough to make it impossible to distinguish between inliers and
outliers. To study the effect of b in the effectiveness, we varied its value from 2 up to 40 for
all 12 datasets. Figure 13 reports our findings; it plots the AUC score versus b. Note that the
horizontal axis is in log scale to improve the visualization. We observe three distinct intervals
with different patterns in the horizontal axis. We name the intervals according to their general
quality trend, that is: unstable, steady, and decreasing quality in the intervals [2,3], [4,7], and
[8,40], respectively. Based on these observations, we understand the steady quality interval as
the appropriate one to obtain high-quality results in a general scenario, which is corroborated
by 12 real datasets of distinct domains, so we suggest b = 5 to be the default configuration of
HySortOD.

5.4. Results and Discussion 81

2 3 4 5 6 7 8 9 10 20 30 40
Number of Bins b (log)

0.0

0.2

0.4

0.6

0.8

1.0
AU

C

Unstable quality Steady quality Decreasing quality

Http
Shuttle

Mammography
Satimage-2

Thyroid
Pima

BreastW
Ionosphere

Ecoli
Glass

Hepatitis
Parkinson

Figure 13 – AUC score (quality) vs. number of bins b for 12 real datasets. There are three distinct intervals
with different patterns; the best results are likely to be in the steady quality interval, so we
suggest the use of b = 5.

Additionally, we analyzed different variations for our MinSplit parameter, which only
affect runtime; not accuracy. It balances the number of hypercubes mapped by a node, and, thus,
limits the number of hypercubes to scan during the neighborhood search. In general, small values
tend to leave the leaf nodes mapping only a few hypercubes, while large values have the opposite
effect, which tends to degenerate to the linear scan runtime. With that in mind, we conducted
experiments varying the parameter from 10 to 1,000 in each of 12 benchmark datasets, and
according to our analysis we observe that setting the value 100 generally reduces the runtime
when compared to other values.

5.4.5 Case Study: Breast Cancer Detection

This section investigates Question Q4: "Compared with 7 state-of-the-art algorithms,

how well our HySortOD performs when used as an out-of-the-box solution for a real-world, non-

benchmark problem?". Aside from benchmark datasets, we also experimented HySortOD in the
important real-world problem of breast cancer detection, where the goal is to detect the malignant
cases. This problem has been traditionally framed as a supervised imbalanced classification
problem, however, as the malignant cases are often rare, it makes a suitable scenario to be framed
as an outlier detection problem. Thus, for this experiment, we considered the KDD Cup 20085

dataset that consists of 102,294 regions of interest screen images; each image is represented by
117 features, without description, and a label indicating if the image has the presence of cancer
(malignant) or not (benign).

We conducted the experiment as described in Section 5.3. Our algorithms HySortOD and
HySortOD (Best) were evaluated in terms of quality and runtime. They reported the AUC score of
0.6097 (using the default parameter b = 5) and 0.6389 (using parameter b = 7), respectively. The
average runtime and standard deviation for our algorithms were 5x102±95.63 and 3x102±20.23
seconds, respectively. The related works’ algorithms were able to process the dataset, except

5 <https://www.kdd.org/kdd-cup/view/kdd-cup-2008/Data>

https://www.kdd.org/kdd-cup/view/kdd-cup-2008/Data

82 Chapter 5. Outlier Detection with Sorted Hypercubes

aLOCI and ABOD (exceeded main memory capacity), and the average and standard deviation
runtime over all parameter attempts was 2x103±7x104, however, they were unable to detect
outliers. In the parameter search for this dataset, we varied the parameter k (kNN-Out, LOF,
ODIN and HilOut) and d (DB-Out) from 0 to 10,000 with step of 50. For each algorithm, we
conducted 200 parameters attempts totaling roughly 4x105 seconds of runtime.

These results are a strong evidence that our parameter-free algorithm HySortOD shows
a superior advantage compared with existing algorithms in two aspects. First, our algorithm
was able to detect outliers while the existing algorithms were unable to do so. Second, there
is no need to fully depend on specialist expertise and spend time in parameter-tuning to report
satisfactory results. Thus, in practice, we observe that our proposed algorithm can be a powerful
outlier detector not only by its efficiency due to its hypercube ordering but also for its practicality
due to the parameter-free approach.

5.5 Conclusion
This chapter presented the new algorithm HySortOD for outlier detection. Our main

contributions are:

C1 Speed and Scalability: We carefully designed HySortOD to efficiently distinguish inliers
and outliers by means of a new hypercube-ordering-and-searching approach that speeds-up
the outlier detection task to perform at scale;

C2 Simplicity: We provide default parameter values that allow HySortOD to be truly un-
supervised, i.e., to be parameter-free, and yet deliver insightful results, which can save
significant amount of manual work in the parameter-tuning task;

C3 Benchmark Experiments: We study 12 benchmark datasets from distinct domains with
up ∼500k instances, and show that our proposal produces highly accurate results with one
speed-up of up to 4 orders of magnitude over 7 state-of-the-art algorithms, even when it is
used in a parameter-free fashion;

C4 Case Study Experiments: We study the crucial task of breast cancer detection to show
that our approach can be successfully used as an out-of-the-box solution for real-world,
non-benchmark problems. This study used a well-known dataset with ∼100k instances
and ∼120 dimensions that was originally created for supervised, imbalanced classification.

Finally, note that our solution does not require parameter-tuning to detect outliers, but
some applications might require additional steps to obtain relevant insights from the results, like
to specify a subset of top outliers of interest or a threshold value for outlierness scores.

5.5. Conclusion 83

D
at

as
et

H
yS

or
tO

D
H

yS
or

tO
D

(B
es

t)
O

D
SS

J
kN

N
-O

ut
D

B
-O

ut
L

O
F

O
D

IN
*H

ilO
ut

*a
L

O
C

I
*A

B
O

D

pa
rk

in
so

n
0.

91
67

0.
98

96
0.

98
96

0.
89

58
0.

92
71

0.
79

17
0.

71
88

0.
96

88
0.

50
00

0.
84

38
he

pa
tit

is
0.

60
45

0.
64

95
0.

64
93

0.
54

73
0.

62
19

0.
51

24
0.

65
17

0.
65

67
0.

50
00

0.
43

28
gl

as
s

0.
72

74
0.

79
51

0.
84

88
0.

78
24

0.
78

97
0.

60
43

0.
67

24
0.

84
23

0.
63

82
0.

75
72

ec
ol

i
0.

89
81

0.
92

71
0.

95
57

0.
88

99
0.

60
96

0.
60

70
0.

90
18

0.
89

64
0.

78
51

0.
90

59
io

no
sp

he
re

0.
91

68
0.

93
04

0.
91

08
0.

93
14

0.
90

66
0.

86
06

0.
85

26
0.

94
67

0.
50

00
0.

89
61

br
ea

st
w

0.
97

54
0.

97
89

0.
96

32
0.

97
82

0.
97

85
0.

59
89

0.
81

66
0.

97
30

0.
94

30
0.

99
60

pi
m

a
0.

73
34

0.
74

35
0.

79
73

0.
68

64
0.

67
90

0.
62

40
0.

66
92

0.
71

85
0.

56
08

0.
66

88
th

yr
oi

d
0.

84
77

0.
97

48
0.

81
82

0.
97

93
0.

96
24

0.
89

13
0.

68
96

0.
97

79
0.

91
10

0.
95

08
sa

tim
ag

e2
0.

99
01

0.
99

31
0.

99
04

0.
99

24
0.

99
19

0.
98

75
0.

99
31

0.
98

52
0.

41
52

0.
99

72
m

am
m

og
ra

ph
y

0.
74

70
0.

84
64

0.
80

71
0.

85
97

0.
87

72
0.

82
85

0.
85

51
0.

84
05

0.
75

72
0.

88
44

sh
ut

tle
0.

97
18

0.
97

92
0.

90
54

0.
99

53
0.

66
88

0.
98

27
0.

98
83

0.
93

35
0.

96
38

-
ht

tp
0.

99
41

0.
99

66
0.

98
92

0.
99

87
0.

98
91

0.
99

95
0.

97
46

-
-

-

A
ve

ra
ge

0.
86

03
±

0.
13

0.
90

03
±

0.
12

0.
89

69
±

0.
09

0.
87

77
±

0.
14

0.
83

35
±

0.
15

0.
77

40
±

0.
18

0.
83

18
±

0.
13

*0
.8

95
0
±

0.
10

*0
.6

79
5
±

0.
20

*0
.8

33
3
±

0.
17

*T
he

av
er

ag
e

va
lu

es
on

ly
co

ns
id

er
re

po
rt

ed
m

ea
su

re
m

en
ts

Ta
bl

e
6

–
A

U
C

sc
or

es
(q

ua
lit

y)
fo

r8
al

go
rit

hm
s

an
d

12
be

nc
hm

ar
k

da
ta

se
ts

.B
es

tr
es

ul
ts

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.N
ot

e
th

at
ou

rp
ro

po
se

d
H

yS
or

tO
D

is
ve

ry
ac

cu
ra

te
.

84 Chapter 5. Outlier Detection with Sorted Hypercubes

D
ataset

H
ySortO

D
H

ySortO
D

(B
est)

O
D

SSJ
kN

N
-O

ut
D

B
-O

ut
L

O
F

O
D

IN
*H

ilO
ut

*aL
O

C
I

*A
B

O
D

parkinson
0.01

±
0.01

0.01
±

0.01
0.01

±
0.01

0.02±
0.01

0
.02±

0.01
0
.03±

0.01
0
.02±

0.01
0
.03±

0.01
0.02±

0.01
0.06±

0.01
hepatitis

0.01
±

0.01
0.01
±

0.01
0.01

±
0.01

0.02±
0.01

0
.02±

0.01
0
.04±

0.01
0
.02±

0.01
0
.03±

0.01
0.02±

0.01
0.06±

0.01
glass

0.01
±

0.01
0.01
±

0.01
0.01

±
0.01

0.03±
0.01

0
.02±

0.01
0
.04±

0.01
0
.03±

0.01
0
.05±

0.01
0.03±

0.01
0.25±

0.03
ecoli

0.01
±

0.01
0.01
±

0.01
0.01

±
0.01

0.04±
0.01

0
.05±

0.01
0
.05±

0.01
0
.06±

0.01
0
.10±

0.01
0.02±

0.01
0.54±

0.02
ionosphere

0.03
±

0.01
0.03
±

0.01
0.02

±
0.01

0.05±
0.01

0
.04±

0.01
0
.06±

0.02
0
.05±

0.01
0
.09±

0.01
0.03±

0.01
0.71±

0.01
breastw

0.01
±

0.01
0.01
±

0.01
0.01

±
0.01

0.06±
0.01

0
.07±

0.01
0
.08±

0.02
0
.06±

0.01
0
.10±

0.01
0.07±

0.01
1.80±

0.13
pim

a
0.02

±
0.01

0.02
±

0.01
0.02

±
0.01

0.11±
0.02

0
.07±

0.01
0
.19±

0.03
0
.12±

0.02
0
.06±

0.01
0.03±

0.14
4.40±

0.19
thyroid

0.04
±

0.01
0.04±

0.01
0.04±

0.01
0.27±

0.01
0
.32±

0.02
0
.46±

0.03
0
.28±

0.01
0
.22±

0.01
0.16±

0.01
1x10

3±
29.29

satim
age2

1.04±
0.01

1
.39±

0.03
0.14

±
0.01

1.42±
0.05

2
.61±

0.07
1
.93±

0.10
2
.69±

0.04
0
.61±

0.01
0.49±

0.02
3x10

3±
1x10

2

m
am

m
ography

0.06
±

0.01
0.18±

0.01
0.17±

0.02
7.76±

1.09
7
.70±

0.72
2
.98±

0.26
9
.59±

0.76
0
.59±

0.07
6.26±

0.10
3x10

4±
1x10

4

shuttle
0.18

±
0.02

0.17
±

0.02
3.11±

0.07
1x10

2±
0.78

2x10
2±

3.87
1x10

2±
9.05

2x10
2±

2.31
1
.08±

0.05
8.59±

0.13
-

http
0.23±

0.03
0.28

±
0.02

27.14±
0.85

5x10
3±

6x10
2

2x10
4±

7x10
2

2x10
3±

63.90
5x10

3±
1x10

2
-

-
-

A
verage

0.14±
0.29

0.19±
0.39

2.55±
7.45

4x10
2±

1x10
3

2x10
3±

6x10
3

1x10
2±

5x10
2

3x10
2±

1x10
3

*0.27±
0.34

*1
.43±

3.01
*4x10

3±
1x10

4

*T
he

average
values

only
considerreported

m
easurem

ents

Table
7

–
R

untim
e

in
seconds

for8
algorithm

s
and

12
benchm

ark
datasets.B

estresults
are

highlighted
in

bold.N
ote

thatourH
ySortO

D
is

com
m

only
3

to
4

orders
ofm

agnitude
fasterthan

the
others.

85

CHAPTER

6
CONCLUSION

In this work, we aim at improving the efficiency and scalability of outlier detection due
its struggle to process large volumes of data. To develop our research towards this goal, we
make two fundamental observations in similarity join operation that are the source of inspiration
for this work. First, we observe that similarity join is designed to operate in database systems,
where efficiency in data processing is crucial. Second, we discuss and demonstrate that outlier
detection and similarity join operation share theoretical concepts that allow the former to employ
existing techniques from the latter. To the best of our knowledge no other work has explicitly
investigated the link between these tasks. Based on these observations, we proposed two novel
outlier detection algorithms - ODSSJ (Chapter 4) and HySortOD (Chapter 5) - that both report
similar quality results and are generally 3 orders of magnitude faster than existing algorithms in
the literature. Therefore, we highlight four major contributions of our research:

C1 Generality: As seen in our experiments (Sections 4.4, 5.3 and 5.4.5 from Chapters 4
and 5) we conducted a comprehensive evaluation of our proposed algorithms in a wide
range of applications. It shows that the algorithm’s assumptions are not domain specific,
therefore being able to support many types of business decisions;

C2 Simplicity: The proposed algorithms offer simplifications in terms of implementation
and usage. The adaptation of ODSSJ for other settings beyond in-memory single-thread
could be simplified due the use of the well-known similarity join operation. The lack of
specialist-defined parameters for HySortOD simplifies its usage by saving time during the
parameter-tuning part;

C3 Interpretability: Both algorithms are designed under the well-accepted and interpretable
assumption of neighborhood. It facilitates the results communication especially for inter-
disciplinary teams that do not contain the expertise in data mining;

86 Chapter 6. Conclusion

C4 Speed: Our experimental results (Sections 4.5 and 5.4 from Chapters 4 and 5) report
a substantial gain in terms of runtime compared to other existing algorithms (Tables 4
and 7 from Chapters 4 and 5). These results are consistent for both proposals, therefore
supporting the hypothesis of this work and significantly contributing for fast outlier
detection.

Finally, let us highlight that this MSc work generated the following publication:

• Eugênio F. Cabral, Robson L. F. Cordeiro: Fast and Scalable Outlier Detection with Sorted
Hypercubes. In: 29th ACM International Conference on Information and Knowledge Man-
agement — CIKM, 2020, Virtual Event, Ireland. p. 95-104, DOI:10.1145/3340531.3412033,
Full paper at an International Conference Qualis-CC A1.

https://dl.acm.org/doi/10.1145/3340531.3412033

87

BIBLIOGRAPHY

ACHTERT, E.; HETTAB, A.; KRIEGEL, H.-P.; SCHUBERT, E.; ZIMEK, A. Spatial Outlier
Detection: Data, Algorithms, Visualizations. In: International Symposium on Spatial and
Temporal Databases. Minneapolis, MN, USA: Springer, 2011. p. 512–516. Citations on pages
48, 58, and 76.

ADHAV, L. R.; KUMAR, S. D. MVJoin: An Efficient Approach for Record Linkage and Duplica-
tion Finding. In: International Conference on Emerging Trends in Computer Engineering.
Kobe, Japan: [s.n.], 2015. p. 2277–9477. Citations on pages 38 and 49.

AGGARWAL, C. C. Outlier Analysis. New York: Springer, 2017. 445 p. Citations on pages
29, 32, 53, 54, and 57.

ANBARASI, M. S.; DHIVYA, S. Fraud Detection Using Outlier Predictor in Health Insurance
data. In: International Conference on Information, Communication & Embedded Systems.
Chennai, India: IEEE, 2017. p. 6. Citation on page 29.

ANGIULLI, F.; PIZZUTI, C. Fast Outlier Detection in High Dimensional Spaces. In: European
Conference on Principles of Data Mining and Knowledge Discovery. Helsinki, Finland:
Springer, 2002. p. 15–27. Citation on page 47.

AYADI, A.; GHORBEL, O.; OBEID, A. M.; ABID, M. Outlier Detection Approaches for
Wireless Sensor Networks: A Survey. Computer Networks, Elsevier, v. 129, p. 319–333, 2017.
Citation on page 29.

BARNETT, V.; LEWIS, T. Outliers in Statistical Data. New York: Wiley, 1994. Citation on
page 29.

BELLMAN, R. E. Adaptive Control Processes: A Guided Tour. Princeton, New Jersey, USA:
Princeton University Press, 1961. 255 p. Citations on pages 36 and 47.

BERCHTOLD, S.; KEIM, D. A.; KRIEGEL, H.-P. The X-tree: An Index Structure for High-
Dimensional Data. In: VLDB Conference. Mumbai, India: ACM, 1996. p. 28–39. Citation on
page 46.

BINDU, P. V.; THILAGAM, P. S.; AHUJA, D. Discovering Suspicious Behavior in Multilayer
Social Networks. Computers in Human Behavior, Elsevier, v. 73, p. 568–582, 2017. Citation
on page 29.

BÖHM, C.; BRAUNMÜLLER, B.; BREUNIG, M.; KRIEGEL, H.-P. High Performance Cluster-
ing Based on the Similarity Join. In: International Conference on Information and Knowl-
edge Management. McLean, Virginia, USA: ACM, 2000. p. 298–305. Citation on page
49.

BÖHM, C.; BRAUNMÜLLER, B.; KREBS, F.; KRIEGEL, H.-P. Epsilon Grid Order : An
Algorithm for the Similarity Join on Massive High-Dimensional Data. In: International Con-
ference on Management of Data. Santa Barbara, CA, USA: ACM SIGMOD, 2001. v. 30, n. 2,
p. 379–388. Citations on pages 42 and 49.

88 Bibliography

BREUNIG, M. M.; KRIEGEL, H.-P.; NG, R. T.; SANDER, J. LOF: Identifying Density-Based
Local Outliers. In: International Conference on Management of Data. Dallas, TX, USA:
ACM SIGMOD, 2000. v. 29, n. 2, p. 93–104. Citations on pages 26, 37, and 46.

BRINKHOFF, T.; KRIEGEL, H.-P.; SEEGER, B. Efficient Processing of Spatial Joins Using
R-trees. International Conference on Management of Data, ACM, v. 22, n. 2, p. 237–246,
1993. Citation on page 41.

BRYAN, B.; EBERHARDT, F.; FALOUTSOS, C. Compact Similarity Joins. In: International
Conference on Data Engineering. Cancun, Mexico: IEEE, 2008. p. 346–355. Citation on page
49.

CAMPELLO, R. J. G. B.; MOULAVI, D.; ZIMEK, A.; SANDER, J. Hierarchical Density Esti-
mates for Data Clustering, Visualization, and Outlier Detection. Transactions on Knowledge
Discovery from Data, ACM, v. 10, n. 1, p. 51, 2015. Citation on page 34.

CAMPOS, G. O.; ZIMEK, A.; SANDER, J.; CAMPELLO, R. J.; MICENKOVÁ, B.; SCHU-
BERT, E.; ASSENT, I.; HOULE, M. E. On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study. Data Mining and Knowledge Discovery, Springer,
v. 30, n. 4, p. 891–927, 2016. Citations on pages 26, 55, 58, and 59.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly Detection: A Survey. Computing
Surveys, ACM, v. 41, n. 3, p. 1–58, 2009. Citations on pages 34, 37, and 53.

CHE, D.; SAFRAN, M.; PENG, Z. From Big Data to Big Data Mining: Challenges, Issues,
and Opportunities. In: International Conference on Database Systems for Advanced Appli-
cations. Wuhan, China: Springer, 2013. p. 1–15. Citation on page 25.

CHEN, Z.; KALASHNIKOV, D. V.; MEHROTRA, S. Exploiting Context Analysis for Com-
bining Multiple Entity Resolution Systems. In: International Conference on Management of
Data. Providence, Rhode Island, USA: ACM SIGMOD, 2009. p. 207–218. Citations on pages
38 and 49.

CULOTTA, A.; MCCALLUM, A. Joint deduplication of multiple record types in relational data.
In: International Conference on Information and Knowledge Management, Proceedings.
Bremen, Germany: ACM, 2005. p. 257–258. Citation on page 49.

DHEERU, D.; TANISKIDOU, E. K. UCI Machine Learning Repository. 2017. Available:
<http://archive.ics.uci.edu/ml>. Citation on page 58.

DITTRICH, J.-P.; SEEGER, B. GESS: A Scalable Similarity-Join Algorithm for Mining Large
Data Sets in High Dimensional Spaces. In: International Conference on Knowledge Discovery
and Data Mining. San Francisco, California, USA: ACM SIGKDD, 2001. p. 47–56. Citation
on page 42.

DOHNAL, V.; GENNARO, C.; ZEZULA, P. Similarity Join in Metric Spaces Using eD-Index.
In: International Conference on Database and Expert Systems Applications. Prague, Czech
Republic: Springer, 2003. p. 484–493. Citation on page 54.

DONG, X.; HALEVY, A.; MADHAVAN, J. Reference reconciliation in complex information
spaces. In: International Conference on Management of Data. Baltimore, Maryland, USA:
ACM SIGMOD, 2005. p. 85–96. Citation on page 49.

http://archive.ics.uci.edu/ml

Bibliography 89

DU, Q.; LI, X. A novel KNN join algorithms based on Hilbert R-tree in MapReduce. In:
International Conference on Computer Science and Network Technology. Dalian, China:
IEEE, 2013. p. 417–420. Citations on pages 40 and 41.

EMMOTT, A.; DAS, S.; DIETTERICH, T.; FERN, A.; WONG, W.-K. A Meta-Analysis of the
Anomaly Detection Problem. arXiv preprint, arXiv, p. 35, 2015. Available: <https://arxiv.org/
abs/1503.01158>. Citation on page 58.

ESTER, M.; KRIEGEL, H.-P.; SANDER, J.; XU, X. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: International Conference on Knowledge
Discovery and Data Mining. Portland, Oregon, USA: ACM, 1996. p. 226–231. Citations on
pages 34 and 49.

FINKEL, R. A.; BENTLEY, J. L. Quad Trees A Data Structure for Retrieval on Composite Keys.
Acta Informatica, Springer, v. 4, n. 1, p. 1–9, 1974. Citation on page 45.

FREDRIKSSON, K.; BRAITHWAITE, B. Quicker range- and k-NN joins in metric spaces.
Information Systems, Elsevier, v. 52, p. 189–204, 2015. Citation on page 54.

FU, Y.; AGGARWAL, C.; PARTHASARATHY, S.; TURAGA, D. S.; XIONG, H. REMIX:
Automated Exploration for Interactive Outlier Detection. In: International Conference on
Knowledge Discovery and Data Mining. Halifax, Nova Scotia, Canada: ACM SIGKDD, 2017.
p. 827–835. Citation on page 48.

GAO, J.; TAN, P.-N. Converting Output Scores From Outlier Detection Algorithms Into Proba-
bility Estimates. In: International Conference on Data Mining. Hong Kong: IEEE, 2006. p.
1–10. Citation on page 33.

GHOTING, A.; PARTHASARATHY, S.; OTEY, M. E. Fast Mining of Distance-based Outliers
in High-dimensional Datasets. Data Mining and Knowledge Discovery, Springer, v. 16, n. 3,
p. 349–364, 2008. Citation on page 38.

GIANNAKOPOULOU, S.; KARPATHIOTAKIS, M.; GAIDIOZ, B.; AILAMAKI, A. CleanM:
An Optimizable Query Language for Unified Scale-out Data Cleaning. In: VLDB Conference.
Munich, Germany: ACM, 2017. v. 10, n. 11, p. 1466–1477. Citations on pages 38 and 49.

GOLDSTEIN, M.; UCHIDA, S. A Comparative Evaluation of Unsupervised Anomaly Detection
Algorithms for Multivariate Data. PLoS ONE, PLOS, v. 11, n. 4, p. 1–31, 2016. Citations on
pages 26 and 55.

HAUTAMÄKI, V.; KÄRKKÄINEN, I.; FRÄNTI, P. Outlier Detection Using k-Nearest Neigh-
bour Graph. In: International Conference on Pattern Recognition. Cambridge, UK: IEEE,
2004. p. 430–433. Citation on page 46.

HAWKINS, D. M. Identification of Outliers. 1. ed. New York, USA: Springer, 1980. ISBN
978-94-015-3996-8,978-94-015-3994-4. Citations on pages 26 and 29.

HE, Z.; XU, X.; DENG, S. Discovering Cluster-based Local Outliers. Pattern Recognition
Letters, v. 24, n. 9-10, p. 1641–1650, 2003. Citation on page 34.

HOULE, M. E.; KRIEGEL, H.-P.; KRÖGER, P.; SCHUBERT, E.; ZIMEK, A. Can Shared-
Neighbor Distances Defeat the Curse of Dimensionality? In: International Conference on
Scientific and Statistical Database Management. Heidelberg, Germany: Springer, 2010. p.
482–500. Citation on page 48.

https://arxiv.org/abs/1503.01158
https://arxiv.org/abs/1503.01158

90 Bibliography

ISHIKAWA, Y.; TSUDA, K.; SADAKANE, K.; WANG, W.; QIN, J.; XIAO, C. Efficient Error-
Tolerant Query Autocompletion. In: VLDB Conference. Riva del Garda, Trento, Italy: ACM,
2013. v. 6, n. 6, p. 373–384. Citation on page 38.

JABEZ, J.; MUTHUKUMAR, B. Intrusion Detection System (ids): Anomaly Detection Using
Outlier Detection Approach. In: International Conference on Intelligent Computing, Com-
munication & Convergence. Bhubaneswar, Odisha, India: Elsevier, 2015. p. 338–346. Citation
on page 29.

JAUHRI, A.; MCDANEL, B.; CONNOR, C. Outlier Detection for Large Scale Manufacturing
Processes. In: Big Data 2015. Santa Clara, CA, USA: IEEE, 2015. p. 2771–2774. Citation on
page 29.

JIA, L.; ZHANG, L.; YU, G.; YOU, J.; DING, J.; LI, M. A Survey on Set Similarity Search and
Join. International Journal of Performability Engineering, RAMS Consultants, v. 14, n. 2, p.
245–258, 2018. Citation on page 40.

JIN, W.; TUNG, A. K. H.; HAN, J.; WANG, W. Ranking Outliers Using Symmetric Neighbor-
hood Relationship. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Singapore: Springer, 2006. p. 577–593. Citation on page 47.

KALASHNIKOV, D. V. Super-EGO: Fast Multi-dimensional Similarity Join. VLDB Journal,
ACM, v. 22, n. 4, p. 561–585, 2013. Citations on pages 43 and 54.

KALASHNIKOV, D. V.; MEHROTRA, S. Domain-independent data cleaning via analysis of
entity-relationship graph. Transactions on Database Systems, ACM, v. 31, n. 2, p. 716–767,
2006. Citation on page 49.

KALASHNIKOV, D. V.; PRABHAKAR, S. Fast Similarity Join for Multi-Dimensional Data.
Information Systems, Elsevier, v. 32, n. 1, p. 160–177, 2007. Citations on pages 43 and 49.

KELLER, F.; MÜLLER, E.; BÖHM, K. HiCS: High Contrast Subspaces for Density-based
Outlier Ranking. In: International Conference on Data Engineering. Washington, DC, USA:
IEEE, 2012. p. 1037–1048. Citation on page 48.

KIRNER, E.; SCHUBERT, E.; ZIMEK, A. Good and Bad Neighborhood Approximations
for Outlier Detection Ensembles. In: International Conference on Similarity Search and
Applications. Munich, Germany: Springer, 2017. p. 173–187. Citations on pages 26 and 47.

KNORR, E. M.; NG, R. T. Algorithms for Mining Distance-Based Outliers in Large Datasets.
In: VLDB Conference. New York, NY, USA: ACM, 1998. p. 392–403. Citations on pages 26,
37, 45, and 67.

KOUDAS, N.; SEVCIK, K. C. High-dimensional Similarity Joins: Algorithms and Performance
Evaluation. Transactions on Knowledge and Data Engineering, IEEE, v. 12, n. 1, p. 3–18,
2000. Citation on page 42.

KRIEGEL, H.-p.; KRÖGER, P.; SCHUBERT, E.; ZIMEK, A. LoOP: Local Outlier Probabilities.
In: Conference on Information and Knowledge Management. Hong Kong: ACM, 2009.
p. 1649. Citation on page 47.

KRIEGEL, H.-P.; KROGER, P.; SCHUBERT, E.; ZIMEK, A. Interpreting and Unifying Outlier
Scores. In: International Conference on Data Mining. Mesa, Arizona, USA: SIAM, 2011.
p. 12. Citation on page 48.

Bibliography 91

KRIEGEL, H.-P.; KRÖGER, P.; ZIMEK, A. Clustering high-dimensional data: A survey on
subspace clustering, pattern-based clustering and correlation clustering. Transactions on Knowl-
edge Discovery from Data, ACM, v. 3, n. 1, p. 1–58, 2009. Citation on page 47.

KRIEGEL, H.-P.; SCHUBERT, M.; ZIMEK, A. Angle-based Outlier Detection in High-
Dimensional Data. In: International Conference on Knowledge Discovery and Data Mining.
Las Vegas, Nevada, USA: ACM SIGKDD, 2008. p. 444–452. Citations on pages 35 and 47.

LEE, D.-H.; PARK, D.-J. An Efficient Incremental Nearest Neighbor Algorithm for Processing
k-Nearest Neighbor Queries with Visal and Semantic Predicates in Multimedia Information
Retrieval System. In: Asia Conference on Asia Information Retrieval Technology. Jeju Island,
Korea: Springer, 2005. p. 653–658. Citation on page 46.

LEE, H.; NG, R. T.; SHIM, K. Similarity Join Size Estimation using Locality Sensitive Hashing.
In: VLDB Conference. Seattle, Washington, USA: ACM, 2011. v. 4, n. 6, p. 338–349. Citation
on page 40.

LESOT, M.-J.; RIFQI, M.; BENHADDA, H. Similarity Measures for Binary and Numerical
Data: A Survey. International Journal of Knowledge Engineering and Soft Data Paradigms,
Inderscience, v. 1, n. 1, p. 63–84, 2009. Citations on pages 30 and 38.

LEYS, C.; KLEIN, O.; DOMINICY, Y.; LEY, C. Detecting Multivariate Outliers: Use a Robust
Variant of the Mahalanobis Distance. Journal of Experimental Social Psychology, Elsevier,
v. 74, p. 150–156, 2018. Citation on page 33.

LI, G.; HE, J.; DENG, D.; LI, J. Efficient Similarity Join and Search on Multi-Attribute Data.
In: International Conference on Management of Data. Melbourne, Victoria, Australia: ACM
SIGMOD, 2015. p. 1137–1151. Citation on page 38.

LI, S.; LEE, R.; LANG, S. D. Mining Distance-based Outliers from Categorical Data. In:
International Conference on Data Mining. Las Vegas, Nevada, USA: IEEE, 2007. p. 225–230.
Citation on page 37.

LI, S.; SHAO, M.; FU, Y. Multi-View Low-Rank Analysis with Applications to Outlier Detection.
Transactions on Knowledge Discovery from Data, ACM, v. 12, n. 3, p. 22, 2018. Citation on
page 41.

LIEBERMAN, M. D.; SANKARANARAYANAN, J.; SAMET, H. A Fast Similarity Join Algo-
rithm Using Graphics Processing Units. In: International Conference on Data Engineering.
Cancun, Mexico: IEEE, 2008. p. 1111–1120. Citation on page 42.

LIN, Y. S.; JIANG, J. Y.; LEE, S. J. A Similarity Measure for Text Classification and Clustering.
Transactions on Knowledge and Data Engineering, IEEE, v. 26, n. 7, p. 1575–1590, 2014.
Citation on page 38.

LLOYD, S. P. Least Squares Quantization in PCM. Transactions on Information Theory,
IEEE, v. 28, n. 2, p. 129–137, 1982. Citation on page 34.

LO, M.-L.; RAVISHANKAR, C. V. Spatial Hash-Joins. In: International Conference on
Management of Data. Montreal, Québec, Canada: ACM SIGMOD, 1996. v. 25, n. 2, p. 247–
258. Citation on page 41.

92 Bibliography

LU, W.; SHEN, Y.; CHEN, S.; OOI, B. C. Efficient Processing of k-Nearest Neighbor Joins using
MapReduce. In: VLDB Conference. Istanbul, Turkey: ACM, 2012. v. 5, n. 10, p. 1016–1027.
Citation on page 49.

LUO, C.; SHRIVASTAVA, A. Arrays of (locality-sensitive) Count Estimators (ACE): Anomaly
Detection on the Edge. In: International World Wide Web Conferences Steering Committee.
Lyon, France: WWW, 2018. p. 1439–1448. Citation on page 48.

LUO, W.; TAN, H.; MAO, H.; NI, L. M. Efficient Similarity Joins on Massive High-Dimensional
Datasets Using MapReduce. In: International Conference on Mobile Data Management.
Bengaluru, India: IEEE, 2012. p. 1–10. Citation on page 49.

MA, J.; PERKINS, S. Time-series Novelty Detection Using One-class Support Vector Machines.
In: International Joint Conference on Neural Networks. Portland, Oregon, USA: IEEE, 2004.
p. 1741–1745. Citation on page 33.

MANN, W.; AUGSTEN, N.; BOUROS, P. An Empirical Evaluation of Set Similarity Join
Techniques. In: VLDB Conference. New Delhi, India: ACM, 2016. v. 9, n. 9, p. 636–647.
Citation on page 38.

MCCAULEY, S.; MIKKELSEN, J. W.; PAGH, R. Set Similarity Search for Skewed Data.
In: Symposium on Principles of Database Systems. Houston, Texas, USA: ACM SIGMOD-
SIGACT-SIGAI, 2018. p. 63–74. Citation on page 41.

MORALES, G. D. F.; GIONIS, A. Streaming Similarity Self-Join. In: VLDB Conference. New
Delhi, India: ACM, 2016. v. 9, n. 10, p. 792–803. Citation on page 40.

ORAIR, G. H.; TEIXEIRA, C. H. C.; MEIRA, W.; WANG, Y.; PARTHASARATHY, S. Distance-
Based Outlier Detection: Consolidation and Renewed Bearing. In: VLDB Conference. Singa-
pore: ACM, 2010. v. 3, n. 1-2, p. 1469–1480. Citations on pages 26 and 47.

ORENSTEIN, J. An Algorithm for Computing the Overlay of k-Dimensional Spaces. In: Ad-
vances in Spatial Databases. Zurich, Switzerland: Springer, 1991. p. 381–400. Citation on
page 42.

PAPADIMITRIOU, S.; KITAGAWA, H.; GIBBONS, P. B.; FALOUTSOS, C. LOCI Fast Outlier
Detection. In: International Conference on Data Engineering. Bangalore, India: IEEE, 2003.
p. 315–326. Citations on pages 37, 45, and 67.

PHAM, N.; PAGH, R. A Near-linear Time Approximation Algorithm for Angle-based Outlier
Detection in High-dimensional Data. In: International Conference on Knowledge Discovery
and Data Mining. Beijing, China: ACM SGIKDD, 2012. p. 877–885. Citations on pages 36
and 47.

PICKANDS, J. Statistical Inference Using Extreme Order Statistics. The Annals of Statistics,
Institute of Mathematical Statistics, v. 3, n. 1, p. 119–131, 1975. Citation on page 33.

RAMASWAMY, S.; RASTOGI, R.; SHIM, K. Efficient Algorithms for Mining Outliers from
Large Data Sets. In: International Conference on Management of Data. Dallas, Texas, USA:
ACM SIGMOD, 2000. v. 29, n. 2, p. 427–438. Citation on page 46.

RAYANA, S. ODDS Library. 2016. Available: <http://odds.cs.stonybrook.edu>. Citations on
pages 58 and 77.

http://odds.cs.stonybrook.edu

Bibliography 93

SARMA, A. D.; HE, Y.; CHAUDHURI, S. ClusterJoin: A Similarity Joins Framework using
Map-Reduce. In: VLDB Conference. Hangzhou, China: ACM, 2014. v. 7, n. 12, p. 1059–1070.
Citation on page 41.

SATHE, S.; AGGARWAL, C. LODES: Local Density Meets Spectral Outlier Detection. In:
International Conference on Data Mining. Las Vegas, Nevada, USA: SIAM, 2016. p. 171–179.
Citation on page 33.

SCHUBERT, E.; ZIMEK, A.; KRIEGEL, H. P. Local Outlier Detection Reconsidered: A Gen-
eralized View on Locality with Applications to Spatial, Video, and Network Outlier Detection.
Data Mining and Knowledge Discovery, Springer, v. 28, n. 1, p. 190–237, 2014. Citations on
pages 37, 47, and 55.

SEIDL, T.; FRIES, S.; BODEN, B. MR-DSJ: Distance-Based Self-Join for Large-Scale Vector
Data Analysis with MapReduce. In: Datenbanksysteme für Business, Technologie und Web.
Magdeburg, Germany: Springer, 2013. p. 37–56. Citation on page 41.

SHAHID, N.; NAQVI, I. H.; QAISAR, S. B. Characteristics and Classification of Outlier
Detection Techniques for Wireless Sensor Networks in Harsh Environments: A Survey. Artificial
Intelligence Review, Springer, v. 43, p. 193–228, 2015. Citation on page 29.

SHIM, K.; SRIKANT, R.; AGRAWAL, R. High-dimensional Similarity Joins. Transactions on
Knowledge and Data Engineering, IEEE, v. 14, n. 1, p. 156–171, 2002. Citation on page 41.

SILVA, Y. N.; AREF, W. G.; ALI, M. H. The Similarity Join Database Operator. In: International
Conference on Data Engineering. Bangalore, India: IEEE, 2010. p. 892–903. Citation on
page 26.

SILVA, Y. N.; REED, J. M. Exploiting MapReduce-based Similarity Joins. In: International
Conference on Management of Data. Scottsdale, Arizona, USA: ACM, 2012. p. 693–696.
Citation on page 41.

STRIPHAS, T. Algorithmic Culture. European Journal of Cultural Studies, SAGE, v. 18,
n. 4-5, p. 395–412, 2015. Citation on page 25.

TRIPATHI, D.; LONE, T.; SHARMA, Y.; DWIVEDI, S. Credit Card Fraud Detection using
Local Outlier Factor. International Journal of Pure and Applied Mathematics, Academic
Publications, v. 118, n. 7, p. 229–234, 2018. Citation on page 29.

VRIES, T. D.; CHAWLA, S.; HOULE, M. E. Finding Local Anomalies in Very High-dimensional
Space. In: International Conference on Data Mining. Sydney, Australia: IEEE, 2010. p. 128–
137. Citation on page 48.

WANDELT, S.; STARLINGER, J.; BUX, M.; LESER, U. RCSI: Scalable Similarity Search in
Thousand(s) of Genomes. In: VLDB Conference. Riva del Garda, Trento, Italy: [s.n.], 2013.
v. 6, n. 13, p. 1534–1545. Citation on page 38.

WANDELT, S.; WANG, J.; LESER, U.; DENG, D.; GERDJIKOV, S.; MISHRA, S.; MITANKIN,
P.; PATIL, M.; SIRAGUSA, E.; TISKIN, A.; WANG, W. State-of-the-art in string similarity
search and join. In: International Conference on Management of Data. Snowbird, Utah, USA:
ACM, 2014. v. 43, n. 1, p. 64–76. Citation on page 49.

94 Bibliography

WANG, G.; XIAO, C.; LIN, X.; WANG, W.; YU, J. X. Efficient Similarity Joins for near-
Duplicate Detection. Transactions on Database Systems, ACM, v. 36, n. 3, p. 41, 2011. Cita-
tions on pages 38 and 49.

WEI, L.; QIAN, W.; ZHOU, A.; JIN, W. HOT: Hypergraph-based Outlier Test for Categorical
Data. In: Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.
Seoul, South Korea: Springer, 2003. p. 399–410. Citation on page 37.

WU, S.; WANG, S. Information-theoretic Outlier Detection for Large-scale Categorical Data.
Transactions on Knowledge and Data Engineering, IEEE, v. 25, n. 3, p. 589–602, 2013.
Citation on page 33.

XIA, C.; LU, H.; OOI, B. C.; HU, J. GORDER: An Efficient Method for KNN Join Processing.
In: VLDB Conference. Toronto, Canada: ACM, 2004. p. 756–767. Citations on pages 40, 42,
and 49.

YU, M.; LI, G.; DENG, D.; FENG, J. String similarity search and join: a survey. Frontiers of
Computer Science, Springer, v. 10, n. 3, p. 399–417, 2016. Citation on page 40.

YU, T.; WANG, X.; SHAMI, A. Recursive Principal Component Analysis-Based Data Outlier
Detection and Sensor Data Aggregation in IoT Systems. Internet of Things Journal, IEEE,
v. 4, n. 6, p. 2207–2216, 2017. Citation on page 48.

ZHANG, K.; HUTTER, M.; JIN, H. A New Local Distance-based Outlier Detection Approach
for Scattered Real-world Data. In: Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Bangkok, Thailand: Springer, 2009. p. 813–822. Citation on page 47.

ZHAO, Y.; NASRULLAH, Z.; LI, Z. PyOD: A Python Toolbox for Scalable Outlier Detection.
arXiv preprint, 2019. Available: <https://arxiv.org/abs/1901.01588>. Citation on page 48.

ZIMEK, A.; SCHUBERT, E.; KRIEGEL, H. P. A Survey on Unsupervised Outlier Detection in
High-Dimensional Numerical Data. Statistical Analysis and Data Mining, Wiley, v. 5, n. 5, p.
363–387, 2012. Citations on pages 47 and 48.

https://arxiv.org/abs/1901.01588

95

APPENDIX

A
BEST PARAMETER VALUES FOR ODSSJ

Dataset ODSSJ

parkinson ε = 0.7482, τ = 1, t = 10
hepatitis ε = 0.5190, τ = 1, t = 10

glass ε = 0.0758, τ = 4, t = 10
ecoli ε = 0.1869, τ = 7, t = 10

ionosphere ε = 0.6266, τ = 2, t = 90
breastw ε = 0.2346, τ = 7, t = 10

pima ε = 0.5410, τ = 54, t = 10
thyroid ε = 0.0001, τ = 1, t = 10

satimage2 ε = 0.7657, τ = 34, t = 100
mammography ε = 0.0130, τ = 65, t = 100

shuttle ε = 0.1266, τ = 1230, t = 100
http ε = 0.2270, τ = 1300, t = 100

Table 8 – ODSSJ ’s best parameters found for each dataset.

97

APPENDIX

B
BEST PARAMETER VALUES FOR

HYSORTOD

Dataset ∗HySortOD HySortOD (Best)

parkinson b = 5 b = 3
hepatitis b = 5 b = 2

glass b = 5 b = 28
ecoli b = 5 b = 4

ionosphere b = 5 b = 4
breastw b = 5 b = 6

pima b = 5 b = 7
thyroid b = 5 b = 69

satimage2 b = 5 b = 3
mammography b = 5 b = 39

shuttle b = 5 b = 11
http b = 5 b = 8

∗HySortOD use a fixed parameter value by default.

Table 9 – HySortOD ’s best parameters found for each dataset.

99

APPENDIX

C
BEST PARAMETER VALUES FOR THE

STATE-OF-THE-ART ALGORITHMS

Dataset kNN-Out DB-Out LOF ODIN ∗HilOut ∗aLOCI ∗∗ABOD

parkinson k = 4 d = 20 k = 6 k = 2 k = 2,h = 11 n = 1,g = 1 -
hepatitis k = 11 d = 29 k = 10 k = 9 k = 2,h = 10 n = 1,g = 1 -

glass k = 1 d = 1 k = 2 k = 12 k = 10,h = 9 n = 120,g = 2 -
ecoli k = 50 d = 1 k = 1 k = 200 k = 100,h = 31 n = 50,g = 1 -

ionosphere k = 4 d = 2 k = 6 k = 16 k = 7,h = 30 n = 1,g = 1 -
breastw k = 2 d = 6 k = 1 k = 2 k = 10,h = 22 n = 3,g = 4 -

pima k = 413 d = 134 k = 408 k = 219 k = 450,h = 19 n = 70,g = 1 -
thyroid k = 3 d = 30 k = 100 k = 30 k = 9,h = 22 n = 17,g = 1 -

satimage2 k = 30 d = 100 k = 150 k = 1200 k = 64,h = 2 n = 1,g = 1 -
mammography k = 1590 d = 3 k = 185 k = 1750 k = 12,h = 3 n = 3,g = 1 -

shuttle k = 2600 d = 2500 k = 3400 k = 10000 k = 7,h = 2 n = 1700,g = 1 -
http k = 3000 d = 2600 k = 2300 k = 5000 - - -

∗Parameter values for HilOut and aLOCI are missing because they exceeded the main memory capacity.
∗∗ABOD is a parameter-free algorithm.

Table 10 – Related work’s best parameters found for each dataset.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Context
	Problem and Motivation
	Contributions
	Organization

	Fundamental Concepts
	Outlier Detection
	Clustering-based Outlier Detection
	Angle-based Outlier Detection
	Neighborhood-based Outlier Detection

	Similarity Join
	Index-based Similarity Join
	Hash-based Similarity Join
	Sort-based Similarity Join

	Final Considerations

	Related Work
	Outlier Detection
	Similarity Join in Data Mining
	Final Considerations

	Outlier Detection with Similarity Self-Join
	Outlier Detection meets Similarity Self-Join
	Problem Statement
	The ODSSJ Algorithm
	Experimental Setup
	Results and Discussion
	Evaluation of Effectiveness
	Evaluation of Efficiency
	Statistical Evaluation

	Conclusion

	Outlier Detection with Sorted Hypercubes
	Problem Statement
	The HySortOD Algorithm
	Creating Hypercubes
	Sorting Hypercubes
	Neighborhood Search
	Construction
	Search

	Outlierness Score
	Proposed Algorithm
	Time Complexity

	Experimental Setup
	Results and Discussion
	Effectiveness Evaluation
	Efficiency Evaluation
	Scalability Evaluation
	Parametrization
	Case Study: Breast Cancer Detection

	Conclusion

	Conclusion
	Bibliography
	Best parameter values for ODSSJ
	Best parameter values for HySortOD
	Best parameter values for the state-of-the-art algorithms

