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RESUMO

CHINO, D. Y. T. Tratando o problema de extração de características, mineração e recupe-
ração de dados complexos: aplicações em situações de emergência e medicina. 2019. 142
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2019.

O tamanho e complexidade dos dados gerados por mídias sociais e imagens médicas tem crescido
rapidamente. Diferentemente de dados tradicionais, não é possível lidar com imagens dentro
de seus domínios originais. Aumentando assim os desafios para a descoberta de conhecimento.
Técnicas de processamento de imagens podem auxiliar em diversas tarefas de tomada de decisão.
Imagens provenientes de crowdsourcing, como imagens de mídias sociais, podem ser usadas
para aumentar a velocidade de resposta de autoridades em situações de emergência. Imagens
retiradas da área médica podem auxiliar médicos em suas atividades diárias, como no diagnostico
de pacientes. Sistemas de recuperação de imagens baseada em conteúdo (CBIR – do inglês
Content-Based Image Retrieval) são capazes de recuperar as imagens mais similares, sendo
uma etapa importante para a descoberta de conhecimento. Entretanto, em alguns domínios de
imagens, apenas partes da imagem são relevantes para o problema de recuperação.

Essa pesquisa de doutorado se baseia na seguinte hipótese: a integração de métodos de seg-
mentação de imagens em sistemas CBIR através de características locais aumenta a precisão na
recuperação de imagens. As propostas dessa pesquisa de doutorado foram avaliadas em dois
domínios de imagem: detecção de fogo em imagens de situações de emergência urbana e ima-
gens de úlcera cutânea crônica. As principais contribuições dessa pesquisa de doutorado podem
ser divididas em quatro partes. Primeiro foi proposto o BoWFire, um método para detectar e
segmentar fogo em situações de emergência. Foi explorada a combinação das características de
cor e textura através de superpixeis para a detecção de fogo em imagens estáticas. A segunda
contribuição foi o método BoSS, que explora o uso de superpixeis para extrair características
locais. O método BoSS é uma abordagem de Bag-of-Visual-Words (BoVW) baseada em assi-
naturas visuais. Para integrar os métodos de segmentação com sistemas CBIR, foi proposto
o framework ICARUS para a recuperação de imagens de úlcera cutânea. O ICARUS integra
métodos se segmentação baseados em superpixel com BoVW. Também foi proposto o framework

ASURA para a segmentação de úlceras cutâneas baseado em técnicas de deep learning. Além
de segmentar as úlceras cutâneas, o ASURA é capaz de estimar a área da lesão em unidades de
medida reais. Para tanto, o ASURA analisa os objetos presentes nas imagens. Os experimentos
mostraram que as propostas dessa pesquisa de doutorado alcançaram uma melhor precisão ao
recuperar as imagens mais similares em comparação às abordagens existentes na literatura.

Palavras-chave: Recuperação de Imagens Baseada em Conteúdo, CBIR, Segmentação de



Imagens, Bag-of-Visual-Words, Detecção de Fogo, Úlceras Cutâneas Crônicas.



ABSTRACT

CHINO, D. Y. T. Managing feature extraction, mining and retrieval of complex data: ap-
plications in emergency situations and medicine. 2019. 142 p. Tese (Doutorado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

The size and complexity of the data generated by social media and medical images has increased
in a fast pace. Unlike traditional data, images cannot be dealt with in its original domain, leading
to rising challenges in knowledge discovery tasks. The image analysis can aid on several decision
making tasks. Crowdsourcing images such as social media images can be used to increase the
speed of authorities to take action in emergency situations. Images taken from the medical
domain can support on daily activities of physicians to diagnose their patients. Content-Based
Image Retrieval (CBIR) systems are built to retrieve similar images, being an important step for
the knowledge discovery. However, in some image domains, only parts of the image are relevant
to the problem.

This PhD research is based on the following hypothesis: the integration of image segmentation
methods with local feature CBIR system improves the precision of the retrieved images. We
evaluate our proposals in two images domain: fire detection on urban emergency situations
and chronic skin ulcer images. The main contributions of this PhD research can be divided
in four parts. First, we propose BoWFire to detect and segment fire in emergency situations.
We explore the combination of color and texture features through superpixels to detect fire
in still images. Then, we explore the use of superpixels to extract local features with BoSS.
BoSS is a Bag-of-Visual-Words (BoVW) approach based on visual signatures. To integrate
segmentation methods with CBIR, we propose ICARUS, a skin ulcer image retrieval framework.
ICARUS integrate segmentations methods based on superpixels with BoVW. We also propose
ASURA, a deep learning segmentation method for skin ulcer lesions. Besides segmenting skin
ulcer lesions, ASURA is able to estimate the area of the lesion in real-world units by analyzing
real-world objects present in the images. Our experiments show that our proposals achieved
a better precision while retrieving the most similar images in comparison with the existing
approaches.

Keywords: Content-Based Image Retrieval, CBIR, Image Segmentation, Bag-of-Visual-Words,
Fire Detection, Skin Ulcer.
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CHAPTER

1
INTRODUCTION

Nowadays, data generation has increased in size and complexity in a fast pace. The number of
image data generated by social media (ORNAGER; LUND, 2018) and medical systems (ANWAR
et al., 2018) can be counted to billions. This can present a great challenging for computational
systems, such as information retrieval systems. Experts can analyze similar situations and use
them to aid in decision making tasks. For example, crowdsourcing images such as social media
images can be used to aid authorities in emergency situations (BEDO et al., 2015a; CAZZOLATO
et al., 2016; SHARMA et al., 2017), while medical images can support physicians in the diagnosis
of diseases (Oliveira et al., 2017; GHOLAMI et al., 2018; CAZZOLATO et al., 2019). One
way to deal with similarity queries in images is through Content-Based Image Retrieval (CBIR)
systems (LIU et al., 2007; ZHENG; YANG; TIAN, 2018).

1.1 Motivation

When searching for similar images, the human perception is able to describe the image in
details (ALZU’BI; AMIRA; RAMZAN, 2015). Humans can properly describe the objects of an
image and interpret their meaning and interactions, e.g., the location of a fire in an emergency
situation, or the severity of a wound in a patient image. On the other hand, computer systems see
digital images as a set of numerical values in a matrix with no semantic. Usually, this type of
data is called complex data. The distance between the richness of details of the human perception
and the machine view of digital images is called the “semantic gap” (HARE et al., 2006).

To overcame this distance, many proposal tries to describe the visual properties of the
images through numerical features (DESELAERS; KEYSERS; NEY, 2008). These features
can describe visual properties of the image as a whole (TORRES; FALCAO, 2006) or they can
describe each region of the image separately (SIVIC; ZISSERMAN, 2003; SANTOS et al.,
2017). However, sometimes only a part of the image contain relevant information regarding the
semantic of the problem (PEREYRA et al., 2014; BLANCO et al., 2016).
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In this PhD research, we aim at answering the following research question: “How can

we improve image retrieval systems when only parts of the image are relevant to the problem?”.
The main challenge towards solving this problem is to correctly detect the relevant regions of the
image and to find the best way to extract features to represent these regions. One way of dealing
with these tasks is by implying segmentation algorithms and using local features.

1.2 Problem Statement

As previously discussed, the main goal of this PhD research was to propose a method able to
retrieve similar images based only on the relevant parts of the image. Our proposal aims at
integrating segmentations methods to discover the relevant regions and local features retrieval
systems. On this context, we propose the following thesis:

Thesis. The integration of segmentation methods with local feature extraction improves the
precision of similarity-based image retrieval tasks, consequently lowering the semantic gap
between the computer knowledge representations and human perception.

In order to support the stated thesis, this PhD research focused on analyzing two image
domains: fire emergency situations and chronic skin ulcers in lower limbs.

1.2.1 Emergency Fire Events

An intense flow of information is gathered in a short period of time in large-scale events such
as the Brazilian street carnival, the FIFA Football World Cup and the Olympic Games. When
emergency situations occur in such contexts, public authorities must be able to provide fast
and accurate responses to emergency situations. Cameras embedded in mobile devices can
provide visual information of wider spaces, which can be used by authorities to better understand
the situation (CHEN et al., 2006). Dealing with such amount of information in real-time is a
challenging task.

On this context, the RESCUER1 Project developed an emergency system to support Crisis
Control Committees (CCC) during a crisis situation. The system developed in the RESCUER
Project allows witnesses, victims or rescue staff, present at the emergency location, to send
images and videos of the incident to a crowdsourcing mobile framework. Part of this framework
involved an automated data analysis solution to detect fire regions in images. The early detection
of fire, smoke and explosions can assist rescue forces in preventing further risks to human life,
thus reducing financial and patrimonial losses (HUANG; CHENG; CHIU, 2013).

1 Project FP7-ICT-2013-EU-Brazil - "RESCUER - Reliable and Smart Crowdsourcing Solution for
Emergency and Crisis Management" – <http://www.rescuer-project.org/>

http://www.rescuer-project.org/
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To the best of our knowledge, the fire detection methods on the literature are focused
on video data (CHEN; WU; CHIOU, 2004; CELIK; DEMIREL, 2009; ROSSI; AKHLOUFI;
TISON, 2011; RUDZ et al., 2013). They explore the temporal component of videos to improve
the fire detection. However, when the temporal component is not available (still images), the
presence of false-positives increases. In this PhD research we aimed at fire detection methods on
still images while avoiding the presence of false-positives.

1.2.2 Chronic Skin Ulcer

On this PhD research, we also explored images of chronic skin ulcers in lower limbs. Acute
wounds have a well understood healing steps, however, in chronic skin ulcers these steps are
disrupted (MORTON; PHILLIPS, 2016). These lesions may be caused by different reasons,
such as poor blood circulation in lower extremities, injuries, infections, tumors and other skin
conditions (DORILEO et al., 2010; MORTON; PHILLIPS, 2016). To diagnose skin ulcers,
physicians observe visual aspects of the wound, such as location, size, color, texture, and
shape(MORTON; PHILLIPS, 2016).

One way the physicians follow-up the healing rate of chronic skin ulcers is by regularly
taking their photographs. By making this temporal comparison, the physician can diagnose if
the wound is healing, e.g., the area of the lesion decreased with time. This photographs can be
taken by digital cameras or mobile devices. In this context, there is a need to create applications
that can aid physicians on the follow-up of the wounds (EVANS; LOBER, 2017; NAVARRO;
ESCUDERO-VINOLO; BESCOS, 2018) Among the tasks needed on this applications are the
detection of the lesion region/area (DORILEO et al., 2010; GHOLAMI et al., 2018) and the
retrieval of similar images (BEDO et al., 2015b; BLANCO et al., 2016).

1.3 Contributions
This PhD research resulted in four main contributions, each of them addressing one of the
research problems previously listed. The contributions are summarized as follows:

1. The BoWFire method: BoWFire is a method to detect and segment fire in still images of
fire emergency situations in urban areas. Since the majority of fire detection methods are
based on videos, they fail to detect the fire when we remove the temporal aspect of the
data. BoWFire overcame this problem by using color and texture features of superpixels.

2. The BoSS method: BoSS is a CBIR system based on Bag-of-Visual-Words (BoVW).
BoSS dismisses the need to create a visual word dictionary beforehand. BoSS extracts local
histograms of superpixels, instead of using a visual word, BoSS maps the local histogram
into a visual signature. The visual signature is described by the dominant colors of the
superpixels. Another aspect of BoSS, is that it uses fractal theory to automatically discover
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the dominant colors. We also explored the combination of color and texture features to
map the visual signatures.

3. The ICARUS framework: ICARUS is a CBIR system for skin ulcer images. We applied
the skin ulcer segmentation methods in the feature extraction of a CBIR. By extracting
only the features from the relevant regions of the image, we were able to increase the
precision of the retrieved images.

4. The ASURA framework: ASURA is a framework to assess the area in real-world units
(e.g. cm2) of skin ulcer lesions. ASURA takes advantage of deep learning techniques
to detect and segment the lesion and the measurement tool. A later step, process the
segmented measurement tool to detect the ticks and estimate the relationship between
number of pixels and a real-world unit.

1.4 Summary
The remainder of this PhD thesis is organized as follows. We give a brief overview of the relevant
literature and the background concepts in Chapter 2. In Chapter 3 we explore the color and
texture aspects of superpixels to detect and segment fire in emergency situations through the
BoWFire method. In Chapter 4 we explore the use of superpixels in BoVW approaches and
propose BoSS, a signature based BoVW. In Chapter 5 we introduce ICARUS, a CBIR system
for skin ulcer images. In Chapter 6 we propose ASURA to segment and measure the lesion
areas of chronic skin ulcers. And in Chapter 7, we present the conclusions and suggestions of
future work. We also present VolTime in Appendix A, an analysis of the user activities based on
timestamps and event volume.
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CHAPTER

2
BACKGROUND AND RELATED WORKS

In this Chapter we briefly present the main concepts needed for the understanding of this PhD
research. In Section 2.1, we provide an introduction to Content-Based Image Retrieval (CBIR)
systems. In Section 2.2, we discuss the use of local feature through the Bag-of-Visual-Words
(BoVW) approach. An overview of image segmentation is given in Section 2.3. We also show
how the introduction of deep learning techniques can be used on these tasks in Section 2.4.
Section 2.5 presents the state-of-the-art methods in the fire image and skin ulcer domains.

2.1 Content-Based Image Retrieval Systems

When dealing with complex data, such as images, the analysis is not made on the original domain
of the data. Traditionally, the complex data is analyzed using attributes/features that describe the
visual features of the image. There are two approaches for image retrieval. The first approach is
the Tag-Based Image Retrieval (TBIR). TBIR is based on the context of the image, text attributes
describing scenes or objects of the image, as tags and labels (WU et al., 2012). Usually such
descriptions are manually made by a user or are automatically extracted from text informations
near the image as well as the content of the image itself. The latter approach is the CBIR.
CBIR is based on the content of the image, where the images are described by their intrinsic
characteristics (WELTER et al., 2012; DESERNO; ANTANI; LONG, 2009; NEVEOL et al.,
2009; VARGHESE et al., 2014; SHRIVASTAVA; TYAGI, 2014). Usually, these characteristics
are obtained automatically. On this PhD research, we will focus on the CBIR approach.

A CBIR system needs three modules to retrieve information (TORRES; FALCAO, 2006):
data storage (knowledge database), feature extraction, query processing. Figure 1 shows a generic
CBIR architecture. The CBIR system receives an image as input. The image passes through the
feature extraction module where its visual features are extracted. The image is now represented
by a set of numerical attributes which denotes visual properties. These numerical attributes are
known as feature vectors. The query processing module uses the feature vectors to access the
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Figure 1 – CBIR system architecture.
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knowledge database and return the most similar images. To avoid excessive processing, CBIR
systems can storage the feature vectors of the knowledge database in a specific database (Feature
Database). This way, the CBIR system extracts the features from the images and store them in
the knowledge database only once. Afterwards, the feature vectors are used in the place of the
images for indexing, querying and retrieval, making the process more efficient.

2.1.1 Feature Extraction

In order for a CBIR system to retrieve the images, they should be represented by a numerical
representation that captures visual properties of the image. This numerical representation is
obtained through feature extraction methods.

As mentioned before, the attributes extracted from the images are placed in feature
vectors. The feature vectors extracted from a given image correspond to numerical measurements
that describe the image’s visual properties. Such properties are able to discover connections
between pixels of the whole image (global) (TORRES; FALCAO, 2006), or of small regions of
the image (local) (SHABAN et al., 2013). Low-level descriptors (DESELAERS; KEYSERS;
NEY, 2008), as those based on color, texture and shape, are frequently used.

The color distribution is one of the most basic visual property of an image. One of the
most common methods is the color histogram (HAFNER et al., 1995), which extracts the color
distribution properties of the image. For a monochromatic image, the histogram describes the
frequency of the grayscale values. On the other hand, the histogram of a color image (RGB
images) can be the concatenation of the histogram of each color channel. Figure 2 shows the
histogram of an RGB image. Through the color histogram, it is also possible to compute the
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color moments (DATTA et al., 2008) to describe the probability distribution of the image colors.
A variation of the color histogram is the Border/Interior pixel Classification (BIC) (STEHLING;
NASCIMENTO; FALCAO, 2002), which computes two histograms, one for the border pixels
and another one for the interior pixels.

Figure 2 – Histogram extraction on a RGB image.
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There are other color extraction methods, such as the methods presented in the MPEG-7
standard (SIKORA, 2001; KIM et al., 2011). The Dominant Color method clusters the colors
in regions into a small number of representative colors. The colors are represented by their
value, their percentage in the image and their variance. The Color Structure method captures
the spatial distribution of the colors using a sliding window to compute a histogram. For each
step, Color Structure computes the frequency of the colors in each position of the sliding
window. The Scalable Color method uses the HSV color space to compute the histogram and
a Haar wavelet transformation. The Color Layout method divides the image in rectangular
regions and calculate the mean value of the color in each region. Then, it uses a discrete cosine
transformation to describe the space distribution of the colors. There is also combinations of
MPEG-7 extractors. The Dominant Color Structure Descriptor (WONG; PO; CHEUNG, 2007)
combines the Dominant Color and the Color Structure methods. The Weighted Dominant Color
Descriptor (TALIB et al., 2013) weights the dominant colors according to their contribution on
the edge of objects.

Besides color, texture is a common feature in image processing. It is important be-
cause, together with color, it describes the surface of naturally-occurring phenomena. These
objects’ textures can be described, for example, by the roughness and homogeneity of their sur-
faces (SAIPULLAH; KIM, 2012). Unlike color extractors, which can be computed by analyzing
only one pixel, texture patterns occurs along a region of the image. One way to capture texture
features is through statistical measures, such as mean, standard deviation and entropy of the
pixel values (GONZALEZ; WOODS, 2008). These statistical measures can also be computed
from the co-occurrence matrix of the image as in the Haralick feature extractor (HARALICK;
SHANMUGAM; DINSTEIN, 1973).

One of the most used texture features is the LBP (OJALA; PIETIKAINEN; MAENPAA,
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Figure 3 – The Local Binary Patterns (LBP) process to code the textures.
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2002; GUO; ZHANG; ZHANG, 2010). The LBP method codes the texture according to the
region of the image. LBP defines a neighborhood region for each pixel and compares the value
of each neighbor pixel with the central pixel. Neighbors with a value greater than the central
pixel are coded with the value 1, otherwise, they are coded with value 0. At the end of the
process, LBP creates a code by looking clockwise the values of the neighbors. Figure 3 shows
the steps LBP uses to code the texture. There are some variations of the LBP, as the Centralized
Binary Pattern (FU; WEI, 2008), the Completed LBP (GUO; ZHANG; ZHANG, 2010), the
Local Ternary Pattern (LIAO, 2010) and the Structural Difference Histogram Representation
(FENG et al., 2017).

Shape information is considered the closest approximation to the human perception of
an object’s image (YANG et al., 2008). Feature extractors of this depend on a pre-processing
step that segments and detects the border of the objects. The shape extractors describes visual
properties of the objects like translation, rotation, and scale invariance (ZHANG; LU, 2004;
KAZMI; YOU; ZHANG, 2013). There are various methods to extract shape features, as the
Zernike moments (HOSNY, 2008), Fourier descriptors (CHEN; YEH; YIN, 2009) and the
contour salience descriptors (TORRES; FALCAO, 2007).

Local features extractors summarize the visual properties of certain regions of the
image (TUYTELAARS; MIKOLAJCZYK, 2008). Ideally, the local features extracted from
the regions may have some semantic meaning, such as edges or small objects (LOWE, 1999).
Local feature extraction can be used on object/scene detection (ONEATA et al., 2014) and
tracking (BUONCOMPAGNI et al., 2015). The features are extract in the neighborhood of key
points. The key point detection can be made in various way, one way is by using a regular grid to
divide the image (TUYTELAARS; SCHMID, 2007). It is also possible to use superpixels as a
key point detection (JUNEJA et al., 2013; CHINO et al., 2018). Another approach uses salient
points (edges and corners) to detect the key points. One of the most used local feature extractor is
the Scale-Invariant Feature Transform (SIFT) (LOWE, 1999), which uses difference of gaussians
to detect the key points. A similar method is the Speeded Up Robust Features (SURF) (BAY et

al., 2008), which detects key points by using of Hessian matrix approximations.
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2.1.2 Similarity Measures

When processing a query, the CBIR system must retrieve images with similar visual properties.
To do so, the CBIR systems must have a way to compare the query image with the images in
the knowledge database. One way to compare two images is by calculating a distance function
between their feature vectors. The distance function measures the dissimilarity between two
objects. That is, similar (or close) objects have a smaller distance, while different objects have a
larger distance.

The most common distance functions are the ones from the Minkowski family (Lp) (WIL-
SON; MARTINEZ, 1997), as the Euclidian (L2) or the Manhattan (L1) distances. Another dis-
tance function is the Cosine Angle distance (QIAN et al., 2004), which calculates the inner
product between to feature vectors. There are also distance functions based on set theory, as
the Jaccard index (ARASU; GANTI; KAUSHIK, 2006) and the distance of Hausdorff (ZHAO;
SHI; DENG, 2005). The latter three distance functions are very useful to compare the similarity
between text documents (BRODER, 1997).

2.1.3 Similarity Queries

On the final step of a CBIR system, the query processing module must return the most similar
images. The query processing module uses the similarity measure (distance functions) to de-
termine the most similar images. Usually, there are two similarity queries: the range query and
the k-Nearest Neighbors (k-NN). Given a query image and a radius ξ , the range query returns
all the images which the distances to the query image are within ξ . On the other hand, given
a query image and an integer k, the k-NN query returns the top k closest images to the query
image. Figure 4 shows examples of both range and k-NN queries.

Figure 4 – Visual representation of both similarities queries on a 2D space. The query image is represented
by a star shape and the retrieved images are represented by the blue circles.

ξ

(a) Range query with a given radius ξ , (b) k-NN query for k = 5
Source: Elaborated by the author.
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2.2 CBIR Using Local Features
Unlike global feature extractors, local feature extractors get more than one feature vector from
an image. This way, it is not possible to compare two images using the similarity measures
presented in the previous Section, because the number of elements to be compare may differ,
as well as their positioning. Local features can be represented in various way: BoVW (SIVIC;
ZISSERMAN, 2003), fisher vector representation (PERRONNIN et al., 2010) or vector locally
aggregated descriptors (JEGOU et al., 2012). On this PhD research we will be focusing on
BoVW approaches.

2.2.1 Bag-of-Visual-Words

The BoVW method (SIVIC; ZISSERMAN, 2003) is inspired on the Bag-of-Words (BoW) (JOACHIMS,
1998) approach developed to mine information from long texts. The BoW is a text representation
through a histogram of words. Similarly, the BoVW represents the image as a histogram of
visual words. Thus, the local features are summarized in a non-ordered way into a single feature
vector. The BoVW can be used in various applications: similar fragment retrieval in anima-
tions (SUN; KISE; CHAMPEIL, 2012); classification of histopathological images (KUMAR
et al., 2017); handwritten signature verification (OKAWA, 2018); and building detection in
pictures (RADENOVIC et al., 2018).

Figure 5 – BoVW approach steps: (i) Points of interest detection; (ii) Local feature extraction from the
points of interest; (iii) Local feature mapping into visual words through a visual dictionary;
(iv) Visual word histogram.
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On a BoVW approach the local features are mapped into visual words using a visual
dictionary. Figure 5 shows the process to represent an image using a BoVW approach. The steps
(i) and (ii) are the ones discussed on the previous Sections. During step (iii), the local features
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are mapped into visual words using a visual dictionary. Usually, the visual dictionary are created
using the local features extracted from the knowledge database. One way to create the visual
dictionary is by clustering the local features from the knowledge database (SIVIC; ZISSERMAN,
2003). By clustering, the local features are partitioned into regions with similar visual properties.
The visual dictionary is then defined by the clusters’ representatives. This approach of creating
the visual dictionary is also known as Cluster-Based Bag-of-Visual-Words (C-BoVW). It is also
possible to create a visual dictionary by random sampling local features from the knowledge
database (SANTOS et al., 2010). The random sampling allows a faster building time without
losing too much information. One important aspect of the visual dictionary is its size (number
of visual words). A small visual dictionary has little discriminative power, while a large visual
dictionaries lacks generalization. The size of the dictionary is strongly related to the application,
varying between 500 (PAPADOPOULOS et al., 2011) to 10,000 (SIVIC; ZISSERMAN, 2003)
visual words.

Figure 6 – Mapping local feature v into visual word.

v

B

A

D

C E

Source: Elaborated by the author.

The final step – step (iv) – is the computation of the visual words histogram. To compute
the histogram, the local features must be assigned to the visual words in the visual dictionary.
The local features can be assigned using three approaches: hard, multiple and soft assignment.
On the hard assignment, each local feature is assigned to the closest visual word in the visual
dictionary (SIVIC; ZISSERMAN, 2003). Therefore, each local feature has the same weight
on the visual word histogram. On the example shown in Figure 6, the local feature v would be
assigned to the visual word C. On the multiple assignment (JEGOU; HARZALLAH; SCHMID,
2007), each local feature can be assigned to more than one visual word. Each visual word
assigned to the local feature count as one on the visual word histogram. In Figure 6, the local
feature v would be assigned to B, C and D if we considered up to three visual words. Finally, on
the soft assignment (JIANG; NGO; YANG, 2007), each local feature can also be assigned to
multiple visual words. However, the visual words are weighted according to their distance on the
visual word histogram. On the example shown in Figure 6, the visual word C would weight more
than the visual word B and D.

There are also variations of the BoVW approach that consider the spatial distribution
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of the visual words (PENATTI; VALLE; TORRES, 2011). Avni et al. (AVNI et al., 2011)
incorporate the spatial position of the visual words on the histogram. Pedrosa et al. (PEDROSA
et al., 2014) introduced the n-grams concept, which represents the co-occurrence of spatially
near visual words. On this PhD research we will not be exploring the spatial distribution of local
features, but we will explore BoVW approaches that dismiss the need to build a visual dictionary
beforehand.

2.2.2 Signature-Based Bag-of-Visual-Words

Previously, we described a C-BoVW visual dictionary, which is created by using a clustering
technique over a set of local features. However, despite the strategies adopted to speed up
the clustering process (PHILBIN et al., 2007; DIMITROVSKI et al., 2016), determining the
visual words can still take a lot of processing time. One way to overcome this problem is using
Signature-Based Bag-of-Visual-Words (S-BoVW) approaches, which use map functions to
represent the local features in visual signatures (VIDAL et al., 2012; SANTOS, 2016).

Visual signatures summarize information directly from the local feature, eliminating the
need of clustering techniques to create a dictionary. One method of this approach is the Sorted
Dominant Local Color (SDLC) (SANTOS et al., 2015), which extracts visual signatures based
only on the image’s color. In this method, the image is separated into rectangular partitions at
fixed positions, where each labeled partition is then separated into squared blocks. By doing this,
the method generates a signature of each block by selecting the most frequent color values up to
a threshold. Later, the signature of each block is assigned to its unique partition label. The main
limitation of SDLC is the requirement of multiple parameters, such as the number of partitions,
blocks and the threshold value.

Following, the Sorted Dominant Local Color and Texture (SDLCT) (SANTOS et al.,
2017) is an extension of the SDLC by including textural properties of the images. In this method,
not only color signatures are generated for each block, but also the signatures for their respective
textures. Both signatures types (color and texture) are processed separately during the query
execution, and the similarity among images is determined by combining the result achieved for
each type. This combination requires an additional parameter to determine the weight of each
signature type when retrieving. The main problem with these approaches is the lack of semantic
meaning to their parameters (thresholds), making them difficult to tune up.

2.2.3 Retrieval Models Using BoVW

The final step of a CBIR system using BoVW is the retrieval model used for the queries. Since
BoVW is a visual word histogram representation of the image, it is possible to compare two
images using similarity measures, such as the Cosine Angle and Jaccard distances presented
on the previous Section. However, it is also possible to use textual based retrieval models
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such as the Vector Space Model (VSM) (SIVIC; ZISSERMAN, 2003; SANTOS et al., 2017).
On the VSM, given a visual dictionary S, each image I is represented by a vector of weights
WI = {w1,w2, . . . ,w|S|}, where |S| is the size of the visual dictionary. The VSM compare two
images by calculating the normalized scalar product between the query vector Wq and the image
vector WI . It is important to note that different weights can be used depending on the application,
some of the used weights are shown in Table 1.

Table 1 – Weighting schema evaluated in the queries.

Weight type Definition

w1 ws,I = t fs,I
w2 ws,I = id fs
w3 ws,I = t fs,I× id fs
w4 ws,I = t fs,I× id fs×matchI′,I
w5 ws,I = id fs×matchI′,I
w6 ws,I = matchI′,I
w7 ws,I = t fs,I×matchI′,I

Source: Santos et al. (2017).

where s is a visual world in S, I′ is the query image, I is the compared image and t fs,I , id fs and
matchI′,I are defined as follows:

∙ t fs,I represents the frequency of the visual word s in image I;

∙ id fs represents the importance of the visual word s in the knowledge database and can
be computed using id fs = log( n

ns
), where n is the number of images in the knowledge

database and ns is the number of images in which the visual word s appears;

∙ matchI′,I measures how many visual signatures of query image I′ were found in image I.
It is important to note that matchI′,I is query dependent and is computed during queries.

2.3 Image Segmentation

As mentioned in Chapter 1, when dealing with images, humans can describe and interpret the
content of the image, by detecting the objects and the interaction between them in the image.
Although the feature extraction methods can translate the images in numerical values, there is
no semantics in these values. It is possible to close this semantic gap by analyzing only certain
regions of the images (JING et al., 2004; ALZU’BI; AMIRA; RAMZAN, 2015; BLANCO et al.,
2016). One way of detecting these regions is through image segmentation. Image segmentation is
the process to divide an image into meaningful regions (ZHU et al., 2016). Usually such regions
correspond to actual objects in real world scenarios, such as obstacles in traffic (PFEIFFER;
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FRANKE, 2010), fire in emergency situations (RUDZ et al., 2013) or chronic wounds in medical
images (DORILEO et al., 2010).

One of the most basic segmentation algorithm is the watershed (VINCENT; SOILLE,
1991). The watershed considers the morphological surface of the image and floods the local
minimums until different components meet. Another approach is the thresholding (OHLANDER;
PRICE; REDDY, 1978). The thresholding uses the image histogram to discover a cutting point
value. This process can be done recursively to split the regions into subregions. Another method
uses contour detector algorithms and merge regions according to the edge strength (ARBELAEZ
et al., 2011).

It is also possible to use machine learning algorithms to aid on the image segmentation
task. One approach uses clustering methods such as the K-Means (ZHU et al., 2016). Park et

al. (PARK; YUN; LEE, 1998) used the K-Means on a 3D space of the RGB coordinates. Weeks
and Hague (WEEKS; HAGUE, 1997) also used the K-Means, however, they applied on the HSI
color space. Another clustering algorithm used for segmentation is the mixed gaussians (RAO et

al., 2009; PEREYRA et al., 2014). The Constrained Parametric Min-Cut (CPMC) (CARREIRA;
SMINCHISESCU, 2012) uses regular grids to train a gaussian mixture model and ranks how
well each region is. The Category Independent Object Proposal (ENDRES; HOIEM, 2014) uses
a random forest classifier to segment objects.

One important technique used in image segmentation is the superpixels. Superpixels
have being applied to a variety of applications, such as image segmentation (LI; WU; CHANG,
2012), retrieval (WANG et al., 2017) and BoVW techniques (JUNEJA et al., 2013). A superpixel
is defined as an atomic region of an image in which their pixels share similar homogeneity, i.e.,
each group of pixels is coherent to some visual aspect (ACHANTA et al., 2012). In practice,
superpixels are useful to capture redundancies on the image and, more importantly, to reduce the
complexity of subsequent image processing tasks. Moreover, a superpixel generation needs to
comply with the visual boundaries of an image.

One of the most used superpixel generation algorithm is the Simple Linear Iterative
Clustering (SLIC) (ACHANTA et al., 2012). The SLIC is an adaptation of the K-Means algorithm
for superpixel generation that is fast and memory efficient. The SLIC starts using a regular grid
and then adjusts the superpixel boundaries using a distance function based on the values of pixels
using the Lab color space and their geometric position. The superpixels produced by SLIC tends
to have a more regular shape. Another superpixel generation algorithm based on K-Means is the
Linear Spectral Clustering (LSC)(LI; CHEN, 2015). However, instead of using the color space,
LSC maps each pixel of the image in a ten dimensional feature space.

Another method used to produce superpixels is the Superpixels Extracted via Energy-
Driven Sampling (SEEDS) (BERGH et al., 2012). SEEDS uses a multi-resolution grid, starting
with a large regular grid, and then uses an energy function to adjust the boundaries. The energy
function is based on enforcing the color similarity between the boundaries and the superpixel
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Figure 7 – Examples of the output of the superpixels algorithms.

(a) SLIC (b) LSC

(c) SEEDS (d) Compact Watershed
Source: Elaborated by the author.

color histogram. SEEDS uses hill-climbing to evaluate the energy function and move the
boundaries. This way, according to the authors, SEEDS is able to produce superpixels in real
time at 30Hz. Neubert et al. proposed the Compact Watershed (NEUBERT; PROTZEL, 2014), a
variation of the watershed segmentation to produce superpixels. The Compact Watershed is based
on the seeded watershed. However, instead of producing segmentations with irregular size/shape,
it uses the geometric position to guarantee the compactness of the superpixels. Figure 7 shows
examples of the representative superpixels algorithms aforementioned.

2.4 Deep Learning Techniques

Since the introduction of deep learning techniques on the ImageNet1 in 2012, deep learning
techniques have been largely explored in image processing tasks. One of the most famous deep
learning techniques, are the Convolutional Neural Networks (CNNs). CNNs have been used in
other image processing tasks, such as image classification (KAWAHARA; HAMARNEH, 2016;
Yu et al., 2017), object recognition (REDMON et al., 2016), fire detection (SHARMA et al.,
2017) and segmentation (Yuan; Chao; Lo, 2017). It is important to note that, since the objective

1 http://image-net.org/
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of this PhD research is not the development of deep learning techniques, but to take advantage
of the ones already provided in the literature. We will give a brief discussion on deep learning
techniques on image processing.

2.4.1 Convolutional Neural Networks

The architecture of a CNN consists a series of convolutions, pooling operations (down-
sampling), activation functions, and fully-connected layers, which are similar to the hidden
layers of a multilayer perceptron (PONTI et al., 2017). The basic idea of a CNN is to use a series
of convolutions and downsamplings which encodes an image to a feature map, which can be
used in different tasks.

So far, several architectures have been proposed. AlexNet (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012) was the champion of the ImageNet 2012, it consists of five convolution layers
and two fully-connected layers to classify the images. The VGG-Net (SIMONYAN; ZISSER-
MAN, 2014) increased the depth of the CNN, winning the ImageNet in 2014. The Residual
Network (ResNet) (HE et al., 2016) introduced the residual blocks, which preserve the character-
istics of the input tensor before applying transformations. The Inception (SZEGEDY et al., 2017)
used small parallel convolutions instead of adding depth. One important aspect of these models
is the large amount of parameters, which requires a large amount of data to learn in the training
phase (ANWAR et al., 2018). However, it is possible to use deep learning techniques in smaller
datasets by using transfer learning (OQUAB et al., 2014). The idea of the transfer learning is to
use the weights learned in large datasets in different tasks. This way, it is possible to use these
pre-trained models, such as the ones previously mentioned, in tasks as feature extraction and
segmentation.

2.4.2 Deep Learning Features

Classification CNNs can be used to extract features from images. An initial approach to
use CNN in CBIR systems considered the fully connect layers as global features (BABENKO
et al., 2014; GONG et al., 2014). Razavian et al. (RAZAVIAN et al., 2014) uses the output of
the first fully connected layer. Razavian et al. extracts CNN features from sub-patches of the
image with different size and locations. Yandex et al. (Yandex; Lempitsky, 2015) considers the
activations of convolution layers as local features and aggregate them in a global feature using a
sum pooling.

A local feature extractor based in CNN is the DEep Local Feature (DELF) (NOH et al.,
2017). DELF constructs an image pyramid and applies a pre-trained ResNet until the fourth
convolution layer for each level independently. DELF uses the feature maps as local features and
is able to detect keypoints using the receptive fields.
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2.4.3 Image Segmentation Using Deep Learning

Several models using CNNs were proposed for image segmentation. The Fully Con-
volutional Network (FCN) (LONG; SHELHAMER; DARRELL, 2015) uses an convolutional
network to encode the image and then learns to make a pixel wise prediction of the pixel class.
The Deconvolutional Network (NOH; HONG; HAN, 2015) uses an encoder/decoder architecture,
in which the encoder consists of the fully connected layers of the VGG-Net. To do the upscaling,
the Deconvolutional Network uses an “unpooling”. The unpooling is made by recording the loca-
tions of maximum activations while doing the pooling operations. A similar approach was used
in the SegNet (Badrinarayanan; Kendall; Cipolla, 2017), which also uses an enconder/decoder
architecture. However, the decoder layers of the SegNet have a corresponding enconding layer.

Figure 8 – The U-Net architecture for a gray scale input image of size 572x572 and two classes on the
output layer.

Source: Ronneberger, Fischer and Brox (2015).

One disadvantage of these networks is that they require thousands of annotated training
samples. To overcome this problem, Ronneberger et al. (RONNEBERGER; FISCHER; BROX,
2015) proposed a simpler architecture, the U-Net. The U-Net is an encoder/decoder FCN able
to deal with a smaller training set. On the U-Net, the decoder receives a copy of the output of
the activation layers and concatenate with the upscaling tensor. In this way, U-Net can pass the
spatial information lost in the encoder step to the corresponding decoder layers, improving the
segmentation output. Figure 8 shows the architecture used by the U-Net model. The blue boxes
represent the feature maps (tensors) and the size of the tensors are represented by the numbers
on the lower left and on top of the box. The white boxes are the copied feature maps that are
concatenated on its corresponding decoder layer. The arrows denote different operations, such as
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convolutions, poolings and up-convolutions (upscaling convolutions).

2.5 Related Works
As mentioned in Chapter 1, the focus of this PhD research is aimed at images in two distinct
situations: urban emergency situations with fire and chronic skin ulcers. In this Section we will
discuss some of the state-of-the-art methods in these application domains.

2.5.1 Fire Detection in Emergency Images

There are an extensive literature on forest and urban fire detection on videos (CELIK; DEMIREL,
2009; RUDZ et al., 2013; AVALHAIS; RODRIGUES; TRAINA, 2016; BENJAMIN et al., 2016;
MUHAMMAD; AHMAD; BAIK, 2018). The majority of these methods are based only on the
color aspects of the images, which can lead to the presence of false-positives in their output. To
dismiss false-positives the authors uses the temporal aspects of the video. Since we are interested
only on fire detection on still images, we will focus our analysis only on the image parts of the
method.

A fire detection method based on rules was proposed in the work of Chen et al. (CHEN;
WU; CHIOU, 2004). They defined a set of three rules using a combination of the RGB and
the HSI color spaces; the user, in turn, must set two threshold parameters to detect fire pixels.
Another method based on color was proposed by Celik et al. (CELIK; DEMIREL, 2009), who
conducted a wide-ranging study regarding the color of fire pixels to define a model. This method
defines a set of five mathematical rules based on the YCbCr color space; this was because the
YCbCr has a better discrimination regarding fire (CELIK; DEMIREL, 2009; RUDZ et al., 2013).
These rules compare the intensity of the YCbCr channels and the user must define a threshold
parameter.

Rossi et al. (ROSSI; AKHLOUFI; TISON, 2011) proposed a method to extract geometric
fire characteristics using stereoscope videos. One of the steps is a segmentation based on a
clustering algorithm, in which the image is divided into two clusters based on the channel V of
the YUV color space. The cluster with the highest value of V corresponds to fire. Thereafter,
Rossi et al. used a 3D-Gaussian model to classify pixels as fire. In this method, the accuracy of
the classification depends on a parameter provided by the user. This method presents limitations,
since the authors assume that the fire is registered in a controlled environment.

Rudz et al. (RUDZ et al., 2013) proposed another method based on clustering. Instead
of using the YUV color space, Rudz et al. computes four clusters using the blue chrominance
Cb of the YCbCr color space. The cluster with the lowest value of Cb refers to a fire region. A
second step eliminates false-positive pixels using a reference dataset. The method treats small
and large regions with different approaches; small regions are compared with the mean value of a
reference region, while large regions are compared to the reference histogram. This comparison
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is made for each RGB color channel. The user must set three constants for the small regions, and
three thresholds for the large regions, resulting in a total of six parameters.

Benjamin et al. (BENJAMIN et al., 2016) proposed a forest fire segmentation based on
rules. Benjamin et al. used the RGB, YCbCr and HSV to create rules and improved the segmen-
tation by extracting texture features from the co-occurrence matrix. Avalhais et al. (AVALHAIS;
RODRIGUES; TRAINA, 2016) proposed the SPATFIRE to detect fire in hand-held device
videos. SPATFIRE uses a color model based on the HSV color space and used motion flow to
reduce the motion of the video. Deep learning techniques have been employed to detect fire on
images and videos. Sharma et al. (SHARMA et al., 2017) proposed an FCN segmentation based
on the VGG16 and the ResNet50 for fire images. While Muhammad et al. (MUHAMMAD;
AHMAD; BAIK, 2018) proposed an FCN segmentation based on the AlexNet for fire images
and videos.

As mentioned earlier, these methods are only based on the color aspect of the images.
Thus, when dealing with still images, they output a high rate of false-positives. Another downside
of these methods is the presence of lots of parameters, which are very sensitive with respect
to their tuning. Another problem of their parameters is the lack of physical significance. The
majority of these parameters are based on color intensity or multiple empirical constants, making
the fine tuning of their methods very troublesome.

2.5.2 Venous Skin Ulcers

To the best of our knowledge, there are few works that deal with skin ulcer images. We will first
discuss skin ulcer segmentation methods. Dorileo et al. (DORILEO et al., 2010) proposed an
image segmentation method. Its segmentation is based on the analysis of the RGB channels of
the image. Dorileo et al. took advantage of the controlled environment of the images to process
the images. Since all images had a blue background, they discarded the blue channel and also
used the intensity channel of the HSI (hue, saturation, intensity) color space. Each channel is
used to find a type of tissue: fibrin, granulation and necrotic. For each channel, the method
automatically finds thresholds and process the discovered regions by focusing on blobs near
the center of the image. One problem of this method is the need for a controlled environment.
Another skin ulcer segmentation method was proposed by Seixas et al. (SEIXAS; BARBON;
MANTOVANI, 2015). Seixas et al. employed off-the-shelf classifiers to segment ulcer images.
They extracted pixel-wise color features, the mean value of the neighborhood of the pixel, and
the difference of the pixel value and the mean beforehand mentioned. They manually segmented
a training set of images to isolate the wound region.

There are also works that use CBIR systems on skin ulcer images. Dorileo et al. (DO-
RILEO et al., 2008) proposed a CBIR system for skin ulcer images. The images were manually
segmented in two regions, the lesion and the background. For each region, the images were
decomposed in 5 gray scale images, the RGB channels, and two images based on hue and
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saturation. For each channel image were extracted Haralick texture features.

Pereyra et al. (PEREYRA et al., 2014) proposed a CBIR method using only the lesion
regions of the skin ulcer images. As a processing step, Pereyra et al. proposed a segmentation
step based on a multivariate gaussian mixture mode. The clusters were manually selected in a
Graphical User Interface (GUI) to output the segmentation mask. Using this masks, Pereyra et al.

extracted color and texture features only on the lesion regions of the image. Pereyra et al. used
the average of each channel of the RGB, HSI, Luv, and Lab color spaces as color features and
extracted Haralick texture features. Bedo et al. (BEDO et al., 2015a) used the same segmentation
step based on mixed gaussians and concatenated the Color Layout, Color Structure, Scalable
Color, Edge Histogram, Texture-Spectrum and Haralick features. A feature selection step was
needed to reduce the dimensionality. Both Pereyra et al. and Bedo et al. approaches segment the
lesion regions and extract features from the whole segmented image.

Since a skin ulcer may have more than one class at a time, it is interesting to separate the
regions of the image. To explore this possibility, Blanco et al. (BLANCO et al., 2016) proposed
the Counting-Labels Similarity Measure (CL-Measure) to compare the images. CL-Measure
segments the image into superpixels, then extracts color and shape features, and finally classifies
the tissue of each superpixel using supervised learning algorithms. CL-Measure compares the
images according to the labels of their superpixel. CL-Measure calculate the similarity of each
tissue severity (fibrin, granulation and necrotic) and weights them accordingly to their area in
the image. However, its similarity measure has a high computational cost, since its based on the
similarity Jaccard, which has a quadratic complexity. Although the results are promising, their
proposed distance measure with the highest precision is not metric, and is computationally costly
for high-resolution images, since it extracts fixed-size superpixels.

2.6 Final Thoughts
The goal of this Chapter was to present the basic background and related works that are relevant
to this PhD research. We discussed the basic concepts of CBIR and BoVW. Then, we discussed
ways to improve CBIR system by using image segmentation methods. We also presented some
deep learning methods for feature extraction and image segmentation. Finally, we presented the
state-of-the-art methods in the domains of this PhD research.

It is important to note that the literature covered in this chapter is quite broad in the
subjects presented. It was not the author’s intent to exhaustively discuss all of these subjects.
Rather, the objective was to present the reader the required background and knowledge to
understand the contributions of this PhD research.
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CHAPTER

3
FIRE DETECTION IN URBAN SCENARIO

In this Chapter we explore the use of superpixel techniques to detect fire on the context of
emergency situations. We also explore the use of color and texture features to improve preci-
sion and reduce the false positive rate of fire segmentation. The organization of this Chapter
is as follows. We give a brief introduction on the problem of fire detection on Section 3.1.
Section 3.2 introduces the Best of both Worlds Fire detection (BoWFire) and Section 3.3 shows
its results. Finally, Section 3.4 show our final thoughts on the fire detection problem. This
Chapter is based on the work presented in the 28th Conference on Graphics, Patterns and Images
(SIBGRAPI2015) (CHINO et al., 2015).

3.1 Introduction

Emergency situations can cause economic losses, environmental disasters or serious damage
to human life. In particular, accidents involving fire and explosion, have attracted interest to
the development of automatic fire detection systems. Existing solutions are based on ultraviolet
and infrared sensors, and usually explore the chemical properties of fire and smoke in particle
samplings (CHEN; WU; CHIOU, 2004). However, the main constraint of these solutions is that
sensors must be set near to the fire source, which brings complexity and cost of installation
and maintenance, especially in large open areas. Alternative to sensors, cameras can provide
visual information of wider spaces, and have been increasingly embedded in a variety of portable
devices such as smartphones.

Several methods regarding to fire detection on videos have been proposed in the last
years. These methods use two steps to detect fire. First, they explore the visual features extracted
from the video frames (images); second, they take advantage of the motion and other temporal
features of the videos (KIM; JEONG, 2014). In the first step, the general approach is to create a
mathematical/rule-based model, defining a sub-space on the color space that represents all the
fire-colored pixels in the image. There are several empirical models using different color spaces
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as RGB (CHEN; WU; CHIOU, 2004), YCbCr (CELIK; DEMIREL, 2009), CIE Lab (HA et al.,
2012) and HSV (ZHAO et al., 2011). In these cases, the limitation is the lack of correspondence
of these models to fire properties beyond color. The problem is that high illumination value or
reddish-yellowish objects lead to a higher false-positive rate. These false-positives are usually
eliminated on the second step through temporal analysis.

In contrast to such methods, our proposal is to detect fire in still images, without any
further (temporal) information, using only visual features extracted from the images. To overcome
the problems aforementioned, we propose a new method to detect fire in still images that is
based on the combination of two approaches: pixel-color classification and texture classification.
The use of color is a traditional approach to the problem; whilst, the use of texture is promising,
because fire traces present particular textures that permit to distinguish between actual fire and
fire-like regions. We show that, even with just the information present in the images, it is possible
to achieve a high accuracy level in such detection.

The main contribution of this research is the proposal of BoWFire, a novel method to
detect fire in still images. By merging color and texture information, our method showed to be
effective in detecting true-positive regions of fire in real-scenario images, while discarding a
considerable quantity of false-positives. Our method uses fewer parameters than former works,
what leads to a more intuitive process of fine tuning the automated detection. Regarding these
claims, in the experiments, we systematically compare BoWFire with four works that currently
define the state-of-the-art, that is, the works of Celik et al. (CELIK; DEMIREL, 2009), Chen et

al. (CHEN; WU; CHIOU, 2004), Rossi et al. (ROSSI; AKHLOUFI; TISON, 2011), and Rudz et

al. (RUDZ et al., 2013).

3.2 Best of both Worlds Fire detection

We propose BoWFire, a novel method for fire detection in emergency-situation images. We
explore the fact that color combined with texture can improve the detection of fire, reducing
the number of false-positives as compared to related works from the literature. We show that
such combination can distinguish actual fire from fire-like regions (reddish/yellowish) of a
given image. The goal is to provide a more effective automated detection of fire scenes in
the context of the crisis situations, as those of the RESCUER Project. Figure 9 shows the
basic architecture of our proposal. The BoWFire method consists of three basic steps: Color

Classification, Texture Classification, and Region Merge. As shown in Figure 9, the two first
steps occur in parallel to produce images in which fire-classified pixels are marked. Then, the
output from both classifications is merged into a single output image by the Region Merge step.

Different from other methods, usually based on mathematical models, the use of a Color
Classification step avoids the need of a great number of parameters. Any machine learning
classification algorithm could be used, specifically, in this work, we use Naive-Bayes and KNN.
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Figure 9 – Architecture of the BoWFire method.
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Source: Adapted from Chino et al. (2015).

By doing so, we also avoid the use of the global information of the image to classify only one
pixel as opposed to other approaches; this is a desired feature because the semantics of the
image may vary according to the emergency situation (small/large fire regions or day/night time).
Figure 10 presents more details of the color-based classification. Given an image I with n pixels
Pi, 0 ≤ i < n. Each pixel Pi = (Ri,Gi,Bi) of the image is converted to P′i = (Yi,Cbi,Cri) in the
YCbCr color space, since this color space provides a better discrimination of fire regions. Then
P′i goes through a Pixel-Color Classification (pixelClass), which consists of a Color Training

Set and a Color Classifier. Then, if pixelClass(P′i ) = ⟨fire⟩, Pi is used to build the output image
Icolor, otherwise Pi is discarded.

Figure 10 – Color-based classification step.
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Source: Adapted from Chino et al. (2015).

As mentioned earlier, the Texture Classification step allows for a more accurate detection;
however, it brings a challenge. Since there may be a variety of fire images according to the
emergency situation, it is not possible to extract global features of the image because the small
fire regions would vanish in the global context. Therefore, we extract only local features from
regular shaped regions with similar patterns automatically detected by superpixel methods.
Figure 11 presents details of the Texture Classification step. Given the same image I, we use a
superpixel method extractSuperPixels(I,Ksp) to generate a set of Ksp superpixels Sp j, where
0 ≤ j < Ksp. Next, each superpixel Sp j passes through a local Feature Extraction process,
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resulting in a feature vector Vj = (v j0, . . . ,v j(d−1)) of size d. Then, Vj is classified using a
Feature Classification ( f eatClass), which consists of a Feature Training Set and a Feature

Classifier. If f eatClass(Vj) = ⟨fire⟩, all pixels Pi ∈ Sp j are used to build the output image Itexture,
otherwise they are discarded. After this, the superpixel region is no longer necessary since the
method is performed in pixel-level only.

Figure 11 – Texture-based classification step.
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Source: Adapted from Chino et al. (2015).

With the outputs from the Color Classification (image Icolor), and from the Texture

Classification (image Itexture), it is still necessary to join the results in an output image Iclassi f ied .
We perform this task in the Region Merge step. According to our hypothesis, if a pixel is
simultaneously classified as fire following color and texture classification, then there is a higher
chance that this pixel is actual fire. Therefore, given an image I and its color and texture
classifications Icolor and Itexture, the final classified image Iclassi f ied is defined as Iclassi f ied =

{Pi|Pi ∈ Icolor and Pi ∈ Itexture}. That is, a given pixel is added to the final output only if it
was detected in both color and texture classifications, otherwise it is discarded. Consequently,
we dismiss false-positives from both approaches, taking advantage of the best of both worlds.
Algorithm 1 shows the algorithm used by BoWFire.

The BoWFire method was developed in a modularized scheme, allowing an easy way to
add and set different feature extraction algorithms, as well as different classifiers. We note that,
since the BoWFire method is fully customizable, the number of parameters is dependent only on
the algorithms used in the intermediate steps.

3.3 Experiments

In this section we show the performance of BoWFire to segment fire regions in emergency
images. In this section, we present the results of three experiments: (i) the impact of parameter
Ksp; (ii) the Color Classification Evaluation; and (iii) the BoWFire Evaluation. We implemented
BoWFire in C/C++11 and all experiments were carried out on a 3.40GHz Intel Core i7-4770
CPU with 16GB RAM and a NVIDIA GeForce GTX 645 with 1GB GDDR5, running Ubuntu
14.04.

To reduce the number of parameters, we used the following algorithms for the BoWFire
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Algorithm 1 – BoWFire method
Input: Image I, Ksp: number of superpixels
Output: Image Iclassi f ied: Mask with fire regions

1: Icolor← /0
2: Itexture← /0
3: Iclassi f ied ← /0
4: for all Pi ∈ I do
5: P′i ← RGB2YCbCr(Pi)
6: if pixelClass(P′i ) is ⟨fire⟩ then
7: Add Pi to Icolor
8: end if
9: end for

10: SP← extractSuperPixels(I,Ksp)
11: for all Sp j ∈ SP do
12: Vj← extractTextureFeature(Sp j)
13: if f eatClass(Vj) is ⟨fire⟩ then
14: for all Pi ∈ Sp j do
15: Add Pi to Itexture
16: end for
17: end if
18: end for
19: for all Pi ∈ I do
20: if Pi ∈ Icolor and Pi ∈ Itexture then
21: Add Pi to Iclassi f ied
22: end if
23: end for

intermediate steps. The Pixel-Color Classification is done by a Naive-Bayes classifier, using an
automatic discretization method; the superpixel algorithm was the SLIC method with a modifica-
tion. Instead of using the Lab color space, we used the YCbCr space due to its discriminative
property. Since we wanted to add texture information, our implementation uses the uniform

patterns LBP. The features were classified using the k-NN classification with the Manhattan
Distance.

Considering the configuration given by the choice of intermediate algorithms, the BoW-
Fire method needs only 3 parameters: Ksp, m and K. For all experiments we empirically evaluated
the best values for parameters m and K; for parameter K, we used the value K = 11. Regarding
to parameter m, we observed that a more compact superpixel generates a more regular region,
which leads to a better representation of the texture feature. In this case, the best value was
m = 40. With these parameters, each method was executed on three different datasets: only
fire images, only non-fire images, and a complete dataset with both fire and non-fire. For each
execution, we computed the confusion matrix for the classification of all pixels and calculated
four measures: Precision (Equation 3.1), Recall (Equation 3.2), F1-Score (Equation 3.4), and
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False-Positive Rate (FPR) (Equation 3.3).

Precision =
T P

T P+FP
(3.1)

Recall =
T P

T P+FN
(3.2)

FPR =
FP

FP+T N
(3.3)

where TP, FP, TN and FN stand for true positive, false positive, true negative and false negative
respectively.

F1-Score = 2 · Precision ·Recall
Precision+Recall

(3.4)

3.3.1 The BoWFire dataset

We performed experiments using a dataset of fire images. Since at the time we were proposing
the BoWFire there was no urban fire dataset, we proposed the BoWFire-dataset. The BoWFire-
dataset consists of 226 images of emergency situations with fire in urban scenarios with various
resolutions1. The images were collect from Flickr through a crawler using Flickr API2, in August
of 2014. All images were downloaded under the Creative Commons license. The crawler used
the textual keywords shown in Table 2.

Table 2 – Keywords used by the crawler to collect the images.

Keywords

fire smoke emergency flames burning
protest boston marathon car fire accident criminal fire fire department

firefighter urban fire house burning criminal fire fire car accident
Source: Research data.

The BoWFire-dataset was divided in two categories: 119 images containing fire, and 107
images without fire. The fire images consist of emergency situations with different fire incidents,
as buildings on fire, industrial fire, car accidents, and riots. These images were manually cropped
by human experts. The remaining images consist of emergency situations with no visible fire
and also images with fire-like regions, such as sunsets, and red or yellow objects. Figures 12
and 13 show some samples of this dataset. Since we are using supervised machine learning,
we also created a training dataset. The training dataset consists of 240 images of 50×50 pixels

1 Available at <http://chinodyt.github.io/>
2 <https://www.flickr.com/services/api/>

http://chinodyt.github.io/
https://www.flickr.com/services/api/
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resolution; 80 images classified as fire, and 160 as non-fire. Figure 14 shows some samples of
this dataset. It is important to note that the non-fire images also contain red or yellow objects.
The training dataset was used for both classification steps, Pixel Color Classification and Feature

Classification.

Figure 12 – Examples of image containing fire emergencies. The first lines are images containing fire and
the second line is the ground truth.

Source: Elaborated by the author.

Figure 13 – Examples of non emergency image containing fire like colors.

Source: Elaborated by the author.

Figure 14 – Sample images of the training dataset.

Fire Images Non-Fire Images

Source: Chino et al. (2015).

3.3.2 Impact of Ksp

The first experiment evaluates the impact of the number of superpixels on the BoWFire perfor-
mance. We vary the number of superpixels Ksp with the following values: 50, 100, 150, 200,
250 and 300. Figure 15 shows the results obtained while varying the number of superpixels.
Figure 15(a) shows the results for the fire dataset. In this case, there was a slight increase of
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all measure until Ksp = 150, then for greater values they had a similar behavior. The Precision
obtained was around 0.8, Recall around 0.65 and F1-Score around 0.72. Figure 15(b) shows
the results for the non-fire dataset. For this dataset we computed only the False-Positive Rate.
There is a slight increasing of FPR as the number of superpixels increases, except for Ksp = 300.
It is important to notice that although FPR increases, the values remain around 0.045, that is,
less than 5% of false-positives. And Figure 15(c) shows the results combining both datasets.
Again, there is a similar behavior regarding Ksp, except for Ksp = 50. The Precision obtained was
around 0.5, Recall around 0.65 and F1-Score around 0.57. The FPR values were not shown on
both Figures 15(a) and 15(c) due to their low values for all Ksp. There is also a slight increasing
of FPR as Ksp increases, but with lower values. On the fire dataset, FPR went from 0.0169 to
0.0175, and on the complete dataset it varied from 0.0305 to 0.0323.

Figure 15 – Impact evaluation of the number of superPixel Ksp in three different datasets.

(a) Fire dataset (b) Non-fire dataset (c) Complete dataset

Source: Chino et al. (2015).

The main goal of the BoWFire is to decrease the FPR while maintaining a good per-
formance. With that in mind, we evaluated that the best result is achieved when the number of
superpixels Ksp = 150. This number presented better results while dealing with just the fire and
complete dataset (fire and non-fire), as showed by F1-score. Also, the value of FPR for this Ksp

is close to the lowest FPR value.

3.3.3 Color Classification Evaluation

In this experiment, we aim at evaluating the capability of the Color Classification step proposed
in this paper. Since BoWFire is based on a combination of two different approaches, it is
important that the color-based method recovers as many fire pixels as possible. So, Recall is
the measure that closely meets this need. Also, on this step FPR is not so important, since it
will be handled on the Texture Classification step. We evaluated the behavior of our proposed
Color Classification in comparison with the state-of-the-art, as in the works of Celik (CELIK;
DEMIREL, 2009), Chen (CHEN; WU; CHIOU, 2004), Rossi (ROSSI; AKHLOUFI; TISON,
2011) and Rudz (RUDZ et al., 2013).
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Figure 16 – Evaluation of the Color Classification method with the state-of-the-art methods.

(a) Fire dataset (b) Non-fire dataset (c) Complete dataset

Source: Adapted from Chino et al. (2015).

Figure 16 shows the results for the Color Classification step. Considering only color-
based approaches, Color Classification, Celik and Rudz presented the best overall performance.
Although Chen obtained the highest value of Precision, its Recall got the lowest value. As seen
in Figures 17 and 18, Chen missed too many true-positive pixels and Rossi has the lowest overall
performance. We observed that in outdoor emergency situations, fire was not in the cluster with
the higher values of V, as shown in Figures 17 and 18. From now on, we will focus our analysis
only on the methods with the best overall performance.

Regarding to Precision, Rudz achieved the best value, 0.84 on the fire dataset and 0.31
on the complete dataset, while Color Classification and Celik had similar behavior with values
around 0.62 on the fire dataset and 0.24 on the complete. On the other hand, Color Classification

achieved the highest value of Recall, 0.77 on both fire and complete dataset, followed by Celik,
0.63 on both fire and complete, and Rudz, 0.41 on both fire and complete. Analyzing the F1-
Score, Color Classification and Celik methods outperformed Rudz by at most 23.6% on the
fire dataset with values of 0.68 to Color Classification, 0.63 to Celik and 0.55 to Rudz. On the
complete dataset, all methods achieved similar F1-Score with the value of 0.35.

On the fire dataset, Color Classification and Celik achieved similar values of FPR (0.05
and 0.04) and Rudz method achieved 0.01 FPR. On the non-fire dataset, Color Classification,
Celik and Rudz achieved respectively 0.21, 0.15 and 0.08. And on the complete dataset, Color

Classification, Celik and Rudz methods achieved respectively 0.13, 0.10 and 0.05. On all datasets,
Rudz achieved the best FRP value, less than 9% of the pixels was incorrectly classified. However,
while discarding more false-positives, Rudz also discarded true-positives, reducing its Recall
capability. Except for FPR, Color Classification had a similar behavior of Celik, but had better
values of Recall and F1-Score. Therefore, the Color Classification outperformed the other
methods.
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3.3.4 BoWFire Evaluation

After evaluating only color, we evaluate the impact of considering texture together with color,
as defined in our proposal. The most important aspect of this step is to reduce false-positives
without affecting the overall performance. In this context, we analyze the BoWFire performance,
which is the combination of the Color Classification step with the Texture Classification step.
We also evaluated the performance of the state-of-the-art methods combined with the Texture

Classification. We used the best value of Ksp as obtained in the experimentation.

Figures 17, 18 and 19 show visual samples of output images from three different sit-
uations. Figure 17 shows an emergency situation with fire and low percentage of possible
false-positives. On this input image it is possible to note that Color Classification, Celik and
Rudz methods had similar outputs. The BoWFire method was able to detect the same fire region
as these methods, but discarded the fire reflection on the ground. Rossi was not able to correctly
detect fire regions, while Chen discarded more than half of the true-positives. Figure 18 also
shows an emergency situation with fire with a higher percentage of false-positives. In this case,
all methods detected false-positives, with the exception of BoWFire. It is also possible to note
that in some cases, Rudz discards more fire pixels than necessary. This image also shows the
problem with the Rossi method, since no fire region was detected as fire. Once again, Chen
discarded almost every true-positive. Figure 19 shows a sunset skyline image. For this input
image, excluding BoWFire, all methods detected a high rate of false-positives. Chen had a
lower rate of false-positives, however, as seen in the previous examples, it also has the same
behavior with yellowish fire regions. Meanwhile, when adding texture information to the Color

Classification, BoWFire was capable of discarding all false-positives for this image.

Figure 17 – Output from the methods with an input image with fire.

(a) Input image (b) Ground truth (c) BoWFire (d) Color Class.

(e) Celik (f) Chen (g) Rossi (h) Rudz

Source: Chino et al. (2015).

Figure 20 shows the results when added texture information. It is possible to note that
there was an overall improvement for all methods. Regarding Precision, with the exception of
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Figure 18 – Output from the methods with an input image with fire and possible false-positives pixels.

(a) Input image (b) Ground truth (c) BoWFire (d) Color Class.

(e) Celik (f) Chen (g) Rossi (h) Rudz

Source: Chino et al. (2015).

Figure 19 – Output of a non-fire image.

(a) Input image (b) Ground truth (c) BoWFire (d) Color Class.

(e) Celik (f) Chen (g) Rossi (h) Rudz

Source: Adapted from Chino et al. (2015).

Rudz and Chen, all methods had a considerable improvement. Color Classification and Celik
had a Precision improvement of up to 1.30 times on the fire dataset and 2.28 times on the
complete dataset. Rossi had the greatest improvement, 4.43 times on fire dataset and 5.65 times
on the complete dataset. This high improvement was due to the fact that Rossi, on outdoor
images, detected other regions than fire, as shown on Figures 17 and 18. When adding texture
information, these false-positive regions were discarded. For both Chen and Rudz, there was a
slightly improvement on the fire dataset, but it is due to the fact that they already had low FPR.
On the other hand, on the complete dataset, there was an improvement of 1.64 times to Chen and
2.06 times to Rudz.
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Figure 20 – Evaluation of the BoWFire method with the state-of-the-art methods.

(a) Fire dataset (b) Non-fire dataset (c) Complete dataset

Source: Adapted from Chino et al. (2015).

There was a decreasing on the Recall value of up to 15% less for all methods, except
Rudz. This is due to the fact that the combination of both approaches discarded a few true-
positives. However, the considerable gain on the precision can justify this drawback. Analyzing
the F1-Score, there was a slight increase of up to 7% for all methods, except Rossi, on the
fire dataset, which had an improvement of 69%. On the complete dataset, all methods had a
considerable improvement, up to 65%.

As one of the goals of BoWFire is to reduce the number of false-positives, it is important
to analyze FPR. On the fire dataset, there was a reduction of up to 68% of FPR for Color

Classification, using Celik and Chen methods. Rossi had 94% less false-positives. Rudz was
the least affected by this step, reducing 5% false-positives, since they had already dismissed
false-positives on a post processing step. On both the non-fire and complete dataset, all methods
reduced FPR by up to 80%. This result confirms that the Texture Classification step is capable of
discarding false-positives without compromising the overall performance.

We can now use the Receiver Operating Characteristic (ROC) space to analyze the
performance behavior between all methods. The ROC Space shows the relation between FPR
and the true-positive rate (Recall). Figure 21 shows the ROC Space on the fire and the complete
datasets for all methods. On both ROC Spaces, it is possible to note that all methods move to the
left, i.e., achieve less FPR when texture information is added. The Color Classification and the
BoWFire method presented the best classification results among the other methods, followed by
Celik. Also, the BoWFire achieved a similar Recall value as Celik without texture information,
but with a smaller FPR.

3.4 Final Thoughts
In this Chapter, we introduced the BoWFire method, a novel approach for fire detection on
images in emergency context. Our results showed that BoWFire was capable of detecting fire
with a performance similar to what is observed in the works of the state-of-the-art, but with less
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Figure 21 – ROC Space of all methods.

(a) Fire dataset (b) Complete dataset

Source: Adapted from Chino et al. (2015).

false-positives. We systematically compared our work with four former works, demonstrating
that we achieved consistent improvements.

The course of action of BoWFire was that, by simultaneously using color and texture
information, it was able to dismiss false-positives relying solely on the information present in
the images; as opposed to former methods that use temporal information. Furthermore, since
BoWFire is based on classification methods, rather than on mathematical modeling, it was able to
solve the problem with only three parameters. In addition, these parameters were more intuitive
for tuning, unlike those of previous works, which are based on thresholds and color-based values.
Given its performance, we conclude that BoWFire is suitable to integrate a crisis management
system as the one that motivates this work.

Another contribution present in this Chapter was the proposal of the BoWFire-dataset.
The BoWFire-dataset is an image dataset of urban fire images aimed at fire segmentation
problems. One important aspect of the BoWFire-dataset is that its focus is to measure how well
a fire segmentation method is able to avoid false-positive rates.
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CHAPTER

4
BAG OF SUPERPIXELS SIGNATURES

In this Chapter we introduce a Signature-Based Bag-of-Visual-Words (S-BoVW) technique
based on superpixels. S-BoVW introduces the visual signature concept, which skips the visual
dictionary building step of BoVW approaches. We also explore the Fractal Theory analysis to
estimate parameters of our proposal. The organization of this Chapter is as follows. We give a
brief introduction on Bag-of-Visual-Words on Section 4.1. Section 4.2 introduces some concepts
needed for the understanding of this Chapter. On Section 4.3, we explore the image datasets
used in this Chapter to find useful patterns. Section 4.4 introduces the Bag-of-Superpixels
Signatures (BoSS) and Section 4.5 shows its results. Finally, Section 4.6 concludes this Chapter.
This Chapter is based on works published in the 33rd ACM/SIGAPP Symposium On Applied
Computing(CHINO et al., 2018).

4.1 Introduction

Advances in technology, such as gadgets and cell phones, enabled not only a massive capture
and storage of images and videos, but also the sharing of these complex data through social
media (SANTOS et al., 2017). Due to the increasing omnipresence of such data, performing
decision-making in a timely manner and image retrieval tasks has been a challenge (BEDO et

al., 2015a). Computer systems can support those tasks with the CBIR approach. There are many
techniques to extract an image description and to compare it with other images. One of them is
by using the BoVW approach.

BoVW is an extension of Bag-of-Words techniques from the textual domain applied
to the images domain. BoVW techniques represent an image as a set of visual words, which
are extracted from the image’s local features. BoVW techniques are widely employed in image
retrieval over large databases (CAETANO et al., 2014; SIVIC; ZISSERMAN, 2003). There
are three main reasons to adopt this representation (JEGOU et al., 2012): (i) these techniques
benefit from enabling the use of robust local image descriptors, such as SIFT or SURF; (ii) the
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comparisons among the images can be performed with standard distance functions; and (iii) it
can deal with high dimensional vectors, where words can be indexed with inverted indexes to
perform an efficient search.

Since BoVW uses local features extraction techniques, there must be a way to map the
numerical features into visual words. This can be done by using a clustering process to generate
the visual words (SIVIC; ZISSERMAN, 2003) – C-BoVW. However, it is also possible to map
the local features using visual signatures (SANTOS et al., 2015; SANTOS et al., 2017). In
comparison to C-BoVW, the latter approach – S-BoVW – enables the identification of visual
signatures at a low cost. The two major drawbacks of the existing S-BoVW techniques are that
they only employ fixed squared regions and require some unintuitive parameters to tune the
algorithms.

In this Chapter, we introduce the BoSS approach, which was designed to overcome
the afore mentioned drawbacks, by including superpixels in the existing S-BoVW techniques.
The superpixels enable the adjustment of region’s boundaries in an image, allowing the ex-
traction of visual signatures from flexible and more meaningful regions. Moreover, we applied
statistical analysis using the Zipf and power laws, as well as concepts from the Fractal the-
ory (SCHROEDER, 2012) to drastically reduce the required parameters of the existing S-BoVW
techniques. The main contributions of our approach are:

∙ Self-contained: we propose a visual signature extraction method, which does not demand
pre-computed knowledge, such as visual dictionaries.

∙ Intuitive parameter: BoSS is designed to have as few parameters as possible. We only
need to set the expected number of visual signatures to be extracted.

∙ Scalability: we propose a scalable algorithm for extracting visual signatures.

∙ Effectiveness: we show that the visual signatures extracted using BoSS retrieved images
successfully, being up to 12.46% better than the state-of-the-art.

4.2 Basic Concepts

In this section, we present some concepts needed for the understanding of this Chapter.

Power Law and Zipf Law: Power law distributions allow explaining data behaviors and can be
often observed in computer and social sciences (DEVINENI et al., 2015). The Zipf distribution
is a particular type of power law commonly used in text analysis (ZENG et al., 2012). Zipf
distribution is based on the Zipf’s law, which states that the frequency of any word is inversely
proportional to its rank. Yang et al. (YANG et al., 2007) showed that the distribution of visual
words in BoVW approximately follows a Zipf distribution. Moreover, the distribution of words
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is usually described by its frequency, with the exception of rare words (which produces tiny
clusters).

Fractal Theory: A fractal is an object that presents similar characteristics when analyzed in
different resolutions, i.e., they are self-similar (SCHROEDER, 2012). Fractals can be found in
geometric shapes, such as the Sierpinski triangle, as well as in nature, like shapes of mountains
and clouds. Data analysis tasks can take advantage of the fractal theory, since real datasets have
also shown to exhibit fractal behavior, since many times the datasets present the self-similarity
property (FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016). Fractal theory has being
used to feature selection (ZHANG et al., 2016), clustering (BARBARA; CHEN, 2009) and data
stream analysis (ZHANG et al., 2015). When applied to data analysis, one important concept in
fractal theory is the intrinsic dimension. The intrinsic dimension provides the minimum number
of attributes needed to represent a point in a given dataset, regardless of the number of attributes
present in the data, i.e., embedded dimension (TRAINA et al., 2010). The intrinsic dimension
can be approximated by the Correlation Fractal Dimension D2, which can be calculated with
linear complexity on the data size by the box-counting approach (TRAINA et al., 2010).

4.3 Patterns in Local Features

The existing S-BoVW approaches require a predefined threshold to define a signature for a local
color histogram. In this section, we discuss the patterns we found on local color histograms and
how it can be used on our proposal. We analyzed five image datasets commonly used on image
retrieval, which are described in detail as follows:

Corel1000 (Corel) (WANG; LI; WIEDERHOLD, 2001): A dataset of 1,000 images of the
Corel stock photo1, uniformly divided into 10 classes.

Caltech Buildings (Caltech) (ALY et al., 2009): A dataset of 250 buildings images around
Caltech2. Each one of the 50 buildings is considered as a class, whereas there are 5 images
taken from different angles and distances.

Flickr-Fire (Flickr-Fire) (BEDO et al., 2015a): A dataset with 1,984 images related to fire
emergency situations. The images were divided into two classes: 984 pictures containing
fire and 1,000 without it.

INRIA Holidays (Inria) (JEGOU; DOUZE; SCHMID, 2008): A dataset of 1,491 images
taken of personal holiday photos3. The authors proposed 500 images classes, with one
representative image for each class and a list of the images retrieved. Each image class

1 <http://wang.ist.psu.edu/docs/related/>
2 <http://www.vision.caltech.edu/malaa/datasets/caltech-buildings/>
3 <http://lear.inrialpes.fr/~jegou/data.php#holidays>

http://wang.ist.psu.edu/docs/related/
http://www.vision.caltech.edu/malaa/datasets/caltech-buildings/
http://lear.inrialpes.fr/~jegou/data.php#holidays
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represents a distinct scenario or object that include a variety of types, such as natural
scenes, man-made items and fire effects.

Describable Textures (Texture) (LAZEBNIK; SCHMID; PONCE, 2005): This dataset con-
sists of 1,000 grayscale images of textures4. There are a total of 25 classes with exactly 40
samples each one.

As discussed on Section 2.1, the ranked distribution of visual words follows a Zipf
distribution. We intend to extrapolate this observation to the color histogram of the local features
of an image. For all datasets, we quantize the image colors in q = 140 color bins. Then, we
partitioned the images in m = 600 blocks (superpixels) and extracted their respective color
histogram. Both values of q and m were obtained experimentally. We sorted the color histogram
by frequency in descending order, i.e., we have the most frequent color in the first position, the
second most frequent color in the second position and so on. For this step, we are not interested
in the color values, since only the ranked frequency distribution is used to fit a Zipf distribution.
Figure 22 shows the aggregate distribution of the ranked histogram of all blocks for each dataset.

We evaluated the fitting quality using Kolmogorov-Smirnov test for all datasets and
discovered that for the first 15 elements, they all fit a Zipf distribution. Previous works on
S-BoVW rely on a threshold to estimate the dominant colors of a histogram. Knowing that
the ranked color histogram follows as Zipf distribution, we can propose a more intuitive way
to get the dominant colors. Instead of using a less semantic threshold, we can summarize the
color histogram by the γ most frequent colors. This is possible since, accordingly to the Pareto
principle, roughly 80% of the pixels come from only 20% of the colors, in our case, the sum of
the frequency of the top values the ranked histogram is the majority of the sum of all frequencies.

4.4 Bag-of-Superpixel Signatures

In this section we introduce the BoSS method, an S-BoVW based on superpixels and dominant
colors. BoSS is able to extract visual signatures from images without demanding a visual
dictionary beforehand, i.e., there is no clustering involved. We proposed BoSS to have as few
parameters as possible, the only parameter is the expected number m of visual signatures to be
extracted. We also proposed two variations of BoSS: one based solely on color (BoSS) and one
combining color and texture (Bag-of-Superpixels Color and Texture Signatures (BoSS-CT)).

4.4.1 The BoSS’s Idea

The main idea of BoSS consists of three steps: region detection, feature extraction and signature
generation. Figure 23 shows an overview of the BoSS method. Let I be an image, the first step

4 <http://www-cvr.ai.uiuc.edu/ponce_grp/>

http://www-cvr.ai.uiuc.edu/ponce_grp/
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Figure 22 – Distribution of the ranked histograms on all datasets.
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is to generate the blocks that will be converted to visual signatures. In our approach, we use
a superpixel algorithm to generate the list B = {b1,b2, . . . ,bm} of m superpixels. BoSS then
quantize the pixel values of I in q values, e.g., from 256 intensity levels to 16 levels. Next, for
each region bi ∈ B, we extract its color histogram hi = {( f1,c1),( f2,c2), . . . ,( fq,cq)}, where fl

is the frequency of the color cl . Then, the histogram hi go through the Fractal Signature
module to be converted to a visual signature.

In Section 4.3, we observed that, when we sort the histogram hi in descending order
of the frequency, the sorted histogram ĥ follows a Zipf’s law. The basic idea of the Fractal
Signature module is to summarize hi by its γ most frequent values (dominant colors). To do
so, Fractal Signature first sort hi by the frequency of values in descending order to create
ĥi = {( f̂1, ĉ1),( f̂2, ĉ2), . . . ,( f̂q, ĉq)}, where f̂l ≥ f̂l+1 and 1≤ l < q. Then, Fractal Signature
selects only the γ elements of ĥ to create h̄i = {( f̄1, c̄1),( f̄2, c̄2), . . . ,( f̄γ , c̄γ)}, where c̄l < c̄l+1 and
1≤ l < γ . Finally, the superpixel can be represented as a visual signature si = “c̄1− c̄2−·· ·− c̄γ”.
It is important to note that h̄i is sorted by the color value to reduce the size of the visual
signature vocabulary. In the example shown in Figure 23, using γ = 3, the m dominant colors
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Figure 23 – Overview of the BoSS method.
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are {60,20,100}, following the Fractal Signature algorithm, the visual signature is “20-60-
80”. All steps of BoSS are shown in Algorithm 2, where extractFeatures(I,m) is a function
that receives a quantized image I, generates m superpixels and returns their histograms. The
complexity of BoSS is linear with the dataset size (n) and the number of superpixels m, i.e.,
O(mn).

Algorithm 2 – BoSS method
Input: Image I, m: number of superpixels, γ: number of dominant colors
Output: List of visual signatures S

1: H← extractFeatures(I,m)
2: S← /0
3: for all hi ∈ H do
4: ĥi← Sort hi by frequency
5: h̄i← Select the γ most frequent values of ĥi
6: si← Sort h̄i by value
7: Add si to S
8: end for

4.4.2 Freeing BoSS of Parameters

The algorithm described on the previously section needs as parameter the number of superpixels
m and the number γ of dominant colors to use as visual signatures. However, since it is desired
to have as few parameters as possible, in this section we propose a method to estimate the value
of γ using the Fractal theory. We considered the set of all sorted histograms of an image dataset
as a dataset F with q attributes (embedded dimension), i.e., each sorted histogram is considered
as a point in F . By calculating the intrinsic dimension D2 of F , we can determine the minimum
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number of attributes needed to represent a histogram. Thus, a good value to γ must be at least or
greater than D2 (γ = ⌈D2⌉). Algorithm 3 shows the main idea of this step. The complexity to
estimate the intrinsic dimension D2 is O(n) (TRAINA et al., 2010). Once γ is estimated for the
knowledge base, we can use this value to extract visual signatures of the query images.

Algorithm 3 – Fractal estimation of γ

Input: List of images {I1, I2, . . . , In}, m: number of dominant colors
Output: Estimated γ

1: Initialize box-counting
2: for all I j ∈ {I1, I2, . . . , In} do
3: H j← extractFeatures(I j,m)
4: for all Hi ∈ H j do
5: ĥi← Sort h by frequency
6: Add ĥ in box-counting
7: end for
8: end for
9: D2← Calculate intrinsic dimension using box-counting

10: γ ← ⌈D2⌉

4.4.3 Integrating Color and Texture in BoSS

We also proposed BoSS-CT, a variation of BoSS based on Color and Texture. Given an image I,
BoSS-CT extract color signatures the same way BoSS does. However, BoSS-CT also extracts
signatures based on texture histograms. The steps to extract the texture signatures are the same
steps described on the previous two subsections. However, instead of receiving a quantized
color image, it receives a texture image (an image with values that describe the texture on each
position). The texture image can be obtained using, for example, the LBP descriptor. The image
is then represented by a set of color signatures and another set of texture signatures. BoSS-CT
adds the prefix “C” to the color signatures and “T” to the texture signatures.

4.5 Experiments and Discussion

In this section we show the performance of BoSS on retrieving images. We present the results of
two sets of experiments: BoSS parameter analysis and comparison with the BoVW techniques.
When using color and texture, we are considering both color rank score and texture rank score
to be equally important, as proposed by Santos et al. (SANTOS et al., 2017). We implemented
BoSS in Python and all experiments were carried on a 2.67GHz Intel Xeon X5650 CPU with
32GB RAM, running Ubuntu 16.04.

We ran the experiments on the datasets described on Section 4.3. We used the leave-
one-out cross-validation for all datasets, except for Inria, where we used the representative
of the 500 classes as queries. To evaluate the effectiveness of all methods we used the Mean
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Average Precision (MAP) measurement. We also analyzed the precision and recall curves when
comparing BoSS with the baseline approaches.

As baseline we used C-BoVW (SIVIC; ZISSERMAN, 2003) and S-BoVW (SANTOS et

al., 2017) methods. For the C-BoVW, we extract local features using SURF and two different
dictionary sizes: 1,000 words and 20,000 words. To create the C-BoVW dictionaries, we used
the Mini-Batch K-Means (SCULLEY, 2010) with k-means++ (ARTHUR; VASSILVITSKII,
2007) to select the initial seeds. From now on, these methods will be referred to as BoVW1k and
BoVW20k respectively. The S-BoVW methods used were SDLC and SDLCT, for these methods
we used the author’s recommended parameters. For all S-BoVW (including BoSS), we used a
color quantization of q = 140 colors. The algorithm BoSS used to extract the superpixels was
SLIC (ACHANTA et al., 2012). For both SDLCT and BoSS-CT, the texture extractor used is the
rotation invariant LBP.

4.5.1 BoSS Parameter Analysis

The first set of experiments aims at analyzing the influence of parameter m, the number of
superpixels. As retrieval models, we used similarity distances (Cosine and Jaccard) and the VSM
using the weights defined in Table 1. We ran all experiments in the Corel dataset 5 times, and the
results showed are the average value of all runs. First, we evaluated how m influences on the time
complexity of BoSS. We measured the wall-clock time needed to extract the visual signatures,
what includes the time needed to estimate γ by calculating the dataset intrinsic dimension.
Figure 24 shows the time needed to extract the signatures when m varies. As expected, BoSS is
linear in relation with m.

Figure 24 – Time consumed to extract the visual signatures in the BoSS method versus m.
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Source: Elaborated by the author.

Then, we evaluated how m impacts on the quality of the retrieved images. We used five
different values of m and calculated the MAP. Table 3 shows the MAP, the first two lines were
obtained while using similarity measures and the following lines were using VSM. It is possible
to observe that MAP values increase as m grows for all retrieval models. On our evaluation, we
considered m = 600 as the best value to be used, because there is only a slight variation when
m varies from 600 to 1,500 and remembering that BoSS is linear with m, the lower the better..
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There is no need to choose a larger value of m to have a slightly better result. The best results
were achieved when using w3 weight. From now on all results are using VSM and w3 to retrieve
the images.

Table 3 – BoSS MAP measures for each weight schema on Corel dataset. The bold values are the best
results for each m and the value marked with a * is the best result.

Weight
MAP

m = 100 m = 300 m = 600 m = 1,000 m = 1,500

Cosine 0.099 0.100 0.141 0.190 0.212
Jaccard 0.125 0.130 0.184 0.248 0.278

w1 0.437 0.483 0.505 0.513 0.517
w2 0.392 0.420 0.505 0.434 0.4363
w3 0.469 0.514 0.530 0.533 0.534*
w4 0.468 0.511 0.522 0.517 0.516
w5 0.450 0.473 0.460 0.447 0.446
w6 0.440 0.458 0.440 0.424 0.424
w7 0.456 0.504 0.522 0.524 0.525

Source: Research data.

Lastly, we analyzed if BoSS is able to correctly estimate the best value of γ . Table 4
shows the MAP while varying γ . The intrinsic dimension of the ranked histogram on the Corel
dataset is D2 = 4.38. The best value of MAP was achieved while using γ = 5. Since BoSS
estimates the best value using γ = ⌈D2⌉= ⌈4.38⌉= 5, BoSS was able to correctly estimate the
best γ value.

Table 4 – How well BoSS chooses γ . The highlighted line is the estimated γ and the bold value is the
best result.

γ MAP γ MAP

1 0.454 6 0.526
2 0.518 7 0.517
3 0.528 8 0.511
4 0.527 9 0.500
5 0.530 10 0.489

Source: Research data.

4.5.2 Comparison with the state-of-the-art

We compared BoSS and BoSS-CT with the state-of-the-art methods. First, we measured the time
needed to extract the visual signature words. For the BoVW approaches, we included the time
needed to create the dictionary. We also take into account the wall-clock time needed for BoSS
to calculate the intrinsic dimension to estimate γ . We ran all experiments in the Corel dataset 5
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times, and the results showed are the average value of all runs. Figure 25 shows the time needed
to extract the signatures when n varies.

Figure 25 – Time comparison to extract the visual signatures versus the size of the dataset.
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The time BoSS spent to extract the visual signatures increases linearly with the size
of the dataset. However, BoSS spent more time when compared to SDLC and BoVW1k, but
less time than BoVW20k. To extract the whole Corel dataset, BoSS spent around 791 seconds,
SDLC spent 256 seconds, BoVW1k spent 211 seconds and BoVW20k spent 5,196 seconds. The
reason BoSS is slower than SDLC is because SDLC can extract the visual signatures in O(1),
since it uses rectangular grids instead of superpixels. BoVW20k spent more time than the others
due to the fact that, even though we used fast clustering algorithms, the number of clusters makes
the algorithm very expensive. For both, BoSS-CT and SDLCT, the time needed to extract the
visual signatures is approximately the double of BoSS and SDLC respectively, since all they
need to do is to also extract signatures using a texture image.

Table 5 – MAP measures for each dataset. The first four lines are S-BoVW methods, while the last two
are C-BoVW. The highlighted lines are our proposal and the bold values are the best results.

Weight
MAP

Corel Caltech Flickr-Fire Inria Texture

BoSS 0.530 0.694 0.703 0.580 0.180
BoSS-CT 0.563 0.713 0.700 0.638 0.389

SDLC 0.452 0.662 0.654 0.538 0.171
SDLCT 0.522 0.670 0.643 0.568 0.258

BoVW1k 0.264 0.075 0.601 0.010 0.455
BoVW20k 0.351 0.168 0.614 0.014 0.617

Source: Research data.

Next, we compared the quality of the results obtained by BoSS, BoSS-CT, SDLC,
SDLCT, BoVW1k and BoVW20k. We run the queries in all datasets and calculated the MAP
measurement. Table 5 shows the MAP for all methods. Both our proposals, BoSS and BoSS-
CT, had the best results on Corel, Caltech, Flickr-Fire and Inria, however, they were
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Figure 26 – Precision and recall curves of all methods.
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outperformed by BoVW20k on the Texture dataset. On the Corel dataset, BoSS-CT had a
MAP up to 7.83% more precise than SDLCT. On the Caltech dataset, BoSS-CT was 6.03%
better than SDLCT. On the Flickr-Fire dataset, BoSS had the best MAP, being up to 6.97%
better than SDLC. On the Inria dataset, BoSS-CT was up to 10.97% better than SDLCT. On the
Texture dataset, BoSS was outperformed by BoVW20k. However, when comparing between
S-BoVW, BoSS-CT was 33.68% better than SDLCT.

We also compared the Precision and Recall curves on all datasets (Figure 26). Once again,
except for Texture, BoSS-CT was similar or better than the competition on all datasets. On the
Texture dataset, it is possible to see better results from BoVW20k. However, it is important to
note that since BoSS and BoSS-CT are based on signatures, they do not need a pre-computed
dictionary, skipping a lot of processing (as shown in Figure 25) as BoVW20k does. Our results
showed that both BoSS and BoSS-CT have similar or better results than the SDLC and SDLCT.
More importantly, SDLC needs a tuning of at least three parameters and SDLCT needs at least
four. For example, the threshold both methods demands is not intuitive, rendering the method
hard to tune. Conversely, the only parameter of BoSS and BoSS-CT is the number of expected
visual signatures m.
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4.6 Final Thoughts
In this Chapter we proposed BoSS, an intuitive, self-contained, scalable and effective approach
for signature-based bags-of-visual-words (S-BoVW). BoSS extracts visual signatures from
images’ regions, which are given by superpixels. The signatures are taken from local features
dominant colors and textures. Moreover, our proposal employs a fractal analysis to extract
information about the domain application and also automatically estimate one of the parameters.
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CHAPTER

5
SKIN ULCER IMAGE RETRIEVAL

In this Chapter we take advantage of image segmentation methods to improve image retrieval
techniques. The idea is to introduce the semantics of segmentation methods on BoVW. Therefore
we can improve the precision while retrieving skin ulcer images. The organization of this Chapter
is as follows. We give a brief introduction on the skin ulcer image retrieval problem on Section 5.1.
Section 5.2 shows some of the challenges to retrieve skin ulcer images. Section 5.3 introduces
Imaging Content Analysis for the Retrieval of Ulcer Signatures (ICARUS) and Section 5.4 shows
its results. Finally, Section 5.6 concludes this Chapter. The results of this Chapter were based
on works presented in the IEEE 31st International Symposium on Computer-Based Medical
Systems (CHINO et al., 2018)

5.1 Introduction

In the last decades, the advances in technologies such as cameras, clinical equipment, and storage
infrastructure, have motivated a big increase in the amount of clinical data available (PEREYRA
et al., 2014). Computer-Aided Diagnosis comprises a set of processes to support specialists
in the analysis of medical images. However, some health care units do not have access to
specialized equipments for image acquisition, e.g., computed tomography scanners and multi-
spectral cameras. On the other hand, mobile devices, such as smartphones, can acquire high
quality images which can be a feasible alternative for image acquisition (DORILEO et al., 2008).

One scenario where these images are especially useful is the analysis of chronic skin
lesions, often referred as ulcers. These lesions may be caused by different reasons, such as poor
blood circulation in lower extremities, injuries, infections, tumors and other skin conditions (DO-
RILEO et al., 2010). The visual appearance of these wounds provides clinical signs that may
help physicians in the diagnosis. This scenario highlights the necessity of accurately processing
images at a fast pace, giving support to image retrieval tasks (BEDO et al., 2015b). One way
to unravel this problem is through CBIR, which provides similar cases based on historical
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data (PIRAS; GIACINTO, 2017).

The analysis of the colors and texture present in ulcers is of particular interest, since
they may indicate the healing process stage. Overall, simple lesions may present different
characteristics during its healing process: inflammation (mainly characterized by redness in
the limb region), grown of granulated tissue, followed by the final stage of healing and re-
epithelialization. However, the healing pattern of chronic lesions is not well defined (BEDO et

al., 2015b; ODUNCU et al., 2004).

After the first stage, the wound presents a coverage of yellow fibrin, sometimes containing
small parts of necrosis, generating a non-uniform mix of granulation (reddish pixels), fibrin
(yellowish pixels) and necrotic tissue (blackish pixels). Particularly, in neuropathic ulcers, callous
lesions may appear, which are mainly composed of white tissue, presenting uniform thickness
on the extremities. In this work, we aim at detecting these four variations of tissue composition
in skin ulcers: granulation, fibrin, callous and necrotic tissue.

While the problem of segmenting ulcer regions from images have already been addressed
in the literature (DORILEO et al., 2010; SEIXAS; BARBON; MANTOVANI, 2015), most of
the proposed approaches do not classify ulcer regions according to the skin patterns. On the
other hand, when classifying the type of tissue composition, many approaches perform global
classification in images, considering not only the wound regions but also the background and
other objects in the image (BEDO et al., 2015a; PEREYRA et al., 2014). Global approaches
badly influence the resulting set of similar images retrieved by a CBIR application, since they
have to deal with a mixture of color and texture patterns in ulcer regions and the remaining parts
of the images. Blanco et al. (BLANCO et al., 2016) proposed the CL-Measure method, which
employs superpixels to obtain homogeneous regions of pixels when performing image retrieval.
CL-Measure segments the images using a superpixel-based approach and off-the-shelf classifiers,
and then a CBIR task is executed based on the wound region using a label-scaled similarity
measure. Although the results are promising, their proposed distance measure is not metric, and
is computationally costly for high-resolution images, since it extracts fixed-size superpixels.

In order to overcome the aforementioned drawbacks, we propose ICARUS, which uses a
bag-of-visual words approach considering only the relevant regions of the image. We evaluate
our proposal in a real-world dataset, containing 217 images from four classes: granulation, fibrin,
callous and necrosis. Our main contributions are as follows:

∙ Relevant Signatures: ICARUS process only relevant regions, discarding background and
healthy skin;

∙ Fast: since ICARUS discards the non-relevant regions, it enables faster queries processing,
being up to 5 orders of magnitude faster than the state-of-the-art; and

∙ Effectiveness: by adding semantic to the feature extraction, ICARUS increases the preci-
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Table 6 – Distribution of the classes in the ULCER-DATASET, Granulation (G), Fibrin (F), Callous (C) and
Necrosis (N). The combination of two or more letters means the presence of two or more types
of lesion, e.g., GF means the lesion has granulation and fibrin tissues.

Class G F C N GF GC GN FC FN CN FGN
Frequency 69 40 5 6 68 11 10 1 3 1 3

Source: Research data.

sion of the retrieved images by up to 7% over the state-of-the-art.

5.2 Challenges on Retrieving Skin Ulcer Images
As discussed on Sections 2.5.2 and 6.2, venomous skin ulcers are lesions with different healing
stages: fibrin, granulation, callous and necrosis. Each of these healing stages have a visual
characteristic, e.g., granulation is reddish, fibrin is yellowish and necrosis is black. On this
Chapter we will be analyzing images from the ULCER-DATASET (DORILEO et al., 2008). The
images were manually labeled by experts and the dataset has a distribution of lesions, as follows:
161 granulation (G), 115 fibrin (F), 18 callous (C) and 23 necrotic tissue (N). It is important
to note that some images have more than one type of lesion, e.g., both fibrin and granulation.
There are a total of 97 images with a mixture of two or three types of lesions. Table 6 shows
the distribution of each class in the ULCER-DATASET. The ULCER-DATASET also has 15 images
manually segmented and labeled by experts (BLANCO et al., 2016). Each segmentation region
was labeled as healthy/background, granulation, fibrin and necrosis. From the 15 ground-truth
images, there are a total of 30,426 superpixels (24,357 healthy, 2,333 granulation, 3,557 fibrin
and 179 necrosis).

Figure 27 shows examples of the healing stages of skin ulcer images. When considering
a CBIR system for skin ulcer images, it is important to notice that these images have elements
that may negatively impact the results of a similarity query. Although each healing stage has a
specific visual characteristic, every image also has elements that are not relevant for retrieving
similar lesions, e.g., healthy skin, a background, or a measurement tape. On this context, a CBIR
system for skin ulcer image must consider this problem while extracting features, or comparing
two images. One way to solve this problem is by considering only the relevant regions of the
image while extracting features.

5.3 Our Proposal: ICARUS
In this section we introduce ICARUS, an image retrieval method for skin ulcer images through
S-BoVW. ICARUS receives as input an ulcer image and retrieves the most similar images
in a dataset. Since one of the problems with ulcer images is that they have elements, such
as background and skin regions without lesion, they are not relevant to the image retrieval
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Figure 27 – Examples of venomous skin ulcer images and the different types of healing stages.

(a) Granulation (b) Fibrin (c) Callous

(d) Necrosis (e) Granulation and necrosis (f) Gran., fibrin and necrosis
Source: Elaborated by the author.

Figure 28 – How ICARUS flies: we retrieve the most similar images by extracting signatures using only
the relevant regions.
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task. ICARUS extracts local features from the images and checks their relevancy. By doing
so, ICARUS is able to generate only signatures from relevant regions, improving the result set.
The main idea of ICARUS is to describe the ulcer images as a set of visual words (signatures).
Therefore, ICARUS quickly recovers the most similar images. ICARUS performs four steps:
(A) Local Feature Extraction, (B) Feature Selection, (C) Signature Assignment and (D) Query
Processing. Figure 28 shows an overview of ICARUS. We also propose a variation of ICARUS
based on segmentation algorithm, the Imaging Content Analysis for the Retrieval of Ulcer
Signatures Through Segmentation (ICARUS-Seg).

ICARUS receives an image I and the number of superpixels m as input. On step (A),
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ICARUS generates the list B of m superpixels. Then ICARUS extracts the features hi of each
superpixel bi ∈ B. The features extracted by ICARUS are color histogram and texture histogram.
These features and the image I are passed as input to step (B), where they will be classified as
relevant or non-relevant, this can be done by a supervised learning classification algorithm or
by using an image segmentation algorithm. While using a classification algorithm, both color
and texture features are concatenated into a single feature. For the segmentation algorithm used
by ICARUS-Seg, we are using the segmentation used in the ASURA framework, which will be
introduced with more details in Chapter 6. We consider the lesion regions as relevant, while the
background and healthy skin are discarded.

The features from relevant regions will proceed to step (C), where they are assigned to
visual signatures. ICARUS uses the dominant values of color and texture to assign the visual
words. Each feature will be assigned to two signatures, one for color and another for texture. In
the end of step (C), the image is represented by a set of visual signatures. Finally, step (D) uses
the visual signature representation to retrieve the most similar images calculating the similarity
using Jaccard/Cosine similarity measures or using the VSM weight schema. Algorithm 4 shows
the basic idea of ICARUS.

Algorithm 4 – The ICARUS algorithm.
Input: I: input image, m: number of superpixels, k
Output: RS: list of the k most similar images

1: B← extractSuperpixels(I,m)
2: H← extractFeatures(I,B)
3: S← /0
4: for all hi ∈ H do
5: if classi f yAsRelevant(hi) is True then
6: si← assignSignature(hi)
7: Add si to S
8: end if
9: end for

10: RS← Searcher.query(S,k) return RS

5.4 Experiments and Discussion
In this section we show the performance of ICARUS and ICARUS-Seg to retrieve images.
We present the results of three experiments: (i) classification method evaluation; ICARUS
and ICARUS-Seg parameter analysis; and comparison with the state-of-the-art techniques. We
implemented ICARUS and ICARUS-Seg in Python and all experiments were carried out on a
3.40GHz Intel Core i7-4770 CPU with 16GB RAM and a NVIDIA GeForce GTX 645 with
1GB GDDR5, running Ubuntu 16.04. To evaluate the overall effectiveness of all methods,
we performed queries centered at each image of the ULCER-DATASET, using the leave-one-out
strategy. For each query we calculated the MAP, precision and recall. Since the images in
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ULCER-DATASET is multi-labeled, we calculated the MAP values using a label-based approach
with macro-averaging (ZHANG; ZHOU, 2014).

5.4.1 Feature Classification Evaluation

As described on Section 5.3, ICARUS needs a feature classifier for the Feature Selection step.
On this first experiment we evaluated the best classification algorithm. Since ICARUS needs to
classify the regions as relevant and non-relevant, we considered the 24,357 superpixels of healthy
tissues as non-relevant and the remaining 6,069 superpixels (granulation, fibrin and necrosis)
as relevant. We evaluated 8 classifiers using 5-fold cross-validation: k-Nearest Neighbors (k-
NN), Support Vector Machine (SVM), Decision Tree, Random Forest, Multi Layer Perceptron,
AdaBoost, Naive Bayes and Quadratic Discriminant Analysis (QDA). To evaluate the classifiers,
we measured the accuracy and the F-Measure (harmonic average of the precision and recall).
Table 7 shows the accuracy and the F-Measure values of every classifier. Since the Random
Forest classifier achieved the best accuracy and F-Measure, we chose it as the feature classifier.

Table 7 – Evaluation of the Feature Selection classifier. The bold values are the best results.

Classifier Accuracy (%) F-Measure

k-NN (k = 5) 84.70 0.6127
SVM 87.81 0.6567
Decision Tree 86.54 0.6234
Random Forest 89.87 0.7173
MLP 80.86 0.3427
AdaBoost 88.09 0.6993
Naive Bayes 49.26 0.4428
QDA 49.82 0.4485

Source: Chino et al. (2018).

5.4.2 ICARUS Parameter Analysis

The second set of experiments aimed at analyzing the influence of parameter m, the number of
superpixels, and the different retrieval models. We used six different values of m and two different
retrieval models. As the retrieval model, we used similarity measures (Jaccard and Cosine) and
VSM with the weights described on Table 1. We used a color quantization of q = 140 colors and
the rotation invariant LBP as texture descriptor. The superpixel algorithm used by all methods to
extract the superpixels was SLIC (ACHANTA et al., 2012).

Tables 8 and 9 show the MAP while varying the parameters of ICARUS and ICARUS-
Seg, respectively. While using similarity measures, ICARUS achieved the best result when using
Jaccard similarity with m = 300, and ICARUS-Seg achieved the best result also when using
Jaccard similarity, but with m = 2,000. When using VSM, ICARUS achieved the best result
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using m = 1,000 and ICARUS-Seg achieved the best result using m = 1,500. Both ICARUS
and ICARUS-Seg achieved the best result using VSM with weight w3. From now on, all results
are presented using w3, and m = 1,000 for ICARUS and m = 1,500 for ICARUS-Seg.

Table 8 – MAP measures achieved by ICARUS while varying m and the retrieval model. The bold value
is the best result.

Weight
MAP

m = 300 m = 600 m = 1,000 m = 1,500 m = 2,000

Cosine 0.699 0.698 0.698 0.693 0.698
Jaccard 0.707 0.704 0.703 0.702 0.704

w1 0.721 0.720 0.726 0.726 0.722
w2 0.730 0.732 0.733 0.731 0.732
w3 0.732 0.731 0.735 0.733 0.730
w4 0.730 0.731 0.732 0.732 0.730
w5 0.733 0.734 0.733 0.732 0.733
w6 0.734 0.734 0.733 0.733 0.734
w7 0.722 0.722 0.727 0.727 0.723

Source: Research data.

Table 9 – MAP measures achieved by ICARUS-Seg while varying m and the retrieval model. The bold
value is the best result.

Weight
MAP

m = 300 m = 600 m = 1,000 m = 1,500 m = 2,000

Cosine 0.690 0.696 0.702 0.704 0.708
Jaccard 0.710 0.713 0.716 0.718 0.719

w1 0.733 0.733 0.733 0.734 0.733
w2 0.735 0.734 0.736 0.734 0.736
w3 0.739 0.739 0.739 0.740 0.739
w4 0.737 0.738 0.737 0.736 0.737
w5 0.738 0.738 0.737 0.736 0.737
w6 0.739 0.738 0.737 0.736 0.737
w7 0.732 0.735 0.733 0.733 0.733

Source: Research data.

5.4.3 The Flight of ICARUS

We compared ICARUS and ICARUS-Seg with 5 methods. The CL-Measure (BLANCO et al.,
2016), a similarity measure for ulcer images. Since ICARUS is based on S-BoVW techniques,
we also compared it with BoSS-CT (CHINO et al., 2018), SDLCT (SANTOS et al., 2017) and
C-BoVW (SIVIC; ZISSERMAN, 2003). We are considering both color and texture rank scores
to be equally important, as proposed by Santos et al. (SANTOS et al., 2017). For the C-BoVW,



80 Chapter 5. Skin Ulcer Image Retrieval

Figure 29 – Query example of ICARUS and the state-of-the-art. The green letters represent the query im-
age class and the red letters are incorrect classes. The letters G, F and N stand for granulation,
fibrin and necrosis respectively.
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Source: Elaborated by the author.

we used two different configurations. One using a vocabulary of 20,000 visual words using the
SIFT descriptor (JEGOU; DOUZE; SCHMID, 2008) and another 1,000 visual words using the
deep learning based descriptor, DELF (NOH et al., 2017). We will be referring to these methods
as BoVW20k-SIFT and BoVW1k-DELF respectively. For the BoVW20k-SIFT, the visual words
were learned from Flickr60K dataset using SIFT descriptor (JEGOU; DOUZE; SCHMID, 2008).
The BoVW1k-DELF visual words dictionary were learned from a K-Means clusterings of the
DELF descriptors extracted from the knowledge dataset. For all methods we used the author’s
recommended parameters.

Figure 29 shows a query example of all methods. The query image shows an image of
a skin ulcer with fibrin tissue. ICARUS was able to retrieve all 5 images also containing fibrin
tissue lesions. On the other hand, the competitors also retrieved images with granulation and
necrosis tissues. Although CL-Measure also classifies the superpixels of the images according
to their lesions it incorrectly retrieved images without fibrin tissue. One reason for this low
precision was due to the fact that CL-Measure classified the yellow regions of some images
as fibrin (4th and 5th images). However, the yellow region on these images are tissues in an
advanced healing stage. The other methods use the whole image to extract features and were
mainly influenced by the color of the skin and the background.

We calculated the MAP for each class and the average of all classes for all methods.



5.4. Experiments and Discussion 81

Table 10 shows the results achieved for each method in each class. Analyzing each class
individually, ICARUS achieved the best result for granulation and ICARUS-Seg was the second
best. And for fibrin and callous, ICARUS-Seg had the best results. CL-Measure achieved the
best results on the necrosis class. One reason for ICARUS worst performance on the necrosis
class is due to the fact that the majority of the images with necrosis tissues have a mixture of
lesions. Usually these images have only a small portion of necrosis tissues, which leads to the
presence of features extracted from different regions. Since CL-Measure weights each lesion
according to the ratio of the lesion area on the image, it considers images with a similar ratio of
lesions as more similar. On the other hand, ICARUS does not take this ratio in consideration
when using the VSM weights. On the VSM w3 weight, the most frequent word have a higher
relevance. For this class in specific, ICARUS-Seg had a better result when using the Cosine
similarity, achieving a MAP of 0.830.

Table 10 – MAP for all methods. The highlighted line is our proposal and the bold values are the best
results.

Method Granulation Fibrin Callous Necrosis Average

ICARUS-Seg 0.681 0.554 0.902 0.822 0.740
ICARUS 0.692 0.539 0.885 0.823 0.735

CL-Measure 0.679 0.522 0.862 0.834 0.724
BoSS-CT 0.656 0.538 0.893 0.816 0.726
SDLCT 0.654 0.537 0.892 0.818 0.725
BoVW20k-SIFT 0.602 0.519 0.870 0.830 0.705
BoVW1k-DELF 0.632 0.532 0.864 0.816 0.711

Source: Research data.

While considering the average of all classes, ICARUS-Seg achieved the best result and
ICARUS was the second best. CL-Measure, BoSS-CT and SDLCT achieved similar results and
the BoVW achieved the worst results. ICARUS-Seg was 2.12% better than CL-Measure, 2.05%
better than SDLCT, 1.93% better than BoSS-CT, 4.04% better than BoVW1k-DELF and 4.93%
better than BoVW20k-SIFT.

We also analyzed the precision and recall curves when comparing ICARUS with the
other methods. On Precision and Recall curves, the closer the curve to the top (precision of
1.0), the better the method. Figure 30 shows the Precision and Recall curves of all methods
for each class. For the granulation class (Figure 30(a)), ICARUS had the best performance,
ICARUS achieved a precision of 0.771 with a recall of 0.2, being up to 5.5%, 8.9%, 8.9%, 8.82%
and 14.0% better than CL-Measure, SDLCT, BoSS-CT, BoVW20k-SIFT and BoVW1k-DELF
respectively. However, for recall values greater than 0.5, CL-Measure had a better precision. For
the fibrin class (Figure 30(b)), ICARUS-Seg had the best performance, ICARUS-Seg achieved a
precision of 0.6444 with a recall of 0.2, being up to 11.5%, 8.4%, 8.1%, 13.9% and 11.3% better
than CL-Measure, SDLCT, BoSS-CT, BoVW20k-SIFT and BoVW1k-DELF respectively. Both
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granulation and fibrin are the classes with more elements. For the callous class (Figure 30(c)),
ICARUS, BoSS-CT and SDLCT had a similar performance up to a recall value of 0.2. For
recall values greater than 0.4, ICARUS-Seg performed better than the other methods. It is
important to note that although ICARUS-Seg did not had the best performance, it was able to
achieve a precision of 0.916 with a recall of 0.4 and a precision of 0.85 with a recall of 1.0.
CL-Measure worst performance can be explained by the fact that the authors did not consider
callous lesions when proposing this similarity. Finally, for the necrosis class (Figure 30(d)),
CL-Measure achieved the best result, while the other methods achieved a similar results. All
methods were able to achieve a precision greater than 0.8 while retrieving all elements from this
class (recall of 1.0).

Figure 30 – Precision and recall curve comparison of all methods for each class. The closer the curve to
the top the better the method is.
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Figure 31 shows the average Precision and Recall curves for all methods. Both ICARUS
and ICARUS-Seg had similar results, however, ICARUS-Seg had a better precision with a
recall value greater than 0.2. ICARUS-Seg had a precision of 0.792 with a recall value of 0.2.
CL-Measure, BoSS-CT and SDLCT had similar results and, BoVW1k-DELF and BoVW20k
had the worst result. Considering the BoVW approaches, ICARUS was up to 3% more precise
than BoSS-CT/SDLCT, 4.9% more precise than BoVW20k-SIFT and 5.2% more precise than
BoVW1k-DELF. Moreover, ICARUS-Seg was 7.5% more precise than BoVW20k-SIFT with a
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recall value of 0.1. ICARUS was 3.7% more precise than CL-Measure when the recall value was
0.2. ICARUS and ICARUS-Seg were more precise because it discarded the non-relevant regions
to extract visual signatures, while the other methods used the whole image. On the other hand,
although ICARUS used the same training set, we considered the diseases only as relevant and
non-relevant, thus avoiding to label some regions incorrectly.

Figure 31 – Precision and recall curve comparison of all methods. The closer the curve to the top the
better the method is.
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Finally, we compared the time needed to execute a query on all methods. We measured
the time to extract features and then the time to process the query. We ran this process for every
image in the dataset 5 times. The results showed are the average time value of all runs. Table 11
shows the average time needed to extract and to query for one image. Since CL-Measure is based
on similarity measures, we are also measuring the time ICARUS needed to process queries using
the Jaccard similarity. The top two lines uses similarity measures and the bottom six lines uses
the VSM with w3 weight as a retrieval method.

While extracting features/visual signatures, ICARUS was faster than most of the methods.
ICARUS was 14 times faster than CL-Measure to extract features and 4 times faster than
BoVW20k-SIFT and BoVW1k-DELF. CL-Measure was a lot slower since it extracts superpixels
with a fixed size (number of pixels). Depending on the dimension of the image, it may extract
more local features to be classified. Both BoVW20k-SIFT and BoVW1k-DELF was slower
because they use a more complex extractor, SIFT and DELF respectively. Additionally, they
also need to query a visual dictionary to assign the visual words. Both ICARUS and BoSS
extracted visual signatures with similar times, but ICARUS is slightly slower because it has
the classification step. ICARUS-Seg was 2 times slower than ICARUS due to the fact that
ICARUS-Seg uses a segmentation algorithm based on a deep neural network to classify the
features as relevant. ICARUS was 3 times slower than SDLCT, since SDLCT uses a regular
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Table 11 – Elapsed time to extract features and execute one query of each method. The highlighted lines
are our proposal and the bold values are the best results.

Method Extraction Time (s) Query Time (s)

ICARUS (Jaccard) 3.362781 0.002563
CL-Measure 46.68183 348.6101
ICARUS 3.362781 0.003479
ICARUS-Seg 6.319333 0.008442
BoSS-CT 3.038659 0.015619
SDLCT 1.155796 0.010344
BoVW20k-SIFT 13.188789 0.101450
BoVW1k-DELF 13.552783 0.004101

Source: Research data.

grid to extract the local features and ICARUS uses a superpixel approach. However, ICARUS
and ICARUS-Seg is much faster for querying, which is what really matters, since querying is
executed several times, while the feature extraction is made just once.

Regarding the query processing time, ICARUS was faster than all the state-of-the-art
methods. ICARUS was 4.5, 3 and 29 times faster than BoSS, SDLCT and BoVW20k-SIFT
respectively. ICARUS was faster than the other BoVW approaches, since it extracts less visual
signatures after discarding the local features from non-relevant regions. BoVW1k-DELF had a
similar query time than ICARUS due to the fact that DELF was trained to extract fewer local
features than SIFT. In addition, ICARUS was 5 orders of magnitude faster than CL-Measure.
CL-Measure is slower because it extracts more local features and is the only approach which
uses numerical features, demanding more calculations. Also, CL-Measure is quadratic in the
number of local features per class. The other approaches are based only on the frequency of
the visual words. It is important to note that ICARUS-Seg was 2 times slower than ICARUS.
This was due to the fact that the segmentation method used on ICARUS-Seg (Automatic Skin
Ulcer Region Assessment (ASURA)) was more accurate than the feature classification used on
ICARUS (see Section 6.4). This difference on the feature classification leads to fewer visual
words extracted when using ICARUS.

5.5 ICARUS-Fire

In this section we explore how well the ICARUS approach can be used on images in different
domains, such as images containing emergency situations with fire. In order to adjust ICARUS to
support fire images (ICARUS-Fire), we replaced the segmentation algorithm with the BoWFire
(Chapter 3) method trained on the BoWFire dataset. We implemented ICARUS-Fire in Python
and all experiments were carried out on a 3.40GHz Intel Core i7-4770 CPU with 16GB RAM
and a NVIDIA GeForce GTX 645 with 1GB GDDR5, running Ubuntu 16.04. To evaluate
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ICARUS-Fire, we used the Flickr-Fire dataset and performed queries centered at each image,
using the leave-one-out strategy. For each query we calculated the MAP, precision and recall.

Figure 32 – Precision and recall curve comparing the ICARUS-Fire and BoSS on the Flickr-Fire
dataset. The closer the curve to the top the better the method is.
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We compared ICARUS-Fire with BoSS, Figure 32 shows the precision and recall curves
achieved by both methods. One can see that ICARUS-Fire presented a better behavior than BoSS,
ICARUS-Fire had a precision of 0.755 with a recall of 60% while BoSS had a precision of 0.686.
When measuring the MAP, ICARUS-Fire was 4% better than BoSS. ICARUS-Fire achieved a
MAP of 0.729, while BoSS achieved 0.703. These results show that the ICARUS approach can
also be used on different domains of application to improve the precision on retrieval tasks.

5.6 Final Thoughts
In this Chapter we presented ICARUS, a CBIR method based on the bag-of-visual-words
approach, which focuses only at the relevant regions of each image. ICARUS extracts local
features from the image regions using superpixels. The local features are classified as either
relevant or non-relevant. The relevant features are then assigned to visual signatures based on the
dominant colors and textures.
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CHAPTER

6
SKIN ULCER SEGMENTATION

In this Chapter we imply the use of deep convolutional neural networks to segment lesions on
skin ulcer images. We also use image processing techniques to detect ticks on measurement
rulers/tapes to estimate the pixel density of the images. By doing so, we can estimate the area
of the lesions in real-world units, which can aid physicians on patients’ healing follow-up.
The organization of this Chapter is as follows. We give a brief introduction on the problem
of skin ulcer segmentation on Section 6.1 and show the challenges of processing skin ulcer
images on Section 6.2. Section 6.3 introduces the ASURA framework and Section 6.4 shows
its results. Finally, Section 6.5 show our final thoughts on the skin ulcer segmentation problem.
This Chapter is based on the work submitted to the Journal of Computer Methods and Programs
in Biomedicine (CHINO et al., 2019).

6.1 Introduction

Clinical environments are increasingly improving the capacity of generating large amounts of
images, exams, and related information. Advances in technologies such as cameras, storage
infrastructure, and clinical equipment are improving the quality of such information (PEREYRA
et al., 2014). However, many health care facilities do not have access to specialized equipment
for image acquisition, such as computerized tomography scanners. Patients bedridden due to
specific health conditions need to be examined at home. This is the case of patients presenting
chronic skin lesions, referred to as skin ulcers.

Skin ulcers appear due to different reasons, including poor blood circulation, injuries,
infections, tumors and other skin conditions (DORILEO et al., 2008; DORILEO et al., 2010).
The lesion visual appearance can provide clinical signs that lead physicians during the diagnosis
process. Venous skin ulcers are lesions with different healing stages, namely fibrin, granulation,
callous and necrosis. Physicians and caretakers follow-up the healing evolution of lesions on
patients by regularly taking photographs of the lesion. The healing time of each wound depends
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on multiple factors, including depth, location, patient age, local and systemic disease, and wound
size (MORTON; PHILLIPS, 2016).

The introduction of deep learning techniques (KRIZHEVSKY; SUTSKEVER; HIN-
TON, 2012) has motivated several works to use CNNs on the medical domain. Photograph
images have being used to recognize melanomas by segmenting (Yuan; Chao; Lo, 2017) or
classifying (KAWAHARA; HAMARNEH, 2016; Yu et al., 2017) them, and for foot ulcer seg-
mentation (GOYAL et al., 2017). However, to the best of our knowledge, there are little works
that deal with skin ulcer images.

This task requires two major steps: the ulcer region segmentation and the wound area
measurement. The image segmentation task refers to locating the boundary between the lesion
and the surrounding skin (NAVARRO; ESCUDERO-VINOLO; BESCOS, 2018). By measuring
the ulcer size, physicians are able to deem the healing evolution of the patient, compared to
previous measurements. The ulcer area estimation is usually performed manually, which can
be a time consuming and inaccurate task (BLANCO et al., 2016), also causing discomfort to
the patients. However, accurate and automatic lesions measurement strongly relies on well-
segmented regions. Existing works lack on accurate segmentation, as they focus more in the
retrieval and classification tasks (DORILEO et al., 2010; PEREYRA et al., 2014; SEIXAS;
BARBON; MANTOVANI, 2015; BLANCO et al., 2016; CHINO et al., 2018).

Based on such scenario, in this work we propose the ASURA framework. ASURA uses
CNNs and is able to detect and segment the ulcer lesions and the measurements tools depicted
in the images, such as measurement rulers and/or tapes. With these information, ASURA
automatically computes the lesion size, helping physicians and caretakers in the analysis of the
patient’s image. Accordingly, the contributions of ASURA are two-fold:

∙ Precision: ASURA accurately segments regions depicting skin ulcers and measurement
rulers/tapes using deep CNN; and

∙ Area measurement: ASURA computes the area of lesion in real world units, based on
the pixel density information and the segmented measurement ruler/tape.

We provide an extensive experimental analysis, comparing our proposal to state-of-the-
art methods for the segmentation of skin ulcers. Regarding the wound area measurement, we
compare the obtained results of ASURA to manually annotated segmentations, showing the high
accuracy of our method.

6.2 Area Estimation Challenges
One problem with skin ulcer images is the lack of standards to register and analyze them.
Different from other medical images, such as Computerized Tomography (CT) scans, Magnetic
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Resonance Imaging (MRI) and ultrasound, there is no specific equipment to capture images of
skins lesions. Physicians take pictures from the whole lesion and perform comparisons spanning
distinct healing stages at different periods of time. Usually, the pictures are taken using digital
cameras or smartphones.

One way to overcome this problem is by creating a standard protocol to take the pictures,
regarding the distance of the camera to the lesion, lighting conditions and background. However,
it is not always possible to follow this protocol. The size of the lesion may guide the distance that
the picture must be taken, or the picture may be taken at different locations (different lighting
or background). It is also difficult to take pictures of lesions located in parts of the body with
low access, mainly due to mobility deficiencies of patients. In these cases, the angle can harden
even further the analysis of the image. Consequently, the size of the reference object may vary
depending on the image. Figure 33 shows examples of distinct measurement rulers/tapes that
can be found on skin ulcer images.

Figure 33 – Example of measurement rulers/tapes.

Source: Elaborated by the author.

On this Chapter we will be analyzing images from the ULCER-DATASET (DORILEO
et al., 2008) and the ULCER-DATASET-2. The ULCER-DATASET (DORILEO et al., 2008) is
composed of 217 dermatological images originated from both venous or arterial insufficiencies.
The lesions were located on the inferior limbs with different sizes and healing stages. Only
one lesion per patient was included and the majority of the patients skin color was white. The
ULCER-DATASET-2 is composed of 229 dermatological images, also originated from both venous
or arterial insufficiencies. The lesions were also located on the inferior limbs with different sizes
and healing stages. For each patient, a series of images were taken along a period of 90 days. On
both datasets the images were taken using a digital camera. Personal data were deleted by an
anonymization process. For both datasets, experts manually segmented the lesion region and the
measurement ruler/tape to create a ground truth mask. Figure 34 shows some examples of the
images and their respective masks. The red region on the ground truth mask is the lesion area
and the white region is the measurement ruler/tape.

6.3 The ASURA Framework
In this section, we introduce Automatic Skin Ulcer Region Assessment (ASURA) framework
to measure the area of lesions on skin ulcer images. ASURA uses a deep learning approach
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Figure 34 – Example of skin ulcer images. The dataset images are on the top row and the ground truth
masks are on the bottom row.

ULCER-DATASET ULCER-DATASET-2
Source: Elaborated by the author.

to segment the skin ulcer lesion. By analyzing objects like measurement rulers/tapes on the
images, ASURA is able to estimate the area of the ulcer lesion in real world units. ASURA works
performing two steps: (A) Ulcer Segmentation and (B) Pixel Density Estimation. Figure 35
shows the ASURA’s architecture. ASURA also offers an interactive GUI in which the user can
analyze the provided automatic Pixel Density estimation. Alternatively, the user also has the
option of manually mark a more accurate Pixel Density.

Figure 35 – ASURA framework.

Input Image

ASURA

(A) Segmentation (B) Pixel Density Estimation
Output

Area:  4.7 cm2

Source: Elaborated by the author.

6.3.1 Ulcer Segmentation

In the segmentation step, ASURA receives an skin ulcer RGB image and outputs a segmentation
mask with both the lesion and the measurement ruler/tape. Ulcer Segmentation is based on a
CNN for image segmentation. Since the size of the training dataset is limited, ASURA uses an
architecture model based on the U-Net (RONNEBERGER; FISCHER; BROX, 2015).

Figure 36 shows the model of the architecture used. The network consists of an encoder
and a decoder. First, ASURA receives as input an RGB image with arbitrary resolution. Since
the input layer of the network is a tensor of size (512x512x3), the image is resized to a 512x512
resolution. The encoding phase consists of repeatedly applying two 3x3 padded convolutions
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Figure 36 – Architecture of the network used by ASURA. The blue tensors are the encoders and the red
tensors are the decoders.
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followed by an exponential linear unit (ELU). The tensor size is then halved by a 2x2 max pooling.
The decoder consists of the repeatedly applying a 2x2 deconvolution which halves the depth of
the tensor. This tensor is then concatenated with the corresponding tensor on the encoding phase.
Then again, two 3x3 padded convolutions followed by an Exponential Linear Unit (ELU) are
applied. The output layer of the network is a 1x1 sigmoid convolution to map the 16 layers of the
decoded tensor into the three classes (lesion, measurement ruler/tape, background). In the final
step, the output tensor is resized to the resolution of the input image. A heaviside step function is
applied on the resized segmentation mask.

6.3.2 Pixel Density Estimation

After the Ulcer Segmentation step, ASURA process objects such as measurement rulers/tapes
to estimate the Pixel Density (λ ) of the image. With the segmentation mask and knowing the
Pixel Density of the image, it is possible to estimate the area of the lesion in real world units.
Figure 37 shows the steps used by ASURA to estimate λ .

Pixel Density Estimation receives as input the image and a segmentation mask of the
ulcer lesion, as well as the measurement ruler/tape. (a) Using the segmentation mask, ASURA
crops the measurement ruler/tape and delete the image’s background (Figure 37(a)). (b) To
simplify the measurement ruler/tape processing, ASURA finds the orientation of the ruler and
rotates the image horizontally (Figure 37(b)). (c) On the next step, ASURA binarize the image
(Figure 37(c)). The image is converted to gray scale and passes through an auto-threshold method.
Then, a vertical edge detector filter is applied on the binarized image. (d) After the edge detector
filter, ASURA uses a line detector to detect the ticks on the measurement ruler/tape (Figure 37(d)
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Figure 37 – Pixel Density Estimation steps. (a) Find and crop the measurement ruler/tape in the image.
(b) Rotate the measurement ruler/tape. (c) Binarize the image. (d) Detect lines in the image.
(e) Keep only the most frequent parallel lines. (f) Group ticks by size and calculate distance
between ticks.

(a) (b) (c)

(d) (e) (f)
Source: Elaborated by the author.

depicted in red). (e) With the ticks detected as line segments, ASURA group the ticks by its
angle and keeps only the most frequent parallel ticks (Figure 37(e) shown in red). (f) On the
last step, ASURA group the ticks by size and then calculate the distance in pixels between ticks
of each group (Figure 37(f)). It is important to note that some images may have more then one
measurement ruler/tape. In these cases, the steps are repeated for each segmented measurement
ruler/tape. Algorithm 5 shows the algorithm used by ASURA to estimate λ .

Algorithm 5 – Pixel Density Estimation algorithm.
Input: I: input image, Mask: segmentation mask
Output: λ : distances in pixels between ticks

1: rulerI , rulermask← cropRuler(I, Mask)
2: rulerI ← findAngleAndRotate(rulerI,rulermask)
3: rulerbw← binarizeImage(rulerI)
4: ruleredge← verticalLineFilter(rulerbw)
5: lines← detectLines(ruleredge)
6: lines0← getMostFrequentParallel(lines)
7: L← groupBySize(lines0)
8: λ ← /0
9: for all li ∈ L do

10: λi← calculateDistance(li)
11: Add λi to λ

12: end forreturn λ

6.3.3 Graphical User Interface

ASURA has an interactive GUI that allows the user to browse the image and to analyze the
segmentation output mask and the Pixel Density estimation. The interactive interface also allows
the user to indicate a better Pixel Density estimation when needed.
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Figure 38 – ASURA’s interactive graphical user interface.

Source: Elaborated by the author.

Figure 38 shows the ASURA’s GUI. On the area highlighted in green (1), the user can
see the input image and the output of the Ulcer Segmentation. On the area highlighted in blue
(2), the user can draw a line on the measurement ruler/tape image to indicate the length of the
real world unit he/she desires to employ. Finally, on the area highlighted in red (3), ASURA
shows the Pixel Density estimation. ASURA marks the detected ticks and assumes the red line
below the measurement ruler/tape as the estimated distance between the ticks. If ASURA detects
more than one tick size, it uses different colors for each tick size.

6.4 Experiments

In this section we show the performance of ASURA to estimate the area of the lesions in
ulcer images. To evaluate ASURA, we run two sets of experiments: Ulcer Segmentation and
Pixel Density estimation. We implemented ASURA in Python with the Keras libraries1 using
TensorFlow2 backend. All experiments were carried out on a 4.20GHz Intel Core i7-7700k CPU
with 16GB RAM and an NVIDIA Titan Xp with 12GB GDDR5X, running CentOS 7.

1 https://keras.io/
2 https://www.tensorflow.org/
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6.4.1 Datasets and Data Augmentation

We evaluated ASURA on two skin ulcer datasets: ULCER-DATASET and ULCER-DATASET-2. We
also considered the combination of both datasets (ULCER-BOTH) to evaluate ASURA. To evaluate
ASURA, we split the datasets in test and training by a ratio of 70:30. The images were randomly
split between the test and training sets such that images from one patient are present in both sets.

Figure 39 – Examples of the some images produced after the data augmentation.

Original Variations
Source: Elaborated by the author.

As mentioned in Section 2.4, deep learning models require a large amount of data to
correctly learn patterns. Since both ULCER-DATASET and ULCER-DATASET-2 are small datasets,
we imply the use of data augmentation to increase the robustness of ASURA. The images and
masks were augmented using a series of random geometric transformations (translation, scale
and rotation). Each image was translated by a random value up to 10% of the width/height of
the image. Each image was rotated by a random angle between −15∘ and 15∘. And finally each
image was scaled up/down by a random value between 0.8 and 1.2. Points outside the image that
are now visible were filled with a background color (black). Figure 39 shows examples of these
transformations. Each mask received the same geometric transformations of its respective image.
Table 12 shows the number of images in the test, training and augmentation for each dataset.

Table 12 – Number of images of each datasets.

Dataset Size Test Training Augmentation

ULCER-DATASET 217 64 153 1671
ULCER-DATASET-2 229 68 161 1558

ULCER-BOTH 446 132 314 1560
Source: Research data.

6.4.2 Ulcer Segmentation Evaluation

The first set of experiments evaluated how well ASURA segmented the skin ulcer images. We
compared ASURA with CL-Measure (BLANCO et al., 2016), ICARUS (Chapter 5) and a
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pixel color based segmentation (Color Classification). For both CL-Measure and ICARUS we
considered the superpixel classification step as a segmentation algorithm. The Color Classification
is the same algorithm introduced in Chapter 3, using the skin ulcer image datasets as training
set. Although Dorileo et al. (DORILEO et al., 2010) and Pereyra et al. (PEREYRA et al., 2014)
proposed ulcer segmentation algorithms, they were not directly compared with ASURA. Dorileo
et al. was designed in a controlled environment, all images need a blue background. Since we
are also considering images outside this scope, the results obtained by Dorileo et al. would
be harmed. Pereyra et al. was not considered since it requires manual selection of the correct
clusters. For this step we aimed at automatic segmentation methods.

To evaluate the overall effectiveness of all methods, we run each segmentation method in
every image of each test dataset. Then, we calculated five measures: Jaccard Coefficient, Dice
Score, Precision, Recall, F1-Score. These measurements are given by Equations 6.1, 6.2, 3.1, 3.2
and 3.4 respectively. All results shown in this Section are the average of all images.

Jaccard Coefficient(GT,Seg) =
|GT ∩Seg|
|GT ∪Seg|

(6.1)

Dice Score(GT,Seg) =
2 · |GT ∩Seg|
|GT |+ |Seg|

(6.2)

where GT is the ground truth region and Seg is the region yielded by the segmentation algorithm.

Figure 40 – Evaluation considering the five indexes of the segmentation methods on each dataset.
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Source: Elaborated by the author.

Tables 13, 14 and 15 show the results obtained by all methods on the ULCER-DATASET,
ULCER-DATASET-2 and ULCER-BOTH, respectively. Figure 40 shows a summary of the results.
Our experiments showed that ASURA outperformed the competitors on all datasets. On all
datasets, ASURA achieved values above 86% for the Jaccard Coefficient and above 90% for
the other measurements. On the ULCER-DATASET, ASURA was 38% better than the second best
method (ICARUS), 41% better than CL-Measure and 59% better than Color Classification on
the Jaccard Coefficient. When comparing the Dice Score and F1-Score, ASURA was 28% better
than the second best method (ICARUS), 32% better than CL-Measure and 48% better than Color
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Classification. According to the authors, for this dataset, Pereyra et al. (PEREYRA et al., 2014)
achieved a Jaccard Coefficient of 56%.

Table 13 – Evaluation of the segmentation methods on the ULCER-DATASET. The highlighted line is our
proposal and the bold values are the best results.

Method Jaccard Dice Precision Recall F1-Score

ASURA 86.5 92.4 92.5 93.1 92.4
CL-Measure 50.7 62.8 74.9 61.1 62.8

ICARUS 53.2 66.5 80.8 62.5 66.5
Color Class. 35.3 48.0 51.6 56.5 48.0

Source: Research data.

A similar behavior occurred with the ULCER-DATASET-2. ASURA was 49% better than
the second best method (ICARUS), 62% better than CL-Measure and 59% better than Color
Classification on the Jaccard Coefficient. When comparing the Dice Score and F1-Score, ASURA
was 40% better than the second best method (ICARUS), 54% better than CL-Measure and 49%
better than Color Classification.

Table 14 – Evaluation of the segmentation methods on the ULCER-DATASET-2. The highlighted line is
our proposal and the bold values are the best results.

Method Jaccard Dice Precision Recall F1-Score

ASURA 87.2 92.6 94.7 91.9 92.6
CL-Measure 33.2 42.4 52.3 42.9 42.4

ICARUS 44.7 55.9 71.3 54.4 55.9
Color Class. 35.9 47.2 59.6 54.2 47.2

Source: Research data.

While processing the combined dataset (ULCER-BOTH), ASURA was still able to correctly
segment the lesion regions in the skin ulcer images. ASURA was 45% better than the second
best method (ICARUS), 54% better than CL-Measure and 63% better than Color Classification
on the Jaccard Coefficient. When comparing the Dice Score and F1-Score, ASURA was 35%
better than the second best method (ICARUS), 46% better than CL-Measure and 52% better than
Color Classification.

Figures 41 and 42 show one example of the segmentation output from ULCER-DATASET
and ULCER-DATASET-2, respectively. On both datasets, ASURA had an output similar to the
Ground Truth (GT). We can note that both CL-Measure and ICARUS had problems to segment
the lesions because of the miss-classification of their superpixels. Since Color Classification is
pixel-wise, it is unable to correctly segment the whole lesion, thus some pixels inside the region
were not considered as part of the lesion.
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Table 15 – Evaluation of the segmentation methods on the ULCER-BOTH. The highlighted line is our
proposal and the bold values are the best results.

Method Jaccard Dice Precision Recall F1-Score

ASURA 86.0 91.4 93.7 90.7 91.4
CL-Measure 39.4 49.7 61.7 48.8 49.7

ICARUS 47.1 59.2 76.6 55.1 59.2
Color Class. 31.9 43.5 61.0 44.6 43.5

Source: Research data.

Figure 41 – Example of the ulcer segmentations of an image from ULCER-DATASET.

(a) Input image (b) Ground truth (c) ASURA

(d) CL-Measure (e) ICARUS (f) Color Class.

Source: Elaborated by the author.

Figures 43 and 44 show examples of bad segmentation outputs generated by ASURA
for the ULCER-DATASET and ULCER-DATASET-2. In Figure 43, ASURA considered parts of the
lesion as healthy/background, one reason for this error was due to the fact that this image has
a shine region on that part of the lesion. Color Classification had problems with this image
because the lighting of the image made the skin looks reddish. However, it is important to note
that although this is one of the worst segmentations, ASURA achieved a Jaccard Coefficient of
67.81% and a Dice Score of 80.82%. ASURA also had a bad performance while segmenting
images with small lesions (Figure 44). For this image, ASURA achieved a Jaccard Coefficient
of 25.85% and a Dice Score of 41.08%. One reason for this bad performance on images with
small lesions are due to the fact that ASURA has to resize the images to the input tensor size
(512×512) and later resize the output tensor to the original size. The lesion on this image has
147 pixels and the ASURA output has 38 pixels. Small lesions also show the problem with
the methods based on superpixels, both CL-Measure and ICARUS were not able to segment
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Figure 42 – Example of the ulcer segmentations of an image from ULCER-DATASET-2.

(a) Input image (b) Ground truth (c) ASURA

(d) CL-Measure (e) ICARUS (f) Color Class.

Source: Elaborated by the author.

anything, since the size of the superpixel on both cases are larger than the size of the lesion. As
can be seen, all the cases where ASURA produced bad segmentation lead the other methods to
produce bad results too.

Figure 43 – Bad segmentation of a lesion with necrosis on the ULCER-DATASET.

(a) Input image (b) Ground truth (c) ASURA

(d) CL-Measure (e) ICARUS (f) Color Class.

Source: Elaborated by the author.
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Figure 44 – Segmentation of an image with a small lesion on the ULCER-DATASET-2.

(a) Input image (b) Ground truth (c) ASURA

(d) CL-Measure (e) ICARUS (f) Color Class.

Source: Elaborated by the author.

6.4.3 Pixel Density Estimation Evaluation

In this experiment, we evaluate how well ASURA is able to estimate the area of the lesion on
a real world unit of measurement, e.g., squared centimeters (cm2). The area A of a lesion can
be computed using the Pixel Density (λ ), thus, the area can be obtained using A = |Mask|/λ 2,
where Mask is a segmentation mask of the lesion. On this experiment we estimated the Pixel
Density in pixels per centimeter (pixel / cm). For evaluation purposes, an expert drew a one-
centimeter line in each image with the ASURA GUI. By measuring the length in pixels of this
line, it is possible to obtain the real Pixel Density (λreal) of each image. Examples of these lines
can be seen on the top row of Figure 45, the one centimeter line is marked by a red line.

Since ASURA can estimate more than one Pixel Density (λ ) per measurement ruler/tape
(distance between small ticks or distance between large ticks), the best estimation was chosen
(λest). It is important to note that sometimes the chosen λchosen can be equivalent to a fraction
of the desired unit. In this case, λchosen must be multiplied by the corresponding factor, e.g.,
if λchosen is equivalent to one millimeter, the estimated Pixel Density for one centimeter is
λest = 10×λchosen. With the values of λreal and λest , we can calculate three different areas in
real world unit of measurement:

∙ Ground Truth Area (Equation 6.3): using the size of the lesion on the ground truth mask
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(|GT |) and the real Pixel Density (λ )

Agt =
|GT |
λ 2

real
(6.3)

∙ Real Area (Equation 6.4): using the size of the lesion on the ground truth mask (|GT |)
and the estimated Pixel Density (λest)

Areal =
|GT |
λ 2

est
(6.4)

∙ [Estimated Area (Equation 6.5): using the size of the lesion on the ASURA segmentation
mask (|Seg|) and the estimated Pixel Density (λest)

Aest =
|Mask|

λ 2
est

(6.5)

To evaluate the results obtained by ASURA, we calculated the relative error E in percent-
age, which can be calculated using Equation 6.6. We calculated the relative error for all images
in the test set. The results shown in this Section are the average over all images.

Ev =
|v̄− v|

v̄
×100% (6.6)

where v can be any variable (λest , Areal and Aest), v̄ is the true value of the variable and v is the
estimated value of the variable.

Table 16 shows the relative error of the estimated Pixel Density (λest), real area (Areal)
and estimated area (Aest). By calculating the relative error of Areal , we can estimate the impact of
the ASURA’s Pixel Density estimation and the relative error of Aest shows how well ASURA
can estimate the lesion area in cm2. ASURA had the best result on the ULCER-DATASET-2,
estimating λest with a relative error of 5.6%, the error while calculating the area Areal was of
14.3% and the area Aest had an error of 18.0%. On the ULCER-DATASET, ASURA was able to
estimate λest with a relative error of 7.9%. Using the λest to calculate the Areal , ASURA had a
relative error of 19.1% and the estimated area Aest had an error of 23.9%. The ULCER-BOTH had
errors between ULCER-DATASET-2 and ULCER-DATASET.

Table 16 – Relative error of the Pixel Density and area estimation.

Dataset
Relative Error (%)

λest Areal Aest

ULCER-DATASET 7.9 19.1 23.9
ULCER-DATASET-2 5.6 14.3 18.0

ULCER-BOTH 6.7 16.6 21.3
Source: Research data.
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Figure 45 shows examples of some Pixel Density estimations. Figure 45(a) shows a
measurement tape where ASURA correctly estimated a λ equivalent to 1.0 cm. The estimated
Pixel Density is λest = 116 pixels/cm and the ground truth is λreal = 115 pixels/cm. Figure 45(b)
shows a measurement tape where ASURA estimated two different λ , one for the smaller ticks
(λred) and one for the larger ticks (λgreen). On this measurement tape, the smaller ticks are the
millimeters (mm) and the green ticks are the centimeters. For this measurement tape λreal = 100
pixels/cm, the estimated λred = 11 pixels/mm and λgreen = 101 pixels/cm. Figure 45(c) shows
a measurement tape with more details (colored squares). Even with a more complex object,
ASURA was able to correctly estimate the Pixel Density. Once again, ASURA estimated
two Pixel Density, λred = 47 pixels/(2×mm) and λgreen = 231 pixels/cm, the ground truth is
λreal = 240 pixels/cm.

Figure 45 – Example of correct Pixel Density estimation on different measurement tapes.

(a) (b) (c)

Source: Elaborated by the author.

However, ASURA was not able to correctly estimate the Pixel Density on some images.
Figure 46 shows an example of a bad estimation. While trying to detect the ticks on this
measurement tape, ASURA wrongly detected the vertical lines on the text as ticks. Also, this
image has a bright spot on a region of the measurement tape, leading ASURA to fail to detect the
ticks on this region. The ground truth on this measurement tape is λreal = 52 pixels/cm, due to
this problems, ASURA estimated λred = 15 pixels/2mm for the red ticks and λgreen = 87 pixels
per unknown unit for the green ticks. Since we cannot use λgreen, we can use λred to estimate
λest = 5×λred = 80 pixels/cm, giving a relative error of 44.0%.

Figure 46 – Wrong Pixel Density estimation.

Source: Elaborated by the author.

When using a λest with a high relative error, the relative error on both areas Areal and
Aest grows even more. To overcome this problem, we can take advantage of the interactive GUI
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of ASURA. If the user is not satisfied with the estimated λ , the user can manually mark a more
accurate λ . Figure 47 shows the relative error distribution on all datasets. It is possible to note
that, the majority of the estimated λ have a relative error up to 20%.

Figure 47 – Pixel Density’s relative error distribution on all datasets. The bars are the histogram and the
lines are the probability density function (PDF).
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Measurements of the Pixel Density performed by ASURA with a high relative error
can be manually fixed by the user (expert). If the user opts to replace the estimations with a
relative error greater than 20%, the new relative errors are shown in Table 17. By replacing the
wrong estimations, we had a reduction of up to 2% on the relative error of the Pixel Density
on all datasets. We reduced the relative error on the area Areal by 5.3%, 6.4% and 5.9% on the
ULCER-DATASET, ULCER-DATASET-2 and ULCER-BOTH respectively. The relative error on the
area Aest is reduced by 5.0%, 5.9% and 5.5% on the ULCER-DATASET, ULCER-DATASET-2 and
ULCER-BOTH respectively.

Table 17 – Relative error of the Pixel Density and area estimation with the aid of an expert.

Dataset
Relative Error (%)

λest Areal Aest

ULCER-DATASET 6.1 13.8 18.9
ULCER-DATASET-2 3.6 7.8 12.1

ULCER-BOTH 4.8 10.7 15.8
Source: Research data.

Although the user must input a new value of Pixel Density on some estimations, the
majority of the images are below 20% of relative error. Figure 48 shows the percentage of
estimations with a relative error lower than the values on the x axis. All datasets have more than
90% of estimations with a relative error lower than 20%, the ULCER-DATASET have 93.8%, the
ULCER-DATASET-2 have 92.6% and the ULCER-BOTH have 93.2%. This shows that by replacing
only a few bad estimations we can improve the area estimation by up to 5.9%.
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Figure 48 – Proportion of estimations with a relative error lower than the values on the x axis.
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6.5 Final Thoughts
In this Chapter we presented the ASURA framework aimed at estimating the lesion area of a
skin ulcer image. ASURA uses an encoder/decoder deep neural network to segment the lesion
on the image. The comparison of ASURA with methods built on traditional image processing
algorithms, such as CL-Measure and ICARUS, have shown that the deep learning approach
presented way better results. ASURA also detects the measurement ruler/tape present in the
image and automatically estimates the image’s pixel density. This allows an accurate size
measurement of the lesions.
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CHAPTER

7
CONCLUSION

The large amount of image data generated by social media, crowdsourcing and medical systems
can be useful for decision making tasks. The knowledge extracted from these images can aid
authorities in emergency situations or assist on the daily activities of physicians. In this PhD
research, we explored the use of these images from fire emergency situations and skin ulcer
images.

We explored the integration of segmentation methods with local features from CBIR
systems. First we focused on segmentation algorithms using superpixels. Then we expanded
the use of superpixels for local feature extractions and proposed an S-BoVW approach. Finally,
we integrate the segmentation methods with a CBIR system. The remaining of this chapter is
organized as follows. In Section 7.1 we discuss the contributions resulted by this PhD research. In
Section 7.2 we discuss the future lines of research. Finally, in Section 7.3, we list the publications
resulted by this PhD research.

7.1 Contributions of this PhD Research

The contributions of this PhD dissertation were results of four research problems investigated
during this PhD research. The first problem was to detect and segment fire in emergency situation
images, which can be provided by crowdsourcing. The second one was the proposal of a method
to represent local features based on S-BoVW using superpixels. The third problem consisted
of retrieving similar images on a chronic skin ulcer image dataset. And finally we explored
better ways to segment and assess the lesions on skin ulcer images. These contributions will be
discussed with more details in the following sections.

Another contribution of this PhD research, was the creation of two image segmentation
datasets. To the best of our knowledge, until the publication of the BoWFire method, fire
segmentation datasets focused only on forest fires. So, we proposed the BoWFire-Dataset, a fire
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segmentation dataset for urban emergency situations with fire. We collected images from Flickr
and manually segmented the fire regions of the images. The same problem was faced when
dealing with the skin ulcer image datasets. A team of specialists manually created the lesion
masks used on this PhD research. As additional contribution, we also analyzed the users’ behavior
in social media, e-commerce and phone calls based on the timestamps and the activity volume.
All implementations and the BoWFire-dataset are available in <http://chinodyt.github.io/>.

7.1.1 BoWFire

BoWFire, as described in Chapter 3, is a fire detection method in emergency situation images.
We explored the use of superpixels to reduce the complexity of the image, and analyzed two
modalities of the visual properties of the image. By analyzing both color and texture features,
BoWFire was able to correctly segment fire, and dismiss false-positives on still images.

7.1.2 BoSS

BoSS, as described in Chapter 4, is a S-BoVW that uses superpixels to extract local features.
By analyzing the fractal dimension of these features, BoSS can automatically estimate the best
parameters to map these features into visual signatures. Since BoSS is based on signatures, it
does not require the creation of visual dictionaries beforehand. The main contributions of the
BoSS are summarized as follows:

∙ Self-contained: by analyzing the patterns of the local histograms, we proposed a summa-
rization of the color histograms based on the most dominant colors and textures to generate
the visual signature.

∙ Intuitive parameter: BoSS estimates the γ parameter by using fractal analysis. The
intrinsic dimension provides the minimum number of attributes needed to represent the
color histogram in the application domain.

∙ Scalability: we showed that BoSS was scalable, being linear with the size of the dataset.

∙ Effectiveness: we showed that the visual signatures extracted using BoSS retrieved images
successfully, being up to 10.97% better than the state-of-the-art approaches.

7.1.3 ICARUS

The ICARUS framework, introduced in Chapter 5, is a CBIR system for skin ulcer images.
ICARUS integrates segmentation methods with local features. We imply superpixels to extract
the local features and map them in visual signatures. We introduced two approaches to segment
the lesion, one based on superpixel classification and one based on CNN (Chapter 6). By
integrating the segmentation with the feature extraction, ICARUS discards the non-relevant

http://chinodyt.github.io/
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regions of the image, such as background and health skin. The main contributions of ICARUS
are summarized as follows:

∙ Relevant Signatures: ICARUS uses only the local features from relevant regions to
represent the image. Our results showed an accuracy greater than 89% when ICARUS
classifies the local features.

∙ Fast: by discarding the non-relevant regions, ICARUS was able to process queries up to 5
orders of magnitude faster than the state-of-the-art methods.

∙ Effectiveness: lastly, the addition of semantic to the image representation resulted in an
increased precision while retrieving the similar images, being up to 7% better than the
state-of-the-art.

7.1.4 ASURA

ASURA, proposed in Chapter 6, is a skin ulcer assessment framework able to measure the area
of a skin ulcer lesion in real-world units. To segment the lesion and detect the measurement
ruler/tape, we used a CNN architecture. Them we used image processing techniques to detect
the ticks on the measurement ruler/tape and estimate the density of pixels/cm in the image.
ASURA can be used to aid physicians in the follow-up of the healing process of their patients.
Accordingly, its main contributions are as follows:

∙ Precision: ASURA was able to correctly segment the lesion regions with a precision
greater than 92.5%, having a precision up to 63% better than the competitors.

∙ Area measurement: ASURA was able to automatically estimate the pixel density of the
images with a relative error of 5.6% and semi-automatically able to estimate the area of
the lesion in cm2 with a relative error of 12.1%. This is a novel resource, previously not
available.

7.2 Future Work

After studying the methods developed in this research, it is possible to suggest several lines of
research that can continue and deepen the results obtained so far. A few suggestions are presented
as follows:

1. Explore the use of signatures based BoVW using local features extracted by deep learning
techniques.
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2. On the skin ulcer problem, considering that the physicians take photographs regularly of
patients. Is is also possible to analyze the temporal aspect of the lesions (increasing/de-
creasing size), and aid physicians to intervene on the patient treatment.

3. On this PhD research, we only explored the segmentation of the whole lesion without
taking in account the healing stages of the tissue (fibrin, granulation, callous and necrotic).
Knowing the evolution of these tissues can aid physicians even more. So, one future work
is the detection and assessment of these healing stages in skin ulcer images.

4. An additional future work is the development of a mobile application able to assess the
skin ulcer in real time. Since mobile devices have lower processing power, this can also
imply in changes on the protocol to take photographs of the skin ulcer. Instead of using
measurement tools, such as ruler and measurement tapes, physicians can use objects with
a known length or area, such as cards with patterns or QR codes.

7.3 List of Resulted Publications

The summary of the publications resulted from this PhD research are as follows:

∙ BoWFire (CHINO et al., 2015) was published in the 28th Conference on Graphics, Patterns
and Images (SIBGRAPI2015).

∙ An additional contribution of this work was the publication of a fire image segmentation
dataset, which is also part of a larger dataset, the Fire and Smoke Dataset (FiSmo) (CAZ-
ZOLATO et al., 2017). FiSmo is a dataset containing images and videos of fire and smoke
emergency situations. FiSmo was published in the Dataset Showcase Workshop, a satellite
event of the 32nd Brazilian Symposium on Databases (SBBD2017).

∙ BoSS (CHINO et al., 2018) was published in the 33rd ACM/SIGAPP Symposium On
Applied Computing (SAC2018).

∙ ICARUS (CHINO et al., 2018) resulted in a publication on the IEEE 31st International
Symposium on Computer-Based Medical Systems (CBMS2018).

∙ Finally the ASURA (CHINO et al., 2019) was submitted to the Journal of Computer
Methods and Programs in Biomedicine.

∙ As another contribution (see Appendix A), the user activity analysis method VolTime (CHINO
et al., 2017) was published in the SIAM International Conference on Data Mining (SIAM-
SDM2017).
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In addition to the mentioned contributions, the PhD candidate also collaborated with his
colleagues at the Database and Images Group1. A full paper was published at CBMS2018, in
this paper was proposed Retrieval-based Application for Imaging and Knowledge Investigation
(RAFIKI) (NESSO et al., 2018). RAFIKI is an infrastructure to automatically extract features
indexing and organizing all medical information in a relational data base management system.
RAFIKI also allows an integration of analytical tools.

1 GBdI (http://gbdi.icmc.usp.br/)
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APPENDIX

A
VOLTIME

The ability of following and analyzing the users behavior in specific situations can bring relevant
insight for detecting bias or even forecast changing of a tendency. Is it possible to spot review
frauds and spamming on social media and online stores? In this Chapter we analyze the joint
distribution of the inter-arrival times and volume of events such as comments and online reviews
and show that it is possible to accurately rank and detect suspicious users such as spammers,
bots and fraudsters. We propose VolTime, a generative model that fits well the inter-arrival time
distribution (IAT) of real users. Thus, VolTime automatically spots and ranks suspicious users.
The results on this Appendix were presented in the SIAM International Conference on Data
Mining (SIAM-SDM2017) (CHINO et al., 2017) and were obtained during an internship at the
Carnegie Mellon University (CMU), in the United States of America.

A.1 Introduction

Suppose that user ‘Alice’ uploaded 20 reviews to an app-store, all exactly 85 characters long
- is this suspicious? How about ‘Bob’, who uploaded 30 reviews, one every 10 minutes (but
of variable length)? Most people would agree that both ‘Alice’ and ‘Bob’ are suspicious, and
deserve further investigation. The reason for this agreement is that, for such a high count of
events, a real human’s activity would have higher variety (“dispersion”) - that is, higher count of
distinct values. This is one of the main insights behind this paper, and we show how to use it, to
model real user behavior, and to spot impostors.

Social media services and online review platforms influence opinions (LESKOVEC;
BACKSTROM; KLEINBERG, 2009; GUERRA et al., 2011; MATSUBARA et al., 2012; DOW;
ADAMIC; FRIGGERI, 2013) and even purchasing decisions (HOOI et al., 2016). This has
created issues such as spam (FAKHRAEI et al., 2013), spreading of rumors (BESSI et al., 2015)
and fake reviews (RAYANA; AKOGLU, 2015). Detecting these issues is important to improve
user’s experience. Thus, given the activities of a large number of users, can we find the user with
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the strangest behavior? Specifically, we present two inter-related problems:

∙ Modeling: How can we model human behavior across different platforms (social media,
online stores)? We want to model both the temporal-aspect (such as the inter-arrival time
of the events of a user), jointly with the volume of activity (number of characters in the
review, or phone call duration, among other aspects).

∙ Anomaly Detection: How can we use these models to detect anomalies such as spammers,
bots and fraudsters, like ‘Alice’, and ‘Bob’ in our earlier example.

To answer these questions, we analyze data from different domains, including comments
from a social media service (Reddit), reviews from an online store (Flipkart) and phone calls
from a large Asian city. From each platform, we analyze the joint distribution of inter-arrival
times (IAT) and volume (comment and review length; phone call duration) of communication
events.

Figure 49 – VolTime detects anomaly successfully: (a) The DISPERSION-PLOT reveals strange behav-
iors as outliers. (b) VolTime outperforms competitors on accuracy.
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Source: Chino et al. (2017).

Our first contribution is the introduction of the dispersion metric, which we use to
measure the variability of users’ behavior. Considering the example of ‘Alice’, her dispersion
would be 1 since all her comments have the same length. However, users with a larger variability
in the comment length would have a large dispersion. We also propose a visualization named
DISPERSION-PLOT, which illustrates the relationship between the dispersion and number of
events for different users. Figure 49(a) shows the DISPERSION-PLOT of Reddit users. While
typical users form a single cluster, suspicious users (indicated by red circles), clearly deviate
from this pattern.

The second contribution of this paper is VolTime, a model that generates synthetic
inter-arrival times (IATs) and event volumes. An important property of VolTime is that it closely
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matches the typical users’ dispersion. In Figure 49(a), the black line, which corresponds to the
expected dispersion of our VolTime, accurately follows the behavior of typical users. This allow
us to use VolTime to generate a score that measures users’ suspiciousness. That is, users whose
dispersion deviate most from VolTime’s dispersion will have a higher VolTime score. Our main
contributions are summarized as follows:

∙ Patterns - Population behavior: We proposed the dispersion (Equations A.5 and A.9)
to analyze how the joint distribution of inter-arrival times and volume changes as users
produce more events. By analyzing the dispersion across several diverse datasets through
the DISPERSION-PLOT, we show that normal users present a similar behavior while bots,
fraudsters and spammers clearly deviate from this pattern;

∙ VolTime - Generative model: Based on the patterns observed using DISPERSION-PLOT

we propose VolTime, a generative model that is able to describe the inter-arrival times of
communication events across all the studied domains;

∙ Usefulness - Anomaly detection: We used VolTime to automatically rank users according
to their suspiciousness. VolTime was able to detect bots using only time-stamp and event
volume data;

A.2 Background and Related Work

Modeling Human Dynamics: The dynamics of human activity is a widely studied topic (OT-
TONI et al., 2014; KRISHNAN; COOK, 2014; COSTA et al., 2017; KUMAR et al., 2018),
as it has applications that range from resource management (IHLER; HUTCHINS; SMYTH,
2006) and user clustering (ECKMANN; MOSES; SERGI, 2004; MALMGREN et al., 2009)
to anomaly detection (RAYANA; AKOGLU, 2015). A well-known model for the timing of
human activity is the Poisson-Process (HOEL; PORT; STONE, 1986; CHO; GARCIA-MOLINA,
2003; SIA; CHO; CHO, 2007). Other works argue that IAT distribution of human activities
can be better modeled by heavy-tailed distributions such as power-laws (BARABASI, 2005).
Recent models for human dynamics include the Self-Feeding Process (SFP) (Vaz de Melo et

al., 2015), Cascading Non-homogeneous Poisson Process (MALMGREN et al., 2009) and
Rest-Sleep-and-Comment model (RSC) (COSTA et al., 2015). There are also works that focus
on the activity volume (number of characters or call duration) as Truncated Lazy Contractor
(TLAC) (Vaz de Melo et al., 2010) for call duration. In this paper we propose a model for human
activity (VolTime) that describe both the timing of activities and the volume of an event, what to
the best of our knowledge was not done so far.

Anomaly Detection: There are many works devoted to detect anomalies based on user activ-
ity (CHENG et al., 2009; VAHDATPOUR; SARRAFZADEH, 2010; LAPPAS et al., 2012;
GUNNEMANN; GUNNEMANN; FALOUTSOS, 2014; TSYTSARAU; PALPANAS; CASTEL-
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LANOS, 2014; PAN et al., 2016). In (ZHANG; PAXSON, 2011) the authors proposed a method
that consists in creating a scatter-plot of the minute vs. the second for all comment time-stamps
of a user. This plot is then used to spot users from Twitter that are suspicious of being bots. In
(HOOI et al., 2016) the authors proposed BIRDNEST, which consist of two steps. A model
named BIRD (Bayesian Inference for Rating Data), which describes the statistical properties
of the timing and ratings in online commerce using a Bayesian model. Based on BIRD, the
authors introduced NEST (Normalized Expected Surprise Total), a suspiciousness metric to
detect fraudsters. Table 18 compares our proposed method with existing methods.

Table 18 – Summary of different models for human dynamics.
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A.3 Problem Formulation
In this Section, we outline the problem of modeling the user behavior on online social media.
Table 19 gives the list of symbols used throughout the paper.

A.3.1 How do individual users behave online?

On social services, users interact with each other by posting comments on a Reddit forum or
making mobile phone calls on a certain timestamp. We are given a user, as shown on Figure 50,
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Table 19 – Concepts and Symbols

Concepts Interpretation

Activity Volume Characteristic of the online activity.
Dispersion Number of non-empty bins.
DISPERSION-PLOT Visualization tool of population behavior.
DispersionScore Suspicioness of a user.

Symbols Definitions

n Number of events of a user.
T = {t1, t2, . . .} Multiset of timestamps of a user.
∆∆∆ = {∆1,∆2, . . .} Multiset of inter-arrival times of a user.
V = {v1,v2, . . .} Multiset of activity volumes of a user.
ei = (∆i,vi) Event at instant ti.
E = {e1,e2, . . .} Multiset of events of a user.
D(E ) Dispersion of events E .
D̂(n) Expected dispersion of n events.
τ DispersionScore.
ps Probability of user entering state s.
LL Log-logistic distribution.
θk,s = {αk,s, βk,s} Log-logistic parameters of attribute k and state s.
Θ Set of VolTime parameters.

Source: Chino et al. (2017).

Figure 50 – Users can post at any time ti an activity of volume v. The volume may correspond to the
number of characters (e.g. textual comments) or duration (e.g. phone calls).
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Source: Chino et al. (2017).

with a multiset of activities timestamps T = {t1, t2, . . .}, where ti ≤ ti+1. As the user interacts
with a social service, he/she can generate an activity volume vi at every ti. The activity volume v

is an attribute that describes the amount of the user interaction, for example, v can describe the
length (number of characters) of comments/reviews or the duration of a phone call.

For simplicity, we will denote each user interaction with social services as an event ei

represented by the ordered pair (∆i,vi), where ∆i = ti+1− ti. A user that interacts n times will
generate a multiset of activities events E = {e1, . . . ,en}. It is important to note that among the
infinite possibilities of describing a user, on this paper we will be using the inter-arrival time ∆

(IAT) between events. The issue of using timestamps directly is that it is not able to generalize
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the behavior of users that are more active during different times of day. With these considerations
in mind, the first problem can be stated as follows:

Problem 1. (MODELING STATISTICAL PROPERTIES) Given a multiset of events E = {e1, . . . ,en},
where each event ei = (∆i,vi), 1≤ i≤ n, is a pair of IAT (∆i) and activity volume (vi). What is
the joint distribution of the multiset?

A.3.2 How can we spot anomalies?

A right community on online social services helps the users to have better experience. With that
in mind, is it possible to describe the behavior of the community of users? Do the more active
users have the same behavior of the less active? These questions bring the main problems of this
paper:

Problem 2. (SUCCINCT FEATURE EXTRACTION) Given a multiset of n events (∆,v), find few
features to describe its behavior.

Problem 3. (SPOT SUSPICIOUS USERS) Given several multisets of events from different users,
find a score describing how suspicious a specific user is.

Our ultimate goal is to solve the Problem 3. To achieve this goal, we first handle with the
Problem 1 by understanding and describing how the majority of users behave in terms of the
joint distribution of IAT and volume (Section A.4). Then in Section A.5, we answer Problem 2
by extracting two features from a user’s behavior (multiset of events) (see Equation A.5). In the
same Section A.5, we answer Problem 3 using Equation A.6.

A.4 Modeling Statistical Properties
Is it possible to model the patterns of the users’ behavior? In this section we discuss the patterns
found on users’ online activity on real-world datasets. We also point the implications of our
findings and how to model their behavior.

A.4.1 Datasets Description

We analyzed four real-world datasets of user’s activity events, such as social media posts,
e-commerce reviews and mobile phone calls. The datasets are summarized in Table 20 and
described in details as follows.

Reddit: The Reddit dataset consists of comments posted by users on Reddit. Reddit allows
users to submit content, as text posts or URL links. The dataset was originally collected and used
in (COSTA et al., 2015). Out of the 94 thousand users, 60 users are known bots inserted by the
authors. Since the authors aimed at bot detection, we also checked the dataset for spammers and
users that now got their account deleted or banned.
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Table 20 – Summary of real-world datasets.

Dataset # of Users # of Events

Reddit 94,739 35,979,723
Flipkart 158,638 409,679
SWM 113,145 163,873
LAC 1,696,602 280,814,170

Source: Chino et al. (2017).

Flipkart: The Flipkart dataset consists of reviews written by users on the Flipkart e-commerce
network, which provides a platform for sellers to market products to costumers. Users can write
reviews of products using between 100 and 5000 characters.

Software Marketplace (SWM): The SWM dataset contains reviews in an anonymous online
software marketplace. For this dataset the timestamp has a granularity of a day, there is no
information about the time the review was posted. The dataset was originally collected by
(AKOGLU; CHANDY; FALOUTSOS, 2013).

Large Asian City (LAC): The LAC dataset has information of phone calls made on a large
anonymous Asian city. For this dataset, it was collected the timestamp of the beginning of a call
and its duration.

For the Reddit, Flipkart and SWM datasets the activity volume represents the length
of the text comment (number of characters). The IAT is calculated as the difference between
timestamps of consecutive events. For the LAC dataset the activity volume represents the duration
of a phone call in seconds. Since phone calls have a different nature, the IAT was calculated as
the difference of the end of call timestamp and the beginning of the next call.

A.4.2 Online Activity Event Patterns

The focus of this paper is to analyze the behavior of the user’s online activity events. As stated in
the beginning of Section A.3, an activity event is the ordered pair of IAT and activity volume.
The activity events of a user can be seen by his/her heatmap, a visualization that shows the
relationship between the IAT and the activity volume. The frequency of (∆,v) is shown using a
color coding, more frequent events are reddish and less frequent are bluish. The heatmap can
show the behavior of a single user or show how the entire population behaves.

Figures 51 and 54 show the heatmap for the population of each dataset. When analyzing
the activity volume, we make the following observation:

Observation 1. The Activity Volume can be accurately modeled by a mixture of log-logistic
distribution.
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Figure 51 – The heatmap of the Reddit dataset showing the behavior of users. Users have two distinct
behaviors, an in-session with activities in short bursts and an out-session with a larger IAT.
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Source: Chino et al. (2017).

The log-logistic (LL) distribution was previously used to model human activity, as
phonecall duration (Vaz de Melo et al., 2010) and users’ activity on social media (number of
posts, likes and photos) (DEVINENI et al., 2015). The log-logistic PDF is:

LLPDF(x;α,β )∼ (β/α)(x/α)β−1

(1+(x/α)β )2 (A.1)

where α is a scale parameter and β is a shape parameter.

It is also possible to notice that there are two modes on the activity events for all datasets
(see Figure 54). During the first mode, users appear to be more active, generating events with
inter-arrival times between 5 to 10 minutes. On the other hand, during the second mode (around 3
hours), they make a post and rest before generating a new event. We summarize these observations
as follows:

Observation 2. The events’ IAT can be described by a mixture of two log-logistics. The first
log-logistic corresponds to short intervals, generated by bursts of activity. The second log-logistic
is generated when users are less active or resting.

A.4.3 VolTime Model

How can we generate a model capable of following the Observations 1 and 2? In this section
we introduce VolTime, a generative model that is capable to describe the interval and volume
of human communication in different media. The goal of VolTime is to describe two aspects of
human communication: (i) the inter-arrival times (IAT) between events and (ii) the volume of
each event. VolTime is a generative model that creates pairs of synthetic IAT and event volumes
that matches statistical properties from real data. With VolTime, we can answer the Problem 1.

In order to respect Observation 2, VolTime uses a Markov chain to transition between
two states: in-session and out-session. Figure 52 shows the state digram for VolTime. If VolTime
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is in the in-session state, there is a probability pout to transition to the out-session state and a
probability 1− pout to remain in the in-session state. Similarly, if VolTime is in the out-session
state, the transition probability to the in-session state is pin.
Figure 52 – State diagram of VolTime. After each state transition VolTime generates an IAT ∆ and an

event volume v sampled from independent log-logistic distributions.

Out-SessionIn-Session

pout

1− pout

pin

1− pin

(∆in ∼ LL∆in, vin ∼ LLvin) (∆out ∼ LL∆out ,vout ∼ LLvout)

Source: Chino et al. (2017).

As noted on Observation 1, VolTime uses a LL distribution to model volume and IAT.
After each state transition, VolTime generates an event tuple e = (∆s,vs) for the current state s

(either in-session or out-session). In each state, VolTime waits a time interval ∆i sampled from a
LL distribution with parameters θ∆,s and generates an event volume vi sampled from a LL with
parameters θ∆,s.

To estimate the parameters of VolTime we are given an observed input multiset of IAT
and activity volumes. We start by finding the probabilities P(si = in) and P(si = out) that the i-th
event is in the in-session and out-session states, respectively. We assume that the distribution of
IAT is mixture of two log-logistics with two components corresponding to the in-session and out-
session. This allows us to estimate P(si = in) and P(si = out) using an expectation-maximization
(EM) algorithm.

In order to estimate the log-logistic parameters θ∆,in and θv,in that will be used to generate
the IAT and event volumes for the in/out-session state, we randomly sample the IAT and volumes
from the input sequences while weighting according to the probabilities P(si = in)/P(si = out).
Finally, the sampled IAT and event volumes are used to estimate the log-logistic parameters
using the maximum-likelyhood estimation (MLE) method. The complexity of the EM algorithm
is linear on the size of the multiset of events. Similarly, the complexity of the MLE algorithm is
linear on the number of samples used to estimate the parameters of the log-logistic distributions.
Now, let LL(X ;θ) denote a log-logistic distribution with random variable X and parameters θ .

Lemma 1 (VolTime PDF). The joint probability distribution f (∆,v) of the events IAT and
volume generated by VolTime is given by:

f (∆,v) = win ·LL(∆;θ∆,in) ·LL(v;θv,in)

+wout ·LL(∆;θ∆,out) ·LL(v;θv,out)
(A.2)
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where:
win =

pin

pin + pout
,wout =

pout

pin + pout
(A.3)

A.5 Spotting Suspicious Activities
How can we spot suspicious users by analyzing their behavior? In Section A.4 we proposed
VolTime to model users’ behavior. However, instead of using all 10 parameters of VolTime to
spot anomalies, we propose a succinct feature extraction, allowing us to visually spot anomalies.

A.5.1 Population behavior

In Section A.1 we introduced ‘Alice’ and ‘Bob’ who have suspicious behaviors. How could we
describe them? If we consider the multiset of activity volume {85,85, . . . ,85} of the 20 reviews
that ‘Alice’ wrote, a natural feature is the size of the multiset (n = 20). What other features
can we extract? Entropy? Second moment? We now introduce you the definition of dispersion.
The dispersion summarizes how the users behave online and can be used to spot anomalies.
Suspicious users will have lower values of dispersion than typical users. And this is our proposed
answer to the Problem 2, for each user, with a multiset of events, we extract two features: (a) the
number n of events and (b) the dispersion, as defined below:

Definition 1. (DISPERSION) Given a multiset of n integer numbers X = {x1, . . . ,xn}. The
dispersion D1d of the multiset X is the count of distinct values (‘vocabulary’).

For example, given a multiset of integers {1,2,1,5,5,2,5}, n = 7 and D1d = 3. Formally,
given xi an integer in (1,2, . . . ,∞), let I j denote an indicator variable such that I j = 1 if there is
at least one i so that xi = j. The dispersion D1d is given by:

D1d =
∞

∑
j=1

I j (A.4)

The same idea can be applied to a multiset of 2-d points.

Definition 2. (DISPERSION 2-D) Given a multiset Y of n two-dimensional points (x,y), where
both x and y are integers, the dispersion is calculated as follows:

D2d =
∞

∑
j=1

∞

∑
i=1

Ii, j (A.5)

For example, the multiset {(1,1),(1,3),(1,1)} has dispersion D2d = 2. In our case,
the pairs correspond to events (∆,v). Since ∆ and v have a continuous nature, the vocabulary
would be huge and we may lose information. To overcome this, we make them integers using
bucketization. We partitionate them in log-bins, because we expect skewed distributions in both
of them. This concludes our response to Problem 2: For a given user, with a multiset of (IAT,
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Figure 53 – DISPERSION-PLOT shows the relationship between the number of events and dispersion on
LAC dataset.
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Source: Chino et al. (2017).

volume) pairs, we map him/her to a 2-d point: (n, D2d). For the remaining of this text we will
denote the 2-d dispersion as D.

We are ready to tackle Problem 3, namely, how strange is a given user “X”, as compared

to a large set of users. The intuition behind our response, is to map all those users (including
user “X”), to such 2-d points, as shown in Figure 53. We propose to name such a plot as a
DISPERSION-PLOT, and, since there is heavy over-plotting, we make it a heatmap. We expect
to see a clear trend, and specifically, a (non-linear) correlation between dispersion and event-
count n; this correlation would of course depend on the joint distribution of (IAT, volume). The
upcoming Lemmas 2 and 3 quantify this correlation, between n and expected dispersion, which
gives the black line on Figure 49(a).

Our final answer to the question ’how strange is user “X”?’ is intuitively the distance of
the 2-d image of user “X”, from the expectation (“black line” in Figure 49(a)).

Formally, we have the following: Let D(E ) denote the dispersion (Equation A.5) of
the event multiset E = {e1, · · · ,en}. Let D̂(n) denote the expected dispersion from n samples
randomly sampled from a joint probability distribution of VolTime. The DispersionScore is
computed as follows:

τ = | log D̂(n)− logD(E )| (A.6)

A.5.2 Expected Dispersion

The only missing part is how to estimate the expected dispersion D̂, as a function of the sample
size n, and given the joint distribution of (IAT, volume). The answer is Equation A.9, but we
need some lemmas first. We start by showing the Expected Dispersion lemma for one dimension:

Lemma 2 (Expected Dispersion 1d). Given a multiset of n integers X = {x1, . . . ,xn} and Pi the
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probability of an x ∈X to be equal i. The expected dispersion is:

D̂1d(n) =
∞

∑
i=1

[1− (1−Pi)
n] (A.7)

Proof. Let X and Pi be as described in Lemma 2. Let Ii denote an indicator variable such that
Ii = 1, if there is at least one w where xw = i. The expected value of Ii is:

E(Ii) = 1− (1−Pi)
n (A.8)

Equation A.7 can be obtained combining Equations A.4 and A.8.

Lemma 2 can be extended for a 2-d multiset.

Lemma 3 (Expected Dispersion). Given a multiset of n 2-d points Y = {(x1,y1), . . . ,(xn,yn)}
and Pi, j the probability of a (x,y) ∈ Y to be equal (i, j). The expected dispersion is:

D̂(n) =
∞

∑
j=1

∞

∑
i=1

[
1− (1−Pi, j)

n] (A.9)

Proof. Let Y and Pi, j be as described in Lemma 3. Let Ii, j denote an indicator variable such that
Ii, j = 1, if there is at least one w where (xw,yw) = (i, j). The expected value of Ii, j is:

E(Ii, j) = 1−
(
1−Pi, j

)n (A.10)

Equation A.9 can be obtained combining Equations A.5 and A.10.

Notice that if we have a continuous 2-d distribution, we can always digitize it to an
integer-valued 2-d distribution. Formally, for our setting, the joint probability Pi, j of an event
falling in the (i, j) bin is computed as follows:

Pi, j =
∫

∆′j+1

∆′j

∫ v′i+1

v′i
f (∆,v)d∆dv (A.11)

where f (∆,v) is the VolTime PDF described by Equation A.2.

The complexity to calculate the DispersionScore is the complexity to calculate the
expected dispersion D̂ and the user’s dispersion D. Considering that we already have the VolTime
PDF, the complexity of D̂ is O(m), where m is the total number of discrete bins. The Expected
Dispersion can be calculated only once for each number of events n. The complexity to calculate
D is O(n), where n is the user’s number of events. Since we only need to count the total number
of events and the number of distinct events. The complexity to compute the dispersion for each
user is linear to the size of the dataset.
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A.5.3 Activity Event Generation with VolTime

In this section we show how well VolTime can fit real data. To the best of our knowledge, there
is no work aimed at modeling the joint distribution of IAT and volume. The parameters were
estimated using the algorithm described in Section A.5 on all datasets. Figure 54 shows the
heatmap for the synthetic data generated by VolTime.

Figure 54 – Heatmap of synthetic data generated by VolTime model for each dataset. On all datasets,
VolTime was able to correctly model the In/Out-sessions behavior, showing the capability of
correctly modeling the activity events of users.
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(a) Reddit (b) Flipkart (c) SWM (d) LAC
Source: Chino et al. (2017).

For all datasets, VolTime managed to model the in/out-session behavior. We made a
modification on the activity volume generation of VolTime due to the Flipkart dataset limitation
on the number of characters. We also modified VolTime to only generate IAT with intervals
of one day for the SWM dataset, due to its granularity. The correctness of VolTime shows its
robustness to different granularities. The LAC dataset has a different behavior than the other
datasets. The VolTime model was able to generate the in-session correctly, but did not manage
to model the less intense out-session spike. Although VolTime presents this issue, Section A.6
shows that VolTime can predict the behavior of the population.

A.6 Spotting Suspicious Activities with the Dispersion-
Score

In this section we show how well the DispersionScore can spot suspicious users. We used
Equation A.9 to estimate the expected dispersion and calculate the DispersionScore (τ) for a
given number n of events. Figure 55 shows the DISPERSION-PLOT for each dataset. The solid
black line is the expected dispersion D̂(n), where n is the number of events. For all datasets, the
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Figure 55 – DISPERSION-PLOT spots outliers: DISPERSION-PLOT showing the usefulness of VolTime.
The solid black line is the expected dispersion. The black stars are the spotted suspicious
users (τ ≥ 1). (a) The red circles are the confirmed suspicious users.
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(a) Reddit (b) Flipkart (c) SWM (d) LAC
Source: Chino et al. (2017).

D̂(n) falls on the behavior of typical users, represented by the green and red areas, showing that
VolTime was able to correctly predict the dispersion given the number of activity events. The
black stars (*) represent the suspicious users spotted by VolTime and known suspicious users
are marked as red circles. Since only the Reddit dataset has a ground truth, experiments on the
other datasets discuss the top suspicious users found by our method. The results will be detailed
as follows.

Reddit: The result obtained by VolTime on Reddit users are shown in Figure 55(a). More than
80% of the known suspicious users are marked with a black star, showing the correctness of
VolTime. We compared VolTime with BIRDNEST (HOOI et al., 2016), but considering the
activity volume as its ratings. The activity volume was log-binned to better adapt to BIRDNEST.
Figure 56(a) shows the precision vs sensitivity (recall) obtained by VolTime and BIRDNEST.
VolTime spotted 80% of the suspicious users with a precision greater than 85%, being up to
2.39 times more accurate than BIRDNEST.

Figure 56 – Precision of VolTime spotting suspicious users on the Reddit dataset. VolTime in blue is
closer to ideal.

Ideal Ideal

(a) Ground truth (b) Relabeled ground truth
Source: Chino et al. (2017).

Note that on Figure 55(a), there are some black star users that were not labeled as
suspicious on the ground truth. We manually checked these users and spotted suspicious activities:
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users that only post URL or spammers or had their accounts deleted/banned. The same procedure
was done with the BIRDNEST output. Figure 56(b) shows the result considering the new
suspicious users. This time, VolTime spotted 70% of the suspicious users with a precision
greater than 90%, while BIRDNEST had a precision of 44%.

Flipkart and SWM: On both datasets, VolTime spotted spammer users. On Flipkart, the
majority of the spam reviews do not add too much information for future buyers, since it has
generic adjectives. Usually the top suspicious users post all their reviews in short bursts and in a
short time span. One of the top suspicious user wrote the same 60 reviews on different products
in less than 1 hour. VolTime was also able to spot users that use a variety of template review
texts on different products. One user wrote the same review for different movies of the same
actor, just changing the title of the movie. Also, we noted that different users sometimes used the
same review text to review different products. All of the top 20 reviewers spotted by VolTime
had this same behavior.

On SWM, the majority of the top suspicious users just promote some kind of code asso-
ciated with an app. They usually promote these codes to their own benefit by saying that new
users that use their codes will get free points or cash. Usually the top suspicious users posts all
their reviews on the same day or in less than a week. Every user from the top 20 users spotted by
VolTime have similar review texts that promote their codes, always offering promises of free
points and cash. We listed below some reviews:

∙ Flipkart: “The item quality is very good and its look is very well really appreciate.

Highly Recommended item buy again. Fast shipping.”

∙ SWM: “Download [redacted] for some free cash!!! Sign up using [redacted] for some

points.”

LAC: VolTime spotted users with suspicious behavior, like “Carol”. The behavior of “Carol” is
shown on Figure 57, the solid red line is “Carol”’s behavior and the dotted black line the typical
user behavior. “Carol” has over two thousand calls in short bursts to the same person. Notice
that the typical user has a smoother distribution of IAT and activity volume. The majority of the
top suspicious users found by the VolTime also have this same behavior.

A.7 Final Thoughts

In this text we analyzed the online activity events of 2M users from online social services as
Reddit, e-commerce reviews and mobile phonecalls. We proposed VolTime, which is able to
mimic the human online activity event behavior. We also showed how VolTime can be used to
spot users with suspicious behavior, like bots and spammers. The contributions of this paper are
as follows:
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Figure 57 – Closer inspection of a suspicious user: The top suspicious user (“Carol”) found by
VolTime on the LAC dataset. The red line shows the behavior of the suspicious users and the
black dotted line is the typical user behavior.

" " 
" "

(a) “Carol”’s IAT distribution. (b) “Carol”’s activity volume distribution.
Source: Chino et al. (2017).

∙ Patterns: We proposed dispersion (Definitions 1 and 2) to quantify the variability of
inter-arrival times and volume of events generated by users of different platforms, such as
social media services and phone networks.

∙ Model: We introduced VolTime, a model for the joint distribution of IAT and volume of
events generated by users (Figure 52). We show that our model can accurately fit real data
(Figure 54), and, more importantly, match the dispersion metric of human users (Figure
55).

∙ Anomaly Detection: We used VolTime to calculate DispersionScore that measures users’
suspiciousness (Equation A.6). Users whose dispersion deviate most from VolTime’s
dispersion will have a higher score. Taking advantage of DispersionScore, we managed to
spot 70% of the suspicious users with a precision higher than 90% on the Reddit dataset
(Figure 56).
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