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RESUMO

PEREIRA, L. T. Arquitetura e Desenvolvimento de um Sistema de Geração Procedural de
Múltiplos Conteúdos para Jogos Eletrônicos em Tempo Real. 2023. 212 p. Thesis (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, Brazil,
2023.

É apresentado um sistema capaz de orquestrar a geração procedural de múltiplos conteúdos,
usando diferentes técnicas de criatividade computacional, e capaz de gerar os conteúdos em
tempo real. Os conteúdos gerados são calabouços, o posicionamento de inimigos, chaves
e fechaduras em suas salas, os inimigos que serão colocados no calabouço, missões para o
jogador completar, e as salas do calabouço. São usados algoritmos evolutivos, MAP-Elites,
Gramáticas Formais, Cadeias de Markov e Autômatos Celulares para criar tais conteúdos. Eles
são organizados por um orquestrador e colocados em um protótipo de jogo. No último estágio
do sistema, o conteúdo pode ser gerado em tempo real, tão logo quanto são coletados os dados
do jogador para usar de entrada, através de uma análise de perfis baseada em regras. Também
é descrita uma arquitetura e design de sistema, que permitiram a adição de novos geradores
e a troca de algoritmos para cada gerador com certa facilidade. Diferentes experimentos com
jogadores foram realizados para testar diferentes algoritmos e configurações do sistema, todos
com resultados positivos, e com os jogadores divertindo-se ao jogar os conteúdos resultantes.
Jogadores que jogaram o conteúdo baseado em seus perfis divertiram-se mais do que aqueles
que jogaram conteúdo de outro perfil. Isso mostra que nosso identificador de perfis com base em
regras pode guiar os geradores para bons resultados.

Palavras-chave: Geração Procedural de Conteúdo, Arquitetura de Software, Design de Sistemas,
Algoritmo Evolutivo, Geração de Conteúdo em Tempo Real.





ABSTRACT

PEREIRA, L. T. Architecture and Development of a Real-Time Multiple Content Generator
System for Video Games. 2023. 212 p. Thesis (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, Brazil, 2023.

We present a system able to orchestrate the procedural generation of multiple contents, using
different computational creativity techniques, and able to generate the contents in real time. The
generated contents are the dungeons, the placement of enemies, locks and keys in its rooms,
the enemies that will be placed in said dungeons, quests for the player to complete, and the
dungeon’s rooms. We use evolutionary algorithms, MAP-Elites, Formal Grammars, Markov
Chains and Cellular Automata to create these contents. They are organized by an orchestrator
and placed in a game prototype. In the late stage of the system, the content can be generated in
real time, as soon as it collects data from the player to use as input, using a rule-based profile
analysis. We also describe our architecture and system design, which allowed us to add new
generators and change the algorithms for each generator with relative easy. Different experiments
with players were made to test different algorithms and system’s setups, all with positive results,
and the players having fun playing the resulting contents. Players who played content based on
their profile enjoyed it more than those playing content from another profile. Showing that our
rule-based profiler can guide the generators to good results.

Keywords: Procedural Content Generation, Software Architecture, System Design, Evolutionary
Algorithm, Real-Time Content Generation.
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CHAPTER

1
INTRODUCTION

Procedural Content Generation (PCG) can be defined as “the algorithmic creation of

game content with limited or indirect user input”, according to (TOGELIUS et al., 2011). What
started in the 80s in games like Rogue and Elite to solve storage shortage problems is now pivotal
to game development by increasing replayability, reducing authoring burden, and enabling
particular aesthetics (RISI; TOGELIUS, 2020a). A relevant example is Hades, which won two
Game of the Year awards in 2020 and applies PCG in its levels (SUPERGIANT GAMES, 2020).
PCG is also heavily researched in the academy, both as a study subject by itself and giving
birth to artificial intelligence algorithms and applications in serious games, e.g., for educational
purposes (RISI; TOGELIUS, 2020b; RODRIGUES; BRANCHER, 2019).

Research in fields of Computational Intelligence seeks methods to enhance the PCG
used in the game industry nowadays, be it through deep learning(LIU et al., 2021), machine
learning(SUMMERVILLE et al., 2017), or search-based algorithms(TOGELIUS et al., 2011).
We also have publications in Software Engineering, using the mechanics-dynamics-aesthetics
framework combined with an agile methodology based on SCRUM, as in (ATMAJA; PARLIKA
et al., 2019), or documenting PCG-based design patterns(TREANOR et al., 2015b). PCG
research benefits not only the game industry, but also the field of Artificial Intelligence (AI)
research in a more generic sense (RISI; TOGELIUS, 2020a).

1.1 Motivation

PCG algorithms may generate a wide range of content using different algorithms. For
example, levels have been created by a multitude of algorithms, especially using search-based
approaches, mainly with the Evolutionary Algorithm (EA), but also with formal grammars and
Machine Learning (ML) (VIANA; SANTOS, 2021). The same goes for puzzles created using
grammar-based methods, search-based methods, Cellular Automata, Markov Chains, and other
techniques (KEGEL; HAAHR, 2019).
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Music is often generated using Neural Networks, ranging from Generative Adversar-
ial Networks, Recurrent Neural Networks, Variational Autoencoders, and the like, but also
with Markov Chains and EAs (CIVIT et al., 2022). On the other hand, Terrain generation
focuses on fractals, grammars, tiling, simulations, EAs, and so forth (VALENCIA-ROSADO;
STAROSTENKO, 2019). Stories are generated using graph and grammar-based approaches, AI
planners, Genetic Algorithms, Monte Carlo Tree Search, ML, etc. (ALHUSSAIN; AZMI, 2021).
Although not much explored in the literature, we can also generate enemies, usually through
EAs (PEREIRA; VIANA; TOLEDO, 2021), as well as visual assets, like textures (DONG et al.,
2020), and other assets for games.

Although we have all these different researches in the area, the grand vision of PCG is
the generation of complete games, according to Liapis et al. (Liapis et al., 2019); which still
needs to be achieved. We also are distant from adapting these games to different players: most of
the PCG research until the early 20s focused on generating specific content, and only some could
support several players’ profile. Liapis et al.(Liapis et al., 2019) show some challenges we as
researchers must surpass while presenting an informative review on works generating multiple
contents simultaneously. They also elaborate a set of proposals on how we can create and align
cohesively or orchestrate different creative facets.

These creative facets are a simplification of the six core creative elements of a game
procedurally generated: visuals, audio, narrative, rules, levels and gameplay. However, the same
facet may be generated by different algorithms in the same game: e.g., dungeons and rooms
created by various algorithms, but both are levels’ content and dialogues, locked-door puzzles,
Sokoban puzzles, and quests can be generated each by a different solution, but all of them are
narrative components. Therefore, some works might create two or three facets but end up being
a collection of four or five algorithms working in harmony. The review provides many insights
from relevant pioneering works and describes the different strategies to cohesively manipulate
the generation of these many contents.

The authors call the strategy of this multiple content generation an orchestration of such
contents, while the algorithm that controls the different generators is called a maestro algorithm.
We point out that most algorithms in (Liapis et al., 2019) cannot generate more than a pair of
contents simultaneously, especially in a way that they can adapt themselves independently and
with great variety.

Some recent works are approaching the generation and orchestration of multiple contents
while learning from players, although AI-controlled players, as in the case of (KARAVOLOS;
LIAPIS; YANNAKAKIS, 2021). They use a shooter game with levels and rules generated
via algorithms and AI agents to play the game. Levels, character class parameters, and match
outcomes are input to train a convolutional neural network that predicts important gameplay
data.

In this doctorate research, we advance on the concept of multiple content orchestration



1.1. Motivation 35

by focusing on creating the narrative, rules, and levels facets. More specifically, we work toward
combining the systems that create levels, the configuration of elements in each room, enemies
to populate the levels (and how to distribute them), and narrative (especially quests, but also
locked-door puzzles inside dungeons). We also provide a concrete architectural example of a
system orchestrating different contents and adapting these contents based on players’ preferences.
Said architecture provides enough flexibility to employ different algorithms when generating
content, as well as to add new algorithms with relative ease.

One of our main inspirations was the work of (HEIJNE, 2016), where a procedural
clone from The Legend of Zelda: A Link to the Past can generate levels, enemies that populate
them, and puzzles for some rooms. However, their algorithms are rule-oriented, providing low
variability. They can also select the setting that best matches each player’s preferences, although
only for a predefined set of options and using a fixed set of rules.

To create content based on the feedback gathered from users, we need to collect and
process data from them. The game industry collects and studies the data to find preferences
towards gameplay elements such as mechanics, balancing aesthetics, etc. They do so usually
thanks to A/B tests, with statistical analysis and Bayesian approaches (COLLINS, 2014). More
recent applications apply Data Mining algorithms and Artificial Neural Networks to handle
even greater data sets, with a high success rate. An example is OpenAI’s AlphaStar, an artificial
intelligence capable of defeating professional Starcraft II and Dota 2 players. The AI analyzed
the data gathered from thousands of players (OPENAI et al., 2019; VINYALS et al., 2019).

In this context, it is relevant to understand the users’ motivations and preferences when
creating content. We can employ such information to determine player classes or types, creating
clusters of players with similar tastes, play styles, and skills. Many attempts have been made
to understand players by creating theoretical categories or determining different gameplay
motivations. Such understanding achievement can employ data collection explicitly (surveys
and questionnaires) or implicitly (via gameplay data) for one or several game genres (BARTLE,
2003; YEE, 2007; VAHLO et al., 2017a; MELHART et al., 2019; HEIJNE, 2016; BONTCHEV;
GEORGIEVA, 2018; LORIA; MARCONI, 2018; COWLEY; CHARLES, 2016). However, each
one produced different results, and there needs to be more consensus on collecting and handling
this data to learn about players accurately.

Experiments in the Human Computer Interaction (HCI) area show that it is possible to
use preferences and personality data to enhance software use. In a study where 660 participants
had their data collected, it was possible to identify that some personality traits were significant to
maintain people using a given software (ORJI; NACKE; MARCO, 2017). Other studies showed
promising related results in games: Bicho and Martinho evolve an infinite runner’s difficulty
procedurally to match its player’s skill better. They always presented obstacles to be avoided
with two different game mechanics. Every time the player chooses one, it gets harder for that
single mechanic. Therefore, a simple player profile (preference between the two mechanics)
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was defined and used to create a more enjoyable game (BICHO; MARTINHO, 2018). Heijne
also adapted content depending on collected data from the player’s performance in an action-
adventure game. There is a procedural generator able to choose between some minor variants of
level configuration, placement of enemies, and puzzles’ layout sorted by the difficulty level of
each content (HEIJNE, 2016).

There are recent works, as in (GRAY; ZHU; ONTAñóN, 2021), applying ML-based
approaches to model players’ preferences. The methods collect and process data from previous
interactions of the player with the game (as well as simulated data to enhance the database).
The output suggests the best content for the player in their current gameplay state, being able to
change the recommendation over time. Their work uses the Multi-Armed Bandits problem to
model the player and be the AI that adapts the game to enhance their experience.

For our project, we use explicit data from questionnaires to define our players’ preference
as well as evaluate our system’s quality. There are successful cases in literature (RIVERA-
VILLICANA et al., 2018; VAHLO et al., 2017b; YEE; DUCHENEAUT, 2018; HEIJNE, 2016)
applying questionnaires to identify players’ profile and evaluate the gameplay. However, we also
collect implicit data from users’ gameplay to check their performance and whether it matches
the questionnaire’s input profile.

1.2 Research Questions

The main research question of this doctorate is summarized next:

How can procedural content generation be effectively applied to simultaneously create

multiple and coherent contents in a real-time environment and adapt them to different users’

needs?

Thus, some specific research questions are listed next, aiming to state better the context
of the desired contributions:

• What type of architecture can effectively coordinate the generation of narrative, levels, and
rules facets?

• How to build a modular architecture which can support different generating algorithms
with as few changes as possible to other containers?

• How can an orchestrator algorithm process the generated content to make them feasible
and more enjoyable when placed together?

• How can the orchestrator deal with simultaneous content generation, considering or
learning from player or game designer profiles?

• How to adapt the simultaneous content generation within online environments?
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The answer to those questions will lead us to push the computational boundaries when
approaching simultaneous content generation.

1.3 Thesis Structure
The doctorate thesis is organized in the next chapters as follows:

• Chapter 2 discuss some essential concepts, techniques, and technologies for the clearer
understanding of the topics brought in this thesis. Specially these related to procedural
content generation, software architecture, machine learning and game development.

• Chapter 3 presents in finer detail the most important works in literature that support this
work, specially the ones cited in this chapter.

• Chapter 4 we discuss the methods we use to create every different game facet, how our
architecture manages the different algorithms, how the maestro interlaces content and tries
to enhance the quality and feasibility, how we collect and analyze data from players and
details on the game prototype in which we test the results.

• Chapter 5 presents the experimental setups produced through this doctorate research and
their respective results. We present both computational results from running the algorithms
and comparing against metrics in the literature and from data we collect and analyze from
users using the game prototype.

• Chapter 6 has our final remarks on the doctorate project.
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CHAPTER

2
CONCEPTS, TECHNIQUES, AND

TECHNOLOGIES

This chapter describes the concepts behind the main themes approached in the current
research. First, we introduce the action-adventure game genre (Section 2.1), the one to which
the game prototype developed for this research belongs. The concepts of dungeons in games
follow (Section 2.2), the main challenges the player must overcome inside them, and a model to
represent said dungeons. Then, we present the game engines and the one used to develop our
game prototype, used as a test-bed: the Unity engine (Section 2.3).

Next, we state the main ideas about Procedural Content Generation (Section 2.4) followed
by the concept of Evolutionary Algorithm (Section 2.5), the core algorithm behind the dungeon
and enemy generators used in this project. We describe the MAP-Elites algorithm, an algorithm
based on the Evolutionary Algorithm that searches for diverse solutions while preserving quality
(Section 2.6). We also mention some path-finding algorithms (Section 2.7), especially the A*
and Depth-First Search, applied to evaluate this work’s levels. Furthermore, concepts of Markov
Chain (Section 2.8) and Formal Grammar (Section 2.9), both used to generate our quests, are
also introduced. Finally, we describe the C4 model used for our system’s diagrams (Section
2.10).

2.1 Action-Adventure Games

The action-adventure game genre demands great focus on physical challenges, including
reflex and motor coordination, similar to action games, but also includes many elements from
adventure games. Some elements are item gathering, exploration, and interaction with the
environment (and the people inhabiting it). The story usually takes place in a large world
connecting different essential areas, and the game requires puzzle solving of different types
(ROLLINGS, 2003; RYAN, 2002; LUBAN, 2002). For most games, the player controls a single
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avatar, the story’s protagonist. This mix of elements brings the genre close to the Role-Playing
Game (RPG), although the latter generally focuses more on story-telling, level, and abilities
system, which are not present in the majority of action-adventure games (ADAMS; ROLLINGS,
2006).

It is essential to highlight that the genre definition for games is not exact and varies
between authors and players. Moreover, many definitions valid for overall genre classification
may conflict with the gameplay of specific games, demanding a case-by-case study. The most
referred game as the progenitor of the action-adventure genre is the Adventure game (ROBINETT,
1979), an adaptation of a text adventure game that allowed the player to fight battles as in action
games. Another landmark for the genre was the game The Legend of Zelda from 1986, which
was a huge commercial success and one of the first to combine the main elements of the genre
skillfully. The Legend of Zelda brought exploration of a world much larger than usual at that time
with transport and inventory puzzles, combats based on action mechanics, a currency system,
and a level system close to the ones in RPGs but without experience points. It was the first title
of one of the most famous game franchises, currently consisting of 19 leading titles, all in the
action-adventure genre.

Nowadays, the genre has a roster of many successful games, with many nominated for
The Game Awards in 2017. Some of them were: The Legend of Zelda: Breath of the Wild (Figure
1, top) (FUJIBAYASHI, 2017), Horizon Zero Dawn (Figure 1, bottom)(JONGE, 2017) and Super

Mario Odyssey (MOTOKURA, 2017), all in the Game of the Year category (along with others),
with The Legend of Zelda: Breath of the Wild being the winner. Furthermore, Hellblade: Senua’s

Sacrifice (ANTONIADES, 2017), Uncharted: The Lost Legacy (ESCAYG, 2017), Metroid:

Samus Returns (HOSOKAWA, 2017) and Nier: Automata (TARO, 2017), all action-adventure
games, were nominated for other categories.

Aside from their remarkable commercial success, the games from the genre also hold an
important place in the research area, being a test platform for many PCG algorithms, as we will
report in Chapter 3. The many types of puzzles coming from action-adventure games bring varied
and exciting challenges for researchers, which use the most different approaches ranging from
evolutionary algorithms to statistical learning and grammar to solve them (SUMMERVILLE;
MATEAS, 2015; SUMMERVILLE et al., 2015; LIAPIS, 2017; VALTCHANOV; BROWN,
2012; DORMANS; BAKKES, 2011).

One of the genre’s most common challenges is eliminating all enemies in a given area.
This task turns out to be a logical puzzle in many situations, as the majority of enemies in the
games are weak to specific weapons or items or need to be attacked in a specific time window.
Other more straight logical challenges are: solving spatial puzzles by pushing objects around the
level to proper locations, sometimes with movement restriction; solving logic puzzles varying
from common logical and mathematical problems recreated in the play space, such as using a
specific item’s attribute to access a new area; and the spatial awareness puzzle, or locked-doors
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Figure 1 – The Legend of Zelda: Breath of the Wild (top) and Horizon Zero Dawn (bottom), two award-
winning action-adventure games released in 2017

mission.

2.2 Dungeons
Dungeons are the main play space for most adventure, action-adventure, and Role-Playing

Game (RPG) projects. They have an entrance, many intermediate rooms, and a final room with
a challenging boss monster, which may protect a rare item or key used for game progression
and/or to reach new areas. The intermediate rooms commonly hold different challenges, varying
with the individual mechanics of each game. The challenges usually are:

• Random meetings with monsters, which is the case for RPGs.



42 Chapter 2. Concepts, Techniques, and Technologies

• Puzzle challenges of many types, e.g., moving objects to open a passage or using specific
items in particular objects.

• Fighting with enemies inside the level for adventure and action-adventure games.

Furthermore, it is a commonplace to find items scattered throughout the rooms and, in
some cases, switches that allow access to other parts of the dungeon. The items spread across
rooms can be keys, consumable items, or equipable items used to unlock passages to other
rooms in some games. Our project focuses on procedurally generating content for this last set
of challenges: finding items scattered throughout the dungeon’s rooms. The Legend of Zelda

game franchise is based on this kind of mission, along with puzzles and enemies spread inside
some rooms. However, the puzzles and enemies’ placement are beyond the scope of the current
research. As already stated, we intend to create dungeons with different features related to the
positioning of rooms and the distribution of items able to open locked paths and their locks. The
Boss Keys series of videos analyzes this type of play space and missions, including the creation
of appealing visual representation through graphs to represent the different shapes of dungeons,
their keys, and locks. Figure 2 shows two dungeons from The Legend of Zelda: The Minish Cap

game (FUJIBAYASHI, 2004), converted into the graphs suggested by the creator of Boss Keys

series.

In the upper graph of Figure 2, we can see the dungeon with many branches and wider
path choices for the player. The branches and wider path choices demand the player to backtrack
in the dungeon, that is, go back to an already visited room to reach the goal. The lower graph in
Figure 2, however, has a linear structure that becomes unnecessary for the player to backtrack
for most parts of the dungeon. The dungeons from the first kind usually have more puzzle-based
challenges, while the second one holds more action-based challenges by hosting more and
stronger enemies in its rooms 1.

The ability to allow diversity in the content of rooms, and their placement in the dungeon,
is essential to enable a PCG method to be general enough when creating both types of a dungeon.
This characteristic is considered by the algorithm presented in our research, as described in Chap-
ter 4. The graph representation also allows us to easily observe another goal for our algorithm to
be viable in a commercial game: the existence of unique pairs for lock-key combinations. Figure
3 shows different pairs with different colors (diamonds are keys and squares are locks) and the
order for the player to solve the challenges until the completion of the dungeon, which is the
upper one in Figure 2.

1 <https://www.youtube.com/watch?v=KEVJXqV7XMc>

https://www.youtube.com/watch?v=KEVJXqV7XMc
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Figure 2 – Graph abstraction of 2 levels from The Legend of Zelda: The Minish Cap game. Only rooms
containing items which are essential for the player’s progression are shown. Each color
identifies a different type of key-lock pair. Keys are represented as diamonds and locks as
squares. The vertical lines show a sequence of rooms in the same path, while the horizontal ones
identify a path’s branching. Many rooms in the same horizontal line may be visited by players,
if they wish so. Extracted from: <https://www.youtube.com/watch?v=KEVJXqV7XMc>

2.3 Game Engine
A game engine is a software framework designed to aid programmers, artists, and game

designers in creating, implementing, and building video games. It is mainly composed of a
render engine for 2D and/or 3D graphics, a physics engine or a collision detection and response
engine, a sound engine, script language, animation, artificial intelligence, network connection,
data streaming, memory manipulation, thread generation, localization support, and scenes graph.

However, the complexity of engines has increased over the years, giving even more

https://www.youtube.com/watch?v=KEVJXqV7XMc
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Figure 3 – A possible solution for the puzzle in the upper dungeon from Figure 2. In the upper left image,
the first key is found and used in the first lock. In the upper right one, two levers are used to
open the green door. In the lower left image, the player finds the bow and opens the first door
requiring its use. At last, in the lower right image, the player gets the boss key and opens the
last lock. Extracted from: <https://www.youtube.com/watch?v=KEVJXqV7XMc>

functionality to them (GREGORY, 2014, Chapter 1). The ability to use a single game engine
to create many games saved plenty of resources in time and money for game development
companies, instead of the old need to develop an engine (or heavily alter a previous one) for each
new game. Most engines nowadays allow the user to build games for many platforms with just a
few (or even without) alterations in the project, saving a lot of time (PEDERSEN, 2009).

The game engine originated in the middle of the 90s due to the software architecture
from the game Doom (HALL, 1993). This game architecture successfully separated its main
software components, art assets, game worlds, and rules which affected the player’s experience.

Separating the components makes it faster and easier to license new games and rebuild
previous ones as new products. Thus, it facilitates the creation of new art assets, world layouts,
weapons, characters, vehicles, and game rules, with only minor changes in the engine’s soft-
ware. At the end of the 90s, some games like Quake III Arena (JAQUAYS, 1999) and Unreal

(BLESZINSKI, 1998) were made with re-usability in mind. Their engines were highly cus-

https://www.youtube.com/watch?v=KEVJXqV7XMc
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tomizable through script languages, and the licensing of such motors turned out to be a viable
secondary means of profit for their creators (GREGORY, 2014, Page 11).

Nowadays, many game engines are available in the market, each with its own business
model, solutions, architectures, script languages, functionality, and approaches to enable usage
by non-programmers. The two main engines will be presented briefly, together with the reasons
why the Unity engine was chosen by our project.

The Unreal Engine, now in version 4, is one of the most powerful engines and one
of the oldest (since 1998, when the game Unreal was released). As its most relevant business
competitor, Unity, both are used for applications beyond gaming as apps for enterprises, simula-
tions, cinematic experiences, and movies. However, their focus is on creating high-quality games
for many platforms, including virtual and augmented reality. Some unique selling points for
Unreal are the real-time photorealistic rendering; the complete C++ source code being available,
allowing for customization; a Blueprint system for visual scripting, allowing designers to make
many contents without knowing how to code; robust multiplayer framework; and many others.
Its business model allows free use of the software with all its functionality. However, 5% of
all revenue from the games made with the engine goes to the company. The engine is aimed at
small and large development teams; therefore, the engine is used in many independent games
developed by smaller studios with a handful of developers and usually lower development costs.
But it is also used to develop Triple A games made by large studios, which spend a large amount
of investment and employ many developers (GAMES, 2018).

The Unity engine allows handling both 2D and 3D games, teams, and projects of different
sizes, and it has many state-of-the-art functionalities to help create triple A games. There is
no native visual script in Unity, but there are third-party alternatives in its asset store. Unity is
well-known for trying to bond deeply with its users and attract new users with the Unity User

Groups2, the Unite event 3 and the Unity Developer Day4. Those heavy marketing strategies
made it, currently, the most used game engine in the world and with the largest number of players
for their games. The games made with unity had 5 billion downloads in the 3rd quarter of 2016;
a total of 2.4 billion different mobile devices running those games; 34% from the 1000 biggest
free mobile games made with Unity; and 770 million people playing Unity games. Roughly 90%
of Samsung VR and 53% of Oculus Rift games were made with Unity.

Another important feature that makes it so attractive is the direct integration of many
secondary tools essential for game development in the engine. For instance, the Unity Analytics

allows developers to easily obtain gameplay and behavior data from players without needing
third-party solutions. There is also the Anima2D tool, which helps the in-engine creation of 2D
animation, and the level design tool ProBuilder. The current programming language in Unity is

2 <https://unity3d.com/pt/community/user-groups>
3 <https://unite.unity.com/>
4 <https://unity3d.com/pt/events/unity-developer-day-brasil-2017>

https://unity3d.com/pt/community/user-groups
https://unite.unity.com/
https://unity3d.com/pt/events/unity-developer-day-brasil-2017
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C#. Its business model is based in selling licenses based on the user’s revenue: the free license
gives all the core features of the engine and allows companies with less than U$ 100,000 a year
revenue to publish their games for free. For yearly revenues ranging from 100,000 to 200,000
dollars, it is necessary to buy the Unity Plus license, which costs U$35 monthly and offers some
advantages as additional features for the Analytics. The Unity Pro license is a need for companies
with revenue greater than $200,000 a year, and it provides support from Unity’s employees. Its
current pricing is a monthly fee of U$125 5. Another advantage of Unity is its learning process
that is considered more accessible compared to other market leaders, according to developers
and game journalists (RASHID, 2016; DEALS, 2016; PLURALSIGHT, 2015).

In comparison, Unreal Engine build for 15 different platforms 6 and Unity, 287, making
them a better choice for developers who want to reach the largest consumer market possible.

Therefore, we chose Unity as the engine to develop our game prototype based on the
following reasons:

• Faster learning rate and possibility to publish in many platforms, being the most used
engine in the industry.

• The use of C# language (preferred by the author) and many integrated tools that become
development easier in small teams.

• Collecting data from the players’ gameplay through Unity Analytics. enditemize

2.4 Procedural Content Generation
The technique known as Procedural Content Generation was originally developed to

reduce memory usage by game content, allowing the insertion of more content since many of
them were limited by the capacity of cartridges and floppy disks. By the time of its creation, in
the 80s, computers had little memory and processing power, so this was a must for improving
game content. Trying to break the limits from the other games, the developers from Rogue and
Elite were one of the pioneers using PCG. Rogue, a dungeon crawler game, generated levels
only when the player was about to enter them. Their creation applied algorithms that defined
features such as the size of the current room, the connections between rooms, the location of
items and enemies, and placement of the level’s entry and exit (DESIGN, 1984). Elite is a game
about space combat and commercial trade between planets. Its 256 planets for each of the eight
galaxies were procedurally generated from a random seed (BELL; BRABEN, 1984).

The original motivations to use PCG turned obsolete with the improvement of memory,
processing speed, and overall capacity of computers. However, the advances in technology
5 <https://store.unity.com/>
6 <https://www.unrealengine.com/en-US/what-is-unreal-engine-4>
7 <https://unity3d.com/pt/unity/features/multiplatform>

https://store.unity.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://unity3d.com/pt/unity/features/multiplatform
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brought a massive expansion of the number of players, an increase in games’ complexity, the
improvement of their contents, and, accordingly, the increase in the cost and production time of
games. The new challenges made the game developers look back to PCG, but with novel goals:
create large amounts of diverse content as fast as possible and, in some cases, adapt them to
different players. These goals aim to add more game replay value by creating different missions,
and levels in each new playthrough (IOSUP, 2011; HENDRIKX et al., 2013). Some recent
games that use PCG are No Man’s Sky (GAMES, 2016b), The Binding of Isaac (MCMILLEN;
HIMSL, 2011b), Elite:Dangerous (DEVELOPMENTS, 2014) and Civilization VI (GAMES,
2016a).

The use of PCG in the game industry is usually made possible by applying random
algorithms without adapting directly to the user’s profile or by randomly selecting elements from
a database of assets (levels, models, textures, or any other type) previously created by human
developers. They can also use available algorithms for procedural art and animation generation,
which differ from the other types of PCG approaches. The developers generally create algorithms
tailored to their specific game, making it quite difficult to reuse in other projects.

The game Civilization VI applies procedural generation of models to create different
contents, including farms. Moreover, the sea coasts from the maps are created automatically
using spline curves, but with their randomness limited by artists. The developers made the visual
effects procedurally from cracking ice next to the coast 8. Elite:Dangerous, on the other hand,
uses PCG in two different ways. The first is generating the planet’s ecosystems. Artists created
a set of rules, together with programmers, that, when applied to planets, provided a visually
pleasing and realistic ecosystem 9. The second one creates star systems, called Stellar Forge. The
developers implemented many rules based on astronomy to simulate a wide range of realistic
physical and chemical reactions to create unique systems for each combination of parameters
extracted from random seeds 10.

The game No Man’s Sky was acclaimed for an ambitious PCG approach: it was able
to procedurally generate an entire universe, with almost 18 quintillion planets, each with flora
and fauna also created through algorithms. Its music was also procedurally generated. For each
creature to be unique and believable, the developers created a set of feasible resources for each
part of the body (e.g., different heads, legs, bodies, etc.). Considering what elements were
already part of the body, some elements of the set of yet-uncreated features were marked as
non-selectable. After selecting such an element, its child components were chosen. For example,
after the selection of a type of head, a mouth must be chosen for the creature. However, only
those compatible with the current head remain in the selection pool for the algorithm 11.

8 <http://firaxis.com/?/blog/single/procedural-terrain-generation-in-sid-meiers-civilization-v>
9 <https://www.youtube.com/watch?v=GEVutbSqBI0&t=466>
10 <https://us2.campaign-archive.com/?u=dcbf6b86b4b0c7d1c21b73b1e&id=76df98203b#

StellarForge>
11 <http://3dgamedevblog.com/wordpress/?p=836>

http://firaxis.com/?/blog/single/procedural-terrain-generation-in-sid-meiers-civilization-v
https://www.youtube.com/watch?v=GEVutbSqBI0&t=466
https://us2.campaign-archive.com/?u=dcbf6b86b4b0c7d1c21b73b1e&id=76df98203b#StellarForge
https://us2.campaign-archive.com/?u=dcbf6b86b4b0c7d1c21b73b1e&id=76df98203b#StellarForge
http://3dgamedevblog.com/wordpress/?p=836
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Finally, the game The Binding of Isaac applies PCG to create its levels in the shape of
dungeons, as the ones in this research. Although relatively older than previous examples, the
game was remade and launched in 2014 as The Binding of Isaac: Rebirth (MCMILLEN, 2014),
and it had two expansions as downloadable content: one at 2015 and another at 2017. It was also
ported for consoles of the current generation, having a life cycle that lasted until 2017. Part of
this longevity and success is thanks to the high challenge and replayability factors provided by
PCG. Its algorithm depends a lot on human work: more than a thousand rooms were created by
the game designer, ordered according to difficulty and chapter to which they belong (an aesthetic
factor), and randomly chosen to be placed in the dungeon. They draw the content features of
each room from more than 50 enemies and items. There are different probabilities to be placed in
each room according to their relevance. Enemies vary according to luck: the same enemy can be
created, with lower probability, as a stronger specimen that can have different colors (also drawn
randomly), each with a unique ability 12. The game development still demands a lot of effort
from the creators by generating the initial content, but the PCG algorithm of the game, even
though being simple, can return significant variability and helped in the commercial success: the
original title sold more than 3 million copies in the Steam platform, and its remake more than 2
million copies 13.

2.5 Evolutionary Algorithm

Evolutionary Algorithms (EAs) are stochastic meta-heuristics for search and optimization
based on Darwin’s theory of evolution. Although there are many subgroups and branches of the
main concept of the algorithm, all follow the same modus operandi: a population consisting of
different individuals is created by a set of rules (usually a uniform random distribution). Then,
individuals’ selection for breeding and survival is simulated for many generations until a specific
stop criterion has been satisfied. The individuals are representations of possible solutions for
the problem, coded in myriad ways. The individuals are evaluated through some metric, mostly
known as a fitness function. The theory of evolution-based features of the EA arises in survival
and breeding selection, in which the best individuals have a greater chance to breed and/or be
kept for the next generation. Figure 4 shows a diagram representing the basic procedures of an
EA.

For the general case, the parent selection for breeding happens by comparing the fitness
of individuals from the population, with the better ones having more chances to participate in the
recombination process. A function explicitly defined for the problem calculates the fitness value.
After several parents have been chosen (in most cases, a couple), crossover and mutation breeding
procedures are executed since a probability condition is met. The crossover of individuals will
shuffle pieces of the parent individuals to produce one or more new individuals. Next, the

12 <http://edmundmcmillen.blogspot.com.br/2011/09/binding-of-isaac-gameplay-explained.html>
13 <http://steamspy.com/search.php?s=binding+of+isaac>

http://edmundmcmillen.blogspot.com.br/2011/09/binding-of-isaac-gameplay-explained.html
http://steamspy.com/search.php?s=binding+of+isaac
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Figure 4 – General representation of an Evolutionary Algorithm. Extracted from: (EIBEN; SMITH, 2003)
(p. 17).

novel individuals may be mutated, which usually means an unexpected change adding further
variability to the representation of the individual.

After the creation of offspring individuals, the selection of the survivors begins by
choosing a balanced mix of old and new individuals, where the priority is the survival of the
fittest individual. The algorithm ends after a stop criterion which can be the execution of a fixed
number of generations; the best possible solution found, no improvement in the best solution for
a fixed number of generations, among others. The Algorithm 1 exemplifies the execution of an
EA with the most common procedures in literature (EIBEN; SMITH, 2003).

Algorithm 1 – Basic Evolutionary Algorithm. Adapted from: (EIBEN; SMITH, 2003) (p. 16)
1: INITIALIZE population with random solutions
2: EVALUATE each individual
3: while STOP CRITERION not satisfied do
4: SELECT parents
5: CROSSOVER pairs of parents
6: MUTATE resulting children solution
7: EVALUATE new individuals
8: SELECT individuals for the new generation
9: end while

2.6 MAP-Elites
Multidimensional Archive of Phenotypic Elites (MAP-Elites) is an optimization algo-

rithm; that is, it searches the space of candidate solutions for a problem, seeking to optimize
the result. It is also part of the Quality-Diversity (QD) algorithms: optimization algorithms that
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search not for the optimum of the cost function, but provide a set of high-quality solutions,
differing according to user-defined features of interest. These algorithms assume not only that
the objective function returns the fitness value f θ , but also that it returns a feature vector (or
behavioral descriptor) bθ . The feature vector usually describes how the solution solves the
problem, and the value quantifies how well it solves it. This feature vector may be the trajectory
of a robot, and the value measured is the distance to the target, for example.

By defining B as the feature space, the goal of QD optimization is finding for each point
b ∈ B the parameters θ with the maximum (or minimum) fitness value. The QD problem may be
viewed as optimizations constrained by each feature vector. The hypothesis is that solving said
problems together is likely faster than independent constrained optimizations. We can assume
that high-performing solutions for close feature descriptors will likely be near each other. thus,
sharing said information may be beneficial.

QD algorithms return a set of solutions, sometimes called collection, archive, or map.
They are expanded, improved, and refined during the optimization process, as each point in them
is a different solution type or species. We consider two similar solutions with similar feature
vectors as belonging to the same solution type, thus competing to be maintained in the collection.
This similarity is defined using a hyperparameter, which sets the tolerance used to determine
whether two features are different. They define a “resolution” in B, the feature space, as only one
solution will occupy a particular region in this space.

We evaluate a QD algorithm by the solution’s performance in each type and the coverage
of such behavior space. The former is usually computed by the mean, median, or sum of the
fitness in the collection. At the same time, the latter may vary according to the feature space,
especially if it is discretized. If low-dimensional spaces are assumed, we can discretize the
feature space arbitrarily and compute the percentage of bins filled. One may use density metrics
in high-dimensional space, e.g., average distance between the k-nearest neighbors. Moreover, we
may define a distance threshold between descriptions, computing a similar filling percentage as
in the low-dimensional space case.

The MAP-Elites approach discretizes the feature vector into a grid or multidimensional
array. Each cell in the grid corresponds to one type of solution, a location in the feature vector.
The algorithm aims to fill every grid cell with the best possible solution. It takes inspiration
from EAs, as in each iteration, the MAP-Elites alter copies of solutions in the grid to form new
ones by applying mutation and crossover. New solutions are evaluated and, if better than the one
occupying a cell, placed in there. Algorithm 2 show the basic loop for a MAP-Elites approach,
as seen in (CHATZILYGEROUDIS et al., 2021). We also recommend this material for further
reading into QD approaches and MAP-Elites.
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Algorithm 2 – MAP-Elites Algorithm, as seen in (CHATZILYGEROUDIS et al., 2021)

1: procedure MAP-ELITES([n1, ...,nd])
2: A← create_empty_archive([n1, ...,nd])
3: for i = 1← G do
4: θ = random_solution() add_to_archive(()θ ,A)
5: end for
6: for i = 1← I do
7: θ = selection(A)
8: θ ′ = variation(θ) add_to_archive(()θ ′,A)
9: end for

10: return A
11: end procedure
12: procedure add_to_archive(θ ,A)
13: (p,b)← evaluate(θ)
14: c← get_cell_index(b)
15: if A(c) = null||A(c).p < p then
16: A(c)← p,θ
17: end if
18: end procedure

2.7 Path-Finding Algorithms

Path-finding algorithms find the shortest path between two given points, usually in a graph
or tree structure. Its basic routine consists of exploring a graph from an initial vertex until destiny
is found, generally searching for the path with the lowest cost. The path-finding problem can be
solved using simpler algorithms such as breadth-first search and Depth-First Search (DFS) within
complexity O(|V |+ |E|), being V the number of vertexes and E the number of edges. There
are shortest-path algorithms that demand more computational complexity, e.g., Bellman-Ford

algorithm with O(|V ||E|) complexity. Dijkstra’s algorithm takes O(|E|+ |V |log|V |) and uses
dynamic programming to eliminate paths and Fibonacci stack in its implementation (FREDMAN;
TARJAN, 1984).

Next, we describe the A* and the DFS algorithms used to navigate the dungeons generated
in our research.

2.7.1 A* Algorithm

The A* is a variation of Dijkstra’s algorithm and widely used in video games. The
algorithm gives a weight to each open node equal to the edge leading to that node, plus the
approximated distance of the current node to the goal. A heuristic function provides such a
measure that allows the algorithm to discard the longest paths after finding an initial route,
making the A* more efficient than Dijkstra ’s algorithm. The choice of the right heuristic function
is vital once the closer it is to the real distance, the algorithm will evaluate less not-optimal
nodes. Thus, the most efficient heuristic for an A* algorithm is one that can give the actual
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distance between nodes. Unfortunately, this demands a lot of computation time (MATHEW,
2015), so an admissible heuristic is chosen. In this case, a function that never overestimates the
cost of reaching the goal is applied. The relatively easy implementation and efficiency of A*
have become widely used in games. However, the game environments are complex and contain
numerous characters that must execute the algorithm simultaneously. Thus, many optimizations
for the algorithm, search space, heuristic function, and memory use are needed. The work of Cui
and Shi, “A*-based Path-finding in Modern Computer Games” shows some of those optimizations
and many benefits of A* in games (CUI; SHI, 2011). The algorithm’s time complexity will
depend on the heuristic to estimate the remaining distance. In the worst case, it is O(bd), where
d is the depth of the solution, and b is the average number of successors per state, that is, the
branching factor.

We now present an example of the A* algorithm to clarify it for the reader. An algorithm
implementation that can be executed from the browser and accepts different configuration inputs
can be found in GitHub14. In Figure 5, it is possible to observe four steps of the A*’s execution
in the same map. This map consists of a green tile representing the starting point, a red one that
is the goal, and blue ones standing for walkable tiles. In the upper left image, all neighboring
cells from the starting nodes are highlighted in green, with arrows pointing to the direction of the
object’s movement from the starting cell to the others. The set of tiles highlighted in green is
called “open” tiles, and it is evaluated at every iteration while searching for the best route.

The three values shown in each tile are usually referred to as F , G, and H. The value
G, shown in the bottom-left corner of each square, is the cost needed to move from the starting
node (green) to the current tile, following the route generated by the algorithm to reach the tile.
The value in the bottom-right corner, labeled as H, is the estimated cost given by the heuristic of
moving from the current tile to the objective (red). The value H predicts the remaining distance
to reach the goal. At last, the upper-left corner of the tiles contains the value for F , which is the
sum of G and H. The green-highlighted tile, with the lowest value for F in each iteration, is
chosen to be part of the current path.

In the upper left image from Figure 5, we can observe the tile standing on the right side
of the starting node, highlighted in cyan. Thus, it was chosen the tile with the least distance to
the goal (lowest value of F), in this case, 40. This tile is added to the “closed” nodes (hence
the cyan highlight). In the upper right image, we can observe that the path has been altered: the
node closed in the previous step did not connect to any not-opened node. The lack of connection
can be seen in the arrows, where none originated. These arrows show the movement direction
leading to the shortest path from the starting point, the path which gives the value of G.

When moving to one of its neighbors apart from the current G, a visited node can hold a
lower value of G. In this case, we update the neighbor’s G, and the direction of the arrow in this
neighbor node. Following the algorithm’s execution, we can see that the goal has been reached

14 <https://qiao.github.io/PathFinding.js/visual/>

https://qiao.github.io/PathFinding.js/visual/
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Figure 5 – A* execution example. Extracted from: (LESTER, 2005).

in the bottom left image. The path is shown in the bottom right image, following the direction of
the arrows starting from the goal tile (in red) until to reach the starting tile. By doing this, we
find the path is composed of five tiles with a red dot in its center, and the shortest distance is 68
units of measurement.

2.7.2 Depth-First Search

The Depth-first Search is an algorithm that traverses or searches a tree or graph data
structure. It starts at the root node for trees or a selected starting node in graphs and explores as
far as possible along each branch before it backtracks. The algorithm takes linear time in the
size of the graph O(|V |+ |E|). If there are multiple nodes to be chosen in the actual branch, the
algorithm may follow a convention or visit a node randomly (CORMEN, 2008). Algorithm 3
describes a recursive implementation of DFS. The algorithm has some interesting applications in
the creation and solution of mazes, as it guarantees all nodes are visited (SYEED et al., 2010;
KOZLOVA; BROWN; READING, 2015). For huge or infinite trees and graphs, the original DFS
may not work properly, but some adaptations, such as the Depth-First Iterative-Deepening, can
be used (KORF, 1985).
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Algorithm 3 – Recursive DFS. Adapted from: (CORMEN, 2008)
Require: Graph G and vertex v of G

1: function DFS(G, v)
2: label v as discovered
3: for edges from v to w in G.adjacentEdges(v) do
4: if vertex w is not labeled as discovered then
5: DFS(G, w)
6: end if
7: end for
8: end function

2.8 Markov Chain

A Markov chain is a stochastic process with a finite number of possible values Xn, and
whenever the process is in state i, there is a fixed probability Pi j that the next state will be j.
Equation 2.1 shows this probability for all states i0, i1, ..., in−1 and given that i, j and all n are
non-negative. The probability of any future state is independent of past states and depends solely
on the present state.

P{Xn+1 = j|Xn = i,Xn−1, ...,X1 = i1,X0 = i0}= Pi j (2.1)

The value Pi j is the probability that the process will transition into state j when in state
i. As the probabilities are non-negative and the process must transition into a state, we have
Pi j ≥ 0, i, j ≥ 0, and that ∑

∞
j=0 Pi j = 1, i = 0,1, .... We refer (ROSS, 2019, Chapter 4) for more

details. Figure 6 shows an example of a Markov Chain representing a hypothetical market and
the probability for it to transition to the next state j when it is in a particular node in state i. For
example, we have a 50% chance for the market to remain in the Stagnant market when it is
already in this state. However, there is an equal probability of 25% for it to transition to either
the Bull market or Bear market states.

The ability to model the transition of states considering the current state (and, sometimes,
past states when we have Markov Chains with steps greater than one) has made the Markov Chain
attractive to some Procedural Content Generation applications. The authors in (SNODGRASS;
ONTAñóN, 2017) create levels for the Super Mario Bros. and Kid Icarus games using Markov
chains combined with a series of restrictions. (LI et al., 2021a) uses an ensemble of Markov
Chains to create Mega Man levels. They are also used to represent stories, where each element is
sampled from a distribution of possible bigrams of words that can be in the story (HARRISON;
PURDY; RIEDL, 2017).

In our project, Markov Chains provide the probability of specific rules in our grammar
being selected over other rules. We next describe formal grammars (Section 2.9) and their
stochastic approach, which may use Markov Chains, as we did.
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Figure 6 – Markov Chain example from a hypothetical market as seen in <https://en.wikipedia.org/wiki/
Examples_of_Markov_chains>. The directed graph’s nodes are states of the stock market in a
given week, and the edges are the probability of what the next week will be. The sum of the
edges’ weights exiting a given node is 1.0.

2.9 Formal Grammar

Formal grammar, from the formal language theory, describes how to create valid strings
following a language’s alphabet and syntax. We define grammar through a set of production
rules in a language. We briefly describe these grammars in this section, but more details can be
seen in (MEDUNA, 2014), as this section is adapted from their work.

An alphabet Σ is a finite nonempty set of symbols. A nonempty subset of Σ is a subalpha-

bet of it. And a finite sequence of symbols from Σ is a string, where ε is an empty string, with
zero symbols. These languages can be natural languages (e.g., English, Japanese, Portuguese,
etc.) or artificial, like programming languages.

With a pair of an alphabet and a finite relation on the nonempty alphabet (Σ∗), which we
call R, or the set of rules, we have a rewriting system M such that M = (Σ,R). For every u,v ∈ Σ∗,
if there exist (x,y) ∈ R and w,z ∈ Σ∗ such that u = wxz and v = wyz, we say there is a rewriting

relation over Σ∗ denoted by⇒ and, in this case, shown as u⇒ v. Usually, each rule (x,y) ∈ Σ∗

in a rewriting system M = (Σ,R) is written as x→ y for abbreviation purposes. A rule is often
labeled with a letter as in r : x→ y. Instead of r : x→ y ∈ R, we usually abbreviate it as r ∈ R. In
the previous example, x is the left-hand side of r, and y is the right-hand side of r.

https://en.wikipedia.org/wiki/Examples_of_Markov_chains
https://en.wikipedia.org/wiki/Examples_of_Markov_chains


56 Chapter 2. Concepts, Techniques, and Technologies

A sequence of rules for a rewriting system has each rule named, and when a given rule is
used to rewrite a symbol, we denote the rule after the relation inside square brackets: [r1]. We
may also underline a substring rewritten during a rewriting step for clarity. Figure 7 translates
the string “aab” using a system M = (Σ,R), which rewrites from an alphabet Σ = {a,b,x,y} to
another string in the same alphabet, through rules R = {r1 : a→ x,r2 : b→ y}.

Figure 7 – Example of the rewriting system M = (Σ,R), Σ = {a,b,x,y} and R = {r1 : a→ x,r2 : b→ y}
translating the string “aab”.

aab→ xab [r1]

→ xxb [r1]

→ xxy [r2]

We may say that a rewriting system M generates or accepts a language L(M), such that
L ⊆ Σ∗ is a language over Σ, that is, a subset of it. A language generated by M is the set of
all strings y ∈ F , being F the final language, such that x⇒∗ y in M for some x ∈ S, with S the
starting language, and⇒∗ is the transitive and reflexive closure of⇒. The reflexive closure of a
binary relation R on a set X is the smallest reflexive relation (relates every element of X to itself)
on X , which contains R. While the transitive closure of the relation is the smallest relation on X

which contains R and is transitive, i.e., given {a,b,c} ∈ X , whenever R relates a to b and b to c,
then R also relates a to c.

On the other hand, the language generated by M is the set of all strings x ∈ S such that
x⇒∗ y in M for some y ∈ F . In this context, M is the language-accepting model. A parenthesis-
generating model can be defined as M = (MΣ,M R),M Σ = {(,)} and MR = {ε → x},x ∈M Σ∗. If
S = {ε} and F =M Σ∗, the language generated by M is: L(M) = {t|s⇒∗ t,s ∈ S, t ∈ F}, that is:
L(M) = {t|ε ⇒∗ t, t ∈ Σ∗}.

So, the set of all rewriting systems (the alphabets) consists of {(,)}, and each rule has ε

in the left-hand side. So, we can consider a grammar X = (X Σ,X R), able to create the parentheses,
with rules X R = {ε → ()}. We may denote grammar properties, such as the alphabet Σ or the
rules R, as belonging to a specific grammar by adding the grammar’s name subscripted before it,
as shown before with the results from grammar X , X R. An example of a string generated by such
grammar is ε ⇒ () RightArrow()()⇒ ()(()), such that ()(()) ∈ L(X). So L(X) consists of all
properly nested parentheses.

As for the acceptance of languages, we may create a parenthesis accepting language
model as M = (MΣ,M R), where MΣ = {(,)} and MR = {x→ ε},x ∈ Σ∗. If the starting language
is S = Σ∗ and the final language is F = {ε}, the language accepted by M is L(M) = {s|s⇒∗

ε,s ∈ Σ∗}. The grammar which denote such system can be defined as Y = (Y Σ,Y R), such that

Y Σ = {(,)} and Y R = {()→ ε}. As an example, Y accepts (())(): (())()⇒ (())⇒ ()⇒ ε .
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We usually call language-generating models as grammars. Let one of these grammars be
denoted as G = (GΣ,G R). The symbols in L(G), the language from said grammar, are referred to
as terminal symbols, or terminals, sometimes denoted as G∆, such that G∆⊆G Σ. The nonterminal

symbols or nonterminals are GN =G Σ−G ∆. The start language of G always consists of a single
symbol, meaning GN (the nonterminals) contains a special start symbol, denoted by GS. Therefore,

G∆⊂G Σ. In the grammar rules GR, at least one nonterminal occurs on the left-hand side of every
rule. If v⇒∗ w in G, v,w ∈ Σ∗, we say that G makes a derivation from v to w.

These grammars have many applications in computer science, but our focus is their
applications for generating content. We show some applications in Chapter 3. We also define
a specific type of generating grammar that uses probabilistic models to select rules. Stochastic
grammars add variability to the rules chosen, be it a fixed weighted number generation, as in
Pac-Man’s ghosts, or an AI-based weighted for the number of generation, which recalibrates the
weights using utility theory (LEWIS, 2013).

Probabilistic grammars define a probability distribution over a structured object through
a step-by-step stochastic process. Hidden Markov Models are examples of such grammars, a
random walk through a probabilistic finite-state network that samples an output symbol at each
state. They define the joint probability of a string x and a grammatical derivation y, presented in
Equation 2.2, as defined in (COHEN; GIMPEL; SMITH, 2008).

p(x,y|θ) =
K

∏
k=1

Nk

∏
i=1

θ
fk,i(x,y)

k,i = exp
K

∑
k=1

Nk

∑
i=1

fk,i(x,y)logθk,i (2.2)

In Equation 2.2, fk,i is a function counting the number of times along the derivation
the ith event of the kth distribution occurs. θ is a collection of K multinomials, where the kth

includes Nk events.

2.10 C4 Model

C4 is a model for software architecture created by Simon Brown, using a lean graphical
notation technique. Its core principle is decomposing a system into smaller parts so that each
person interested in the project can see the model with the correct level of abstraction for their
purpose. We summarize its principles here, but more details can be seen in the model’s website15,
the author’s book on the subject (BROWN, 2022), and other software architecture books, as in
(RICHARDS; FORD, 2020, Chapter 21).

Using this model, developers can create four viewpoints of their projects according
to their hierarchical level. They are, from most to less abstract: context diagrams, container
diagrams, component diagrams, and code diagrams.

15 <https://c4model.com/>

https://c4model.com/
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The most abstract, the system context diagram, shows the system, the users, and other
systems interacting. The focus is on what non-technical people want to understand about your
system. Figure 8 shows an example of such a diagram, focusing on an internet banking applica-
tion.

Figure 8 – A system context diagram from a bank system, as shown in C4 model’s website <https:
//c4model.com/>. The Internet Banking System is the system of interest, while the customer is
the main actor, but the banking system also interacts with the E-mail System and the Mainframe
Banking System.

Then, we can use a container diagram to look inside a system and what containers are
there. These containers can be server-side web applications, mobile apps, database schemas, etc.
Usually, a separately runnable/deployable unit executes code or stores data. The diagram shows
the overall architecture’s shape and how the responsibilities are distributed. It also presents core
technology choices and communication between containers. Figure 9 shows an example of such
a diagram for the internet banking system.

Each container can be decomposed in different component diagrams, identifying the
major structural building blocks and their interactions. It shows the container’s components,
responsibilities, technology, and implementation details. Figure 10 illustrates such a diagram for
an internet banking system’s API Application container.

The lowest level of abstraction is the code diagram, which is a UML class diagram.
These diagrams are usually created via software programs that use the current codebase to build
the visualization. This visualization is not recommended except for the most critical or complex
components. Figure 11 shows an example for the Mainframe Banking System Facade class.

Given the 4 views of the C4 Model, we will focus in presenting our system through the

https://c4model.com/
https://c4model.com/
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Figure 9 – A container diagram from a bank system, as shown in C4 model’s website <https://c4model.
com/>. The system consists of a web application, visited by the user, a single-page application
with the functionalities, or a mobile app that the user may also visit. Both applications call
the API Application, which sends emails using the E-mail System, makes API calls to the
Mainframe Banking System, and uses data from the Database.

Figure 10 – A component diagram from a bank system’s API Application, as shown in C4 model’s website
<https://c4model.com/>. The container consists of a Sign In Controller, which uses data from
the mobile or single page Applications to sign in a user. The Security Component check
the data, as well as data from the Reset Passwords Controller component, which also gets
data from both applications. The Reset Password Controller also uses the E-mail Component
to send e-mail to users. The applications can make API calls to the Accounts Summary
Controller component, which, in turn, uses the Mainframe Banking System Facade, that calls
the Mainframe Banking System.

view of the 2 most abstract ones: the context and the container diagrams. The context diagram
will show how each system interacts with each other and how the users interact with them.

https://c4model.com/
https://c4model.com/
https://c4model.com/
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Figure 11 – A code diagram (UML’s class diagram) for the Mainframe Banking System Facade class,
as shown in C4 model’s website <https://c4model.com/>. The class has an implementation
(which shows it is an interface, and not a class). This implementation may throw exceptions,
may parse the balance response from the banking system, may create a balance request, and,
finally, use the banking system connection.

The latter will be used to show how each system is organized and how their containers interact
between themselves, specially clarifying the data passage and dependence between them. For
brevity, the component and class diagrams will be omitted.

2.11 Final Remarks

This chapter presented the main concepts and techniques used in this thesis that are
necessary for the reader to understand for a better comprehension of the project. Some of them
were related to game development concepts: the definition of the action-adventure genre and
some games belonging to it, what are dungeons in the perspective of game design and the main
game engines (Section 2.1 through 2.3). Thus, we learned that Unity was used as it is one of
the most common, it is easy to learn, free in our usage scope, and has a strong community of
developers helping each other. We also learned that the action-adventure genre focuses both in
the physical challenges a player must face and the exploration of the virtual world, which is
usually divided in different areas that contain dungeons or are the dungeons themselves.

Then, we learned more about the main theme of the research: the procedural generation
of content. Section 2.4 covered the origins of the technique, as well as some of their best known
applications in the industry, which the reader may be familiar with. The research on PCG will be
covered in Chapter 3.

https://c4model.com/
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Next, the main algorithms used throughout the thesis were presented: EAs, which were
used both for dungeon and enemy generation, is presented in Section 2.5, and are a heuristic
technique which uses evolutionary pressure, based on a fitness function, and recombination of
solutions to search for a local or global optimal answer for the problem. Section 2.6 showed
the MAP-Elites, an algorithm that instead of searching for a single best solutions, provides a
set of good solutions, usually using an EA to search for said solutions. As we use path-finding
algorithms as part of our fitness function for the dungeon generator, we also provide a brief
explanation of these algorithms, specially the ones we used, A* and DFS, in Section 2.7. These
algorithms search for the best path between a source and a destination, although the A* uses a
heuristic to estimate the best path, while the DFS explores in a predetermined manner, showcasing
behaviors of different players traveling a dungeon.

Markov Chains, a stochastic process to calculate the probability of transitioning states in
a system, were presented in Section 2.8 and Formal Grammars, a set of production rules in a
language, used to form strings that represents the quests from our generator, were presented in
2.9. Markov Chains were used to set the weights of selecting a new rule of our quest-generating
grammar, considering the previous state of the grammar. Finally, Section 2.10 shows the C4
model, used for software architecture, specially to represent large systems in different levels of
abstractions. The higher levels of abstraction are used in this thesis to show the context in which
our systems are used and the containers inside each system, that is, their principal working parts
and how they communicate between themselves.
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CHAPTER

3
LITERATURE REVIEW

The present section reviews recent works of PCG in video games and other areas that are
related to our research. We first review some works on gathering data from players and adapting
content according to different players’ preferences in Section 3.1. Then, we start discussing
works on the contents we generate in this research: dungeons (Section 3.2), enemies (Section
3.3), and quests (Section 3.4).

Next, as one of our main goals is the orchestration of multiple contents, we discuss
related works which performed such orchestration, adapting to different users’ needs or not, in
Section 3.5. One of our main objectives was to create a reusable, modular, and adaptable system.
We then discuss in Section 3.6 works on PCG approaching software architecture, highlighting
the importance of suitable architectures. Finally, we present in Section 3.7 a summary of how
our work relates to the closest ones in the literature.

3.1 Player profiling and content adaptation

We present and discuss some relevant works in gathering data from players and trying
to adapt content for them in this section. When discussing Adaptive Interfaces and Agents,
(JAMESON, 2002) establishes some essential notions about how we can obtain information
from users effectively to understand a system’s usability better and adapt it to them. As our main
goal is to adapt games to users by collecting usability data, these concepts are essential to obtain
critical information. We can gather data using explicit input via self-reports, self-assessments,
and non-explicit input.

The self-reports gather objective personal characteristics of the user, such as age and
profession. The self-assessments are about gaining insight into how much the user is interested
in a topic, their level of knowledge about it, or even the importance they give to some evaluation
criterion. Self-reports may also be about specific evaluations, where the user evaluates the items
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of a system they interacted with, the actions the system performed, or actions done by others.
Finally, the user can also have their skill or knowledge evaluated by responding to test items. The
non-explicit input can happen by collecting the user’s actions on a system, e.g., using sensors to
get data from the user’s body or surroundings.

As for works focused on the field of personality traces and profiles in video-game, the first
widely known attempt to classify players was done in the 90s by Bartle (BARTLE, 2003). The
research is based mostly on Multi-User Dungeon (MUD) and Massive Multiplayer Online Role
Playing Game (MMORPG) games. The author divided players into four categories, following
two axes. Players may prefer to Interact with or to Act on the Game World or Other Players;
thus each quadrant produces one archetype. Figure 12 shows the quadrants.

Figure 12 – Bartle player types chart. Source: <https://en.wikipedia.org/wiki/File:Character_theory_chart.
svg>

The Achievers liked to Act in the Game World to gain points, levels, equipment, and
anything measurable. Another group that liked to Interact with the Game World is the Explorers:
they wanted to discover areas and immerse themselves in the world, often disliking time-restricted
missions. On the other hand, the Socializers liked to Interact with Other Players and even Non-
Player Character (NPC) avatars, playing for the social aspect. Finally, the Killers were players
who wanted to Act with Other Players, but through competition and combat, testing their skills.
This taxonomy expanded later to include subdivisions of those archetypes, but, in its essence, it
remains the same. The data was collected from explicit answers from players about the game.

Since the studies of (BARTLE, 2003), many others have contradicted each other, even
when trying to create similar categories in the same game genre, and considering only explicit

https://en.wikipedia.org/wiki/File:Character_theory_chart.svg
https://en.wikipedia.org/wiki/File:Character_theory_chart.svg
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data. For instance, Yee’s approach on Massive Multiplayer Online (MMO) players’ motivations
(YEE, 2007) reports a survey with 3200 respondents from players. Their research found that
grouping players by their motivations produced better results than dividing them into exclusive
categories. They found three main motivation components: achievement, social, and immersion.
Each had subcomponents: advancement, mechanics, and competition for achievement; socializ-
ing, relationship, and teamwork for social; and discovery, role-play, customization, and escapism
for immersion. One exciting discovery was that they were not exclusive, i.e., a player could be
motivated by both the achievement and the immersion components by a similar amount.

In more recent approaches, Vahlo et al. (VAHLO et al., 2017a) made a new classification
based on thousands of player preferences, first qualitatively analyzing 700 written reviews for
digital games. They identified specific contents and keywords and grouped the findings into 33
core game dynamics. Next, they created a questionnaire with these 33 items, where the user had
to answer on a 7-point Likert scale how pleasant they found each dynamic. The work clustered
2594 respondents in 7 groups by using a factor analysis that grouped the 33 dynamics in 5
factors:

• Assault: preference to kill, destroy, shoot, run, etc.

• Manage: likes to acquire resources, expand buildings, manage resources, upgrade items,
etc.

• Journey: fascinated by exploring, uncovering secrets, making decisions, making in-game
friends, etc.

• Care: likes taking care of pets and having romantic relationships with characters.

• Coordinate: attracted to puzzle-solving, precise platforming, rhythmic actions, and music-
related things.

Each of the 7 clusters had factors they liked more, disliked more, or were neutral. Overall,
four of them were interested mainly in one of the dynamics (except Journey) while the other
three preferred mixes of two dynamics (Journey and Assault, Journey and Coordinate, Assault

and Coordinate). These findings corroborate Yee’s work by showing that players usually have
more than one preferred trait in a game, and a combination of motivations can better represent
player types. Moreover, it also expands said work, as these archetypes encompass many games
and players.

Some profiling strategies are also present in gamification applications, as in the work of
(ORJI; TONDELLO; NACKE, 2018). They experimented with 543 volunteers to investigate the
relations between user types (in this case, for gamification software) and persuasive strategies.
The latter are techniques meant to persuade the user to change their behavior. The authors used
the Hexad player types, created for gamification purposes, which captures users’ motivations and
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styles of interaction, dividing them into six groups. They investigated how each type compares
to preferences in persuasive strategies. Following (TONDELLO et al., 2016), the types in Hexad
are:

• Philanthropists: motivated by purpose, altruistic and do not expect rewards.

• Socializers: motivated by relatedness, likes creating social connections and interaction.

• Free Spirits: motivated by autonomy and freedom of expression and action, like creating
and exploring.

• Achievers: motivated by competence, likes progressing through tasks and tackling chal-
lenges.

• Players: motivated by external rewards or incentives, likes rewards, no matter from what).

• Disruptors: (motivated by change, like testing boundaries and disrupting while seeking
changes, no matter if positive or negative.

In their experiment, they used ten storyboards to illustrate each of the ten persuasive
strategies (Competition, Stimulation, Self-monitoring and Feedback, Goal setting and Suggestion,
Customization, Reward, Social Comparison, Cooperation, Personalization, and Punishment).
The work has a list of questions relating to these strategies, the storyboards, and 24 items of the
Hexad types while collecting demographic and drinking behavior information.

The results from (ORJI; TONDELLO; NACKE, 2018) show that Socializers are pos-
itively affected by any strategy. In contrast, Disruptors are negatively affected by most and
positively affected by the Competition and Customization strategies. The Player type is posi-
tively influenced by Competition, Reward, Comparison, Cooperation and Punishment. Achievers

were not influenced by any strategy, while Free Spirits were positively influenced only by Per-

sonalization, and Philanthropist only by Simulation. While these results point out that different
users (players) may respond differently to engagement strategies based on their player profiles
(or user types), it also shows that most types were not very useful for discriminating between
users’ preferences in such strategies.

However, none of the researchers collected in-game data to validate their findings empiri-
cally. We suppose that personalized content would have a positive effect when targeted to the
right player profile (or type), as all these studies point in this direction. But they need to provide
empirical evidence to affirm this. We cannot even report a specific questionnaire or implicit
data-collecting strategy as the best one to separate these players into their right types, once no
experiment yielded conclusive results.

Trying to test those theories inside a game environment further, we present Melhart
et al.’s work(MELHART et al., 2019) with a team composed of both game researchers and
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Ubisoft’s developers. They analyzed anonymous data collected from 298 players of the game
Tom Clancy’s The Division from 2016 to 2018, trying to predict their motivations and feelings.
After collecting the data, they sent Ubisoft’s UPEQ questionnaire (AZADVAR; CANOSSA,
2018) to the players, evaluating them according to self-determination theory.

A total of four player archetypes were created using k-means clustering with accuracy
ratings neighboring 90%: Adventurers, new players which were still figuring out the game’s
systems and did not find their preferred niche of play; PvE All-Rounders, highly skilled players
that liked going on cooperative PvE (Player versus Environment) missions; Social DarkZoners,
players that preferred staying on the PvP (Player versus Player) areas of the game and interacting
with each other; and Elites, players with very all-rounded preferences in the game.

One can see similarities between their research and Bartle’s taxonomy, but there are
some key differences, such as the lack of interaction axes and the way those archetypes are laid
out. The data fed an artificial neural network with Radial Basis Function kernels, which learned
some player preferences and behaviors. However, the neural network did not accurately predict
more subjective aspects, and had issues with some characteristics in which players diverged in
reported preferences and actual gameplay time. Thus, they concluded that it is possible to create
player groupings and predict their tastes, but it is not an easy task and requires direct modeling
and study. Therefore, we can observe the importance of the data collection and analysis processes
when profiling players.

This analysis could lead to significant improvements in game design, especially with
recent advances in real-time PCG, as the one presented in Bicho and Martinho’s research
(BICHO; MARTINHO, 2018). They show an interesting experiment by evolving an infinite
runner’s difficulty to match its player’s skill better. The profiling was simple but ingenious:
every obstacle had two ways to be avoided, jumping over it or using a dash skill that could
traverse objects. Every time the player uses one to get past an obstacle, the next gets a little
more challenging to avoid using the same mechanic. Thus, they could identify each player’s
favorite mechanic and adapt the content for each. A very interesting finding was that players
preferred to continue using their favorite mechanic, even when it kept getting harder to use it,
then changing to the other strategy was easier. The reported results can lead us to procedurally
generated content for games with more complex mechanics. We can increase the complexity of a
mechanic the player likes whenever they succeed, while keeping less liked mechanics simpler,
aiming to increase their engagement.

Work with a similar approach is (KANTHARAJU et al., 2022), where they trace player
knowledge (the likelihood the player has mastery over a set of concepts or skills) in an educational
game that teaches parallel and concurrent programming, collecting data from real users. Their
player’s model consists of a series of rules used to detect if the player successfully used each
skill required to master the game. The model consists of a vector, where each element is the
likelihood that the user mastered the corresponding skill. To verify the user’s focus on different
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gameplay moments, they use time windows to identify the applications of the skills in each one.

The game extracts features from gameplay data for each time window. Next, identify
what skills the player was trying to apply using ML and a collection of domain knowledge
rules for comparison. Finally, build the knowledge model of the player using the previous
outputs. Their results show that the approach performed well, although not as well as using only
Machine Learning. However, the system could also construct game levels that improved students’
understanding of the taught skills, as the modeling system was able to follow the mastery trend
from students.

Another approach, from (GRAY et al., 2020), uses Multi-Armed Bandits to model
players in a serious game to help users keep their motivation to exercise often. They first trained
via a simulator of players, the Multi-Armed Bandits model, which would measure their social
comparison orientation. This metric tried to maximize their motivation to exercise, as it consists
of comparing themselves to others to assess their success, plan for future success or view
themselves favorably.

The system focused on showing the player how they compared with others in the quantity
of steps taken. The Multi-Armed Bandit would have as its “arms”, or strategies to follow, one
of three types of players: all other players shown to them would have walked less; two players
who walked more and two that walked less would be shown for comparison; or only players
that walked more would be displayed. The rewards for the model were how many steps were
taken in the day and a 5-point Likert scale answer about their motivation. Both measures are
compared to the average and standard deviation from previous sessions. Simulations evaluated
many strategies. The best was applied in a study with real users. Their results show the model
was able to adapt the strategy to the player, as they were more motivated than the control group
(which received a random strategy). A follow-up experiment used a similar strategy with positive
results when considering a group of players (GRAY; ZHU; ONTAñóN, 2021).

Although these projects show promising results by combining gameplay data with
machine learning or specific rule sets, they are application-oriented, making applying their
algorithms on different games difficult. We next show some works successfully using more
general data collection (implicit and explicit) within games.

Heijne’s research, both in (HEIJNE, 2016) and (HEIJNE; BAKKES, 2017) was interest-
ing as they could link the benefits of collecting data to suggest a player profile for the current
player and how to use it to guide the generation of multiple contents. They collected implicit and
explicit data from people that played a clone from The Legend of Zelda: a Link to the Past that
heavily relied on PCG techniques and could adapt the generated content based on the player’s
performance.

The game, called Procedural Zelda, was able to procedurally generate levels, place
enemies in them and create puzzles, albeit with a somewhat limited extent to the diversity
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and difficulty adjustment. The game also had many data logging capabilities: a demographic
questionnaire, a personality test 120 questions long (both cases of self-report about objective
personal characteristics), implicit data collected from the behaviors of the player when talking to
NPCs, exploring levels, solving puzzles and fighting enemies, and a post-game questionnaire
that asked about the difficulty overall and of each component, the behavior of the player and
preferences over each component (self-reports on specific evaluations).

They collected data from 25 users and divided them into three groups: Hardcores (10
users), which played many hours a week and liked harder difficulty settings, Casuals (8 users),
who preferred lower difficulties and spent less time gaming, and Ambiguous (7 players) that were
somewhat middle ground between both categories. They also grouped people by the personality
test and extensively analyzed correlations between the groups and personalities, as well as their
performance. Previous experience in similar games and preferring harder difficulties were the
strongest indicators for performance. Furthermore, they observed that performance metrics
do not correlate with explicit preferences on mechanics, and overall experience with games
correlated with better understanding and use of the mechanics. Finally, players who explored a
lot started to lose interested in exploration over time and focused only in the main path. Heijne’s
work depends on a 120 questions personality test and other explicit data. The work was unable to
give very accurate results about how much a player would like each content and what difficulty
setting was better in each content for each category of players.

Trying to collect high-quality data from players with as few questions as possible, as
massive questionnaires tend to make respondents give up or answer inaccurately ((JAMESON,
2002)), we also turned to Rivera-Villicana et al.’s work. They create a Belief-Desire-Intention
(BDI) model of agency for players with only ten questions, semi-structured interviews, and
gameplay data. They got data from 23 players and tested the models simulating player behavior in
a point-and-click interactive fiction against an uninformed player model that did not try to mimic
any player style. They found that the data collected from explicit player input was inaccurate
compared to their implicitly gathered gameplay data; relying more on implicit data may be better.
However, the model itself, created based on the questionnaire was effective when created using
the implicit input, which means the questions themselves were reasonable measures to divide
player styles (RIVERA-VILLICANA et al., 2018). Other works that tried to identify profiles
with small questionnaires and some in-game data only often present inconclusive statistical
analysis (KONERT et al., 2014; LORIA; MARCONI, 2018).

We present the work of Bontchev et al., where their experiment was able to use recogni-
tion of players’ emotions and data from their gameplay to adapt content for different players
after inferring their play-style (BONTCHEV; GEORGIEVA, 2018). However, modeling a player
and their personality from their in-game actions is a matter of concern. We need some sensors to
read the player’s emotions, like cameras filming their faces.

More sophisticated techniques borrowing knowledge from psychology, like identifying
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behavioral patterns (Behavelets) show a theoretical potential to create player profiles and adapt
content adequately, but it is yet unproven. Moreover, it demands help from a specialist to
complete the users’ model (COWLEY; CHARLES, 2016).

Therefore, we have good evidence that solid profiling of players can lead to good content
adaptation. Some have done so through rule sets specific to their games, others through machine
learning approaches, and others by analyzing questionnaires and/or gameplay data in a more
general approach, to help guide content generation. We use this information to develop some
questionnaires to evaluate our content and get data from players to guide our multiple content
generators, while also collecting gameplay data to evaluate players further.

3.2 Dungeon Generation

Level generation, as mentioned in Section 2.4, was the first application of PCG in games,
e.g., Elite and Rogue (BELL; BRABEN, 1984; DESIGN, 1984). In our system, we create our
dungeons (our level) using different approaches, all based on the EA first proposed in (PEREIRA
et al., 2021) and its MAP-Elites variation proposed in (VIANA; PEREIRA; TOLEDO, 2022).
Therefore, we first focus on a dungeon generation overview, based on (VIANA; SANTOS,
2021)’s survey, and highlight some EA and MAP-Elites approaches for level generators, which
are closely related to our work.

The survey in (VIANA; SANTOS, 2021) collected data from journals and conferences
from 2010 to 2020, selecting 41 papers to analyze. Their findings show that search-based
strategies are the most common, present in 17 types of research on the subject, where 16 are
EA-based strategies. Some works have hybrid solutions that often use EA and another approach,
while others present diverse methods using Machine Learning, solver-based solutions, grammar,
and tailored algorithms. Grids usually represent levels (as seen in 23 papers), but sometimes as
graphs (4 times), shape grammars (3), and trees (2 times), among others.

The majority of the solutions (30 papers) created 2D levels, and only five could generate
3D levels. There are 31 papers reporting methods that did not yield any levels with barriers
(e.g., locked doors puzzles, as in our solutions), and only nine did so. Most papers (27) created
top-down cavern-like dungeons like the ones in Pokémon games. Other eight works created
top-down mansion-like dungeons (like the ones in The Legend of Zelda, which is the type of
dungeon we make. Only one paper describes a side-scrolling dungeon, as in Spelunky.

Another relevant aspect reported in (VIANA; SANTOS, 2021) is that the reviewed papers
described methods evaluated in an offline environment, which means no generation of levels in
real-time following players’ feedback. Our level generator can create online content with those
features and be tested with players as described in Section 5.3. It is an advance over the surveyed
generators. Only one work, (ALVAREZ et al., 2018), had an adaptive generation, but adapted
solutions in a mixed-initiative process.
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In (Alvarez et al., 2019), a continuation of the aforementioned dungeon generator with
adaptive generation, a human designer selects the levels for evolution, and the system improves
such levels based on the designer’s intended aesthetic. Therefore, the generator does not adapt
to different players. The authors use a mixed-initiative QD algorithm called the Constrained
MAP-Elites algorithm. It applies a Feasible-Infeasible 2 Population genetic algorithm based
on the fulfillment of constraints to create levels with items and enemies inside the rooms. They
focused on a framework for designers, allowing input from humans to guide the evolutions.

Two EAs in (FONT et al., 2016) evolve high and low-level representations for a dungeon
based on context-free grammar. The high one generates an acyclic graph with interconnected
zones and the number and types of objects in each room. The low-level algorithm executes
for each zone, generating a cyclic graph containing rooms, their objects, and connections. The
algorithm was tested through 50 runs, converging under 10s for all, but not tested with users.
(LIAPIS, 2017) also uses an EA approach to create dungeons and missions inside them. A sketch,
a high-level description of the dungeon, evolves using a human-provided fitness function, similar
to our approach. Each sketch’s tile guides the evolution of a segment, combining all segments
into a whole dungeon at the end of the execution. The level contains treasures and enemies while
fitting the designer’s inputs, demanding many constraints to be satisfied.

Charity et al. (CHARITY et al., 2020) propose a method inspired by Constrained MAP-
Elites to create rooms with mechanics based on various games using the General Video Game
Artificial Intelligence framework. In this case, the authors set the MAP-Elites matrix according
to the games’ mechanics, while the fitness function evaluates the agents’ survival and conclusion
time.

3.3 Enemy Generation

There are several works in the literature about the enemy generation problem, by con-
sidering their placement and amount. However, our generation will define their amount, status,
visuals, and adaptation. By status, we mean features such as health points, damage, speed, and
type of movements (e.g., attack behavior). The visuals are about how to portray the enemy in
the game, e.g., the NPCs’ sprites or models. The adaptation adjusts the enemy difficulty to each
player’s profile, e.g., easier enemies for levels where the players get stuck.

We found only algorithms generating smarter AIs for existing enemies, focusing only
on specific movements. The closest related works are (Baldwin et al., 2017; SHARIF; ZAFAR;
MUHAMMAD, 2017; KHALIFA et al., 2018), which approach the placement of enemies on
levels and the generation of projectiles in a bullet hell game.

For the generation of enemies in commercial games, we found some examples that are
a little closer to our idea. No Man’s Sky (GAMES, 2016b), Spore (MAXIS, 2008), and the
Creatures game series (GRAND; CLIFF, 1998) are good examples of games that create NPCs
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procedurally with different techniques. Other games can change some predefined characteristics
in enemies, becoming the challenge more diverse and unique, as Diablo 3 (NORTH, 2012)
and Shadow of Mordor (PRODUCTIONS, 2014). Others decide the placement and number of
enemies, adapting to the player’s performance, as in Left 4 Dead 2 (VALVE, 2009) and State of
Decay 2 (LABS, 2018).

The authors in (Baldwin et al., 2017) propose a Genetic Algorithm (GA) to evolve the
dungeon’s rooms using game design patterns and metrics regarding the placement of enemies
and treasures. The room is represented as a grid of tiles, which may contain tiles that represent
an enemy. Regarding the enemies’ role in the fitness function, it uses the difference between the
enemies’ density and the target value input by the user. The closest resemblance to our work is
the mixed-initiative fitness function, which compares the solution’s current fitness to the user’s
target fitness. Their results were positive, considering the diversity of solutions and convergence,
but there was no experimental setup with players within a game environment. Similar work in
(SHARIF; ZAFAR; MUHAMMAD, 2017) shows different strategies based on design patterns
for the placement of sprites in a level, with some being harmful sprites (enemies or traps). These
are taken from a pool of existing ones, but only their placement is approached, not the creation
of new ones. The works of (LIAPIS, 2017) and (Baldwin et al., 2017), discussed in Section 3.2,
also present enemy placement in the dungeons they generate. In contrast, Baldwin’s work defines
the number of enemies in each dungeon.

The authors in (KHALIFA et al., 2018) describe levels for a bullet hell game that consist
mostly of bullets with different speeds and movement patterns. The bullets can be compared to a
simplified version of an enemy for an action-adventure game. Talakat is a description language
that creates bullet hell levels with bullet spawners. Each spawner has a parameter for what bullet
it spawns, the speed and angle it receives, and the angle and speed at which the spawner rotates,
among other features. Each parameter has a value within a range input by the designer as our
approach for an enemy generation.

There is also a boss: a spawner with health (time on screen), a position to spawn, and
whose spawners will spawn following a script. The authors use the MAP-Elites illumination
algorithm combined with a Feasible Infeasible 2 Population Genetic Algorithm (GA) to evolve
the level’s solution. A* agent is applied to test each solution and provide a fitness value. The
computational results show the algorithm creates levels with varying difficulty, but players did
not evaluate the levels’ quality.

To the best of our knowledge, we did not find an approach in scientific literature creating
enemies with as many features as we propose here (see Section 4.3.3 for details). We found
a generation of procedural NPCs with many properties in the game No Man’s Sky and Spore,
with a similar algorithm: a creature is created by randomly putting together different body parts.
Although they do not have any input to create them based on the player’s performance, they
have some constraints as to not putting together body parts that can’t match with another already
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selected one. However, this constraint is mostly not to break the procedural animations of the
NPCs (GAMES, 2016b; MAXIS, 2008).

The game series Creatures, although older, extends this concept, not only physically
evolving NPCs, but also making them learn about the environment and the player’s actions via a
neural network that receives simulated senses using semi-symbolic approximation techniques as
input (GRAND; CLIFF, 1998). The enemies in Left 4 Dead 2 and State of Decay 2 are somewhat
also adapted to the player, not by changing their characteristics or features. Still, by deciding
where to place them and if new enemies should be spawned (if the player is doing well) or if the
game should spawn fewer enemies (if the player is not performing well), (VALVE, 2009; LABS,
2018).

With scientific and commercial examples in mind, we propose a new method to create
enemies using some mixed-initiative designs from these papers as inspiration. The main idea
is to develop diverse enemies, as in Spore and No Man’s Sky, and the adaptation of them from
Creatures. To do so, we proposed an EA able to evolve a population of diverse enemies that
respect the designer’s difficulty level. The method also created new enemies with a higher or
lower difficulty to fit each player’s performance, as reported in (PEREIRA; VIANA; TOLEDO,
2021). Another approach using MAP-Elites was also used for different experiments in this
project, and it is reported in (VIANA; PEREIRA; TOLEDO, 2022). Both are better presented in
sections 4.3.3 and 4.3.4, respectively.

Table 1 summarizes our findings and how our work compares to what we found in
scientific and commercial examples. We present if the feature is procedurally generated (Yes or
No), and if it is not entirely procedural, we call it Partially generated. For example, Spore’s, No
Man’s Sky’s PCG is based on a pool of already existing characteristics, not creating any visuals
in runtime, nor creating new status, only generating combinations. Creature’s visuals are the
same, although their status is adapted in real-time using a neural network algorithm. Diablo 3 is
another option that draws randomly from an existing set of solutions. (KHALIFA et al., 2018)’s
status and visuals are also considered partial once they are only bullets, which are a simplified
version of an enemy, but the generation is in runtime. The visuals change depending on the bullet
type, which is the same approach proposed by us in Section 4.3.3.

3.4 Quest Generation

We also use quests generated by grammar as a frame for the other generators (dungeon
and enemies) to work. The first approach applied simple grammar, replaced by stochastic
grammar, with a Markov Chain deciding its probabilities in a second approach. Our quest-
grammar-as-a-frame resembles Montfort et al.’s Slant (MONTFORT et al., 2013), which creates
a story based on multiple systems working on an initial story’s “blackboard”. When concluded,
the story goes to the Harvester, which checks its completion and augments it. Next, the GRIOT-
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Table 1 – Comparison between our work and the closely related ones in reviewed literature about enemy
generation.

Work Placement Amount Status Visuals Adaptive MAP-Elites
Spore (MAXIS, 2008) × × × ✓ × ×
No Man’s Sky (GAMES,
2016b)

× × P P × ×

Creatures (GRAND;
CLIFF, 1998)

× × ✓ P ✓ ×

Diablo 3 (NORTH, 2012) × × P × × ×
Left 4 Dead 2 (VALVE,
2009)

✓ ✓ × × ✓ ×

State of Decay 2 (LABS,
2018)

✓ ✓ × × ✓ ×

(KHALIFA et al., 2018) ✓ ✓ P P × ✓
(Baldwin et al., 2017) ✓ ✓ × × × ×
(SHARIF; ZAFAR;
MUHAMMAD, 2017)

✓ ✓ × × × ×

(LIAPIS, 2017) ✓ × × × × ×
Our: (PEREIRA; VIANA;
TOLEDO, 2021)

✓ × ✓ P × ×

Our: (VIANA; PEREIRA;
TOLEDO, 2022)

✓ × ✓ P × ✓

Gen system realizes symbolic representations, and the final system (Curveship-Gen) selects the
content (microplans) and produces the final text.

Quests are game objects with tasks and rewards, intended for a player, and integrating
the game’s narrative (YU; GUZDIAL; STURTEVANT, 2021). Our quest approach is similar to
Thue et al.’s work (THUE et al., 2021) by creating quests that try to fit player profiles. However,
they select the best fit quest (or encounter) from a pool of hand-made ones, branching them
following events. In our case, the grammar creates a questline in run-time, prioritizing quests
that match a given profile.

Our work uses grammars that were successfully used in other PCG contexts, like when
Gellel and Sweetser (GELLEL; SWEETSER, 2020) created levels and quests by combining
generative grammar and cellular automata. They applied the grammar to codify locked-door
missions and rooms, while the automata created play spaces inside the level. Our grammar
structure is more related to the work of Doran, and Parberry (DORAN; PARBERRY, 2011)
whose quests have a Motivation (our profile). Each motivation has a strategy (our non-terminal
types), which presents a sequence of actions (our terminals) with rules stated after analyzing
over 750 quests from four popular RPGs.

Other authors used a Genetic Algorithm mixed with an Automated Planning approach
to creating quests, in (LIMA; FEIJó; FURTADO, 2019). In this work, a quest manager (part of
their game manager) handles the events and completion of the quest inside the game, interacting
with the player. The individual of the Genetic Algorithm encodes a planning problem with a set
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of atomic formulas, a set of planning operators, and the initial and goal states of the quest. The
atomic formulas and planning operators are schematic and defined as part of the game world
(the conceptual scheme of the domain). The operators are possible events during a quest, and the
formulas are valid atoms used to describe states, goals, and operators. Therefore, only the initial
and goal states may vary between individuals. They are reactive and express different ways of
perceiving a situation and the impulse to change it, depending on character preferences.

Their fitness evaluates how well the quest resembles a story arc’s tension given by the
user. The user provides a vector of values, each corresponding to the desired tension in each
moment of the story. The algorithm solves the planning problem for the individual, estimates
the story arc tension, and rescales both arcs to the same interval (in case the desired story has a
different number of plot points from the generated one). Then, it uses the number of plot points
in the arc divided by the mean squared error between the desired and generated arcs as the fitness.
The evolved quest is placed in a prototype of a 2D RPG game developed using the Löve 2D
framework. First, a game designer evaluated the quests, and 34 students tested them, without
knowing if they were generated by humans or by the algorithm. The results show that players had
an almost 50% score on selecting the right answer for both cases (algorithm or human-made),
meaning the quests were undistinguished.

Another quest generator is presented in (BREAULT; OUELLET; DAVIES, 2021), also
using a planning approach. The quests are a set of actions performed to achieve a goal, using as
input the world description (a set of facts like characters, locations, and items). The generation
of quests follows the state of the world and the characters’ preferences. The world’s locations
are interconnected, and the NPCs are associated with preferences (weights of actions), which are
used to evaluate if the quest makes sense to be given by a specific NPC. The designer must define
the places, items, and NPCs’ preferences, and the planning algorithm tries to find an efficient
plan for the goal given each action’s costs.

The planning goal is a set of statements that must become true in the world state. These
statements are a combination of predicates and an object (an agent, item, or location), e.g., “has
baker wheat”, meaning that the baker must have wheat for it to become true. Their system
depended on the world’s setup to provide variety for their quests, but it was able to create diverse
quests if this condition was met. We use these predicates as the base of our quests: our grammar
creates the quest type or their predicate (e.g., kill, get, talk). In our case, the subject and any extra
information required is taken from a fixed set of states provided by the designer. It can be a list
of possible enemies to kill, items to gather, etc.

In our approach, although taking inspiration both from (BREAULT; OUELLET; DAVIES,
2021) and (DORAN; PARBERRY, 2011), we use a grammar approach, evolving it later to a
stochastic grammar, where the rules’ weights are updated via a Markov Chain to reduce repetition
of the same quest type in a quest line. Although we could not find any work in the literature
using the same approach (be it in PCG or not), we found an interesting work applying Markov
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Chains for procedural music generation (ROIG et al., 2018), also for dungeon generation (LI
et al., 2021b). We also found other papers with stochastic grammars for diverse applications
(LIN et al., 2009), (VO; BOBICK, 2014), gilbert2007probabilistic, (PERCHY; SARRIA, 2009),
and (GIRAUD; STAWORKO, 2015), and a few in PCG contexts (CHEN; GUY, 2018) and
(MARTINOVIC; GOOL, 2013).

(ROIG et al., 2018) uses a non-homogeneous Markov Chain to create harmonic progres-
sions automatically. They generate a temporal reference of the music’s internal beat structure
to guide progressions. Their generated harmonics are coherent with the training data’s style,
considering the musical mid-term and long-term dependencies. Their Markov structure focuses
on chords and each chord’s beat position, producing chord progressions that are indistinguishable
from ones generated by humans.

An ensemble of Markov Chains was used to learn how to create Mega Man levels in (LI
et al., 2021b). They trained multiple Markov Chains to understand the structure of Mega Man’s
levels and compared to (SNODGRASS; ONTAñóN, 2017)’s approach, which uses Markov chains
with a series of restrictions to create levels for the Super Mario Bros. game. In (SNODGRASS;
ONTAñóN, 2017), they represent levels as a collection of layers: a structural layer capturing
object placement, a player path layer capturing the path of an agent through the level, and a
height layer capturing sections of different heights across the level. Their representation even
captured some nuances on level generation, such as springboard placement.

(LI et al., 2021b) enhanced the previous model by considering the vertical and horizontal
rooms from Mega Man (as Super Mario Bros. has only horizontal levels) and added a direction
node to signal the next room’s direction. Their approach could only guarantee some levels were
feasible, and most were unplayable, but could provide content similar to the original game and
generate complex levels.

Considering these successful uses of Markov Chains in PCG, especially in adding
complexity and variety to the structures, we chose to use a stochastic grammar with the probability
guided by a Markov Chain. Stochastic grammars with probabilities estimated from hidden
Markov Models and Bayesian models are relatively standard in approaches besides PCG, as
shown in (LIN et al., 2009). The authors use probabilistic grammar to help recognize and
represent objects on images. However, the grammar’s probabilities were hand-made, and a
Markov random field was used as another part of the process to describe the pictorial spatial
relationship between elements.

A similar approach for classifying activities in vision tasks (and other applications) is
proposed by (VO; BOBICK, 2014) to parse temporal sequences, defined as a composition of
sub-activities or sub-actions. A stochastic context-free grammar represents the temporal structure
of the high-level activity. Given the grammar, the method determines a Bayes network where the
variable nodes are the start and end times of the actions. However, their grammar rules are given
equal probabilities or defined by a training dataset.
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These grammars have been explored for music generations in the work of (PERCHY;
SARRIA, 2009), in which musical sequences are generated to help musicians compose. The
grammar generates harmonic progressions (similarly to (ROIG et al., 2018)) using user-defined
probabilities for the different rules. Moreover, they have been used to parse music to find some
structures of interest. (GILBERT; CONKLIN, 2007) uses the grammar to find tree structures and
evaluate the entropy, estimating information compression figures, while (GIRAUD; STAWORKO,
2015) tries to find high-level structures in scores.

As for their applications in games, we have found only two works that use stochastic
grammar. The first is (CHEN; GUY, 2018), where the work introduces a domain-specific
language for PCG, the Grammatical Item Generation Language. The language supports a
compact representation of PCG with stochastic grammar, where the created objects maintain
grammatical structures. Their grammar encodes the relationship between aspects of an object,
e.g., considering the possible monsters and weapons they may hold, given by the user when
creating the grammar, and selecting one based on user-given probabilities. However, they also
allow for rules which can stop the grammar when a certain number of exchanges have taken
place. This approach bears some similarities to our stochastic grammar (Section 4.3.6), except
that we increase variability by using a Markov Chain to update the probabilities at each exchange,
following a decaying function, which reduces the chance of remaining in a given state, without
forcing a stop.

The other research is (MARTINOVIC; GOOL, 2013), where two-dimensional attributed
stochastic and context-free grammar learned from a set of labeled building facades, using a
Bayesian Model Merging technique. The authors use it to create a new building, following the
learned style. Their approach could successfully generate novel facades, outperforming other
methods which needed the grammar rules to be manually designed.

As we did not find many grammar-based approaches in quest generation, we also searched
for usages of grammar in a field close to quest generation: story (or narrative) generation.
(Kybartas; Bidarra, 2017) define a narrative as having a story and a discourse. The former being
the narrative’s main content: what happens in it, its plot, and the space where it occurs. The latter
is the particular telling of the story, including the space’s style, ordering, and duration of the
events. A plot is a set of events with a temporal order and causal relation between the elements;
They usually consist of one or more low-level actions related to several entities in the space. The
space includes characters, settings, props, and anything present within the narrative. It evolves
during the game. In our approach, we use a grammar-based plot generator, where usually the
plot grammar contains authored rules that determine which narrative contents to link to each
event. In Kybartas’ and Bidarra’s review of story generation techniques, they present different
researches that used such techniques. Still, the one closest to ours is the ReGEN project, which
we will explain next.

In ReGEN (Kybartas; Verbrugge, 2014), the authors use a context-aware graph rewriting
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framework to create a narrative generation system. A graph represents the game world, and the
created narratives reflect the current world state and can modify it. They create an initial graph
and rewrite rules similar to grammar rules. They search for a graph state and, if found, change
it to another configuration. The authors define what could be elements in the game world that
create a potential story, and also rules that search for the conditions. Then, they change them into
a narrative. For example, finding NPCs that love or hate each other and creating a narrative that
someone was murdered for one of these reasons. They set secondary rules that generate branches,
when possible, to make the description more interesting. The authors also propose interesting
narrative metrics like the size of paths, the number of branches, and costs as irreversible actions.
In our work, the proposed grammar contains a set of possible narratives to happen. However,
we use our world state to find likely NPCs and items that can become the target of the narrative.
Thus, the method creates on-demand quests, not necessarily altering the game world because of
NPC or items.

(ALHUSSAIN; AZMI, 2021) wrote a more recent survey on grammar-based algorithms.
Most of them are specialized grammars, limited to the domain that produced them, generating
a small restricted set of stories. For a more general grammar to generate stories, the authors
refer only to psychological models created in the 80s, but no algorithmic implementations for
procedural generation.

In conclusion, our review of the literature on this subject points out that quest generation
is an area that needs to be explored. As previously mentioned, our first approach was applying
simple grammar for a proof-of-concept, shown in Section 4.3.5. We then present our novel
approach using stochastic grammars with Markov Chain in Section 4.3.6, based on satisfactory
results in the literature applying both Markov Chains and stochastic grammars in other areas,
especially in the PCG domain as reported in this section.

3.5 Generation of multiple contents

One of our research’s main objectives is to orchestrate multiple game content generated
by procedural systems. The orchestration of multiple contents is a relatively recent area of PCG,
with one of its significant contributions reported in (Liapis et al., 2019). The authors identified
the main creative facets of games, showing how different approaches can facilitate orchestration.
They also raise questions and challenges for the field, some of which we try to tackle.

In (Liapis et al., 2019), the content of games, especially when focusing on what to
generate procedurally, was divided into six different creative facets:

• Visuals - How the game is rendered. The visual representation of the game.

• Audio - Background music and sounds. It can set the feel and mood of the game.
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• Narrative - Not required to be elaborate on all games; they are the main motivation to
play and complete the game. It may contain elaborate dialogues, stories, or just events and
missions.

• Levels - The virtual space where the game takes place. It can range from simple spaces to
complex labyrinths, and a game may have numerous short levels or a single massive level.

• Rules - Players are bound to rules that determine the transition between game states after
a player uses a mechanic. These mechanics allow them to interact with the world.

• Gameplay - The experience of a game, the process of an agent interacting with a game.
Usually, it is created by simulating a player agent in the field of PCG, mainly if it can
mimic different players.

We will use these facets to compare the current literature on the generation of multiple
contents and how our research will try to advance the state-of-the-art in Table 2, where each
facet is represented by its initial letter. Another critical definition from (Liapis et al., 2019) is
the orchestration processes. The authors define the orchestration as ẗhe collaboration of multiple
computational designers, each focusing on the creation of content primarily for one facet.̈ This
orchestration can be done either by the top-down spectrum, a composition that provides as much
detail as possible to individual generators, or the bottom-up one, where each generator would
create its content and evaluate it with the output of the other generators. A summary of the three
approaches follows:

Top-down A sequential pipeline where the previous step ensures the content is ready for the
game and handles the content for the next generator to add their corresponding content;

Bottom-up Each generator creates its content, compares to the others, and uses the feedback to
improve towards a common goal;

In-between Uses different proportions from both.

We describe here four approaches. The Creative Maestro is an In-between, where the
rules from the maestro can be re-interpreted by the generators if they see room for better content,
but must be propagated to all others to maintain the feasibility of the contents. The Jamming with

Fake Sheets is another In-between, the one we chose for our project. It consists of specifying
only the essential elements of the game structure and letting each generator build on and expand
it, following the structure but having the freedom to choose the specifics of the content. In the
Vertical Slices, each content is generated and upgraded in new iterations. If a new iteration of a
certain content underperforms compared to the previous one, it is discarded, and the previous
version is used instead. The Post-production evaluates the generated content, and some repairs
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can occur, smoothing out errors or dissonance and incoherence among components. This one
can be done together with other approaches (Liapis et al., 2019).

In (Liapis et al., 2019), there are case studies of orchestration, that we will briefly present
in Figure 13, and then discuss the closest related ones in more depth.

Figure 13 – PCG works which generate multiple creative facets. As in (Liapis et al., 2019).

Angelina visuals and audio were created based on an article (that itself acted, in a sense, as the
game’s narrative), and an independent level generator created platforming stages (COOK;
COLTON; PEASE, 2012).

Game-O-Matic A human-made small-scale narrative informs the world’s game objects and
rules. The visuals from the objects are taken from online sources (TREANOR et al., 2012).

A Rogue Dream A name input by the user is the seed to select the names and visuals of enemies,
goals, and items, as well as the special ability name and mechanic. An independent level
generator also creates content (COOK; COLTON, 2014).

Data Adventures Generates a plot by linking together Wikipedia articles and using their titles to
search for visuals. The levels are created using the real location of cities around the globe,
and the layout of each city is based on OpenStreetMap (GREEN et al., 2018).

Game Forge A narrative is generated by a sequence of hero and NPC actions, and it is used to
guide the level generation (Hartsook et al., 2011).

AudioInSpace Game audio is used to control the trajectory, speed, and color of the player’s
bullets. The player can select their favorite weapons and control an interactive evolution
of them. On the other hand, the bullets and firing actions from the player affect the audio.
Using this loop, the game can adapt itself to the player to some extent (HOOVER et al.,
2015).

Sonancia Levels are created based on the tension progression, which can be authored or gen-
erated. The level’s progression influences the sounds in each room (LOPES; LIAPIS;
YANNAKAKIS, 2016).

Mechanic Miner Game programming is adjusted to allow new gameplay, and levels are evolved
to use the new mechanics, which are evaluated by the gameplay of random agents (COOK
et al., 2013).

Ludi the rules of different pieces and the board layout are evolved. The quality of the content is
evaluated by simulating playthroughs with artificial agents (BROWNE; MAIRE, 2010).

Angelina (COOK; COLTON; PEASE, 2012), Game-O-Matic (TREANOR et al., 2012)
and Rogue Dream (COOK; COLTON, 2014) are the ones handling a total of four creative facets.
Although interesting works, we raise questions over their real-world applicability for games,
especially as they depend on content scraped from the web without a means of validation from
algorithms or human designers. They are also partially limited in their flexibility to adapt to the
different needs of players and designers. In general, they do not present metrics or objective
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functions for evaluation, nor an ML algorithm able to learn how to validate or grade contents.

In Cook et al.’s Angelina(COOK; COLTON; PEASE, 2012), the system evaluates online
sources’ moods to select background images, sounds, and contents, placing them in a metroidva-

nia game and evolving its levels. However, neither mood nor player preferences affect the level
generator algorithm. Moreover, only the creativity is evaluated (which gave positive results), and
not other aspects of gameplay and fun.

Game-O-Matic(TREANOR et al., 2012) shares a similar context, creating relationships
between entities through text and using its content to search the internet for visuals. Verbs become
game mechanics via predetermined rules, and a post-processing step eliminates unfeasible rules.
A simple level generation is done using rules as a foundation. As it is a co-creative system, it
does not adapt its content to players, and there is no evaluation with users.

Rogue Dream(COOK; COLTON, 2014) uses the player’s name as a random seed to
generate an association between objects and the visuals. This association is done via Google
autocompletes, and the results are crossed with a prescripted list of rules for mechanics, enemies,
and game rules. There is also a level generator, following a more computer-driven approach. The
system also lacks user adaptation and evaluation with players.

AudioInSpace(HOOVER et al., 2015) generates audio via a Compositional Pattern
Producing Network, and another network defines the position and color of players’ bullets. Both
use each other’s output as feedback. The player selects a favorite weapon after a match, and the
method uses the information as input for the networks. Thus, the work generates rules (bullet
patterns) and visuals (bullet color) at a high level. The system allows adaptation to different
players to some degree, as it is limited to the player’s bullets and audio contents.

The last example we discuss from Liapis et al. review is Game Forge (HARTSOOK
et al., 2011). They orchestrate narrative and levels to reach positive gameplay quality metrics,
matching the user’s desired settings. However, the evaluation did not include feedback from
players. Our system has features inspired by Game Forge, as we also use a quest-generating
algorithm as the base for the other generators.

The authors in (Prager et al., 2019) present another relevant aspect of game facet com-
bination by creating a simple maze game. The visual and audio styles can change between a
dark and tense setting and a soothing and joyful one. They tested how 20 players reacted to
compositions of facets considered as usual (both audio and visuals matching for either setting)
and unusual (the audio was from one setting and the visuals from another). A machine learning
model predicts users’ reactions, and the results show that, as expected, users perceived the
homogeneous settings as more fun and less difficult than the heterogeneous ones. They also
found the homogeneous settings to create more self-reported arousal instances during gameplay,
and the instances were more stable. Although considering only two facets and a small sample of
users, this research shows how a good orchestration of multiple contents is important to create
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funnier games.

The authors in (HEIJNE, 2016) (already cited as an inspiration for data collection in
Section 3.1) show a procedural clone from The Legend of Zelda: A Link to the Past that can
generate levels, puzzles and what enemies populate each room procedurally, although with low
variability. The puzzles and enemies can be considered part of the rules facet. The authors also
adapt the content for different, manually tuned difficulty settings and collect many data from the
players, trying to profile them.

Finally, the work in (KARAVOLOS; LIAPIS; YANNAKAKIS, 2021) presents an im-
portant experiment involving the creation of multiple game facets and preliminary steps toward
player profiling in an environment with multiple procedural contents. They procedurally can
generate both levels and rules, in the form of character class parameters) for a shooter game.
Artificial agents play the game, simulate real players, and collect data from the outcomes. The
level configuration, the character class parameters, and the outcomes train a Convolutional Neural
Network (CNN). The network has to predict the kill ratio between the two players, the time of
the match, and two entropy scores calculated from heatmaps: the first for all death locations and
the second for the players’ positions.

The authors tested different inputs for the CNN and found out that the parameters related
to the rule facet were the most important ones for correct predictions. Still, the data from the
level facet improved accuracy. This is an intriguing result, as two game facets can be used to
predict the outcome of a third one (gameplay). This could help systems that create multiple
contents procedurally to ensure feasible and balanced content. Furthermore, they show that data
extracted from multiple facets can help create a more accurate model for player profiling, and
even machine learning models that can be used to adapt the procedural content for different
players.

In our approach, we generate three different facets: levels (the dungeons and their rooms),
rules (as the mechanics of enemies), and narrative (both as the quests and the locked-door
puzzles). Other works have already created up to four facets. However, we create more than
a single content for the same facet using different algorithms. For example, the locked-doors,
created with the dungeon using an EA, and the stochastic grammar generating the quests are
both parts of the narrative facet, adding some complexity to our system.

For most contents, we use algorithms that adapt to different users’ needs, allowing for
satisfactory adaptability, and tested against players (shown in Chapter 5 with positive results),
especially on how they please players with different profiles. We also include novelty in creating
a more robust architecture for orchestrating multiple contents, which allows the addition and
exchange of algorithms with relative ease. In none of the works we found such quality of
adaptation to users and the system’s adaptation to different designers’ needs.
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3.6 System Architecture

A fundamental pillar to harmonizing different facets in a quality game is creating an
architecture that allows better developers’ productivity, accounting for improved software quality.
Content orchestration projects demand many functionalities to be added to the system, benefiting
from the Design Stamina Hypothesis1, which guides the fields of software design and architecture,
refactoring, test-driven development, DevOps and alike (FOWLER, 2018; MARTIN et al., 2018;
BECK, 2003; KIM et al., 2021).

A software design and architecture guidance may facilitate the reuse, replacement,
and addition of generators to other game projects with relative ease. For example, we used a
simple Evolutionary Algorithm (EA) for level generation and changed the approach to MAP-
Elites without changing the data representation. Game developers often set aside this software
architecture and design area, as reported in Mizutani et al.’s review on the subject(MIZUTANI;
DAROS; KON, 2021), which, from 512 studies, found only 36 representative ones with sufficient
architectural description and, between them, most tailored to specific games or genres. The
authors report studies presenting that software architectures benefit from reuse, providing better
systems, even if employed for a particular game application.

Although Mizutani et al.’s review (MIZUTANI; DAROS; KON, 2021) approached game-
related research in general, PCG research is also affected. It is still rare to find discussions
on what techniques, patterns, and designs the developers employed so that others could easily
extend or replicate following a software architecture design. One example that does so in recent
literature is Kreminski et al.’s (KREMINSKI et al., 2020), where they created an architecture
for a co-creative storytelling game. Albeit in a container-level depth2, they present the central
communications between entities as well as with other containers.

We have yet to find works approaching implementing satisfactory architectures for PCG
systems, but there are interesting works on design patterns for PCG. Design Patterns are a more
low-level view of the system than architectures, as they are common usages of the creation
of specific classes and making them communicate between themselves in known problems,
especially in the object-oriented paradigm. We advise the reader to not mistake software design
patterns for game design patterns, as the ones presented in the work of (BEAUPRE et al., 2018).
They extracted a “design” design pattern after analyzing the corpus levels from the general video
game AI framework and proposed a method for generating levels based on said patterns. But
there is no relation to software design patterns in such work.

The work of (TREANOR et al., 2015a) provides design patterns for AI applications in
games, also proposing a generative ideation technique combining a design pattern with an AI
technique or capacity. These patterns also tend to be game design patterns, like software design

1 <https://martinfowler.com/bliki/DesignStaminaHypothesis.html>
2 Using C4’s model classification (<https://c4model.com/>)

https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://c4model.com/
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patterns. However, as they indicate software strategies to be used with each pattern, we consider
it relevant for our case. The authors then developed two short games as examples of how these
patterns may help game development, as well as how to combine them for more exciting games.
Figure 14 defines the patterns they stated.

Figure 14 – AI-Based Game Design Patterns. As in (TREANOR et al., 2015a).

AI is Visualized Provide a visual representation of the AI state and make the gameplay
revolve around manipulating this state.

AI as Role-model Provide AI agents for the player to mimic their actions, e.g., mimic the
states in a Finite State Machine.

AI as Trainee Make players train an AI to perform tasks (usually training a Machine Learn-
ing algorithm).

AI is Editable Allow the player to edit elements of an AI agent, such as parameters or data
structures.

AI is Guided Make players aid an AI that does not fare well in a complex environment,
changing the environment to be suitable for it.

AI as Co-creator Involve the player in a creative task paired with an AI, e.g., the mixed-
initiative procedural generators.

AI as Adversary Player must defeat an AI opponent. This is how AI is used in most games,
especially single player ones.

AI as Villain The player must complete a task or defeat the AI; however, the AI is not
aiming to defeat the player, but to create an experience or atmosphere (e.g., tension).

AI as Spectacle The player observes or interferes with a complex system created by AI
agents. Arguably, simulation games with limited interference apply this pattern.

(COOK et al., 2016) describes PCG-based games, inspired by the work mentioned above,
which are games guided by procedural content generators. They propose some design patterns
based in reoccurrences in the literature. Said patterns focus on game design, but still provide
insights into developing the software. The authors then study two cases as examples of how these
patterns may help game development. Figure 15 defines the patterns they stated.

The authors also discuss some essential themes when creating games centered on PCG.
For instance, the visualization of the process and the output must be clear to the player, so they
know how it will respond to their interactions. Another one is how and when to limit player
interaction with the system, aiming not to make them feel powerless. And the last is that these
games may be a way for non-programmers to be interested in PCG and participate actively in the
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Figure 15 – PCG-Based Game Design Patterns. As in (COOK et al., 2016).

AI as Creative Proxy Player designs or tweaks a generative system and the content is cre-
ated. The player does not create the content together with the generator, they design
the generator itself.

AI as Meta-Environment The possibility space of the generator can be traversed and trans-
formed by the player. The player may adjust parameters or input data of the generator
to, for example, guide the generator to create a particular type of content.

AI is Filtered Player acts as the fitness function or filter for the content, selecting, ranking
or filtering said content. Similar to most mixed-initiative generators, but making the
selections is part of a game itself.

AI is Editable Allow the player to edit elements of an AI agent, such as parameters or data
structures.

AI is Interrupted Player interjects in the generation by stopping, slowing or restarting the
process. The player may want to stop the process to use a content generated before the
stop criteria is reached, or to reconfigure the setup if it is going in a way the player
does not agree with.

design of these systems without programming knowledge.

As our final finding when searching for works about system design and architecture on
PCG, we found the work in (COOK, 2020), where the author explores the impact of software
engineering decisions on how an automated game design system understands the codebase,
generates new code and evaluates the results. They define Automated Game Design as the
umbrella term for the study and engineering of AI systems that actively participate in game
design, be it creating, critiquing, and editing their core systems or creating content. They argue
that these systems, to date, are unlikely to be adopted by the industry, as professionals need more
comfort of use and credibility on the systems. These systems generally use game description
languages, custom domain-specific languages that describe games, which are interpreted by a
custom engine.

The research presented in (COOK, 2020) discusses how to create an Automated Game
Design system working directly with code, and how to design a system to be integrated with a
large, existing game codebase, especially what software engineering decisions may impact such a
system. Most of their analysis is about accessibility, encapsulation, method type signatures, post
conditions, and side effects. Such systems must inspect the game code to work and may cause
bugs when altering the code. In our approach, as with many other PCG systems applied in games,
these aren’t problems, as we develop our systems in the same language and the engine where the
game is implemented. The authors in (COOK, 2020) also discuss some software design patterns
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common in game development, the Model View Controller and the Entity Component System
(used in our first enemy generator approach, Section 4.3.3). In the discussion, the Model View
Controller is pointed as a model which demands more complexity from the Automated Game
Design system, as the code is more decentralized. They present some points to help system
development for commercial games. They mention the need for formal specifications, limiting
the space where the system works in, the automated discovery of code specifications, developing
new programming language features such as refinement types, and creating games using the
Entity Component System.

Thus, we conclude with our review that, as far as we know, there is a need for better
designs and architectures related to PCG systems, especially considering their application in the
game industry, from small to large teams of developers. However, more work needs to be done
to find better solutions. Some papers show that game development teams using design patterns
in their projects have better results than those that do not. And some works focusing on game
design patterns also propose some interesting patterns for software developers to follow. In this
thesis, we give a first step towards documenting an architecture able to create multiple contents
for a game developed in Unity, one of the most used game engines in the industry. The proposed
architecture worked both to develop a game prototype and to create a preliminary version of a
framework to handle different algorithms for the generation of multiple contents.

3.7 Summary

Table 2 compares our findings, based on creative facets generated as stated in (Liapis et

al., 2019): Visuals, Audio, Narrative, Level, Rules and Gameplay. We also evaluate if the works
approach adaptive contents and any player profiling (especially machine learning algorithms that
differentiate players according to gameplay characteristics). The values Yes or No in each cell
indicate the satisfaction or not of those features. The value Partially occurs when the execution is
not fully procedural or without a high degree of adaptation. We presented why some facets from
the works reviewed in (Liapis et al., 2019) are partially generated in Section 3.5. For (BICHO;
MARTINHO, 2018), we consider the rules partially generated because, when the level changes
to adapt to the player’s preference on what action they prefer, they favor a rule over another
dynamically. For the work in (HEIJNE, 2016), we consider the content partially adaptive because
it can only change between three predetermined difficulties, and the changes in the content have
a low expressive range. In our research, we plan to create each content with an expressive range
as wide as possible and able to adapt itself to many difficulties and player types.

We can observe many relevant results for the procedural generation of different contents,
applying various algorithms and approaches. However, a close look at those works shows that
creating a system of systems handling them all together is still a very recent area of research. It
is still challenging to provide a cohesive generator for multiple contents; as far as we know, there



3.7. Summary 87

Table 2 – Comparison between our work and the closely related ones in reviewed literature. The creative
facets have been abbreviated to their first letters to fit the page, in the following order: Visuals,
Audio, Narrative, Level, Rules and Gameplay.

Work V A N L R G Adaptive? Player
Profiling?

Angelina
(COOK; COLTON; PEASE, 2012) ✓ ✓ P ✓ × × × ×

Game-O-Matic
(TREANOR et al., 2012) ✓ × P P ✓ × × ×

A Rogue Dream
(COOK; COLTON, 2014) ✓ × ✓ ✓ P × × ×

Data Adventures
(GREEN et al., 2018) ✓ × ✓ P × × × ×

Game Forge
(Hartsook et al., 2011) × × ✓ ✓ × × × ×

AudioInSpace
(HOOVER et al., 2015) P ✓ × × P × P ×

Sonancia:
(LOPES; LIAPIS; YANNAKAKIS, 2016) × ✓ P ✓ × × × ×

Mechanic Miner:
(COOK et al., 2013) × × × ✓ ✓ P × ×

Ludi:
(BROWNE; MAIRE, 2010) × × × P ✓ ✓ × ×

(KARAVOLOS; LIAPIS; YANNAKAKIS, 2021) × × × ✓ ✓ ✓ × ✓
(Prager et al., 2019) ✓ ✓ × × × × × ✓

(BICHO; MARTINHO, 2018) × × × ✓ P × ✓ ×
(HEIJNE, 2016) × × × ✓ ✓ × P ✓

This and (PEREIRA; VIANA; TOLEDO, 2022) × × ✓ ✓ ✓ ✓ × ✓

is no system creating as many contents as our proposal. Adapting generated content can engage
players more, but how to collect and interpret player data and best adapt the content using these
data is still an open question. Some researches had positive results, usually, those that relied on a
broad amount of data, while others could have yielded more consistent results.

Therefore, our hypothesis that we can collect data from players by using short ques-
tionnaires and in-game data may help solve this riddle if we can successfully adapt our system
of PCG algorithms to different players. We also found that the generation of enemies with the
characteristics and behaviors proposed by us is not present in the literature. Even commercial
games with a closer approach either do not consider input from the player’s preferences, or not
consider the environment the enemies would be used. They also do not account for the gameplay
status of said enemies (e.g., their damage or attack pattern), only the appearance of the creatures.
Moreover, they used algorithms designed specifically for their needs.

In conclusion, our review showed that our research has the potential to advance by
creating an adaptive system of PCG algorithms that can both adapt to players and create feasible
and cohesive content from many PCG approaches.
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CHAPTER

4
METHODOLOGY

We describe our methodology to develop the proposed multiple-content generator system
in this chapter. Our system follows the C4 model introduced in Section 2.10, once it helps to
understand systems with relatively large complexity1, as the one we propose.

Thus, Section 4.1 introduces our system context, describing the interaction among
its different system components. Next, we delve into each system’s diagram and show their
containers in Section 4.2, by describing our three main systems: the Game, the Profile Analyst,
and the Procedural Content Generator. Finally, we present in more detail each of the systems’
containers in sections 4.3 through 4.5, describing their algorithms and relevant implementation
details.

4.1 System Context
Our goal in this research is the creation of an architecture able to generate different

creative facets procedurally based on user data. The data is analyzed and fed back to the PCG

system. The Unity real-time development platform, presented in Section 2.3, was used to create
a game prototype to help us evaluate the algorithms. The game prototype is inspired by the
well-known 2D dungeon-based action-adventure games, like The Legend of Zelda series and The

Binding of Isaac (NINTENDO, 2020; MCMILLEN; HIMSL, 2011a), mentioned in Section 2.1.
The prototype will work as an interface with the different PCG algorithms, reading their created
content and decoding it into gameplay elements.

We structured our architecture, which we named Overlord2, as a collection of three
different systems: Game; Profile Analyst; and Procedural Content Generation. An external
server supports these systems, where we upload a WebGL game version and conduct our
experiments.
1 <https://c4model.com/>
2 A little wordplay as it rules over the maestro (master, or lord) and others.

https://c4model.com/
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For our first experimental setups, we also added a Serialized Content container to
save generated data for offline loading, characterized as an offline PCG scenario (TOGELIUS;
SHAKER; NELSON, 2016). Figure 16 shows the architecture’s context diagram. The system is
publicly available at GitHub3.

Figure 16 shows the player interacting with the system by playing the Game (considered
a separate system) and providing data for the Profile Analyst system. The latter is responsible for
processing data from the player, be it explicit data, such as questionnaires, or implicit, like data
collected during their playthroughs. The resulting data goes to the Procedural Content Generator
system, being processed and used as input by the generators. The content created goes to the
Serialized Content container to be utilized later.

The PCG system generates different game facets procedurally and orchestrates their
content, guaranteeing feasibility and enhancing their quality to work together. It saves the result
in the Serialized Content container, allowing it to be used offline by the Game system. This
system, developed using Unity4, uses the content generated by the PCG system and stored in
the Serialized Content container, providing fun to the player. It also collects gameplay data and
sends it to the Server and Profile Analyst. Both gameplay data from the game, data explicitly
given by the player (questionnaires), and essential results provided by the Profile Analyst system
are stored in a server, allowing them to be analyzed later.

In our architectural context, we focus on separating the three systems’ logic as much
as possible. The main idea is to simplify modifications, additions, or replacements of a whole
algorithm for another, avoiding reworking a massive portion of the code. In an experimental
setting, this may allow testing more algorithms and comparing them against each other. A
considerable step in such a process is to define interfaces between systems, so they have a
common language to understand parameters and data without coupling. In a broad sense, this
means following the Open-Closed Principle of SOLID (MARTIN; NEWKIRK; KOSS, 2003).
Liapis et al. (Liapis et al., 2019) offer a similar suggestion when presenting the blackboard

system.

The Profile Analyst processes the player data and sends the results to the PCG system
via a data class with a constructor, which demands inputting the data needed for the PCG
algorithms to work. Moreover, the Profile Analyst’s code requires a change only if a new PCG
algorithm demands new parameters as input, which can be done via inheritance or parameter
changes, requiring a new implementation for the interface in the latter. The Serialized Content

container holds a similar purpose: storing data for each content in a serialized object. In Unity,
the scriptable object5 is a helpful data container for this situation. We have a scriptable object

class for each content type, whose objects save the high-level data created by the generator. The

3 <https://github.com/LeonardoTPereira/Overlord-Project>
4 <https://unity.com/>
5 <https://docs.unity3d.com/Manual/class-ScriptableObject.html>

https://github.com/LeonardoTPereira/Overlord-Project
https://unity.com/
https://docs.unity3d.com/Manual/class-ScriptableObject.html
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Figure 16 – System context diagram for the Overlord architecture, considering the experiments with
offline content generation.

game reads and processes the content into game objects, with visuals, sounds, physics, and other
game-related aspects ready to be used in-game. By creating this interface, we can use different
algorithms to make the same content without changing the Game system. Moreover, the Game

system can change aspects of a game object without changes in the generator. E.g., a 2D dungeon
can become 3D, but the generator only provides information about its layout and what rooms
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have which objects.

After successful tests with our architecture, we adapted it to support online content
generation by discarding the Serialized Content container. First, we change some parameters
in our PCG algorithms to provide a satisfactory result within a limited time. Moreover, after
receiving the necessary data for the player’s preferences, our system can generate content on
demand. Figure 17 shows this final version of our system. The current system’s configuration
allows for a virtually infinite loop of content generation, as long as input for the new content is
fed after each playthrough.

Figure 17 – System context diagram for the Overlord architecture, considering the experiments with
online content generation.

4.2 Systems’ Containers
In this section, we present our solution’s architecture from a more detailed perspective

than the Context one: the equivalent of the Container view from C4 model, showing the high-level
technical building blocks. We describe the main containers for each of the three systems: the
Profile Analyst (Section 4.2.1), the Procedural Content Generator (Section 4.2.2), and the Game

(4.2.3).

One may argue that our systems may not be complex enough to be categorized as indi-
vidual systems in the C4 notation, leaning more toward their definition of Container: “something
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that needs to be running in order for the overall software system to work.”6. However, the Game

application may run without the Profile Analyst or the PCG contents running, and the same goes
for the other ones. Hence, we categorized them, in our abstraction, as different systems.

4.2.1 The Profile Analyst System

Fig. 18 shows the Container Diagram of the Profile Analyst system. It gets explicit and
implicit data from the player. The former is via the Questionnaire Container, and the latter is via
the Gameplay Metrics container, which receives data from the Game system. Both save their
data on the Server and send them to the Profile Analyst, which processes it to generate input
for the PCG system, providing the contents that should fit the player’s profile (Profile Selector

container). In theory, this container can have a decision tree, an ML algorithm, etc. In our case,
we tested it with a simple set of rules, as presented in the experiments in Chapter 5. Finally, our
Profile to PCG Inputs Interface container processes the resulting data and transforms it so the
PCG system can understand and manipulate it, creating the required content.

Figure 18 – Profile Analyst container diagram. The player answers a pre-test questionnaire, the Profile
Selector analyses the data, suggests a profile and translates into inputs for the PCG system
via an interface. The Profile Analyst also collects metrics from the Game system and feed it
to the Profile Selector container.

4.2.2 The Procedural Content Generator System

The PCG system can generate and orchestrate different contents for the game based on
the input provided by the Profile Analyst. The Serialized Content container saves the resulting
contents to be loaded later by the Game system. We have four different generators in their
containers in Fig. 19: Quest, Dungeon, Enemy, and Room Generator. The Quest Generator

receives data from the Profile Analyst and creates a series of simple quests (questlines). The
system serializes and processes the questlines to extract inputs for the Dungeon and Enemy

Generator containers, using the quests as a frame for the succeeding contents.

The Dungeon Generator container creates dungeons with locked-door puzzles and
defines how many enemies occupy each room, providing all items, enemies, and exploration

6 <https://c4model.com/#Abstractions>

https://c4model.com/#Abstractions
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needed from the originating questline. This generation runs parallel to the one in the Enemy

Generator container in a Fake-Sheets step. This one creates enemies with different attributes
(e.g., health, damage, speed), weapons, and movement patterns. It guarantees all enemy types
needed for the originating questline. Our post-processing module is the Content Orchestrator

container, which works as a standalone orchestrator. It arranges which enemies (from the ones the
quest-frame demands) occupy each dungeon room based on the Enemy and Dungeon Generator

contents. The dungeon data is also provided to the Room Generator, which creates the layout of
the rooms: tile positions, the spawning points of items, NPCs, and enemies. At last, the Serialized

Content container serializes the resulting dungeon and enemies, and the generation step is over.

Considering Liapis et al.’s definition of content orchestration (detailed in Section 3.5, our
approach is an In-between orchestration. It has some sequential control, where content generators
interpret a high-level frame as input to create their contents with some freedom, similar to the
Creative Maestro from (Liapis et al., 2019). However, we have some facets with their contents
being created in parallel with a Fake-Sheet, a frame which generators agree to work into and
expand, also from (Liapis et al., 2019). Thus, we can fit the content as requested while slightly
diverging. We also apply some post-processing methods in the resulting content to improve its
final quality.

Figure 19 – PCG container diagram. The Quest Generator creates a quest line based on the player
profile, processes the results, and passes it as input parameters for both Dungeon and Enemy
generators. They create their contents and pass them to the Content Orchestrator’s post-
processing unit. This unit discards undesired contents and selects each room’s best enemy
groups, according to the amount needed and available types. A Room Generator container
creates the rooms as demanded by the dungeon.

4.2.3 The Game System

The Game system processes the Serialized Content container’s data for the current profile,
selects what goes into the ongoing game session via the Profile Analyst system’s information,
and processes them into game objects for each content. The Instantiator container embodies
the content when the player selects a Dungeon from the Overworld. After the player finishes a
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Dungeon (by completing or dying), the data goes to the server, and they may play again. The
Data Loader and Interpreter container read the content data, e.g., how many rooms are in the
Dungeon, their placement, and what content they have inside. It also creates game objects with
the visual representation, sounds, and scripts, that the game demands from that content. For
instance, the game can require what sprites/textures/shaders each dungeon’s tile must have, their
collision areas, their location in the game space, types of sound effects, etc. Fig. 20 shows the
Game system container diagram. For the online experimental setup (seen in Section 5.3), we
skipped the Overworld, and the player starts in the Dungeon after the data is loaded.

Figure 20 – Game container diagram. Loads the previously stored contents for the current player’s profile.
Processes and converts them to game objects with specific data and methods that the game
needs, instantiates the objects, initializes and runs the game.

We use a decoupled approach by developing modular components without strong depen-
dencies among them and from the game prototype. PCG algorithms and a maestro algorithm
control the PCG systems and guarantee the cohesion between contents and their feasibility.
The game prototype will receive the generated content and shall be as close as possible to a
commercial indie game product to collect more realistic feedback. Bots will initially test the
generated content, and other quality-related metrics available in the literature for each type of
content (HEIJNE, 2016; Kybartas; Verbrugge, 2014). Questionnaires and implicit data collected
from players will be analyzed and used to feed machine learning algorithms to define players’
profiles, aiming for personalized content in real-time. Thus, tests with human players will be
mandatory during the system development and crucial to validation.

The Overlord system works as follows: a new player will answer a pre-test questionnaire
so that we can collect their profile. The data will feed the Profile Analyst system, which will then
decide the best difficulties and configurations for each content based on the player’s preferences
and provide the PCG system. The Quest Generator creates the quests and uses the output as
input for the other PCG components to create content that matches the player’s preferences.
Some systems have dependencies, so they must wait for another system to finish their generation
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first to receive the necessary input. For example, the Level Generator must get the quests from
the Quest Generator to define how many enemies, items, and NPCs must be in the dungeon, as
well as the number of rooms and level linearity. The Room Generator must also get information
about the number of rooms and their connections. After everything is created and validated by
the Orchestrator, the data goes to the Game system, and the player can play the new content.
After playing, the new gameplay data goes to the Profile Analyst system, and we may have a new
loop.

4.3 Procedural Generation

In this section, we present the procedural generation systems and the orchestration

algorithm, which helps to make the generated contents more cohesive when placed together.
They are part of the Procedural Content Generator System in the Overlord Context Diagram
(Figure 16), highlighted in Figure 21.

Figure 21 – Highlight of the Procedural Content Generator System inside the Overlord Context Diagram

An EA is proposed to generate dungeons in Section 4.3.1, as well as a MAP-Elites
variation of the approach in Section 4.3.2. The Enemy generator will also apply an EA, described
in Section 4.3.3, and a MAP-Elites variation, shown in Section 4.3.4. The Quest generator uses
formal grammars to create its contents, and it is detailed in Section 4.3.5. An extension to this
method, applying Markov Chains besides the grammar, is presented in Section 4.3.6. The rooms
inside the dungeons are generated using an algorithm based on Cellular Automata, described in
Section 4.3.7. Finally, the orchestration algorithm is described in Section 4.3.8, as the one that
will tie the content generation together as a cohesive system.

To summarize how the Procedural Content Generation System works, we also present an
example in Section 4.3.9.
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4.3.1 Evolutionary Algorithm for Dungeon Generation

The present section describes how dungeons and their respective locked-door missions
are created. We use a tree structure to encode the genotype information about the dungeon
layout, missions, and enemy positioning. We then decode the tree to a 2D grid to enable the
spatial placement of rooms. We also present the evolutionary algorithm that evolves the structure
alongside its operators. The algorithm follows the implementation of Pereira et al.(PEREIRA
et al., 2021), developed as the final product of the author’s master’s degree project(PEREIRA,
2018).

Our dungeons and their missions are modeled after a tree representation as shown in
Figure 22a and presented in (PEREIRA et al., 2021). Each node is a type of room. A Normal
Room (NR) has no keys nor locks. A Key Room (KR) has a key inside and is represented by a
bold node. And a Locked Room (LR), which has a locked path between itself and its parent, has
this lock shown as a dashed edge. Each key has a unique ID, shared with the lock that it opens.
Thus, we are encoding the mission and the play space at the same time.

Each child node assumes a direction in a grid space related to the parent node (room) as
shown in Figure 22a: Right (R), Left (L), and Down (D). Moreover, the parent is always in the
North (N) of the room. The root node represents the player’s spawn point, and it is shown as the
node with a thin dashed line around it in Figure 22a. The node behind the farthest locked door
(LR) is considered the goal. The nodes also hold information about the number of enemies in
their corresponding room.

The root node will always be created first and placed in a queue of rooms during the
population’s initialization. A breadth-first algorithm processes the queue until its end and creates
children nodes added to the queue. Each room’s number of children and their respective position
is determined randomly. After the tree generation, we place the enemies by drawing, with
repetition, a random node (different from the root and the goal, as, generally, these rooms do not
contain enemies in games) and adding a single enemy to it until the placement of all necessary
enemies. The number of enemies is given as input and fixed throughout all generations and
individuals.

Figure 4 gives a detailed description of the tree-generation algorithm. The breadth-first
approach applied to distribute unique rooms will guarantee many constraints’ validation by itself.

We maintain the translation from genotype to phenotype from (PEREIRA et al., 2021),
processing the tree into a 2D grid and placing each room and corridor according to their position
from the parent node. The starting room (root node) is placed at (0,0), and the other nodes have
their coordinates calculated according to their positions in the tree as shown in Figures 22 and
23. In Figure 22, the root node is not rotated, and its children can be placed in the grid in the
same direction as they are in the tree. However, a rotation is done in Figure 23 to keep the parent
node as north for its child. Placing a new child may lead to overlapping with existing rooms.
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Algorithm 4 – Tree Structure-generation algorithm (PEREIRA et al., 2021)
Ensure: A new dungeon with several rooms

1: while toVisit.Count > 0 do
2: actualRoom← toVisit.Dequeue(ROOM_TY PE)
3: // Get the depth of the current room in the tree
4: actualDepth← actualRoom.Depth
5: if actualDepth > MAX_DEPT H then
6: // Dungeon reached max depth, clear the list of rooms to be visited
7: toVisit.Clear()
8: break
9: else

10: prob← Draw number to check if room will have children
11: PROB_CHILD← PROB_HAS_CHILD∗ (1−actualDepth÷10)
12: if prob≤ PROB_CHILD then
13: // Draw number of actualRoom’s children
14: numberO fChildren← draw(MAX_CHILD)
15: // If drawn number is 3, the array will have all possible directions
16: directionArray← Draw each child’s direction
17: for i = 1→ numberO fChildren do
18: if prob < PROB_KEY then
19: ROOM_TY PE← KEY
20: else if prob≥ PROB_NORMAL then
21: ROOM_TY PE← NORMAL
22: else
23: ROOM_TY PE← LOCK
24: end if
25: child← createRoom(ROOM_TY PE)
26: //Insert new room as child of currentRoom, calculates [X,Y] position
27: currentRoom.InsertChild(directionArray[i],child)
28: child.Direction← directionArray[i]
29: toVisit.Enqueue(child)
30: end for
31: end if
32: end if
33: end while

Therefore, they are tested for overlapping when creating the tree and discarded if an overlap
happens, guaranteeing the feasibility of every tree.

The overlapping problem and its solution are better illustrated by Figure 24. There is
a tree with two overlapping nodes in Figure 24a. When it is translated to the grid, the overlap
occurs, and the node that causes the overlap is removed from the grid in Figures 24b through
24e. Thus, the tree structure is fixed and generates a feasible dungeon, as shown by Figure 24f. It
is important to note that the enemy distribution is done after we fix any overlaps in the dungeon.

Figure 25 introduces the EA that follows the same basic steps described in (PEREIRA et

al., 2021). Crossover and mutation operators create a new population at each generation. The



4.3. Procedural Generation 99

Figure 22 – Genotype-phenotype translation. Dungeon Parameters: 20 Rooms, 4 Keys, 4 Locks and 1.5
Linear Coefficient

(a) The relative directions of the nodes from the root are taken.

(b) The rotation of their direction is not necessary, as it is the same as the global
orientation from the grid. Note that the keys in the rooms are represented by
yellow squares.

tournament operator with size 2 selects individuals for reproduction, creating two new individuals.
The elitism operator will guarantee that the best individual from the previous generation is kept
in the next generation.

Figure 26 describes the crossover operator, where the main idea is to better preserve
the semantic information about dungeons after the generation of the children’s solutions. The
crossover algorithm keeps the same number of special rooms of the removed branch when
exchanging it between parents. Moreover, it preserves the breadth-first sequence of the special
room placement by saving its order before the exchange.

The crossover happens first over copies of the individuals, once overlapping may occur
when exchanging branches. After the branch exchanges, we rebuild the grid (Figure 26, lines
12-13) and, in doing so, we may find overlapping nodes as illustrated in Figure 24. Suppose the
remaining number of rooms, after removing overlapping nodes, is less than the necessary number
of special rooms (Figure 26, lines 14-17). Thus, the method cancels the operation, selecting
another pair of cut points without the replacement of said points. These lines also check if there
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Figure 23 – Next step of genotype-phenotype translation

(a) The right child of the root node’s left child is selected and its direction checked

(b) It needs to be rotated 270◦ to match the global orientation from the grid, being placed at south from
its parent.

are more than two rooms in each branch to safeguard the crossover of enemies. If the single
room to be exchanged is the goal, enemies from the other branch would have nowhere to go, and
the child would be infeasible. Otherwise, the crossover is validated, and the copies take the place
of the original levels. If there are no feasible cut points, the crossover operation does not happen,
as shown in the conditional operation in line 23 in Figure 26.

The fix algorithm redistributes the special rooms after the trade (Figure 26, lines 28-29)
by, basically, adapting some steps from Figure 4. Instead of generating the whole tree, the fix
algorithm is executed only in the individual’s newly acquired branch. At the start of the fix
procedure, the probabilities of a room being an NR, KR, or LR are the same from the tree-
generation algorithm, and the same visit order (breadth-first) is used. If all the special rooms
saved from the previous branch have already been placed in the new one, every new room will
be an NR. If there are only n rooms not-yet visited by the breadth-first algorithm, during the
fix execution, and ns special rooms left, where n = ns, all the n remaining rooms in the branch
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Figure 24 – Example of overlapping nodes and a fixed tree.

(a) Both blue and red-marked nodes are overlapping. (b) The red node is placed first in the grid.

(c) The blue node is tested for placement, but there is
already a room in the grid.

(d) The connection that would be created is discarded.

(e) The overlapping node is also discarded from the
tree. (f) The resulting tree, after fixing the overlap.

are changed into the ns special rooms, and sorted in the same way they were taken from their
original branch.

For the enemies, the crossover’s only restriction is not to place enemies in the start or the
goal rooms. Therefore, we make a similar approach to the lock and key fix algorithm mentioned
above: we save a list of how many enemies are in each room populated by enemies in each
branch. If there are more rooms with enemies in the original branch than in the new one, we
redistribute them. This redistribution tries to divide the number of enemies without room by the
total number of rooms. All rooms receive the extra enemies if the division exceeds zero. If a
remainder happens in the division, the first room of the branch receives the extra enemies.

After crossover, the mutation operator is executed if the mutationRate is satisfied in
line 11 of Figure 25. Next, there is a 50% chance to execute one of the two mutation operators
tailor-made for the tree structure: play-space and mission mutations. If the play-space mutation
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Require: A population pop, which is the list of dungeons.
Ensure: Final population after nGenerations.

1: for i = 0→ nGenerations do
2: newPop // Create a new empty population
3: // Fill the new population with new individuals
4: for j = 0→ Length(pop)÷2 do
5: λ ← draw number within [0,1]
6: if λ ≤ crossoverRate then
7: parent1, parent2← Tournament(pop)
8: child1,child2←Crossover(parent1, parent2)
9: end if

10: λ ← draw number within [0,1]
11: if λ ≤ mutationRate then
12: Mutate(child1,child2)
13: end if
14: FitnessEvaluation(child1,child2)
15: newPop.Add(child1,child2)
16: end for
17: bestIndividual← Elitism(pop)
18: newPop. f irst← bestIndividual
19: pop← newPop
20: end for

Figure 25 – EA – As seen in (PEREIRA et al., 2021)

is selected, there is a 50% chance of executing a leaf node addition or a leaf node exclusion.
In the node-addition mutation, an NR node is inserted as a child for the selected leaf node.
This change will only happen if the new node does not overlap the existing ones in the grid. In
the node-exclusion mutation, we remove only the selected node if it is an NR. Otherwise, the
mutation does not occur, keeping the node in the tree.

There are also two possible operations when the mission mutation is selected: addition or
change-label of a key-lock pair. The mutation procedure visits the tree in a breadth-first fashion
to add a pair, giving each visited NR node a chance to be converted into a KR. This probability
is the same as the tree-creation algorithm. After the KR has been created, the next special room
is an LR. If the pair is created, the algorithm stops immediately. Otherwise, it proceeds until the
tree is fully visited. If no LR is created, then just a KR is added. The change-label procedure
randomly selects a KR node to change. KR and LR (if available) from the selected pair are turned
into a NR.

After this, still in mutation, we perform an enemy transfer operation. To do so, we select
two rooms randomly: a donor and a receiver. If both rooms have no enemies, nothing is done.
However, if the receiver has enemies and the donor does not have them, we swap the rooms,
i.e., the donor becomes the receiver and vice-versa. Then, we transfer the enemies; to do so, we
randomly chose from 1 to the donor’s max number of enemies to move them to the receiver room.
We repeat this operation without repositioning in the list of rooms from the dungeon until there
are no more pairs available, but the operation is not performed in neither start nor goal room.
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Require: Two individuals ind1 and ind2 to be crossed over, cr, two lists of rooms to save the special
rooms that will be exchanged between branches: spc1 and spc2.

Ensure: If crossover occurs, return two new individuals.
1: cc← Draw crossover chance
2: if cc≤ cr then
3: CanTrade← f alse and there are rooms left to draw in both dungeons
4: while CanTrade = f alse do
5: roomCut1← Draw random room from dungeon ind1 without replacement
6: roomCut2← Draw random room from dungeon ind2 without replacement
7: saveSpecialRooms(outspc1,outspec2)
8: clone1← clone(ind1)
9: clone2← clone(ind2)

10: clone1.Swap(roomCut1,roomCut2)
11: clone2.Swap(roomCut2,roomCut1)
12: RemakeGrid(clone1)
13: RemakeGrid(clone2)
14: if RoomsInBranch(clone1,roomCut2) < spc1 || RoomsInBranch(clone2,roomCut1) == 1

then
15: continue
16: end if
17: if RoomsInBranch(clone2,roomCut1) < spc2 || RoomsInBranch(clone2,roomCut1) == 1

then
18: continue
19: end if
20: CanTrade← true
21: end while
22: //If valid cut point exists, save the copies as new individuals
23: if CanTrade = true then
24: clone1.ExchangeEnemies(roomCut1,roomCut2)
25: clone2.ExchangeEnemies(roomCut2,roomCut1)
26: ind1 = clone1
27: ind2 = clone2
28: ind1.FixBranch(roomCut2)
29: ind2.FixBranch(roomCut1)
30: end if
31: end if
32: return ind1, ind2

Figure 26 – Crossover, as seen in (PEREIRA et al., 2021), but accounting for enemies

The player should explore all rooms and locks. If they do not explore, some paths of
the level are not part of the locked door mission, which is generally undesirable in game design.
Moreover, we implemented a version of the A* and of the DFS algorithms to simulate the
behavior of a player traversing the dungeon created by the EA. We choose A* as it is one of
the most computationally efficient path-finding algorithms widely used in the game industry. Its
behavior simulates a player trying to reach the end of a dungeon as fast as possible, knowing
only where the endpoint is. It is similar to The Legend of Zelda games, where the user has an
item called the Compass, which shows only the location of the dungeon’s boss. The number of
locks opened by the A* is similar to a skilled player who knows this information. Meanwhile, the
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DFS algorithm explores a path until it reaches a dead-end. This behavior is very similar to most
players who have no previous information about the dungeon and are trying to map it. Therefore,
the number of rooms visited by this algorithm would be close to the one regular players would
visit.

Both algorithms must consider the rooms behind locked doors as unreachable until
the KR containing its key is visited. Then, when a KR is visited by one of the path-finding
approaches, the corresponding LR is immediately altered as “open” for the algorithm to visit.
Its parent room, if already changed to “closed” (that is, already visited and its neighborhood
explored), has its status changed to “open”, allowing the algorithm to search its neighborhood
again and visit the once-locked room. As the DFS algorithm does not have a fixed order to select
which child to visit, we select a random child who was not already visited when a node has more
than one. This procedure adds to the behavior of different players, as each one may select a
different route when playing. However, we must account for this randomness in fitness. So, we
ran the DFS three times, each picking other random children to visit. A* algorithm returns how
many locks it opened while searching for the final room, and the DFS returns how many rooms
were visited during the search.

There are three terms in the fitness function. The first evaluates if the level layout follows
the desired inputs provided by the user (game designer), how many of the locks the player must
open to reach the end of the level, and how many rooms they must visit. Then, a second term is
an extension of the enemy sparsity equation introduced by (SUMMERVILLE et al., 2017) to
evaluate the distribution of enemies in the 2D maps. The main objective of the EA is to create
levels as close as users desire. Therefore, a double weight is given to user-related parameters.
In the third term, we calculate the standard deviation of enemies in the rooms, inspired by the
metrics in (SUMMERVILLE et al., 2017), now the standard deviation for enemy tiles. Equation
4.1 has the final fitness expression.

Lfitness = fgoal− fes + fstd (4.1)

Our experiment to evaluate the first version of the enemy generator, described in Section
5.1, had only the the first factor (f_goal), as the dungeon did not evolve the enemy placement at
the time. The method followed the same setting in Pereira et al.’s work (PEREIRA et al., 2021)
as shown in Equation 4.2.

fgoal = 2∗ (|ur−dr|+ |uk−dk|+ |ul−dl|+ |ulin−dlin|)

+∆l +∆r
(4.2)

The user provides as input for EA the desired number of rooms (ur), keys (uk), locked
doors (ul), and the level linearity (ulin). Our EA will search for the best level whose number of



4.3. Procedural Generation 105

rooms (dr), keys (dk), locked doors (dl), and linearity (dlin) are close enough to the user’s input.
Therefore, the first four terms in Equation 4.2 will measure how far is the generated level from
the user’s specification. The last two terms evaluate the exploration of the level based on outputs
returned by path-finding algorithms. Equation 4.3 calculates how many rooms were explored by
the DFS algorithm.

∆r = dr−dDFS
r (4.3)

Equation 4.4 calculates how many locks were opened by the A* algorithm.

∆l = dl−dA∗
l (4.4)

As the DFS selects random children to visit when the parent has more than one, we
execute it three times for each dungeon, aiming to reduce the impact of the randomness. Thus,
dDFS

r returns the average of the number of visited rooms by DFS, and ∆r gives us the number of
non-visited rooms. In Equation 4.4, we have the difference between the total number of locks
(dl) in the level and the number of locks opened by the A* (dA∗

l ). The linearity feature is based
on the average degree of nodes in a graph, as given by Equation 4.5. The parameter nodesInner is
the tree’s number of inner nodes. A dlin closer to 1 leads to a linear dungeon, while large dlin

values provide a maze-like level with more paths through multiple doors.

dlin = (dr−1)/nodesInner (4.5)

The second factor measures the distribution of enemies in the 2D map, aiming the
dispersion of enemies in the levels’ rooms. Thus, larger values mean more distribution. It is
presented in Equation 4.6 where ex and ey are the x-position and y-position of an enemy e, µx

and µy are the average x-position and y-position of all enemies, and E is the set of enemies.

fes =
∑e∈E(ex−µx)

2 +(ey−µy)
2

Number of Enemies
(4.6)

In the third term, we calculate the standard deviation of enemies in the rooms, inspired
by the metrics in (SUMMERVILLE et al., 2017), now the standard deviation for enemy tiles.
This function encourages the rooms to have a balanced number of enemies (lower values imply
enemies are evenly distributed) and is shown in Equation 4.7. r is a room in the set of rooms
R, renemies is the number of enemies in a room, µenemies is the average number of enemies in the
rooms, and |R| is the number of rooms, discarding the starting and goal rooms since they cannot
have enemies.
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fstd =

√
1
|R| ∑r∈R

(renemies−µenemies)2 (4.7)

We subtract this enemy sparsity fes component is our fitness because higher values are
better for such metric, and we aim to minimize fgoal and fstd , as well as our fitness function as a
whole. We took fgoal from (PEREIRA et al., 2021)’s work and gave equal weights for the other
two once preliminary tests showed bias towards the placement of enemies or the dungeon layout.
We wanted them both to be close to the desired input.

After the experiments with the offline setup and their respective results, described in
Section 5.2, we would need a fitness function more stable for the online setup. Furthermore, the
method must converge earlier if it finds good enough results. In an online setup, the generated
content must always generate exciting solutions for the player and converge as early as possible,
aiming not let players get bored in a loading screen.

To do so, we changed the stop criteria of our algorithm to consider early convergence
besides the maximum number of generations. The first criterion for premature convergence is if an
individual has a fitness value smaller than a given value (we used 0.1 in the experiments in Section
5.3), which would be a remarkable convergence considering our preliminary computational
experiments. The second criterion is if there is no decrease in the best fitness value for a given
number of generations (30, in the experiments in Section 5.3). Either way, the generation stops
after a fixed number of generations, 200 in the experiment, as mentioned earlier.

We also updated our fitness equation, as it needed to be more precise on the value, as
the minimum value was a stop criterion, and also to guarantee a good convergence for different
input ranges. Therefore, we applied standardization techniques. First, we fixed 4.6 from (VIANA,
2022), so it correctly represents the sparsity as proposed in (SUMMERVILLE et al., 2017),
which is the standard deviation of the distance between enemies 7. Then, we divided the value by
the average, standardizing the standard deviation as the coefficient of variation, better suited to
compare data with different means, as in our case.

For better understanding, we first give the equation of the enemy distance in Equation
4.8, where ex is the enemy’s x position, ey is the enemy’s y position, and µx and µy are the
average x and y position, respectively, for all enemies in the dungeon. Then, we calculate the
mean enemy Euclidean distance in Equation 4.9, where E is the set of enemies in the dungeon
(and |E| the number of enemies in the dungeon) and de the distance from the previous equation.
Then, Equation 4.10 shows the new equation taking place in the third term of our fitness function
as the enemy’s distance coefficient of variation. de and dmean are the ones from the previous
equations.

7 In their publication, they incorrectly use the variance instead of the standard deviation, so we use the
square root of their equation, as the correct standard deviation
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de =
√

(ex−µx)2 +(ey−µy)2 (4.8)

dmean =

√
∑e∈E de

|E|
(4.9)

f edcv =

√
∑e∈E(de(de−dmean)2)

|E|
∗ 1

dmean
(4.10)

We apply the coefficient of variation to the standard deviation of the number of enemies
in each room from Equation 4.7, resulting in Equation 4.11. Suppose, by any chance, that all
enemies are in the same room, which is not intended and will cause a division by zero on the
mean value. In that case, a penalty of 100 is given to this part of the fitness, as well as the
previous part, from the coefficient of variation of the distance.

fecv =

√
1
|R| ∑r∈R

(renemies−µenemies)2 ∗ 1
µenemies

(4.11)

We also have separated the fitness goal from Equation 4.2 in their counterparts of the
distance from the input, in Equation 4.12 and the usage of rooms and locks in Equation 4.13

finput = |ur−dr|+ |uk−dk|+ |ul−dl|+ |ulin−dlin| (4.12)

fusage = ∆l +∆r (4.13)

Thus, we have our updated fitness function in Equation 4.14. Note that instead of
subtracting the value of the enemy’s distance, we inverted it, as we want to minimize our fitness
at zero, preventing negative numbers. We also gave a weight of 3 to the input part of the fitness,
as it is the most important part (matching the user’s desire), and a weight of 2 to the usage part,
as it is also critical that the dungeon configuration is well-used. We allow some inconsistency in
the enemies’ distribution throughout the rooms and the number of them in each room.

Lfitnessonline = 3∗ finput +2∗ fusage +1/ fedcv + fecv (4.14)

Moreover, to further normalize the fitness and aid the early convergence to happen
when good levels are selected, independent of the dungeons parameters, we applied a min-max
normalization to our population’s fitness in each generation. After every fitness from the current
generation is calculated, each part of Equation 4.14 is normalized from 0 (the minimum possible
value) to the maximum value found during the evolution process.



108 Chapter 4. Methodology

4.3.2 MAP-Elites for Dungeon Generation

To allow more diversity in the generated levels, we also used a MAP-Elites algorithm
to generate our levels. This MAP-Elites approach was used in the offline experimental setup
(Section 5.2), with positive results. But we preferred the EA approach described previously for
the online experimental setup, as it could converge faster and because we wanted the players to
play the best level possible at every playthrough.

The MAP-Elites-based dungeon generator uses the same genotype and phenotype for
the dungeon, the same operators for crossover and mutation, and the same fitness function. The
significant difference is the core loop of the algorithm and the mapping of feature descriptors (or
dimensions). We decided to map the leniency of enemies against the exploration coefficient of
the dungeon. The leniency, adapted from Smith et al.’s work, is the number of safe rooms, i.e.,
without enemies, divided by the total number of rooms (SMITH; PADGET; VIDLER, 2018).
While the exploration coefficient is inspired by the exploration measure introduced by Liapis et
al.: we run a flood fill algorithm between rooms to simulate the map coverage, where the reached
rooms represent the critical exploration from each starting room and its corresponding goal room
(LIAPIS; YANNAKAKIS; TOGELIUS, 2013).

Leniency was chosen as it could bring variety in how many rooms were occupied with
enemies, forcing them to be more spread with lesser leniency, and more concentrated otherwise.
The exploration coefficient brought variety in the difficulty of the locked-doors puzzle: the larger
the exploration coefficient, the farther apart was a key from its door. Both metrics can have
different values throughout the evolution, and may appeal differently to distinct player profiles.

The leniency metric is shown in Equation 4.15, adapted from Smith et al.’s work (SMITH;
PADGET; VIDLER, 2018). The metric is calculated by the number of safe rooms, i.e., without
enemies, divided by the total number of rooms.

Dleniency =
Number of Safe Rooms

Total Rooms
(4.15)

Equation 4.16 measures our exploration coefficient, inspired by the exploration measure
introduced by (LIAPIS; YANNAKAKIS; TOGELIUS, 2013). We run a flood fill algorithm
between rooms to simulate the map coverage, where the reached rooms represent the critical
exploration from each starting room and its corresponding goal room. RR is the set of pairs of
reference rooms containing the pair of starting and goal rooms and all pairs of key and locked
rooms; #RR is the size of RR; rs is the room where the flood fill starts, and; rg is the goal room
where the algorithm ends.

Dexploration =
1

#RR ∑
(rs,rg)∈RR

Coverage(rs,rg)

Total Rooms
(4.16)

Since our equations result in values between 0 and 1, we discretized such dimensions.
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For the leniency dimension, the intervals are (0.5, 0.6), (0.4, 0.5), (0.3, 0.4), (0.2, 0.3), and (0.2,
0.1). Levels with greater leniency values have most rooms without enemies, or some of them
with several enemies.

For the exploration coefficient, the intervals are (0.5, 0.6), (0.6, 0.7), (0.7, 0.8), (0.8, 0.9),
and (1.0, 0.9). Levels with fewer exploration coefficient values lead to rooms much closer to
each other. Figure 27 presents our approach’s map.

Figure 27 – The map of MAP-Elites population. The red cell represents a dungeon with leniency between
0.4 and 0.5 and an exploration coefficient between 0.6 and 0.7. The blue cell represents a
dungeon with leniency between 0.2 and 0.3 and an exploration coefficient between 0.8 and
0.9. Thus, the blue level has more reference rooms further to each besides the red one, and it
also has more rooms with enemies.
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The proposed MAP-Elites application will map 25 individuals based on the defined
intervals. When the map receives a new individual, we must calculate the feature descriptors
to place it in the correct entry of the MAP-Elites table. If an individual fills a map cell and a
new one hits the same cell, the latter replaces the former if it has a better fitness; otherwise, we
discard the new individual.

Figure 28 presents the flowchart as an overview of our approach. The evolutionary
process starts generating individuals for the initial population, i.e., levels with rooms, keys,
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and locks, by following the initialization algorithm described in Section 4.3.1, that was present
in Pereira et al.’s previous works on dungeon generation (PEREIRA et al., 2021; PEREIRA;
PRADO; TOLEDO, 2018). We add individuals to the initial population until it reaches n. Since
the initialized individuals may hit the same entry in the MAP-Elites table, it can take a while. In
this case, the population size does not change, since the best individual is always kept for that
entry.

Figure 28 – Flowchart with an overview of our approach. Pop abbreviates population.
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Next, we evolve the population using the time-limit stop criterion. In the EA approach
described before and Pereira et al.’s approach, we create an intermediate population that always
replaces the current one, except by the best individual found so far (PEREIRA et al., 2021).
In our case, after stating the intermediate population, we try to insert its individuals in the
MAP-Elites population. Our intermediate population has new individuals from two parents,
chosen by tournament selection with two competitors.

This MAP-Elites approach allows us to create a grid of dungeons, as presented in Figure
29. It will be used in our offline experimental setting, documented in Section 5.2.

Figure 29 – Example of a MAP-Elites population evolved for levels with 20 rooms, 4 keys, 4 locks, 30
enemies, and linear coefficient equal to 2. Each cell corresponds to an Elite. Squares are
rooms. The pink hexagon marks the start and the purple one, the goal. The number of enemies
in a room vary with the red color: white for 0 enemies, dark red for 4 enemies (normalized
for shown Elites). Circles are a key. Diamonds are corridors, and colored ones are locks with
the color of the respective key.
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4.3.3 Evolutionary Algorithm for Enemy Generation

Another important content for a game is its enemies. Most PCG approaches to enemy
generation only handle the placement of human-made enemies in a level, according to its
structure or the player’s performance. We create new enemies with different behavior, statuses,
and patterns for each play-through using an Evolutionary Algorithm, presented in this section,
and a MAP-Elites approach, presented next, in Section 4.3.4.

For the EA approach, we used Unity’s DOTS architecture, ideal for evolving a large
population of individuals in a reduced time frame8, which will be useful to generate different
behaviors.

To define our representation, we extracted the most common variables from enemies in
different games, focusing on the action-adventure genre. After careful consideration, we came
up with the variables in Table 3 that contains the variable type, its possible range, and a brief
description of their impact on gameplay. After testing our prototype with different players, we
empirically set the range for each variable. The selected intervals provided enemies from easy
(but not boring) to hard (but not humanly impossible) configurations. The nominal variables in
Table 3 are described in detail by Tables 4 and 5. These variables can be extended as much as the
designer likes by creating new behaviors that fit their game.

The use of software architecture (like delegates and Unity’s Scriptable Objects) makes it
relatively easy to add a plethora of new behaviors, weapons, and parameters, as well as change
their appearance for each possible combination of them. We can do all the mentioned addition
without altering the EA itself, which will still evolve feasible solutions that converge to the
designer’s desired fitness.

In the initial population, these parameters are selected randomly, considering the allowed
range of integers and float values and the size of the set of movements and weapons for the
nominal values. The population evolves using the operators described in Section Operators,
which happens until a certain number of generations. When the algorithm stops, we save the
data of the n best individuals (defined by the designer). Therefore, we use the ability of the EA
to evolve whole populations of solutions to have a collection of suited individuals in a single
execution. We discuss in Section Game Prototype how we handle the data from the resulting
enemies in our game prototype.

The fitness function sums all parameters, weighting some according to designer-input
values. Equation 4.17 shows the function. hp is the health of the enemy. dmg is the damage it
does to the player, which is multiplied by the designer-input weight of the weapon it currently
holds (weapon). spd is the movement speed that multiplies the designer-input weight of the
enemy’s movement behavior (movement). The time the enemy rests between cycles of active
movement (rest) has its value inversely proportional to the fitness, as the lower it is, the more

8 <https://unity.com/dots>

https://unity.com/dots
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Table 3 – Parameters, variable type, range, and their descriptions for the enemy’s genotype in the EA.

Parameter Type Range Details
Health integer 1-5 Total health.
Damage integer 1-4 Damage done.

Attack
Speed float

0.75-
4.0

Projectile’s shot
frequency
(1/Attack Speed).

Movement
Speed float

0.8-
3.2

Multiplies
movement
direction’s vector.

Active
Time float

1.5-
10

Time (in sec.) that
the enemy moves
before resting.

Rest Time float
0.3-
1.5

Time (in sec.)
the enemy rests
before moving.

Projectile
Speed float 1-4

Multiplied by the
projectile’s
trajectory vector.

Movement
Type nominal x

Calculates direction
vector of movement
at each frame.

Weapon
Type nominal x

Enemy’s weapon.
Each may have
different properties.

difficult the enemy tends to be. active is the time the enemy moves without stopping before
resting. pro j is a variable that receives the value one if the enemy can throw any projectile and 0
otherwise. This value is multiplied by the sum of the projectile’s speed (pro jsped) and the rate
at which the enemy throws said the projectile, denoted as the attack speed (atkspd). The fitness
value is directly proportional to the enemy’s expected difficulty, and the algorithm tries to match
this value to the one input by the designer before the evolution began.

f = hp+dmg∗weapon+ spd ∗movement+

1/rest +active+ pro j ∗ (atkspd + pro jspd)
(4.17)

This enemy generator EA can generate the enemies shown in Figure 30, except the healer,
and was tested with players as presented in Section 5.1. As the enemies were well received, we
enhanced the algorithm with a MAP-Elites approach, as will be presented in the next Section
(4.3.4), and added the healer enemy.
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Table 4 – Each movement type that the enemy can have, its weight in the fitness function and the working
details.

Movement
Type Weight Details

None 0 Stay still

Random 1.04
Selects a random direction
vector (x, y) to move towards
in the actual active cycle.

Random1D 1
Selects x or y-axis from a
random direction vector to
move towards in current cycle.

Flee 1.1
Direction vector (x, y)
opposes the player’s direction.

Flee1D 1.08
Selects x or y-axis from the
player’s location opposing
vector in the current cycle.

Follow 1.15
Direction vector (x, y) points
towards the player’s direction.

Follow1D 1.12
Selects the x or y-axis of the
vector towards the player’s
location in the current cycle.

Table 5 – Each weapon type available, its weight in the fitness function and the details. The projectiles’
weights(*) are lower as they are multiplied by the projectile speed and attack speed.

Weapon Weight Details
None 1 Damage on contact.

Sword 1.5
Holds a sword in front of
itself. Increases reach.

Shield 1.6
Protects the enemy from
frontal attacks.

Bullet 0.3*
Shoots a bullet towards the
player. Damages on contact.

Bomb 0.3*
Shoots a bomb towards the
player. Explodes in 2 seconds.

4.3.4 MAP-Elites for Enemy Generation

This section describes our enemy representation and how we evolve them through our
MAP-Elites approach. We use the same representation, crossover, and mutation operators as
in the EA version. Our only change in the representation is the numerical values of the max
movement speed; we decreased it slightly (from 3.2 to 2.8) because the max value was too fast.

We add the cure spell to generate healer enemies, and our melee enemies use the following
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Figure 30 – List of enemies of our game prototype. Slimes have no weapon. Swordsmen use swords.
Bower mages shoot arrows. Bomber mages throw bombs. Shieldmen hold shields. Healers
use cure spell to heal other enemies.

(a) Slime (no
weapon).

(b) Swordsmen. (c) Shooter
mage.

(d) Bomber
mage.

(e) Shieldmen. (f) Healer (Cure
Spell).

weapons: barehanded, sword, and shield. Furthermore, our ranged enemies use a bow and bomb
thrower. We discarded the weights of the movement and weapon types and dealt with these
attributes in dedicated equations to calculate the enemies’ difficulty.

The input for the generation, as in the EA version, is the desired difficulty of enemies.
The fitness function measures the distance between aimed difficulty and the difficulty encoded
in the enemy stated as an individual (representation of solution) of the evolutionary algorithm.
Therefore, our approach minimizes such fitness.

We designed a MAP-Elites approach to preserve diversity while optimizing the quality
of enemies. We discretized our map regarding movement and weapon types; thus, we have
nominal values as feature descriptors (dimensions). Since we do not need to calculate numerical
equations, our mapping functions are straightforward and presented in equations 4.18 and 4.19,
where e is the enemy.

Dmovement = emovement_type (4.18)

Dweapon = eweapon_type (4.19)

Figure 31 presents our map approach. The cell highlighted in red represents an enemy
that follows the player to hit with a sword, while blue represents an enemy that flees from the
player while throwing bombs toward them.

The proposed MAP-Elite maps 42 enemies, and when the population receives a new
individual, we calculate its feature descriptors to place it in the correct map entry. If a new enemy
hits a filled cell, we apply elitism, i.e., the best enemy fills the cell, discarding the other one.

The evolutionary process starts by randomly generating the initial population filling the
attributes from n enemies. Since the initialized enemies may hit the same map entry, the initial
population generation may take a while. Besides, since we discretized the population in a map,
its size does not change. Thus, the best individual is always kept.

Next, we evolve the population using the generation limit as a stopping criterion. The
authors in (PEREIRA et al., 2021) replace all the population in each generation with the
intermediate population generated. We also have an intermediate population; however, we try
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Figure 31 – The map of MAP-Elites population. The red cell represents a melee enemy that follows the
player to hit with a sword. The blue cell represents a ranged enemy that flees from the player
while throwing bombs towards them.
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adding its individuals to the MAP-Elites population. The reproduction operators create new
individuals from two parents, chosen through tournament selection with two competitors.

We first perform a crossover with a 100% rate to generate two new individuals when
reproducing enemies. Our crossover is a combination of a fixed-single-point crossover, and a
BLX-α crossover (ESHELMAN; SCHAFFER, 1993). We first cross the parents in the fixed
point as shown in Table 3. We designed the crossover to fill our map faster once new individuals
may hit new cells. For instance, if the elites Bow-Flee and Sword-Follow cross, we generate two
individuals mapped in Bow-Follow and Sword-Flee cells. After this, we perform the BLX-α
crossover for each numerical attribute (ESHELMAN; SCHAFFER, 1993).

After the crossover, we have a chance to mutate both resulting enemies, and when a
mutation happens, we apply a multigene mutation (KANAGAL-SHAMANNA et al., 2014). To
do so, we calculate the chance of mutating each gene. This mutation means that our mutation
operator can change all the enemy’s attributes. We set a new random value for each gene that
mutates, respecting the limited range and the list of nominal values of the attributes.
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Our difficulty function has four factors: health, movement, strength, and gameplay. The
enemies’ life points determine how many hits they endure, shown in Equation 4.20. Regarding
the movement factor, we consider three attributes of our individuals: movement speed, active
time, and rest time, shown in Equation 4.21. There, mv_spd is the movement speed, act_tm is
the active time, and rst_tm is the rest time. The faster the enemy, the more difficult it will be for
the player to defend the enemy’s tackles. The more time is actively moving, the more difficult
the enemy is. We weighed this term with 1/3 to balance its influence in this equation. Finally,
the more time resting, the easier it will be to defeat; thus, we calculate its inverse.

dhealth = 2× ehealth (4.20)

dmovement = emv_spd + eact_tm/3+1/erst_tm (4.21)

The strength is more complex than the previous difficulty factors; it depends on the types
of enemies. Therefore, we multiply three different equations, shown in Equation 4.22. For melee
enemies, we multiply damage by movement speed, as shown in Equation 4.23, where dmg is the
damage. We multiply attack speed by projectile speed for ranged enemies and weigh the result
by three, as in Equation 4.24, where atk_spd is the attack speed, and prjct_spd is the projectile
speed. We consider only the attack speed for healer enemies, since they always heal a single life
point of all enemies in their healing area range, as in Equation 4.25.

dstrength = ds1×ds2×ds3 (4.22)

ds1 =

edmg× emv_spd, ISMELEE(e)

1, otherwise
(4.23)

ds2 =

3× (eatk_spd× eprjct_spd), ISRANGED(e)

1, otherwise
(4.24)

ds3 =

2× eatk_spd, ISHEALER(e)

1, otherwise
(4.25)

We also calculated the gameplay considering the enemies’ weapons and our game
prototype, where we experimented with the generated enemies. Here we also increase the
difficulty of incoherent enemies, thus, discarding them based on a threshold defined by the user,
as shown in Equation 4.26

dgameplay = dg1×dg2×dg3×dg4×dg5 (4.26)
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Melee enemies that follow the player are more dangerous, thus, more challenging to
defeat. Moreover, melee enemies that flee from the player or stay still are less risky and easier to
defeat. Therefore, we weigh the difficulty as in Equation 4.27.

dg1 =



1.25, ISMELEE(e) and ISFOLLOW(e)

0.5, ISMELEE(e) and

(ISANYFLEE(e) or HASNOMOVE(e))

1, otherwise

(4.27)

Since ranged enemies perform distance attacks, those that flee from the player present
more risk. When ranged enemies stay still, players can defeat them easier since they are static
targets. Ranged enemies that follow the player may have a projectile speed faster than their
movement speed, or they will not behave as rangers since their projectiles will be slower than
they own. Thus, equation 4.28 represents these weights. This behavior did not occur in enemies
with the movement Follow1D. Therefore, we weight the difficulty as in Equation 4.29

dg2 =



1.25, ISRANGED(e) and ISFLEE(e)

1.15, ISRANGED(e) and ISFLEE1D(e)

0.5, ISRANGED(e) and HASNOMOVE(e)

1, otherwise

(4.28)

dg3 =


0.5/(2× emv_spd), ISRANGED(e) and

ISFOLLOW(e)

1, otherwise

(4.29)

Healers must protect themselves while keeping healing other enemies. Thus, they should
not follow players but avoid them, as shown in Equation 4.30. Besides, faster healers are more
difficult to defeat; thus, we also weighed this factor by their movement speed. Therefore, we
weigh the enemy’s difficulty as in Equation 4.31.

dg4 =



1, ISHEALER(e) and

(ISANYRANDOM(e) or

ISANYFLEE(e))

0.5, otherwise

(4.30)

dg5 =

1.15× emv_spd, ISHEALER(e)

1, otherwise
(4.31)
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Through gameplay experiments, we have empirically chosen all the numeric weights in
the equations. Finally, we defined the final difficulty in Equation 4.32.

d = dgameplay× (dhealth +dmovement +dstrength) (4.32)

This MAP-Elites algorithm to create enemies is used both in the offline and online
experimental setups (respectively, Sections 5.2 and 5.3). However, we added new visuals for
the swordsman and shieldman for the online setup. Moreover, every enemy changed their color
patterns according to their movement: random movements are represented by yellow enemies,
flee patterns are blue, follows are red, and no movement is gray. Figure 32 shows these color
patterns and their respective movement types.

Figure 32 – The map of MAP-Elites population for the online experimental setup. The red cell represents
a melee enemy that follows the player to hit with a sword. The blue cell represents a ranged
enemy that flees from the player while throwing bombs towards them.
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We also note that this approach has been published in (VIANA; PEREIRA; TOLEDO,
2022), and the reader may refer to this paper for more details on its implementation and
discussions about the quality of the generated enemies.
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4.3.5 Formal Grammar Quest Generator

We generate quests a using simple formal grammar as proof of concept. The idea was
to evaluate the system’s ability to create contents for quests as a starting frame. These quests
are based on the works of Hartsook et al. (HARTSOOK et al., 2011) and Doran and Parberry
(DORAN; PARBERRY, 2011), selecting quests that our current game could handle best while
trying to make it representative for each profile.

The grammar’s terminals consist of game mechanics related to completing the quest:
the player must either Wander (leisurely travel the dungeon), Get (something), Kill (enemies)
or Explore (places and secrets). These quests are created through grammar Gr where N =

{S,W,G,K,E}, Σ = {wander,get,kill,explore}. Fig. 33 presents our production rules, with S

being the start symbol.

Figure 33 – Quest generating grammar Gr.

1. S→W |G|K|E

2. W → wanderW |wander

3. G→ getG|get

4. K→ killK|kill

5. E→ exploreE|explore

To start the grammar, we use the weights the Profile Analyst system provides, as described
in Section 4.2.1. A loop begins for each profile weight and creates at least one quest of each
type, generating the non-terminal for that quest. Each non-terminal has 50% chance of selecting
its two rules; therefore, we can create a chain of quests at each iteration. Algorithm 5 contains
the steps that process the grammar and generate quests given the profiles’ weights. The system
allows a maximum of four iterations of that loop per profile weight.

Algorithm 5 – Quest-generating algorithm. The weights for the four profiles, from worst to best
matching, are 1, 3, 5, and 7.

1: newQuestChance,chainCost← 0
2: repeat
3: for all pro f ileWeights > newQuestChance do
4: process non-terminal of corresponding quest
5: end for
6: chainCost← chainCost +2
7: newQuestChance← Random(7)+ chainCost
8: until chainCost < 7

The Quest Generator processes the generated quests and transforms them into inputs to
the Dungeon and Enemy Generator containers. For the latter, the profile dictates the difficulty
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level (hard, medium, and easy) based on the player’s Mastery weight. Next, it saves the amount
of each enemy type (e.g., slime) in a dictionary. The Quest Generator also passes the difficulty
to the Enemy Generator as input (as shown in Section 4.2.2) and uses the dictionary to select
and serialize the necessary amount for each type of enemy. As our Enemy Generator generates
different enemies for a single type (due to the MAP-Elites implementation, described in Section
4.3.3), we can have various enemies from the same class.

For the Dungeon Generator, the algorithm needs the number of rooms, keys, locks, and
linearity. It also demands the number of enemies to be placed, the same as the one given to the
Enemy Generator. We guarantee a minimum configuration, independent of the Quest Generator
data: 16 rooms, three keys, three locks, and 1.0 for linearity. Then, we create four other discrete
possible values for each Dungeon Generator input. We use discrete values for better control in
the experiments; thus, a group of similar users would play very similar levels, reducing bias from
the randomness. The possible values are:

• Number of rooms: 16, 20, 24, 28, 32

• Number of keys and locks: 3, 4, 5, 6, 7

• Linearity: 1.0, 1.2, 1.4, 1.6, 1.8

Moreover, exploration, get, and wander quests add a counter parameter that specifies
linearity and the number of rooms. The exploration and get quests add another counter to dictate
the number of locks and keys. Therefore, the higher the counter, the more of that element.

4.3.6 Markov Chain Stochastic Grammar Quest Generator

To further improve the quest content, we use Stochastic Context-Free Grammar in the
new quest generator. The main goal is to guarantee quest diversity while attending to the player’s
preferences. The terminal symbols are quests, once again based on the work of Doran and
Parberry (DORAN; PARBERRY, 2011). The non-terminal symbols are used to separate quests
related to different motivations (or player profiles). This way, we define our grammar Gr2, where
N = { S, C, A, M, I}, Σ = { ε , exchange, explore, gather, give, goto, kill, listen, read, report}. Fig.
34 presents the new production rules, with S being the start symbol.

If the non-terminal symbol C is applied, the obtained quest line will be related to the
creative player profile. This rule’s terminal symbols are explore and goto. These quests involve
immersing the player in the game, encouraging them to explore locations and go to different
rooms in the dungeon. The non-terminal symbol A refers to quests of the achievement player
profile. The possible terminal symbols this achieves are gather and exchange. These represent
quests that revolve around obtaining items through different methods. The player might be
encouraged to get items for themselves or exchange them with game agents for different items.
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Figure 34 – Quest generating grammar Gr2.

1. S→ C | A |M | I

2. C→ explore C |goto C |ε

3. A→ gather A |exchange A |ε

4. M→ kill M |ε

5. I→ listen I | read I | give I | report I |ε

The mastery player profile is correlated to the M non-terminal symbol. The only terminal
symbol obtained by M is a kill. This quest aims to defeat different enemies. Finally, the last
non-terminal symbol, I, relates to the immersion player profile. The terminal symbols that can be
obtained by I are listen, read, give, and report. The quests in this line will mostly be related to
interacting with game agents. We observe these relations in Figure 35. There’s a tenth terminal
symbol we haven’t mentioned, which is the empty one. This symbol does not belong to any
particular profile; instead, it indicates when the derivation is over. Algorithm 6 contains the
algorithm for Gr2’s derivation.

Figure 35 – All achievable derivations.

When selecting the next symbol to derive, a random number between 0 and 100 is
generated. Every derivable symbol’s probability is added to a sum of all the possible symbol’s
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Algorithm 6 – Derivation algorithm.
derivation← newDerivation()
while derivation.GetLastSymbol().CanDrawNext do

lastSelectedQuest← derivation.GetLastSymbol()
lastSelectedQuest.NextSymbolChances← Pro f ileCalculator.StartSymbolWeights
lastSelectedQuest.SetNextSymbol(derivation)
nonTerminalSymbol = derivation.GetLastSymbol()
nonTerminalSymbol.SetNextSymbol(derivation)
derivation.GetLastSymbol().De f ineQuestSo(Quests,generatorSettings)

end while

probabilities. The last summed symbol will be derived if the current sum is greater or equals the
generated number. Otherwise, the algorithm will continue the process until a symbol is derived.
We show this in Algorithm 7.

Algorithm 7 – Algorithm that selects the next derived symbol. This function is invoked as
SetNextSymbol() in Algorithm 6.

newQuestChance← Random(100)
cumulativeProbability← 0
for all nextQuest in nextQuests do

cumulativeProbability← cumulativeProbability+nextQuest.chance(symbolNumber)
if cumulativeProbability >= newQuestChance then

derivation.SetSymbol(nextQuest.symbol)
break

end if
end for

The player’s quest preferences provide the probability of Gr2 deriving from the starting
symbol to a non-terminal symbol (probabilities c, a, m and i, shown in Figure 35). These proba-
bilities are calculated based on the score given to each player profile during the questionnaire
before the generation process. In this questionnaire, the players give a weight from 1 to 5 for each
preference, with 5 normalized to 1.0 and 0 normalized to 0.0 (therefore, the minimum weight a
player will give to a quest is 0.2). Then, we normalize the values of each preference dividing
by the sum of preferences, transforming the sum into 1. The final result is a set of probabilities
for each player profile used to derive Gr2 from the start symbol to a non-terminal symbol. We
summarize this process in Equation 4.33, where psi is the player’s score on each profile.

pre f i =
psi

∑
4
j=1 ps j

(4.33)

The probability of a non-terminal symbol deriving to a terminal symbol (probabilities
a(x), c(x), e(x), i(x) and m(x) in Figure 35) is determined by a function. These functions are based
on the total number of possible quests for each non-terminal symbol and should be determined
based on the condition stated by Equation 4.34. There, f (x) is the probability function that will
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be determined, e(x) is the probability function of the grammar deriving to the empty symbol, and
n is the total number of all possible terminal symbols from a profile, except the empty symbol.

f (x) =
100− e(x)

n
(4.34)

A quest line with a single quest, or even no quest at all, is less interesting for the player
than a quest line with multiple quests. Similarly, a quest line with too many quests might be
exhausting for the player. This way, we determined the probabilities by functions to vary the
quest amount according to the current number of quests.

4.3.7 Cellular Automata Room Generator

For both the enemy generator experiment and the offline setup (presented, respectively,
in Sections 5.1 and 5.2), we select the rooms for the dungeon by randomly drawing, with
repositioning, from a set of previously generated rooms. Figure 36a shows an example of a room
created with the checkerboard pattern, and Figure 36b a room with the vertical lines pattern.

(a) Room created with a checkerboard template. (b) Room created with a vertical lines template.

Figure 36 – Example of rooms generated with fixed patterns.

Simple rules generate these patterns so that we can support any room size. The rooms
have at most four doors, one in each cardinal direction (North, South, East, West), as described
in both versions of the dungeon generator algorithm, in Sections 4.3.1 and 4.3.2. We also fix the
doors’ positions in the room: they must always be in the center of their respective walls.

However, for the online setup (Section 5.3), we added a generator based on a Cellular Au-
tomata approach, increasing variety. Algorithm 8 presents this approach, where chanceToCreateBlockTile

is 20%, generations is 5, and the Cellular Automata follows the rule B345/S2345 in string nota-
tion. This rule means that a block tile is created if it has 3 to 5 blocks as neighbors, and it stays
alive only if it has 2 to 5 blocks as neighbors, considering the cell’s 8-neighborhood.
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Algorithm 8 – Room-generating algorithm.
Place the rooms’ doors in the center of theirs corresponding walls
for all tile in tilesInRoom do

if chanceToCreateBlockTile < randomPercentage() then
tile← blockTile

else
tile← f loorTile

end if
end for
for all tile in tilesInRoom do

Erode the room with the cross-shaped structuring element Matrix from Figure 37
end for
for i← 0,generations do

for all tile in tilesInRoom do
ApplyCellularAutomataRule()

end for
end for
for all door in doors do

for all otherDoor in doors do
path← FloodFillTraversal(door,otherDoor)
if ( then!CanReachDestination(path))

tileInPath← path.getRandomTile()
RemoveBlocksFromShortestPath(tileInPath,otherDoor)

end if
end for

end for
for all tile in tilesInRoom do

Erode the room with the cross-shaped structuring element Matrix from Figure 37
end for

We use the cross-shaped structuring element shown in Figure 37 for erosion. That is,
only blocks containing a complete 4-neighborhood are maintained. The erosion helps delete
single blocks that may feel visual. Figure 38 shows some rooms created with the Cellular
Automata-based algorithm.

Figure 37 – Cross-shaped structuring element matrix applied for the erosion.

 1
1 1 1

1



4.3.8 Content Orchestrator

The Content Orchestrator component is mainly a post-processing unit of the generated
contents, which follows the steps in Algorithm 9. The proposed orchestrator alters contents
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Figure 38 – Example of rooms generated with the Cellular Automata-based algorithm.

following a predetermined set of rules created after design decisions and preliminary tests
conducted with a smaller sample of players. For the levels’ contents, the Content Orchestrator
discards those with fitness values too distant from the desired one based on the levels returned by
the MAP-Elites. Content Orchestrator first removes some undesirable combinations of enemies,
as the MAP-Elites algorithm does not have a fix function to remove them, like melee enemies
(sword, shield, and slimes) that do not move.

The next step is the placement of enemies in each room inside the level, attempting to
create different gameplay combinations. First, the Content Orchestrator checks the number of
enemies the room must have, then tries to add healers only in rooms with two other enemies or if
no other option remains. The different types have equal chances of being selected until the room
is full or if the Content Orchestrator places all needed enemies of that type.

Next, the Content Orchestrator’s algorithm serializes the level and enemy data, and the
Game System can load them and start the game for the player. Algorithm 9 presents pseudocode
summarizing the orchestrator’s operations.

4.3.9 PCG Workflow Example

To summarize and enhance the understanding of the workflow of the PCG module of the
Overlord’s system, we present an example of how a series of weights extracted from a player’s
profile will be processed and passed along each algorithm, and what content will be generated.
Figure 39 shows a part of the diagram shown in Figure 59 focusing on the PCG part of the
system. The generation starts by receiving the weights of the player’s preferences on each profile,
through the orange portal, and create the quests. Then, the quests are used to generate levels and
enemies. Both are used to feed the orchestrator, which arranges enemies inside the dungeon. The
dungeons are also fed to the room generator system, which places the tiles in each room. The
resulting content is sent to the Game System (the red portal).

Let’s exemplify the generation with a player who has an achievement weight of 0.8,
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Algorithm 9 – Content Orchestration algorithm.
for all enemy in generatedEnemies do

if movement = none AND (weapon = none OR weapon = sword OR weapon = shield) then
generatedEnemies.Remove(enemy)

end if
end for
for all dungeon in genereatedDungeons do

if dungeon.Fitness > threshold then
genereatedDungeons.Remove(dungeon)

end if
end for
melees←Union(none,sword,shield)
ranged←Union(sniper,bomb)
for all room in dungeon do

while room.NeededEnemies > 0 do
if room.HasMeleeOrRanged() then

if !room.HasHealer() AND healer.Count()> 0 then
room.Enemies.Add(healer.Pop())

else
room.Enemies.Add(Union(melees,ranged,healer).Pop())

end if
else

if Union(melees,ranged).Count()> 0 then
room.Enemies.Add(Union(melees,ranged).Pop())

else
room.Enemies.Add(healer.Pop())

end if
end ifroom.NeededEnemies−−

end while
end for

creativity and immersion weights of 0.6, and a mastery weight of 0.4. The input given to the
PCG System by the Profile Analyst System would be an array with these 4 weights: [0.8, 0.6,
0.6, 0.4], following the alphabetic order of profiles. We call this array the playerPro f ile. The
quest generator would then create quests using the algorithm provided to it. In our case, it could
be both the formal grammar or the stochastic grammar.

To make the example easier, our hypothetical quest generator will generate only two
questlines for this input, and add them to a list of questlines, which we will call questLines. Each
questline has an array of quests, which consist of the quest type (the terminal of the grammar)
and additional information about it. For example: kill quests need the name of the enemy to kill
and how many; exploration quests the percentage of the dungeon to explore; etc. The quests
below are for the first questline in questLines, questLines[0]:

• (type:) Kill Quest, (enemy to kill:) Slimes, (amount:) 5;

• (type:) Listen Quest, (NPC to listen to:) Alasdoor;

• (type:) Gather Quest, (item to gather:) Diamond, (amount:) 4;
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Figure 39 – Workflow of the PCG system, a part of the diagram shown in Figure 59. After receiving
the weight of the player’s preference for each profile, the generation starts and proceeds to
generate all contents, send to the Game System at the end.

Therefore, we must kill 5 slimes. Then, we must listen to what the NPC Alasdoor has to
say, and, to finish the questline, we must collect 4 diamonds. The quests below are for the second
questline in questLines, questLines[1]:

• (type:) Kill Quest, (enemy to kill:) Bomber Mage, (amount:) 4;

• (type:) Give Quest, (NPC to give:) Alasdoor; (item to give:) Sword;

• (type:) Explore Quest, (percentage to explore:) 50%;

Thus, we must kill 4 bomber mages. Then, we must give a sword to the NPC Alasdoor,
and, to finish the questline, we must explore at least 50% of the dungeon. The questLines and the
playerPro f ile are used as input for the Dungeon Generator algorithm, according to Equations
4.35 to 4.39. |Quests| is the total number of quests, |ListenQuests| and |ReportQuests| are the
total number of Listen and Report type quests, respectively. Both quests are subtracted to the
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number of quests which demand space as they only need the NPC to interact with to exist, and
said NPC will occupy a single room independent of how many quests need it.

QuestsDemandingSpace = (|Quests|− |ListenQuests|− |ReportQuests|) (4.35)

Equation 4.36 calculates the dungeon size (DungeonSize) by multiplying the number of
quests which demand space and multiplying by 1 added by the player’s creativity weight and
adding to the minimum dungeon size (12, in our experiments). With this, the minimum number
of dungeons is guaranteed, extra rooms are added to guarantee the dungeon can hold all items,
NPCs and enemies, and the creativity weight may further expand dungeons to have more space
for the player to travel.

DungeonSize = QuestsDemandingSpace∗ (1+ playerPro f ile.Creativity)+MinDungeonSize

(4.36)

The linearity is calculated by Equation 4.37, which uses twice the creativity weight and
the achievement to reach a normalized value between 0 and 1, where 0 means a fully linear
dungeon, and 1 a dungeon where every room is branched, as long as the rooms do not overlap.

Linearity = (2∗ playerPro f ile.Creativity+ playerPro f ile.Achivement)/3 (4.37)

The number of keys (and locks, which are the same for our experiments) is defined in
Equation 4.38. A minimum of 3 keys is guaranteed, and up to 5 more are added, if the player
has a creativity weight of 1. Thus, the keys range from 3 to 8. However, Equation 4.39 adds a
conditional clause that may reduce the number of keys for medium-sized dungeons or smaller:
if there are less than 20 rooms, the number of keys is capped in 5. This is necessary because
trying to add too many keys in smaller dungeons both result in bad game design and difficulty
to converge the EA. For example, if we had 8 keys, we would also need 8 locked rooms, for a
total of 16 special rooms in the dungeon. If this dungeon had less than 17 rooms, that would be
impossible.

Keys = (playerPro f ile.Creativity/0.2)+3 (4.38)

DungeonSize/20 = 0→ Keys = Min(Keys,5) (4.39)

The generated dungeons are passed as input for the room generator. This algorithm does
not need any input besides the number of rooms it must create, and the location of the doors for
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each room. Therefore, no processing is needed. The output of the room generator is the dungeon,
with all its rooms tiled. The dungeon is also fed to the orchestrator, together with the enemies.

Said enemies are generated using only the playerPro f ile as input. It uses the mastery
weight to define the difficulty of the enemies, which is the input of the enemy generator algorithms.
These weights are calculated according to Algorithm 10.

Algorithm 10 – Conditions to transform the player’s mastery weight to a numeric difficulty
value for the enemy generator algorithm.

if playerPro f ile.Mastery < 0.15 then
Di f f iculty← 11

else if playerPro f ile.Mastery < 0.35 then
Di f f iculty← 13

else if playerPro f ile.Mastery < 0.65 then
Di f f iculty← 15

else if playerPro f ile.Mastery < 0.85 then
Di f f iculty← 17

else
Di f f iculty← 19

end if

Finally, the orchestrator algorithm will receive the generated enemies and dungeon, and
the questLines. First, it removes enemies with incompatible combinations, like melee enemies
(slimes) that do not move. Then, it will select random enemies from the generated ones which
has the same type as the required by the quests. That is, it will randomly select between those
with the desired weapon type, until the sum of all enemies to kill of said type is fulfilled. For
brevity, we suppose a dungeon with only 3 rooms was generated by the dungeon generator,
presented below with their x and y coordinates and total enemies inside:

• Room[0]: x=0, y=0, enemies=3

• Room[1]: x=1, y=0, enemies=2

• Room[1]: x=0, y=1, enemies=4

Figure 40 shows what the dungeon would look like after the distribution of enemies. The
NPC and items are distributed randomly throughout the dungeon in a last post-processing step.
This complete dungeon is sent to the Game System to be played.

4.4 Game Prototype
In this section, we present in detail the Game System from the Overlord Context Diagram

(Figure 16), highlighted in Figure 41. The game prototype’s role is to test the generated content
and collect user data, feeding the Player Profile model.
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Figure 40 – A possible solution of the orchestrator on how to divide the enemies, items and NPCs through
the dungeon’s rooms

Figure 41 – Highlight of the Game System inside the Overlord Context Diagram

Figure 16 shows the game prototype module of the Overlord system. Such a game is an
action-adventure that mimics the main mechanics from The Binding of Isaac game’s combat and
the dungeon exploration of The Legend of Zelda game. The player controls a yellow robot that
must move around the many rooms of a dungeon to collect keys, open locked doors and find the
special item (a green Sierpinski triangle) at the end of the dungeon. The player may collect items
to trade with NPCs, add to their inventory, and fight enemies. The NPCs will give the players
quests to complete according to what the Quest Generator component demands.

Each room, except the starting room and the one with the special item, may be filled with
enemies. Figure 42a has a screenshot of the game in the earliest version, used for the Enemy
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Generator Experiment (described in Section 5.1) with the player avatar (yellow), the enemies
(gray) and the enemies’ projectiles (orange). All doors in the room are locked (as we did in the
enemy generator and offline setups). At the bottom right, there is a mini-map showing the current
and neighboring rooms. At the top-right is the player’s health, always starting at ten health points.
Each enemy’s damage results in losing a certain number of hearts (or health points). Figure 42b
has a screenshot of the most recent version of the game, with the slime enemies, a yellow key, the
Cellular Automata-generated room, and open doors, as in the online experimental setup (Section
5.3) we did not close the doors, allowing for players to play the game as they preferred.

Figure 42 – Screenshots showing differences from the early version of the game from the most current
version.

(a) A screenshot from the game in its early version, used in the experiments in Section 5.1.

(b) A screenshot from the game in its most recent version, used in the experiments in Section 5.3.

Some doors are locked and need a key of the same color to open them. The player must
search for and collect the keys, as seen in Figure 43a, showing a blue key and a blue locked door
opened by it. Figure 43b shows some items on the floor (a garnet and an emerald), which the
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player collects by colliding with them. It also indicates Alasdoor, our door-like NPC, who the
player may interact with by pressing the X button when in contact with it. And some red mage
enemies of the following movement type variant, as their red hats indicate.

Figure 43 – Screenshots showing some major gameplay elements.

(a) A blue key that must be collected to open a blue lock, both in the same room.

(b) Items scattered in the floor (garnet and emerald), as well as Alasdoor, our door-like NPC, and some
enemies.

The following subsections will describe the core gameplay and the main mechanics of
the game: the enemies, the quest system, the dialogue system, the content placement system, the
items and inventory, and the user interface elements. We also show how we collect gameplay
data to provide to the Profile Analyst component, described in Section 4.2.1.
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4.4.1 Gameplay

The game’s core mechanics consist of moving around the dungeon, shooting enemies,
collecting items, solving the locked-door puzzles, and talking to NPCs. The player can do these
actions by using the keys mapped in Figure 44.

Figure 44 – Mapping of each game’s action to their corresponding key in the keyboard.

The player can move around in the dungeon in 8 directions, as the diagonal movement
occurs when they simultaneously press two adjacent movement keys (the WASD ones). The
player will collide against blocks, walls, closed doors, NPCs, and enemies. The arrows allow the
player to shoot bullets in the directions the arrow points. No diagonal shots are permitted, but
they use the player’s movement momentum, being possible trick shots in this way.

The items are collected automatically by moving inside their colliders. When the player
collides with doors, they automatically open as long as the player has the corresponding key.
When touching an unlocked door, the player goes to the adjacent room, with a minimap guiding
the player through the dungeon. This minimap becomes full screen by pressing the Tab key.

Figure 45 shows the full scream map. The not explored rooms appear in green rectangles,
and the rooms visited appear in pink. The minimap does not show corridors, as the game was
designed for players to memorize the path as part of the challenge for the locked-doors puzzle.

When pressing Q on the keyboard, the player opens the quest menu, a straightforward
UI showing both completed and ongoing quests. Figure 46 has the menu. These quests open
when the player talks to an NPC by pressing the keyboard’s X key. Figure 47 shows an NPC
introducing a quest to the player. This quest is a quest to kill enemies.

The enemies in the game are simple agents controlled by AI. They have difficulty ratings
to increase or decrease their stats, defined by the Enemy Generator component, which also defines
which movement pattern and the weapon they will use. At this point, we did an implementation
similar to the Strategy design pattern. The game reads the serialized data of the enemy and
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Figure 45 – Map of a dungeon as shown in the game’s UI when in the full-screen map mode.

Figure 46 – Menu that shows the completed and currently open quests for the player.
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Figure 47 – Dialogue UI, where an NPC is requesting the player to kill a certain number of enemies from
a specific type.

selects which prefab will use to instantiate the enemy (containing their sprite, animators, scripts,
etc.). Next, it delegates the corresponding movement method and weapon attack script to the
enemies while instantiating them.

Enemies can damage the player character through contact or using projectiles, and
the damage depends on the enemies’ attack points. When an enemy dies, it will not respawn.
However, when the player leaves the room, the game respawns them when the player comes
back to the room. Figure 48 shows a red skeleton (sword-type enemy with a movement pattern
to follow the player) in the same room as the player.

The player character has ten life points, which are only refilled at the start of each level,
and will end the game if all of them are lost. They appear in the upper-left corner in Figure 48.
Enemies also have lives just like the player character and will be removed from the game if all of
them are lost.

The player may select one of four weapons before starting a level. One has increased
damage but reduced fire rate and speed, and the other a medium damage, speed, and fire rate.
The third one has lower damage, medium speed, and increased fire rate, while the last one fires
three medium-damaging bullets in an arc but with a reduced fire rate and medium speed.

Each shot hitting an enemy increases a Combo counter, and it is reset to zero whenever
the player character loses one of their health points. This successful shot adds a reward for
players who like combat, capable of defeating multiple enemies without being hit. Figure 48
shows the combo counter with no hits: "No Combo". The words are updated with better combos
when their thresholds are reached.
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Figure 48 – A red skeleton, an enemy, in a room with the player.

4.4.2 Enemies

The enemies have the properties provided by the generator algorithm (health points,
damage, movement speed, active time, rest time, weapon type, and movement type), as well as
the scripts that handle their movement, attack, and overall behavior patterns. They also have their
sprites and animations, their sound effects for when they are hit and killed, and a collider.

The health points handle their health: when it reaches 0, they are deleted after playing
their death animation and a death sound effect. The damage is the number of health points
subtracted from the player’s health when colliding with the enemy or colliding with the enemy’s
projectiles. Movement speed is the amount of space in-game units move per frame. The active
time is when they keep moving before the next pause, which lasts for the number of seconds
stipulated by rest time.

The weapon type decides which specific instance of the enemy controller’s inherited
classes the enemy will be created with, as well as their prefab within Unity, which will, in turn,
define the enemy’s visuals. The possible weapons and their corresponding enemy representation
are presented next:

No weapons A slime. Just moves around and gives damage on contact.

Sword A robot with a sword in the offline setup and a skeleton with a sword in the online one.
Gives damage on contact, with a slightly extended reach thanks to the sword.

Shield A robot with a shield in the offline setup and a skeleton with a shield in the online
one. Gives damage on contact. The shield has a collider that blocks the player’s bullets,
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destroying them on contact.

Projectile A mage in a red robe. Gives damage on contact, but also throws a projectile aimed
at the player’s current position. The projectile’s speed is given by the enemy generator’s
resulting values, as well as the fire rate.

Bomb A mage in a green robe. Gives damage on contact, but also throws a bomb at the player’s
current position. The bomb’s speed is given by the enemy generator’s resulting values and
the fire rate. The bomb waits a fixed number of seconds before exploding, damaging the
player if they are within the explosion radius (a circle collider spawning from the bomb’s
center, with its corresponding sprite indicating said area).

Heal A mage in a blue robe. Gives damage on contact. The cure magic fire rate is determined by
the enemy generator’s resulting value, and the healing amount is the enemy’s damage. The
healing occurs in a wide circle around the caster, which is a sprite signaling the collider is
where all enemies residing within (except the caster) are healed for the given amount.

For the movement, the game reads the desired movement patterns and adds the corre-
sponding delegate (function pointer) to the movement function inside the enemy’s movement
script. In the online experimental setup, we painted some props in each enemy’s sprites to be
colored according to the movement pattern. This helps to give the player feedback on what
pattern each enemy has. For the mages, we paint their hats. For the skeletons, we paint their
spaulders and swords or shields. For the slimes, it is their whole color. Figure 32 showed their
colors according to the movement type. We describe below the possible movement types:

None The enemy does not move. For the online experimental setup, paint the enemy’s props in
gray.

Random At the beginning of each movement cycle, select a random 2D vector pointing to
the direction that the enemy will move until the end of their active time. For the online
experimental setup, they have yellow props.

Random 1D At the beginning of each movement cycle, select a random 1D vector pointing to
the direction that the enemy will move until the end of their active time. For the online
experimental setup, they have yellow props.

Flee At each active frame, moves to the direction of a 2D vector pointing in the opposite
direction of the player. For the online experimental setup, they have blue props.

Flee 1D At each active frame, moves to the direction of a 1D vector pointing in the opposite
direction of the player. The axis (x or y) is defined randomly when the enemy is spawned
and remains the same until they are destroyed. For the online experimental setup, they
have blue props.
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Follow At each active frame, move to the direction of a 2D vector pointing to the player. For the
online experimental setup, they have red props.

Follow 1D At each active frame, move to the direction of a 1D vector pointing to the player.
The axis (x or y) is defined randomly when the enemy is spawned and remains the same
until they are destroyed. For the online experimental setup, they have red props.

4.4.3 Quest System

Our game has a quest system to handle the quests generated by their respective generator
(Sections 4.3.5 and 4.3.6). When starting the game, each questline is processed, and the first
quest opens, which means the quest controller broadcasts an event with the quest data and the
NPC in charge of that quest. The NPCs listen to the event and, when they are the ones in charge,
add a said quest to their quest queue.

When receiving a quest, the NPC creates an opener dialogue, getting the quest’s data and
transforming it into an adequate string. The NPC adds such a string to its list of dialogue lines to
speak when interacting. The Dialogue System handles the interaction of the NPC with a player,
as described in Section 4.4.4. The dialogue is shown in Figure 49. This opener dialogue repeats
as often as the player talks to the NPC. When the quest opens, the broadcast data is also received
by the Quest UI component, adding it to the list of open quests.

Figure 49 – An NPC is requesting the player to collect some items and trade for another, with a fellow
NPC.

Each game object related to a quest needs to implement the IQuestElement interface,
which has a method that calls an event when the game object’s quest-related task is completed,
and need to save their quest’s ID, so it can be later identified. This event is broadcast to the quest
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system, passing along the quest ID and any relevant data (e.g., the type of enemy killed, the
name of NPC spoken with, etc.). The Quest System uses polymorphism to know the type of the
quest and uses the ID to find it in the questline that contains it. Then the questline removes the
task from the quest, and if it did all tasks, the questline sends another event, now broadcasting
that quest is completed.

When a quest is completed, the NPCs listen to the event broadcast by the questline. If it
is one of their quests, they remove the opener dialogue from such quest and add a closer dialogue,
thanking the player for doing the task, and building the dialogue according to the quest’s type.

When the player interacts with the NPC, and they speak the closer line, another event is
broadcast from the Dialogue Controller and listened to by the Quest Controller. The controller
will find the closed quest in its questlines, and the latter will close the quest and open the next
one if it exists. Figure 50 shows the exchange quest closing dialogue.

Figure 50 – An NPC is congratulating the player for completing an exchange quest. When the dialogue
appears on the screen, an event is broadcast and the quest controller, which is listening, closes
the quest.

Some specific quests need an intermediate dialogue before they are complete. That is the
case of exchanging items, for example. In this case, when the player completes the intermediate
step (in the exchange quest case, gather all items), an event is broadcast from the quest itself
once identifying the conclusion of all previous tasks. The target NPC for the quest listens to it,
getting the necessary data for the next step. Said NPC will then create an exchange dialogue and,
the next time the player interacts with them, the Dialogue System broadcasts the quest closer.
The NPC in charge of the quest listens to this event, generating a closer dialogue. Furthermore,
in this case, the same event is heard by the inventory controller and the inventory UI. Moreover,
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the player’s inventory and the corresponding UI are updated. Figure 51 shows the exchange
happening.

Figure 51 – An NPC is exchanging items with the player, after all necessary items were collected. When
the dialogue appears on-screen, an event is broadcast and the quest controller, which is
listening, completes the quest. The inventory controller and inventory UI also listens to the
event, updating their data accordingly.

4.4.4 Dialogue System

For the dialogue system, we used the Dialogue Module9 from FellowshifOfTheGame’s
GitHub repository as a base. It is a dialogue system adapted from two previous projects from the
Fellowship of the Game extension group in our university (Universidade de São Paulo - USP),
and I am a developer in one of these projects: Final Inferno10. Therefore, it was a system I was
familiar with, hence the choice to use it.

This system saves dialogues as a list of dialogue lines belonging to a Dialogue Controller
Scriptable Object. This controller must be attached to the Game Object that will speak them
(in our case, the NPCs and readable items, such as books) and must have the data to show the
background color and portrait (sprite) according to the speaker. Each Game Object that wants to
show dialogues must have a collider and the QuestDialogueInteraction script as components.

Figure 52 shows an introduction dialogue from our NPC called Alasdoor. This dialogue
starts when the player is within the NPC’s collider range and presses the “talk” button (X key).
When the player presses the “confirm” button, the dialogue line is finished, and if there is another,
the system shows the next. Otherwise, the dialogue ends, and the UI is closed.
9 <https://github.com/FellowshipOfTheGame/DialogueModule>
10 <https://github.com/FellowshipOfTheGame/FinalInferno>

https://github.com/FellowshipOfTheGame/DialogueModule
https://github.com/FellowshipOfTheGame/FinalInferno
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Figure 52 – An example of a dialogue inside the game. The NPC portrait and background color varies
according to the speaker. The dialogue can be divided in different lines, which are displayed
one after the other, after the player press the “confirm” button (X key).

In addition, we adapted Mix and Jam’s AC-Dialogue repository’s code11 to work accord-
ing to our existing Dialogue System. Their code can encode events in the dialogue with custom
tags. Our system adds these tags while creating the quests’ openers, closers, and intermediate
(e.g., exchange) dialogues. When the Dialogue System process the dialogue line for the player,
while they interact with an NPC, the system removes the tags from the final dialogue and calls
the events corresponding to the tags it found.

Our system has three custom tags. One to send the event when the dialogue is about
the completion of a quest, another to handle the item exchange event (more details on both in
Section 4.4.3), and the last one for the opening of a quest to go to a specific room. In the last one,
an event is broadcast, and the minimap controller listens to it, opening the minimap in full screen.
It becomes the room to be visited by the player in red, slowly moving the minimap camera to the
goal room. The idea is to give the player better feedback about where the destination is. Figure
53 shows a room marked by this event.

4.4.5 Content Placement

Although our content generator creates a dungeon where the number of enemies in each
room is given, there are no rules about where to spawn them exactly in each room, nor which
rooms will have items and NPCs. Therefore, our game has a content placement algorithm to
decide these.
11 <https://github.com/mixandjam/AC-Dialogue/blob/master/Assets/TMP_Animated/Runtime/TMP_

Animated.cs>

https://github.com/mixandjam/AC-Dialogue/blob/master/Assets/TMP_Animated/Runtime/TMP_Animated.cs
https://github.com/mixandjam/AC-Dialogue/blob/master/Assets/TMP_Animated/Runtime/TMP_Animated.cs
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Figure 53 – A room marked in red showing where the player must go. This mark is made after an event
is called by the dialogue controller when an opening dialogue for a go somewhere quest is
spoken.

Our algorithm places treasures and NPCs in a determinist approach. For the treasures, it
divides the number of treasures by the total rooms that are leaf nodes in the tree representation
of the dungeon and rooms. For each room, it adds the resulting items, taking them sequentially
from the list of necessary items from the quests generated by the PCG component. If there is a
remainder in the division, the exceeding items are placed in the first room of the dungeon, which
is not the starting room. We prioritize the leaf rooms and those behind locked doors, as they are
usually found after some exploration, making the items feel more like a reward for the player’s
efforts.

The algorithm prioritizes the leaf nodes and rooms behind locked doors for NPC place-
ment. The algorithm places the enemies sequentially in each of these rooms. If there are not
enough rooms for the NPCs, the algorithm places them in any available room, as long as it is not
the start room.

Regarding the enemy placement, our algorithm creates spawn points by dividing the
room (of any size) into a fixed number of rows and columns (given as a parameter). These spawn
points are removed if they are too close to a door (less than a two-tile radius) or if their resulting
position collides with a block tile (which is not walkable). We delete those close to doors to
avoid enemies spawning close to players, which would be unfair to them. An example of spawn
points when passing to the algorithm the limit of 5 rows and columns is presented as the yellow
circles in Figure 54.
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Figure 54 – Enemies’ spawn points represented as yellow circles.

4.5 Player Profile

Now we focus on the Profile Analyst System, the area inside the Overlord Context
Diagram (Figure 16) highlighted in Figure 55. The game prototype allows collecting data from
the player, both explicitly and implicitly. We gathered the data implicitly when the player plays
the game prototype, while two questionnaires provided explicit feedback. One questionnaire
is answered before playing, named “Pre-test”, belonging to the category of self-assessments

concerning general dimensions in Jameson’s definition. The second is answered after each level,
named “Post-test”, a self-report on specific evaluations, also following Jameson’s categories
(JAMESON, 2002).

Figure 55 – Highlight of the Profile Analyst System inside the Overlord Context Diagram

The Questionnaire Container has the data of the questions we asked the player inside
the Unity engine and controls the logic to handle the UI and process the players’ answers. Figure
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56 shows a pre-test questionnaire, while Figure 57 has a post-test questionnaire.

Figure 56 – Example of a pre-test questionnaire inside the Unity engine, as the players in our experiments
has seen and responded. They may click in one of the radio buttons, indicating their agreement
to the statement from 1 to 5, or ignore, which will save the question as not-answered, or 0.

Figure 57 – Example of a post-test questionnaire inside the Unity engine, as the players in our experiments
has seen and responded. They may click in one of the radio buttons, indicating their agreement
to the statement from 1 to 5, or ignore, which will save the question as not-answered, or 0.

The Gameplay Metrics container listens to all gameplay-related events that the game
system broadcasts. These data vary a little between experiments but contain the player’s main
activities: how many rooms entered, how many enemies defeated, total damage taken, total items
collected, total quests completed, what was the input for the generators of the dungeon, enemies,
and quests in each dungeon played, the profile of the player, locks opened, and many more.

Each action of interest in the game (e.g., killing an enemy) broadcasts an event con-
taining relevant data for this container to listen to and save. In the enemy generator and offline
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experimental setups (sections 5.1 and 5.2) this data was stored in a proprietary server from our
university. However, Google’s Firebase12 was set up with Unity, and the current setting saves
data in a Cloud Firestore13 database, as shown in Figure 58.

Figure 58 – Example of data collected from a player’s gameplay in a dungeon named as Classic in the
Firestore Cloud database. The picture shows the given weight the player scored for each
profile, how they answered the pre-test, and the number of rooms they entered in that dungeon.

The Profile Selector container processes the inputs from the questionnaires or gameplay
data and provides a numeric value for the current player’s preferences. The processing of such
data and their results vary for each experiment, so we give the implementation details for each
experiment described in Chapter 5.

4.6 Final Remarks

With the methodology presented in this section, we propose a system that is an alternative
to answer our main research question on “How can procedural content generation be effectively
applied to simultaneously create multiple and coherent contents in real-time and adapting to
different users’ needs”. This answer can be summarized as to first get user data to use as input
for the PCG algorithms, which, in our case, is mostly via explicit data from questionnaires. Then,
use PCG algorithms able to map different inputs, representing the player’s needs, to interesting
and feasible outputs, which enables us to always offer a solution. Next, we need an orchestrator,
as well as an architectural pipeline, able to send the output from one generator to another and
maintain the solution’s feasibility while matching the player’s profile. Our approach guarantees
these steps by using model-based generator algorithms, where the models are created after

12 <https://firebase.google.com/>
13 <https://firebase.google.com/docs/firestore>

https://firebase.google.com/
https://firebase.google.com/docs/firestore
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studying the space of the game and the contents, and using known metrics to guide the generation
to what the players’ desire.

The system’s architecture that enables such use of PCG can be summarized in Figure
59, which in itself summarizes the answer to the specific research question: “What type of
architecture can effectively coordinate the generation of narrative, levels, and rules facets?”.
First, the Profile Analyst System enter in action, collecting the player’s answers to the pre-test
questionnaire, which provides their profile data and is fed to a profile selector, weighting this
player against each profile accounted for. Then, a facade interfaces these weights and creates the
inputs for the generator algorithms for the PCG System. This system will create quests through
one of our grammars, and these quests are fed to the dungeon and enemy generators, which use
different evolutionary strategies to generate their contents, depending on the experiment. The
generated dungeon is fed to the room generator, and, together with the enemies, also is fed to the
orchestrator. The generated room and the orchestrated dungeon with the enemies placed, and the
quests are all fed to another facade, which translates content in a way the Unity game engine can
understand to place inside the game. Then, the Game System starts, allowing the player to select
the level and loading the corresponding content for such level. After the player finishes the level,
the content collected during the playthrough may be fed to the Profile Analyst System to update
the profile, and the answers of the post-test questionnaire are also collected.

By maintaining the generator algorithms able to evaluate their contents and always
provide targeted and feasible contents, we see that the orchestrator algorithm needs only to
handle some basic steps of optimizing content placement, as the algorithms and our architecture
itself handles the feasibility and enjoyability of the majority of the contents, while targeting
them for the player’s profile, providing a possible answer for two other specific questions: “How
can an orchestrator algorithm process the generated content to make them feasible and more
enjoyable when placed together?” and “How can the orchestrator deal with simultaneous content
generation, considering or learning from player or game designer profiles?”.

As for the last specific research question, “How to adapt the simultaneous content
generation within online environments?”, the use of model-based algorithms which guarantee
the feasibility and that every solution will be at least good enough to solve the required input is
enough to solve one of the problems of real-time content generation, that is to deliver the right
content without supervision. Another problem for real-time generation is the time needed to
generate the solutions. And, as each of our algorithms can generate their contents in less than
a second, except for the dungeon generator, which takes a few seconds, this was not a major
problem for our system. The major changes were reported at the end of Section 4.3.1, specially
regarding the early convergence criteria for the dungeon-generating EA. The next chapter will
present the results both corroborating the quality and time needed to build our solutions, and
how users evaluated the generated content, specially when comparing content generating for
their profiles and those of a different profile.
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Figure 59 – An overview of our system, showing the flow of data during its execution and summarizing
our methodology. The PCG strategy for each content may vary according to the experiment,
as well as when the content is generated (offline vs. online), but the structure is the same for
all experiments.
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CHAPTER

5
RESULTS

This chapter presents the main research results achieved through experiments aiming to
validate our system. However, we first present results for our enemy generator EA described
in Section 4.3.3 once it was also a contribution of this thesis. The EA for an enemy generation
was evaluated using the early version of our multiple content generator systems, which handled
content offline: contents generated before the game had been uploaded and played by the users.

Pereira et al.’s work (PEREIRA; VIANA; TOLEDO, 2021) presents the same results
for enemies. It is worth mentioning that (VIANA, 2022) and (VIANA; PEREIRA; TOLEDO,
2022) also report results applying MAP-Elite as an approach for both the dungeon and the enemy
generators. Both works had results achieved using our multiple-contents generator systems. The
master thesis in (VIANA, 2022) extends the EAs in Pereira et al.’s work in (PEREIRA, 2018) for
dungeons and (PEREIRA; VIANA; TOLEDO, 2021) for enemies.

The early version of the multiple-contents generator system needed improvements when
running the results in (PEREIRA; VIANA; TOLEDO, 2021), (VIANA, 2022), and (VIANA;
PEREIRA; TOLEDO, 2022). This version had the profile analyst collecting gameplay data from
players and pre-test and post-test data from questionnaires. However, it still needed a quest
system, NPCs, and a dialogue system.

In Section 5.2, we had the results evaluating the offline version of our multiple generator
systems as a whole. We added the first version of the quest generator with the grammar method
in Section 4.3.5 as a frame to guide the dungeon and enemy generator. We also developed the
content orchestrator in Section 4.3.8. In this experiment, we also used the MAP-Elites approach
for dungeon and enemy generation from sections 4.3.2 and 4.3.4, respectively. However, this
version still needs NPCs, quests, or dialogue systems.

Section 5.3 show our final results, where quests, dialogue systems, and NPCs are present
in the gameplay. In this version, we updated the quest generator to use a combined approach
with formal grammar and a Markov chain to enhance diversity. Finally, we made the system
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work in an online approach: when the player answers the pre-test questionnaire and contents are
generated in real-time.

5.1 Enemy Generator Results

This section reports the computational results of the enemy generator applying an EA.
In this experiment, we use the early version of the system to generate the enemy and dungeons
contents procedurally but in an offline fashion. We evaluated the performance and diversity
achieved by the EA, the players’ feedback from questionnaires, and gameplay data gathered by
the system. The results presented here are also in (PEREIRA; VIANA; TOLEDO, 2021).

The summarized workflow is presented in Figure 60 and detailed throughout this section.
The player answers a pre-test questionnaire and the profile analyst decides which are the
corresponding enemy difficulty and dungeon settings for them. In this case, the dungeons
and enemies were generated offline, before the experiment began. Thus, the PCG System was run
before the game was provided to the players, and during the experiment, pre-created dungeons
and enemies were selected based on the pre-test answers. Then, the data was loaded, and the
player could enjoy the content.

5.1.1 Enemy Generator Evolutionary Algorithm’s Performance

Our first set of experiments tests the convergence time and quality of solutions given by
the EA, where we executed the method for nine sets of input parameters, 200 times for each
setup, and measured the generation time. The tests run in a relatively standard PC setup: AMD
FX-8320 Eight-Core 3.50GHz Processor, 16 GB DDR3 RAM, 223 GB SSD memory, NVIDIA
GeForce GTX 1060 3 GB graphics card.

Table 6 shows the results of this experiment, considering three different fitness objectives:
Easy, with desired fitness 14; Medium, with fitness 17.5; and Hard, with fitness 22.5. The table
contains the average execution time, average, and standard deviation for the whole population’s
fitness, and the average and standard deviation of the fitness considering only the 20 best
individuals across the 200 executions for each input. We can observe that the algorithm is fast,
even with large populations, taking less than 0.2s to evolve a population of 10,000 individuals
over ten generations and 1.7s for 100 generations. These values had already indicated that we
might be able to apply our approach to an online enemy generation.

The algorithm can evolve the 20 best individuals close to the difficulty goal input. The
worst-case scenario average is 0.28 units away from the target, with a standard deviation of 0.17.
This difference gets a little higher for the whole population: for the hard difficulty, the average
exceeded 2.5 units below the desired fitness and had a standard deviation of 2.277.

Therefore, we cannot guarantee that the whole population harbors adequate solutions for
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Figure 60 – Data workflow for the experimental setup about the enemy generator EA.

this difficulty. Furthermore, this result is somewhat expected since we evolve 10,000 individuals.
However, we can ensure that at least the 20 best individuals, which already guarantees each
EA’s execution, can conceive a good variety of feasible individuals. This result is very useful to
entertain players and increase the uniqueness of each playthrough.

Trying to settle for good results in the lowest time possible, we decided to create our
population of enemies using 10,000 individuals and evolve the population for 30 generations for
each difficulty setting for the experiments with players. Table 6 highlights in bold such test cases.



152 Chapter 5. Results

Table 6 – Data collected from averaging 200 executions of the EA with different input parameters. The
input is abbreviated with D-P-G, D is the difficulty, P is the population size, and G is the number
of generations. Regarding difficulty, E, M and H represents Easy = 14, Medium = 17.5, and
Hard = 22.5 difficulties, respectively. Finally, AVG Best and STD Best are collected from the
average fitness of the 20 best individuals.

Input Time AVG Best AVG STD Best STD

M-102-10 0.168s 17.4 16.59 0.170 1.870
M-103-10 0.174s 17.60 16.57 0.017 1.872
M-104-10 0.175s 17.50 16.54 0.002 1.883
M-103-30 0.508s 17.50 16.79 0.011 1.914
M-104-30 0.512s 17.50 16.81 0.001 1.922
M-105-30 0.660s 17.50 16.81 0.000 1.922
M-104-102 1.706s 17.50 16.81 0.001 1.929
E-104-30 0.578s 14.00 14.01 0.001 1.619
H-104-30 0.512s 22.50 19.88 0.011 2.277

5.1.2 Enemy Generator Evolutionary Algorithm’s Diversity

As we select a group of the best solutions from a single population, concerns about the
diversity of said solutions can arise. Therefore, we evaluated the diversity by plotting a parallel
coordinates visualization of each numeric parameter from the ten best solutions of a single
execution for each difficulty setting. We normalized each value to the interval 0 to 1, using the
minimum and maximum values presented for this parameter between the ten evaluated instances.
We selected the ten best instead of the 20 best used in the experiments with players to make the
visualization easier to read.

The results presented in Figure 61 show that for most parameters, there was a significant
diversity, especially when increasing the difficulty. However, the health and damage parameters
did not present much variety, especially in the easy setting because they have a more considerable
impact on fitness: i.e., when an enemy with two health points is one whole fitness unit (and,
therefore, one difficulty unit) above another with one health point; the other parameters are
floating-point values and can have more subtle differences.

This diversity inside a single-population EA arose because we could use a massive
population because of our parallel approach. Therefore, we had many more solutions spread in
local optima across the search space, even after several generations.

5.1.3 Enemy Generator Evolutionary Algorithm’s Player Feedback

Our experiment with players allowed them to select between three difficulty settings:
easy, with a difficulty degree of 14; medium, with a difficulty degree of 17.5; and hard, with a
difficulty degree of 22.5. We calculated these values with our difficulty function and determined
empirically in previous tests with a smaller number of testers. For each difficulty setting, we
executed the EA with the presented parameters. Then, we saved the 20 best non-equal individuals
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Figure 61 – Parallel coordinates visualization of the numeric attributes for the top 10 best enemies for
each difficulty setting, used in the experiments with players. The charts present normalized
parameters.
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(b) Diversity of the top 10 medium enemies.
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(c) Diversity of the top 10 hard enemies.
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(a total of 60 different enemies) to provide enemy variety for the levels. In these executions, the
largest observed difference from the target fitness for any given difficulty was 0.0845.

We uploaded our game prototype to a public server and asked on social networks for
anyone interested in playing it. The game presented instructions about the experiment and
gameplay. We ensured to follow protocols such as stating that the users were to remain calm, as
they were not being evaluated, only the game itself was. We also stated we would be collecting
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gameplay data and asking them a questionnaire at the end to answer if they felt like it, but we
would not collect any personal data. All our respondents remained anonymous, as it was an
opinion survey. Figure 62 presents the questionnaire we applied in our experiment. We also
allowed them to quit at any time during the experiment section.

Figure 62 – Experience questionnaire on a 5-point Likert scale. Q1 through Q3 are answered only once
per player.

Q1 How would you best describe your overall experience with games (knowledge, playing time, skills,
etc.)?

Q2 How would you best describe your experience (knowledge, playtime, skill, etc.) with Action-Adventure
games (e.g., The Legend of Zelda, The Binding of Isaac, Darksiders, Uncharted, etc.)?

Q3 What difficulty level do you usually choose to play your games in?

Q4 How much do you agree with the statement: “This level was fun to play”?

Q5 How much do you agree with the statement: “The combat against the enemies was hard”?

Q6 How much do you agree with the statement: “The combat against the enemies’ difficulty was adequate
to the selected difficulty level”?

After reading this introduction, the player selects the difficulty level they would like to
play (easy, medium, or hard), and the game starts. If they died, they could restart or quit the
game, which would take them to our questionnaire screen. They could retry any number of times.
After answering our questionnaire, the user could leave the game or go back to the difficulty
select screen and start over.

In terms of data collection, we did not collect personal data. We identified the users only
by their session starting time and a random ID – it was impossible to check if any user came
back in another session. We also collected implicit data, such as if the player succeeded or failed
to complete the level.

A total of 16 players answered our questionnaires, but only some answered for all
difficulties (Figure 63). As we observe in Figure 62, we divide the questions into two groups.
The first is demographic data, answered only once per player, with the first three questions about
the players’ experience with games and preferred difficulty. The second group is their actual
answers about our game prototype and enemies created by the EA.

The first three questions are independent of the chosen difficulty setting, and they show
in Figure 64. We observe that most players consider themselves well-experienced with video-
games and reasonably experienced with Action-Adventure games. They also prefer the medium
difficulty setting, and the hard difficulty comes second. A small sample of players used to play
in the easy, very easy, or very hard settings. Therefore, we expected most of them to play in the
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Figure 63 – Total number of players by difficulty setting.

medium difficulty, as confirmed in the results of the next section.

In Figure 65’s, we observe that players had the most fun in the easy and hard difficulties.
We believe this occurred because players who do not enjoy challenging games are happy with
the easy level, while those who prefer challenges were entertained with the hard setting. It is
important to note that the number of answers for each difficulty is different, as players could play
at any difficulty, any number of times. For the medium setting, the answers were mostly neutral,
and slightly positive. In this case, we suppose that the players did not evoke a strong feeling of
joy nor challenge for most players, or some of the casual players tried these levels and faced
more difficulty than expected (as we can confirm with the great loss rate in the next section). So,
the overall answer was that the levels were indeed fun to play, disregarding difficulty.

Figure 66 shows the player’s perception of difficulty for each setting on the left column
(figures 66a, 66c, 66e). The easy difficulty was considered not challenging for most players (as
expected), while the medium one had mixed reviews, tipping a little more for the opinion that it
was difficult. Moreover, the hard difficulty was unanimously considered difficult. Those answers
further confirm the ability of our EA to generate a variety of enemies that also respect the input
difficulty setting.

Figure 66 shows that most users agreed the difficulty was adequate to what they expected
on the right column (figures 66b, 66d, 66f). The same was true for the remaining difficulties.
Again, the medium one was a little more controversial, as it was probably a little harder than
expected.

We collected the number of failed and succeeded attempts for each difficulty degree.
Figure 67 shows the results regarding the players’ performance. We observe that the medium
level had the most attempts, reiterating the preference of users to play in such difficulty, as
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Figure 64 – Results from the demographic questions.
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Question 3 - What difficulty level do you usually choose to play your games in?



5.1. Enemy Generator Results 157

Figure 65 – Results from how fun the game was for each difficulty.

(a) Answers for Q4, for the easy difficulty.
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level was fun to play”?

(b) Answers for Q4, for the medium difficulty.
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(c) Answers for Q4, for the hard difficulty.
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Figure 66 – Results from the questions about the combat difficulty (left column) and difficulty adequacy
(right column) for each setting.

(a) Answers for Q5, for the easy difficulty.
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Question 5 - How much do you agree with the statement: “The 
combat against the enemies was hard”?

(b) Answers for Q6, for the easy difficulty.
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(c) Answers for Q5, for the medium difficulty.

Answer

C
ou

nt

0

1

2

3

Strongly 
Disagree

Disagree Neutral Agree Strongly 
Agree

Question 5 - How much do you agree with the statement: “The 
combat against the enemies was hard”?

(d) Answers for Q6, for the medium difficulty.
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(e) Answers for Q5, for the hard difficulty.
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(f) Answers for Q6, for the hard difficulty.
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shown in Figure 64. However, normalized by the number of players, we observe that the hard
difficulty had more attempts by player, possibly because players who liked the hard setting felt
challenged to complete it. When comparing success rates, the easy difficulty was the one with
the greatest one, followed by the medium and the hard one. These results highlight that our
algorithm can successfully create enemies with different difficulty settings, and these settings
were progressively harder, as intended.

These data also show that our target fitness for each difficulty setting could be slightly
lower to allow more players to complete the game. It is usually intended for easier difficulties to
allow victory in most attempts. While our current medium fitness could be substituted for the
easy one, allowing a little above half of the players to win. Then, the current medium difficulty
could be used as the hard setting once most players failed, and the current hard difficulty as very
hard since only one player won.
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Figure 67 – Total attempts players gave to each difficulty, how many times they succeeded and how many
times they failed. Each series is normalized by the number of players on said difficulty: 10 for
the easy, 11 for the medium and 7 for the hard, as shown in Figure 63.
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5.2 Offline Generator Results

The release used for the experiments in this section are tagged in the repository as tag
v0.2.01. Our respondents can play the game version via a Unity’s WebGL in a Firebase server2.
This setup still generates content in an offline fashion, but uses the MAP-Elites version of both
the enemy and dungeon generators (described in sections 4.3.4 and 4.3.2, respectively). The
results presented here are also in (PEREIRA; VIANA; TOLEDO, 2022)

The summarized workflow is presented in Figure 68 and detailed throughout this section.
The player answers a pre-test questionnaire and the profile analyst decides which are the
corresponding weights for the quest generator for them. In this case, the quests, dungeons,
and enemies were generated offline, before the experiment began. Thus, the PCG System was
run before the game was provided to the players, and during the experiment, pre-created quests,
dungeons, and enemies were selected based on the pre-test answers. Then, the data was loaded,
and the player could enjoy the content.

5.2.1 Experimental Setup

In this version, the player must select a dungeon from three options presented in the
overworld scene in Figure 69. The figure also shows our player avatar (yellow robot) inside a
dungeon room, in which there are three enemies that the player must kill.

For this setup, our Profile Selector container from the Profile Analyst system, described

1 <https://github.com/LeonardoTPereira/Overlord-Project/releases/tag/v0.2.0>
2 <https://overlord-pcg-en.web.app/>

https://github.com/LeonardoTPereira/Overlord-Project/releases/tag/v0.2.0
https://overlord-pcg-en.web.app/
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Figure 68 – Data workflow for the offline experimental setup.

in Section 4.2.1, uses a simple weighted rule to give the player one of four possible profile
types based on their answers to our pre-test questionnaire. They influence the quests’ generation,
presented in Section 4.3.5, and we employ these quests as a canvas for the other generators. The
first profile is Achievement, aimed at collectors and influencing the creation of more rooms with
rewards. The second is the Creativity profile, which focused on explorers and generating more
rooms, branched dungeons, and locked-door missions.

For the Immersion profile, we focused on allowing players to explore the game more
leisurely. It influences the generators to create fewer enemies, fewer locked-door missions, and
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Figure 69 – Game overworld (upper) and dungeon (bottom).

fewer branching in the dungeons but a few more rooms to visit. The last one is Mastery, for
those that seek action. It enables more enemies per room and with a more challenging difficulty.
We adapted these profiles from Yee and Ducheneaut’s (YEE; DUCHENEAUT, 2018) player
motivation, selecting the ones that our current game best-allowed players to experience.

We asked players to answer 12 questions in our pre-test questionnaire (part of the
Questionnaire component, described in Section 4.2.1). They answered them only once when
starting the game to define their profile. We adapted the questions from Rivera-Villicana et
al.(RIVERA-VILLICANA et al., 2018), Vahlo et al.(VAHLO et al., 2017b), and Yee and
Ducheneaut’s(YEE; DUCHENEAUT, 2018) work on player profiles to extract the most crucial
gameplay features that each player prefers. We focused on keeping the number of questions as
low as possible to increase retention. Fig. 70 shows the questions whose answers are on a 5-point
Likert scale, ranging from Strongly Disagree to Strongly Agree, except for Q3.

Each profile category is a sum of the answers (as shown in Equation 5.1), ranked in
descending order: the one with greater value is the profile most fitting to the player, and the one
with the smaller value is the least compatible one. Based on this, we give a descending weight to
each profile that will affect the chance to continue creating quests of a specific type in the Quest
Generator. Moreover, the descending weight impacts the content demanded by the dungeon
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Figure 70 – Pre-Test Questionnaire.

Q1 I am an experienced player;

Q2 I am an experienced player in the action-adventure genre;

Q3 In which difficulty do you usually play? (Options - Very easy, Easy, Medium, Hard, Very Hard);

Q4 I like playing games where I can explode, crush, destroy, shoot and kill;

Q5 I like playing games where I can fight using close combat skills and evade fast attacks;

Q6 I like playing games where I can explore the game world and uncover secrets and mysteries;

Q7 I explore all the places, elements, and characters of the virtual world;

Q8 I complete all quests, including those that aren’t necessary to finish the game;

Q9 I like playing games where I can collect rare items and hidden treasures;

Q10 I like playing games where I can build friendships between game characters and work toward a common
goal;

Q11 I like playing games where I can immerse myself in the role of the character and make meaningful
decisions;

Q12 I usually only do what is necessary to pass a level or complete a quest;

and enemy generators. In case of a draw, we use the order of the question enumeration, as in
Equation 5.1: Mastery has preference over Creativity, then Achievement, and last Immersion.
For Q3, we subtract three from the answer to make the medium difficulty equal 0. In this case,
easier difficulties will reduce the Mastery weight, and harder ones will increase it. Q12 has an
inverse weight: it penalizes all profiles, but Mastery the more the player agrees that they only
like to do what’s necessary (which translates to not caring enough for exploring, interacting with
the world, and collecting items).

M = Q3−3+Q4 +Q5

C = Q6 +Q7 +5−Q12

A = Q8 +Q9 +5−Q12

I = Q10 +Q11 +5−Q12
(5.1)

Section 4.3.5 explains the quest-generation algorithm and how the weights affect the
quest-generating grammar. For our experiment, we standardize the weights: the most fitting
profile gets the weight 7, and the weights of the others are 5, 3, and 1, by descending preference.
These values come from empirical experiments on balancing the number of quests for a run and
the generated content for each generator. The interface provides this map of profile and weight
to the PCG system.

The Overlord System created a collection of levels and enemies from the four different
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profiles. We created one questline for each of the six possible combinations of preferences for
each main profile. Therefore, we had six complete questlines for each of the four profiles, totaling
24. For each questline, the system saves all feasible dungeons’ and enemies’ contents from the
MAP-Elites from Sections 4.3.2 and 4.3.4. Thus, there is a total of 42 possible enemies and 25
dungeons. Using a set of previously created content, we chose this offline approach to reduce
bias due to variations in content generated from the same input, as our method is stochastic.

When a new session begins, the player answers the pre-test questionnaire, and the Profile
Analyst selects their profile. The system then randomly gets one of the six questlines for the
profile. From this questline, the game randomly selects three sets of dungeon-enemy pairs from
the poll and assigns them to each of the dungeon entrances in the overworld, from Fig. 69. If the
player dies in a dungeon and wants to select another, a new random dungeon-enemy combination
of that questline is selected until no more dungeons are available. If the player succeeds in
their adventure, completing the dungeon, or if they change dungeons after dying, we ask them
to answer the post-test questionnaire presented in Figure 71 and ask if they want to continue
playing. If positive, the game selects a new set of three dungeon-enemy pairs to replace the ones
in the overworld.

Figure 71 – Post-Test Questionnaire for the Offline Experiment.

Q1 The level was fun to play;

Q2 The level was difficult to complete;

Q3 The enemies were difficult to defeat;

Q4 The challenge was just right;

Q5 The rewards were on the proper amount;

Q6 I liked the amount of exploration on this level;

Q7 I liked the challenge of finding the keys to this level;

Q8 It was difficult to find the exit/goal of this level;

There is no repetition in the draws, so the player always plays a new dungeon for the first
time and avoids bias from knowing it from a previous playthrough. We execute this loop until all
dungeons are removed from the poll or the player decides to exit the game. If no dungeons are
left, a message informs the player that the game ended. Thus, we are evaluating if the system
can create content to be fun and diverse enough for players. These are grouped into four profiles
based on their answers to the pre-test questionnaire. Each profile had different inputs to the
content generators that create content offline, before the experiment itself.
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We created a WebGL Build of our game and hosted it on a public server; anyone could
play anonymously. We invited people over social networks and email lists to play our game for
two weeks. We collected no personal information, identifying players by a random ID. Therefore,
we cannot guarantee that all players were different, only different gameplay sessions. The system
divides players into a Test Group and a Control Group. After the Profile Analyst System selects
their profile, there is a 50% probability of playing levels for the actual player profile (Test Group
member) or playing ones of a different profile (Control Group member).

5.2.2 Experimental Results

A total of 83 players answered the pre-test questionnaire and jointly played and evaluated
(with the post-test questionnaire) 204 levels. Table 70 details the questions, and Fig. 72 shows
the bar plot of the answers. Each bar shows the number of answers for an item on the 5-point
Likert scale. Most players had experience playing games in the action-adventure genre (Q1 and

Figure 72 – Heatmap grouping the answer count for each point in the 5-point Likert scale for the 12
questions in the pre-test questionnaire.
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Q2). They played games mostly on medium difficulty, with a slight tendency for harder than
easier ones (Q3).

Players were primarily neutral or liked a little the action elements of games that could
drive them to a Mastery profile (Q4 and Q5). However, they generally had a greater tendency
for the Creativity profile, which is about exploration (Q6 and Q7). Achievement and Immersion
profiles also fit most players, showing they enjoyed collecting stuff, completing quests (the
former, through Q8 and Q9), interacting with the game world’s story, and its NPCs, enjoying the
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world (the latter, through Q10 and Q11). The last question was negative for players, showing
they mostly liked to spend time in the game world and not rush everything looking for action.

After each played level, the post-test questionnaire collected the player’s opinion about
the game. As the respondents could play many levels, we had 204 responses from this question-
naire after discarding the ones with unanswered items. We have the following answers: 30 for
Achievement, 29 for Creativity, 97 for Immersion, and 48 for Mastery.

Although the pre-test answers pointed out that players had an overall preference for
Creativity, the ones from the Immersion profile played and answered more levels (97 in total),
followed by Mastery players (48). Achievement and Creativity answered fewer (30 and 29,
respectively). Probing for an expected difference in answers for each profile group, we present a
violin plot for each post-test question (from Fig. 71), grouped by the profile of the respondent,
in Fig. 73. We can observe that different profiles had slightly different average answers and
standard deviations for most responses.

Q1 shows that, on average, players from the Creativity group had less fun than the other
groups, while the others had roughly the same. Immersion players perceived the level’s difficulty
(Q2) as harder, while Creativity players as easier to play. For the difficulty against enemies (Q3),
the Mastery players report easier when defeating enemies, which is expected for players that
prefer combat to other motivations.

Creativity and Mastery respondents felt the challenge (Q4) slightly better than Achieve-
ment and Immersion ones. Mastery players perceive the rewards (Q5) as insufficient, being
such rewards more on average for Creativity and Immersion. Achievement players found a
sufficient reward, possibly because they are primarily motivated by collecting rewards. Except
for the Creativity one, all profiles enjoyed the exploration (Q6). This tendency continues when
asked about finding locks and keys (Q7). In this case, Achievement profile players also found
exploration slightly less challenging than Mastery and Immersion. For the difficulty in finding the
exit (Q8), Achievement players found it easier, followed by the Creativity ones, and immersion
and Mastery respondents reported an average difficulty level.

Table 7 shows the distribution of respondents by their profiles and the profile they played
as. The Control Group is highlighted (those that played content for their accurate profile). The
Achievement and Creativity players gave only two answers for the Test Group. The reduced
number happens since these profiles were fewer compared to the others.

As there were not enough players for each test and control group for a statistical analysis
of the answers comparing each group, we will conduct an analysis considering the whole test
group (players who played their actual profile, highlighted in Table 7, against the whole control
group. This analysis may provide more robust proofs on the quality of our generators.

First, we must find the statistical power of our test, then, conduct a test to check whether
the sample is Gaussian or not, only after this we can select the appropriate statistical hypothesis
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Figure 73 – Violin plot, grouping answers for each post-test question by profile. The plot width increases
with the total answers for each group. The white dot is the median, red ones the quartiles.
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Table 7 – Post-test answers count, grouping players by the profile they played as vs. true profile. Control
Group is colored.

Played as (A)chievement (C)reativity
Profile A C I M A C I M
Answers 2 1 7 20 5 2 5 17
Played as (I)mmersion (M)astery
Profile A C I M A C I M
Answers 6 13 23 55 11 3 0 34

test to verify whether both populations share the same mean or not. We use the statsmodel Python
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library 3 for this, and scipy.stats library for the analysis 4.

For the power analysis we want an alpha of 5%, that is, there is only 5% chance that our
results fall under the type I error of rejecting an actually true H0 (Null Hypothesis). We will
work under a Cohen’s D effect size of 0.5, that is, a medium effect, where the two groups differ
by half a standard deviation, usually, this value is enough to measure a difference that can be
discerned by the naked eye. Then, we have the ratio between our two population sizes: we have
143 post-test answers from people of matching profiles, versus 61 from different profiles, a ration
of, approximately, 0.4266. We want, first, to not only compare if the populations are different,
but, preferably, if one is greater or smaller than the other, so we consider the greater alternative.
These inputs result in a statistical power of 0.947, that is, a little over 5% probability that our
results fall under the type II error of not rejecting an actually false null hypothesis.

With only 5% chance of having any of the two error types, we can conclude that our
sample is good enough for a robust statistical hypothesis test. Our two samples are independent,
as the playthrough of both groups do not affect each other’s results. We must then check whether
the distribution of each answer is Gaussian or not. Using the Shapiro-Wilk test of normality,
we find that the population of answers for the eight post-test questions are not Gaussian, with
p-values very close to 0 in all of them. Therefore, we use the Mann-Whitney U test, which is
recommended for independent yet non-Gaussian populations.

Therefore, we first conduct the Mann-Whitney U test, considering that rejecting the null
hypothesis means that the answers from players with a matching profile are greater than those
who played with a different profile. Table 8 shows the results. There, we observe that except
for the enemy difficulty and the received reward, all answers for the group of matching profile
were statistically greater than those with different profiles. This means that playing with content
generated aimed by a profile matching the player’s preference resulted in a self-evaluation of
greater fun, harder overall difficulty and of finding the exit, more balanced challenged, better
acceptance of exploration and finding the keys.

For the two non-rejected null hypothesis, we conduct the same analysis, but for the
two-sided alternative, that is, to reject the H0 now means that both populations are different.
We analyze the power of the test, using the same parameters as before, but for the two-sided
alternative, resulting in a power of 0.902, that is, less than 10% probability of providing a type II
error. Then, for the Mann-Whitney U test for question 3 we found a p-value of 0.603, failing to
reject H0 and, therefore, concluding that the enemies’ difficulty was perceived as the same for
both groups. Then, for question 5, the same analysis provides a p-value of 0.027, meaning that
both populations have a different mean and, therefore, the players with a different profile liked
better the rewards than those of matching profiles.

3 <https://www.statsmodels.org/devel/>
4 <https://docs.scipy.org/doc/scipy/reference/stats.html>

https://www.statsmodels.org/devel/
https://docs.scipy.org/doc/scipy/reference/stats.html
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Table 8 – Results of the Mann-Whitney U test, considering that rejecting the null hypothesis means that
the answers from players with a matching profile are greater than those playing a different
profile. We reject the hypothesis with a p-value equal or smaller than 0.05, meaning less than
5% chance of a type I error.

Question p-value Result
Q1—The level was fun to play 0.000 Reject H0
Q2—The level was difficult to complete 0.001 Reject H0
Q3—The enemies were difficult to defeat 0.302 Don’t reject H0
Q4—The challenge was just right 0.002 Reject H0
Q5—The rewards were on the proper amount 0.986 Don’t reject H0
Q6—I liked the amount of exploration on this level 0.000 Reject H0
Q7—I liked the challenge of finding the keys to this level 0.000 Reject H0
Q8—It was difficult to find the exit/goal of this level 0.000 Reject H0

5.3 Online Generator Results

We now present results for the whole system, which includes quests, dialogue systems,
and NPCs through an online generation of gameplay. Our experiments generate the contents
in real-time when the player answers the pre-test questionnaire. We used the EA approach to
generate dungeons (described in Section 4.3.1), as it converged faster to a suitable solution, and
the MAP-Elites for the enemy generation (shown in Section 4.3.4). Furthermore, we used the
new version of the quest generation algorithm with Markov Chain to add variety and reduce
repetition of the same type of quest in a given quest line, as described in Section 4.3.6.

The summarized workflow is presented in Figure 74 and detailed throughout this section.
The player answers a pre-test questionnaire and the profile analyst decides which are the
corresponding weights for the quest generator for them. In this case, the quests, dungeons, and
enemies are generated online, that is, as soon as the player answers the pre-test, the generation
of a new set of contents begins. When the content was ready, the data was read and loaded as
game objects, and the player could enjoy the content.

5.3.1 Experimental Setup

In this setup, we got a small group of ten anonymous players to answer a new pre-test
questionnaire with only four questions, one about each profile, translating into the player’s
affinity to each type of profile: Achievement, Creativity, Immersion, and Mastery. Figure 75
shows the questions.

Each player can play 12 different dungeons from a Level Selector, as shown in Figure
76. Each level will create new content for the game at the moment of the selection, passing the
weight of each profile to the grammar generator, as shown in Section 4.3.6. The resulting quest
line provided by the quest generator creates the dungeons, enemies, and rooms, all in real time.
When the loading screen in Figure 77 completes, the player will play the created content by
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Figure 74 – Data workflow for the online experimental setup.

pressing the mouse left-click button.

The 12 levels’ input for the generator are some permutations of answering the pre-test
questionnaire with 1, 2, 3, and 4 for each question. As these answers are converted to weights,
normalized from 0.2 to 1.0, this equivalent to feeding the generators 0.2, 0.4, 0.6, and 0.8 as
inputs. 1.0 corresponds to answering with 5 in any of the questions, and was discarded to reduce
the number of alternatives and avoid outliers. The whole combination of inputs that each player
could play are presented in Table 9.

A build with the online generator configuration can be played via browser in the following
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Figure 75 – Pre-Test questionnaire for the online experiment. The questions are directly translated to
the player’s preference for the achievement, creativity, immersion and mastery profiles,
respectively.

Q1 I like to play games where I can collect rare items and hidden treasures. I also like to complete every
possible mission, including those that are not necessary to finish the game.

Q2 I like playing games where I can explore the world and find secrets and mysteries. I also like exploring
places, elements, and characters from a virtual world.

Q3 I like playing games where I can immerse myself in the role of the character and make significant
decisions. I like to create bonds with the game characters and work together towards a common
objective.

Q4 I like playing games where I can explode, smash, destroy, shoot and kill. I also like to fight with close
combat skills and dodge from quick attacks.

Figure 76 – Loading screen for the real-time level generation game prototype. The player can select any
weapon they wish, and play after the content is created.

link 5, although taking directly into account the player’s answer in the pre-test as the generator’s
input. Before presenting the results with the ten players who played this version of the game, we
first show the new settings for the quest and dungeon generators and some computational results
for each.

5 <https://overlord-thesis.web.app/>

https://overlord-thesis.web.app/
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Figure 77 – Loading screen for the real-time level generation game prototype. The player can select any
weapon they wish, and play after the content is created.

Table 9 – The 12 inputs used to create the content for the online-generation experiment, as well as what
are the inputs for the pre-test questionnaire they represent and what weights each answer is
converted when normalized as inputs for the quest generator.

Answer value → weight input for quest generator
Input Name Achievement Creativity Immersion Mastery
A=1, C=3, I=2, M=4 1 → 0.2 3 → 0.6 2 → 0.4 4 → 0.8
A=1, C=3, I=4, M=2 1 → 0.2 3 → 0.6 4 → 0.8 2 → 0.4
A=1, C=4, I=3, M=2 1 → 0.2 4 → 0.8 3 → 0.6 2 → 0.4
A=2, C=1, I=3, M=4 2 → 0.4 1 → 0.2 3 → 0.6 4 → 0.8
A=2, C=1, I=4, M=3 2 → 0.4 1 → 0.2 4 → 0.8 3 → 0.6
A=2, C=4, I=1, M=3 2 → 0.4 4 → 0.8 1 → 0.2 3 → 0.6
A=3, C=2, I=1, M=4 3 → 0.6 2 → 0.4 1 → 0.2 4 → 0.8
A=3, C=2, I=4, M=1 3 → 0.6 2 → 0.4 4 → 0.8 1 → 0.2
A=3, C=4, I=2, M=1 3 → 0.6 4 → 0.8 2 → 0.4 1 → 0.2
A=4, C=1, I=3, M=2 4 → 0.8 1 → 0.2 3 → 0.6 2 → 0.4
A=4, C=2, I=1, M=3 4 → 0.8 2 → 0.4 1 → 0.2 3 → 0.6
A=4, C=3, I=2, M=1 4 → 0.8 3 → 0.6 2 → 0.4 1 → 0.2

5.3.2 Computational Experiments

Using the grammar presented in Section 4.3.6, we conduct a statistical analysis over
the content generated by the quest generator. For each of the 12 inputs presented in Table 9
we ran the whole content-generation process 110 times and analyzed the data. We will analyze
data from the dungeon’s fitness and its components, as well as how many quests of each type
were generated. More specifically: the normalized distance from the dungeon’s values to the
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inputs (Equation 4.12), the normalized usage of rooms and locks (Equation 4.13), the normalized
enemy sparsity (Equation 4.10), the normalized enemy standard deviation (Equation 4.11), the
final fitness, the number of rooms, locks, keys, items, and enemies in the dungeon, the linearity,
the total quests, and how many quests are in the quest line for each non-terminal (A, C, I, M)
from Figure 34.

In this version of the Dungeon Generator, presented in Section 4.14, we changed some
generator settings, especially its fitness and stop criteria. We maintained the 5% mutation chance,
100% crossover chance, elitism of the best individual, selection tournament of 2 individuals, 100
individuals per population. The algorithm stops if the best individual’s fitness is lower than 0.1,
if there is no decrease in the best fitness after 30 generations, or if 200 generations have evolved.

We conduct the same experimental setup as mentioned in Section 5.2: we found that
having 110 samples in our population gave a statistical power of over 0.95 for our tests, that is,
there is less than 5% chance that our results fall under the type II error of not rejecting an actually
false null hypothesis. We used a Cohen’s D effect size of 0.5, that is, a medium effect. As this
is a controlled experiment, the ratio between populations was 1, as everyone was executed 110
times.

Our samples are independent, as the execution of the algorithm for one input does not
affect the results for other inputs. We must then check whether the distribution of each answer is
Gaussian or not, with the Shapiro-Wilk test. As we are experimenting on multiple populations, a
One-Way ANOVA test is conducted for those that are Gaussian, and a Kruskal-Wallis h test is
used for the ones that are not. For the sake of brevity, we found that some groups of populations
were Gaussian and others not, but only for the normalized usage of rooms and locks we failed to
reject the null hypothesis (p-value of 0.982). This means that for any input, the convergence was
the same. For the others, we rejected the null hypothesis, but we do not know for which pair (or
pairs) of inputs.

Therefore, we must conduct a post-hoc Dunn’s test to check which pairs reject the null
hypothesis (are different) and which do not (cannot be discarded as the same). For each test
we present a table: the column name corresponds to the value of the quest-generator’s input
in the same order we maintain throughout the document: first the Achievement weight, then
Creativity, Immersion and lastly Mastery. The letters had to be omitted for the table to fit in the
page. The first column shows the name of the analyzed variable, as well as the same inputs, but
now accompanied by their letters, for better understanding. As the matrix is square, we shaded
the diagonals for a better reading. Then, every cell which we discard the null hypothesis (that
both set of values come from the same population) we highlighted in red and underlined, to
further easy the comprehension.

We first analyze if all inputs had the same level of the dungeon’s convergence to the
desired input, in Table 10. As the table shows, only two inputs did not converge in the same
range as the others: the ones with low weights for achievement and creativity quests, but high
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hates for immersion and mastery. They were different from all others except themselves. The
lower creativity and achievement possibly caused the levels to be linear, have few keys and be
small, which may have become a little easier for the EA to converge. There are two other outliers:
two of the levels with the highest achievement rate were considered different from the ones with
the highest mastery. Although the mastery does not affect directly the dungeon’s inputs, having a
higher weight on it means the others are lower. Higher achievement demands more branching,
and combined with a lower immersion and somewhat large creativity values generates larger
dungeons. These larger and more branched dungeons may cause the EA to converge to less
optimal dungeons than the inputs of high mastery, creating this difference.

Table 10 – Dunn’s test result for the normalized distance from the desired input for the levels generated
for each quest generator’s input.

Distance from Input 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 0.211 0.000 0.000 0.448 1.000 0.558 0.890 0.726 0.007 0.023
A1C3I4M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.387 0.805
A1C4I3M2 0.211 1.000 1.000 0.000 0.000 1.000 0.107 1.000 1.000 1.000 1.000 1.000
A2C1I3M4 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2C4I1M3 0.448 1.000 1.000 0.000 0.000 1.000 0.258 1.000 1.000 1.000 1.000 1.000
A3C2I1M4 1.000 1.000 0.107 0.000 0.000 0.258 1.000 0.334 0.558 0.448 0.003 0.010
A3C2I4M1 0.558 1.000 1.000 0.000 0.000 1.000 0.334 1.000 1.000 1.000 1.000 1.000
A3C4I2M1 0.890 1.000 1.000 0.000 0.000 1.000 0.558 1.000 1.000 1.000 1.000 1.000
A4C1I3M2 0.726 1.000 1.000 0.000 0.000 1.000 0.448 1.000 1.000 1.000 1.000 1.000
A4C2I1M3 0.007 0.387 1.000 0.001 0.000 1.000 0.003 1.000 1.000 1.000 1.000 1.000
A4C3I2M1 0.023 0.805 1.000 0.000 0.000 1.000 0.010 1.000 1.000 1.000 1.000 1.000

A somewhat similar issue appears in Table 11, where the levels created from the inputs
with higher achievement were considered as having a different sparsity than the others. This may
be related to the convergence overcompensating on this aspect for the slightly lower convergence
to the desired input. As the usage parcel was not discarded as being similar, and in the standard
deviation, shown in Table 12 the differences does not appear to be focused on a specific group of
inputs, which is also shown in Table 13, comparing the resulting fitness, the overcompensation
sounds plausible.

Table 11 – Dunn’s test result for the normalized sparsity of enemies in the levels generated for each quest
generator’s input.

Enemy Sparsity 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A1C3I4M2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A1C4I3M2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A2C1I3M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A2C1I4M3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A2C4I1M3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A3C2I1M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A3C2I4M1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
A3C4I2M1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000
A4C1I3M2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
A4C2I1M3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
A4C3I2M1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000
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Table 12 – Dunn’s test result for the normalized standard deviation of enemies’ position in the levels
generated for each quest generator’s input.

Enemy Std. Dev. 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.031 1.000 1.000 0.372
A1C3I4M2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.207 1.000 1.000 1.000
A1C4I3M2 1.000 1.000 1.000 1.000 1.000 0.071 1.000 0.021 1.000 1.000 0.098 1.000
A2C1I3M4 1.000 1.000 1.000 1.000 1.000 0.023 1.000 0.065 1.000 1.000 0.032 1.000
A2C1I4M3 1.000 1.000 1.000 1.000 1.000 0.430 1.000 0.002 1.000 1.000 0.557 1.000
A2C4I1M3 1.000 1.000 0.071 0.023 0.430 1.000 1.000 0.000 0.000 0.170 1.000 0.004
A3C2I1M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.058 1.000 1.000 0.585
A3C2I4M1 0.000 0.000 0.021 0.065 0.002 0.000 0.000 1.000 1.000 0.007 0.000 0.256
A3C4I2M1 0.031 0.207 1.000 1.000 1.000 0.000 0.058 1.000 1.000 1.000 0.000 1.000
A4C1I3M2 1.000 1.000 1.000 1.000 1.000 0.170 1.000 0.007 1.000 1.000 0.223 1.000
A4C2I1M3 1.000 1.000 0.098 0.032 0.557 1.000 1.000 0.000 0.000 0.223 1.000 0.006
A4C3I2M1 0.372 1.000 1.000 1.000 1.000 0.004 0.585 0.256 1.000 1.000 0.006 1.000

Table 13 – Dunn’s test result for the resulting fitness of the levels generated for each quest generator’s
input.

Fitness 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 1.000 1.000 0.208 1.000 1.000 1.000 1.000 1.000 0.208 1.000
A1C3I4M2 1.000 1.000 1.000 1.000 0.655 1.000 1.000 0.466 1.000 1.000 0.655 1.000
A1C4I3M2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.153 0.581 1.000 1.000 1.000
A2C1I3M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.003 0.021 1.000 1.000 0.335
A2C1I4M3 0.208 0.655 1.000 1.000 1.000 1.000 0.153 0.000 0.000 0.418 1.000 0.014
A2C4I1M3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.003 0.023 1.000 1.000 0.358
A3C2I1M4 1.000 1.000 1.000 1.000 0.153 1.000 1.000 1.000 1.000 1.000 0.153 1.000
A3C2I4M1 1.000 0.466 0.153 0.003 0.000 0.003 1.000 1.000 1.000 0.720 0.000 1.000
A3C4I2M1 1.000 1.000 0.581 0.021 0.000 0.023 1.000 1.000 1.000 1.000 0.000 1.000
A4C1I3M2 1.000 1.000 1.000 1.000 0.418 1.000 1.000 0.720 1.000 1.000 0.418 1.000
A4C2I1M3 0.208 0.655 1.000 1.000 1.000 1.000 0.153 0.000 0.000 0.418 1.000 0.014
A4C3I2M1 1.000 1.000 1.000 0.335 0.014 0.358 1.000 1.000 1.000 1.000 0.014 1.000

Continuing the discussion on the aforementioned Table 12, comparing the standard
deviation of enemies, we note that specially levels with lower mastery were considered different
from the others. This is possibly because a lower mastery results in less enemies and, therefore,
they are harder to distribute equally through the dungeon. This hypothesis is corroborated when
we check that the levels not discarded as different from the A3C2I4M1 are the A2C1I3M4 and
A3C4I2M1 and A4C3I2M1, the last ones being the ones with lower mastery, and the first one
the level with high mastery but low creativity inputs. This means that this level has numerous
enemies to distribute in a few rooms, and may also have difficulty to converge to a good setting.

Summarizing the discussion on the differences of the fitness-related metrics from the
dungeons generated by the quests, Table 13 shows that dungeons with the lowest mastery were
the ones that had most differences from others. They were considered different from some levels
with 3 and 4 as input to mastery, although no clear trend on the other inputs can be seen as to a
cause for the difference. Considering the previous tables, this difference arose, possibly, by the
difficulty to converge to the optimal sparsity and standard deviation, as discussed for Table 11
and 12.
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Now, we present the tables regarding the comparison of the elements in the generated
dungeon. Table 14 shows the comparison between the number of rooms in the dungeons for each
input. As the number of non-immersion quests and the creativity value increases the number
of rooms, and the first one is stochastic, most of the configurations had differences between
themselves. And the ones that could not be discarded as similar, have no clear pattern.

Table 14 – Dunn’s test result for the total rooms in the levels generated for each quest generator’s input.

# of Rooms 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 0.000 0.000 1.000 0.000 0.446 1.000 0.000 0.000 0.000 0.000 0.000
A1C3I4M2 0.000 1.000 0.802 0.000 0.002 0.000 0.000 0.000 0.055 1.000 0.000 0.000
A1C4I3M2 0.000 0.802 1.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000
A2C1I3M4 1.000 0.000 0.000 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000
A2C1I4M3 0.000 0.002 0.000 0.000 1.000 0.041 0.001 0.000 0.000 0.001 1.000 0.000
A2C4I1M3 0.446 0.000 0.000 1.000 0.041 1.000 1.000 0.000 0.000 0.000 0.177 0.000
A3C2I1M4 1.000 0.000 0.000 1.000 0.001 1.000 1.000 0.000 0.000 0.000 0.005 0.000
A3C2I4M1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.014 0.000 0.000 1.000
A3C4I2M1 0.000 0.055 1.000 0.000 0.000 0.000 0.000 0.014 1.000 0.117 0.000 0.005
A4C1I3M2 0.000 1.000 1.000 0.000 0.001 0.000 0.000 0.000 0.117 1.000 0.000 0.000
A4C2I1M3 0.000 0.000 0.000 0.002 1.000 0.177 0.005 0.000 0.000 0.000 1.000 0.000
A4C3I2M1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.005 0.000 0.000 1.000

However, for the number of locks and keys, that should be similar, as the dungeon
generator tries to create pairs, are shown in tables 15 and 16. Both are very similar, but have
small differences, as the dungeon generator allows the existence of extra keys in a dungeon.
As the number of keys and locks is mainly defined by the creativity, but capped if the number
of rooms is too small, we see in both tables that most of the cells where the population could
not be rejected as being the same are the ones with the same or similar creativity values. With
this observation, we can see that the quest generator is passing these inputs to the dungeon
generator that are aligned to the intended design. This same pattern and discussion is valid for
the resulting linearity of levels, shown in Table 17, although the linearity itself is directly related
to the creativity and achievement inputs.

Table 15 – Dunn’s test result for the total keys in the levels generated for each quest generator’s input.

# of Keys 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 0.028 0.000 0.000 0.040 0.708 1.000 0.010 0.000 1.000 0.050
A1C3I4M2 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.003 1.000 0.001
A1C4I3M2 0.028 0.000 1.000 0.000 0.000 1.000 0.000 0.005 1.000 0.000 0.000 1.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.177 0.000 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.244 0.000 0.000
A2C4I1M3 0.040 0.000 1.000 0.000 0.000 1.000 0.000 0.007 1.000 0.000 0.000 1.000
A3C2I1M4 0.708 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.050 1.000 0.000
A3C2I4M1 1.000 1.000 0.005 0.000 0.000 0.007 1.000 1.000 0.002 0.000 1.000 0.010
A3C4I2M1 0.010 0.000 1.000 0.000 0.000 1.000 0.000 0.002 1.000 0.000 0.000 1.000
A4C1I3M2 0.000 0.003 0.000 0.177 0.244 0.000 0.050 0.000 0.000 1.000 0.005 0.000
A4C2I1M3 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.005 1.000 0.000
A4C3I2M1 0.050 0.001 1.000 0.000 0.000 1.000 0.000 0.010 1.000 0.000 0.000 1.000

When analyzing the enemies per dungeon in Table 18 we see a similar pattern to the one
comparing the distance from the inputs (Table 10), however, this seems to be just a coincidence.
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Table 16 – Dunn’s test result for the total locks in the levels generated for each quest generator’s input.

# of Locks 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C3I4M2 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C4I3M2 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C4I1M3 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A3C2I1M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C2I4M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C4I2M1 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A4C1I3M2 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A4C2I1M3 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A4C3I2M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000

Table 17 – Dunn’s test result for the linearity in the levels generated for each quest generator’s input.

Linearity 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C3I4M2 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C4I3M2 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C4I1M3 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A3C2I1M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C2I4M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C4I2M1 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A4C1I3M2 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A4C2I1M3 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A4C3I2M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000

As this value is heavily dependent not only in the mastery value, but the random value chosen
for the number of enemies for each quest, it is expected that the number of enemies would not
necessarily reflect the value of mastery. But this is not a problem for the player by itself, as the
mastery also influences the difficulty of the enemies besides their amount. Nonetheless, making
the range of enemies dependent on the mastery value could make their amount more different
and possibly result in a greater variety of content for different values of mastery.

Table 18 – Dunn’s test result for the total enemies in the levels generated for each quest generator’s input.

# of Enemies 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 1.000 0.000 0.001 1.000 1.000 1.000 0.914 1.000 1.000 1.000
A1C3I4M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A1C4I3M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2C1I4M3 0.001 0.000 0.000 1.000 1.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000
A2C4I1M3 1.000 1.000 1.000 0.000 0.000 1.000 0.796 1.000 1.000 1.000 1.000 1.000
A3C2I1M4 1.000 1.000 1.000 0.000 0.003 0.796 1.000 1.000 0.543 1.000 1.000 1.000
A3C2I4M1 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A3C4I2M1 0.914 1.000 1.000 0.000 0.000 1.000 0.543 1.000 1.000 1.000 1.000 1.000
A4C1I3M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4C2I1M3 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4C3I2M1 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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For the final part of this evaluation, we check the number of quests created, shown in
Table 19, and then analyze the number of quests generated by each non-terminal of the grammar
in tables 20 to 23. Table 19 shows that for most combinations, the number of quests was different,
majorly due to the stochastic nature of the quest generator. The same can be observed for the
achievement and creativity quests, where both tables have the same pattern, with the majority
having different numbers of the given quests (tables 20 and 21). For the immersion and mastery,
most of them were considered similar, with, in both cases, the inputs A2C1I3M4 and A2C1I4M3

being, in most cases for the mastery and all for the immersion, different from others. This is
possibly due to the randomness of the algorithm. Overall, these were expected results. But,
further tweaking of probabilities may result in more different numbers, if necessary.

Table 19 – Dunn’s test result for the total quests generated for each quest generator’s input.

# of Quests 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.796 0.000 0.000 1.000
A1C3I4M2 0.000 1.000 0.000 0.078 0.054 0.000 1.000 0.320 0.000 0.078 0.036 0.000
A1C4I3M2 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
A2C1I3M4 0.000 0.078 0.000 1.000 1.000 0.000 0.009 1.000 0.000 1.000 0.000 0.000
A2C1I4M3 0.000 0.054 0.000 1.000 1.000 0.000 0.005 1.000 0.000 1.000 0.000 0.000
A2C4I1M3 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.433
A3C2I1M4 0.000 1.000 0.000 0.009 0.005 0.000 1.000 0.054 0.000 0.009 0.245 0.000
A3C2I4M1 0.000 0.320 0.000 1.000 1.000 0.000 0.054 1.000 0.000 1.000 0.000 0.000
A3C4I2M1 0.796 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.245
A4C1I3M2 0.000 0.078 0.000 1.000 1.000 0.000 0.009 1.000 0.000 1.000 0.000 0.000
A4C2I1M3 0.000 0.036 0.000 0.000 0.000 0.000 0.245 0.000 0.000 0.000 1.000 0.003
A4C3I2M1 1.000 0.000 1.000 0.000 0.000 0.433 0.000 0.000 0.245 0.000 0.003 1.000

Table 20 – Dunn’s test result for the number of achievement quests generated for each quest generator’s
input.

# of A Quests 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C3I4M2 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C4I3M2 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C4I1M3 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A3C2I1M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C2I4M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C4I2M1 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A4C1I3M2 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A4C2I1M3 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A4C3I2M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000

Overall, the computational results over the quest generator and the content they create
were positive, with the contents varying for different inputs, and most of the results behaving
as expected. As the results with players, in Section 5.3.3 shows, they were considered different
enough and tweaking the parameters may help futures tests, but this setting was enough to show
difference to players, even if statistically it may not always be discarded as the same.
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Table 21 – Dunn’s test result for the number of creativity quests generated for each quest generator’s
input.

# of C Quests 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C3I4M2 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A1C4I3M2 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A2C4I1M3 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A3C2I1M4 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C2I4M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A3C4I2M1 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A4C1I3M2 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
A4C2I1M3 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000
A4C3I2M1 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000

Table 22 – Dunn’s test result for the number of immersion quests generated for each quest generator’s
input.

# of I Quests 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A1C3I4M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A1C4I3M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A2C1I3M4 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2C1I4M3 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2C4I1M3 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A3C2I1M4 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A3C2I4M1 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A3C4I2M1 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4C1I3M2 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4C2I1M3 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4C3I2M1 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 23 – Dunn’s test result for the number of mastery quests generated for each quest generator’s input.

# of M Quests 1324 1342 1432 2134 2143 2413 3214 3241 3421 4132 4213 4321
A1C3I2M4 1.000 1.000 1.000 0.124 0.002 1.000 1.000 0.002 1.000 1.000 1.000 0.403
A1C3I4M2 1.000 1.000 1.000 1.000 0.147 1.000 1.000 0.114 0.186 1.000 1.000 0.010
A1C4I3M2 1.000 1.000 1.000 1.000 0.047 1.000 1.000 0.036 0.477 1.000 1.000 0.036
A2C1I3M4 0.124 1.000 1.000 1.000 1.000 0.010 0.016 1.000 0.000 0.183 0.285 0.000
A2C1I4M3 0.002 0.147 0.047 1.000 1.000 0.000 0.000 1.000 0.000 0.004 0.007 0.000
A2C4I1M3 1.000 1.000 1.000 0.010 0.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
A3C2I1M4 1.000 1.000 1.000 0.016 0.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
A3C2I4M1 0.002 0.114 0.036 1.000 1.000 0.000 0.000 1.000 0.000 0.003 0.005 0.000
A3C4I2M1 1.000 0.186 0.477 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
A4C1I3M2 1.000 1.000 1.000 0.183 0.004 1.000 1.000 0.003 1.000 1.000 1.000 0.285
A4C2I1M3 1.000 1.000 1.000 0.285 0.007 1.000 1.000 0.005 1.000 1.000 1.000 0.183
A4C3I2M1 0.403 0.010 0.036 0.000 0.000 1.000 1.000 0.000 1.000 0.285 0.183 1.000

5.3.3 Player Feedback from Online Generation

We collected data from ten anonymous players who played up to the 12 levels we
generated with the real-time generation setting. We collected data from 119 playthroughs in
different dungeons. Some players only played through some dungeons, while others played
more than once in a single dungeon, as they could replay when defeated by the enemies. When
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Figure 78 – Post-test questionnaire for the online experiment, answered after completing (or giving up)
each level.

Q1 The level was fun to play;

Q2 The level was difficult to complete;

Q3 The challenge was just right;

Q4 The enemies were difficult to defeat;

Q5 It was difficult to find the exit/goal of this level;

Q6 I liked the size of the dungeon;

Q7 I liked the amount of exploration available on this level;

Q8 I liked the challenge of finding the keys to this level;

Q9 The rewards were on the proper amount;

Q10 I had fun completing the quests;

Q11 The quests given to me were designed by a human;

discarding the data where players did not finish the dungeon, or did not answer all post-test
questions, we collected 71 answers for the post-test questionnaire. First, we present a visual
analysis of how each player’s preferences affected their post-test answers in Section 5.3.3.1.
Then, we conduct a statistical analysis, in Section 5.3.3.2.

The ten players identified themselves in the Pre-test Questionnaire as having the profiles
shown in Table 24. We may observe that no player scored 4 on the creativity value, but all other
combinations of parameters were contemplated.

Table 24 – Total players by profile according to their answers on the pre-test questionnaire during the
experiment with the online generators.

Profile A1C3I2M4 A2C1I3M4 A2C1I4M3 A3C2I1M4 A3C2I4M1 A4C1I3M2 A4C2I1M3 A4C3I2M1
Players 3 1 1 1 1 1 1 1

After completing or giving up playing each dungeon, the player had to answer a Post-Test
Questionnaire, similar to our experiment with the Offline setup. The questionnaire, shown in 78
had 11 questions, most remaining from the offline experiment, but with new ones, especially
focused on the quest elements.
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5.3.3.1 Visual Analysis

Figure 79 shows that players enjoyed the levels, with most answers to the questions about
having “Fun” playing the game having an average of 3.6, as shown in the rightmost bottom cell.
We can also observe that our system generated diversity between the inputs, as the opinions
varied for each dungeon. The only level evaluated as having an average amount of fun was the
one with inputs A=2, C=1, I=4, M=3, possibly because it combined two contrasting profiles:
immersion and mastery. We can also observe that dungeon A=2, C=1, I=3, M=4 were the best
evaluated, possibly because it were evaluated by two players who had a weight of 4 in mastery,
and the other one, although having a score of 2 in mastery, had a score of 4 in achievement.
Therefore, all players had a profile that tend to like challenge.

Figure 79 – Heatmap showing the mean value of each profile’s answer to Q1 of the post-test questionnaire:
how much fun they felt playing each dungeon. The bottom row shows the mean per profile,
and the rightmost column the mean per dungeon.

Figure 80 shows that the mastery setting was a significant factor in defining the difficulty
of the levels, as expected. The creativity also had such relevance once it was weighted in the size
of the dungeon. All dungeons with a mean value above 3 had great mastery and/or creativity
inputs (rightmost column). We can also notice that dungeons with a mean lesser than 2 were all
created with an input of 1 to mastery. These findings confirm our observations from the previous
experiment, in Section 5.2, that large dungeons are difficult, mainly when the enemies are also at
a harder level of difficulty.

Overall, the system created challenging levels for almost all combinations, as seen in
Figure 81, where the overall mean was 3.2 (rightmost bottom cell). Only three levels had a mean
challenge below 3: the first one is the A=3, C=4, I=2, M=1, where the large dungeon with easy
enemies may have seen as tedious for our players, more focused on the mastery aspect of games.
The other is the A=2, C=1, I=4, M=3, the one with high immersion and mastery, which was
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Figure 80 – Heatmap showing the mean value of each profile’s answer to Q2 of the post-test questionnaire:
how difficult was the dungeon. The bottom row shows the mean per profile, and the rightmost
column the mean per dungeon.

already considered not very fun to play in Figure 79. And the last one is the A=4, C=1, I=3,

M=2, seen as having easier enemies, which may have been the reason for the low score on the
challenge aspect. A final observation is that the same level considered as the most fun, in Figure
79, was also the most challenging: A=2, C=1, I=3, M=4. This reinforces many game design
theories that the right amount of challenge is perceived as the most fun for players.

Figure 81 – Heatmap showing the mean value of each profile’s answer to Q3 of the post-test questionnaire:
how much challenge they felt playing each dungeon. The bottom row shows the mean per
profile, and the rightmost column the mean per dungeon.

The enemy difficulty, in Figure 82, behaved as expected: dungeons with a mastery setting
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3 or 4 were considered more difficult, especially when paired with weights providing larger
dungeons, as seen in the mean values above 3 in the rightmost column, containing the mean for
each dungeon. On the other hand, those created with the mastery set to 1 or 2 were considered
easier, some with a mean value below 2.

Figure 82 – Heatmap showing the mean value of each profile’s answer to Q4 of the post-test questionnaire:
how difficult were the enemies in each dungeon. The bottom row shows the mean per profile,
and the rightmost column the mean per dungeon.

We analyze exploration-related answers in figures 83 through 86. In Figure 83 we observe
that dungeons with higher creativity inputs were evaluated as harder to navigate (mean value
equal or greater than 3 on the rightmost column), except for the one with input A=1, C=4, I=3,

M=2 and A=4, C=3, I=2, M=1. These exceptions are due to their enemies being easier, so the
player could explore the dungeon more freely. Another exception is the dungeon with input A=3,

C=2, I=1, M=4, following the same reasoning: the enemies were harder, making it difficult for
the player to explore.

Nonetheless, Figure 84 shows that all dungeons were considered of adequate size (mean
value greater than 3, in the rightmost column), even if varying in the number of enemies, items,
NPCs, keys, locks, and linearity. Users from all backgrounds answered positively, on average, to
the dungeons. With two notable lower scores coming from players. The first one had a profile
A=2, C=1, I=3, M=4 and, when evaluating the dungeon A=1, C=4, I=3, M=2, gave it a score
of 2. This is probably because the dungeon had a much more exploration-focused setup than
what the player wanted. The second case was the evaluation of dungeon A=2, C=1, I=4, M=3

by player A=4, C=2, I=1, M=3. In this case, the difference in the achievement and immersion
factors may have made the dungeon with more talk-related quests, which the player did not favor,
and an easy challenge to find the keys, as reported by the same player in Figure 83.

The same positive results are valid for the amount of exploration, in Figure 85: all
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Figure 83 – Heatmap showing the mean value of each profile’s answer to Q5 of the post-test questionnaire:
how difficult was to navigate through each dungeon. The bottom row shows the mean per
profile, and the rightmost column the mean per dungeon.

Figure 84 – Heatmap showing the mean value of each profile’s answer to Q6 of the post-test questionnaire:
how good they felt was the dungeon size. The bottom row shows the mean per profile, and
the rightmost column the mean per dungeon.

dungeons were positively evaluated by the players, with just A=2, C=1, I=4, M=3 having a
neutral mean (rightmost column), possibly due to being a small dungeon, with few keys, but hard
enemies. Finally, for the challenge in the locked-door puzzles, in Figure 86, most levels were
also positively evaluated, except for A=1, C=3, I=4, M=2, with its mean lower than 3, possibly
for being a somewhat large dungeon, linear, with few keys and somewhat easy enemies. These
parameters usually create dungeons that are easy to find all the keys and traverse without dying,



184 Chapter 5. Results

meaning it’s not very challenging.

Figure 85 – Heatmap showing the mean value of each profile’s answer to Q7 of the post-test questionnaire:
how good they felt was the dungeon’s exploration. The bottom row shows the mean per
profile, and the rightmost column the mean per dungeon.

Figure 86 – Heatmap showing the mean value of each profile’s answer to Q8 of the post-test questionnaire:
how good they felt was the challenge to open the locked doors. The bottom row shows the
mean per profile, and the rightmost column the mean per dungeon.

Figure 87 shows the user’s evaluations of the items (rewards).They were received as
neutral, whereas dungeons with higher achievement and smaller creativity inputs were slightly
more positive than others. Possibly because they provided more fetch quests, giving items to
players, in a smaller environment, increasing the density of items found per room traveled.
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Figure 87 – Heatmap showing the mean value of each profile’s answer to Q9 of the post-test questionnaire:
how good they felt was the rewards (items) collected. The bottom row shows the mean per
profile, and the rightmost column the mean per dungeon.

The players also did not have much fun with the quests, as shown in Figure 88, but there
were not many negative evaluations. This feedback means we must make the implementation
of the quests more interesting, with better rewards and more engaging dialogues. The players
also had a neutral opinion if humans generated the quests, in Figure 89. This means that players
could not discard the content as human-made, with results similar to those in (LIMA; FEIJó;
FURTADO, 2019). Although, we reckon the dialogues were created from grammar, changing
only the names of contents and amounts, making it much more believable as to be made by
humans.

From the analysis of players’ answers to the post-test questionnaire, we can conclude
that our real-time generation led to positive results. The content was well evaluated compared to
the experiments with the offline setup. The orchestration of the multiple contents was successful,
as players enjoyed both the levels, the enemies, and the quests (although more neutral towards
the latter). They perceived difficulty and challenge in order to the inputs provided to the quest
generator.

However, we will also peek into gameplay data to further evaluate the quality of our
content. We present a series of heatmap plots, grouping the data for players with different profiles
for each dungeon and showing their performance against other metrics, in Figures 90 through
96. Although we had only one post-test questionnaire answer per profile for each dungeon, the
gameplay data was collected at every attempt, disregarding if the player won or lost, in a total of
119 attempts.

First, we analyze the success rate for each player type in each dungeon, presented in
Fig. 90. As expected, the dungeons with higher mastery input had lower success rates than
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Figure 88 – Heatmap showing the mean value of each profile’s answer to Q10 of the post-test question-
naire: how much fun they had completing the quests. The bottom row shows the mean per
profile, and the rightmost column the mean per dungeon.

Figure 89 – Heatmap showing the mean value of each profile’s answer to Q11 of the post-test question-
naire: how much they felt the quests were designed by humans. The bottom row shows the
mean per profile, and the rightmost column the mean per dungeon.

others, and players who favored mastery did not always have the best results, but those with high
achievement preferences went better. By looking at Fig. 91 we see that for the hardest dungeons,
players killed fewer enemies. Some must have run away from them, while others died, as the
previous figure showed the decrease in success rate in these levels. When comparing profiles,
especially in dungeons A=2, C=1, I=4, M=3 and A=2, C=4, I=1, M=3 which had more attempts,
we that players who favored mastery killed slightly more enemies than those who didn’t.
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Figure 90 – Heatmap plot, grouping the success rate for each player profile in each dungeon. Dungeons
are labeled as each profile’s weight for the input generator.

Figure 91 – Heatmap plot, grouping the percentage of enemies killed for each player profile in each
dungeon. Dungeons are labeled as each profile’s weight for the input generator.

We analyze Figure 92 related to the map completion (unique rooms visited divided
by the number of rooms in the dungeon). Their mastery input was a significant factor in their
exploration: players died more before exploring much. As the enemies were a significant barrier
to the exploration, and most players did not favor the creativity aspect in their profiles, we cannot
conclude their preferences influenced the map’s completion. But dungeons with higher mastery
had a smaller completion rate.

Now, we analyze how many quests of each type (that is, their non-terminal value) each
player’s group completed. First, we analyze the number of completed mastery quests, in Figure
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Figure 92 – Heatmap plot, grouping the percentage of map completion for each player profile in each
dungeon. Dungeons are labeled as each profile’s weight for the input generator.

93. We see that for the hardest dungeons (high mastery input), players with profiles focused
both on mastery and achievement completed more quests: in dungeons where players with an
achievement profile of 3 or 4 played, we see that they completed almost as many quests as those
with high mastery preferences, and more than those with lower preferences on both. Specially,
two profiles completed the most quests: A=1, C=3, I=2, M=4 and A=4, C=1, I=3, M=2, one
with high mastery and the other with high achievement. Moreover, most dungeons with higher
mastery input had more mastery quests completed than those with lower inputs, specially because
the greater the input, the higher the chance to have more mastery quests.

Figure 93 – Heatmap plot, grouping the percentage of mastery quests completed for each player profile in
each dungeon. Dungeons are labeled as each profile’s weight for the input generator.



5.3. Online Generator Results 189

When analyzing the completion of achievement quests, in Figure 94, we see a similar
tendency: players with greater achievement and mastery preferences completed more achieve-
ment quests. Specially those with high preferences on both, except for profile A=4, C=2, I=1,

M=3.

Figure 94 – Heatmap plot, grouping the percentage of achievement quests completed for each player
profile in each dungeon. Dungeons are labeled as each profile’s weight for the input generator.

Figure 95 shows the players’ completion of the creativity quests. We see that players with
higher values for achievement also completed more quests of this type, but one of the profiles
with high creativity and mastery, but lowest achievement weight also completed many quests,
specially in one of the dungeons with the highest creativity input. This is a clue that our system
can create contents matching different profiles, as when players played a dungeon created with
similar inputs as the player’s profile, they gave better scores to the dungeon in the post-test
questionnaire.

Figure 96 shows the completion of immersion quests. Overall, profiles with higher
immersion preferences completed more quests than those with lower preferences. The major
exception was the profile A=3, C=2, I=1, M=4, that completed plenty of immersion quests,
but possibly because of their achievement preference, to complete everything, and with a high
mastery, possibly completing dungeons with ease and enabling them to finish all quests.

5.3.3.2 Statistical Analysis

In this section, we run statistical tests over the 71 answers from the post-tests to know
which can be discarded as not having the same average. This is a somewhat small dataset, so
we must run a power analysis first. As the vast majority of players played levels that are not
exactly made for their profile, we ease the rule of what is the same profile for our analysis. If the
dungeon was generated with an input distant no more than 4 units from the player’s profile, and
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Figure 95 – Heatmap plot, grouping the percentage of creativity quests completed for each player profile
in each dungeon. Dungeons are labeled as each profile’s weight for the input generator.

Figure 96 – Heatmap plot, grouping the percentage of immersion quests completed for each player profile
in each dungeon. Dungeons are labeled as each profile’s weight for the input generator.

where the distance of a single input is no greater than 1 unit, we consider it the same. This rule
helps to balance the database while maintaining the profile and dungeon close enough so that the
generated content may be good enough to match the player’s profile.

For example, if the player has the profile A=4, C=2, I=1, M=3, the dungeon generated
with input A=4, C=2, I=1, M=3 is a clear match. The dungeon generated with input A=3, C=2,

I=1, M=4 is also a match because there is a distance of 2 units (A=4 from A=3, and M=3

from M=4), and both weights are distant only 1 unit between themselves. The same is not true
for dungeon A=2, C=1, I=3, M=4, which has 7 units of distance from the profile. Neither for
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dungeon A=4, C=3, I=2, M=1: although having 4 units of distance, the mastery weight has a
difference of 2 units from the profile.

Applying this rule to the dataset, we find that from the 71 answers, 43 are from instances
where the player’s profile does not match the dungeon’s, and 28 are from matching profiles.
Running a power analysis on this data, with a ratio of 0.65 and 43 observations on the first
population, and an alpha of 0.05, we find that, for an effect size with a 0.5 Cohen’s D, the power
is 0.653. This is not a significant result, and the analysis should not be considered for “visible”
changes. However, for a Cohen’s D of 0.8 we have a power of 0.947. Therefore, our following
analysis can be considered statistically significant for easily visible changes only.

We run the same statistical setup from the experiments in Section 5.2: our two samples
are independent, as the playthrough of both groups do not affect each other’s results. We use the
Shapiro-Wilk test of normality, finding that the population of answers for the eleven post-test
questions are not Gaussian. Therefore, we use the Mann-Whitney U test, which is recommended
for independent yet non-Gaussian populations.

We first conduct the Mann-Whitney U test considering that rejecting the null hypothesis
means that the answers from players with a matching profile are greater than those who played
with a different profile. Table 25 shows the results. There, we observe that the fun for both
playing the game and completing quests, how much they liked the exploration and rewards, and
also if the quests were designed by humans were all rejected as having the same mean for both
populations, meaning players with a matching profile gave higher values for these answers. Not
only does it show the content generated targeting the player profile is better evaluated, but it also
feels more human-mand.

Table 25 – Results of the Mann-Whitney U test, considering that rejecting the null hypothesis means that
the answers from players with a matching profile are greater than those playing a different
profile. We reject the hypothesis with a p-value equal or smaller than 0.05, meaning less than
5% chance of a type I error.

Question p-value Result
Q1 - The level was fun to play 0.013 Reject H0
Q2 - The level was difficult to complete 0.127 Don’t Reject H0
Q3 - The challenge was just right 0.247 Don’t Reject H0
Q4 - The enemies were difficult to defeat 0.055 Don’t Reject H0
Q5 - It was difficult to find the exit of this level 0.663 Don’t Reject H0
Q6 - I liked the size of the dungeon 0.098 Don’t Reject H0
Q7 - I liked the exploration available on this level 0.021 Reject H0
Q8 - I liked the challenge of finding the keys to this level 0.151 Don’t Reject H0
Q9 - The rewards were on the proper amount 0.046 Reject H0
Q10 - I had fun completing the quests 0.036 Reject H0
Q11 - The quests given to me were designed by a human 0.019 Reject H0

For the questions with non-rejected null hypothesis, we conduct the same analysis, but for
the two-sided alternative. The power of the test falls to 0.901, that is, less than 10% probability
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of providing a type II error. Then, for the Mann-Whitney U test we still fail to reject H0 for all
the questions. Therefore, we may not discard that the answers for these questions are the same
for both groups: players playing a matching dungeon and playing different dungeons.

Conducting a statistical test on the gameplay data reported in the previous section, we
have 119 samples to explore. Using the same criteria to select how many players have played
on dungeons matching their profile, we have that 84 played on dungeons of different profiles,
and 35 on matching dungeons. Therefore, the power of the analysis for an analysis using the
same parameters as before, now with a ratio of 0.417, we have a power of 0.990 for an analysis
checking if one population is greater than the other, and 0.976 for a two-sided analysis, both for
a Cohen’s D of 0.8.

Using the same Mann-Whitney U test, as no sample is Gaussian, we find that the null
hypothesis cannot be rejected, for any parameter, both for a one-sided and two-sided analysis.
Therefore, there are no statistically significant gameplay differences in our sample, considering
players playing their matching dungeons or ones for a different profile, for the success rate,
enemies killed, map completion, and quests of each profile completed.

5.3.3.3 Final Remarks

Our system achieved the desired results considering the feedback from experiments. The
system generates multiple contents in a real-time environment, fast enough for players to enjoy.
The contents from all generators were well-received, with the combination as the final product.
The players enjoyed navigating the dungeon and its rooms, solving the locked-door puzzles,
fighting enemies created by the enemy generator and placed by the dungeon generator, and
completing the quests generated by the quest generator. Our orchestrator algorithm was able to
eliminate undesired contents in its post-processing step. Not only that, but as the quest generator
was the frame for the other creators, we can also conclude that its quests were successful.
Moreover, users with different profiles played the game differently and enjoyed the contents
more (on average) when what they liked more had a higher input value in the quest generator.
Thus, the system can adapt to different players’ needs.
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6
FINAL REMARKS

This doctorate thesis presented the research developed from January 2019 to December
2022. We advance the state-of-the-art in generating multiple contents by providing a system that
simultaneously provides dungeons, enemies, quests, rooms, and the placement of enemies and
locked-door puzzles inside the dungeons. We also made the system work in real-time, another
challenge in the PCG, and more critical for multi-content generators.

The system was also able to create content for different player profiles, providing input
values from 0 to 1, corresponding to the player’s preference for each of our four profiles: achieve-
ment (for players that like to complete a goal), creativity (for the ones that like exploration),
immersion (for those that like talking to NPCs and reading the game’s lore), and mastery (for
those that like combat). Both our offline results (Section 5.2) and online results (Section 5.3)
showed that players enjoyed more the contents developed when considering their profile as input.

We also created a novel enemy-generating algorithm, as we did not find in the literature
others able to generate as we did in our system. We tested this approach with players, and the
algorithm was able to create diverse enemies with similar difficulties. Moreover, increasing the
input parameter related to the difficulty raises the challenge for the players.

We answer our main research question: “How can procedural content generation be effec-

tively applied to simultaneously create multiple and coherent contents in a real-time environment

and adapt them to different users’ needs?”, by providing a detailed view of our systems’ design,
their architecture, and details on the major algorithms that compose each system. Furthermore,
we tested it against metrics in the literature and players, validating the quality of our approach.

For the specific questions, we also have possible answers. “What type of architecture
can effectively coordinate the generation of narrative, levels, and rules facets?”: we present this
architecture in Figure 59, and its variations used in the different experiments which occurred
during the development of this thesis, in Figure 60, Figure 68, and 74. Our architecture is one
answer to this question: an architecture which separates the profile analysis from the procedural
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content generation and the game system. The architecture also separates each system by a
facade, responsible to process and transform the data from one system to what the other can
understand, decoupling them from profile, content and game representations. Another important
feature is that each generative algorithm handles their content in such a way that the output is
always feasible and matching the player’s needs. Therefore, the content does not need a complex
orchestrator algorithm to validate and guarantee the solution’s feasibility and quality.

Our orchestrator works as a post-processing step, enhancing the solution and arranging
smaller tasks rather than fixing it and validating sets of complex rules. Thus, we may answer
another specific research question: “How can an orchestrator algorithm process the generated
content to make them feasible and more enjoyable when placed together?”. For our case, the
answer was to use a more bottom-up approach, similar to Jamming with Fake Sheets, letting
each generator handle the quality and feasibility of their contents. The quest generator acted as a
frame, guiding the other generators by providing their input based on the generated missions.
Then, the orchestrator filtered undesired enemies and tried to place the best combinations of
enemies, considering the ones needed by the quests and how many were allocated for each room
by the dungeon generator.

The latter two architectures, for the offline and online experiment, are the same, but
with different algorithms being used to generate content and other small variations in the
implementation. This also helps to answer our other specific research question: “How to build a
modular architecture which can support different generating algorithms with as few changes as
possible to other containers?”. This was one of the questions we did not discuss previously in
Section 4.6, as we did not present yet the results on using different algorithms with the same
system’s architecture. However, as seen in Sections 5.2 and 5.3, changing the algorithms was
relatively easy and both provided positive results, although one was still in an offline environment,
and the other was online. We used a classic EA and a MAP-Elites approach both for dungeon
and enemy generations. We used a formal grammar and then a stochastic grammar for the quest
generator. Not only that, we added the quest generator after the experiment with the enemy
generator (Section 5.1), and the room generator after the offline experiment (Section 5.2). All
without major changes in the system.

For the next question, “How can the orchestrator deal with simultaneous content gen-
eration, considering or learning from player or game designer profiles?”: we found that the
orchestrator did not have to handle this in detail, as the generator algorithms were enough to
process the input and provide content matching different players’ needs. We answer that a
component that can process the profiles and serve them as inputs for the generators is enough to
solve this issue. The answers to these four specific questions were tested both in our offline and
online experiments (sections 5.2 and 5.3), and validated through peer-review by our publication
in (PEREIRA; VIANA; TOLEDO, 2022).

For the last one, “How to adapt the simultaneous content generation within online
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environments?”: by using a mixture of grammars, evolutionary approaches with somewhat fast
convergence, and some rule-based algorithms, aided by our architecture which enabled flexibility
to change some system’s rules with few changes, we were able to create our content online. Our
architecture allowed us to easily select if the generators would have to serialize their contents
or pass them directly to the game system, as well as permitted the game to load serialized
content or the content directly received by the procedural generators. We then experimented
with a small sample of players in an online setting. We can confirm that real-time generation
of multiple contents is possible within our algorithms and architecture. The contents can be
generated reasonably fast without losing quality while also adapting to different user’s needs, as
shown by our results in Section 5.3.

As future work, we will test our online setup with more players, aiming for data that
enable us to run statistical analysis on the results and provide more robust answers on the
content’s quality. We will also validate it through peer review by sending it to relevant journals.
We will later use this data to feed a machine-learning algorithm and use it in the online setup to
create a theoretically infinite loop of content generation. A loop where the player’s data from
the previous dungeon will feed the algorithm and, in return, it will feed the generators with new
input, so the player can play a new set of contents, better adapted to their profile’s.

We also intend to create other experimental setups focusing on the comparative analysis
of the generator algorithms: e.g., comparing the evolutionary algorithm against the MAP-Elites
in better controlled environments; analyzing in more depth the enemy generators searching for
patterns in the parameters and how they relate to increase the difficulty, specially the difficulty
perceived by the players; and others.

Other future approaches are to create diverse NPCs to handle quests based on their profile
and preferences. Furthermore, we can employ dynamic dialogues to reflect preferences, insert
the item and NPCs placement in the dungeon generator, add a Sokoban-like puzzle generator
to our system, and other procedural content generators. And, of course, implement these new
functionalities in our game system.

At last, we plan on creating games from other genres and using our system to create
content for them with as few changes as possible to test the generality of our solution, walking
towards a framework for multiple content generations.
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APPENDIX

A
OFFLINE EXPERIMENTAL SETUP

EXTENDED RESULTS

To offer the reader a more detailed and visual representation of our data for the offline
experiment, specially regarding how the post-test answer for each group of player varied, we
present in this appendix Fig. 97. This is the same Violin Plot as Fig. 73, but now considering the
player profile and the profile of the played content. A lighter hue is for the Control Group, and a
darker is for the Test Group. As shown in Table 7 the Achievement and Creativity players gave
only two answers for the Test Group. The reduced number happens since these profiles were
fewer compared to the others. Therefore, we need more data to make this comparative analysis
for those profiles. Instead, we analyze the answers only for the Mastery and Immersion profiles
and only the groups with at least ten answers for more robust results (underscored in Table 7).

Test Groups had more fun playing the game than Control Groups. They also found
the game more challenging (Q2), especially the enemies (Q3), but both groups perceived the
exploration to find the exit as more or less the same (Q8). Although thinking the game was
more complicated, the Test Group for the Immersion had a similar positive opinion about the
balance as the Control Group. The Mastery profile’s Test Group found it more balanced (Q4).
Groups that were given content from the same profile had more or less the same opinion about
the rewards (Q5). Both Test Groups liked the exploration compared to the Control Groups (Q6).
They also wanted the challenge for the key-lock puzzles (Q7).
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Figure 97 – Violin plot, grouping answers by the Control Group (lighter hues) and Test Group (darker
hues) of Immersion and Mastery players with 10 or more answers for each post-test question.
The plot width increases with the total answers. The white dot is the median, red ones the
quartiles.
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