• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2018.tde-27112018-103407
Documento
Autor
Nombre completo
José Eduardo Castilho
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1991
Director
Tribunal
Cuminato, José Alberto (Presidente)
Boldrini, José Luiz
Meneguette Junior, Messias
Título en portugués
ESTABILIDADE NÃO LINEAR DE EQUAÇÕES A DERIVADAS PARCIAIS DO TIPO PARABÓLICO
Palabras clave en portugués
Não disponível
Resumen en portugués
O objetivo principal deste trabalho é descrever a manifestação da instabilidade numérica em problemas de Reação-Difusão. Uma análise conjunta do problema continuo e sua discretização mostra claramente onde e quando a discretização falha. Esta análise fornece um conhecimento básico para a interpretação da instabilidade numérica em equações diferenciais parciais parabólicas não lineares. Os problemas, continuo e discreto, são analisados através da teoria da bifurcação local, estabilidade linear e estabilidade não linear fraca. Mostra-se que a instabilidade numérica está associada com a bifurcação periódica no problema discreto, fato que não ocorre no problema contínuo. Isto é ilustrado através de exemplos numéricos.
Título en inglés
Non-linear stability of  parabolic partial differential equations
Palabras clave en inglés
Not available
Resumen en inglés
The main purpose of this work is to describe the manisfetation of numerical instability in Reaction-Diffusion problems. A unified analysis of the continuous problem and its discretisation shows clearly when and why the discretisation breaks down. This analysis provides background for interpretation of numerical instability in nonlinear parabolic partial differential equations. The problems, continuous and discrete, are analysed from the points of view of local bifurcation, linear stability and weakly nonlinear stability theories. It is shown that numerical instability is associated with the bifurcation of periodic orbits in the discrete problems, a fact that does not happen in the continuous case. Numerical examples that illustrate the various possibilities are presented and analysed in light of this theory.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-11-27
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.