
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

The impact of tinkering and planning behaviors on learning
introductory programming concepts

Fernando Henrique Carvalho Silva
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Fernando Henrique Carvalho Silva

The impact of tinkering and planning behaviors on learning
introductory programming concepts

Master dissertation submitted to the Institute of
Mathematics and Computer Sciences – ICMC-USP,
in partial fulfillment of the requirements for the
degree of the Master Program in Computer Science
and Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Seiji Isotani

USP – São Carlos
February 2020

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

CS586t
Carvalho Silva, Fernando Henrique
 The impact of tinkering and planning behaviors
on learning introductory programming concepts /
Fernando Henrique Carvalho Silva; orientador Seiji
Isotani. -- São Carlos, 2020.
 89 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2020.

 1. Ciência da Computação. 2. Informática na
educação. 3. Resolução de problemas. 4. Mineração de
dados. 5. Tinkering. I. Isotani, Seiji, orient. II.
Título.

Fernando Henrique Carvalho Silva

O impacto de comportamentos tinkering e planejamento no
aprendizado de conceitos introdutórios de programação

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Seiji Isotani

USP – São Carlos
Fevereiro de 2020

ACKNOWLEDGEMENTS

To my family that always supported me. To my laboratory colleagues that provided
valuable discussions and feedback, with special thank to Armando M. Toda and Kamila T. Lyra
for their patience and guidance during this time. To my Advisor, Seiji Isotani, for teaching me a
lot about the academy and research. To my closest friend Fernando Neto, that helped me more
times that I can count. To my partner, Lara, that is there in the best and worst times, and without
her, I wouldn’t be where I’m today.

Also, I would like to thank CAPES for the financial support, also thank the University of
São Paulo and the Instituto de Ciências Matemáticas e de Computação (ICMC) for their support.

RESUMO

SILVA, F. H. C. O impacto de comportamentos tinkering e planejamento no aprendizado
de conceitos introdutórios de programação. 2020. 86 p. Dissertação (Mestrado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2020.

As habilidades de programação estão se tornando cada vez mais essenciais nas mais diferentes
áreas de atuação e disciplinas. Como parte integrante do currículo de formação básica em ciência
da computação, essas habilidades são consideradas atividades de solução de problemas. A
solução de problemas é um processo cognitivo interno de alta ordem que procura uma solução
para um problema ou um caminho para um determinado objetivo. Como um processo interno,
as estratégias de solução de problemas não podem ser observadas diretamente e, portanto,
devem ser inferidas. Essa necessidade levou vários pesquisadores a identificar e classificar essas
estratégias com base no comportamento dos alunos. Entre essas pesquisas, a classificação entre
exploradores e planejadores, do inglês tinkerers e planners, proposta por Turkle e Papert foi
utilizada neste trabalho. Nessa classificação, os planejadores são estudantes que apresentam uma
estratégia estruturada, top-down, para resolver problemas, que é geralmente vista em ambientes
de ciência da computação. Por outro lado, os eploradores empregam uma estratégia alternativa,
menos estruturada e de bottom-up, que usa as informações apresentadas pelo sistemas para
atingir seus objetivos. De modo a investigar os comportamentos de planejadores e tinkerer em
ambientes online e seu impacto na performance das notas dos estudantes, primeiro foi empregada
uma abordagem de mineração de dados educacionais usando agrupamento para identificar os
comportamentos dos alunos e os recursos relacionados ao tinkering, em seguida, foi realizada uma
avaliação das notas dos alunos e o tempo que estes necessitaram para concluir as atividades online.
Como resultado, foram identificados quatro comportamentos relacionados à classificação de
Turkle e Papert. A análise estatística dos dados relacionados à estes comportamentos mostraram
que os alunos que empregavam uma quantidade maior de tinkering, apresentaram também
desempenho superior nos testes finais, além de precisarem de mais tempo para concluir suas
atividades on-line. Esses resultados indicam que tinkering é uma estratégia válida de solução de
problemas com potencial deve explorado pelos educadores.

Palavras-chave: Resolução de problemas, sciência da computação, mineração de dados, agrupa-
mento, informática na educação, tinkering.

ABSTRACT

SILVA, F. H. C. The impact of tinkering and planning behaviors on learning introductory
programming concepts. 2020. 86 p. Dissertação (Mestrado em Ciências – Ciências de Compu-
tação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Uni-
versidade de São Paulo, São Carlos – SP, 2020.

Computer programming skills are becoming essential across different fields and disciplines, and
as integrating part of computer science basic formation curriculum, these skills are considered
problem-solving activities. Problem-solving is an internal cognitive process of a high order that
searches for a solution for a problem or a path to a given goal. As an internal process, problem-
solving strategies cannot be observed directly and must be inferred. That necessity led several
researchers to identify and classify those strategies based on students’ behaviors. Among those
researches, the classification between tinkerers and planners proposed by Turkle and Papert was
used in this work. In this classification, planners are students who present a structured, top-down
strategy to solve problems, which is commonly reinforced in computer science environments.
On the other hand, tinkerers employ an alternative, less structured, bottom-up problem-solving
strategy that uses the system’s feedback to achieve their goals. To Investigate the students’
tinkerer and planner behaviors in online environments and its impact on the students’ grades
performance, firstly an educational data mining approach using clustering was employed to
identify the students’ behaviors and the features related to tinkering, followed by an assessment
of the students’ grades and the time that they required to finish the assignments. As a result, four
behaviors were identified related to Turkle and Papert classification. Statistical tests showed that
students that employed a higher amount of tinkering presented a better performance in final tests
and required more time to finish their online assignments. These results indicate that tinkering is
a valid problem-solving strategy with potential that worth being explored by educators.

Keywords: problem-solving, computer science, data mining, clustering, computer science in
education, tinkering.

LIST OF FIGURES

Figure 1 – Process using Specific Objective 1, 2 and 3 20

Figure 2 – Data mining process . 25

Figure 3 – Hierarchical clustering displayed as a dendrogram. 29

Figure 4 – Moodle’s main page . 39

Figure 5 – Moodle’s compilation page . 40

Figure 6 – Moodle’s test page . 41

Figure 7 – Moodle’s test summary page . 42

Figure 8 – Snapshot of students’ code with timestamp 43

Figure 9 – Feature’s correlation . 49

Figure 10 – Elbow method applied to the total time feature using K-means algorithm . . 50

Figure 11 – PBM index values’ normalization process 54

Figure 12 – Students’ difNLOC Ward’s clustering Dendrogram 56

Figure 13 – Distribution of students per clusters . 56

Figure 14 – Example of a tinkerer student - Lines of code per submission 58

Figure 15 – Example of a tinkerer student - changes during submissions, two lines of
code added and a change of a parameter on the for function 58

Figure 16 – Example of fixer student - Lines of code per submission 59

Figure 17 – Example of a fixer student - changes during submissions, four lines of code
added and no changes between the 4th and 5th submissions 59

Figure 18 – Example of a fixer student - Lines of code per submission 60

Figure 19 – Example of a fixer student - changes during submissions, no lines added/re-
moved, with only two lines edited, a parameter in the print function and a
equal sign in the for function . 60

Figure 20 – Example of a planner student - Lines of code per submission 61

Figure 21 – Example of a planner student - only one submission 62

Figure 22 – Boxplot of the students’ final test grades by clusters 65

Figure 23 – Boxplot of the students’ time on-task online to complete an online assignment 67

Figure 24 – Boxplot of the students’ time on-task . 69

Figure 25 – Sankey diagram of the online assignments of the algorithm and conditional
structures concept . 70

Figure 26 – Sankey diagram of the online assignments of the Looping structures and
vectors subject concept . 70

Figure 27 – Sankey diagram of the online assignments of the Functions and recursion
concept . 71

LIST OF TABLES

Table 1 – Related works summary . 32
Table 2 – Assignments applied during the semesters 37
Table 3 – Students’ average grades by assignment . 38
Table 4 – Header of the dataset . 48
Table 5 – PBM’s index values for each combination of features, using Ward’s AHC with

K= 2, 3 and 4 . 52
Table 6 – Selected features, PBM values and number of clusters in the pre-normalization

phase . 53
Table 7 – Ward’s PBM index values of crit(Fn,Cm) and crit(Fn,Cn) in highlights 53
Table 8 – difNLOC range values by cluster . 57
Table 9 – Features’ discretization values . 62
Table 10 – Rules obtained using apriori algorithm . 63
Table 11 – Shapiro-Wilk test for the students’ assignments features 63
Table 12 – Shapiro-Wilk test for the students’ assignments grades 64
Table 13 – Kruskal-Wallis test for significant differences between assignments’ grades

between the four behavior clusters. ** indicates statistical significance 64
Table 14 – Pairwise comparisons of the in-class Test 2 assignment using Dunn’s Test.

*indicates difference between the clusters 65
Table 15 – Pairwise comparisons of the students’ amount of time spent online to finish an

assignment using Dunn’s Test. *indicates difference between the clusters . . 67
Table 16 – Pairwise comparisons of the time on-task using Dunn’s Test. *indicates

difference between the clusters . 68
Table 17 – Summary of research questions’ answers 75
Table 18 – Students’ clusters assignment by each online assignment. Tinkerers are marked

as T, Fixers as F, Adjusters as A and Planners as P. Students that didn’t make
a submission for that assignment are marked as N/C 86

CONTENTS

1 INTRODUCTION . 17
1.1 Contextualization and Motivation . 17
1.2 Objectives . 19
1.2.1 Main Objective . 19
1.2.2 Specific Objectives . 19
1.3 Dissertation Organization . 19

2 BACKGROUND . 21
2.1 problem-solving Strategies . 21
2.1.1 Tinkerers and Planners . 24
2.2 Data Mining . 24
2.2.1 Educational Data Mining . 25
2.2.2 Clustering . 26
2.2.2.1 K-means . 27
2.2.2.2 Ward’s Agglomerative Hierarchical Method 28
2.2.3 Association Rule Mining . 29
2.3 Final Remarks . 30

3 RESEARCH DESIGN . 33
3.1 Research questions . 33
3.2 Materials . 35
3.2.1 Data source . 35
3.2.2 Assignments . 36
3.2.3 Moodle . 37
3.3 Methodology . 38
3.3.1 Data collection . 42
3.3.2 Features selection . 43
3.3.3 Selection of the data mining approach 48
3.3.4 Choice of data mining algorithm . 49
3.4 Final Remarks . 53

4 RESULTS . 55
4.1 Partitioning result . 55
4.2 Data analysis and discussion . 59

4.2.1 Cluster description through association rule mining 61
4.2.2 Hypothesis test . 62
4.3 Threats to validity . 71

5 FINAL REMARKS . 73
5.1 Conclusions . 73
5.2 Contributions . 74
5.3 Publications . 75
5.4 Limitation and Future Work . 76

BIBLIOGRAPHY . 79

APPENDIX A STUDENTS’ TINKERING BEHAVIOR CLUSTER BY
ONLINE ASSIGNMENT 85

17

CHAPTER

1
INTRODUCTION

1.1 Contextualization and Motivation

With the ubiquitous presence of technology in almost all aspects of everyday life, profes-
sionals with the required computer programming skills are becoming essential across different
fields and disciplines (FEDORENKO et al., 2019).

According to the curriculum guidelines from the Brazilian Ministry of Education (MEC)
(MEC, 2016), programming subjects are integrating part of the computer science basic for-
mation curriculum. The curriculum comprises, amongst other topics, programming languages,
programming paradigms, data structures and algorithms, and are described as a problem-solving
activities (SANTOS; COSTA, 2006). The Brazilian Computer Society lists amongst the skills
expected of a student graduated in computer science the ability to "employ concepts, techniques
and computational tools to identify and analyze problems from every day, social and all areas
of knowledge, model and solve them, individually and/or cooperatively, using languages and
representations adequate to describe processes (algorithms) and information (data), validating
strategies and results" (SBC, 2017)

A problem-solving process can be defined as a high order cognitive process and one of
the most complex cognitive activities (GOLDSTEIN; LEVIN, 1987). Researches as ROMEIKE
(2008) and MACKIE-MASON; GROTH (2010) defines the problem solving as the core skills
of computer science, where all the problems that can be computationally addressed can be
considered a problem.

Problem-solving is a cognitive process of the brain at a higher cognitive layer that
searches for a solution for a given problem or finds a path to reach a given goal (WANG;
CHIEW, 2010). This process occurs internally in the problem solver, and therefore, the strategies
employed to solve problems cannot be directly observed and must be inferred (SHARMA et al.,
2018).

18 Chapter 1. Introduction

Even though it has been acknowledged that programming is more than the ability to write
and run lines of code and that problem-solving skills plays an essential role in several activities,
including programming, in the computer science education the traditional outcome paper-based
assessment it’s still the predominant model to evaluate students’ performance. However, in
this outcome-based scenario, the development and application of students’ problem-solving
skills are usually neglected or limited to the current top-down problem-solving approaches
(KIESMÜLLER, 2009), without taking in account the impact that may have on the students’
learning. This leads to a divergence between the student’s problem-solving skills and their ability
to employ those skills to solve real-world problems (SHARMA et al., 2018).

To reduce this divergence in the students’ problem-solving skills, it’s essential to ed-
ucators to acknowledge the different problem-solving strategies that students may employ in
programming subjects and how they can be applied in computer science education, as well as the
needs that students may present to develop new problem-solving skills. Therefore, in addition to
the appropriated programming paradigms, environment, and tools, some authors argue that edu-
cators should consider teaching and developing students’ problem-solving strategies (SHARMA
et al., 2018).

The necessity to infer students’ strategies and to acknowledge and explore the role of
problem-solving skills in computer science education led several researchers to attempt to identify
and classify students’ employed problem solving by their behaviors expressed in programming
assignments (PERKINS et al., 1986; BRUCE et al., 2004; BLIKSTEIN et al., 2014; SHARMA
et al., 2018). Amongst these attempts, the most well-received classification of students’ by their
employed problem-solving strategies is proposed by TURKLE; PAPERT (1992), where students
are classified between bricoleurs or, as more used in the literature, tinkerers (BLIKSTEIN et

al., 2014; PEREZ; RICHARDSON; ROSENBLUM, 2017), and planners, depending on the
problem-solving approach employed (BLIKSTEIN et al., 2014). In this classification, planners
are students that present a structured, top-down strategy to solve problems, while tinkerers
employ an alternative, less structured, bottom-up problem-solving strategy that uses system’s
feedback to achieve their goals. Even though those are opposites problem-solving strategies,
TURKLE; PAPERT (1992) argues that both are equally valid problem-solving strategies and that
students that employ those strategies present similar performance in programming tasks.

However, along the same lines of thought followed by other studies (PERKINS et al.,
1986; TURKLE; PAPERT, 1992; BRUCE et al., 2004; BLIKSTEIN et al., 2014), to develop
the students’ problem-solving skills and employed strategies, further research is needed to
understand and validate those strategies if used to reduce the divergence between students’
problem-solving skills.

In this context, as a means to contribute to the development of students’ problem-solving
skills and employed strategies, this work seeks to understand the impact of the students’ problem-
solving behaviors and its impact on the students’ grades performance during online assignments.

1.2. Objectives 19

Section 1.2 describes a list of objectives to help us achieve this goal.

1.2 Objectives

1.2.1 Main Objective

Investigate the students’ tinkerer and planner behaviors in online environments and its
impact on the students’ grades performance.

1.2.2 Specific Objectives

To achieve the main objective of this work, the following specific objectives were
established:

1. Identify students’ assignments features related to the tinkering problem-solving strat-
egy

This specific objective focuses on identifying a set of features related to Turkle and
Papert’s definition of tinkerers and planners. It allows the application of educational data
mining techniques to identify the occurrence of students’ problem-solving behaviors and
their characteristics. This objective also contributes to a better definition of planners and
tinkerers through the identified features (step 1 of Figure 1).

2. Identify students’ tinkering problem-solving behaviors and its relation to the Turkle
and Papert’s definition of Tinkerers and Planners

Based on the selected educational data mining approach, it will be performed identification
of the students’ problem-solving behaviors (step 2 of the Figure 1), as well a discussion
about its relation with planners and tinkerers definition proposed by Turkle and Papert
(step 3 of the Figure 1).

3. Assess the impact of the students’ tinkering problem-solving behaviors in their grades
performance

Lastly, assess the impact of the students’ behaviors identified in this work through the
students’ grades performance in different assignments during the observed time.

1.3 Dissertation Organization
The remainder of this dissertation is organized as follows: in Chapter 2 discusses the

main concepts pertinent to the understanding of the text, such as problem-solving and data
mining concepts, along with the literature related to the presented work; in Chapter 3 discusses
in detail the research questions, hypothesis formulation and methodology, as well the process of

20 Chapter 1. Introduction

Figure 1 – Process using Specific Objective 1, 2 and 3

Source: Elaborated by the author

data selection and preprocessing techniques, methods and tools used in this work; in Chapter 4
the data mining results, hypothesis tests and discussion of the results obtained are presented; and
lastly, in Chapter 5 the final remarks, a summary of the work, its contributions and perspectives
for future work are discussed.

21

CHAPTER

2
BACKGROUND

Based on the literature review conduct during the development of this work, this chapter
presents the main concepts of this work that are the base for a better understanding of the
presented research. Section 2.1 discuss different learning strategies employed by students during
the learning process and where tinkering lies in this context. Section 2.2 presents the basic Data
Mining concepts, its use in an educational environment, as well as the algorithms and methods
relevant to this work.

2.1 problem-solving Strategies

Problem-solving is one of the main skills among the expected competencies of a computer
science graduate (SBC, 2017; MEC, 2016) and is considered by several authors as the core skills
of computer science (ROMEIKE, 2008; MACKIE-MASON; GROTH, 2010).

According to POLYA (2004) and ORMROD (2011) a problem is composed by three
parts: i) The information available relative to the problem; ii) a final state to the problem, also
known as goal or solution; iii) A set of possible actions that can be performed to achieve the
problem’s goal.

A similar definition is proposed by NEWELL; SIMON et al. (1972) that divides a
problem into two parts: i) A description of the problem space that contains all the possible states
of the problem and the problem solver, and ii) A set of paths through the problem space’s states.

The strategies that the problem solver can employ in order to reduce the difference
between the current problem state and the goal state are known as problem-solving strategies.

REISBERG; MAYER (2013) defines problem-solving as a "cognitive processing directed

at achieving a goal when the problem solver does not initially know a solution method". The
following aspects of this process worth to be highlighted: i) since it’s a cognitive process it
involves representing and manipulating knowledge in the problem solver cognitive system, which

22 Chapter 2. Background

can only be assessed based on the solver’s behaviors; and ii) problem-solving is a directed and
personal process, which means that the cognitive processing is focused by predefined goals, and
its difficulty is affected by problem solver’s prior knowledge, skills, and the problem’s nature
(MAYER; WITTROCK, 2006).

Problem-solving strategies are techniques that, even though it does not guarantee success
in finding a solution, may aid the problem-solvers during the solving process (MAYER, 1992;
GICK, 1986). Thus, choosing different problem-solving strategies may have different impacts on
the students’ learning process (SHARMA et al., 2018). Past researches (LISHINSKI et al., 2016)
has shown that in a programming learning environment, the choice of different problem-solve
strategies presented the highest correlation with students’ performance in coding tasks amongst
the assessed features.

Various approaches to problem-solving strategies have been investigated in different
areas (e.g., psychology, cognitive informatics, and computational intelligence) (WANG; CHIEW,
2010) and the most common strategies are, inter alia, the following:

∙ Hill climbing: When using this strategy, the problem solver goal is to improve their
problem’s solution step by step. At each step, they try to find the optimal solution for
the respective next step of the problem and repeating this process until they reach the
problem’s final solution (BARNES; FINCHER; THOMPSON, 1997).

∙ Trial and error: This strategy is preferred when the problem solver finds itself facing a
complex problem and consists of finding the correct path through the problem space trying
different possibilities one by one and evaluating their outcomes until they find a solution
(CHI; GLASER, 1985).

∙ Top-down: This strategy uses an identification of all problem’s states by the problem
solver before finding the correct path through the problem space. This strategy is well
known in computer science and software engineering (KIESMÜLLER, 2009).

∙ Bottom-up: This strategy focus on the solving of each problem’s state presented to the
problem solver before moving to the next state. A problem is considered solved after the
last problem’s state is solved (KIESMÜLLER, 2009).

As can be seen, some strategies may be similar to each other in some aspects (e.g.,
both trial and error, and bottom-up are similar unstructured strategies), but might have different
impacts the students’ problem-solving ability. Those particularities motivated numerous attempts
to classify students based on their employed strategies. PERKINS et al. (1986) discuss different
learning strategies and their importance for the pedagogy of programming. Using as examples the
strategies employed by students using BASIC and LOGO programming languages, by structured
observation, the authors classified students from elementary and High school in two categories

2.1. problem-solving Strategies 23

based on their attitude when facing a problem: Stoppers, the ones that once face a difficulty do
not try to find a solution, and movers, students who try new ideas consistently, modifying and
testing their code until they find a solution.

Conducted with thirteen (13) first-year undergraduate students, BRUCE et al. (2004)
research used a phenomenographic approach to analyze the employed students’ learning strate-
gies in an introductory programming course. As a result, they categorized the students’ attitudes
during the process in five different categories: Following - students that experienced the process
as a set of tasks to be done in tot their grades; Coding - students that presented this attitude
were invested in learning the programming language syntax, sometimes showing some tinkering
behavior in the process; Understanding and Integrating - these students seek to understand
how the learned concepts integrate past tasks, building their knowledge at each step. Similar
to coders - these students also presented some tinkering behavior, "fiddling" with the concepts;
problem-solving - students focused on solving the problem instead of learning how to code, to
these students coding is a tool that would be used to solve the problem. These categories students
presented similar planning approach to the planners students proposed by TURKLE; PAPERT
(1992); Participating - in this category, the students are motivated to learn proto program be a
part of the programmers’ community and interacting with it, seeing the act of coding as culture
itself.

BLIKSTEIN et al. (2014) conducted a series of exploratory studies over two semesters
with three hundred and seventy (370) undergraduate students from a university introductory
programming course. Using machine learning methods, such as x-means clustering and dynamic
time warp, to analyze and uncover possible hidden patterns in the students’ data, the authors
defined a set of interest variables based on tinkerers/planners behaviors proposed by TURKLE;
PAPERT (1992) to represent the amount of tinkering in the students’ coding assignments. The
results however, presented no significant correlation between students’ performance and their
categories.

In a more recent work SHARMA et al. (2018), conduct a study with six hundred
(600) students from a Java introductory programming university course to predict students’
performance based on their behaviors during unity testing tasks during the semester. Using
Generalized Additive Model, the authors identified three different categories: Intellects - students
with high programming skills and more confidence in their abilities that run tests less frequently;
Thinkers - students that seek system’s feedback to progress in the tasks, therefore, run tests more
frequently; and Probers - students that experience difficulties during the tasks, which leads them
to run tests most frequently than the others.

Amongst several attempts to classify students by their problem-solving strategies, the
most well-received is the framework proposed by TURKLE; PAPERT (1992), which labeled
students based on the amounts of tinkering they express. The authors proposed the following
categories: Tinkerers - students that presented a playful, non-hierarchical approach to the problem-

24 Chapter 2. Background

solving and a high number of interaction with the system (tinkering); and Planners - students that
presented a structured, well-defined approach to problem-solving and low amount of interactions
with the system (tinkering) (BLIKSTEIN et al., 2014).

2.1.1 Tinkerers and Planners

The term Tinkerer coined by TURKLE; PAPERT (1992), has its roots in the LÉVI-
STRAUSS et al. (1962), who used the french verb "bricoleur", which could be translate as "To

tinker", to describe the process of creative work with endless possibilities (ROSE, 2016). In the
work published by TURKLE; PAPERT (1992), the term tinkerer is used to describe an alternative
bottom-up problem-solving approach based on the students’ behavior. This approach is opposed
to the structured, top-down, rule-driven approach of planners.

While planners value hierarchy and abstraction, tinkerers prefer to negotiate and rear-
rangement with the available materials and tools (TURKLE; PAPERT, 1992). Therefore, instead
of planning and following steps to solve a problem, tinkerers choose and change their next steps
along the problem-solving process as new information emerges (RESNICK; ROSENBAUM,
2013).

Some authors (PEREZ; RICHARDSON; ROSENBLUM, 2017) describe tinkering as a
state of mind achieved by the problem solver when "pursuing a form of active learning in which
knowledge is often sought as a means to accomplish a particular task in which one is personally
invested."

To planners, mistakes are symbols of wrong choices in their logic. For tinkerers, mistakes
are signs used to guide them to their answers. These moments of struggle can be considered es-
sential in their iteration and experimentation process (VOSSOUGHI; BEVAN, 2014). According
to PETRICH; WILKINSON; BEVAN (2013) "having an artifact to point to, an artifact that may
be rickety or lopsided, but yet has resolved the problem that so puzzled the learner" is one of the
elements that make tinkering so compelling. In addition, some authors (MARTINEZ; STAGER,
2013; VOSSOUGHI; BEVAN, 2014) argue that employing tinkering helps develop the problem
solvers’ creativity and confidence.

2.2 Data Mining
Every day large volumes of data are generated from the most diverse activities, from

business, science, medicine, and recreation, in almost every aspect of daily life, and this makes
the ability to extract useful information and to make sense of these complex amounts of data
increasingly important (KANTARDZIC, 2011). However, when conducted manually, besides
being expensive and time-consuming, this process may be prone to human error and bias towards
the data(HAN; KAMBER; PEI, 2011). The general process of understanding, preparation, and
analysis of this data generated is known as data mining.

2.2. Data Mining 25

Data mining is an iterative process that can be defined by the discovery in which humans
and computers cooperate to uncover nontrivial and valuable information within large volumes of
data. According to KANTARDZIC (2011), this process has two primary goals, predict unknown
value based on a set of current information (variables) and finding patterns that can describe the
data in a way that humans may interpret. FAYYAD; PIATETSKY-SHAPIRO; SMYTH (1996)
defines the data mining process as interactive and iterative, with several decisions made by the
human counterpart and loops and interactions between the data mining process’s steps. This can
be viewed in Figure 2.

Figure 2 – Data mining process

Source: Elaborated by the author based on FAYYAD; PIATETSKY-SHAPIRO; SMYTH (1996)

A more formal definition is given by the Gartner group that describes data mining as
"...the process of discovering meaningful new correlations, patterns, and trends by sifting through

large amounts of data stored in repositories, using pattern recognition technologies as well as

statistical and mathematical techniques."

2.2.1 Educational Data Mining

With educational systems and technologies becoming more present daily, larges amounts
of new educational data became available, from students’ keystrokes and assessment submissions
(BUDIMAN et al., 2017; DUTT; ISMAIL; HERAWAN, 2017) to complete system logs packed
with possible new information to be uncovered (BLIKSTEIN et al., 2014).

Educational Data Mining is a field of study where different methods such as data
mining and cognitive psychology are implemented in order to analyze educational data as a

26 Chapter 2. Background

way to improve learning, teaching, or institutional effectiveness. According to the International
Educational Data Mining Society (EDUCATIONAL. . . ,), educational data mining can be defined
as an " emerging discipline, concerned with developing methods for exploring the unique and

increasingly large-scale data that come from educational settings and using those methods to

better understand students, and the settings which they learn in".

Traditionally, researchers have applied several methods to predict students’ behaviors and
outcomes in several subjects and degrees. In the study conducted by HAMSA; INDIRADEVI;
KIZHAKKETHOTTAM (2016), the authors used fuzzy genetic algorithms and decision trees
to create a predictive performance model from 120 bachelor students and 48 master degree
students during the first semester of a computer science and electronics and communication
courses based on their admission scores and grades during the semester. With a similar goal,
FENG et al. (2017) used the Gini index in combination with a random forest algorithm to predict
the performance of three hundred and seventy-nine (379) undergraduate students in an English
subject during the course of two semesters. Even though the subjects and the methods applied
differ, they share a similar goal to employ educational data mining to construct a predictive
model of students’ academic performance that can be used in a learning environment to identify
students’ difficulties earlier in the subject.

Amidst the several methods used in educational data mining, clustering is an unsupervised
approach to analyze and collect invaluable information. This method can be used to predict
students’ performance, associate learning styles, and students’ behaviors (DUTT et al., 2015)
(2015).In a recent study, DUTT; ISMAIL; HERAWAN (2017) conducted a systematic review
over the last three decades of educational data mining works that encompassed one hundred and
sixty-six (166). The authors’ results show that among the works analyzed, clustering was the
most popular data mining method in educational domains, with the partitional method K-means
and the hierarchical method Ward’s AHC as the most popular algorithms.

JUNIOR (2019), conducts a study to construct predictive models to identify in the first
two weeks students that may fail in the subject, as well the use of genetic algorithms to automate
the development and optimization of machine learning pipelines. To achieve this goal, the
authors extracted 14 features from the automatic correction system’s logs generated by the one
thousand six hundred and thirty-six (1636) undergraduate students during three years period
from introductory programming subject. As a result, the authors achieved an area under the
curve (AUC) of 0.87 on the validation set to early predict students’ performance. In addition, the
authors identify that students’ grades in the first two weeks were the most relevant features to
predict their performance.

2.2.2 Clustering

Clustering is the process of finding partitions (clusters) for data objects in such a way
that similar data objects that are somehow related belong in the same group, whereas non-similar

2.2. Data Mining 27

data objects belong to other group (GAN; MA; WU, 2007).

Since the information of the data objects’ class label is not present, clustering is consid-
ered unsupervised learning, a form of "learning by observation rather than learning by example".
Therefore, different clustering methods can lead to different clusters using the same data set.
And since the clusters’ formation is performed by the unsupervised clustering algorithm, this
process can lead to the discovery of new groups and information within the data set analyzed
(HAN; KAMBER; PEI, 2011).

According to (HAN; KAMBER; PEI, 2011), clustering algorithms can be divided into
five categories: partitioning, hierarchical, grid-based, density-based, and model-based. Partition-
ing methods find partitions in the data, grouping similar data objects in the same partition, and
each group contains at least one object. Hierarchical methods, create hierarchical decomposi-
tion of the set of data objects, splitting (divisive) or merging (agglomerative) groups of data
objects iteratively until each data object is in one cluster (divisive) or all clusters are merged
(agglomerative). The grid-based methods quantize the object space into a finite grid structure.
Density-based methods aim to find densely group regions of data objects that can be divided
from other groups by a sparse margin. Lastly, model-based methods aim to fit the data objects
into a model, such as neural networks or probability density functions. (HAN; KAMBER; PEI,
2011; SILVA; BATISTA; KEOGH, 2018).

Clustering methods have been used in a plethora of applications, such as business
intelligence, image pattern recognition, security, web search, and education. It’s important to
note that given the multitude of options in clustering methods and their characteristics, different
methods may be more commonly employed in determined applications.

In this work, our goal is to analyze an educational data set to uncover information
about students’ problem-solving strategies and the impact that these strategies have on the
students’ performance through the subject. Therefore, this section is focused on the most popular
algorithms used in the literature (DUTT; ISMAIL; HERAWAN, 2017), K-means, and Ward’s
AHC. In addition, for the sake of readability, the reader may refer to (AGGARWAL, 2016) for a
more formal and throughout description of other clustering methods and algorithms.

2.2.2.1 K-means

Partitioning methods, such as K-Means, are the most straightforward clustering algo-
rithms in cluster analysis. Given a data set D that contains n data objects and a previously defined
number of partitions (clusters), k (where k ≤ n). The algorithm creates the clusters to optimize a
predefined objective function, such as a distance-based dissimilarity function, where the objects
that belong to the same cluster are similar to each other and dissimilar to objects in other clusters.

K-Means is a centroid based partitioning method, where a centroid is conceptually the
center point of a cluster. These centroids can be defined based on different methods, such as mean

28 Chapter 2. Background

or medoid of data objects that belong to that cluster, and are used to measure the within-cluster
variations. At each of the algorithm’s iterations, a new data object is assigned to a cluster Ci, based
on the distance between the data object and the cluster mean, the algorithm then computes a new
mean for the cluster based on the data objects assigned, thus minimizing within-cluster variation.
This process repeats until there’s no change in the clusters’ composition (HAN; KAMBER; PEI,
2011). It’s worth point that this method does not guarantee convergence to a global optimum,
often terminating in a local optimum. Withal, the results may vary due cluster initialization,
requiring multiple runs with different initial clusters to produce more reliable results (GAN; MA;
WU, 2007; ZAHRA et al., 2015).

The use of K-Means in an educational environment can be seen in the study conducted
by KUMAR; SINGH (2017), where, combined with statistical analysis, the algorithm is used to
evaluate how external factors such as family background, daily habits, address, sex, and assiduity,
may impact on the pass/failure probabilities of four hundred and twelve (412) post-graduate
students during the semester. In addition, the authors also assessed the performance of data
mining algorithms in that scenario. As a result, the authors achieved a percentage of 61.4% of
correct predictions using random forests algorithm and students’ pre-admission and academic
attributes. In the published study, the authors didn’t specify the study’s context, impeding
the study’s replication. Additionally, the authors also pointed out the unreliability of students’
self-reported data as one of the limiting factors during the attribute selection phase.

2.2.2.2 Ward’s Agglomerative Hierarchical Method

Hierarchical clustering methods group data objects into a hierarchy of clusters and can
be divided into agglomerative (bottom-up) or divisive (top-down). An agglomerative hierarchical
clustering method works by initially dividing each data object n in a separate cluster Ci and,
based on a predefined similarity measure, merging two closest clusters at each iteration, until
all data objects are in a single cluster or a certain condition is meet (GAN; MA; WU, 2007). A
Ward’s clustering visual representation can be seen in Figure 3 as a dendrogram.

A divisive hierarchical clustering method works on the contrary direction, putting all data
objects n in the same initial cluster Ci and recursively dividing it into several smaller clusters,
until each cluster at the lowest level contains only one data object, or the data objects in the same
cluster sufficiently similar (HAN; KAMBER; PEI, 2011).

The Ward’s Agglomerative Hierarchical Method (Ward’s AHC) is an agglomerative
method where all data objects are divided into different clusters (singletons) and iteratively
merge them until all data objects belong to the same cluster. At each iterative merging step,
Ward’s algorithm selects the two clusters to be merged with minimal variance within-clusters,
i.e., the variation between the within-cluster variances before and after the merge occurs is
minimized (WARD, 1963).

In the study conducted by Antonenko P., Toy S. and Niederhauser D. (ANTONENKO;

2.2. Data Mining 29

Figure 3 – Hierarchical clustering displayed as a dendrogram.

Source: Elaborated by the author

TOY; NIEDERHAUSER, 2012), Ward’s algorithm was used with other partitional algorithms to
automatic analyze characteristics of one hundred and eighty-three (183) undergraduate students
in an engineering economics class and their learning behavior while engaged in collaborative
problem-solving activities in an online learning environment. As a result, the study proposes
students’ labels (high and low performing students) based on their behaviors while browsing
online for information related to their tasks. However, only data from 40 of the 183 students were
used in their final analysis (20 students in the high-performance group and 20 students in the low-
performance group), while the rest were dropped from the analysis without further discussion. In
addition to the student classification, the study discusses the impact of algorithm and clustering
measures selection to be used during a clustering analysis. Furthermore, the authors focused on
analyzing the students’ performance during problem-solving activities instead of the students’
problem-solving strategies as the level of tinkerers and planners.

2.2.3 Association Rule Mining

Association rule mining (HAN; KAMBER; PEI, 2011) is a data mining technique used
to discover associations and correlations of elements among large amounts of data in transitional
or relational data set. Also known as market basket analysis, this technique is famous for its
application in customer habits analysis, where it finds associations between the customers’
purchased products or their "shopping baskets." This technique can also be used to describe the
associations among clustering partitions, obtaining this way, new information about the clusters

30 Chapter 2. Background

formed.

Consider a data set D composed by T non-empty transactions and I a set of items such as
I = I1, I2, I3, ..., In and T ⊆ I. Where a transaction can be seen as an event that occurred involving
a set of items. A transaction T is said to contain any set of items X if X ⊆ T . The association rules
implications follow the form of Xi =⇒ X j, where Xi ⊂ I,X j ⊂ I,Xi ̸= /0,X j ̸= /0 and Xi ∩X j = /0,
which means that to create an implication rule Xi =⇒ X j, the item sets Xi and X j must belong to
the same itemset I and not having any items in common.

The three following metrics are commonly used in order to assess the rule’s strength, or
how interesting the rules are:

∙ Support is the percentage of transactions T in D that contain both Xi and X j and it’s
calculated as supp(Xi =⇒ X j) = probability P(Xi ∪X j);

∙ Confidence is the percentage of transaction T in D containing Xi that also contain X j and
it’s calculated as con f (Xi =⇒ X j) = probability P(X j|Xi);

∙ Lift is a correlation measure used to boost the support-confidence of a association rule
and can be obtained by li f t(Xi,X j) =

P(Xi∪X j)
P(Xi)P(X j)

which is equivalent to con f idence(Xi =⇒
X j)/support(B).

Both support and confidence values range from 0% to 100%, and when these values are
higher than a predefined lower threshold (minimum support or minimum confidence respectively),
those rules are considered strong/interesting. Lift values, however, indicates the correlation
between the itemsets. For lift values lesser than one (li f t(Xi,X j)< 1), it expresses a negative
correlation, which means that the occurrence of one itemset indicates the absence of the other
itemset. If the lift values are greater than one (li f t(Xi,X j)> 1), it expresses a positive correlation,
which means that the occurrence of one itemset indicates the occurrence of the other itemset.
In case of lift values equal to one (li f t(Xi,X j) = 1), the itemsets XiandX j have no correlation,
which means that they are independent (HAN; KAMBER; PEI, 2011).

2.3 Final Remarks
In this section were presented the main concepts and methods necessary for a better

understanding of this work. A brief contextualization of the main concepts related to students’
problem-solving strategies and some of the works that aim to classify students based on these
strategies, focusing on the tinkering approach described by Turkle and Papert and how the
tinkering approach differs from more structured approaches. Furthermore, Data Mining and
Educational data mining were contextualized, and their methods (clustering and Association Rule
Mining) and algorithms used in this work (Ward’s AHC and K-means) were briefly discussed. In
addition, the researches related to this work were presented through the chapter, in particular

2.3. Final Remarks 31

the literature pertaining to the use of educational data mining to identify students’ problem-
solving strategies depending on the concepts that each research approached (VITAL et al., 2019;
BLIKSTEIN et al., 2014; ANTONENKO; TOY; NIEDERHAUSER, 2012). A summary of this
work and the related works presented in this section can be seen in Table 1 below.

32 Chapter 2. Background

Table
1

–
R

elated
w

orks
sum

m
ary

A
uthor

N
um

ber
of

participants
E

ducation
L

evel
A

pplication
D

om
ain

A
pproach

D
ata

collection
period

Study
objective

PE
R

K
IN

S
etal.(1986)

notspecified
E

lem
entary

and
H

igh
school

Introductory
program

m
ing

(B
asic

and
L

O
G

O
)

Structured
observation

notspecified
Identify

students’problem
-solving

behaviors

B
R

U
C

E
etal.(2004)

13
U

ndergraduate
Introductory
program

m
ing

phenom
enographic

1
sem

A
nalyze

students’learning
approaches

B
L

IK
ST

E
IN

etal.(2014)
370

U
ndergraduate

Introductory
program

m
ing

D
ynam

ic
tim

e
w

arping
and

C
lustering

2
sem

s
Predictstudents’perform

ance

SH
A

R
M

A
etal.(2018)

600
U

ndergraduate
Introductory
program

m
ing

(Java)
G

eneralized
additive

m
odels

1
sem

Predictstudents’perform
ance

based
on

unity
tests

H
A

M
SA

;IN
D

IR
A

D
E

V
I;K

IZ
H

A
K

K
E

T
H

O
T

TA
M

(2016)
168

U
ndergraduate

C
om

puterScience
and

electronics
and

com
m

unication
Fuzzy

genetic
algorithm

and
decision

trees
1

sem
Predictstudents’perform

ance
based

on
adm

ission
scores

FE
N

G
etal.(2017)

379
U

ndergraduate
E

nglish
language

G
iniindex

and
random

forests
2

sem
s

Predictstudents’perform
ance

D
U

T
T;ISM

A
IL

;H
E

R
A

W
A

N
(2017)

166
notspecified

E
ducatiuonalD

ata
M

ining
(E

D
M

)
System

atic
review

30
yrs

Provide
an

overview
ofE

ducationaldata
m

ining

JU
N

IO
R

(2019)
1363

U
ndergraduate

Introductory
program

m
ing

G
enetic

algorithm
6

sem
s

E
arly

prediction
ofStudents

perform
ance

K
U

M
A

R
;SIN

G
H

(2017)
412

Post-graduate
notspecified

C
lustering

and
statisticalanalysis

1
sem

A
ssess

the
influence

ofexternalfactors
in

students’
perform

ance

A
N

TO
N

E
N

K
O

;TO
Y

;N
IE

D
E

R
H

A
U

SE
R

(2012)
183

U
ndergraduate

E
ngineering

econom
ics

C
lustering

notspecified
Predictstudents’perform

ance
and

assess
the

im
pact

ofdifferentalgorithm
s

in
the

prediction

T
his

w
ork

59
U

ndergraduate
Introductory
program

m
ing

C
lustering

1
sem

Investigate
the

students’tinkering
behaviors

and
its

im
pacton

the
students’grades

perform
ance

Source:E
laborated

by
the

author

33

CHAPTER

3
RESEARCH DESIGN

This section describes the process of data selection and pre-processing, methods and
tools used in this work. Section 3.1 presents the research question and hypothesis formulated
related to this work’s objectives. Section 3.2 describes the data source and materials used by the
students during the activities. Section 3.3 describes the methodology process adopted to develop
this work.

3.1 Research questions

Based on the main goal of this work, presented in Section 1.2.1, Investigate the students’

tinkerer and planner behaviors in online environments and its impact on the students’ grades

performance., the following research questions were formulated:

In order to assess the impacts of the students’ tinkering behavior on the students’ grades,
first is necessary to identify the students’ behaviors in the selected dataset, therefore:

RQ1: Which students’ tinkering behaviors can be identified using the selected assignment
features?

Once the students’ tinkering behaviors are identified, it’s necessary to evaluate how
representative are the features. Students that present the same behavior may need different
amounts of time or number of submissions to complete an assignment, or students that presented
different behaviors may have a similar number of submissions during assignments. How those
features are related to the identified students’ tinkering behaviors may give a deeper understanding
of those. Thence:

RQ1.1: How can the differences and similarities in student’s tinkering behaviors be
characterized based on the selected features?

The main goal of this work is to investigate the students’ tinkerer and planner behaviors

34 Chapter 3. Research design

in online environments and its impact on the students’ grades performance, researches questions
RQ 2 and RQ 2.1 refers to evaluate the impact that the students’ tinkering behaviors, which
are expressions of the students’ problem-solving strategies, have on the students’ grades per-
formances. In addition, the RQ 2.1 aims to assess the impact of different assignments in the
students’ performance, which may not provide the necessary conditions for students’ to employ
their tinkering problem-solving strategies.

RQ2: Is there a grade performance difference between the identified students’ tinkering
behaviors?

The alternative hypothesis was formulated based on the premise that students’ would
have different performances based on their tinkering behaviors.

∙ Null Hypothesis: There are no differences between identified students’ tinkering behaviors
grades performance.

H0: GP(Ti) = GP(Tj), for all (i,j) contained in 1,2,...,n

∙ Alternative Hypothesis: There are differences between identified students’ tinkering be-
haviors grades performance.

H0: GP(Ti) = GP(Tj), for any i!=j, contained in 1,2,...,n Where GP() is the grade perfor-
mance of the students’ tinkering behavior Tn.

RQ2.1: Is there a significant difference in grades performance among the tinkering
behaviors identified depending on the assignment format?

Besides the identification of tinkering behaviors and the impact of those on the student’s
grades performance, the following research questions evaluate the impact in the time spent by a
student on their assignments.

The alternative hypothesis formulated to research questions 3 and 4 (RQ3 and RQ4) were
based on the premise that students who presented more planned behaviors would take similar
amounts of time to finish their assignments than those students who presented more tinkerers
behaviors.

RQ3: Is the total time to complete an online assignment different among the identified
tinkering behaviors?

∙ Null Hypothesis: There is no difference in the total time to complete an online assignment
among the identified students’ tinkering behaviors.

H0: W(Ti) =W(Tj), for all (i,j) contained in 1,2,...,n

∙ Alternative Hypothesis: There is a difference in the total time to complete an online
assignment among the identified students’ tinkering behaviors.

3.2. Materials 35

H0: W(Ti,Si) =W(Tj,S j), for any i!=j, contained in 1,2,...,n Where W () is the total time to
complete the online assignments (total time) of the students’ Sn tinkering behavior Tn.

RQ4: Is the students’ time on task for online assignments different among the identified
tinkering behaviors?

∙ Null Hypothesis: There is no difference in the students’ time on task for online assignments
among the identified students’ tinkering behaviors.

H0: ToT(Ti,Si) = ToT(Tj,S j), for all (i,j) contained in 1,2,...,n

∙ Alternative Hypothesis: There is a difference in the students’ time on task for online
assignments among the identified students’ tinkering behaviors.

H0: ToT(Ti) = ToT(Tj), for any i!=j, contained in 1,2,...,n Where T T S() is the students’
time on task during online assignments of the students’ Sn tinkering behavior Tn.

The last research question was formulated based on the premise that the students may
change their tinkering behaviors while attempting to solve problems (TURKLE; PAPERT, 1992;
VOSSOUGHI; BEVAN, 2014; SHARMA et al., 2018).

RQ5: Do students present different tinkering behaviors during online assignments?

∙ Null Hypothesis: Students don’t present different tinkering behaviors during online assign-
ments.

∙ Alternative Hypothesis: Students present different tinkering behaviors during online as-
signments.

3.2 Materials

3.2.1 Data source

To achieve the objectives listed in 1.2 and to answer the research questions in section 3.1,
it was used real data on the students’ problem-solving strategies employed in online assignments.
The selected data source was composed of a class of sixty (60) undergraduate students regularly
enrolled in the subject SSC600 - Introduction to Computer Science I in the University of São
Paulo, campus São Carlos, during the first semester of 2017. This subject has the objective of

“Present the basic concepts of computational thinking applied to problem-solving. Develop skills

to write small programs using a programming language. Basic concepts about computers and

computing. Problem-solving and algorithm design. Programming structures. Simple data types.

Modularization. Composite data types. Files. Debugging. Structured programming language"

(USPDIGITAL, 1999)

36 Chapter 3. Research design

The choice of an introductory subject was due to the following factors: i) TURKLE;
PAPERT (1992) argues that the negotiating style of tinkers is more present when they experience
new challenges, so a student that has new concepts presented to them at each assignment would
be more prone to employ tinkering strategies through these assignments; and ii) So the results
obtained in this work could be easier compared with others related works present in the literature,
such as BLIKSTEIN et al. (2014), SHARMA et al. (2018) and BRUCE et al. (2004).

3.2.2 Assignments

During the semester, the students were presented with eighteen (18) online assignments in
C language that covered three main concepts: i) Algorithm and conditional structures, ii) Looping
structures and Arrays, and iii) Functions and recursion. The assignments titles and the concepts
comprehended can be seem in Table 2. The students’ final grade was composed of grades of
three different assignment types: In-class pen-and-paper assignments, online assignments, and
pen-and-paper tests.

In the pen-and-paper assignments, the students were asked to solve small tests proposed
by the teacher about the topic passed on that class. The teacher corrected the assignments. The
grades were given to the students based on the number of correct answers on their assignments.
The average grade of this assignment comprehended 25% of the students’ final grade. Since
these assignments were applied during the classes, the time that the students had to solve them
was limited by their classes’ length.

In the online assignments, it was possible to observe students’ behaviors, each of eighteen
(18) assignments were composed of a test case file and a single problem to be solved by the
students using an open-source learning platform (moodle.org) 1. At each submission, the student
would be presented by the automatic evaluation of the platform and the system’s feedback in the
form of compilation messages and test results, and similar to the pen-and-paper assignments,
the average of online assignments grades comprehended 25% of the students’ final grade. These
assignments had to be delivered before the end of the subject, giving the students some freedom
to choose when to solve them.

The tests were divided into the midterm and final tests developed and evaluated by the
teacher and would comprehend all the topics discussed in class until that period. These tests
were solved by the students during the classes using pen and paper and also had a time limit of a
class. The average of their test grades comprehended 50% of the students’ final grades.

Even though the tinkering behaviors could only be observed in the online environments,
the students’ grades in the other assignments were also assessed as it could be an indication of
changes in the students’ problem-solving skills and the impacts of the assignments’ limitations
may have on students. In this case, the inability to employ their tinkering problem-solving

1 Moodle system version 3.1

3.2. Materials 37

Table 2 – Assignments applied during the semesters

ID Title Concept
493 Hello World Algorithm and conditional structures
496 Square Root Algorithm and conditional structures
497 Triangle Area Algorithm and conditional structures
504 Temperature monitor Algorithm and conditional structures
- In class activity Algorithm and conditional structures
498 Metabolic rate Algorithm and conditional structures
515 Diet calculator Algorithm and conditional structures
- In class activity Algorithm and conditional structures
- in class Test All content seen
545 Proper divisor Looping structures and Arrays
457 Hailstone numbers Looping structures and Arrays
- In class activity Looping structures and Arrays
520 Fibonacci sequence Looping structures and Arrays
522 Christmas tree Looping structures and Arrays
- In class activity Looping structures and Arrays
528 Sequence of power Looping structures and Arrays
524 ATM Looping structures and Arrays
478 Semiprime numbers counter Looping structures and Arrays
- In class activity Looping structures and Arrays
534 Fibonacci’s polinomial Functions and recursion
538 Lucky number generator Functions and recursion
- In class activity Functions and recursion
542 Planning poker Functions and recursion
544 Palindrome’s counter Functions and recursion
545 Maze’s exit Functions and recursion
- In class activity Functions and recursion
- in class Test All content seen

Source: Elaborated by the author based on the subject’s material

strategies.

The average and standard deviation of the students’ grades in the evaluated assignments
can be seen in Table 3.

3.2.3 Moodle

The Moodle (Modular Object-Oriented Dynamic Learning Environment) is an open-
source course management system to create personalized learning environments that provides a

38 Chapter 3. Research design

Assignment
Pen-and-paper
midterm test

Pen-and-paper
final test Tests’ average

Pen-and-paper
assignments Online assignments Final grades

Average 6.817702 8.961864 7.877071563 7.389943503 8.648439907 7.958301
Standard Deviation 2.043714 1.941853 1.491891893 1.380093953 1.254343785 1.132759

Table 3 – Students’ average grades by assignment

Source: Elaborated by the author based on the subjects’ material

set of tools to support inquiry and discovery-based approaches for online learning (BRANDL,
2005).

Using the Virtual Programming Lab (VPL) module from Moodle (PINO, 2011), the
students were able to develop, submit, run and evaluate their online assignments during the
semester, Figure 4 illustrates the initial submission process, where the student could develop and
compile their codes. Through the Moodle platform, the students were presented with a problem
statement, hints to guide them to solve the problem, and the files needed to evaluate their code
before submission.

In the assignment’s assessment option in Figure 5, the students could assess their codes
and allowed multiple submissions during its time window. To improve the completion of the
code based on the test cases, the students also received feedback from the system in the form of
compilation outputs, Figure 6 and Figure 5, and the tests’ summary at each submission, as can
be seen in Figure 7.

3.3 Methodology
To investigate the students’ tinkerer and planner behaviors in online environments and its

impact on the students’ grades performance using data prior to this work’s development, it was
used the Ex Post Facto research methodology (SIMON; GOES, 2013; LORD, 1973). In the ex
post facto research methodology, the researcher identifies events that have already occurred and
investigate the relationships between these events and the outcomes (LEEDY; ORMROD, 2014).
As outlined by ISAAC (1971), this methodology can be defined in the seven (7) following steps:

1. Problem definition.

2. Survey the literature.

3. Hypotheses creation.

4. List of assumptions that will serve as the base for the procedures.

5. Approach design:

a) Selection of subjects and materials.

b) Selection of data collecting techniques.

3.3. Methodology 39

Figure 4 – Moodle’s main page

Source: Screenshot from moodle’s system

c) Data classification.

6. Data validation.

7. Findings analyzes

Each step of the methodology is described in more detail during the following sections:
the first step - problem definition was discussed through chapter 1; Subsection 2 addresses the
second step of the process, survey the literature, discussing the related works and state of the
art of the topics approached in this work; Subsection 3.1, underlines the hypotheses creation
process and the assumptions on which they were based upon, that represents the third and fourth
steps - Hypotheses creation and List of assumptions that will serve as the base for the procedures.

respectively;

The fifth step approach design is divided in three parts: a) selection of subjects and

materials is discussed through subsections 3.3.1 and 3.2 describes the selection of subjects and

40 Chapter 3. Research design

Figure 5 – Moodle’s compilation page

Source: Screenshot from moodle’s system

obtention of the students’ data, as well as an overview of the data collected; b) Selection of

data collecting techniques and c) data classification are discussed through subsections 3.3.2
and 3.3.3, where it addresses the data preprocessing and transformation, and is presented the
feature extraction process, the data reduction process and data mining choices made during the
development of this work;

Steps six and seven are discussed in the chapters 3.3.3 and 4, where the data mining
techniques validation and the results obtained are presented and reported accordingly.

In addition to the ex post facto methodology used, a data mining process outlined
by FAYYAD; PIATETSKY-SHAPIRO; SMYTH (1996) was adopted to help answer the first
research question proposed in this work - RQ1: Which students’ tinkering behaviors can be

identified using the selected assignment features ?-. This process can be summarized in nine
steps ranging from understanding the application domain and dataset creation to knowledge
discovery and application (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996).

3.3. Methodology 41

Figure 6 – Moodle’s test page

Source: Screenshot from moodle’s system

1. Understanding of the application domain: Acquiring the relevant knowledge about the
application domain and its goals;

2. Dataset creation: Selection of the dataset in which further steps will be performed;

3. Preprocessing data: Handling incomplete data or noise from the selected dataset;

4. Data reduction: Selecting relevant features to represent the data amidst the selected dataset;

5. choice of data mining approach: Selecting the data mining approach based on the predeter-
mined goals (e.g., classification, regression or clustering);

6. choice of data mining algorithm: Selecting the data mining algorithms to be used amidst
the available algorithms given the approach chosen in the previous step;

7. Data mining: Application of the previously chosen data mining algorithm;

8. Results interpretation: Interpreting the results obtained to be applicable for the predefined
goals;

42 Chapter 3. Research design

Figure 7 – Moodle’s test summary page

Source: Screenshot from moodle’s system

9. Application of the discovered knowledge: Acting on the knowledge discovered (e.g.,
reporting, implementing into a system and/or documenting it);

3.3.1 Data collection

During the students’ interaction with the moodle system internal system’s records were
generated in log files. Log files are automatically generated files that contain records of events
that occurred in the system. In this case, these files included the crucial data related to the
student’s submissions and interactions with the system, such as timestamps, changes in the
students’ code, and students’ and system’s data. This available data was selected and collected
for further analysis.

To collect the students’ data and to facilitate a local dataset creation based on the students’
data from the Moodle web platform as part of step 5 b) selection of subjects and materials, an
automated tool to extract data from the moodle platform was developed using python language2

2 using Python version 3.6.5

3.3. Methodology 43

and the BeautifulSoup 3 library 4.

The data collected was divided by assignments, which was subdivided by students’ IDs,
and each student’s ID contained all submissions made by the students for that assignment. All
the data collected was stored locally to simplify its handling in the subsequent steps.

In this initial phase, it was collected a little over eleven thousand and four hundred
(11,400) students’ codes snapshots with timestamps, from nine hundred and fifty-one students’
(951) assignments from the moodle platform. A sample of the collected data can be seen in
Figure 8.

Figure 8 – Snapshot of students’ code with timestamp

Source: Screenshot from moodle’s system

3.3.2 Features selection

This section describes the feature selection process and extraction of students’ assign-
ments features related to tinkering behavior proposed to achieve this work’s specific objective 1:
“Identify students’ assignments features related to the tinkering problem-solving strategy” (see
Section 1.2.2).

Turkle and Papert (TURKLE; PAPERT, 1992) classify students dichotomically between
tinkerers and planners, where planners are students that present a structured, top-down strategy to
solve problems, while tinkerers employ an alternative, less structured, bottom-up problem-solving
strategy, that uses system’s feedback to achieve their goals. However, as some authors argue, a
binary definition may not take into account some nuances in those behaviors (BLIKSTEIN et al.,
2014).

In this work, as discussed by BLIKSTEIN et al. (2014), it was considered that students
might present different behaviors, where tinkerers and planners were considered two extremes of
the tinkering behaviors that the students could present during the assignments. On one side, a
top-down and more structured approach, with a low number of interactions with the system, the
planners, and on the other side, a bottom-up and flexible approach, on which was expected the
student to complete the assignment through system feedback, the tinkerers.

3 <http://www.crummy.com/software/BeautifulSoup/> version 4.8.1
4 The code used can be seen at <https://github.com/fcarvalhos/masters/tree/master/Python%20Crawlers>

http://www.crummy.com/software/BeautifulSoup/
https://github.com/fcarvalhos/masters/tree/master/Python%20Crawlers

44 Chapter 3. Research design

Based on the premise that the target variables had to express students’ interactions
with the system or the time dedicated by the students to complete the assignment, the features
extracted were selected to express the tinkering behaviors that the students may present during
the assignments. Based on this and in the related work presented in section 2, the following
features were selected:

∙ time on-task: This feature represents the amount of time that the student spent actively
solving the assignment (time-on-task) through any number of sessions using Moodle’s
VPL module, and it’s expressed by the Formula 3.1. A session was defined as any amount
of time that the student is logged and interacting with the system, where the time difference
between two interactions has to be lower than one hour. If the time difference is greater
than one hour, it was considered that the student initiates a new session. To estimate the
duration of a session, it was calculated the difference of time between timestamps from
the system logs.

time on-task =
n

∑
0

Snend −Snstart (3.1)

Where n is the total number of sessions that one student took to complete the assignment,
Snstart is the first timestamp of the session n and Snend is the last timestamp of the session n.

∙ total time: It expresses the total amount of time that the student took to complete the
assignment. It’s calculated by the time difference between the first and last interaction with
the moodle’s VPL module. This feature takes into account that students may seek advice
from tutors, friends, or online to solve the problem, as well that some students may pause
the assignment and resume it at a later date for any other reasons.

∙ Submissions: Represents the number of submissions that the students needed to complete
the assignment. A higher number of submissions indicates a higher number of interactions
with the system by the student, which results in a greater amount of feedback from the
system.

∙ difNloc: This feature represents the average number of lines of code (NLOC) that are
added or excluded by a student during each assignment submission during any period of
time and it’s calculated as the average of the difference between the number of lines of code
in submission and the number of lines of code in the previous submission, through all the
student’s submissions in the same assignment (e.g., the variation of lines of codes between
the submissions presented in source code 1 and source code 2 was plus fourteen). This
feature can be expressed by the Formula 3.2. This way, this feature may reflect the students’
tinkering behaviors since these features are affected by the number of submissions that
take to a student to finish the assignment and consequently, the number of interactions
between the student and the system. In addition, the size of the changes made by the

3.3. Methodology 45

student between the submissions, which indicates how significant are the changes made by
the student at each submission represented by the number of lines.

46 Chapter 3. Research design

Source code 1 – Student’s submission n-1
1
2 i n t main () {
3 char g ; # ge nd e r
4 i n t tmb , i ; # i n g e s t
5 s c a n f ("%d %d %c " , &tmb , &i , &g) ;
6 i f (g == ’m’) {
7 p r i n t f (" Male ") ;
8 i f (i <1800) {
9 p r i n t f (" Warning ") ;

10 }
11 e l s e i f (i >=1800 && i < tmb −

400) {
12 p r i n t f (" Lose w e ig h t ") ;
13 }
14 e l s e i f (i >=tmb−400 && i <=tmb

+500) {
15 p r i n t f (" Keep w e ig h t ") ;
16 }
17 e l s e i f (i > tmb +500) {
18 p r i n t f (" Gain w e ig h t ") ;
19 }
20 }
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 re turn 0 ;
39 }
40

Source code 2 – Student’s submission n
1
2
3 i n t main () {
4 char g ; # ge nd e r
5 i n t tmb , i ; # i n g e s t
6 s c a n f ("%d %d %c " , &tmb , &i , &g) ;
7 i f (g == ’m’) {
8 p r i n t f (" Male ") ;
9 i f (<1800) {

10 p r i n t f (" Warning ") ;
11 }
12 e l s e i f (i >=1800 && i < tmb − 400) {
13 p r i n t f (" Lose w e ig h t ") ;
14 }
15 e l s e i f (i >=tmb−400 && i <=tmb +500) {
16 p r i n t f (" Keep w e ig h t ") ;
17 }
18 e l s e i f (i > tmb +500) {
19 p r i n t f (" Gain w e ig h t ") ;
20 }
21 }
22
23 i f (g == ’ f ’) {
24 p r i n t f (" Female ") ;
25 i f (i < 1200) {
26 p r i n t f (" Warning ") ;
27 }
28 e l s e i f (i >=1200 && i < tmb−500){
29 p r i n t f (" Lose w e ig h t ") ;
30 }
31 e l s e i f (i >=tmb−500 && i <=tmb +400)

{
32 p r i n t f (" Keep w e ig h t ") ;
33 }
34 e l s e i f (i > tmb +400) {
35 p r i n t f (" Gain w e ig h t ") ;
36 }
37 }
38
39 re turn 0 ;
40 }
41

3.3. Methodology 47

difNLOC =
∑

1
n NLOCi −NLOCi−1

n
(3.2)

Where n is the number of submissions made by a student in a given assignment i, with
i = 0, ...,n, and NLOCi is the number of lines of code in the submission i. 5

∙ difCCN: This feature represents the variation of the students’ code cyclomatic complexity
through a given assignment. Similar to difNLOC, it’s calculated as the average of the
difference between the cyclomatic complexity in submission and the cyclomatic complexity
in the previous submission, through all the student’s submissions made during any period
of time in the same assignment (Formula 3.3). The cyclomatic complexity is a metric
that measures the number of linearly independents paths through a given fragment of
code (MCCABE, 1976). In the previous example, the variation of cyclomatic complexity
between the submissions presented in source code 1 (CCN 8) and source code 2 (CCN
15) was plus 7 . Similar to the difNLOC feature, this feature also indicates the amount of
feedback that the student received from the system through the number of submissions and
consequently the number of interactions between the student and the system, as well how
significant are the changes made by the student at each submission due to the changes in
the code’s complexity.

difCCN =
∑

1
nCCNi −CCNi−1

n
(3.3)

Where n is the number of submissions made by a student in a given assignment i, with
i = 0, ...,n, and CCNi the cyclomatic complexity value (number) in the submission i. 6

It’s worth pointing out that while the time-on-task and total time reflect the amount
of time that a student dedicated to complete the assignment, the other features, submissions,
difNLOC, and difCCN, even though related, may have their variations during any amount of
time (e.g., a student X may have two submissions during a seven days period, while a student Y
may have five submissions in a ten minutes session).

Once the features were selected, 7 each student had a set of the selected features for
each assignment submitted. This way, each student-assignment pair was treated as a new data
object entry in the dataset. This approach derives from the different tinkering behaviors that
students may express during the assignments, depending on how familiar they are with the
problem domain and if they already acquire the skills necessary to complete the assignment
5 It’s considered that all students start with zero lines of code before the first submission, to handle cases

where a student makes only one submission
6 It’s considered that all students start with cyclomatic complexity zero before the first submission, to

handle cases where a student makes only one submission
7 the file with the selected features and students’ grades can be seen at <https://github.com/fcarvalhos/

masters/tree/master/Files>

https://github.com/fcarvalhos/masters/tree/master/Files
https://github.com/fcarvalhos/masters/tree/master/Files

48 Chapter 3. Research design

Table 4 – Header of the dataset

studentID difNLOC difCCN submissions total time time on-task actv
10169 0.049202 0.050325 0.194805195 1.41E-05 0.021943075 454
10170 0.293144 0.324675 0.025974026 1 0.098028303 454
10171 0.170213 0.24026 0.038961039 2.18E-05 0.03386866 454
10172 0.446809 0.493506 0.012987013 3.59E-06 0.005565273 454
10174 0.087234 0.088312 0.116883117 7.88E-05 0.122356495 454
10175 0.285461 0.409091 0.038961039 0.002614832 0.107409763 454

Source: Elaborated by the author

(VOSSOUGHI; BEVAN, 2014). In addition, to avoid that the expected difference in magnitudes
between each assignment interfered in the dataset evaluation, for each assignment, each feature
was normalized separately using equation 3.4, so each feature would have values between zero
and one, as it can be seen in the Table 4.

fnorm =
f − fmin

fmax − fmin
(3.4)

Where fnorm is the new normalized feature value, f is the feature value to be normalized,
and fmin and fmax are respectively the lowest and highest values of that feature among all the
students in that assignment.

In order to select relevant features to represent the data amidst the selected dataset, a
reduction technique was employed. To reduce the dataset’s dimensions and avoid any redundant
information in the data, correlation tests were made over the new dataset, using Spearman’s rank
correlation coefficients (SPEARMAN, 1904) (Figure 9). Due to the high correlation between
the features difCCN and difNLOC (ρ = 0.95), it was opted to remove difCCN due to the higher
explicability of lines of code over cyclomatic complexity.

3.3.3 Selection of the data mining approach

This work’s main goal is to investigate the students’ tinkerer and planner behaviors in
online environments and its impact on the students’ grades performance. However, it’s necessary
to define a data mining approach to identify which features better describes the students’ tinkering
behaviors and how many different behaviors can be identified in the dataset. To mitigate possible
biases in these definitions, the created dataset did not present any human assigned labels. Thus,
an algorithm capable of identifying similar behaviors between students during the assignments
and to differentiate this behavior from others is necessary.

To identify the student’s behaviors based on their features, a clustering approach was
chosen. As defined in subsection 2.2.2, clustering algorithms are unsupervised learning process
that may lead to the discovery of new groups and information within a chosen dataset (HAN;

3.3. Methodology 49

Figure 9 – Feature’s correlation

Source: Elaborated by the author

KAMBER; PEI, 2011). This definition is adequate to the tasks faced in this step of the data
mining process: Define which features better describes the student’s tinkering behaviors and
identify how many behaviors are present in the dataset.

3.3.4 Choice of data mining algorithm

To select an unsupervised educational data mining approach to identify students’ tinker-
ing behaviors related to problem-solving, two different clustering approaches were chosen, a
partitional clustering algorithm (k-means) and a hierarchical agglomerative clustering algorithm
(Ward’s AHC). These approaches were chosen based on the systematic review conducted by
DUTT; ISMAIL; HERAWAN (2017) and the related literature presented in subsection 2.2.1,

Once the clustering algorithms were chosen, a quality comparison process, similar to the
process presented in subsection 3.3.2, was made to ensure that results obtained would represent
the most accurate information about the students’ tinkering behaviors and the features that
describe those behaviors. This process was composed of the following steps:

∙ Define the number of clusters(k): Choosing the right number of cluster k isn’t a trivial
task. Most clustering algorithms rely upon the definition of the number of clusters by
the user. However, the desired K is usually unknown (VENDRAMIN; CAMPELLO;
HRUSCHKA, 2010). Moreover, the number of clusters depends on several factors that
vary by each problem and involves data characteristics such as data distribution, scale, and
the knowledge domain (HAN; KAMBER; PEI, 2011).

Several methods to define the number of clusters can be employed depending on the
task, from simple methods as using

√n
2 clusters for a dataset with n data object, to more

50 Chapter 3. Research design

complex ones, such as information-theoretic approaches (HAN; KAMBER; PEI, 2011)
8 . In this work, the Elbow method was used to determine the number of clusters. The
elbow method is a heuristic approach to reduce the sum of within-cluster variance. This
variance is obtained by applying a clustering algorithm to a dataset n times, and for each n

is calculated the sum of square errors (SSE). The most significant turning point in a plot
with SSE in respect to k present the indicate number of clusters k (e.g., in Figure 10 the
suggested k is 3) (HAN; KAMBER; PEI, 2011).

Figure 10 – Elbow method applied to the total time feature using K-means algorithm

Source: Elaborated by the author

Due to the low number of features present in the dataset, it was possible to employ a
broad range assessment of the clusters using the elbow method in all combinations of
features for the selected algorithms (Ward’s AHC and K-means), which resulted in a range
of suggested number of clusters between two and four clusters depending on the set of
features used. Then, both clustering algorithms were ran using different settings, each one
for the suggested number of clusters (k).

∙ Assessment of the clustering quality: One of the main goals of clustering algorithms is
to find partitions so that similar data objects are assigned to the same group, and dissimilar

8 For a more throughout bibliography it’s suggested the reading the Section 10.9 of HAN; KAMBER;
PEI (2011)

3.3. Methodology 51

ones are assigned to other groups. However, an improper attribution of parameters, such
as the number of clusters K, may result in a non-optimum partitioning result for a given
dataset (VAZIRGIANNIS, 2009).

Several measures can be used in order to evaluate the validity of clusters, such as Davie-
Bouldin (DAVIES; BOULDIN, 1979) index, Dunn’s index (CALIŃSKI; HARABASZ,
1974) and silhouette width criteria (ROUSSEEUW, 1987).

The choice of validity criterion used in this work is based on the comparative review con-
ducted by VENDRAMIN; CAMPELLO; HRUSCHKA (2010), where the performances
of forty validity criteria were compared using five different clustering algorithms and
one thousand and eighty datasets were analyzed. As a result, the PBM index (PAKHIRA;
BANDYOPADHYAY; MAULIK, 2004) validity criterion excels with other criteria perfor-
mance, electing the best partition correctly in 92.59% of the assessed scenarios.

The PBM index is a criterion based on within-group and between-group distance and it’s
defined as follows:

PBM(k) = (
1
k
× E1

Ek
×Dk)

2 (3.5)

Where k is the number of clusters, E1 is the sum of distances between the data objects and
the mean of the data, Ek represents the sum of distances within-group and Dk is the maxi-
mum separation between a pair of centroids (PAKHIRA; BANDYOPADHYAY; MAULIK,
2004). This way, the best partition is indicated when the PBM value is maximized.

Based on the elbow analysis of the suggested k, the PBM index criterion was applied to
K = 2,3,4, which resulted in seventy-two PBM index values that represented a possible
partition approach 9 (twelve sets of features, for each number of clusters for each algorithm
used). From these, six sets of PBM index values were selected through a basic comparison,
three for the Ward’s AHC method and three for the K-means method, the Ward’s AHC’s
example can be seen in Table 5.

In the column Features on Table 5, each row represents the features considered to partition
the dataset (e.g., the feature difNLOC represents a partitioning where only this feature was
considered to classify the students’ tinkering behaviors). These features combinations were
obtained from all possible combinations of the four selected features, without repetition of
features and independent of order. Each value in the column PBM represents the assessed
quality of the partitioning based on those features.

In cases where two partitionings present the same amount of features (e.g., a partitioning
based only on time-on-task and another based only on total time), a simple comparison

9 During the combination of all features, the combinations of difNLOC and submissions were not
considered as the difNLOC feature was created from the feature submission and presented a high
(negative) correlation 3.3.2

52 Chapter 3. Research design

Table 5 – PBM’s index values for each combination of features, using Ward’s AHC with K= 2, 3 and 4

Features\PBM’s value by number of clusters (k) k=2 k=3 k=4
difNLOC 0.21414755 0.401072118 0.641710265
submissions 0.30918171 0.516417557 0.553049953
total time 0.434243089 1.80446314 1.738226701
time on-task 0.099257515 0.515387703 0.462405834
difNLOC, total time 0.254792653 0.346595971 0.290321767
difNLOC, time on-task 0.220398289 0.361947906 0.357609706
submissions, total time 0.287605601 0.295234193 0.270144753
submissions, time on-task 0.236711128 0.237493524 0.255021056
total time, time on-task 0.217092525 0.227943866 0.213702323
difNLOC, total time, time on-task 0.113164345 0.209178153 0.200033135
submissions, total time, time on-task 0.135713287 0.179884334 0.1493109
difNLOC, submissions, total time, time on-task 0.148334517 0.186329413 0.161318606

Source: Elaborated by the author

of values indicated which partitioning had better performance. However, in cases with a
different number of features (dimensions of the dataset), a normalization process was nec-
essary to mitigate the bias present when comparing distances in two different dimensions
(DY; BRODLEY, 2000).

NormVal(Cn) = crit(Fn,Cn)× crit(Fn,Cm) (3.6)

NormVal(Cm) = crit(Fm,Cm)× crit(Fn,Cm) (3.7)

Where crit(F,C) is the criterion used to assess the partitioning quality, in the case of this
work, the PBM’s index, crit(Fn,Cm) is the criterion value obtained by using the set of
features Fn selected and Cm the clustering assignment of each data object in the dataset,
and NormVal is the normalized value of the equation. The recommended clustering-
Features pair is defined by the greater NormVal obtained. In the case where both NorVals
were equal, it was recommended the clustering-features pair with lower dimensionality
(DY; BRODLEY, 2000).

This heuristic normalization was used in this work through the following steps (Figure 11):

1. As a pre-selection step, initial values were gathered through a comparison of PBM
values obtained by partitionings with the same number of features (dimensions). This
process was done separately for each algorithm (Table 6).

2. In order to assess the best partitions obtained by each clustering algorithm (K-means
and Ward’s AHC) a normalization between the selected PBM’s values presented
in the previous step was done, and a new feature’s ranking was created for each
algorithm (Table 7);

3.4. Final Remarks 53

Table 6 – Selected features, PBM values and number of clusters in the pre-normalization phase

Features PBM K
Ward’s AHC
difNLOC 0.641710265 4
difNLOC, time on-task 0.361947906 3
difNLOC, total time, time on-task 0.209178153 3
K-means
difNLOC 0.626860118 4
difNLOC, total time 0.361246041 3
difNLOC, total time, time on-task 0.252435065 3

Source: Elaborated by the author

Table 7 – Ward’s PBM index values of crit(Fn,Cm) and crit(Fn,Cn) in highlights

difNLOC difNLOC, time on-task difNLOC, total time, time on-task
difNLOC 0.641710265 0.1782833 0.124075125
difNLOC, time on-task 0.216003074 0.361947906 0.273695061
difNLOC, total time, time on-task 0.097313622 0.100940077 0.209178153

Source: Elaborated by the author

As a result, in this step were selected the features and number of clusters by each
algorithm that achieved the best performance partitioning the dataset. A PBM value of
0.64171 was achieved by the the Ward’s AHC algorithm using the difNLOC feature
and the students’ behaviors partitioned in four clusters. For the K-means algorithm, a
PBM value of 0.36124 was selected, using the difNLOC and the total time features
to partition the dataset in three clusters representing the different students’ tinkering
behaviors in the dataset.

To compare the best partitionings obtained between the clustering algorithms, a new
normalization was made using the PBM’s values. As a result, the Ward’s normalized
PBM value equals 0.07727, and the K-means’ normalized PBM value obtained was
equal to 0.03825.

3. Comparing the normalized values obtained in the previous step (Ward’s PBM =
0.07727 > Kmeans PBM = 0.03825), the Ward’s AHC algorithm was chosen as
the clustering method in this work.

3.4 Final Remarks

In this chapter were presented the Research Questions elaborated and the methodology
adopted during the development of this work. Then, it was presented a brief description of the
data source and systems used, as well as the creation of the dataset, the feature’s extraction, and
the algorithm selection process as part of the chosen methodology.

54 Chapter 3. Research design

Figure 11 – PBM index values’ normalization process

Source: Elaborated by the author

Furthermore, this chapter describes and proposes a set of features that could be used to
describe tinkering behavior in students during online programming assignments. The analysis
of the proposed classification of possible behaviors that may occur between those discussed by
TURKLE; PAPERT (1992), as well as the impact of tinkering behavior on the students’ grades
performance, will be present in the next chapter.

55

CHAPTER

4
RESULTS

Based on the partitionings settings defined in the previous chapter (Chapter 3), this
chapter presents the students’ tinkering behaviors found through the clustering process in the
dataset, an analysis of the behaviors’ characteristics and its impact on the students’ grades. Section
4.1 presents the clustering results of the chosen partitioning method and a brief description of each
cluster based on the selected features. In section 4.2, an analysis of the data is presented combined
with the association rule mining process. In addition, the hypothesis tests and discussions are
presented in this section. Lastly, section 4.3 discuss this work’s threats to validity and the steps
made to mitigate them.

4.1 Partitioning result

During the process presented in Section 3.3.4, seventy-two partitionings were analyzed
to find the best partitioning to identify students’ tinkering behaviors in the dataset. From these,
the approach using Ward’s AHC algorithm presented the best partitioning quality dividing
the students by their average number of lines of code added or removed at each assignment’s
submission (difNLOC feature). This approach partitioned the dataset into four behavior clusters
according to this feature and was chosen as the data mining approach to be employed in this
work (Figure 12).

As an answer to the RQ1: - Which students’ tinkering behaviors can be identified using

the selected assignment features? - the difNLOC feature presented as the best feature to identify
the students’ tinkering behaviors while using the Ward’s AHC. The difNLOC feature (section
3.3.2) represents the average number of lines of code that the students change at each submission
and the number of students’ submissions during a given assignment. This way, this feature also
represents the students’ interactions with the system, the amount of feedback that the students
received to finish their assignment, and, consequently, the tinkering behaviors expressed by the
students during an assignment.

56 Chapter 4. Results

Figure 12 – Students’ difNLOC Ward’s clustering Dendrogram

Source: Elaborated by the author

Four different tinkering behaviors were identified as clusters in the dataset, accordingly
with the following distribution: cluster A represented 50.47% of the dataset entries, cluster B
represented 25.34% of the dataset and clusters C and D represented 15.56% and 8.63% of the
dataset respectively (Figure 13).

Figure 13 – Distribution of students per clusters

Source: Elaborated by the author

4.1. Partitioning result 57

Table 8 – difNLOC range values by cluster

Cluster min. value max value
Tinkerers (A) 0 0.16318
Fixers (B) 0.165272 0.341004
Adjusters (C) 0.352364 0.7106871
Planners (D) 0.725057 1

Source: Elaborated by the author

As defined in section 3.3.2, all features used in this work were normalized to express
relative values between zero and one, where zero represents the lowest value of a feature for a
given assignment and one the highest value. This way, a student that expresses a higher tinkering
would have a lower difNLOC value, whereas a student that employed a more planned approach
(lower tinkering) would have a higher difNLOC value.

To achieve the specific objective three proposed in this work - "Identify students’ problem-

solving behaviors and its relation to the Turkle and Papert’s definition of Tinkerers and Planner"

-, in addition to the identification of tinkering behaviors, it was analyzed the assigned range values
of the difNLOC feature for each cluster and its relation with Turkle and Papert’s definition.

Observing Table 8, it can be seen that the clusters A and D presented the most extreme
values and, therefore, best express the dichotomous definition of tinkerers and planners (respec-
tively) made by Turkle and Papert (TURKLE; PAPERT, 1992). Albeit clusters B and C still
express similar characteristics to tinkerers and planner, both clusters presented more intermediate
values, and yet, are distinct enough to be defined as different clusters from A and D. With that,
the four identified behaviors are Tinkerers (cluster A), Fixers (cluster B), Adjusters (cluster C)
and Planners (cluster D)

In the tinkerers cluster were assigned students with lowest values of difNLOC (from 0 to
0.163), which indicates that the students needed a higher number of feedback messages from the
system in order to complete their assignments. Even though students in this cluster presented
significant changes in their lines of code between some submissions, they also tended to make
submissions to test small changes in their codes, Figure 14 and Figure 15 demonstrate alterations
between submissions of a tinkerer student in the online assignment 528 - Power sequences.

Fixers composed the second biggest cluster with two hundred and forty-one student
(241) entries, and, similarly to tinkerers, this cluster is characterized by low values of difNLOC
(between 0.1652 and 0.3410). Even though these students also presented high amounts of
tinkering, their difNLOC values indicate that overall, the students in this cluster needed a smaller
number of feedback messages from the system in order to complete their assignments compared
with tinkerers (Figure 16).

The adjusters had the biggest difNLOC feature’s range (between 0.352364 and 0.710681
) and yet, the second smallest number of students’ entries (148). The higher values of difNLOC

58 Chapter 4. Results

Figure 14 – Example of a tinkerer student - Lines of code per submission

Source: Elaborated by the author

Figure 15 – Example of a tinkerer student - changes during submissions, two lines of code added and a
change of a parameter on the for function

Source: Elaborated by the author

indicate that these students needed a small amount of feedback from the system to finish their
assignments and that they tend to make significant changes in their codes at each submission
(Figure 18).

Planner students, as the name suggests, were the closest to the planner’s definition. With
the highest values in the difNLOC feature (between 0.725057 and 1), these students usually

4.2. Data analysis and discussion 59

Figure 16 – Example of fixer student - Lines of code per submission

Source: Elaborated by the author

Figure 17 – Example of a fixer student - changes during submissions, four lines of code added and no
changes between the 4th and 5th submissions

Source: Elaborated by the author

didn’t receive any feedback from the system, completing the assignment in a single submission,
which indicates a more planned approach to the problem.

4.2 Data analysis and discussion
The four tinkering behaviors were obtained using the difNLOC feature. The analysis of

the students’ behaviors and how they related with all the extracted features are divided into the

60 Chapter 4. Results

Figure 18 – Example of a fixer student - Lines of code per submission

Source: Elaborated by the author

Figure 19 – Example of a fixer student - changes during submissions, no lines added/removed, with only
two lines edited, a parameter in the print function and a equal sign in the for function

Source: Elaborated by the author

following parts: Subsection 4.2.1 presents the results of the association rule mining technique
apriori used in this work, and discuss the rules obtained and how they can be used to describe
the students’ tinkering behaviors. The following subsection 4.2.2 presents the hypothesis’ tests
defined in Section 3.1.

4.2. Data analysis and discussion 61

Figure 20 – Example of a planner student - Lines of code per submission

Source: Elaborated by the author

4.2.1 Cluster description through association rule mining

As discussed in section 2.2.3, association rule mining techniques are used to discover
associations and correlations among larges amounts of elements in a dataset. However, In order
to extract the most relevant rules related to the tinkering behaviors, a discretization of the
continuous features in the dataset was necessary. In this work it was used the entropy-based
method, infoGain1 (FAYYAD; IRANI, 1993), that divided each feature of the dataset by intervals
that are best aligned with the cluster that represent the students’ tinkering behaviors (Table 9.
After the discretization process the apriori algorithm (AGRAWAL; IMIELIŃSKI; SWAMI, 1993)
was applied to the students’ dataset using minimum confidence ≥ 0.8 and minimum support
≥ 0.1 2. As a result, it was obtained a set of twenty-one rules that fit within the parameters and
expressed which set of features (left-hand rules) implied in one of the clusters (right-hand rules).
The rules and the values obtained can be seen in Table 10.

After analyzing the obtained rules, it can be observed that the students that expressed
Tinkerers and Fixer’s behaviors tend to take relatively longer to finish their assignments, both in
time-on-task spent and total time, with rules 8 and 20 (confidence 1) are strong rules in support
of this observation. In addition, as expected due the difNloc nature, tinkerers and fixers expressed
the first and second-highest number of submissions, respectively. It can also be observed in

1 Using the OneR’s optbin function available in <https://rdrr.io/cran/OneR/man/optbin.html>
2 Using the arules R package v1.6-4, available in <https://www.rdocumentation.org/packages/arules>

https://rdrr.io/cran/OneR/man/optbin.html
https://www.rdocumentation.org/packages/arules

62 Chapter 4. Results

Figure 21 – Example of a planner student - only one submission

Source: Elaborated by the author

Table 9 – Features’ discretization values

Feature 1st interval 2nd interval 3rd interval 4th interval
difNLOC (-0.001, 0.164] (0.164, 0.347] (0.347, 0.718] (0.718, 1]
submissions (-0.001, 0] (0, 0.0167] (0.0167, 0.0682] (0.0682, 1]
total time (-0.001,3.0.0000333] (0.0000333 - 0.000081] (0.000081, 0.000517] (0.000517, 1]
time on-task (-0.001, 0.000234] (0.000234, 0.014] (0.014, 0.11] (0.11, 1]

Source: Elaborated by the author

Table 10 through rules 1, 16, and 21, where each of the three behaviors (Tinkerers, Fixers, and
Adjusters) are divided by their difNLOC feature. It’s worth pointing that the apriori algorithm
didn’t generate any strong rules related to planners that would fit in the defined minimum
confidence (≥ 0.8), presumably due to the low number of data objects present in their cluster.

4.2.2 Hypothesis test

In order to test the hypothesis formulated Section 3.1, the Kruskal Wallis test (KRUSKAL;
WALLIS, 1952) was used. Similarly to the one-way ANOVA (Analysis of Variance) test, the
Kruskal Wallis test is recommended to assess for significant differences on a continuous depen-
dent variable (e.g., students’ grades, total time, and time-on-task) by a categorical independent
variable (Students’ tinkering behaviors (clusters)). However, differently from the ANOVA test,
the Kruskal Walis test does not assume normality of the data. Table 11 shows the Shapiro-Wilk
normality test for the students’ assignments features (difNLOC, number of submissions, total
time and time-on-task) and Table 12 shows the normality tests for the students’ grades in the

4.2. Data analysis and discussion 63

Table 10 – Rules obtained using apriori algorithm

Association Rules
ID Features Behavior Support Confidence lift
1 {difNLOC=(-0.001, 0.164]} {Tinkerer} 0.504732 1 1.98125
2 {difNLOC=(-0.001, 0.164], submissions=(0.0682, 1]} {Tinkerer} 0.432177 1 1.98125
3 {difNLOC=(-0.001, 0.164], total time=(0.000517, 1]} {Tinkerer} 0.353312 1 1.98125
4 {difNLOC=(-0.001, 0.164], time on-task=(0.11, 1]} {Tinkerer} 0.325973 1 1.98125

5
{difNLOC=(-0.001, 0.164], submissions=(0.0682, 1],
total time=(0.000517, 1]} {Tinkerer} 0.320715 1 1.98125

6
{difNLOC=(-0.001, 0.164], submissions=(0.0682, 1],
time on-task=(0.11, 1]} {Tinkerer} 0.309148 1 1.98125

7
{difNLOC=(-0.001, 0.164], total time=(0.000517, 1],
time on-task=(0.11, 1]} {Tinkerer} 0.271293 1 1.98125

8
{difNLOC=(-0.001, 0.164], submissions=(0.0682, 1],
total time=(0.000517, 1], time on-task=(0.11, 1]} {Tinkerer} 0.255521 1 1.98125

9 {difNLOC=(-0.001, 0.164], time on-task=(0.014, 0.11]} {Tinkerer} 0.162986 1 1.98125

10
{difNLOC=(-0.001, 0.164], submissions=(0.0682, 1],
time on-task=(0.014, 0.11]} {Tinkerer} 0.118822 1 1.98125

11 {difNLOC=(-0.001, 0.164], total time=(8.1e-05, 0.000517]} {Tinkerer} 0.11041 1 1.98125

12
{submissions=(0.0682, 1], total time=(0.000517, 1],
time on-task=(0.11, 1]} {Tinkerer} 0.255521 0.945525 1.873322

13 {submissions=(0.0682, 1], time on-task=(0.11, 1]} {Tinkerer} 0.309148 0.933333 1.849167
14 {submissions=(0.0682, 1], total time=(0.000517, 1]} {Tinkerer} 0.320715 0.918675 1.820124
15 {submissions=(0.0682, 1]} {Tinkerer} 0.432177 0.878205 1.739944
16 {difNLOC=(0.164, 0.347]} {Fixer} 0.253417 1 3.946058
17 {difNLOC=(0.164, 0.347], submissions=(0.0167, 0.0682]} {Fixer} 0.178759 1 3.946058
18 {difNLOC=(0.164, 0.347], time on-task=(0.014, 0.11]} {Fixer} 0.15142 1 3.946058
19 {difNLOC=(0.164, 0.347], total time=(0.000517, 1]} {Fixer} 0.113565 1 3.946058

20
{difNLOC=(0.164, 0.347], submissions=(0.0167, 0.0682],
time on-task=(0.014, 0.11]} {Fixer} 0.109359 1 3.946058

21 {difNLOC=(0.347, 0.718]} {Adjuster} 0.155626 1 6.425676

Source: Elaborated by the author

Table 11 – Shapiro-Wilk test for the students’ assignments features

Shapiro-Wilk normality test
Feature W p-value
difNLOC 0.81066 2.2e-16
Number of submissions 0.6782 2.2e-16
total time 0.60632 2.2e-16
time on-task 0.72197 2.2e-16

Source: Elaborated by the author

different assignments 3.

In this work, the Kruskal-Walis test was used to assess significant differences (p < 0.05)
between the amount of time that the students dedicated for the online assignments (total time
and time-on-task), as well the differences between five different students’ grades (in-class pen-
and-paper assignments, online assignments, first and second pen-and-paper Tests, average test’s
grade and students’ final grades). The results for each hypothesis and research questions are

3 The Kruskal-Wallis and Shapiro-Wilk tests were made using R package stats v3.6.0. Available at
<https://www.rdocumentation.org/packages/stats/versions/3.6.1>

https://www.rdocumentation.org/packages/stats/versions/3.6.1

64 Chapter 4. Results

Table 12 – Shapiro-Wilk test for the students’ assignments grades

Shapiro-Wilk normality test
Assignments W p-value
First in-class Test 0.96155 4.028e-15
Second in-class Test 0.55821 2.2e-16
Average of in-class Tests 0.87938 2.2e-16
Average of class assignments 0.96744 9.512e-14
Average of online assignments 0.86509 2.2e-16
Final grades 0.91002 2.2e-16

Source: Elaborated by the author

presented below.

The first hypothesis to be tested refers to the RQ2 - Is there a grades’ performance

difference between the identified students’ tinkering behaviors?. Table 13 present the tests’ results
to identify significant grades differences between the behaviors.

Table 13 – Kruskal-Wallis test for significant differences between assignments’ grades between the four
behavior clusters. ** indicates statistical significance

Kruskal-Wallis
Assignments chi-squared p-value
First in-class Test 1.825 0.6095
Second in-class Test 35.335 1.035e-07**
Average of in-class Tests 6.1569 0.1042
Average of in-class assignments 2.5903 0.4592
Average of online assignments 4.8248 0.1851
Final grades 5.906 0.1163

Source: Elaborated by the author

As can be seen in the column p-value, there’s a statistically significant difference only in
the in-class Test 2 (final exam) assignment with a p-value of < 0.05 (0.0000001035). However,
in order to identify between which clusters the difference was present, a pairwise post-hoc
comparison was made using the Dunn’s Test (DUNN, 1961) with Bonnferroni adjustment
method (BLAND; ALTMAN, 1995) (Table 14).

Table 14 shows the z-statistics and p-value results of the pairwise comparisons related
to students’ grades in the in-class Test 2 (final exam), the values in column p-value shows that
there’s a difference (p < 0.05) between the tinkerers and fixers, tinkerers and adjusters, and
tinkerers and planners. This way, it’s possible to refute the null hypothesis (i.e., There is no
difference between students’ grades performance between the identified tinkering behaviors) that
students would have similar grades. As can be seen in Figure 22, students in the tinkerers’ cluster
had the best performance in the final exams for that subject when comparing to other clusters.

4.2. Data analysis and discussion 65

Table 14 – Pairwise comparisons of the in-class Test 2 assignment using Dunn’s Test. *indicates difference
between the clusters

Pairwise comparisons
Pair of clusters Z-statistics p-value
Tinkerers - Fixers 3.617854 (0.0009)*
Tinkerers - Adjusters 2.761884 (0.0172)*
Fixers - Adjusters -0.215615 (1.0000)
Tinkerers - Planners 3.964119 (0.0002)*
Fixers - Planners 1.371767 (0.5104)
Adjusters - Planners 1.433449 (0.4552)

Source: Elaborated by the author

So, to answer the RQ2 - Is there a grades’ performance difference between the

identified students’ tinkering behaviors?. Yes. It was observed a difference in the students’
grades performance by students that expressed tinkerers’ behaviors in the final exam.

Figure 22 – Boxplot of the students’ final test grades by clusters

Source: Elaborated by the author

Similarly to the previous question, the answer to the RQ2.1 - Is there a significant

difference in performance among the tinkering behaviors identified depending on the assignment

format (pen-and-paper class assignment, online assignments, and pen-and-paper tests)? can
be seen in Tables 13 and 14, where only in the in-class Test 2 (final exam), a pen and paper

66 Chapter 4. Results

test, the students presented a significant difference. As an answer: Yes, the students presented
different performances among the assignment types, where students with the highest tinkering
(tinkerers) outperformed the other clusters. It’s worth notice that, even though a significant
statistical difference was observed only in the final exam, these exams comprehend all the
content seen during the semester. As a pen-and-paper activity, the students could not employ their
tinkering strategies, which show the impact that those strategies applied in online environments
might have on the students’ learning.

The RQ3 - Is the total time to complete an online assignment different among the

identified tinkering behaviors? - seeks to evaluate how much time did the students that fit in
the identified behaviors spend online to complete an online assignment. This way, a Kruskal-
Wallis test was executed comparing the time-on-task feature among the four tinkering behaviors
(tinkerers, fixers, adjusters, and planners), which indicated the existence of a difference between
the behaviors (chi−squared = 244.82 and p−value = 2.2e−16). Table 15 shows the z-statistic
and p-values results of the pairwise comparisons related to the amount of time spent online in an
assignment (time-on-task feature) by the students.

Complementing the results obtained in Table 10, the statistical results show that only
two clusters that didn’t present a significant difference (p < 0.05) between them, adjusters, and
planners. In this dataset, the students with the highest tinkering (tinkerers) spent the largest
amount of time in sessions to finish the online assignments, followed by fixers and adjusters,
while students with the lowest tinkering (planners) spent the least amount of time in sessions
to finish their online assignments (Figure 23). Based on this, RQ 3’s null hypothesis can be
rejected (i.e., There is a difference in the total time to complete an online assignments among
the identified students’ tinkering behaviors.).

To answer the RQ3 - Is the total time to complete an online assignment different among

the identified tinkering behaviors?-: Yes. The obtained results show that students that expressed
Tinkerers and Fixers tend to spend more time to complete online assignments. This difference
can be due to several factors, such as students’ previous knowledge of the programming language,
online environment, studied topic, or students’ interest in the subject. In order to better understand
the nature of these differences, a larger study is necessary, with a higher number of participants
and evaluating the students’ previous knowledge and interest.

Similarly to the previous research question, the RQ 4 - Is the total time that the students

spend on the system to complete an online assignment different among the identified tinkering

behaviors? - seeks to evaluate the amount of time that a student that fit the identified behaviors
spend to complete an online assignment. However, it differs from the previous research question
by accounting not only the online time during the sessions but also the time between the first
and last sessions that a student takes to complete an assignment. So, a Kruskal-Wallis test was
executed comparing the total time feature among the four tinkering behaviors (tinkerers, fixers,
adjusters, and planners), which indicated the existence of a difference between the clusters

4.2. Data analysis and discussion 67

Table 15 – Pairwise comparisons of the students’ amount of time spent online to finish an assignment
using Dunn’s Test. *indicates difference between the clusters

Pairwise comparisons
Pair of clusters Z-statistics p-value
Tinkerers - Fixers 9.742636 (0.0000)*
Tinkerers - Adjusters 11.87611 (0.0000)*
Fixers - Adjusters 3.327089 (0.0026)*
Tinkerers - Planners 10.81403 (0.0000)*
Fixers - Planners 4.091173 (0.0001)*
Adjusters - Planners 1.275425 (0.6065)

Source: Elaborated by the author

Figure 23 – Boxplot of the students’ time on-task online to complete an online assignment

Source: Elaborated by the author

(chi− squared = 151.11 and p− value = 2.2e−16). The z-statistic and p-values results of the
pairwise comparisons of the amount of the time that a student takes to complete an assignment
(total time feature) can be seen in Table 16.

Analogous to the results obtained in RQ3, the statistical results show that only the same
two clusters that didn’t present a significant difference (p < 0.05) between them are the Adjusters
and Planners. In this dataset, the students that expressed a Tinkerers behaviors took the largest
amount of time to finish the online assignments, followed by Fixers and Adjuster students, while
students with the lowest tinkering behavior (Planners) spent the least amount of time to finish

68 Chapter 4. Results

their online assignments (Figure 24). This way, the null hypothesis can be rejected (i.e., There
is a difference in the total time spend on the system to complete the online assignments among
the identified students’ tinkering behaviors).

Table 16 – Pairwise comparisons of the time on-task using Dunn’s Test. *indicates difference between the
clusters

Pairwise comparisons
Pair of clusters Z-statistics p-value
Tinkerers - Fixers 6.743988 (0.0000)*
Tinkerers - Adjusters 9.323567 (0.0000)*
Fixers - Adjusters 3.295881 (0.0029)*
Tinkerers - Planners 9.019820 (0.0000)*
Fixers - Planners 4.265923 (0.0001)*
Adjusters - Planners 1.461384 (0.4317)

Source: Elaborated by the author

To answer the RQ4 - Is the total time that the students spend on the system to complete an

online assignment different among the identified tinkering behaviors? - Yes. The statistical results
show that tinkerers students take more time between their first and last sessions to complete
their online assignments. This difference can be due to several factors, such as the availability
of different sources of information that students may resort to answering their questions (e.g.,
subject’s class or special tutoring times), students’ previous knowledge, or even access to the
online environment. In order to better understand the nature of these differences, a larger study is
necessary, with a higher number of participants and evaluating the students’ previous knowledge,
interest, and access to the educational systems.

After analyzing the time characteristics of each cluster, a formal answer to the RQ1.1
of this work - How can the differences and similarities in student’s tinkering behaviors be

characterized based on the selected features? can be made: As discussed above, this work
proposes a series of comparisons to select the features and methods that best identify students’
tinkering behaviors in the dataset. As a result, a clustering approach using the Ward’s AHC
method and the students’ average line of code’s changes feature was selected. This approach uses
(dis)similarity measures to partition students in four clusters that presented similar behaviors
related to tinkering. Furthermore, statistical analysis of the times that the students in each cluster
take to finish their online assignment, as well as an association rule mining was presented in
order to deepen the descriptions and characteristics of the behaviors. This way, the identified
tinkering behaviors can be characterized as follows:

∙ Tinkerers: Students that tend to make small-to-no changes in the total number of lines
of code at each submission (presented the lowest value of difNLOC feature) and usually
takes more time to complete their online assignments

4.2. Data analysis and discussion 69

Figure 24 – Boxplot of the students’ time on-task

Source: Elaborated by the author

∙ Fixers: Students that tend to make small changes in the total number of lines of code at
each submission presented second lowest values of difNLOC feature and took more time
to complete their online assignments when compared to those students in clusters C and D

∙ Adjusters: Students that tend to make significant changes in the total number of lines of
code at each submission (presents higher values of difNLOC feature) and usually smaller
amounts of time to complete their online assignments

∙ Planners: Students that tend to make the most significant changes in the total number
of lines of code at each submission (presents higher values of difNLOC feature) and the
smallest amounts of time to complete their online assignments, usually completing the
assignments in one submission.

To summarize, the average amount of changes in the students’ line of code at each
submission varies according to the behaviors identified, as well the times that students that
expressed the said behavior take to finish the online assignments.

The last research question presented in this work RQ5 - Do students present different

tinkering behaviors during the online assignments? - seeks to assess if the students present
different tinkering behaviors according to their problem-solving strategies through the online
assignments or if they tend to present similar behaviors independent of the assignment. In order

70 Chapter 4. Results

Figure 25 – Sankey diagram of the online assignments of the algorithm and conditional structures concept

Source: Elaborated by the author

Figure 26 – Sankey diagram of the online assignments of the Looping structures and vectors subject
concept

Source: Elaborated by the author

to answer this research question, three Sankey diagrams were created to allow the visualization
of the identified students’ tinkering behaviors through the online assignments (Figure 25, Figure
26 and Figure 27). The Sankey diagram is a type of flow diagram in which the arrow’s width is
linearly proportional to the data flow rate.

As it can be observed in Figures 25, 26 and 27, students tend to change between the

4.3. Threats to validity 71

Figure 27 – Sankey diagram of the online assignments of the Functions and recursion concept

Source: Elaborated by the author

different students’ clusters that represents tinkering behaviors. In addition, it can be observed
that most of the students expressed the tinkerer behavior on almost all online assignments.
This change in behaviors corroborates with other works present in literature that observed that
students could express more than one behavior category during their problem-solving attempts
(VOSSOUGHI; BEVAN, 2014; TURKLE; PAPERT, 1992; SHARMA et al., 2018). The changes
in the behavior of each student through all online assignments can be seen in Appendix A.

It’s worth pointing that the number of students that didn’t make any submission for and
assignment (No cluster represented by the gray color) increases significantly towards the end
of the semester. This lack of submissions could be explained due to several factors, such as
other subjects’ exams and assignments, or students’ interest in the subject, and assignment’s
increasingly difficulty.

To answer the RQ5 - Do students present different tinkering behaviors during the online

assignments?: Yes. As can be observed in the Figures 25, 26 and 27, the students presented
different tinkering behaviors during the online assignments.

4.3 Threats to validity

To assist in the replicability and to highlight the caveats of this work, this section presents
this work’s main threats to validity according to the WOHLIN et al. (2012).

Conclusion validity threats are concerned with factors that may temper with the results
obtained. In this work, the reliability of measures was identified as a threat: the features used to

72 Chapter 4. Results

identify tinkering behaviors in the students’ assignments fit in the TURKLE; PAPERT (1992)
description of tinkering. However, it is not possible to discard the possibility that the selected
features were not the best representation of the behaviors. To mitigate this threat, it was selected
non-subjective features that were extracted through an automatic process to avoid human bias.
Furthermore, the feature selection process and the dataset partitioning were conducted in the
same way to also avoid human bias (Section 4.1).

Random irrelevancies in experimental setting were the second type of conclusion validity
threats identified: other random elements that cannot be predicted, as noisy environments and
interruptions during the students’ online assignment sessions may be responsible by temper
with the results obtained. Despite that, since the online assignments were not applied during the
classes, and the data used is prior to this work, this threat could not be mitigated.

Internal validity threats refers to factors that may temper with the causality effect of
dependent and independent variables. Among the possible internal validity threats, Maturation

was identified as the main threat. Maturation represents different (positive or negative) reactions
that a participant may present as time passes. In this work, the students may have felt fatigued,
or boredom during the assignments (negative reactions), as well the students may have learned
different topics and overcome difficulties during the time analyzed (positive effects). However,
the students were free to choose when to do the online assignments (from the moment that it was
available until the end of the semester), which should help to mitigate the negatives effects of
maturation. On the other hand, the positive effects were expected in this work and considered
part of the tinkering behaviors identified.

Construct validity is related to the generalization of the results obtained in the study.
Confounding constructs and levels of constructs refers to the effect where the presence of a
result is confounded with the effect of the result. In this work, the different tinkering behaviors
expressed by students, in special planners, may be related to previous knowledge in the subject
matter approached. Unfortunately, as the students’ data used is prior to this work development, a
pretest to assess the students’ previous knowledge was not possible to be applied to mitigate this
threat. This threat may also be expressed through students implementing the online assignments
in other environments and submitting the final, or almost final, results. Even tough paste features
were disable in the VPL moodle’s module, due to the prior period and natural limitations of the
students’ data, this threat also could not be mitigated.

In addition, the ex post facto methodology used in this work also belongs in this section.
In this case, due to the nature of the methodology, the lack of control by the researchers is
expected. However, to mitigate this threat, it was followed the actions proposed by (ARY;
JACOBS; RAZAVIEH, 1972; COHEN; MANION; MORRISON, 2013), where the inclusion of
an extraneous variable (tinkering) is included as another independent variable (difNLOC), on
which the students were classified.

73

CHAPTER

5
FINAL REMARKS

In this chapter, we address the final remarks, the main contributions, the publications
resulting from this work, and the future works.

5.1 Conclusions

Problem-solving is a high order cognitive process that plays an essential role in computer
science education, making it essential for educators to consider in addition to programming
paradigms, environments, and tools, the teaching, and development of problem-solving strategies.
Based on this, researchers have made several attempts to identify and classify students according
to their employed problem-solving strategies. Amongst those attempts, the classification of
students between tinkerers and planners proposed by TURKLE; PAPERT (1992) is the most
well-accepted. This classification introduces the existence of a more playful, and less structured,
bottom-up problem-solving strategy (tinkerers), that contradicts the usual well structured, top-
down problem-solving strategy present in software engineering (planners).

In this context, this work’s objective is to investigate the students’ tinkerer and planner
behaviors in online environments and their impact on the students’ grades performance. To
achieve this objective, this work presented an unsupervised data mining approach to identify
students’ problem-solving behaviors based on the amount of tinkering employed by the students.
Clustered by their behaviors, the students’ performance was compared by five different grades
(pen and paper assignments, midterm and final exam, online assignments, exam’s average, and
subject’s final grade), as well the amount of time that the students took to finish the online
assignments. Based on data analysis, it was possible to answer the research questions of this
work, Table 17.

The results obtained indicate four different students’ behaviors based on the amount of
tinkering employed by the students. While two of these behaviors can be closely related to the

74 Chapter 5. Final Remarks

tinkerers and planners’ behaviors defined by TURKLE; PAPERT (1992), the results also indicate
the existence of the other two behaviors with less intense use of the tinkering/planning strategies
(Fixers and Adjusters).

From the data analysis, it was found a significant difference in performance between
students that expressed the Tinkerer behavior and students in other clusters during the final
exams. This result corroborates with the findings in the work of BLIKSTEIN et al. (2014),
where students that presented a higher number of changes in their codes also presented a better
performance. The data analysis also allows the observation of different students’ paces to
complete the online assignments. Students that expressed Tinkerer and Fixer behaviors spent
more time time-on-task and total time to complete their online assignments than those that
expressed Adjuster and Planner behaviors. These results also corroborate with the findings
in the related studies (LUSTRIA, 2007; GOLDHAMMER et al., 2014; THOMPSON et al.,
2017) where time-on-task was positively correlated with students’ grades performance in online
environments. However, those studies do not consider the students’ problem-solving strategies
employed and it’s correlations with their findings.

In addition, the obtained association rules offered some insights to understand the
students’ behaviors and how they related to the other features. These patterns could be used to help
in the course and assessment planning that involves students’ tinkering behaviors—benefiting
not only the students but the teachers and institutes concerned to extract the students’ potentials.

Moreover, it can be observed in the diagram in subsection 3.1 that students shifted
their behaviors during the assignments. This result corroborates with the works conducted by
TURKLE; PAPERT (1992), VOSSOUGHI; BEVAN (2014), and SHARMA et al. (2018), that
also observed changes in students behaviors related to their problem-solving strategies.

These findings may help to better understand the impact of the identified behaviors have
on the students’ grades performance, indicating that students that employ tinkering as a problem-
solving strategy had similar or better performances than the students that employed more planned
strategies. These findings also indicates that tinkering can be a valid problem-solving strategy to
be employed by students during online strategies as discussed by Turkle and Papert (TURKLE;
PAPERT, 1992),

5.2 Contributions

In order to attain our objectives, this work proposes an unsupervised data mining approach
to identify and classify students in an introductory programming subject according to the
amount of tinkering they express during online assignments. Based on an optimum hierarchical
partitioning algorithm, it was identified four different tinkering behavior expressed by the students
related to their employed problem-solving strategies through eighteen online assignments. An
assessment of these tinkering behaviors based on the students’ grades in different assignments

5.3. Publications 75

Table 17 – Summary of research questions’ answers

Research Question Answer
RQ1: Which students’ tinkering behaviors can
be identified using the selected assignment
features ?

Four students’ behaviors were identified using the difNLOC feature

RQ1.1: How can the differences and similarities in
student’s tinkering behaviors be
characterized based on the selected features?

The average amount of changes in the students’ line of code at each
submission varies according to their behaviors, as well the times to
finish the online assignments

RQ2: Is there a grades’ performance difference
between the identified students’ tinkering
behaviors?

Yes. Tinkerers students, which expressed the highest amounts of tinkering,
presented a better performance in the final exam than those students that
expressed lower amounts of tinkering

RQ2.1: Is there a significant difference in performance
among the tinkering behaviors identified
depending on the assignment type ?

Yes. Tinkerers students, which expressed the highest amounts of tinkering,
presented a better performance in the final exam (pen and paper) than the
students in other clusters.

RQ3: Is the total time to complete an online assignment
different among the identified
tinkering behaviors?

Yes. The obtained results show that students’ that expressed Tinkerer
and Fixer behaviors spent more time to complete online assignments

RQ4: Is the students’ time on task for online
assignments different among the identified tinkering behaviors?

Yes. The statistical results show that Tinkerer
and Fixer students takes more time between their first and last sessions
to complete their online assignments

RQ5: Do students present different tinkering behaviors
during the online assignments?

Yes. As can be observed in the Sankey’s diagrams in
subsection \ref{sec:post-hoc}, the students’ presented different tinkering
behaviors during the online assignments

Source: Elaborated by the author

(online assignments, in-class assignments, and tests) through the semesters allowed a performance
evaluation of these behaviors in different settings.

In summary, the main contributions of this research are:

∙ Identification of students’ problem-solving strategies based on the tinkering behaviors
expressed by the students during the online assignments;

∙ This work presents assertive about the impacts of students’ tinkering problem-solving
strategies on their grades performance, as well as evidence of these strategies validity on
learning environments. In addition, all the tools developed and data collected were made
available in <https://github.com/fcarvalhos/masters>;

It’s expected that the contributions presented in this work and the data collected and
analyzed, may be employed by educators and researchers to help develop courses and assessment
planning that involves students’ problem-solving strategies related to tinkering. This benefits not
only the students but also the teachers and institutes concerned to extract the students’ potentials.

5.3 Publications
During this work’s development, several scientific papers were produced and pub-

lished—one of them directly related to this work.

1. SILVA, F. H. C.; TODA, A. M.; ISOTANI, S. Tinkering as a Problem-Solving strat-
egy employed by students in online environments. ACM Transactions on Computing
Education (TOCE), to be published.

https://github.com/fcarvalhos/masters

76 Chapter 5. Final Remarks

Furthermore, other works related to computer science in education were developed and
published in collaboration with the research group and institute colleagues.

2. SILVA, F. H. C.; TODA, A. M.; ISOTANI, S. Towards a link between Instructional
Approaches and Gamification - A Case Study in a Programming Course. In: WORKSHOP
DE INFORMATICA NA ESCOLA, 24., 2018, Fortaleza. Proceedings... Porto Alegre:
SBC, 2018. p. 157 - 165. ISSN 2316-6541. Available at: <https://br-ie.org/pub/index.php/
wie/article/view/7884>. Accessed in: 21 Nov. 2019. DOI:<http://dx.doi.org/10.5753/cbie.
wie.2018.157>.

3. PEREIRA, L. T.; SILVA, F; PALOMINO, P. T.; TOLEDO, C. F. M.; ISOTANI, S. A
abordagem construtivista no desenvolvimento de um serious game do gênero escape room.
In: SIMPOSIO BRASILEIRO DE JOGOS E ENTRETENIMENTO DIGITAL, 17., 2018,
Foz do Iguaçu. Proceedings... Porto Alegre: SBC, 2018. p.1011 - 1018. ISSN 2179-2259.
Available at: <http://www.sbgames.org/sbgames2018/files/papers/EducacaoFull/186874.
pdf>. Accessed: 21 nov. 2019.

4. LYRA, K. T.; ALVES, M. L.; SILVA, F. H. C.; SOUZA, K.; ISOTANI, S. An agile
project management experience: points of view of graduate students. In: BRAZILIAN
SYMPOSIUM OF SOFTWARE ENGINEERING, 32., 2018, São Carlos. Proceedings...
New York: ACM, 2018. p. 240–249. ISBN 9781450365031. Available at: <https://dl.acm.
org/doi/abs/10.1145/3266237.3266248>. Accessed: 21 Nov. 2019.

5. FORTES, R. P. d. M.; SALGADO, A. d. L.; CORREA, C. A. S.; SILVA, F. H. C.; AR-
AVECHIA,H. d. A. T.; GIBERTONI, L. H. S. Desafios e avanços de conhecimentos sobre
acessibilidade em sistemas computacionais interativos. In: SILVA, S., DIGIAMPIETRI,
L. (org). (Re) Conhecendo a USP: contribuições do ensino,da pesquisa e da extensão no
campo das deficiências. São Paulo: FEUSP, 2017. p.281 - 294.

6. SANTOS, W. O. dos; SILVA, F. C.; HINTERHOLZ, L. T.; ISOTANI, S.; BITTEN-
COURT, I. I.Computação desplugada: Um mapeamento sistemático da literatura nacional.
RENOTE,v. 16,n. 2, p. 626 - 635, 2018. Available at: <https://seer.ufrgs.br/renote/article/
view/89241/51486>. Accessed: 21 nov. 2019.

5.4 Limitation and Future Work
In this work, only students in an introductory programming subject were evaluated using

their online assignments and grades obtained in the subject. Additionally, this work was limited
by the demographic factors of being conducted during one semester with one class of students.
For a broader and more robust definition of the identified students’ tinkering problem-solving
strategies, the assessment of more advanced subjects and a higher number of students with
different cultural and social backgrounds is necessary.

https://br-ie.org/pub/index.php/wie/article/view/7884
https://br-ie.org/pub/index.php/wie/article/view/7884
http://dx.doi.org/10.5753/cbie.wie.2018.157
http://dx.doi.org/10.5753/cbie.wie.2018.157
http://www.sbgames.org/sbgames2018/files/papers/EducacaoFull/186874.pdf
http://www.sbgames.org/sbgames2018/files/papers/EducacaoFull/186874.pdf
https://dl.acm.org/doi/abs/10.1145/3266237.3266248
https://dl.acm.org/doi/abs/10.1145/3266237.3266248
https://seer.ufrgs.br/renote/article/view/89241/51486
https://seer.ufrgs.br/renote/article/view/89241/51486

5.4. Limitation and Future Work 77

The data analysis of the students’ performance, as well as their changes in their problem-
solving strategies between the assignments, may lack information since the data used in this
work is prior to its development. In this sense, further research that involves surveys with the
students, as well as retention tests, could be beneficial to the findings in this work. Other threats
to this work’s validity are discussed in subsection 4.3.

This way, it’s suggested as future works, investigation of the students’ tinkerer and
planner problem-solving strategies in different computer science subjects, and the application of
other tools and methods (e.g., think-aloud or surveys) to better analyze their employed problem-
solving strategies through their perspective. Lastly, the replication of this work in other subjects
is also desired as a means to extend the generalization power of the assertions made in this work.

79

BIBLIOGRAPHY

AGGARWAL, C. C. Recommender systems: The Textbook. Cham: Springer, 2016. 498 p.
ISSN 0001-0782. ISBN 9783319296573. Citation on page 27.

AGRAWAL, R.; IMIELIŃSKI, T.; SWAMI, A. Mining association rules between sets of items
in large databases. In: ACM. Acm sigmod record. [S.l.], 1993. v. 22, n. 2, p. 207–216. Citation
on page 61.

ANTONENKO, P. D.; TOY, S.; NIEDERHAUSER, D. S. Using cluster analysis for data mining
in educational technology research. Educational Technology Research and Development,
Springer, v. 60, n. 3, p. 383–398, 2012. Citations on pages 29, 31, and 32.

ARY, D.; JACOBS, L. C.; RAZAVIEH, A. Examination Questions for Introduction to Re-
search in Education. [S.l.]: Holt, Rinehart and Winston, 1972. Citation on page 72.

BARNES, D. J.; FINCHER, S.; THOMPSON, S. Introductory problem solving in computer
science. In: 5th Annual Conference on the Teaching of Computing. [S.l.: s.n.], 1997. p. 36–39.
Citation on page 22.

BLAND, J. M.; ALTMAN, D. G. Multiple significance tests: the bonferroni method. Bmj,
British Medical Journal Publishing Group, v. 310, n. 6973, p. 170, 1995. Citation on page 64.

BLIKSTEIN, P.; WORSLEY, M.; PIECH, C.; SAHAMI, M.; COOPER, S.; KOLLER, D.
Programming pluralism: Using learning analytics to detect patterns in the learning of computer
programming. Journal of the Learning Sciences, Taylor & Francis, v. 23, n. 4, p. 561–599,
2014. Citations on pages 18, 23, 24, 25, 31, 32, 36, 43, and 74.

BRANDL, K. Review of are you ready to" moodle"? Language learning & technology, Univer-
sity of Hawaii National Foreign Language Resource Center, v. 9, n. 2, p. 16–23, 2005. Citation
on page 38.

BRUCE, C.; BUCKINGHAM, L.; HYND, J.; MCMAHON, C.; ROGGENKAMP, M.; STOOD-
LEY, I. Ways of experiencing the act of learning to program: A phenomenographic study of
introductory programming students at university. Journal of Information Technology Educa-
tion: Research, Informing Science Institute, v. 3, n. 1, p. 145–160, 2004. Citations on pages
18, 23, 32, and 36.

BUDIMAN, E.; KRIDALAKSANA, A. H.; WATI, M. et al. Performance of decision tree c4.
5 algorithm in student academic evaluation. In: SPRINGER. International Conference on
Computational Science and Technology. [S.l.], 2017. p. 380–389. Citation on page 25.

CALIŃSKI, T.; HARABASZ, J. A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods, Taylor & Francis, v. 3, n. 1, p. 1–27, 1974. Citation on page
51.

CHI, M.; GLASER, R. Problem-solving ability. Dalam RJ Sternberg (Ed.), Human abilities:
An information-processing approach (227–250). [S.l.]: New York: Freeman, 1985. Citation
on page 22.

80 Bibliography

COHEN, L.; MANION, L.; MORRISON, K. Research methods in education. [S.l.]: routledge,
2013. Citation on page 72.

DAVIES, D. L.; BOULDIN, D. W. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, IEEE, n. 2, p. 224–227, 1979. Citation on page 51.

DUNN, O. J. Multiple comparisons among means. Journal of the American statistical associ-
ation, Taylor & Francis Group, v. 56, n. 293, p. 52–64, 1961. Citation on page 64.

DUTT, A.; AGHABOZRGI, S.; ISMAIL, M. A. B.; MAHROEIAN, H. Clustering algorithms
applied in educational data mining. International Journal of Information and Electronics
Engineering, IACSIT Press, v. 5, n. 2, p. 112, 2015. Citation on page 26.

DUTT, A.; ISMAIL, M. A.; HERAWAN, T. A systematic review on educational data mining.
IEEE Access, IEEE, v. 5, p. 15991–16005, 2017. Citations on pages 25, 26, 27, 32, and 49.

DY, J. G.; BRODLEY, C. E. Feature subset selection and order identification for unsupervised
learning. In: CITESEER. ICML. [S.l.], 2000. p. 247–254. Citation on page 52.

EDUCATIONAL Data Mining Society. Available: <http://educationaldatamining.org/>. Citation
on page 26.

FAYYAD, U.; IRANI, K. Multi-interval discretization of continuous-valued attributes for classi-
fication learning. 1993. Citation on page 61.

FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. The kdd process for extracting useful
knowledge from volumes of data. Communications of the ACM, ACM, v. 39, n. 11, p. 27–34,
1996. Citations on pages 25 and 40.

FEDORENKO, E.; IVANOVA, A.; DHAMALA, R.; BERS, M. U. The language of programming:
A cognitive perspective. Trends in cognitive sciences, Elsevier, 2019. Citation on page 17.

FENG, Q.; ZHU, L.-q.; CHENG, Z.-k.; ZHANG, Q. Research on student performance evaluation
based on random forest. DEStech Transactions on Engineering and Technology Research,
n. eeta, 2017. Citations on pages 26 and 32.

GAN, G.; MA, C.; WU, J. Data Clustering: Theory, Algorithms, and Applications. Berlin,
Heidelberg: Springer, 2007. 466 p. Citations on pages 27 and 28.

GICK, M. L. Problem-solving strategies. Educational psychologist, Taylor & Francis, v. 21,
n. 1-2, p. 99–120, 1986. Citation on page 22.

GOLDHAMMER, F.; NAUMANN, J.; STELTER, A.; TÓTH, K.; RÖLKE, H.; KLIEME, E.
The time on task effect in reading and problem solving is moderated by task difficulty and skill:
Insights from a computer-based large-scale assessment. Journal of Educational Psychology,
American Psychological Association, v. 106, n. 3, p. 608, 2014. Citation on page 74.

GOLDSTEIN, F. C.; LEVIN, H. S. Disorders of reasoning and problem-solving ability. Guilford
Press, 1987. Citation on page 17.

HAMSA, H.; INDIRADEVI, S.; KIZHAKKETHOTTAM, J. J. Student academic performance
prediction model using decision tree and fuzzy genetic algorithm. Procedia Technology, Else-
vier, v. 25, p. 326–332, 2016. Citations on pages 26 and 32.

http://educationaldatamining.org/

Bibliography 81

HAN, J.; KAMBER, M.; PEI, J. Data mining concepts and techniques third edition. The Morgan
Kaufmann Series in Data Management Systems, p. 83–124, 2011. Citations on pages 24, 27,
28, 29, 30, 49, and 50.

ISAAC, S. Handbook in Research and Evaluation: A Collection of Principles, Methods and
Strategies... Studies in Education and Behavioral Sciences. [S.l.]: R Knapp, 1971. Citation
on page 38.

JUNIOR, F. P. e Elaine Oliveira e David Fernandes e Leandro Carvalho e H. Otimização e
automação da predição precoce do desempenho de alunos que utilizam juízes online: uma abor-
dagem com algoritmo genético. Brazilian Symposium on Computers in Education (Simpósio
Brasileiro de Informática na Educação - SBIE), v. 30, n. 1, p. 1451, 2019. ISSN 2316-6533.
Citations on pages 26 and 32.

KANTARDZIC, M. Data mining: concepts, models, methods, and algorithms. [S.l.]: John
Wiley & Sons, 2011. Citations on pages 24 and 25.

KIESMÜLLER, U. Diagnosing learners’ problem-solving strategies using learning environ-
ments with algorithmic problems in secondary education. ACM Transactions on Computing
Education (TOCE), ACM, v. 9, n. 3, p. 17, 2009. Citations on pages 18 and 22.

KRUSKAL, W. H.; WALLIS, W. A. Use of ranks in one-criterion variance analysis. Journal of
the American statistical Association, Taylor & Francis Group, v. 47, n. 260, p. 583–621, 1952.
Citation on page 62.

KUMAR, M.; SINGH, A. Evaluation of data mining techniques for predicting student’s perfor-
mance. International Journal of Modern Education and Computer Science, v. 8, p. 25–31,
01 2017. Citations on pages 28 and 32.

LEEDY, P. D.; ORMROD, J. E. Practical research: Planning and design. [S.l.]: Pearson
Education, 2014. Citation on page 38.

LÉVI-STRAUSS, C. et al. La pensée sauvage. [S.l.]: Plon Paris, 1962. Citation on page 24.

LISHINSKI, A.; YADAV, A.; ENBODY, R.; GOOD, J. The influence of problem solving abilities
on students’ performance on different assessment tasks in cs1. In: ACM. Proceedings of the
47th ACM technical symposium on computing science education. [S.l.], 2016. p. 329–334.
Citation on page 22.

LORD, H. G. Ex post facto studies as a research method. special report no. 7320. ERIC, 1973.
Citation on page 38.

LUSTRIA, M. L. A. Can interactivity make a difference? effects of interactivity on the com-
prehension of and attitudes toward online health content. Journal of the American Society for
Information Science and Technology, Wiley Online Library, v. 58, n. 6, p. 766–776, 2007.
Citation on page 74.

MACKIE-MASON, J. K.; GROTH, D. P. Why an informatics degree? ACM, 2010. Citations on
pages 17 and 21.

MARTINEZ, S. L.; STAGER, G. Invent to learn: Making. Tinkering, and Engineering in the
Classroom, 2013. Citation on page 24.

82 Bibliography

MAYER, R. E. Thinking, problem solving, cognition. [S.l.]: WH Freeman/Times Books/Henry
Holt & Co, 1992. Citation on page 22.

MAYER, R. E.; WITTROCK, M. C. Problem solving. Handbook of educational psychology,
v. 2, p. 287–303, 2006. Citation on page 22.

MCCABE, T. J. A complexity measure. IEEE Transactions on software Engineering, IEEE,
n. 4, p. 308–320, 1976. Citation on page 47.

MEC. RESOLUCAO CNE/CES No 5, DE 16 DE NOVEMBRO DE 2016. 2016. <https://
www.semesp.org.br/legislacao/resolucao-cneces-no-5-de-16-de-novembro-de-2016/>. [Online,
accessed on October 5, 2019]. Citations on pages 17 and 21.

NEWELL, A.; SIMON, H. A. et al. Human problem solving. [S.l.]: Prentice-hall Englewood
Cliffs, NJ, 1972. Citation on page 21.

ORMROD, J. E. Human learning. [S.l.]: Pearson Higher Ed, 2011. Citation on page 21.

PAKHIRA, M. K.; BANDYOPADHYAY, S.; MAULIK, U. Validity index for crisp and fuzzy
clusters. Pattern recognition, Elsevier, v. 37, n. 3, p. 487–501, 2004. Citation on page 51.

PEREZ, V.; RICHARDSON, K.; ROSENBLUM, J. Literature review: Making and tinkering as
an educational tool. 2017. Citations on pages 18 and 24.

PERKINS, D. N.; HANCOCK, C.; HOBBS, R.; MARTIN, F.; SIMMONS, R. Conditions
of learning in novice programmers. Journal of Educational Computing Research, SAGE
Publications Sage CA: Los Angeles, CA, v. 2, n. 1, p. 37–55, 1986. Citations on pages 18, 22,
and 32.

PETRICH, M.; WILKINSON, K.; BEVAN, B. It looks like fun, but are they learning? In: Design,
make, play. [S.l.]: Routledge, 2013. p. 68–88. Citation on page 24.

PINO, J. Rodriguez-del. VPL—Virtual Programming Lab for Moodle. 2011. Citation on
page 38.

POLYA, G. How to solve it: A new aspect of mathematical method. [S.l.]: Princeton university
press, 2004. Citation on page 21.

REISBERG, D.; MAYER, R. E. Problem Solving. Oxford University Press, 2013. Avail-
able: <https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780195376746.001.0001/
oxfordhb-9780195376746-e-48>. Citation on page 21.

RESNICK, M.; ROSENBAUM, E. Designing for tinkerability. Design, make, play: Growing
the next generation of STEM innovators, p. 163–181, 2013. Citation on page 24.

ROMEIKE, R. What’s my challenge? the forgotten part of problem solving in computer science
education. In: SPRINGER. International Conference on Informatics in Secondary Schools-
Evolution and Perspectives. [S.l.], 2008. p. 122–133. Citations on pages 17 and 21.

ROSE, S. Bricolage programming and problem solving ability in young children: An exploratory
study. 2016. Citation on page 24.

ROUSSEEUW, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, Elsevier, v. 20, p. 53–65, 1987.
Citation on page 51.

https://www.semesp.org.br/legislacao/resolucao-cneces-no-5-de-16-de-novembro-de-2016/
https://www.semesp.org.br/legislacao/resolucao-cneces-no-5-de-16-de-novembro-de-2016/
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780195376746.001.0001/oxfordhb-9780195376746-e-48
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780195376746.001.0001/oxfordhb-9780195376746-e-48

Bibliography 83

SANTOS, R. P. dos; COSTA, H. A. X. Análise de metodologias e ambientes de ensino para
algoritmos, estruturas de dados e programação aos iniciantes em computação e informática.
INFOCOMP, v. 5, n. 1, p. 41–50, 2006. Citation on page 17.

SBC. Curriculos de referencia/1177 diretrizes para ensino de computacao na educacao
basica. 2017. <https://www.sbc.org.br/documentos-da-sbc/send/131-curriculos-de-referencia/
1177-diretrizes-para-ensino-de-computacao-na-educacao-basica>. [Online, accessed on August
11, 2019]. Citations on pages 17 and 21.

SHARMA, K.; MANGAROSKA, K.; TRÆTTEBERG, H.; LEE-CULTURA, S.; GIANNAKOS,
M. Evidence for programming strategies in university coding exercises. In: SPRINGER. Euro-
pean Conference on Technology Enhanced Learning. [S.l.], 2018. p. 326–339. Citations on
pages 17, 18, 22, 23, 32, 35, 36, 71, and 74.

SILVA, D. F.; BATISTA, G. E. B.; KEOGH, E. K. Large-scale similarity-based time series
mining. In: SBC. 31o Concurso de Teses e Dissertações (CTD_2018). [S.l.], 2018. v. 31, n.
1/2018. Citation on page 27.

SIMON, M. K.; GOES, J. Ex post facto research. Retrieved from, 2013. Citation on page 38.

SPEARMAN, C. (1904)." general intelligence", objectively determined and measured. Am. J.
Psych. l5: 20l-293, 1904. Citation on page 48.

THOMPSON, M.; KOLBO, J.; GILKEY, S.; ZHANG, L.; PRITCHARD, M. The effects of
move to learn on student time on task and time on task transitions. National Teacher Education
Journal, v. 10, n. 1, 2017. Citation on page 74.

TURKLE, S.; PAPERT, S. Epistemological pluralism and the revaluation of the concrete. Journal
of Mathematical Behavior, v. 11, n. 1, p. 3–33, 1992. Citations on pages 18, 23, 24, 35, 36,
43, 54, 57, 71, 72, 73, and 74.

USPDIGITAL. Disciplina: SSC0600 - Introdução à Ciência de Computação I.
1999. <https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=SSC0600&codcur=97001&
codhab=0>. [Online, accessed on October 3, 2019]. Citation on page 35.

VAZIRGIANNIS, M. Clustering validity. In: . Encyclopedia of Database Systems. Boston,
MA: Springer US, 2009. p. 388–393. ISBN 978-0-387-39940-9. Available: <https://doi.org/10.
1007/978-0-387-39940-9_616>. Citation on page 51.

VENDRAMIN, L.; CAMPELLO, R. J.; HRUSCHKA, E. R. Relative clustering validity criteria:
A comparative overview. Statistical analysis and data mining: the ASA data science journal,
Wiley Online Library, v. 3, n. 4, p. 209–235, 2010. Citations on pages 49 and 51.

VITAL, T. P.; LAKSHMI, B.; REKHA, H. S.; DHANALAKSHMI, M. Student performance
analysis with using statistical and cluster studies. In: Soft Computing in Data Analytics. [S.l.]:
Springer, 2019. p. 743–757. Citation on page 31.

VOSSOUGHI, S.; BEVAN, B. Making and tinkering: A review of the literature. National
Research Council Committee on Out of School Time STEM, National Research Council
Washington, DC, p. 1–55, 2014. Citations on pages 24, 35, 48, 71, and 74.

WANG, Y.; CHIEW, V. On the cognitive process of human problem solving. Cognitive systems
research, Elsevier, v. 11, n. 1, p. 81–92, 2010. Citations on pages 17 and 22.

https://www.sbc.org.br/documentos-da-sbc/send/131-curriculos-de-referencia/1177-diretrizes-para-ensino-de-computacao-na-educacao-basica
https://www.sbc.org.br/documentos-da-sbc/send/131-curriculos-de-referencia/1177-diretrizes-para-ensino-de-computacao-na-educacao-basica
https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=SSC0600&codcur=97001&codhab=0
https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=SSC0600&codcur=97001&codhab=0
https://doi.org/10.1007/978-0-387-39940-9_616
https://doi.org/10.1007/978-0-387-39940-9_616

84 Bibliography

WARD, J. H. Hierarchical grouping to optimize an objective function. 1963. 236–244 p.
Citation on page 28.

WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLÉN, A.
Experimentation in software engineering. [S.l.]: Springer Science & Business Media, 2012.
Citation on page 71.

ZAHRA, S.; GHAZANFAR, M. A.; KHALID, A.; AZAM, M. A.; NAEEM, U.; PRUGEL-
BENNETT, A. Novel centroid selection approaches for kmeans-clustering based recommender
systems. Information Sciences, v. 320, n. Supplement C, p. 156 – 189, 2015. ISSN 0020-0255.
Available: <http://www.sciencedirect.com/science/article/pii/S0020025515002352>. Citation
on page 28.

http://www.sciencedirect.com/science/article/pii/S0020025515002352

85

APPENDIX

A
STUDENTS’ TINKERING BEHAVIOR
CLUSTER BY ONLINE ASSIGNMENT

86 APPENDIX A. Students’ tinkering behavior cluster by online assignment

Table 18 – Students’ clusters assignment by each online assignment. Tinkerers are marked as T, Fixers as
F, Adjusters as A and Planners as P. Students that didn’t make a submission for that assignment
are marked as N/C

493 496 497 504 498 515 454 457 478 520 522 524 528 534 538 542 544 545
10169 T A F T A T T T F T F T P F A P T T
10170 T T F T T T F T F T T F F P A P F F
10171 P F A A A F F T A A T P F T T A F T
10172 P T F F T P A T T A T A F T A F T T
10174 T F T F T T T F T T T F T T N/C T T N/C
10175 A T A F F T F F T T T T T F F A T F
10176 T T A T F T T F T T T T T F A F T T
10178 P A P T A T A F F T F P T T N/C F F T
10179 F T F F F F T F T A T F F T N/C T N/C N/C
10181 T P A F T T P A T T P P F F P F T T
10183 T T T T T T T N/C A F T F T F N/C N/C N/C N/C
10184 A F T F F P T F T T T T F T T F T T
10185 T P A F T T P A T A P A T F N/C A N/C N/C
10186 F T F T F T A T F F T P F F P P A F
10187 F T F A F T F T T T F F F T N/C N/C N/C N/C
10188 F A P A A A T T T F T A T T T T T T
10189 F T T A T T A F F T T P F F A F N/C N/C
10190 A P A F F P A P T T A T F A N/C A P F
10191 T A A T F T A A T F T T T T T T P F
10192 A T T T T F T F T F P T T T A T N/C N/C
10193 T F A A A T T F T F T P F T T A F T
10196 T T T T T T T T T T T T T F A A P T
10197 F T T T T T T T F T T F T T N/C T N/C N/C
10198 A F T T T T T A T T T T T F A T T F
10199 F A F T T F T T N/C F T N/C N/C A P P N/C T
10200 T T T A T F T T T T T T T T T N/C N/C N/C
10201 F T T A T T T T T A T F T T A T T T
10202 T T T T A T T T T T T T T T N/C N/C N/C N/C
10203 T T T T F T T A T T A A T N/C T N/C N/C T
10204 T P T T F T T T T T T F T F T F T T
10206 F F F F P T A F T P T A T T T T T T
10208 F T T T T A A T T T T F T T F T T T
10209 F F F F A T F A F T T A T T A T T T
10210 P F T T P F T P T T T F T T P F A T
10211 P A A F P F P F T A F F A F A N/C N/C N/C
10212 F T P A A F F T N/C T T F F N/C N/C N/C N/C N/C
10213 T T A T F T T T F T T A F F A F F T
10214 T T T T T T T T T T T T T T T T N/C N/C
10215 A T F F F T A F T T T T T F F P A F
10216 T T A P P P P P F F F P F P P N/C N/C N/C
10217 A A A T A A F T T F T F A T T T A T
10218 A T P T F T T P A T T P P N/C P P P N/C
10219 F F F T T T A F P F F P A T P A N/C N/C
10220 F F F F T F A T N/C A T N/C N/C F T N/C N/C N/C
10221 F T T F T T F T A T T A F F A P P P
10222 F A F T P F T A A A P F T N/C N/C N/C N/C N/C
10223 T F A A P A A T N/C T T T P T T N/C N/C N/C
10226 P A P T F F T T P N/C T T F T T A N/C T
10227 F T A T T T F T T T T F T T N/C N/C T T
10228 F T A T T A A T T F T P P A A F N/C N/C
10230 T A T T A T T T T T T T F T T T N/C N/C
10231 T F F F F F A T T T T T T T T T T T
10232 F T T T T T T T F T T T T T F A F T
10233 P A F A T F F T N/C F T N/C N/C N/C N/C N/C N/C N/C
10234 T F F A F F F A A T T F F F A A T T
10237 T P F T F F P T F T T F T A N/C F N/C N/C
10238 A T T T A P T T N/C T F F A N/C N/C N/C N/C N/C
10240 F T F T F T T F F T T F F F A P N/C N/C

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Contextualization and Motivation
	Objectives
	Main Objective
	Specific Objectives

	Dissertation Organization

	Background
	problem-solving Strategies
	Tinkerers and Planners

	Data Mining
	Educational Data Mining
	Clustering
	K-means
	Ward's Agglomerative Hierarchical Method

	Association Rule Mining

	Final Remarks

	Research design
	Research questions
	Materials
	Data source
	Assignments
	Moodle

	Methodology
	Data collection
	Features selection
	Selection of the data mining approach
	Choice of data mining algorithm

	Final Remarks

	Results
	Partitioning result
	Data analysis and discussion
	Cluster description through association rule mining
	Hypothesis test

	Threats to validity

	Final Remarks
	Conclusions
	Contributions
	Publications
	Limitation and Future Work

	Bibliography
	Students' tinkering behavior cluster by online assignment

