• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2006.tde-26052006-111406
Document
Auteur
Nom complet
Ana Carolina Lorena
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2006
Directeur
Jury
Monard, Maria Carolina (Président)
Gama, João Manuel Portela da
Liang, Zhao
Ludermir, Teresa Bernarda
Silva, Ivan Nunes da
Titre en portugais
"Investigação de estratégias para a geração de máquinas de vetores de suporte multiclasses"
Mots-clés en portugais
algoritmos genéticos
árvores geradoras mínimas
Bioinformática
máquinas de vetores de suporte (support vector machines)
problemas multiclasses
Resumé en portugais
Diversos problemas envolvem a classificação de dados em categorias, também denominadas classes. A partir de um conjunto de dados cujas classes são conhecidas, algoritmos de Aprendizado de Máquina (AM) podem ser utilizados na indução de um classificador capaz de predizer a classe de novos dados do mesmo domínio, realizando assim a discriminação desejada. Dentre as diversas técnicas de AM utilizadas em problemas de classificação, as Máquinas de Vetores de Suporte (Support Vector Machines - SVMs) se destacam por sua boa capacidade de generalização. Elas são originalmente concebidas para a solução de problemas com apenas duas classes, também denominados binários. Entretanto, diversos problemas requerem a discriminação dos dados em mais que duas categorias ou classes. Nesta Tese são investigadas e propostas estratégias para a generalização das SVMs para problemas com mais que duas classes, intitulados multiclasses. O foco deste trabalho é em estratégias que decompõem o problema multiclasses original em múltiplos subproblemas binários, cujas saídas são então combinadas na obtenção da classificação final. As estratégias propostas visam investigar a adaptação das decomposições a cada aplicação considerada, a partir de informações do desempenho obtido em sua solução ou extraídas de seus dados. Os algoritmos implementados foram avaliados em conjuntos de dados gerais e em aplicações reais da área de Bioinformática. Os resultados obtidos abrem várias possibilidades de pesquisas futuras. Entre os benefícios verificados tem-se a obtenção de decomposições mais simples, que requerem menos classificadores binários na solução multiclasses.
Titre en anglais
Investigation of strategies for the generation of multiclass support vector machines
Mots-clés en anglais
Bioinformatics
genetic algorithms
minimum spanning trees
multiclass problems
support vector machines
Resumé en anglais
Several problems involve the classification of data into categories, also called classes. Given a dataset containing data whose classes are known, Machine Learning (ML) algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, thus performing the desired discrimination. Among the several ML techniques applied to classification problems, the Support Vector Machines (SVMs) are known by their high generalization ability. They are originally conceived for the solution of problems with only two classes, also named binary problems. However, several problems require the discrimination of examples into more than two categories or classes. This thesis investigates and proposes strategies for the generalization of SVMs to problems with more than two classes, known as multiclass problems. The focus of this work is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are then combined to obtain the final classification. The proposed strategies aim to investigate the adaptation of the decompositions for each multiclass application considered, using information of the performance obtained for its solution or extracted from its examples. The implemented algorithms were evaluated on general datasets and on real applications from the Bioinformatics domain. The results obtained open possibilities of many future work. Among the benefits observed is the obtainment of simpler decompositions, which require less binary classifiers in the multiclass solution.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
tese_ACLorena.pdf (3.82 Mbytes)
Date de Publication
2006-06-19
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.