• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2007.tde-26042007-151429
Documento
Autor
Nombre completo
Mariá Cristina Vasconcelos Nascimento
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2007
Director
Tribunal
Toledo, Franklina Maria Bragion de (Presidente)
Arenales, Marcos Nereu
Yanasse, Horacio Hideki
Título en portugués
Uma heurística GRASP para o problema de dimensionamento de lotes com múltiplas plantas
Palabras clave en portugués
Dimensionamento de lotes
GRASP
Máquinas paralelas e otimização combinatória
Múltiplas plantas
Path relinking
Resumen en portugués
O problema de dimensionamento de lotes, objeto desse estudo, considera um ambiente composto por múltiplas plantas independentes, múltiplos itens e múltiplos períodos. O ambiente de produção tem capacidade limitada e as plantas podem produzir os mesmos itens. Cada planta tem uma demanda própria e é permitida a transferência de lotes entre as plantas, o que envolve um certo custo. Este problema tem como caso particular o de dimensionamento de lotes com máquinas paralelas. O objetivo desta dissertação é propor uma heurística baseada na meta-heurística GRASP (Greedy Randomized Adaptive Search Procedures). Além disso, uma estratégia path relinking foi incorporada ao GRASP como uma fase de melhoria do algoritmo. Para verificar a eficiência da heurística proposta, os seus resultados são comparados aos da literatura tanto no caso de máquinas paralelas quanto no de múltiplas plantas. Como resultado, o problema de múltiplas plantas obteve melhores resultados quando comparado aos da heurística da literatura. Com relação ao problema de máquinas paralelas, a heurística proposta se mostrou competitiva
Título en inglés
A GRASP heuristic for the multi-plant lot sizing problem
Palabras clave en inglés
GRASP
Lot sizing
Multi-plant
Parallel machines and combinatorial optimization
Path relinking
Resumen en inglés
The lot sizing problem, which is the aim of this study, considers an environment consisting of multiple independent plants, multiple items and multiple periods. The production environment has limited capacity and the plants can produce the same items. Each plant has its own demand and the lot transfers between the plants are permitted, which involves a certain cost. This problem has as a particular case the parallel machines lot sizing problem. The objective of this dissertation is to propose a heuristic based on the GRASP (Greedy Randomized Adaptive Search Procedures). Furthermore, a path relinking phase is embedded in the GRASP to obtain better performance. To verify the efficiency of the proposed heuristic, its results were compared with the literature as for the multi-plant as for parallel machines problem. Computational tests showed that the proposed heuristic performed better than other literature heuristic concerning the multiplant problem. Concerning the parallel machines, the heuristic is competitive
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2007-05-09
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.