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“Another man-ape came to life, and went through the same routine.

This was a younger, more adaptable specimen; it succeeded where the older one had failed.

On the planet Earth, the first crude knot had been tied.”

(Arthur C. Clarke, 2001: A Space Odyssey)





RESUMO

COLLIRI, T.S. Classificação de alto nível baseada em redes: novos modelos e aplicações.
2021. 167 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

Aprendizado de máquina é uma aplicação da inteligência artificial com foco no desenvolvimento
de programas de computador que podem acessar dados e usá-los para aprender por conta própria.
Classificação de dados de alto nivel é uma técnica baseada na formação de padrão nos dados, ao
invés de somente nas suas características físicas. Redes complexas têm se mostrado bastante úteis
para caracterizar relacionamentos entre amostras de dados e, conseqüentemente, são um poderoso
mecanismo de captura de padrões de dados. Neste trabalho, são investigadas novas maneiras de se
usar a abordagem baseada em rede no desenvolvimento de técnicas de classificação de alto nível.
Inicialmente, duas técnicas de classificação são introduzidas, e seus desempenhos são avaliados
aplicando-as a conjuntos de dados de referência na área, tanto artificiais quanto reais, bem como
comparando seus resultados com aqueles obtidos por modelos de classificação tradicionais, nos
mesmos dados. Posteriormente, são exploradas as vantagens inerentes a este tipo de abordagem,
tais como a sua versatilidade e interpretabilidade, para se desenvolver novas técnicas baseadas em
rede especificamente projetadas para serem aplicadas em dados de problemas reais e relevantes
em campos muito diversos, desde o mercado financeiro à corrupção de políticos e cuidados de
saúde. Embora estes tipos de aplicação certamente requerem um esforço maior por parte dos
pesquisadores, em termos do desafio e pré-processamento dos dados, acredita-se que elas são
importantes para aproximar a pesquisa acadêmica da realidade. Entre os resultados obtidos neste
trabalho, está a detecção de uma relação não esperada entre dados de votação de projetos de lei e
condenações por corrupção e outros crimes financeiros entre deputados brasileiros. Também é
demonstrado como é possível adaptar um modelo, que originalmente foi aplicado na detecção
de periodicidade em dados meteorológicos, para identificar tendências de alta e de baixa no
mercado de ações, acionando automaticamente uma ordem de compra ou de venda para o ativo,
de acordo com a situação. Em outra investigação, é apresentada uma técnica para auxiliar os
profissionais de saúde na tarefa de monitorar pacientes com COVID-19, por meio da detecção de
sinais prévios de insuficiência hepática, renal ou respiratória, apenas com base nos resultados do
exame de hemograma completo. Em resumo, acredita-se que este trabalho faz uma importante
contribuição para o avanço do estudo de dados públicos em larga escala usando redes complexas.

Palavras-chave: redes complexas, classificação de dados de alto nível, aprendizado de máquina,
partidos políticos, votações legislativas, predição de corrupção, mercado de ações, automação de
investimentos, COVID-19, detecção de insuficiência, hemograma.





ABSTRACT

COLLIRI, T.S. Network-based high level classification: novel models and applications.
2021. 167 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

Machine learning is an application of artificial intelligence with focus on the development of
computer programs that can access data and use them to learn for themselves. High level data
classification is a technique based on data pattern formation, instead of only their physical
features. Complex networks have been proven to be quite useful for characterizing relationships
among data samples and, consequently, they are a powerful mechanism to capture data patterns.
In this work, we investigate novel ways of using the network-based approach in the development
of high level classification techniques. Initially, two classification techniques are introduced, and
their performances are assessed by applying them to benchmark datasets, both artificial and real,
as well as comparing their results to those achieved by traditional classification models, on the
same data. Afterwards, we explore the inherent advantages offered by this type of approach, such
as its versatility and interpretability, by developing novel network-based techniques specifically
designed to be applied on data concerning real and relevant problems from very diverse fields,
from the financial market to corruption among politicians and healthcare. Although these type of
applications certainly require a greater amount of effort from the part of researchers, in terms of
the challenge and data preprocessing, we believe they are important to bring academic research
closer to the reality. Among our findings, there is the uncovering of an unexpected relationship
between legislative voting data and convictions for corruption or other financial crimes among
Brazilian representatives. We also demonstrate how one can adapt a model, which originally has
been applied to detect periodicity in meteorological data, for identifying up and down trends in
the stock market, automatically triggering a buying or a selling order for the asset, accordingly. In
another investigation, a technique to help healthcare workers in the task of monitoring COVID-19
patients is presented, by detecting early signs of hepatic, renal or respiratory insufficiency solely
based on Complete Blood Count (CBC) test results. In summary, we believe this work makes an
important contribution to the advance of large scale public data study using complex networks.

Keywords: complex networks, high level data classification, machine learning, political parties,
legislative voting, corruption prediction, stock market, stock trading automation, COVID-19,
insufficiency detection, CBC test.
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CHAPTER

1
INTRODUCTION

The human brain is constantly receiving new data and information from the real world.
Most of these input data are discarded, during our daily routine (ATKINSON; SHIFFRIN,
1968). Some of this information are processed by the brain, oftentimes by considering other
similar events happened in the past, already stored in the brain, and evaluating how they can
possibly be related to the new apprehended information, in the present (ANDERSON, 2000). This
phenomenon, although being continuous, is hardly consciously noticed, or even questioned, by
us, given the unwitting nature of its occurrence (SEITZ; KIM; WATANABE, 2009). In machine
learning-related research, we aim to emulate this same phenomenon, which naturally occurs in
the human brain, such that it can also be performed by computers (SPICER; SANBORN, 2019).

A fundamental difference between the animal (human) brain and computers can be
observed: traditional computer-based classification considers only the physical features, such
as similarity, distance or distribution of the input data (JÄKEL; SCHÖLKOPF; WICHMANN,
2008; KRUSCHKE, 1992). On the other hand, brain-based classification takes into account not
only physical features, but also the organizational structure of the data (LAKE; LAWRENCE;
TENENBAUM, 2018), such as data patterns (ANDERSON et al., 2004; LAKE et al., 2017).

Complex networks have proven to be quite useful for characterizing relationships among
data samples and, consequently, they are a powerful mechanism to capture data patterns (SILVA;
ZHAO, 2015; CARNEIRO; ZHAO, 2017; BACKES; BRUNO, 2010). The objective or our
research is to take advantage of this representation, by developing fast and efficient novel
network-based high level machine learning techniques to perform predictive tasks, such as
regression and classification. Besides of this, we have made a special effort to develop novel
machine learning techniques specifically designed to tackle real-world phenomena, in very
diverse areas of study.

Although various high level data classification techniques have already been proposed, in
different works, the literature still lacks applications of these techniques to real-world problems.
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Such type of application usually requires a minimum amount of knowledge regarding the
specificities of the problem to be studied and its respective field, so that this information can be
properly reflected in the built network. Moreover, it also involves additional data pre-processing
tasks, such as data cleaning and editing, which, depending on the size of the input data, may
become increasingly time-consuming. Within this context, we believe this work makes an
important contribution, by not only introducing novel network-based high level machine learning
techniques, but also by demonstrating their practical applications, on the modeling and analysis
of relevant real-world phenomena.

In classic supervised learning, machine learning algorithms are designed to learn from
examples. In this case, initially we have an input dataset Xtrain comprising n instances in the
vector form, where each data instance itself is a m-dimensional vector, representing m features
of the instance. Correspondingly, the labels of the instances are represented by another vector Y ,
with the same size of Xtrain. The objective of the training phase is to construct a classifier by
generating a mapping f : Xtrain

∆−→ Y , through some type of reasoning. In the testing phase, we
use the classifier constructed so far to classify new data instances without label. The test dataset,
denoted as Xtest , is then used for assessing the performance of the model in the classification task.
Therefore, the method used in the mapping process f : Xtrain

∆−→ Y is an important determinant
for the performance of a supervised learning model.

In the first technique introduced in this work, each training data instance is mapped as a
node in the network, and the edges are generated through a combination of two distance-based
methods: kNN and ε-radius. A similar network construction method has already been employed
in other related works (BACKES; BRUNO, 2010; BACKES; CASANOVA; BRUNO, 2013;
SILVA; ZHAO, 2012a; SILVA; ZHAO, 2015; CARNEIRO; ZHAO, 2017). The novelty of this
technique consists in detecting the impact patterns resulting from the insertion of each training
data instance on the network structure, in terms of topological measures, for each class of the
input dataset. In the testing phase, the model assigns a label for each new data instance by
assessing the level of similarity between the impact provoked by its insertion in the network,
in terms of topological structure, and the previously detected impacts patterns, for each class.
Hence, this technique differs from traditional classification techniques in the sense that the
classifier bases its decisions on the emerged impact patterns during the training phase, for each
class, in terms of the network topological properties, in contrast to traditional ones, often based
on distance and similarity measures.

Many networks encountered in the real world, such as social, computer and metabolic
networks, are found to divide naturally into communities or modules (NEWMAN, 2006). One
of the most effective ways of detecting these communities is through the modularity measure.
In the second introduced technique, we investigate the possibility of conceiving a classification
process which is solely based on the network’s modularity score. For this end, two novelties are
presented in this model: (1) instead of mapping each data instance as a node in the network, as
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usual, we map each data instance’s attribute as a node in the network; this is to conserve more
information from the input dataset in the model’s training phase, and (2) in the testing phase, the
level of association of a new data instance to each class is measured in terms of its impact on
each of the network components’ modularity score.

The two techniques described above are evaluated by applying them to benchmark
classification datasets, both artificial and real, and by comparing their performances with those
achieved by traditional models, on the same data. The other four techniques introduced in
this work are designed to be applied on real-world problems, from diverse areas such as pol-
itics, finance and public health. Following, we describe these techniques and their respective
applications.

The House of Representatives is an important institution of the government’s legislative
branch, whose role is to embody the will of the population on the federal level. In democratic
countries, it is expected to occur a natural alternation of power between political parties occupying
the House seats over time. Within this context, the complex network approach can be highlighted
as a suitable tool for analyzing congressional roll call voting records (ANDRIS et al., 2015;
MASO et al., 2014; MOODY; MUCHA, 2013; WAUGH et al., 2009). In this work, we make
use of the network-based approach to analyze almost 30 years of legislative work from Brazilian
representatives, in terms of roll-call votes data. Among our findings, we show that the changes
verified in the topological structure of the congressmen network, in the last 28 years, follow
very closely the main alternations of power between political parties in the presidency of Brazil.
Additionally, our analyses are able to capture very clearly the lessening of influence of the
Brazilian workers party (PT) in the House even months before the impeachment of Dilma
Rousseff from the presidency. Another important finding in this work is with regard to the
possibility of using this same roll-call votes-based network to predict possible convictions of
corruption or other financial crimes among congressmen. We have performed tests in this sense
using semi-supervised learning methods, through link prediction algorithms, and the obtained
results indicate that this task is not only possible, but it can also achieve high accuracy rates.

The stock market has always been subject to a great number of studies aiming to
predict future price movements, with the objective of optimizing the financial returns of trading
operations. With the arrival of artificial intelligence, we have seen an increase in this type of
studies using machine learning techniques (HUANG; NAKAMORI; WANG, 2005; ADEBIYI;
ADEWUMI; AYO, 2014; LEE; JO, 1999). In this work, inspired by the concept of functional
cartography (GUIMERA; AMARAL, 2005) and the formation of community structures, observed
in natural and man-made systems (AKIKI; ABDALLAH, 2019; GLEISER; SPOORMAKER,
2010; HAGMANN et al., 2008), we present a network-based model which makes use of
connector hubs to detect price trend reversals in the market, thus allowing the detection of
up or down trends for a stock, also triggering a buying or a selling operation accordingly. We
have evaluated the performance of the model by applying it to a database comprising 10 of
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the most traded stocks from both New York Stock Exchange (NYSE) and Brazilian Stock
Exchange (Bovespa), and the obtained results are encouraging, with the resulting financial
returns surpassing the ones corresponding to a “buy and hold” strategy for most of the stocks
considered, and even by a high margin for some of them.

The last two models presented in this work were conceived to help in the fight against
the COVID-19 pandemic, which arrived during the last year of our research. The first model
makes predictions of new confirmed cases and deaths provoked by the virus on a specific
region. Although there are already classical and well-known models available in network science
specifically designed for such tasks (BARTHÉLEMY et al., 2005; PASTOR-SATORRAS;
VESPIGNANI, 2001; PASTOR-SATORRAS et al., 2015), in this work, we have opted for
developing a novel one, which yields predictions based on the COVID-19 curves from other
regions whose past behavior is similar to the curve to be predicted. We start by building a
temporal network, where each node corresponds to a different COVID-19 affected region,
and nodes whose curves present similar variations, at the time step t, are connected to each
other. Afterwards, a community detection algorithm is ran, and curves from nodes within a
same community are used to compute future curve variations for a specific node. The model is
evaluated by applying it to predict weekly new confirmed COVID-19 cases and deaths for the 27
federal units of Brazil, and the obtained results are satisfactory, when compared to other similar
studies, in terms of mean absolute percentage error.

For the last application, we have developed a classification technique similar to the first
one presented in this work, with two major improvements. The first improvement consists in
adding a network reduction method in the model’s training phase, based on the betweenness
centrality measure (BRANDES, 2001), which has the role of both reducing its processing time
and also discarding possible noise from the input dataset, by leaving only the most representative
nodes in the generated network. The second improvement is in the design of a parameter opti-
mization criteria, based on a variant of Kullback-Leibler divergence (KULLBACK; LEIBLER,
1951), to make the technique more adaptable to each dataset. We have applied the model to a
dataset specially built for this study, obtained from the analysis of publicly available data of
COVID-19 patients from one of the main hospitals in Brazil, with the objective of detecting early
signs of renal, hepatic and respiratory insufficiency in infected patients using only Complete
Blood Count (CBC) test scores. The obtained results in this task indicate that the model’s perfor-
mance is competitive, when compared to classic and the state-of-the-art classification techniques.
Moreover, we consider the results achieved in this application as particularly relevant inasmuch
as the proposed technique has the potential to help healthcare professionals who work in regions
with scarce material and human resources to assess the severity of COVID-19 patients at high
risk of complications, before the consequences become irreversible.

Therefore, as one may observe, we introduce different techniques in each study presented
in this work, and also use a distinctive graph-formation approach in each of them, according to
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the specificities of the problem to be analyzed. The way the network is built in the stock market
investment problem, for instance, in Chapter 6, is completely different from the way we build
the congressmen network, in Chapter 5. Additionally, the themes of the problems approached in
this work may be very distinct from each other, and from very diverse fields, from economics to
politics and public health. Nevertheless, they all represent relevant topics for the society, and
have the common factor that all applications in this work are made by using publicly available
data, i.e., that can be accessed by everyone. The importance of the first application comes
from the possibility of predicting corruption cases among congresspeople solely by analyzing
data regarding their voting records. The second application involves an already widely studied
problem, from Economics, of whether stock price movements can be predicted or not. While
the last two applications address the fight against the COVID-19 pandemic, under two different
forms: (1) by predicting the number of new cases and deaths in a specific region, thus helping
policy makers in the decision-making process regarding resources planning, and (2) by detecting
early signs of insufficiency in infected patients, solely based on CBC test results, to help primary
care workers in the severity assessment task.

1.1 Objectives

The use of networks for modeling real-world problems has been continuously increasing
since the end of the 1990s, with the publication of the works from Watts and Strogatz (1998) and
Barabási and Albert (1999). These two works are still considered the most important ones in the
field of complex networks, as they were able to raise the network-based approach to a level much
closer to the reality. The models introduced by them are inspired on feature patterns commonly
encountered in real-world phenomena, such as the scale-free distribution, for example. Although
the number of scientific works making use of network-based approaches has been growing for
the last two decades, we believe that, given the versatility of this approach, there are still many
open questions and large space for innovations and applications.

The main goal of this study is to develop novel machine learning techniques through
network-based data pattern characterization, with a special focus on real-world applications. We
aim to take advantage and to explore one of the main characteristics of complex networks, which
is their adaptability to the study of problems from very diverse fields, from the financial market
to politics and medical care. We will show that, depending on the specificities of each problem,
the network-based framework offers many tools for approaching it in the most adequate way.
For problems concerning static datasets, for instance, one can make use of the regular static
networks for mapping the input data, while for problems regarding data stream or time series,
with dynamic features, then it is usually more advisable to make use of a temporal network for
modeling the phenomenon.

Most of the problems to be tackled in this study are related to classification or prediction
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learning tasks, although we also explore applications related to clustering and regression, as well
as semi-supervised learning, in the form of label propagation through link prediction. Following,
we list and discuss the specific goals of our research:

1. Inspired by the hybrid network-based high level data classification technique, introduced
by Silva and Zhao (2012a), we plain to develop a network-based classification technique
which no longer requires a low level method for inferring the labels. The technique we
propose still takes into account the impacts provoked by the insertion of new data instances
on the network topology for classification purposes, with the difference that, instead of
assigning the label whose class is the least impacted by the insertion, in terms of network
measures, it assigns the label based on the impacts pattern, detected for each class. Our
hypotheses hence is that there are different impact patterns for each class in the input
dataset, and these emerging patterns, once detected, can be used for classification purposes.

2. The usual mapping process for converting a dataset into a network represents each data
instance as a node in the network. This procedure, although is the most adopted one, has
the drawback of oftentimes discarding information that might be useful for improving the
classifier’s performance. Therefore, we plan to develop a model in which the mapping
process represents each data instance’s attribute as a node in the network, and is able to
infer the labels considering only the impacts on the modularity measure. Additionally,
we plan to use an attention mechanism in this technique, such as the one used in the
Transformer deep learning model (VASWANI et al., 2017), to discriminate which edges
generated during the testing phase should be considered more important in the classification
process. Our hypotheses, in this case, is that keeping the attributes in the network mapping
results in less information loss in this process and, consequently, contributes to increase
the classification performance.

3. Considering that graph-based approaches have also been successfully applied to data
regarding political analysis (ANDRIS et al., 2015; MASO et al., 2014; MOODY; MUCHA,
2013; WAUGH et al., 2009), we will also delve into this field, and develop a model to
analyze legislative voting data, using the historical votes of Brazilian representatives as
data source. The goal here is to investigate whether the changes verified in the temporal
network’s topology, formed by the congressmen, may somehow reflect the main political
events happened during the same period. We will also conduct simulations to assess the
possibility of using such networks for predicting corruption predictions among politicians.
Our hypotheses is that it is possible to predict future convictions solely based on the voting
history of each congressman.

4. When it comes to prediction models, the stock market has always been subject to a great
number of studies from the part of researchers. In this work, we do not deviate from
this rule and will examine this problem as well, by extending and adapting an algorithm
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originally intended to detect periodicity in time series (FERREIRA; ZHAO, 2014) in
order to develop a model for detecting up and down price trends for an asset based on the
topology of the network resulting from its price variation ranges. The proposed model also
triggers a buying or a selling order, whenever a new up or down price trend is detected
for the asset, respectively. In this study, our hypotheses is that connector hubs, in the built
price variations network, can be used as indicators for potential price trend reversals in the
market.

5. During the time we conduct our research, the world had witnessed the surge of an un-
expected pandemic, caused by COVID-19, which brought severe consequences to the
population, and whose death toll has already surpassed two million deaths around the
world (WORLDOMETER, 2021). Naturally, this phenomenon attracted the attention of
researchers, in many fields, with the objective to contribute for helping to better understand
and to fight the disease. In this research, we plan to contribute to this cause through the
development of two different models:

a) A regression model, to predict new COVID-19 cases and deaths in a specific region,
through a network-based multiple regression analysis. The hypotheses here is that
one can predict the COVID-19 curve variation in a region by considering the curves
from other affected regions which presented similar variations in the past.

b) A classification model, to help medical workers in the task of monitoring COVID-19
patients, by detecting early signs of renal, hepatic or respiratory insufficiency based
on Complete Blood Count (CBC) test results. The hypotheses in this study is that the
results from these tests can be used as biomarkers to detect each type of insufficiency
on COVID-19 patients independently, thus helping healthcare workers in the disease
prognosis.

1.2 Motivations

Thanks to the constant advances in the processing power of computers, the overall
expectation is that the area of artificial intelligence will become increasingly important in
the future, with consequences which may affect our lives significantly. Most human activities
involving data analysis are expected to be performed by computers, with more efficiency and
accuracy. Within this context, network-based machine learning techniques offer the advantage to
not only analyze physical features of the input data (e.g., distance or distribution), as in traditional
machine learning techniques, but to also consider the pattern formation in their topological
properties (SILVA; ZHAO, 2012a; SILVA; ZHAO, 2016). Besides, as this is intrinsically a
graphical approach, it has the convenience of being interpretable, which is not the case with
other machine learning approaches, such as neural networks (GURESEN; KAYAKUTLU; DAIM,
2011).



34 Chapter 1. Introduction

The main motivation for this work comes from our belief that, given its versatility and
the fact that this is yet a relatively new field of study, there is still a large space for exploration
in complex networks. This framework has been proven to be quite useful for characterizing
relationships among data samples and, consequently, it is a powerful mechanism to capture
data patterns. The hybrid network-based classification technique introduced by Silva and Zhao
(2012a), Silva and Zhao (2015) combines a low level of learning method, which can be imple-
mented by any traditional classification technique – such as naive Bayes or SVM – and a high
level of learning method, which makes use of network data representation in order to identify
the pattern formation, in terms of the network topology structure, for each different class in
the dataset. Their results have shown that the high level term of the hybrid classifier is able
to improve the performance of the low level classifier, especially in situations where the class
configuration’s complexity increases, causing more mixtures among different classes. In this
work, we plan to extend their research, by investigating whether it is possible to get rid of the low
level method in the classification process, as well as the possibility of automatizing the values of
parameters ε and k, used for building the network.

Another strong motivation factor for us is in the prospect of using the network-based
approach to identify relationships, patterns, trends and other useful information in data concerning
real-world problems, in an effort to bring academic research closer to the reality. When we
considered the problem of analyzing legislative voting data, for instance, we did not expect, at
first, to uncover a hidden relationship between the Brazilian representatives votes and convictions
for corruption and other financial crimes. This finding was only possible due to the network-based
approach, which allowed us to notice the formation of some sort of “corruption neighborhoods”
in the congressmen built network.

Another interesting remark, still concerning “hidden relationships or patterns” between
real-world data, is with regard to how the model for stock trading automation, also presented in
this work, was conceived. We started by applying an algorithm, which was originally applied to
detect periodicity in time series concerning meteorological data (FERREIRA; ZHAO, 2014),
for possibly detecting cycles in stock market related data, with a few adaptations in the code
structure. Later, the idea of automatically triggering buying or selling operations for the stock was
conceived by using the concept of network cartography (GUIMERA; AMARAL, 2005), which
is based on observations made in metabolic networks of organisms. Therefore, it is possible to
say that the financial trading model presented in this work is an adapted combination of two
different studies, from very diverse fields.

1.3 Organization of the Remainder of the Document

The remainder of this thesis is organized as follows. In Chapter 2, we review some
relevant concepts and techniques from the topics related to our research, such as complex
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networks and machine learning, and also discuss some of the works which have inspired us to
develop our research. In Chapter 3 and Chapter 4, two different network-based classification
techniques are presented, and their performances are assessed by applying them to benchmark
datasets and comparing to the ones achieved by traditional classification models. The first
technique, introduced in Chapter 3, is based on the detection of the impacts pattern provoked by
the insertion of new data instances in the network’s topology, for each class. The second technique,
introduced in Chapter 4, has the novelty of, instead representing each data instance as a node in
the network, as usual, it represents each data instance’s attribute as a node in the network, and
the label inference is based solely on the modularity measure. In Chapter 5, we present a model
for analyzing legislative voting data, obtained from the Brazilian House of Representatives, and
also demonstrate how this type of modeling can be used for the sake of predicting the incidence
of convictions for corruption and other financial crimes among congressmen. In Chapter 6, we
approach a problem regarding the financial market, by introducing a model for helping investors
to identify up and down trends for the price of a stock, also triggering a buying or selling
operation, accordingly. In Chapter 7, we focus on the problem of predicting the incidence of
new cases and deaths provoked by COVID-19, in a specific region. For this end, a temporal
network is employed, representing the evolution of the time series correlations between different
regions, pairwise, and the performance of the model is evaluated by applying it to data regarding
COVID-19 numbers from the 27 federal units of Brazil. The last model introduced in this work,
in Chapter 8, also concerns the COVID-19, but this time we focus on the treatment of the disease.
More specifically, we present a model to help healthcare workers in the task of monitoring
COVID-19 infected individuals in order to detect possible early signs of renal, respiratory or
hepatic insufficiency. The main advantage of the proposed technique lies in the fact that it
makes use of only Complete Blood Count (CBC) test results to perform the analysis, which are
considered easy to be collected and also cheaper, when compared to other additional tests. At the
end of this document, in Chapter 9, we close our study by adding some final remarks.
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CHAPTER

2
RELEVANT CONCEPTS AND TECHNIQUES

The topics of our research are contextualized within the great area of artificial intelligence.
This area can be defined as the development of computational techniques that perceive their
environment and take actions that maximize the chance of successfully achieving their goals
(RUSSELL; NORVIG, 2016; POOLE; MACKWORTH; GOEBEL, 1998). Informally, the term
“artificial intelligence” is also applied for machines able to mimic cognitive functions usually
associated to humans, such as learning and problem solving (RUSSELL; NORVIG, 2016).

In this chapter, we present the most relevant concepts and techniques related to the
topics of our research. In section 2.1, we introduce the reader to the topic of complex networks,
describing how this field of study first arrived, as well as reviewing some of its most relevant
works until today. We also present, in this section, some of the measures most commonly used in
the analysis of networks, and provide some examples of real-world applications. In section 2.2,
we familiarize the reader with some relevant concepts and tasks regarding the topic of machine

learning. In section 2.3, we introduce the concept of high level data pattern characterization and
discuss the importance of this concept when developing network-based classification techniques,
while also reviewing some related works. Finally, in section 2.4, we discuss some examples of
graph-formation techniques on supervised learning, describing and comparing different forms of
performing this task, according to each type of application.

2.1 Complex Networks

The origin of the graph theory traces back to 1736, when the Swiss mathematician
Leonhard Euler published the solution to the Königsberg bridge problem (BOCCALETTI et

al., 2006). This initial work led to the development of other important works, such as the ones
made by Vandermonde (1771), Cauchy (1813) and Huillier (1861), which ended up resulting in
the creation of a new branch of discrete mathematics, known as topology. Later, one of Konig’s
students, Paul Erdös, would later become responsible for the introduction of probabilistic
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methods in graph theory (ERDÖS; RÉNYI, 1960), while Cartwright and Harary (1956) helped
to standardize the terminology of graphs, as well as to broaden its reach by including and
demonstrating possibilities of applications in several branches of science. In 1995, the field of
complex networks was included as one of the main topics of the area of complex systems, i.e.,
dynamical systems that present properties such as adaptation, emergence and transition. This
inclusion was certainly induced by the advances of computer processing powers, opening the
possibility to study the properties of large databases of real networks. In 1998 and 1999, there
were two papers responsible for great advances in this field, published by Watts and Strogatz
(1998), on small-world networks, and by Barabási and Albert (1999), on scale-free networks.
Nowadays, new studies in this field have the potential to offer novel tools and perspectives for a
wide range of scientific problems, from social networking to drug design (BARABÁSI et al.,
2016).

The term complex network refers to a graph consisting of a large number of nodes

(or vertices) joined by links (or edges), with a non-trivial topology (ALBERT; BARABÁSI,
2002). Some examples of complex networks include the internet (FALOUTSOS; FALOUTSOS;
FALOUTSOS, 1999), biological neural networks (SPORNS, 2002), social networks among
individuals (CARRINGTON; SCOTT; WASSERMAN, 2006), food chains (MONTOYA; SOLé,
2002), blood distribution networks (WEST; BROWN; ENQUIST, 2009) and power grid dis-
tribution networks (ALBERT; ALBERT; NAKARADO, 2004). The study of the topology and
the dynamics of these networks allows us to a better understanding and characterization of the
phenomena involved in these systems.

The Erdös-Rényi model for generating random networks is considered the first model in
this field, with the use of relatively simple algorithms. The first algorithm generates a random
network G from a predefined certain number of vertices V and number of edges E (ERDÖS;
RÉNYI, 1960). The second algorithm of this model, introduced by Gilbert (1959), generates a
random network G from a predefined certain number of vertices V and probability of connection
p between each pair of nodes. The degree distribution of random networks, when V ≫ ⟨k⟩, i.e.,
when the number of vertices is much bigger than the network average degree, follows a Poisson
distribution, with the form P(k) = e−⟨k⟩ ⟨k⟩k! . Although not originally intended for modeling real
systems, random networks are still in use nowadays, specially for comparison purposes.

At the end of the 1990’s period, researchers approach the challenge of comparing the
properties of real networks with graph theoretical models, which led to the introduction of two
important models in this field. The Watts-Strogatz model, also known as the small-world model,
is the first model introduced in this period, with the main message that “real networks are not
random” (WATTS; STROGATZ, 1998). Its algorithm starts with a regular network, such that
each node has the same degree k, being connected to E/2 neighbors in each direction. Then, each
edge in the clockwise direction is rewired to any other node with a probability p. As we raise
the value of p from 0 to closer to 1, more random the network becomes, with the small-world
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Figure 1 – The small-world model

Source: Watts and Strogatz (1998).

Figure 2 – The scale-free model

Source: Barabási et al. (2016).

property being more present for values in between (Figure 1). The networks generated by this
model are also random, with the difference that they present small-world properties.

Other important model introduced in the 1990’s period is the Barabási-Albert model, also
known as the scale-free model (BARABÁSI; ALBERT, 1999). The main message of this model
is that the “network structure and evolution are inseparable”. It also introduces the concept of
“preferential attachment”, where at each timestep we add a new node i with n links that connect
him to m nodes already in the network (Figure 2). The probability of the node j to receive an edge
from node i is P(ki) =

ki
∑ j k j

. This combination of growth with preferential attachment results
in the so-called rich-gets-richer phenomenon. This happens because more connected vertices
have higher probability to receive edges from new vertices. The degree distribution of scale-free
networks follows a power law, with the form P(k) ∼ k−γ . Many real networks are consonant
with this model, such that in most cases 2 < γ ≤ 3.
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Table 1 – Examples of measures to analyze the network according to each level of abstraction.

Type of Analysis Objective Examples of Measures
Element-level Methods to identify the most im-

portant nodes of the network.
All centrality measures, such as:
degree centrality (ki), closeness
centrality (Ci), betweenness cen-
trality (Bti) and eigenvector cen-
trality (πi).

Group-level Involves methods for defining and
finding cohesive groups of nodes
in the network.

The most typical is the local clus-
tering coefficient (cci).

Network-level Focuses on the topological prop-
erties of the network as a whole.

Average degree (⟨k⟩), transitivity
(C), average local clustering co-
efficient (⟨cci⟩), diameter (d), av-
erage shortest path length (l), as-
sortativity (r) and modularity (Q).

Source: Research data.

In order to characterize a network, we can look at its topological structure, by extracting
some measures to help us learning more about the network, as well as comparing it with other
networks. This type of analysis can be made at three different levels of abstraction (Table 1). A
very important characteristic of all these measures is their universality, i.e., they can be used in
the analysis of all types of networks, disregarding the area from the data used for generating the
network.

2.1.1 Commonly Used Network Measures

The decision regarding which measure one should use when analyzing the network
topological structure depends on the specificities of the problem being studied. Below, we list
some of the most commonly used network measures, along with their respective definitions. For
a more complete review of measures used in the characterization of complex networks, one can
refer to the survey made by Costa et al. (2007).

∙ Degree centrality (ki): considered the simplest measure, is the number of links incident
upon a node. If a communications network is under attack, for instance, in an attempt to
deliberately damage the communication system, it is expected that the main targets are the
most connected nodes (ALBERT; JEONG; BARABÁSI, 2000).

∙ Closeness centrality (Ci): the average length of the shortest path between the node and
all other nodes in the graph. Examples of application include road networks modeling
(ABRAHAM et al., 2011) and vehicle routing problems (CHABRIER, 2006).

∙ Betweenness centrality (Bti): broadly speaking, estimates the extent to which a vertex
lies on paths between other vertices. Applications of this centrality measure include
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identifying the most influential individuals in social networks (GOH et al., 2003) and pre-
dicting preferential attachment in scientific coauthorship networks (ABBASI; HOSSAIN;
LEYDESDORFF, 2012).

∙ Eigenvector centrality (πi): a measure of the influence of a node in a network. The Google’s
PageRank algorithm, for instance, is a variant of the eigenvector centrality (PAGE et al.,
1999). It had also been successfully applied for analyzing connectivity patterns in fMRI
data of the human brain (LOHMANN et al., 2010).

∙ Local clustering coefficient (cci): quantifies how close the node’s neighbors are to being a
clique (complete graph). It is commonly used in preferential attachment models (KROT;
PROKHORENKOVA, 2015).

∙ Average degree (⟨k⟩): a relatively simple measure, which statistically quantifies the average
degree of the vertices of a component.

∙ Transitivity (C): also called global clustering coefficient, measures the total number of
closed triangles in a network. It is commonly applied on link prediction techniques (LIU;
LÜ, 2010).

∙ Average local clustering coefficient (⟨cci⟩): quantifies the degree to which local nodes in a
network tend to cluster together.

∙ Average shortest path length (l): the average minimum number of edges separating all
nodes in a fully connected component.

∙ Assortativity (r): numerically translates the preference for vertices of a network to attach
to others that are similar or different regarding the vertices’s degree in a structural sense
(NEWMAN, 2003). Examples of applications include the analysis of collaboration net-
works (CHANG et al., 2007) and in the identification of sentiment expression patterns in
Twitter users (BLISS et al., 2012).

∙ Modularity (Q): broadly speaking, compares the number of connections between vertices
which share a same characteristic with the expected number of connections when occurred
randomly. One important application of this measure is on the detection of the optimal
community structure in a network (NEWMAN, 2006).

2.1.2 Network-Based Modeling Applied to Real-World Phenomena

In this work, we give a special emphasis on the use of complex networks for modeling
and analyzing real-world phenomena. Therefore, in this section, we are going to review some
examples of works which also have focused on this type of application, in different areas of study.
For a more complete review in this theme, one can refer to the work made by Costa et al. (2011).
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Computational analyses of datasets regarding large-scale connection patterns in the cere-
bral cortex of various mammalian species – such as most cortical regions of the macaque monkey,
cat, and rat – have revealed a broad range of network characteristics, including the existence of
clusters of brain regions, hierarchical organization, small-world attributes, distinct functional
streams, motifs, and real contributions to global network measures (SPORNS; TONONI; KÖT-
TER, 2005). These studies have also provided a comprehensive structural description of the
network of elements and connections forming the human brain, introducing what is known today
as the human connectome, thus contributing to understanding the network organization of the
brain, both in anatomical, structural and functional terms (BULLMORE; SPORNS, 2009).

Guimera and Amaral (2005) analyzed the metabolic networks of twelve organisms from
three different superkingdoms, and their findings have led to the introduction of the concept
of “network cartography”. The study shows that biological networks may present functional
modules, with nodes having different universal roles according to their pattern of intra- and
inter-module connections. In this form of representation, typically, the great majority of nodes
are non-hubs, being only connected to other nodes within their respective modules, and just few
of them are hubs. Additionally, non-hubs and hubs can be sub-categorized into seven different
roles, according to their respective modules and their connections to nodes from other modules.
We make use of concepts from the network cartography analysis in the Chapter 5 and Chapter 6
of this thesis.

Ribeiro et al. (2018) have built a network formed by Brazilian politicians involved in
corruption scandals, based on an extensive research of a 27-years time range documentation. The
analysis of this network topology indicates that corrupted politicians tend to operate in small
groups, with only a few hubs and a modular structure that often encompasses more than one
corruption scandal. They also show that the vertex degree distribution is similar to an exponential
one, and presents abrupt changes when a new political party takes power. Moreover, they also
find out that the dynamical structure of the network can be used for successfully predicting
partners in future scandals. The study presented in the Chapter 5 of this thesis is inspired on this
work.

Fang, Sivakumar and Woldemeskel (2017) made use of a network-based method to
classify catchments in the large-scale basin formed by the Mississippi River. Six community
structure detection algorithms were applied and had their performances assessed, in terms of
consistency. The obtained results were promising, also indicating that, in addition to geographic
proximity, network topology, represented by organization of the river (e.g. main stem, river
branching), also plays an important role in the formation of different communities of catchments.

There are also interesting studies with focus on the simulation of real phenomena, such as
the spreading of epidemics (BARTHÉLEMY et al., 2005), computer viruses (ALBERT; JEONG;
BARABÁSI, 2000) and rumors (MORENO; NEKOVEE; PACHECO, 2004). The SIR model, for
instance, is commonly applied for simulating the spreading of infectious diseases, and represents
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Table 2 – Some tasks associated to machine learning.

Type of Learning Tasks Examples of Methods
Supervised Classification, Prediction, Regres-

sion
Support Vector Machines, Deci-
sion Trees, kNN, naive Bayes, Re-
gression Analysis, Multilayer Per-
ceptron.

Unsupervised Clustering, Association, Anomaly
Detection

k-means, DBSCAN.

Source: Research data.

each individual of a population as a node in the network. There are three possible classes for
each node during the simulation: susceptible (S), infected (I) or recovered (R). At each time step
in the modeling, if a susceptible node has contact with an infected one, then he also becomes
infected, with a probability β . Additionally, at each turn, infected vertices may become recovered
(or immunized) independently, with a probability µ . A similar methodology is used in the rumor
propagation model, also known as the xyz model.

2.2 Machine Learning

Machine learning (ML) is an application of artificial intelligence, focusing on the study
of computer algorithms that can learn from data and improve automatically through experience
(BISHOP, 2006; MITCHELL, 1997). It often makes use of mathematical models and statistical
techniques to give computers the ability to “learn” (i.e., progressively improve the performance
on a specific task) with data, without being explicitly programmed (SAMUEL, 1959). Another
accepted definition for machine learning is as techniques to improve algorithms such that they
enhance their performance as they “acquire more experience” (ALPAYDIN, 2010). The main
categories of ML tasks are: supervised learning, in the forms of regression, prediction and
classification, and unsupervised learning, in the forms of clustering, association and anomaly

detection (Table 2).

The objective in supervised learning is to induce concepts from a dataset with classes
already known and labeled. When the class labels are composed by discrete values, the task is
denominated classification, and when they are composed by continuous values then the task
is denominated regression. In unsupervised learning, the main objective is to group the data
according to some specific similarity criteria, since there is no previous knowledge about the
classes in the sample (MITCHELL, 1997). There are still cases when only part of the classes
in the dataset are known and labeled, for these cases there is an alternative category called
semi-supervised learning. This type of learning tries to propagate the known labels to unlabeled
classes in the dataset, with the objective of reducing the work of the specialist on labeling the
examples (CHAPELLE; SCHÖLKOPF; ZIEN, 2006). It also can be employed with the objective
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of predicting certain phenomena, which, in this case, are represented by the labels.

Most machine learning algorithms are associated with induction, i.e., reasoning from
observed training cases to general rules, which are then applied to the test cases. However, there
are also approaches, specially in semi-supervised learning, which make use of transduction, i.e.,
reasoning from observed, specific training cases to specific test cases. Examples of transductive
learning approaches include transductive SVM (GAMMERMAN; VOVK; VAPNIK, 1998)
and graph-based label propagation algorithms (ROSSI; LOPES; REZENDE, 2016; VEGA-
OLIVEROS et al., 2014; TALUKDAR; CRAMMER, 2009).

Another important aspect to be considered in machine learning are the concepts of bias

and variance. Models with high bias trained on data with low variance are unable to capture
the underlying pattern of the data, which leads to underfitting. On the other hand, models with
low bias trained on data with high variance may lead to overfitting. Therefore, if one needs to
approach a problem using machine learning techniques it is always important to have in mind the
bias-variance tradeoff when searching for a solution. This can be done by both trying to extract
the most adequate features from the dataset, according to each problem, and by building a model
which is not too simple or too specific, regarding the training data, for avoiding underfitting and
overfitting, respectively.

2.3 Network-Based High Level Classification

Traditional machine learning techniques consider only physical features (e.g., distance
or similarity) of the input data. Therefore, this type of learning can be categorized as low level

techniques. Machine learning techniques that consider not only physical attributes but also the
pattern formation are referred to as high level techniques (Figure 3). Within this context, the
pattern formed by the topological structure of complex networks allows the high level learning
process. To be more specific, in a classification task, for instance, two data samples will be
classified into the same class if they are constituent elements of a well defined pattern, no matter
how far they may stay from each other from the perspective of their physical features. Hence, the
former is referred to as low level machine learning techniques while the latter high level ones.

Some of the works related to high level network-based machine learning techniques
include: semi-supervised learning (ZHU, 2005; CHAPELLE; SCHÖLKOPF; ZIEN, 2006;
SILVA; ZHAO, 2012b), clustering (LIU et al., 2018; PALLA et al., 2005; FORTUNATO, 2010;
KARYPIS; HAN; KUMAR, 1999; SCHAEFFER, 2007; SILVA; ZHAO, 2012c; SILVA; ZHAO;
CUPERTINO, 2013), regression (LOGLISCI; MALERBA, 2017; CASIRAGHI, 2017; NI; YAN;
KASSIM, 2012; GAO et al., 2014) and classification (ANGHINONI et al., 2019; VERRI; URIO;
ZHAO, 2016; CARNEIRO; ZHAO, 2017; SILVA; ZHAO, 2012a; NETO; ZHAO, 2013; SILVA;
ZHAO, 2016). Given its feature of being able to adapt to several types of problems, from different
areas of application, we believe there are still many possibilities to be explored when it comes to
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Figure 3 – Representation of a dataset containing two classes, with one of them presenting a clear pattern
formation. Traditional classification techniques would have problems on identifying the pattern
and consequently labeling the black bold triangle data item as belonging to the red class, while
high level techniques are expected to identify it correctly.

Source: Silva and Zhao (2012a).

the use of complex networks on machine learning.

Backes, Casanova and Bruno (2013) have used the complex network-based approach to
develop a model for analyzing and classifying image textures. This is because, for this task, one
needs to take into account not only the isolated micro-textures of the image, but also the relation
among them and their neighbors. Thus, they took advantage of this approach to represent and
characterize the relation among structural elements of texture in the form of a complex network.
In their work, the classification model starts by converting the texture to a pixel network, where
each node represents a pixel and the edges between a pair of nodes are generated by using the
ε-radius technique, based on the Euclidean distance between their respective x and y coordinates
in the image (Figure 4). Local textures detection and analysis are made by associating a weight to
each edge, considering both the distance and gray level similarity between each pair of connected
nodes. The topology characterization of each network is made by computing four features (or
measures) from their degree histogram: mean, contrast, energy and entropy. A set of weights
thresholds T is also applied to each network, in order to obtain different samples which, at the
end, will represent the network’s final signature. The optimal values for parameters ε and T were
achieved by evaluating the model’s performance according to different configurations for both of
them. The obtained results show that the proposed method is robust, outperforming traditional
texture classification methods. A similar approach had also already been used in the classification
of shape images, with equally encouraging results (BACKES; BRUNO, 2010).

Silva and Zhao (2012a), Silva and Zhao (2016) introduced a new technique based on
the extraction of features of the underlying network constructed from the input data, which not
only can realize classification according to the pattern formation, but also is able to improve the
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Figure 4 – Two examples of complex networks generated from different image textures.

Source: Backes, Casanova and Bruno (2013).

performance of traditional classification techniques. In their work, each class from the training
data forms an isolated network component, and each of these components calculates the changes
that occur in its pattern formation upon the insertion of a new test instance. If a slight change or
no change occurs, then the test instance is said to conform to the formed pattern of that class.
Consequently, the high level classifier produces a large relevance value for that test instance
in that class. On the other hand, if these changes drastically modify the formed pattern of the
class, then the high level classifier produces a small value of membership for that test instance in
that class. In the work from Silva and Zhao (2012a), three network measurements were used
to analyze these changes: average degree (⟨k⟩), clustering coefficient (C) and assortativity (r).
While in the work from Silva and Zhao (2015), the network measurements are extracted from
a tourist walk in the network. Therefore, a major problem that this work left open is how one
could choose other network measures in an intuitive way, and also how to define the weight of
influence that is given to each of them. Moreover, the classifier from this model is not entirely
high level yet, since it needs a second opinion from a low level classifier before yielding the final
class for a new testing instance.

Carneiro and Zhao (2017) have proposed a classification technique based on the impor-

tance concept, as a measure derived from PageRank (PAGE et al., 1999) and embedded in the
constructed network, which considers both physical and topological features of the input dataset.
The technique hence eliminates the necessity of the low level term in the classification process,
because it already considers both the physical features and the underlying network properties.
Each data instance is represented by a node in the network, and the edges between them can be
created according to both their distance, pairwise, and also to a purity measure, which character-
izes the level of mixture of a network component in relation to other components of different
classes. In the testing phase, a new data instance is inserted in the network and is classified into
that class where it has the highest importance score, compared to others. The technique had
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its performance evaluated firstly by applying it to both artificial and real benchmark datasets,
obtaining favorable results when compared to traditional classification techniques. Afterwards,
it was applied on two datasets in the detection of heart abnormalities, presenting even better
results, as its was able to outperform traditional classification models on this task. A network
construction method optimization has also been proposed for this technique (CARNEIRO et

al., 2019), based on a particle swarm optimization framework, for building the network while
optimizing a quality function driven by the classification accuracy.

2.4 Graph-Formation Techniques on Supervised Learning

In this work, we make use of different network formation techniques for mapping the
input dataset. Although there are currently works focused on the comparison of different graph-
formation techniques on semi-supervised learning (BERTON; LOPES; VEGA-OLIVEROS,
2018; SOUSA; REZENDE; BATISTA, 2013; JEBARA; WANG; CHANG, 2009; ROHBAN;
RABIEE, 2012), the literature still lacks studies concerning this subject on supervised learning
tasks. For this reason, we are now going to summarize some of the concepts regarding this topic.

Virtually any dataset can be represented and analyzed in the form of a network. In order
to accomplish this, for a dataset X , its data xi are mapped as vertices and the level of similarity
between each pair of vertices may generate an edge connecting them or not. Therefore, we will
have X ↦→ G = ⟨V ,E ⟩, where V = {v1,v2,v3 ..., vn} is the set of vertices and E is the set of
edges. The connections can be defined by the value of a specific attribute already in the dataset,
such as friendships among individuals, or flights between airports, for instance. Or they can also
be created using traditional graph formation techniques, such as kNN and ε-radius.

In the first and last studies of this thesis, presented in Chapter 3 and Chapter 8, respec-
tively, we make use of a combination of kNN and ε-radius techniques to generate the edges
between each pair of vertices in the network. This scheme has been used in previous works
(SILVA; ZHAO, 2012a), and the whole idea is that the ε-radius technique is used for dense
regions (|ε-radius(xi)|> k), while the kNN is employed for sparse regions. Mathematically, the
neighbors connected to a training vertex xi are yielded by:

N(xi) =

ε-radius(xi,yxi), if |ε-radius(xi,yxi)|> k

kNN(xi,yxi), otherwise ,
(2.1)

where yxi denotes the class label of the training instance xi, ε-radius(xi,yxi) returns the set
{x j, j ∈ V : dist(xi,x j)< ε ∧ yxi = yx j}, and kNN(xi,yxi) returns the set containing the k nearest
vertices of the same class of xi. One important advantage of using this combination of both
techniques is that, besides being able to preserve the dense and sparse regions from the original
dataset, it also prevents from leaving vertices isolated, i.e., without connections, in the resulting
network.
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In the second study of this work, presented in Chapter 4, we introduce a different
technique for building the network, based on the idea of preserving more information from
the input dataset in the network mapping procedure. Currently, the most adopted way to make
this mapping is by converting each data instance to a node in the network, oftentimes by
considering the Euclidean distance for generating the edges between each pair of nodes. In this
way, all features have the same weight in this mapping process and, consequently, the amount of
information in the resulting network is reduced when compared to the amount of information
in the input dataset. This simplification becomes more significant as the number of features in
the dataset increases. For this reason, in this study we opt for, instead of mapping each data
instance as a node in the network, as usual, we map each data instance’s attribute as being a node.
Although this procedure will overall require more memory consumption from the part of the
model, it has the advantage of preserving more information from the input dataset when building
the network, hence allowing one to make use of this extra information for improving the learning
process, during the training phase.

Another important remark to be made, still regarding graph-formation techniques on
supervised learning, is with regard to the number of components in the resulting network. Given
that, in the models presented in this work, the classification task is based on the impacts provoked
by the insertion of each test data instance on the network’s topology, for each class, then it is
mandatory that each class in the dataset should be represented by only one component in the
resulting network, i.e., that the number of components in the network should be equal to the
number of classes in the dataset. This is necessary to allow the model to properly detect the
topological pattern formation for each class, individually, during the training phase, so that the
classification process can be based on these previously detected patterns, during the testing
phase.

In the studies presented in Chapter 5, Chapter 6 and Chapter 7, we use different ap-
proaches for building the network, according to each problem. In the congressmen network,
from Chapter 5, since the object of analysis are legislative voting data, we opt to represent
each congressperson as a node in the temporal network, and to generate the edges based on
their voting record similarity, pairwise. While in the COVID-19 curves temporal network, from
Chapter 7, each node represents the curve from a region affected by the disease, and the edges
are based on their weekly variations similarity, pairwise. By proceeding this way, we therefore
have the possibility of tackling our problem by analyzing the changes occurred in these resulting
temporal networks with time, in terms of their topological features. In this sense, it is also
worth remembering that the network-based approach is essentially a graphical approach, thus
it is always possible to take advantage of this convenience by plotting the resulting network
at different temporal stages, to help in this analysis process. Additionally, there is also the
possibility of applying different community detection algorithms in the built networks, which
can also contribute in the analysis, as a handy clustering resource.
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The graph-formation technique used in Chapter 6 stands out from the others in this work,
as it is based on a time series periodicity detection network-based model (FERREIRA; ZHAO,
2014). In this technique, we start by splitting the variations from the time series of the input
dataset Xtrain into a predefined number of ranges. Afterwards, each of these ranges is mapped
as a node in the network, and edges are created between each pair of variation ranges if they
ever appeared consecutively in Xtrain. Hence, the graph-formation technique used in this study is
based on the price variations’ temporal order, and the detected communities, in this case, are
used for identifying possible price trend patterns in the built variations network.
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CHAPTER

3
A NETWORK-BASED HIGH LEVEL DATA

CLASSIFICATION TECHNIQUE

In this chapter, a high level network-based data classification technique is introduced
and has its performance evaluated by using both artificial and real benchmark datasets. The
technique starts by mapping the input dataset to a network, using a combination of kNN and
ε-radius techniques, where each data instance becomes a node in the network. The label for each
new data instance is assigned by comparing the impact provoked by the new data instance’s
insertion in the network and the impact patterns detected for each class during the training phase,
in terms of the network’s topological structure.

3.1 Introduction

The technique introduced in this chapter is inspired on a hybrid network-based data
classification technique, which makes use of a low and high level of learning methods, in
a combined form, with the high level method focusing, broadly speaking, on preserving the
network’s topological structure pattern for each class during the classification phase. In the
approach proposed in this study, we focus on preserving the data instances’ impact patterns on
the network topological structure, for each class. Additionally, the technique we propose does not
require a low level term, as in the original technique which inspired this study (SILVA; ZHAO,
2012a), relying only on the high level method for classification purposes.

The proposed model is based on the idea that data instances from the same class tend to
provoke similar impacts on the network’s topological structure, and that these “impact patterns”,
so to speak, are sufficient to correctly classify unlabeled data instances. Although this idea
may, at first, sound somewhat peculiar, the tests we conducted, using both artificial and real
datasets, indicate that the proposed model is able to perform relatively well, when compared
with traditional and well-known classification models.
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Regarding the organization of this chapter, besides this introduction, in section 3.2 we
discuss the motivation for this study. In section 3.3, we explain in details how the proposed
classifier is built, as well as how it calculates the impacts in the network caused by each new data
item, and how this information is used later, in the testing (or classification) phase. In section 3.4,
we present the obtained results from tests performed on 8 classification toy datasets and 9 real
datasets, along with a comparison between the results achieved by our technique in these tests
and those achieved by other traditional and well-known models, as well as by the hybrid high
level technique which inspired this work. At the end, in section 3.5, we present our final remarks.

3.2 Motivation

Data classification is a common task, which can be performed by both computer and
human being (animal). However, a fundamental difference between them can be observed:
computer-based classification considers only the physical features, such as similarity, distance or
distribution of the input data. On the other hand, brain-based classification takes into account not
only physical features, but also the organizational structure of the data, such as data patterns. To
be more specific, two data samples will be classified into the same class if they are constituent
elements of a well defined pattern, no matter how far they may stay from each other from the
perspective of their physical features. Therefore, the former is referred to as low level machine
learning techniques while the latter high level ones.

Complex networks have been proven to be quite useful for characterizing relationships
among data samples and, consequently, they are a powerful mechanism to capture data patterns.
The pure network-based high level classification technique introduced in this work is inspired
on the hybrid technique proposed by Silva and Zhao (2012a), Silva and Zhao (2015). This
hybrid technique combines a low level of learning method, which can be implemented by any
traditional classification technique, such as Naive Bayes, SVM, kNN, neural networks, etc., and
a high level of learning method, which makes use of network data representation in order to
identify the pattern formation, in terms of the network topology structure, for each different
class in the dataset. Their results have shown that the high level term of the hybrid classifier is
able to improve the performance of the low level classifier, especially in situations where the
class configuration’s complexity increases, measured in terms of more mixtures among different
classes. That technique was built upon the idea that, in a dataset, the data relationships may
present internal structures which are, oftentimes, unique and are shared among data items of the
same class. It also assumes that these internal structural patterns, formed by items of the same
class and identified in the training phase, will be preserved during the testing (or classification)
phase.

In this sense, the technique we propose in this study makes use of a very different
approach. Here, instead of focusing on the preservation of the data topological structure, we now
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focus on the impact that the addition of each new item causes, at the moment it is added in the
network. The term impact, within this context, can be understood as the changes that occurs in
the network’s properties, which, as we mentioned above, can be identified by extracting some
specific network measures. The idea behind our technique is that items from the same class will
cause similar impacts on the network, and therefore it is possible to determine the class of a
new item solely by looking at the way it impacts the network. The classifier is based on only
two open parameters, whose default values may be changed. We have tested its performance by
applying it on 8 artificially generated datasets, as well as on 9 different real classification datasets.
A comparison of these results has also been made, by applying 9 traditional and well-known
classification models on the same datasets. The results from these tests are stimulating, which
encourage us to continue our research to improve the efficiency of the model, as well as to apply it
to a greater variety of datasets. In comparison to traditional classification techniques, the proposed
technique is able to classify data according to pattern formation (high level features) instead of
only considering physical features (low level features). Moreover, the proposed classification
technique is purely high level, i.e., the low level term appearing in the technique presented in
Silva and Zhao (2012a), Silva and Zhao (2015) is no longer necessary. Additionally, it is simpler
than previous high level classification techniques as fewer parameters are required.

3.3 Materials and Methods

In this section, we describe in details how our network-based high level (NBHL) clas-
sification technique works. We start by providing an overview of its training and classification
phases in subsection 3.3.1. In subsection 3.3.2 and subsection 3.3.3, we provide a more detailed
description of the tasks performed by the model in the training and testing phases, respectively.
In subsection 3.3.4, we describe the network measures plugged into the model.

3.3.1 Model Overview

In supervised learning, initially we have an input dataset, here written as X = {(x1,y1),

..., (xn,yn)}, where the first component, xi = ( f1, ..., fd), denotes the attributes of the i-th instance
of d dimensions, and the second component, yi ∈L = {L1,L2,L3...,Ln}, denotes the class label
attributed to that same instance. The objective of the training phase is to learn the mapping x ∆−→ y.
To measure the level of learning, normally we use a second dataset for testing. In the absence of
a second dataset, the initial dataset can then be split into 2 sub-datasets: Xtrain, to be used for
training the classifier, and Xtest , whose values of y, in case they exist, will be suppressed so it can
be used for testing the classifier.

In our model, the training phase starts by splitting the sub-dataset Xtrain into 2 parts: Xnet

and Xitems. The same occurs with Ytrain, forming: Ynet and Yitems. In the first step of the training
phase, an initial network is built using the data from Xnet and Ynet , forming a network consisting
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of sub-sets of connected components, each of which representing one unique class of the dataset.
Afterwards, we extract some network measures for each of these network components, before
starting the second step. In the second step of the training phase, each item in Xitems is added
to the initial network, one by one. At each new insertion, the network measures of the affected
component (a sub-set representing a unique class) are recalculated. Note that, in the training
phase, only one component will be affected by each insertion, which is the one that represents
the item’s class, taken from Yitems. We consider the variation on each measure of the affected
component as being the item’s impact values. The impact values for each new data item insertion
during this phase are then stored in a 2-d array, whose dimensions are the training data instances
and their respective impacts on each considered network measure, which will be our “impact
list”.

The impact list is used during the classification phase, when we have the impact values
caused by the insertion of a new (unlabeled) item in the network and, in order to determine to
which class this new data item belongs, we then check in the impact list the nearest past impact
to the current impact. The new item is hence labeled with the same class from the nearest past
impact, according to the information stored in the impact list. The main idea behind this model
is that data items from the same class will cause similar impacts on their respective components
(which represent their classes). Therefore, in this sense, it is possible to recognize one item’s
class only by checking the similarity between the impact it causes on the network and the past
impacts, stored in each component’s “memory” (so to speak).

3.3.2 Description of the Training Phase

The proposed NBHL classification technique has two parameters, k and p. The parameter
k is supplied to the kNN algorithm, used for finding the neighbors of each data item in the
network. The parameter p will define the proportion by which Xtrain will be split into 2 sub-
datasets. The first sub-dataset, Xnet , with length equal to p|Xtrain|, is used for generating the
initial network. The second sub-dataset, Xitems, with length equal to (1− p)|Xtrain|, will have its
items added to the initial network, formed by Xnet , one by one. Each impact value caused by the
insertion of a new data instance on its respective network component is stored in a 2-d array,
with a number of rows equal to the length of Xitems and a number of columns equal to the number
of network measures used for detecting the impacts, plus one column for storing the respective
affected component.

Mathematically, during the first phase, Xtrain and Ytrain have their data (xi,yi) mapped as
vertices of the network, and an edge connecting a pair of vertices may be generated according to
the level of similarity between them. Therefore we will have Xtrain ↦→ G = ⟨V ,E ⟩, where V is
the set of vertices and E is the set of edges. The connections are created using two traditional
graph formation techniques in a combined form. The neighbors connected to a training vertex xi
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are given by:

N(xi) =

ε-radius(xi,yxi), if |ε-radius(xi,yxi)|> k

kNN(xi,yxi), otherwise ,
(3.1)

where yxi denotes the class label of the training instance xi, ε-radius(xi,yxi) returns the set
{x j, j ∈ V : dist(xi,x j)< ε ∧ yxi = yx j}, and kNN(xi,yxi) returns the set containing the k nearest
vertices of the same class of xi. Note that the ε-radius technique is used for dense regions
(|ε-radius(xi)|> k), while the kNN is employed for sparse regions. The value of ε is calculated
according to the value stipulated for the parameter k, by:

ε =
n

∑
l=1

median{kNNdist(xi,yxi)}
n

, (3.2)

where n is the number of classes in Ytrain, xi ∈ Xtrain, yxi denotes the class label of the training
instance xi, and kNNdist(xi,yxi) returns the distance from xi to its k nearest neighbors with class
label yxi . As a result of this technique, at the end of the training phase we will have one connected
network component for each class. Reminding that the training phase is made of two different
steps. In the first step the network is generated from the Xnet and Ynet data. In the second step the
items in Xitems are added to the initial network, one by one, according to their respective classes,
given by the data in Yitems, and that will also define to which component of the network the item
belongs. After each insertion, the measures of the affected component are recalculated, in order
to identify the impact caused by the new item in the component. Hence, at the end of the training
phase we will have a list with all these impact values as well.

The impact I of an item xi on a network component is represented by a 1-d array, whose
number of columns is equal to the number of network measures plugged into the model. Its
values are given by:

I(l)i (x)(u) = ∆G(l)
i (u)ρ(l) (3.3)

where ∆G(l)
i (u)∈ [0,1] is the variation of the u-th network measure that occurs on the component

representing class l, if xi belongs to this component and ρ(l) ∈ [0,1] is the proportion of data
items pertaining to class l in the network. The number of measures to be plugged into the high
level classifier is user-controllable. Since our classification process is highly dependent on the
value of the impacts caused on these measures, then it is expected, intuitively, that the efficiency
of the classifier improves as more relevant measures are used for detecting these impacts.

The last step of the training phase is to generate a list of α values, which will have the
role of weighting the impact values on each component’s measure during the classification phase.
Therefore the α list will have the form of a 2-d array, with its columns being the α values for
each measure plus one column for the component. The number of rows in the array will be
equal to the number of components in the network, which, in this case, is equal to the number
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of classes in Ytrain. The final values of α , for each network component representing the class l,
must satisfy the following constraint:

M

∑
u=1

α
(l)(u) = 1 , (3.4)

where M is the number of network measures plugged into the model and α(l)(u) ∈ [0,1],∀u ∈
{1, ...,M}. After performing several tests, we chose to define the values of α as being equal to
the normalized standard deviations of the impact values, for each measure and each component.
So that the higher it is the standard deviation of the impact values (taken from the impact list)
for a measure, the higher it will be its α value for that component. By giving larger weights for
measures with higher standard deviations (and hence also with higher variations), we aim to
maximize the area in the decision space formed by the points representing the past impacts for
each component, at the moment of labeling a new item in the classification phase.

3.3.3 Description of the Testing Phase

In the second phase, i.e., the classification or testing phase, a new data item is inserted
in the network, without any label on it. Its connections (or edges) with the existing items are
defined according to the same rules described in Equation 3.1. The only difference now is that,
since we do not know the class of this new item, it will then be connected to its neighbors
disregarding their class labels. To determine the class for this new item, the decision is made
based on the number of components affected by its insertion. In case the new item affects only
one component, then the classifier will return 100% of chance of pertinence of the item to the
class of this component, and the calculation of its impact is not necessary. Otherwise, when more
than one component is affected by the item’s insertion, the classifier then calculates the impact
provoked by the item on each one of them, separately. The component with the smallest distance
between the current impact and any of its past impacts will be the one to “keep” this new item
for him, and thus labeling him with his own class.

It is worth noting that, in this decision process, we are not taking into account, at any
moment, whether the changes provoked by the insertion of the new item on the structure of each
component are big or small. Instead, we are solely estimating the level of similarity between
the new item’s impact and the impacts provoked by all the past insertions in each component.
Hence, in this manner, we could also say that what the classifier is trying to do is to identify the
“impacts pattern” on the topological structure, for each component, i.e., for each different class
of the dataset.

It is also important to mention that, during the classification phase, the changes occurred
in the network – as new test instances are added to its components – should not be discarded.
Our tests indicated that a continuous update of the network during the classification phase not
only contributes to save processing time, since, as the components’ diameters grow, more test
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instances should then be connected to only one of the network components along the process,
but it also is able to increase the overall performance of the model, in a self-learning manner.

Mathematically, during the classification phase, the impact value of the new instance
xi ∈ Xtest on each network measure u, with respect to the class l ∈L , is given by:

f (l)i (x,u) = α
(l)(u)I(l)i (x,u) , (3.5)

which will return, for each instance xi, the 1-d array f (l)i (x), with length equal to the number of
network measures plugged into the model. Observe that, now, the impact values are weighted by
the respective α values defined for each network measure u and for each component C(l), at the
end of the training phase. This rule also applies to the past impact values, which are stored in the
impact list. The membership of the test instance xi ∈ Xtest with respect to the class l, yielded by
the component C(l), is given by:

C(l)
i (x) = argmin

µi∈C(l)
dist{ f (l)i (x), f (l)i (µ)} , (3.6)

where dist{a,b} returns the distance between the arrays a and b. In this way, each affected
component will yield the smallest distance between the current impact and any of its past
impacts. Finally, the probability P of xi to belong to the class l, when more than one component
is affected by the instance insertion, is given by:

P(l)
i (x) =

C(l)
i (x)

∑
n
l=1 1− C(l)

i (x)

∑
n
l=1 C(l)

i (x)

. (3.7)

This final equation has the role of returning the probabilities according to the normalized
minimum distances yielded by the n affected components, when n > 1, such that the constraint

n

∑
l=1

P(l)
i (x) = 1 (3.8)

is satisfied, and the probabilities are inversely proportional to distances.

3.3.4 Network Measures Used for Testing

For conducting our tests, we have used 6 network measures to evaluate the changes
occurred in each network component affected by the insertion of a new instance, which will also
be their impact values. These measures are described below.

∙ Average degree (⟨k⟩): a relatively simple measure, which statistically quantifies the average
degree of the vertices of a component.

∙ Assortativity (r): numerically translates the preference for vertices of a network to attach
to others that are similar or different regarding the vertices’s degree in a structural sense
(NEWMAN, 2003).
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∙ Average local clustering coefficient (⟨cci⟩): quantifies the degree to which local nodes in a
network tend to cluster together.

∙ Transitivity (C): measures the total number of closed triangles in a network.

∙ Average shortest path length (l): gives us, as it says, the average minimum number of
edges separating all nodes in a fully connected component.

∙ Second moment of degree (⟨k2⟩): used here as an indicator of how long are the tails of the
degree distribution in a graph.

3.4 Results and Discussion

In this section, we present the obtained results when applying the proposed NBHL
technique to both artificial and real benchmark datasets.

3.4.1 Tests Performed on Toy Data

In this subsection, we present the results obtained when the proposed Network-Based
High Level (NBHL) classification technique is applied on different classification scenarios
generated from artificial data. We also present a comparison of its performance with those
obtained by applying traditional classification models on the same data. Furthermore, we also
apply on these same data the hybrid high level classification technique, hereafter to be referred to
as HHL, from Silva and Zhao (2012a), which inspired us to conceive the NBHL technique. The
comparison of the two techniques is made in order to highlight the existing differences between
them.

The following traditional and well-known classification models are applied on the same
artificial datasets: Decision Tree (SAFAVIN; LANDGREBE, 1991), Logistic Regression (GEL-
MAN; HILL, 2007), Multilayer Perceptron (HINTON, 1989), Support Vector Machines (VAP-
NIK, 2000) and Naive Bayes (RISH, 2001). We also apply the following ensemble methods:
Bagging of Decision Tree and Bagging of MLP (BREIMAN, 1996), Random Forest (BREIMAN,
2001) and AdaBoost (FREUND; SCHAPIRE, 1995). All models are implemented through the
tool introduced by Pedregosa et al. (2011). The default RBF kernel is used for the SVM model,
in all tests performed. For the other classification models, we have used their respective default
parameter values.

For the HHL technique, we define its ε value, which is used in the radius nearest neighbors
algorithm, according to the same rule applied to our model, described in section 3.3. Its network
measures are also the same 6 measures plugged into our model, listed in subsection 3.3.4. As
for its α values, we set them as being 1/6 each, and its λ values, which controls the weight of
the high level term in its classification process, vary from 0.1 to 1.0. The low level term for
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Table 3 – Accuracy rates (%) for each toy dataset, obtained by the following classification models, in
that order: AdaBoost, Bagging of Decision Tree, Bagging of MLP, Decision Tree, Logistic
Regression, MLP, Naive-Bayes, Random Forest, SVM, HHL (best result followed by its k and
λ values, respectively) and NBHL (best result followed by its k and p values, respectively).

A
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Ba
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LP
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LR M
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N
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R
F
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H
H

L

N
BH

L

Rnd 2 class 100 100 100 100 100 100 100 100 100 100 (1, .1) 100 (1, .1)
Rnd 3 class 96 96 96 96 100 100 100 100 100 100 (1, .1) 100 (1, .1)
Rnd 4 class 32 76 76 76 80 80 80 76 80 80 (1, .1) 80 (2, .3)

Blobs 64 68 68 68 64 52 76 76 72 64 (1, .2) 96 (1, .1)
Circles 0.0 100 100 100 100 40 56 56 96 56 100 (1, .1) 100 (1, .1)

Circles 0.25 52 60 56 60 44 52 60 56 60 48 (1, .3) 64 (1, .8)
Moons 0.0 100 96 96 96 76 72 80 96 96 100 (1, .3) 100 (1, .1)

Moons 0.25 100 96 96 96 84 88 84 92 88 96 (1, .4) 96 (1, .1)
Average Rank 4th 2nd 3rd 2nd 5th 6th 4th 2nd 3rd 3rd 1st

Source: Research data.

the hybrid classification is generated by the SVM model. The parameter k, for both high level
techniques, varies from 1 to 4, and the parameter p, which is used only in the NBHL technique,
varies from 0.1 to 0.9.

The toy data generated for the tests can be seen in Figure 5. It comprises 8 different
datasets, containing 100 samples each. For the sake of facilitating the visualization, all toy
datasets have two dimensions. For splitting each of them into 2 sub-datasets, for training and
testing purposes, we make use of the function available in Pedregosa et al. (2011), which returns
a train-test split with 75% and 25% the size of the inputs, respectively. As one can observe, the
degree of difficulty varies among the datasets, with Figure 5a probably being the easiest one for
classification purposes.

The main results from the tests are presented in Table 3. The last row in the table shows
the average rank for each model, which corresponds to the average of each model’s relative
performance on each dataset. These numbers show that the NBHL technique performed very
well in the tests, with its best results coming from Blobs and Circles with a 0.25 noise datasets,
in which it was able to achieve the highest score among all models considered. Those artificial
datasets have different shapes, which represent different data patterns. Although those datasets
are low dimensional and visually simple ones, traditional techniques already present difficulty
to cope with the variation of data patterns in those datasets. On the other hand, the high level
techniques are able to capture various data patterns in the unique scheme. This is the fundamental
difference between low and high level techniques.

In Figure 6 and Figure 7, we have the box plots generated from all results obtained by
the HHL and NBHL techniques in the tests, considering all different combinations of values
supplied for the parameters k and λ , for HHL, and for parameters k and p, for NBHL. These
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Figure 5 – Toy datasets used for performing the tests

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5
2 classes, 2 informative features, 1 cluster per class

(a) Random 2 classes

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−3

−2

−1

0

1

2

3
3 classes, 2 informative features, 1 cluster per class

(b) Random 3 classes

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
−3

−2

−1

0

1

2

3

4
4 classes, 2 informative features, 1 cluster per class

(c) Random 4 classes

−10 −8 −6 −4 −2 0 2 4
−2

0

2

4

6

8

10

12
Blobs

(d) Blobs 3 classes

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Circles (noise = 0.0)

(e) Circles noise 0.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Circles (noise = 0.25)

(f) Circles noise 0.25

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−0.5

0.0

0.5

1.0

Moons (noise = 0.0)

(g) Moons noise 0.0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Moons (noise = 0.25)

(h) Moons noise 0.25

Source: Elaborated by the author.
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Figure 6 – Overview of the Hybrid High Level - HHL technique performance on each toy dataset, with
different combinations of values being supplied for its parameters k and λ . The k values vary
between 1 and 4, and the parameter λ values vary between 0.1 and 1.0.
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plots show that, in these tests, the means, which are indicated by a red square in the figures, are
the same for the two techniques only on the first two datasets, in which both achieved 100%
accuracy in all results, i.e., they were able to classify all items correctly, for all parameters values
supplied. For all other testing datasets, the mean accuracy is higher for NBHL technique.

With the purpose of stressing even further the differences between both techniques, we
also included, in Figure 8, the box plots generated by the HHL’s results filtered by a λ value
equal to 1.0, which brings us the scores achieved by this technique when only its high level term
is considered in the classification process. Having in mind that the HHL technique – which is, as
its own name says, a hybrid technique – was not originally conceived for this type of analysis,
we are adding this information in the results strictly for differentiation purposes.

3.4.2 Tests Performed on Real Data

In this subsection, we present the results obtained by applying the proposed NBHL
technique, along with other traditional and well-known classification models, on UCI real
classification datasets. A succinct meta-information of the selected datasets is given in Table 4.
For a detailed description, one can refer to Lichman (2013). For splitting each UCI dataset into
2 sub-datasets, for training and testing purposes, we make use of the same function used in
subsection 3.4.1, available in Pedregosa et al. (2011), which returns a train-test split with 75%
and 25% the size of the inputs, respectively.

The traditional models applied on the datasets in this section are also the same ones
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Figure 7 – Overview of the proposed Network-Based High Level - NBHL technique performance on each
toy dataset, with different combinations of values being supplied for its parameters k and p.
The k values vary between 1 and 4, and the parameter p values vary between 0.1 and 0.9.
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Figure 8 – Overview of the “pure” Hybrid High Level - HHL technique performance on each toy dataset,
with the values for its parameter k varying between 1 and 4, and its parameter λ fixed at 1.0.
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Table 4 – Meta information of the real classification datasets used for testing and for comparing the results
obtained by the NBHL technique.

No of Samples No of Dimensions No of Classes
Breast Cancer 569 30 2

Digits 1,767 64 9
Glass 214 10 6
Iris 150 4 3

Pima 768 8 2
Teaching 151 5 3

Wine 178 13 3
Yeast 1,484 8 10
Zoo 101 17 7

Source: Research data.

Table 5 – Parameters supplied for the SVM (γ) and NBHL (k and p) classifiers for obtaining the results
presented in Table 6, for each dataset.

SVM NBHL
γ k p

Breast Cancer 0.001 2 0.1
Digits 0.001 1 0.5
Glass 1.0 2 0.8
Iris 1.0 1 0.5

Pima 1.0 3 0.1
Teaching 1.0 1 0.2

Wine 0.001 6 0.9
Yeast 1.0 3 0.9
Zoo 0.1 1 0.5
Source: Research data.

described and used in subsection 3.4.1. The parameters supplied for the SVM (γ) and NBHL (k
and p) classifiers are summarized in Table 5.

The main results from these tests are presented in Table 6. The average rank here is the
same used in Table 3, corresponding to the average relative performance of each model, on each
dataset. As it is shown in Table 6, the NBHL is ranked in the third place, which means that it
performed well when compared with other traditional and well-known classification techniques
applied on the same datasets. It is possible to highlight, for instance, that it had the second best
performance on the Digits dataset, with a 99.1% accuracy rate, right behind the SVM model.
It was also able to achieve good scores on the Iris and Zoo datasets, with 97.4% and 100% of
accuracy, respectively. However, it presented a relatively low performance on the Yeast and Wine
datasets. We see this relatively low score on these specific datasets as a sign that, even though its
preliminary results can be considered stimulating, there is still a lot of open research possibilities
to improve the model’s efficiency.
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Table 6 – Accuracy rates (%) for each real dataset, obtained by the following techniques, in that order:
AdaBoost, Bagging of Decision Tree, Bagging of MLP, Decision Tree, Logistic Regression,
MLP, Naive-Bayes, Random Forest, SVM and NBHL. The parameters supplied for the SVM
and NBHL techniques are displayed in the Table 5.

A
da

Ba
gD

T

Ba
gM

LP

D
T

LR M
LP

N
B

R
F

SV
M

N
BH

L

Breast Cancer 97.8 86.0 91.6 89.5 95.8 89.5 93.7 93.7 93.0 94.4
Digits 26.2 84.9 84.4 85.5 95.3 96.7 83.3 94.0 99.5 99.1
Glass 46.3 63.9 64.8 57.4 57.4 67.3 46.3 70.4 64.8 66.7
Iris 89.5 97.4 97.4 97.4 86.8 92.1 100.0 97.4 97.4 97.4

Pima 79.2 71.3 75.0 72.9 80.7 70.3 76.6 74.0 67.7 73.4
Teaching 47.4 57.9 57.9 55.3 44.7 60.9 44.7 68.4 55.3 55.3

Wine 86.7 84.4 91.1 84.4 93.3 97.8 93.3 95.5 71.1 80.0
Yeast 45.0 50.9 51.2 53.1 53.1 57.7 11.3 57.9 57.9 36.7
Zoo 76.9 100.0 100.0 100.0 100.0 96.1 100.0 100.0 100.0 100.0

Average Rank 7th 8th 4th 6th 2nd 2nd 5th 1st 4th 3rd
Source: Research data.

Figure 9 – Networks after the training (above) and after the testing (below) phases, for the (a) Breast
Cancer, (b) Iris and (c) Zoo datasets.
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Figure 10 – Overview of the NBHL classifier performance on each dataset, with different combinations
of values being supplied for its parameters k and p. The k values vary between 1 and 6, and
the parameter p values vary between 0.2 and 0.9.
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In Figure 9, it is possible to see the networks generated by the proposed model after the
training phase and after the classification phase, for the Breast Cancer, Iris and Zoo datasets. It is
interesting to note, in this figure, the main changes occurred in the topological structure of each
network, during the classification phase, for the three datasets. It is also worth noting, especially
in Figure 9c, that even when we have a relatively small dataset, the classifier is still able to
correctly detect the particularities of the impact patterns, for each class, and thus to properly
distribute the testing items among all components identified by him during the training phase.

In Figure 10, there are the box plots of all results obtained during the tests performed
with the NBHL, using different combinations of values for the two parameters k and p. The k

values varied between 1 and 6, while the parameter p values varied between 0.2 and 0.9. As we
can see, when different combinations of values for these two parameters are supplied for the
model, the final results may vary. However, these variations do not seem to affect its overall
performance considerably, for most of the datasets. Therefore we believe this figure helps to
demonstrate the overall robustness of the model, when it comes to the values of its parameters k

and p.

3.5 Chapter Remarks

In this chapter, we have introduced a novel pure high level classification technique, which
is built upon the idea that the impacts caused by the insertion of new items on the internal
structures shared among data items of the same class tend to be alike, leading to the emergence
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of some sort of “impacts pattern” for each class, and that this peculiar trend could be sufficient
for a classifier to infer from which class a new unlabeled instance belongs to. Several tests were
performed, on 8 artificially generated datasets and on other 9 different real classification datasets,
using distinct combinations of values for the two parameters k and p. A performance comparison
has also been made, by applying 9 traditional and well-known classification models on these
same datasets. The results obtained through these tests can be considered as quite encouraging.

We believe, given the intrinsic evolving nature of the rationale behind our model, that
the method presented here may be especially indicated for the classification of datasets with
temporal attributes. In which their topological structure, rather than being static, may change
with time. It is expected that, in this kind of situations, our classification technique has the
potential of performing well when compared with other classification methods, which have a
more stable approach.
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CHAPTER

4
A MODULARITY-BASED HIGH LEVEL DATA

CLASSIFICATION TECHNIQUE

In this chapter, another high level network-based data classification technique is intro-
duced and has its performance evaluated by using both artificial and real benchmark datasets.
This technique starts by mapping the input dataset to a network, with the difference that now
each data instance’s attribute becomes a node in the network, and only the ε-radius technique
is considered when building the network. Additionally, the label for each new data instance is
assigned by assessing the impact caused by its insertion in the network, in terms of the modularity
score.

4.1 Introduction

Many networks encountered in the real world, such as social, computer and metabolic
networks, are found to divide naturally into communities or modules (NEWMAN, 2006). One of
the most effective ways of detecting these communities is through the modularity measure. The
well-known fast greedy algorithm, for instance, determines the optimal number of communities
in the network by maximizing the modularity score of the graph. In this chapter, we investigate
whether the use of this measure alone would be sufficient for building a data classification
technique. The obtained results, by testing the proposed model with both artificial and real
benchmark datasets, indicate that it is indeed possible to achieve competitive performances, by
only considering this measure in the classification process.

The main novelty of the network-based classification model presented in this study is
that, instead of mapping each data instance as a node in the network, as usual, it maps each data
instance’s attribute as a node in the network. This modification in the mapping procedure aims
to preserve more information from the dataset, in such a way that this information can be used
for improving the model’s performance in the classification process. Additionally, the proposed



68 Chapter 4. A Modularity-Based High Level Data Classification Technique

technique considers only the modularity measure for calculating and comparing the impacts
provoked by the insertion of each new data instance in the network. This simplification is possible
due to the form that the network is built during the training phase, by using an algorithm which
minimizes the radius distance parameter for creating the edges while still outputting a network
with one component for each class in the dataset. Moreover, an attention mechanism is used in
this technique, similar to the one used in the Transformer deep learning model (VASWANI et

al., 2017), to discriminate which edges generated during the testing phase should be considered
more important in the classification process.

Besides this introduction, this chapter is organized as follows. In section 4.2, we discuss
the motivation for conceiving the model. In section 4.3, we start with an overview of the proposed
model, then we provide a detailed description of the model’s training phase, showing how it maps
the input dataset to an attributes network, and also describe the model’s testing phase, explaining
how the probabilities for a new testing instance of belonging to each class are calculated. In
section 4.4, we present the obtained results, along with some discussions, from the application
to benchmark datasets and compare the performance with those obtained by other traditional
classification models. At the end, in section 4.5, we conclude the chapter by adding some final
remarks.

4.2 Motivation

One of the key aspects when employing a graphical approach to a classification problem
lies in how the network is built from the information provided by the input dataset (BERTON;
LOPES; VEGA-OLIVEROS, 2018). Usually, for this process, each data instance is mapped as a
node in the network, and the edges among them are generated according to the distance they
are from each other, pairwise, based on a threshold parameter. This threshold can be set either
as a fixed value, thus assuming the form of a radius in the dimension space, for instance, or it
can also be based on a kNN algorithm, where we hence have that a node will be connected to
its k nearest neighbors in the network, disregarding how far they are from each other. However,
although the procedure of mapping every data instance as a node in the network is still the most
adopted one, it has the drawback of, oftentimes, discarding useful information from the dataset
during the mapping process. Specially when the number of features in the dataset is larger, which
turns more difficult to transfer all this information to the network without any loss, since some
simplifications are required for the mapping process.

In this study, we introduce a different technique for building the network, where, instead
of mapping each instance of the dataset as a node, as usual, we map each of the instance’s
attributes as being a node. Although this procedure will overall require more memory consump-
tion from the part of the model, it has the important advantage of allowing to preserve more
information from the dataset when building the network, and hence to also make use of this extra
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information for improving its learning process, during the training phase. In addition, we also
introduce a technique for building the network which aims to minimize the value of the threshold
parameter responsible for determining the edges among the nodes, while still yielding a network
with only one component per class. This technique is used in our model for the sake of making
the network more sensitive to the addition of new instances, in terms of its modularity measure,
during the testing phase.

The proposed model is evaluated by applying it to benchmark artificial and real clas-
sification datasets, as well as by comparing its performance with the ones achieved by other
traditional classification models on the same data. The results obtained are encouraging, with the
model being ranked on second place among the 10 classifiers considered, both for the artificial
and real selected datasets.

4.3 Materials and Methods

In this section, we start, in subsection 4.3.1, by providing an overview of the proposed
modularity-based high level classification model (MBHL). In subsection 4.3.2, we have a detailed
description of the model’s training phase, explaining how it builds the attributes network and
how it calibrates the threshold parameter. In subsection 4.3.3, there is the description of the
testing phase, explaining how the new instances are classified. At the end of the section, in
subsection 4.3.4, we show the datasets used for evaluating the model’s performance.

4.3.1 Model Overview

In supervised learning, initially we have an input dataset comprising n instances and m

features, in the form of X = {x1,x2, ...,xn}, where each instance i consists of m dimensions, such
that xi = (xi,1,xi,2, ...,xi,m), as in the following 2d array:

x1,1 x1,2 x1,3 ... x1,m

x2,1 x2,2 x2,3 ... x2,m

... ... ... ... ...

xn,1 xn,2 xn,3 ... xn,m

 . (4.1)

The labels for each instance i are usually provided in the form of Y = {y1,y2,y3 . . . ,ym}, such
that yi ∈L = {L1,L2,L3 . . . ,Ln}, which represent the n classes in the dataset. The objective of
the training phase is to explore the covariations and to identify possible patterns in the dataset,
in order to learn the mapping X ∆−→ Y . To measure the level of learning, in the testing phase,
normally we make use of a second dataset. In the absence of a second dataset, then the initial
dataset can be split into 2 subdatasets: Xtrain and Ytrain, to be used for training the classifier, and
Xtest and Ytest , whose values of Y are suppressed so they can be used for evaluating the classifier’s
performance.
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A network can be defined as graph G = (V ,E ), where V is a set of nodes and E is a
set of tuples representing the edges between each pair of nodes (i, j) : i, j ∈ V . In the proposed
model, each node in the network represents an attribute d of an instance xi in the dataset, such that
the size of G is always equal to n ·m. The connections (or edges) between nodes from different
instances are created based on how far they are from each other, in the spacial dimension formed
by each attribute d, according to a threshold parameter ε .

The main novelty introduced by the proposed model lies in its network formation method,
which involves a calibration process to generate a network with one component for each class in
the dataset, while giving the minimum possible value for the threshold parameter ε . In this way,
the network resulted from the training phase will be more sensitive, in terms of its modularity
measure, to the insertion of new instances during the testing phase, which, by its turn, is expected
to contribute for increasing the performance of a classification method which is solely based
on this measure, as it is the case of the rationale behind the model proposed in this study. In
the training phase, the attributes network is built by using the minimum possible values for the
parameter ε , adjusted to each dataset. In the testing phase, new instances are then inserted in
the network and their labels will be yielded basically by the class which results in the higher
positive impact on the network’s modularity measure, weighted by two other parameters, γ and
ρ . Following, we provide more details about the training and testing phases of the model, along
with examples of application of its training phase on four benchmark classification datasets.

4.3.2 Description of the Training Phase

The training phase starts by generating the initial values of the parameter ε , used for
creating the edges in the network. Afterwards, it generates the attributes network G , while it
calibrates the values of ε in order to keep them at a minimum necessary value to obtain one
component for each class in the dataset. For each class L, the parameter εL

d yields the maximum
difference between the values of attributes xi,d and x j,d , with i ̸= j, in order to connect their
respective nodes by a link in the network. Its initial values are given by:

ε
L
d = θ

√
∑

n
i=1(xi,d− X̄d)2

n−1
, (4.2)

which yields the standard deviation of the sample comprising all n values for the attribute d

in Xtrain multiplied by a predefined value θ , such that θ ∈ [0,1]. Note that those are the initial
values for ε , which oftentimes will change later, during the calibration of the parameter ε when
generating the attributes network. Therefore, as lower the value of θ , the lower will be the initial
values of ε and more changes are expected to occur for its values during the calibration process.

After generating the initial values for ε , the next step in the training phase is to create the
network from the training dataset, in which every attribute will become a node in the network
and the edges between them are defined by the parameter ε . We start by generating a new graph
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Figure 11 – Examples of networks generated by following the steps in the training phase for four datasets.
(Above) network with only edges between attributes of a same instance, and (Below) final
attributes network for: Circles_0 dataset (2 classes and 2 features), Moons_0 dataset (2 classes
and 2 features), Iris dataset (3 classes and 4 features), and Zoo dataset (7 classes and 16
features). The number of training instances is reduced for the Zoo dataset only for the sake of
visibility.
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Source: Elaborated by the author.

G , with n ·m vertices, where n is the number of instances and m is the number of dimensions
in Xtrain. Then, we create the “intra-item” edges, by taking all nodes representing an attribute
xi,d , from the same instance i, and connecting them, pairwise, such that any attribute xi,d1 will be
connected to the attribute xi,d2 , except when d1 = d2, to avoid self-loops. At this point, we will
already have a network as it is shown in Figure 11a, Figure 11b, Figure 11c and Figure 11d, with
each node representing an attribute and still without any edges connecting nodes from different
instances. Afterwards, the model starts to calibrate the parameter ε by, at each iteration, setting
its values as the minimum distance between the components from a same class in the network
and connecting then by new edges, correspondingly, until we have only one component per class,
as it is shown in Figure 11e, Figure 11f, Figure 11g and Figure 11h.

The complete process for generating the network is outlined in Algorithm 1. In lines
(2:4), we create the network, add the vertices and the intra-item edges. In lines (5:27), there is the
ε calibration process, when the “inter-edges”, i.e., the edges connecting attributes from different
instances, are created, by determining the minimum values for ε such that, at the end, we have
one component for each class in the network.
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Algorithm 1 – Attributes network G generation
1: procedure GENERATE G(X ,Y )
2: G← new graph with n×m vertices (number of instances × number of features)
3: G← add intra-item edges
4: es_list← [ ]
5: while len(Gcomponents)> len(L ) do
6: for class in set(Y ) do
7: es← GetInterEdges(X ,ε,class)
8: es← e in es if e not in es_list
9: G← add edges es

10: es_list← add es
11: end for
12: comps← components in G
13: classes← [L if len(compsclass=L)> 1]
14: C← largest component in compsclass in classes

15: others← [other components in compsclass=Cclass
]

16: di f min← [∞] ·m
17: for node1 in C do
18: i1← X values for node1
19: for node2 in others do
20: i2← X values for node2
21: di f ← [0] ·m
22: for d = 0 to m do
23: di fd = |i1d − i2d |− εCclass

d
24: end for
25: if max(di f )< max(di f min) then
26: di f min = di f
27: end if
28: end for
29: end for
30: for d = 0 to m do
31: if di f mind > 0 then
32: εCclass

d += di f mind
33: end if
34: end for
35: end while
36: return G
37: end procedure

The Algorithm 2 shows how the edges for connecting nodes from different instances
in the network are created, according to the current values of the parameter ε . In this case, the
model will generate edges between each pair of nodes xi,d and x j,d representing a same attribute
d and a same class L, where i ̸= j, whenever the distance between them are within the range εL

d .
In this way, the total number of edges between two instances will range from 0 until the number
of dimensions m in the dataset.

The last step in the training phase consists of generating the final values of the parameter
ε , to be used in the testing phase. These values are given by the arithmetic mean of the current
values of ε at each iteration during the calibration process. Hence, for testing purposes, the values
of ε are yielded by:

ε
L
d =

∑
n
i=1 εL

d i
n

, (4.3)

where n is the number of changes occurred for εL
d during its calibration process, d is one of the

dimensions in the dataset and L ∈L . In this way, for testing purposes, the values of ε will be
somewhere between its initial values, when generally only a few edges are generated or even
none of them, and its final values in the calibration process.
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Algorithm 2 – Inter-items edges generation
1: procedure GETINTEREDGES(X ,ε,L)
2: es← [ ]
3: combs← combinations of indexes in XL, pairwise
4: for i in indexes of XL do
5: pairs← combspair0=i

6: for p in pairs do
7: for d = 0 to m do
8: dist = |XL

p0,d −XL
p1,d |

9: if dist ≤ εL
d then

10: es← add pair p
11: end if
12: end for
13: end for
14: end for
15: return es
16: end procedure

4.3.3 Description of the Testing Phase

In the testing phase, a new instance is inserted in the network G and the model then needs
to assign it a label, according to its attributes values. To accomplish this task, the model starts
by simulating its insertion in each of the network’s components, generating edges according to
the values of the parameter ε , and then calculates the impacts of this insertion on the network’s
modularity measure Q, for each component, i.e., for each class. The probabilities for the new
instance to belong to each class L are yielded based on the number of edges generated for each
attribute d, weighted by its respective parameter γd , and on the impacts on the modularity Q,
weighted by its respective parameter ρL, such that the higher the positive impacts on Q when the
instance is inserted in the component from class L, the higher the probability of the instance to
belong to this class.

The modularity measure, broadly speaking, compares the number of connections between
vertices which share a same characteristic with the expected number of connections when
occurred randomly, and it is often used for detecting communities in a network. The fast

greedy algorithm (CLAUSET; NEWMAN; MOORE, 2004), for instance, determines the optimal
number of communities in the network by maximizing the modularity score of the graph. For the
classification task proposed in this work, we take into account two other factors regarding this
measure, which are: (1) How meaningful is each of these new connections (or edges) induced
by the insertion of the new instance in the network, and (2) The ratio between the respective
number of new connections generated and the size of the network component, since, overall,
larger components tend to receive more links from the new instance, which would incur in biased
estimations from the classifier. Therefore, for the testing phase, we adopt two parameters, γ and
ρ , for managing these two mentioned factors in the model.

The parameter γ has the role of yielding the correlations between each attribute in Xtrain

and the classes in Ytrain. These values are used for weighting the number of edges generated
between a new instance and the already existing nodes in the network, such that attributes which
are more correlated to Ytrain have higher weights on the final probability scores yielded for
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each class. In order to determine these weights, we opt for making use of the Ridge Regression
(HOERL; KENNARD, 1970), with the values of γ hence assuming the values of the coefficients
w returned by this linear regression model. Ridge Regression regularizes an Ordinary Least
Squares model by favoring simpler models, i.e., with smaller coefficients, by minimizing the
following loss function:

|Y −Xw|2 +λ |w|2 , (4.4)

where λ is a term to control the regularization strength. The main distinction of Ridge Regression
among other linear regression models is that it enforces the coefficients w to be lower by
introducing a constraint as the second term in Equation 4.4 to penalize large values for w. So the
lower the regularization term λ is, the more the model will resemble an Ordinary Least Squares
model. In our adaptation, the values of γ are yielded by:

γd =

√
|wd|

∑
m
d=1

√
|wd|

, (4.5)

where |wd| is the absolute value of the coefficient returned by the Ridge Regression model for
attribute d and m is the number of dimensions in the dataset. The root square in Equation 4.5 is
inserted for the sake of balancing the values of γ in cases when the differences between them
become too large.

Please note that the strategy resulting from Equation 4.5, of adopting normalized weights
for each attribute according to their respective level of importance in the dataset, is a type of
attention mechanism, often used in deep learning models such as the Transformer (VASWANI et

al., 2017), in which the final weights are usually obtained through a SoftMax function. In this
work, we adopt this procedure to identify which edges should be considered more “meaningful”
when a new data instance is inserted in the network to be classified, in the testing phase.

The third parameter of the model ρ is responsible for balancing the impacts on the
network’s modularity measure, when inserting new instances during the testing phase, according
to the ratio of the number of instances per class in the training dataset. This is necessary for
dealing with cases of unbalanced datasets. Its values are given by:

ρL =
|Xtrain|
|XL

train|
, (4.6)

where L ∈L and |XL
train| stands for the length of all instances in Xtrain from class L. The final

values of ρ must also be normalized, hence assuming the form ρL/∑L ρL.

Likewise in the training phase, the new instance has its attributes mapped as m nodes
in the network, where m is the number of dimensions in the dataset, and the edges among its
nodes (intra-item edges) are created according to the same rule used in the training phase, with
all its pairs of attributes xi,d1 and xi,d2 being connected, pairwise, as long as d1 ̸= d2, to avoid
self-loops. The generation of edge (xi,d,x j,d) between the node representing attribute d of the
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new instance i and any already existing node in the network j, also representing attribute d, from
class L, is yielded by:

(xi,d,x j,d) =

1, if |xi,d− x j,d| ≤ εL
d

0, otherwise ,
(4.7)

where L ∈L . The total number of edges created are then averaged by each attribute d and
weighted by the respective parameter γ , providing us with the indicator E, for each class L,
according to:

EL = γd
∑

m
d=1 Nd

n
, (4.8)

where Nd represents the total number of edges generated for attribute d between the new
instance’s nodes and the other nodes in the network and m is the number of dimensions in the
dataset. These values are later normalized, by:

EL =
EL

∑L EL ,∧L ∈L . (4.9)

Next, the overall impact IL of the new instance’s insertion on the network’s modularity measure
Q, for each class L, is calculated and has its value weighted both by E and by the parameter ρ ,
according to:

IL = ρ
LEL (Q

L−Q0)

Q0
, and (4.10)

with Q0 being the value of the network’s modularity measure Q at the end of the training phase.
These values are also later normalized, providing us with what will be the probabilities P(iclass=L)

of the new instance i to belong to each class L, in the form of:

P(iclass=L) =
IL

∑L IL . (4.11)

At the end, the final label L to be assigned to the new instance i will be the one among L ∈L

which maximizes P(iclass=L), being yielded by:

iL = LargmaxL P(iclass=L) . (4.12)

Therefore, the new instance i will belong to the class L which results in the highest positive
impact on the network’s modularity measure Q, when weighted by the balancing parameter
ρ and also by the indicator E, which, by its turn, measures the level of “meaningfulness” of
its connections in the network, so to speak, by weighting the number of edges generated per
attribute by the respective correlation γ between each feature and the labels in the dataset.

4.3.4 Database

We evaluate the efficiency of the proposed modularity-based high level model (MBHL)
by applying it to artificially generated data and also to well-known benchmark datasets intended
for machine learning classification tests. A succinct meta-information of the selected datasets
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used for testing purposes is given in Table 7. For a detailed description of the real datasets,
one can refer to Lichman (2013). Examples of the artificial datasets generated for the tests are
provided in Figure 12. For splitting each dataset into 2 subdatasets, for training and testing
purposes, we make use of a function which shuffles the data, through a random seed value, and
returns a train-test split with 75% and 25% the size of the inputs, respectively. As preprocessing,
all real datasets have their features treated through a quantile transformation, such that their
values are adjusted to follow a uniform distribution, ranging from 0 to 1.

Table 7 – Meta information of the classification datasets used for evaluating and comparing the MBHL
model

No of Samples No of Features No of Classes

A
rt

ifi
ci

al Circles_0 100 2 2
Circles_01 100 2 2
Moons_0 100 2 2

Moons_01 100 2 2

R
ea

l

Bankruptcy 250 6 2
Haberman 306 3 2
Hayes-roth 132 5 3

Iris 150 4 3
Wine 178 13 3
Zoo 101 16 7

Source: Research data.

For the sake of comparison, the following traditional classification models are applied on
the same datasets listed in Table 7: Decision Tree (SAFAVIN; LANDGREBE, 1991), Logistic
Regression (GELMAN; HILL, 2007), Multilayer Perceptron (HINTON, 1989), Support Vector
Machines with an RBF kernel (VAPNIK, 2000) and Naive Bayes (RISH, 2001). We also apply
the following ensemble methods: Bagging of Decision Tree and Bagging of MLP (BREIMAN,
1996), Random Forest (BREIMAN, 2001) and AdaBoost (FREUND; SCHAPIRE, 1995). All
traditional models are implemented through (PEDREGOSA et al., 2011) and we keep their
respective default parameters values, in all tests performed. As for the proposed MBHL model,
we set the parameter θ = 0.1 for tests with artificial datasets and θ = 0.5 for tests with real
datasets. The value of λ , for the Ridge Regression, was set to 1.0. For the tests with artificial
datasets, the model generates edges among nodes from different instances only when all distances
between them are within the respective range yielded by εd . Each dataset is processed 50 times
by all models, each time having their data items shuffled by using a different randomly generated
seed. The final accuracy scores are the averaged ones achieved by each model, on each dataset.

4.4 Results and Discussion
In this section, we present the obtained results when applying the proposed MBHL

model to artificial and real benchmark classification datasets, along with a comparison of its
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Figure 12 – Artificial datasets generated for the evaluation and comparison of the model. Above: (a) two
concentric circles without noise and (b) two concentric circles with a noise of 0.1. Below: (c)
two moons without noise and (d) two moons with a noise of 0.1.
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Source: Elaborated by the author.

performance with the ones achieved by traditional classification models on the same data.

The results obtained from the application of the proposed MBHL model, along with
other traditional classification models, both on real and artificial datasets, are summarized in
Table 8. The Average Rank, in the last row, indicates the averaged rank position achieved by
each model considering all datasets, according to their respective rank achieved on each of them,
in terms of mean accuracy values.

Regarding the results obtained on artificial datasets, although the MBHL model was not
ranked so well for the Circles_01 dataset (two concentric circles with 0.1 noise), being ranked
on fifth place, it was still able to achieve the second place in the average rank. This is because its
performance on the other three datasets was very stable, having achieved second place in all of
them. Note that, for this database, the RBF SVM model is ranked as first, in all datasets, and the
MBHL model is ranked right after it in the average rank, followed by the AdaBoost model, on
third place.

Both Circles and Moons datasets can be challenging to classify due to their non-linearity
property, specially when noise is inserted in the problem. Classifiers which are based mainly on
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Table 8 – Results: mean accuracy rates for each dataset obtained by the following models, in that order:
MBHL, AdaBoost, Bagging of Decision Tree, Bagging of MLP, Decision Tree, Logistic Regres-
sion, MLP, Naive-Bayes, Random Forest and SVM. The values between parenthesis indicate
the rank achieved by each model on each dataset.

MBHL Ada BagDT BagMLP DT LR MLP N-B RF SVM

A
rt

ifi
ci

al

Circles_0 0.985 (2) 0.983 (3) 0.976 (5) 0.725 (9) 0.982 (4) 0.388 (10) 0.797 (7) 0.784 (8) 0.969 (6) 1.0 (1)
Circles_01 0.796 (5) 0.820 (3) 0.818 (4) 0.696 (9) 0.795 (6) 0.396 (10) 0.750 (8) 0.762 (7) 0.831 (2) 0.896 (1)
Moons_0 0.988 (2) 0.979 (3) 0.922 (6) 0.857 (8) 0.933 (5) 0.844 (10) 0.855 (9) 0.864 (7) 0.968 (4) 0.998 (1)
Moons_01 0.973 (2) 0.955 (3) 0.912 (5) 0.852 (9) 0.909 (6) 0.845 (10) 0.860 (7) 0.859 (8) 0.951 (4) 0.976 (1)
Average Rank 2nd 3rd 5th 9th 6th 10th 8th 7th 4th 1st

R
ea

l

Bankruptcy 0.993 (4) 0.996 (2) 0.995 (3) 0.961 (8) 0.995 (3) 0.962 (7) 0.963 (6) 0.957 (9) 0.997 (1) 0.986 (5)
Haberman 0.594 (4) 0.465 (9) 0.496 (7) 0.651 (2) 0.489 (8) 0.700 (1) 0.649 (3) 0.534 (5) 0.500 (6) 0.496 (7)
Hayes-roth 0.651 (4) 0.592 (7) 0.712 (2) 0.553 (9) 0.690 (3) 0.513 (10) 0.569 (8) 0.633 (5) 0.721 (1) 0.613 (6)
Iris 0.938 (5) 0.930 (7) 0.950 (2) 0.918 (8) 0.930 (6) 0.913 (10) 0.918 (9) 0.945 (3) 0.940 (4) 0.965 (1)
Wine 0.961 (5) 0.700 (10) 0.927 (8) 0.932 (7) 0.894 (9) 0.964 (3) 0.940 (6) 0.961 (4) 0.971 (2) 0.977 (1)
Zoo 0.927 (2) 0.801 (9) 0.904 (7) 0.925 (4) 0.860 (8) 0.928 (1) 0.925 (5) 0.925 (5) 0.926 (3) 0.918 (6)
Average Rank 2nd 9th 4th 8th 7th 6th 7th 5th 1st 3rd

Source: Research data.

the linear distance among instances tend to perform poorer in this type of scenario, since testing
instances from different labels get more mixed, and the classes oftentimes overlap each other
in the decision space. In this sense, the relative good performance of MBHL on these type of
datasets, finishing on second place overall, indicates that the model is able to correctly detect
the topological patterns formation, for the selected datasets, and to adjust its inference process
according to these identified patterns.

If we look at Figure 11e and Figure 11f, which show the attributes networks resulted
from the training phase for Circles_0 and Moons_0 datasets, respectively, we can note that only
the nodes representing instances immediately adjacent to each other in these datasets become
connected in the training phase. This happens due to two factors: (1) The form with which the
parameter ε is calibrated when building the network, by keeping it at a minimum value in order
to generate only the enough number of edges for allowing the connection between all nodes
from a same class in the network, and (2) The rule where the model will connect the nodes of
different data instances only if all distances between them are within their respective thresholds
yielded by the parameter ε , for all dimensions considered. Hence, the capacity of the model to
identify the topological patterns in a dataset comes from these two factors combined. In this way,
the network is more sensitive to the disturbances in its topological structure provoked by the
insertion of new instances during the testing phase. Also, nodes representing instances close
to each other in one of the dimensions, but far from each other in other dimensions, do not get
connected, since all features of the dataset are considered when generating the edges between
different instances.

Regarding the obtained results when applying the proposed MBHL model on real datasets,
we can note, in Table 8, that it achieves its best relative performance on Zoo dataset, being ranked
as second best, right after the Logistic Regression model and followed by Random Forest model.
Likewise in the tests with artificial datasets, although its relative performance do not really stand
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Table 9 – “Meaningfulness” levels (γ values) provided by the model for each feature in the Zoo dataset.

Hair Feathers Eggs Milk Airborne Aquatic Predator Toothed Backbone Breathes Venomous Fins Legs Tail Domestic Catsize
0.07 0.09 0.07 0.1 0.03 0.06 0.05 0.03 0.11 0.08 0.03 0.04 0.07 0.11 0 0.07

Source: Research data.

out from the other classifiers, when it comes to the other real datasets, it was nevertheless able to
achieve second place in the average rank. This is because the MBHL model was overall more
stable than others, in terms of relative performance, being ranked as 4th or 5th on the other real
datasets.

The good relative performance of the MBHL model on the Zoo dataset – which has a total
of 16 features, with most of them being binary ones – is a sign that the parameter γ is properly
fulfilling its role, of measuring the “meaningfulness” of each attribute in the classification task.
The γ values for this specific dataset, along with their respective feature description, are listed in
Table 9. As one can note, the use of Ridge Regression resulted in smaller values for the weights,
with a maximum value of 0.11, and only one of them is set as 0 (the “Domestic” feature), which
means that the model identified this attribute as not meaningful for the classification task. It
is also worth noting that the Zoo dataset has 7 classes and only 101 samples, which indicates
that the model can also learn well even when the number of data instances per class is limited.
As for the results obtained on the Haberman dataset, we would like to point out that, after 50
random train-test data splits, half of the models (5 out of 10) still achieved a mean accuracy of
less or equal to 50% on it. Considering that this dataset has only 2 classes, then it means that this
classification problem is a challenging one, and thus the mean accuracy achieved by the MBHL
model on it, of 59.4%, can be considered quite satisfactory.

4.5 Chapter Remarks
In this chapter, we have introduced a high level classification model that maps each

attribute of the input dataset as a node of a network, and the labels assigned to testing instances are
based mainly on the modularity measure. Additionally, we make use of an attention mechanism,
by giving more weights to those features identified as the most important – or meaningful –
ones in the dataset for classification purposes. To evaluate the model, we applied it on both
artificial and real benchmark datasets, and compared its performance to the ones achieved by
other traditional classification models. The obtained results on artificial datasets indicate that
the model is able to correctly detect topological patterns in the data, including those with non-
linearity properties, and to adjust its inference process accordingly. The results obtained from
its application on real datasets were also encouraging, with the model being able to achieve
competitive mean accuracy rates when compared to traditional classifications models.
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CHAPTER

5
ANALYZING VOTING DATA AND

PREDICTING CORRUPTION AMONG
BRAZILIAN CONGRESSMEN

In this chapter, we approach the problem of analyzing voting data from Brazilian con-
gressmen using a network-based model. For this end, a database is built especially for this study,
comprising almost 30 years of legislative work in the Brazilian House of Representatives. Two
different types of analyses are made on this database. The first analysis involves the generation
of a temporal network, where each node represents a congressman and the edges between each
pair of nodes are created according to their voting record similarities. Afterwards, we investigate
how the changes in the congressmen temporal network’s topological structure might be related
to some of the main political transitions happened in Brazil during the same period, such as the
alternations of PSDB and PT parties in the presidency, and the impeachment of president Dilma,
in 2016. The second analysis concerns the investigation of whether it is possible to conceive a
model to predict that a congressman will be convicted of corruption or other financial crimes in
the future, solely by considering his voting history.

5.1 Introduction

In this study, we propose a network-based approach for analyzing voting data in the form
of representatives’ temporal networks to capture the topological structural changes in time and
reveal how these changes may be reflected in (or by) some of the main political events happened
during the same period in Brazil, from 1991 until 2018. Our analysis starts by converting each
voting session into a static network, in which each node represents a congressman and each
edge represents the accumulated similarity between a pair of congressmen based on their voting
history. Afterwards, these static networks are converted to temporal networks, by considering all
of them as being an evolving network. We apply this technique to official data from the Brazilian
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House of Representatives, comprising the votes of 2,455 congressmen in a total of 3,407 voting
sessions from 1991 until 2019, hence covering a range of almost 30 years of legislative works.
The obtained results are able to capture the main political transitions happened during the period
in terms of the relative positions occupied by each political party in the network. We also find
out that, surprisingly, the proposed technique is capable of identifying convicted representatives
in the network with high precision and most of them are for corruption charges. This method
can be used to predict cases of corruption or other financial crimes. Such a feature comes out
unexpectedly since the networks’ edges are generated only based on the representatives’ legal
public activities (voting history), without any financial or other relative information of any sort.

In summary, this study makes use of specific dynamical measures for analyzing the
Brazilian legislators’ networks. Moreover, it shows how the network-based framework can be
applied to identify future cases of corruption or other financial crimes among congressmen with
high accuracy, just based on the voting data. Therefore, we believe this work makes an important
advance in the large scale public data study using complex networks.

Regarding the organization of this chapter, besides this introduction, we discuss, in
section 5.2, the motivations for this study. In section 5.3, we explain the methodology used in the
analyses, showing how the congressmen temporal network is generated, and also introduce the
methods tested for conviction prediction purposes. The database especially built for this study
is introduced in this section as well. In section 5.4, we present the results obtained from our
analyses, along with some relevant discussions. At the end, in section 5.5, we close this chapter
by adding the final remarks.

5.2 Motivation

In the last years, governments around the world have been trying to increase their
transparency by making large amount of public administration data available to the population
(ARMSTRONG, 2005; JAEGER; BERTOT, 2010). This phenomenon had triggered the devel-
opment of new methods specifically designed for the analysis of such kind of data. Within this
context, network-based techniques have been applied to politics-related data, such as on the
analysis of the legislators’ relations through bill co-sponsorship data (KIRKLAND; GROSS,
2014; NEAL, 2018) and through roll-call voting data (ANDRIS et al., 2015; MASO et al., 2014;
MOODY; MUCHA, 2013; WAUGH et al., 2009). A comprehensive review on this topic has
been made by Victor, Montgomery and Lubell (2017).

There are also relevant applications of network-based approaches on the analysis of
networks for crimes-related purposes. Wachs et al. (2019) studied the social aspects of corruption
by relating the social capital of Hungarian settlements to the risk of corruption in its local
government, using large-scale social network data, finding that settlements with high bonding
social capital tend to award contracts with higher corruption risk, while settlements with high
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bridging social capital tend to award lower corruption risk contracts. Berlusconi et al. (2016)
tested link prediction techniques on the identification of missing links among an Italian mafia
group and Ribeiro et al. (2018) made use of the same techniques on politicians cited on corruption
scandals in Brazil. In a more recent work (LUNA-PLA; NICOLÁS-CARLOCK, 2020), a
network-based approach has been applied to modeling a major corruption scandal occurred in
Mexico involving embezzlement activities, thus contributing to provide an objective perspective
of the systemic nature of events where companies are abused for corrupt purposes. The study
from Ribeiro et al. (2018), regarding networks originated from corruption scandals in Brazil, is
the one that originally inspired us to conceive the investigation methods presented in this chapter.

5.3 Materials and Methods

The methodology used in this study is summarized below. In subsection 5.3.1, we present
the database constructed from Brazilian congressmen voting data, used in the analyses performed
in this work. In subsection 5.3.2, we explain how the voting data are mapped as static networks,
where each node represents a congressman. In subsection 5.3.3, we describe how the previously
generated static networks are then analyzed in the form of a singular temporal network, whose
nodes and edges evolve in time. At the end of the section, in subsection 5.3.4, we present the
corruption prediction method tested in the final resulting congressmen network, based on the
assumption that convicted representatives tend to vote alike in legislative sessions.

5.3.1 Database

The data are collected from the official website of the Brazilian House of Representatives
(CÂMARA, 2018) within their transparency section. These datasets comprise the outcome of
3,407 voting sessions of legislative bills deliberated in the House of Representatives, from May
22, 1991 until Feb 14, 2019. We made a thorough data cleansing process in this database in order
to detect and fix possible mistakes, such as duplicated names or votes and also typographical
errors. Each voting session contains the following attributes: the bill to be voted, the voting date,
and for each representative who attended the session: IDE (a unique number for each of them),
Name, Political Party and Vote. The voting data are similar to roll call votes, except that here
there are four different types of votes: (1) Yes, if the representative approves the bill; (2) No, if
the representative disapproves the bill; (3) Abstention, if the representative deliberately chooses
to not take part in the voting; and (4) Obstruction, similar to abstention, with the difference that
abstention counts for quorum effects, i.e., the minimum number of voting members who must be
present at the session, while obstruction does not count for it.

After extracting and cleaning the data from the 3,407 voting sessions, we end up with
a total number of 2,455 representatives and 1,656,547 votes. For analyzing these data, we opt
for making use of a network-based technique, specially developed for this purpose. Firstly,
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we convert each voting session into a separated static network. Afterwards, we select some of
these static networks to generate temporal networks and then perform some analyses in order to
examine how their topology – in terms of network temporal measures – evolve in time.

As for the conviction classification task, also tested in this study, we add an additional
attribute, for all representatives, which indicates whether he or she is currently convicted or have
been arrested for corruption or other financial crimes, such as money laundering, peculation,
embezzlement or misappropriation of public funds, improbity and crime against the Public
Administration. This information has been confirmed from Brazilian judiciary official sources,
such as the Federal Supreme Court (Supremo Tribunal Federal) (STF, 2019). At the end of this
research, we were able to identify a total of 33 representatives in our database who currently
have been either arrested or convicted for corruption (21 congressmen) or for other financial
crimes (12 congressmen).

5.3.2 Static Network Generation

A network can be defined as graph G = (V ,E ), where V is a set of nodes and E is a
set of tuples representing the edges between each pair of nodes (i, j) : i, j ∈ V . The process of
mapping each voting session in the database into a network is made according to their respective
date attribute, sorted in ascending order, strictly. For the first voting, when t = 0, its data items
are initially converted to a square votes matrix Mt of size d×d, where d is the total number of
representatives who participated in the session. Each element Mt

i j is a binary value: it assumes 1
if the vote of representative i is equal to the vote of representative j; otherwise, it assumes -1.
These values are accumulated in a separated weight matrix W n, in which each element W n

i j is
equal to the sum of values of Mt

i j in all votes matrices Mt until voting session n. Hence, each
item W n

i j of this matrix represents the accumulated weight between representatives i and j. The
time steps t are measured in terms of voting sessions. Mathematically, the current value of each
weight W n

i j is given by:

W n
i j =

n

∑
t=0

Mt
i j . (5.1)

Therefore, from Equation 5.1, the values in each row W n
i may range from −n, in the case that the

representative i always voted differently from representative j, until n, which is the case when i

and j always voted alike. The former case implies that, up to the current instant, representatives i

and j have complete opposite political views, while, in the latter case, i and j are very aligned
up to now, politically speaking. Another possibility here, in this technique, would be binning
the votes similarities per predetermined periods of time, such as per presidential term or per
year. After some preliminary processing of the database, we have noted that it takes varying
voting time to emerge a clear topological pattern in the networks, therefore, in our case it is more
suitable to take all historical votes into consideration for generating the weight matrix W n.

After generating the matrices Mt and W n, the next step is to generate a network G t , for
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each voting session t, such that each representative becomes a node in G t . The edges in G t are
created according to the following rule:

G t
i j =


W n

i j, if W n
i j = max

∀x∈W n
i

x

0, otherwise .

(5.2)

As a result of Equation 5.2, the great majority of the vertices in G t will have only one outbound
edge, connecting it to the most politically aligned vertex. Vertices with more than one outbound
edge may only occur when the function max∀x∈W n

i
x returns more than one value. The most

connected vertices in the network (hubs) will be the ones with the highest number of inbound
edges.

The main procedures of our technique can be summarized in the following steps:

1. build votes matrix Mt from data of voting session t;

2. update weight matrix W n, also inserting new representatives in it, if any;

3. build network G t , whose values come from the weight matrix W n; and

4. repeat the procedure for next voting session t +1, until the last one in the dataset.

As a consequence of this process, the networks G t evolve in time, as their edges are determined
by the accumulated weights between pairs of representatives from matrix W n, which is updated
at each step t. The vertices, representing the congressmen, may also be replaced by new ones
along the process, as new representatives appear in the voting session lists, in such a way that the
nodes, in this case, can be seem as the seats in the House. When a new congressman is inserted
into the network (because he/she has been elected or for any other reason), he/she does not inherit
any voting information from the congressman who previously occupied its seat in the House (or
node in the network). In this case, the model adds a new row and a new column in matrix W n to
store the voting similarities between the node of the new congressman and all other nodes in W n.
It is also worth noting that the attribute “political party” is not taken into account by the model to
generate the network’s edges. We have opted to proceed this way because, in this study, our aim
is to capture the affinities among representatives beyond their political party affiliations, i.e., by
only taking into account their votes on legislative bills for network generation. This makes sense
whereas, in the case of Brazil, there are currently as much as 33 different political parties, and
this excessive number of parties ultimately tends to make the ideological differences between
them to diminish substantially.

5.3.3 Temporal Network Generation

After running our algorithm for all bills in the database, we end up with a total of 3,407
networks, each one with around 500 nodes and representing a different voting session during
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Figure 13 – (a) Illustration showing how the temporal network edges, or graphlets, evolve in time, here
measured in terms of voting sessions. When time slice t = 1, representative 0 is connected
to representatives 2, 3, 5, 6 and 9. In the next time slice t = 2, it loses the connections with
representatives 2, 3, 5 and 9 and receives edges from representatives 1, 4, 7 and 8. (b) Example
demonstrating the adjacency matrix evolution in a temporal network, whose dimension D
is measured in units representing years. The network edges are generated according to this
matrix.

(a) Edges evolution

(b) Matrix evolution

Source: Elaborated by the author.

the last 28 years. Thus, we can also say that all these networks, in fact, represent different
moments of the Brazilian congressmen network. At this point, we already have shown how
to generate these networks in a static form, each G t representing a moment at time t. For the
sake of converting these networks into a single temporal network G , we need then to insert
a new dimension D in the static network definition, such that it becomes G = (V ,E ,D),
where D stands for the network temporal slices or, in our case, the voting sessions. To achieve
this, we generate a matrix for representing each edge E in the static networks’ slices in the
form of a triplet (i, j, t) : i, j ∈ V , t ∈ D . These triplets are also known as dynamic graphlets

(HULOVATYY; CHEN; MILENKOVIĆ, 2015) and an illustration of their dynamics is shown in
Figure 13a. The final result of this conversion process is a multilayer network, in which each
layer represents a static temporal slice of a single main graph (Figure 13b). In this case, since the
dimension D is a set of indices ordered by time, we can therefore also call this graph a temporal

network (THOMPSON; BRANTEFORS; FRANSSON, 2017; HOLME; SARAMÄKI, 2012),
and perform analyses on it by extracting some specific measures.

Extracting temporal measures from a network with over 3,000 time slices, each one
having around 500 nodes, is a time-consuming process. Therefore, in this work, we decide to
make use of only one time slice per year for generating the temporal network. The selected voting
sessions, as well as the current presidency at each period and his/her corresponding political
party, are described in Table 10. It is worth noting that the voting sessions sampling (with one
session in each year being selected as a temporal network slice) has little effect on the overall
results, since our network formation technique certifies that the weight of each edge, stored in
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Table 10 – Voting sessions used for generating the temporal network slices, yearly

Year Bill voted Session date Presidency
1991 PL 638/1991 1991-08-28

Collor (PRN)
1992 PL 2747/1992 1992-04-29
1993 PL 1258/1988 1993-04-01

Itamar (PRN)
1994 PDC 413/1994 1994-04-20
1995 PL 233/1995 1995-04-04

FHC I (PSDB)
1996 PL 824/1991 1996-04-10
1997 PEC 173/1995 1997-04-09
1998 PEC 33/1995 1998-04-29
1999 PL 1/1995 1999-05-12

FHC II (PSDB)
2000 PEC 96/1992 2000-04-05
2001 PLP 23/1999 2001-04-03
2002 MPV 14/2001 2002-04-10
2003 MPV 86/2002 2003-04-01

Lula I (PT)
2004 PEC 101/2003 2004-05-19
2005 MPV 242/2005 2005-06-07
2006 MPV 269/2005 2006-04-04
2007 MPV 339/2006 2007-04-10

Lula II (PT)
2008 MPV 415/2008 2008-04-23
2009 MPV 452/2008 2009-04-14
2010 MPV 475/2009 2010-05-04
2011 REQ 343/2011 2011-04-06

Dilma I (PT)
2012 PEC 153/2003 2012-04-10
2013 PEC 544/2002 2013-04-03
2014 PLP 221/2012 2014-05-07
2015 MPV 660/2014 2015-04-07

Dilma II (PT)
2016 REQ 4250/2016 2016-04-04
2017 PL 5587/2016 2017-04-04

Temer (MDB)
2018 PL 3734/2012 2018-04-11

Source: Research data.

the weight matrix W n, already carries in itself the information regarding all bills previously voted
until present.

Besides generating one main temporal network, which includes all 28 time slices in
Table 10, we also generate one temporal network per presidential term, for the sake of comparison
purpose. The measures extracted from the resulting temporal networks are listed below.

∙ Temporal degree centrality (DT ): the number of overall connections in time per node.

∙ Temporal participation coefficient (PT ): a measure of diversity of connections across
communities for individual nodes (GUIMERA; AMARAL, 2005). The communities are
detected by using the Louvain method (MEO et al., 2011).

We also calculate a “proportional” version of each temporal measure MT , grouped by the political
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party p of each node i, defined as:

MT
p =

∑i MT
ip=p

∑i MT
i

, (5.3)

where p is a political party and ip returns the party of node i. These proportional versions of the
measures are used for comparison among parties.

5.3.4 Conviction Prediction

Now, let us proceed to describe how we assess whether a representative is more likely to
be convicted or arrested in the future by analyzing the voting agreements among congressmen.
Two different methods have been tested for accomplishing this task: the first one is based on the
matrix W n values, while the second one is based on the network link prediction model. Following,
we describe the two methods with more details.

5.3.4.1 Conviction Prediction Based on the Weight Matrix

After finishing the processing of all voting sessions, we end up with the network resulting
from the final weight matrix W n. This network has 2,455 nodes, representing all congressmen
who voted in at least one legislative bill from 1991 until 2019, along with their respective
pairwise voting history similarities. While browsing this main network, we note that the highest
weighted neighbors of a node labeled as convicted are more likely convicted ones as well,
apparently forming some sort of “corruption neighborhoods” in the network. Hence, we decide
to investigate this aspect further by running a very simple algorithm, which basically takes the n

highest weighted neighbors of a convicted representative, according to the weights stored in W n,
and labels all of them as also convicted ones. Thus, we have that the “convicted” label c of a
node i is defined as follows:

ic =

 True, if jc = True ,∀ j ∈ kNNi

False, otherwise ,
(5.4)

where kNNi returns the n neighbors with the highest weights associated to node i. We assess
the efficiency of this model by measuring its prediction accuracy for different values of n. The
rationale behind this model is that arrested or convicted representatives, for some reason, tend to
vote similarly on legislative bills.

5.3.4.2 Conviction Prediction Based on Link Prediction

Given that the simple model described above does not consider the network topological
structure for prediction purposes (only considers the weight matrix W n), we thus also test another
method for accomplishing this task, which makes use of models for predicting missing links in
networks. The guidelines of this method are described below:
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1. generate subgraph from an undirected version of the network resulting from matrix W n,
containing only arrested or convicted representatives and their neighbors;

2. remove all existing links between convicted labeled nodes from this network (subgraph);

3. apply the link prediction model to the network; and

4. take the top n link predictions whose source is a convicted labeled node and classify their
target nodes as also convicted ones.

One of the models tested for this task is Rooted PageRank (LIBEN-NOWELL; KLEIN-
BERG, 2007), which is based on an algorithm developed for ranking the importance of website
pages (PAGE et al., 1999). It defines the score(x,y) as the expected number of steps required for
a random walk on the network starting from node x, moving iteratively with a probability α to re-
turn to x (or “reset”) and a probability 1−α to move forward to a random neighbor until it reaches
the node y. The lower the score for each pair of nodes x and y is, the higher the pair is ranked
among the model’s list of predicted links. Besides Rooted PageRank, other 5 link prediction
models are also applied to this task: Pearson (AHLGREN; JARNEVING; ROUSSEAU, 2003),
Cosine (SALTON; MCGILL, 1986), NMeasure (EGGHE; LEYDESDORFF, 2009), MinOverlap
(ESQUIVEL; ROSVALL, 2011) and Random (for comparison purposes). By making use of a
link prediction model, we are now taking into account the congressmen network topological
structure for conviction prediction purposes.

5.4 Results and Discussion

In this section, we present the obtained results when applying our method of analysis to
the database comprising almost 30 years of legislative voting data from Brazilian representatives.
We start, in subsection 5.4.1, by presenting the analyses regarding the congressmen temporal
network evolution, in terms of topological features. Then, in subsection 5.4.2, we present the
results obtained when testing a corruption prediction technique, based on the assumption that
corrupt representatives tend to vote alike in legislative sessions.

5.4.1 Political Scenario Through the Analysis of the Representatives’
Networks

As mentioned earlier, our initial task involves the generation of over 3,000 static networks
in total, then, a comprehensive temporal network is built. We start this subsection by presenting
an example of one of these static networks, shown in Figure 14a, built from the voting session of
bill PEC 77/2003, occurred on September 19, 2017. The outbound edges connect each node to
the one with highest accumulated weight associated with it. One feature that called our attention
in most of these networks is that, even though the political party attribute, represented by the
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color of the nodes in the figure, has not been taken into account explicitly by the algorithm,
we still can note the formation of neighborhoods based on political parties in the networks,
centered at hubs. This feature confirms that representatives from the same party tend to vote
alike in legislative bills, thus the formation of party clusters occurs. If a node is connected to
a neighborhood different from its own party’s, then the congressman represented by this node
has been voting more similarly to the representatives from other parties. As expected, still in
Figure 14a, the colors of the biggest hubs in the network coincide to those from parties with most
members in the House of Representatives at that time. The colors in blue, red, cadet-blue and
orange represent parties PSDB, PT, PP and MDB, respectively, which were main parties in the
Brazilian congress in September 2017. The hubs, within this context, represent the congressmen
who voted according to each “local majority” in the network, i.e., the majority within a local
neighborhood.

Alternation of power is an important and expected condition of democratic systems.
Within this context, we analyze the temporal networks segmented by each presidency, with the
aim of measuring the evolutionary strength of the two main political parties (PSDB and PT)
in Brazil during the considered period, in terms of the position they occupy in the network,
and examine how these changes may be related to the main political events happened in the
same period. We initially extract two centrality measures from each network: temporal degree
centrality DT and temporal participation coefficient PT , which give us centrality scores for each
node. Afterwards, we calculate the ratio of each of those measures for the parties PSDB and PT,
according to Equation 5.3, in each presidential term. For cases when a representative switched
parties during the period, we then consider the party to which he belonged at the time of each
voting session, i.e., each time slice. The results of this process are shown in Figure 14c and
Figure 14d. Observe that the ruling political party presents higher values for both centrality
scores measured in the congressmen temporal network, and such a feature strictly follows the
respective alternation of power between PSDB (FHC governments, from 1995 until 2001) and
PT (Lula and Dilma governments, from 2002 until 2016). It is also worth noting that, in these
figures, there is a sudden drop in both measures for PT party in the second term of Dilma
(2015-2016), which coincides with the turbulent political scenario in Brazil at that time, when
many demonstrations were held against Dilma – specially after her predecessor Lula was charged
by federal prosecutors with corruption accusations against him and his party – and end up in
her impeachment, in the end of 2016. A similar behavior could also be observed for the PTC
party (former PRN) in 1992 (the impeachment of former president Collor occurred at that time),
although in a much smaller scale since this is a minor political party in Brazil. This event is not
included in these figures for the sake of visibility.

Following, we generate what is known as the network cartography (GUIMERA; AMA-
RAL, 2005) for the temporal network which includes all 28 time slices (from 1991 until 2018,
yearly). This framework helps us to better understand the network topological structure by
grouping the nodes into some “universal roles”, according to their level of connectivity in-
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Figure 14 – (a) Example of a static network generated by our algorithm for the voting session occurred on
2017-09-19 of legislative bill PEC 77/2003. Each node represents one of the 513 congressmen
who voted this bill and each color represents a different political party. (b) Node roles based
on the network cartography framework, with the adaptation that, here, we use the temporal
version of the participation coefficient (PT ) with averaged within-module-degree, z-scores,
from each temporal network slice t. Each point represents a congressman and the red color
denotes convicted ones. (c) Proportional temporal degree centrality DT

p and (d) proportional
temporal participation coefficient PT

p measures evolution, calculated for all representatives
and grouped by political party p, for each presidential term. The evolution of both measures
coincide precisely with the respective alternation of the ruling parties PSDB (FHC) and PT
(Lula and Dilma).
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side the network. It depends on two measures: the within-module degree zi, which shows how
“well-connected” a node i is to other nodes within its module, and the participation coefficient

Pi, which shows how “well-distributed” the links of node i are among different modules. For
accomplishing this task, we make a slight adaptation from the original technique. For static
networks, the within-module-degree returns a single value zi for each node i. As for temporal
networks, instead, it returns a 2-d array in the form of zit with one value of zi for each time slice
t. Therefore we opt here for averaging these values, such that zi = zit , in order to generate the
network cartography. We also make use of the temporal participation coefficient PT

i , instead of
its static version Pi. The output can be seen in Figure 14b. Each point in this plot represents a
congressman and the red color denotes those nodes labeled as convicted ones. The distribution
of their network roles is summarized in Table 11, grouped by convicted and the others (those
who have not been officially convicted). It shows that around 98% of them are non-hubs (roles
R1 to R4) and only about 2% of them are module hubs (roles R5 to R7), also indicating that
convicted representatives tend to have a slightly higher incidence of connector hubs (R6), which
are hubs with links to most of the other modules.

Table 11 – Network cartography: node roles distribution (%)

Role Convicted Others Description
R1–ultra-peripheral 62.0 63.1 nodes with all their links within their module
R2–peripheral 26.0 25.4 nodes with most links within their module
R3–non-hub connector 9.8 9.7 nodes with many links to other modules
R4–non-hub kinless - 0.5 nodes with links homogeneously distributed among all modules
R5–provincial hubs - 0.2 hubs with the vast majority of links within their module
R6–connector hubs 2.2 1.0 hubs with many links to most of the other modules
R7–kinless hubs - 0.1 hubs with links homogeneously distributed among all modules

Source: Research data.

5.4.2 Prediction of Conviction Among Representatives

The incidence of corruption impacts the society negatively in many ways, such as holding
back businesses, wasting public spending and undermining the democratic system. Predicting
the incidence of corruption and other related financial crimes, specially at the individual level,
is a challenging task. Nowadays, a prediction system with an average accuracy around 0.2 is
already considered useful by public investigators all over the world (RIBEIRO et al., 2018).
Here, we make use of a network-based approach to identify hidden connections among convicted
congressmen linked to bribing schemes or other financial crimes in Brazil. Two methods are
tested for detecting future convictions among representatives. The first method is based on the
nearest neighbor of convicted congressmen using the weight matrix W n and the second one is
based on link prediction. The former achieves prediction accuracy about 0.24, while the latter
achieves accuracy beyond 0.5, even up to 0.9. Consequently, the accuracy obtained by the link
prediction model can be considered quite satisfactory. The reason why the prediction accuracy
by the two methods are so different is simple: In the first method, a prediction to a congressman
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is made by considering only his/her labeled nearest neighbor, i.e., a prediction is conditioned on
only one node of the network. On the other hand, in the second method, a prediction is made by
link prediction methods, which considers the local or global network structure conditioned on
more than one nodes, i.e., a finer filtering is performed.

5.4.2.1 Results Based on the Weight Matrix

While browsing the nodes of the network resulting from the final weight matrix W n

(Figure 15a) – the one formed by all representatives, regardless the time factor – the first specula-
tion in mind may be that the highest weighted neighbors of a convicted corrupt representative
are possibly convicted ones as well. Therefore, we investigate whether the nodes of convicted
representatives tend to stay close to each other in this network, and thus forming some sort
of “corruption neighborhoods”, so to speak. For this purpose, we build n separated networks
composed only by nodes labeled as convicted ones, along with their respective n highest weighted
neighbors according to the final weight matrix (these neighbors can be labeled as convicted or
not). Afterwards, we run a simple algorithm, as specified in Equation 5.4, which classifies all n

neighbors of an already convicted labeled node as being convicted ones as well (whether in the
present or in the future). In Figure 15b, it is possible to see the network resulted from n = 1, i.e.,
with the 33 convicted representatives along with the highest weighted neighbor of each of them.
It indicates that there is, indeed, the formation of some sort of “corruption structures” in the
network. Note that Figure 15b is actually a subgraph of Figure 15a, which has 2.455 nodes and
only 33 of them labeled as convicted. So the odds of a convicted node having a neighbor who is
also convicted would be very low, if it is not for the incidence of the corruption neighborhoods.
The emergence of this feature is something surprising to us, considering that none of the input
attributes in our data are related to the congressmen financial income or expenditures and that
the edges are generated solely based on their voting history. The conviction prediction results for
n in [1, 5] are shown in Figure 15c. From this figure, we see that the optimal value of n is 1, with
an average accuracy of 0.24.

In order to confirm whether there is indeed a correlation between voting similarity and
convictions for corruption and other financial crimes among representatives, we run another test
by using the same rationale explained above with the difference that, now, instead of selecting
the highest weighted neighbor of each convicted node for prediction purposes, we took its n−st
highest weighted neighbor determined by its outgoing edges, therefore decreasing the voting
history similarity between the original convicted node and its neighbor, as n increases. The
obtained results, in Figure 15d, show that, in this case, the higher the value of n, the smaller is
the accuracy achieved by the algorithm, which contributes to confirming our initial suspicion
that convicted representatives indeed tend to vote alike in legislative bills.

The prediction accuracy achieved by our first prediction model is about 0.24 and it is very
close to the accuracy achieved by Ribeiro et al. (2018), which is around 0.26, when predicting
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Figure 15 – (a) Representation of the network resulted from the final matrix W n, with all 2,455 con-
gressmen in the database, disregarding the time factor. Each node is connected to its highest
weighted neighbor, in terms of voting similarity. The red color denotes convicted represen-
tatives (33 in total). (b) A subgraph of the consolidated network, shown in (a), displaying
only the 33 already arrested or convicted representatives (in red) and their respective highest
weighted neighbors. We opted for not displaying the names of representatives who currently
have not been officially convicted in this graph (in green). (c) Predictions based on the n
highest weighted neighbors, in terms of votes similarity, resulted in an average accuracy of
0.243 when n = 1. (d) Tests made by considering the n−st highest weighted neighbor of a
convicted node show that, as we increase the value of n, the lower is the average accuracy.
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missing links among politicians cited on corruption scandals in Brazil. Following, we show how
the prediction rate can be considerably improved when we take into account the overall network
topological structure for making the predictions.

5.4.2.2 Results Based on a Link Prediction Model

The last step in our analyses involves the application of link prediction techniques for
the sake of predicting new conviction cases among representatives. For accomplishing this task,
we apply a total of 5 link prediction models plus a Random method (for comparison purposes)
in the congressmen network. The method based on link prediction differ from the simple one
presented in the previous subsubsection because the former makes a prediction considering
the network’s topological structure (excluding, of course, the random technique from this list),
while the latter just takes into account certain neighbors. As in the previous test, the models are
also applied to a subgraph of the network resulted from the final weight matrix W n, formed by
convicted representatives and their respective highest weighted neighbors, with the difference
that, at this time, neighbors from both incoming and outgoing edges are considered, and also
that the network is previously converted to an undirected one. This final subgraph contains 211
nodes (33 of them being convicted) and 1,374 edges. As preprocessing, we remove all existing
links between two nodes labeled as convicted from the network (5 in total). After running the
link prediction models, we took the top n predicted links with convicted nodes as sources and
label their target nodes as being convicted ones as well. All tests are performed using the tool
introduced by Guns (2014), with default parameters values for all models.

The obtained results of all 6 link prediction models under consideration are shown in
Figure 16a and Figure 16b. Figure 16a shows how the value of n, in this case, may affect the
overall results, where n = 10 is the most indicated among the tested values, with an average
accuracy of 0.65 (around 6 correct ones out of every 10 predictions, then). Figure 16b brings the
accuracy achieved by each model, with Cosine, NMeasure and Pearson showing an impressive
performance with an accuracy of 0.9, followed by Rooted PageRank and MinOverlap, with an
accuracy of 0.7 and 0.5, respectively. It is worth noting that the Random predictor scored 0 in this
task, which contributes to highlighting the effectiveness of applying the graph-structure-based
predictors.

Comparing between the first prediction model with the average accuracy of 0.24 and
the link prediction models with accuracy beyond 0.65, we perceive how the performance of
a model can be improved whereas one considers the topological structure of the input dataset
for classification purposes. This feature becomes more evident given the good results achieved
by the first 5 link prediction models shown in Figure 16b. The performance of link predictors,
overall, may vary significantly, with some methods being more suitable than others according
to the input dataset (LIBEN-NOWELL; KLEINBERG, 2007). In our case, given the technique
used for building the congressmen network, two features have emerged from it: (1) the more
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Figure 16 – (a) Performances achieved by 6 link prediction models on the task of predicting conviction
cases among representatives by considering the top n predicted links whose source node
is a convicted one, indicating that the highest scores are achieved when n = 10, with an
average accuracy of 0.65. (b) Performances achieved by each model, when considering their
top 10 predictions, showing Cosine, NMeasure and Pearson with the highest score, with an
impressive accuracy of 0.9.
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Source: Elaborated by the author.

Figure 17 – Comparison of two link prediction outputs for the network formed by convicted represen-
tatives and their neighbors: top 10 links having a convicted node as source predicted by
(a) Pearson and (b) Rooted PageRank models. Black nodes indicate convicted ones. A link
prediction is considered correct if its target node is also labeled as convicted. Remembering
that the models do not take the node labels into account for prediction purposes. All other
links are removed from the network only for the sake of visibility.

(a) Links predicted by Pearson (9 correct, 1 wrong)
(b) Links predicted by Rooted PageRank (7 correct,

3 wrong)

Source: Elaborated by the author.
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politically aligned two representatives are (in terms of their voting history), the nearer they are
in the network (in terms of number of links); and (2) only long term representatives are able to
become hubs in the network, since a higher number of votes is needed for that. In Figure 17,
we show a comparison of the top 10 link predictions from the Pearson and Rooted PageRank
models. This figure may help us to better understand why some link-prediction-based methods
performed different than others in the task of predicting new convicted nodes. Methods such as
Pearson, Cosine and NMeasure have in common the fact of being local predictors, i.e., solely
based on the neighborhoods of the two nodes considered. Hence, they presented very similar
results, also achieving the best accuracy when compared to other methods. This may be related
to the feature where convicted nodes tend to stay close to each other in the network, as we saw
earlier. As for the Rooted PageRank, which achieved the second best accuracy of 0.7, it is a
global predictor, such that even if two nodes do not share any common neighbors, they still may
be related and form a link in a later stage. One may observe that all 7 correct links predicted
by Rooted PageRank have the largest network hub (the one in black, in the center) either as its
source or as its target and, in this case, it also happens that the largest hub in this network is
a convicted one himself. This feature favors models based on random walks, such as Rooted
PageRank, since many of the other convicted nodes are close to this hub.

5.5 Chapter Remarks

Fighting and preventing corruption and other financial crimes are challenging tasks,
because criminals constantly develop increasingly advanced mechanisms to cover their infrac-
tions. In this study, we present a technique to reveal the hidden relationships between voting
behavior and condemnations for corruption and other financial crimes among politicians. We also
show how this information can be used to detect those individuals which are more likely to be
convicted in the future. To our knowledge, this work is one of the first endeavours to accomplish
such task through a network-based methodology. An interesting feature of this work is that the
high conviction-prediction accuracy can be obtained using voting data, which implies that it is
possible to reveal politicians’ illegal behavior through just their legal public activities. Such kind
of systems, once developed, can be certainly quite useful to many countries, specially to the
countries like Brazil, which seriously suffer from corruption, for a long time.

Our work is inspired by Ribeiro et al. (2018), which predicts missing links among
politicians cited on corruption scandals in Brazil. Both works (the one of Ribeiro et al. (2018)
and our work) deal with a similar problem – the incidence of corruption among individuals
by using network-based techniques. However, there is a fundamental difference between the
two works: The former is based on a dataset composed of 404 politicians cited on at least one
corruption scandal and aims to predict citations on future scandals, while our study is based on a
dataset comprising the voting history of 2,455 representatives on bills and only considers those
already found officially guilty for prediction purposes. Therefore, the dataset used in this work is
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not only larger, but also is always available and easy to access. The use of regular public data, as
the dataset we use here, presents big facility to develop politician monitoring system in the future.
Besides of this, the prediction accuracy achieved by our prediction model, of about 0.9, is much
higher than that obtained in Ribeiro et al. (2018), which is of around 0.26. We hence believe that
the accuracy rate achieved in this work is quite satisfactory. Another related work, of Berlusconi
et al. (2016), tested link prediction techniques based on a similarity score on the identification
of missing links among an Italian mafia group, obtaining a link reliability of up to around 0.9
for predictions made based on common neighbors. However, the prediction accuracy has been
counted, in some cases, by considering informal relationships among the members of the mafia,
for example, the existence of a phone call between two members (two nodes), which presents
certain level of subjectivity. On the other hand, in our work, the corruption prediction accuracy
is calculated using official judiciary sources, such that we are certain whether a congressman is
convicted or arrested. It means that we are sure about the prediction accuracy of our model.
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CHAPTER

6
TREND DETECTION AND AUTOMATIC

DECISION-MAKING IN THE STOCK
MARKET

In this chapter, a network-based model for price trend detection and automatic decision-
making in the stock market is presented. The model starts by mapping the historical prices of
a financial asset to a network, where each node represents a variation range and two nodes are
connected by a link if their respective variation ranges have ever occurred consecutively in the
past. Then, communities are detected in the price variations range network, for characterizing
down and up trends in the asset’s price. Afterwards, in the model’s operating phase, spot prices
are inserted in the network, according to their respective current variations, and the connector
hubs in each community are used as indicators of a possible trend reversal pattern for the price,
possibly triggering a buying or a selling order for the stock.

6.1 Introduction

Many complex systems in nature and society can be described in terms of networks
to capture the intricate web of connections among the units they are made of (PALLA et al.,
2005; WATTS; STROGATZ, 1998; BARABÁSI; ALBERT, 1999; DOROGOVTSEV; MENDES,
2013). A salient feature of networks is the presence of community patterns, one of the examples
is the biological neural networks. Data on both anatomical and functional connectome of
human (animal) brain has shown the small-world structure with highly clustered modules at
different scales (AKIKI; ABDALLAH, 2019; GLEISER; SPOORMAKER, 2010; HAGMANN
et al., 2008). These communities are known to represent subsystems of neurophysiological
functions, e.g., visual cortex. Besides the brain (SPORNS, 2002), other examples of real-world
networks include the internet (FALOUTSOS; FALOUTSOS; FALOUTSOS, 1999), food chains
(MONTOYA; SOLé, 2002), blood distribution networks (WEST; BROWN; ENQUIST, 2009)
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and power grid distribution networks (ALBERT; ALBERT; NAKARADO, 2004).

Stock market prediction assumes that it is possible to determine the future value of a
company stock or other financial asset traded on an exchange. Although there are numerous
works published on this subject, the existence of such possibility in the stock market is still a
controversial matter. In economics, the origin of the random walk hypothesis can be traced back
to the works of Regnault (1863) and Bachelier (1900). These works argue that stock market
prices evolve according to a random walk and thus cannot be predicted. This idea, along with
concepts proposed by Hayek (1945), has been later incorporated in the efficient market hypothesis

(MALKIEL; FAMA, 1970), which states, broadly speaking, that the price of an asset fully reflects
all available information in the market and, consequently, predicting market movements would
be an impossible task to be accomplished. Technical analysis, on the other hand, is known as
the study of financial market’s historical data with the purpose of forecasting future price trends
(WANG; CHAN, 2007). It, hence, contradicts the efficient market hypothesis (ROBERTS, 1959)
by believing that it is indeed possible to identify trending patterns within the historical prices of
an asset in short-term and even in long-term periods.

The use of “network thinking” (WATTS, 2004; BARABÁSI, 2002) when dealing with
complex systems in the real world can help to better understand the phenomenon, by analyzing
its topological features (MITCHELL, 2006). In vaccination strategies, for instance, the immu-
nization of hubs in the network is more likely to slow the spread of a disease than choosing
random individuals to vaccinate (PASTOR-SATORRAS; VESPIGNANI, 2002). A similar type
of reasoning can also be applied to other important tasks, such as managing public policies for
controlling epidemics (PASTOR-SATORRAS; VESPIGNANI, 2001), mitigating the effects of
power failures (MOTTER; LAI, 2002) and viruses spread in computers (WANG; CHEN, 2003).
Additionally, there is the concept of functional cartography, introduced by Guimera and Amaral
(2005), based on observations that metabolic networks in organisms may also present community
structure, in which each node plays a different “role” or “sub-role”, according to their pattern of
intra- and inter-module connections. In this manner, according to this concept, a hub could be
classified into three sub-roles: provincial (the vast majority of the node’s links are within the
node’s module), connector (the node is both a hub in its module and has many links to most
other modules) or kinless (the node’s links are homogeneously distributed among all modules).

Inspired by the concept of functional cartography and the formation of community
structures, observed in natural and man-made systems, we present a model which makes use of
connector hubs to detect price trend reversals in the market, thus allowing the model to detect
the starting point of up or down trends for a stock, as well as triggering a buying or a selling
operation accordingly. It starts by, in the trend detection phase, mapping the stock price variation
ranges into a network and then classifying theses nodes as being more or less likely to indicate an
up or down trend in the stock price, according to the network’s community structure. Afterwards,
in the operating phase, the model propagates these labels to future prices, also triggering buying



6.2. Motivation 101

or selling operations for the stock, accordingly. Through the identification of hubs connecting the
network’s communities, the model detects a pattern formation representing what is known in the
stock market as a trend reversal, such that the return obtained from each trade can be improved.
For evaluating its efficiency, the model is applied to the historical prices of 10 of the most traded
stocks from NYSE and from Bovespa Stock Exchange, and the obtained results are encouraging,
with the best returns of the proposed model being able to outperform the stock price returns for
the same period in 15 out of the 20 considered cases.

The proposed model is nature inspired in two aspects: (1) in the data representation, by
mapping the stock prices as a network and making use of the functional cartography concept,
and (2) in the data processing, inasmuch as the decision making technique proposed in this work
is also inspired by human (animal brain) in such a way that the classification is made according
to the pattern formation of the data beyond the physical features. In this case, the community
structure of the price variations’ network is used to detect the price trend patterns for the stock.

Regarding the organization of this chapter, besides this introduction, we discuss, in
section 6.2, the aspects involving the motivation for this study. In section 6.3, we provide a
detailed description of the model, showing how it generates the network and the labels from the
input data and also the algorithms used in its tasks, both for the trend detection and the operating
phases. We also introduce, in this section, the database used for obtaining the experimental
results. In section 6.4, we present the results obtained by applying the model to real financial
time series from NYSE and Bovespa Stock Exchange. In section 6.5, we conclude the chapter
with some final remarks.

6.2 Motivation

In recent years, the continuous advances in the area of artificial intelligence contributed
to increasing the interest in using different approaches, such as machine learning, to treat the
challenging problem of predicting financial data. In the work of Huang, Nakamori and Wang
(2005), the authors have compared the performances of Support Vector Machines (VAPNIK,
2000) and other traditional classifiers on predicting the tendency of the NIKKEI index, obtaining
favorable results by SVM. In the work of Adebiyi, Adewumi and Ayo (2014), the authors have
compared the performance of the statistical model ARIMA and artificial neural networks on
forecasting the future direction of stock prices of NYSE, obtaining better results by the latter.
Another interesting approach was made by Lee and Jo (1999), in which an expert system based
on a knowledge base comprising candlestick’s technical analyses was developed to predict future
price movements for stocks, with the experimental results achieving an average hit ratio of 72%
tested with Korean stock market data.

A network-based machine learning technique offers the advantage to not only analyze
physical features of the input data (e.g., distance or distribution), as in traditional machine learning
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techniques, but to also consider the pattern formation in their topological properties (COLLIRI et

al., 2018; SILVA; ZHAO, 2012a). Besides, as this is intrinsically a graphical approach, it has the
convenience of being interpretable, which is not the case with other machine learning approaches,
such as neural networks (GURESEN; KAYAKUTLU; DAIM, 2011). In the work of Cao et al.

(2019), a network was built from S&P 500, NASDAQ and DJIA indexes data and the topological
measures are extracted and used as attributes for predicting the next-day patterns, obtaining an
accuracy rate of over 70%. Another application in this sense was made by Anghinoni et al. (2019),
which forecasts trends in stochastic time series from the Bovespa index through unsupervised

learning techniques, based on community detection and network walk observations, and obtained
an accuracy rate of over 90% in the predictions, outperforming traditional classifiers such as
naive Bayes (RISH, 2001), Decision Tree (SAFAVIN; LANDGREBE, 1991) and Multilayer
Perceptron (HINTON, 1989).

The main motivation behind the development of such methods and techniques, aiming
to predict future prices in the stock market, lies in the possibility of using them to correctly
determine the exact time for buying and selling a stock. Although the determination of these
“timings”, when it comes to stock market decisions, may be subject to cultural differences among
the investors (JI; ZHANG; GUO, 2008), it is possible to affirm that they all share the same goal,
which is to increase the return obtained from each trading operation. Within this context, the
investor who makes use of the model presented in this study has the benefit of not only being able
to detect price trends, but also of being advised about when will be the most adequate moment to
buy or to sell a stock, in order to improve his returns.

6.3 Materials and Methods

The methodology used in this study is summarized below. In subsection 6.3.1, we provide
an overview of the proposed model. In subsection 6.3.2, we demonstrate how the model detects
the price oscillation trends from the training data, as well as how these trends are represented in
the form of a network. In subsection 6.3.3, we explain the model’s operating phase, in which
buying or selling operations are performed for an asset, according to the position of its current
price in the previously generated network. At the end of the section, in subsection 6.3.4, we
introduce the price histories of stocks from NYSE and Bovespa, used for evaluating the model’s
performance.

6.3.1 Model Overview

In supervised learning models, initially we have an input dataset comprising an array of
attributes Xtrain and an array of labels Ytrain, and the model then has to learn from these two arrays
to predict (or classify) the instances from the array Xtest in the testing phase. In our case, Xtrain

is provided and it comprises the price history of a stock, while Ytrain, containing the labels, is
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not provided and must comprise the respective stock price trends for each closing price in Xtrain.
So the first task of the model is to generate the labels Ytrain based on the data provided in Xtrain,
i.e., the model must detect the price trends for the stock according to its historical prices. This is
achieved in the trend detection phase, by first adding two columns (or attributes) in Xtrain: the
price variation within a v-days sliding window and its respective discretized version, consisting
of n price variation ranges. Each of these ranges is then mapped as a node in a network, and
edges are created between each pair of variation ranges if they ever appeared consecutively in
Xtrain. Next, a community detection algorithm is ran, and the labels Ytrain, i.e., the stock price
trends, will be the respective community to which each node belongs. Nodes from the lower
ranges’ community represent a down trend, while nodes from the higher ranges’ community
represent an up trend. Later, in the testing phase (here named as the operating phase), these
labels are used to predict the future stock prices, triggering possible buying or selling operations
for the stock, whenever the current price is represented by a connector hub from an upper or
lower community in the network, respectively.

Note that it is possible to exist more than two communities in the network and, in this
case, the model takes into consideration only the one with lower ranges and the one with upper
ranges, for triggering buying or selling operations. A summary of the model’s processing is
illustrated in Figure 18. It is also worth noting that the model only triggers a buying or selling
operation when it detects what is known as a trend reversal pattern for the stock price, i.e., when
the prices movement changes from a down trend to an up trend (triggering a buying operation)
or, alternately, when the prices movement changes from an up trend to a down trend (hence
triggering a selling operation).

In technical analysis, there is the known concept among investors of support and resis-

tance, when analyzing chart patterns (CHIANG et al., 2016; OSLER, 2000). The main idea is
that these two indicators tend to act as “barriers”, preventing the price of an asset from going
up or down beyond these levels. Additionally, given the market dynamics, in the medium and
long terms, a previous resistance level may become a support level, and vice-versa, when the
price goes up or down beyond that level. The rationale behind the proposed model has some
similarities with this type of analysis, with the main difference that, instead of measuring the
support and resistance levels in terms of prices, the model determines them in terms of a sliding-
window price variation, with the connector hubs of the network acting as some sort of support
and resistance indicators, in this case. During the operating phase, the model assigns a label
to the asset’s current price according to the respective node that its variation range occupies in
the network, which is built during the trend detection phase. Since the trend reversal patterns
identified and learned by the model from this stock’s historical price data in the training phase
continues to reoccur in the stock’s future prices, therefore, it is used for predicting purposes in
the operating phase. For this reason, the model can get good results.
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Figure 18 – Overview of the model. From the input stock price history, two columns are added: the price
variation within a v-days sliding window and its respective discretized values, in the form
of n variation ranges. Then, a network is generated, where each node represents a variation
range and the edges denote whether the ranges ever appeared consecutively in the stock price
history, pairwise. The community detection algorithm has the role of labeling the ranges into
an up, down or one of the possible in-between trends for the stock price (in this example
there are only two possibilities: up or down, because there are only two communities). In the
operating phase, the labels are propagated to future prices, possibly triggering a buying or a
selling operation accordingly, when it identifies a trend reversal pattern in the price series.
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6.3.2 Trend Detection Phase

For conducting our experiments, we split each stock price history dataset X into two
subdatasets: Xtrain and Xtest , according to a time range parameter γ . The other two parameters
required by the model are: v (measured in days, used as a sliding window for generating the price
variations) and l (also measured in terms of days, is the length of the ranges for the discretization
of the price variations). The trend detection phase can be summarized in the following steps
below, in that order:

1. start with a dataset X , containing attributes date and closing price for the stock, and insert
column var-v showing the discretized closing price variations within a v-days sliding
window;

2. split dataset X into two parts according to the previously stipulated number of training
days γ , such that we have Xtrain = X[:γ] and Xtest = X[γ+1:];

3. sort Xtrain in ascending order by attribute var-v;
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4. stipulate n variation ranges r of the same length l and categorize each variation value in
Xvar-v

train into its respective range r, generating attribute R in Xtrain;

5. revert Xtrain to its original order by date attribute, and generate adjacency matrix A,
representing the constructed network G , such that each range r in XR may become a node
in a network (Algorithm 3);

6. detect communities in G .

Algorithm 3 – Adjacency matrix A generation.
Input: price history with variation ranges X
Output: adjacency matrix A

1: procedure GET ADJACENCY MATRIX A(X)
2: n← number of ranges stipulated for the variations in X
3: A← zero matrix (n x n)
4: t← length of X
5: for i = 1 to t do
6: r1← XR

i−1
7: r2← XR

i
8: if r1 ̸= r2 then
9: Ar1,r2 = 1

10: Ar2,r1 = 1
11: end if
12: end for
13: return A
14: end procedure

The rules for generating the adjacency matrix A are depicted in Algorithm 3, in which X ,
in this case, stands for Xtrain. According to these rules, two vertices v1 and v2 in the network G ,
which represent ranges r1 and r2 in XR, will be connected by a link only if they are immediately
next to each other at any point in XR. Since the values in XR are ordered by dates in ascending
order and given that they indicate how distant the current price is from the price of v days
ago, then the position of the nodes in the network will be affected by the overall stock price
oscillation, with subsequent and similar ranges tending to be connected and closer to each other
(Figure 19). This pattern will later be recognized by the community detection algorithm, which
will group the nodes according to the “momentum” they represent in the current stock price
oscillation trend (so to speak). It is worth noting that the Algorithm 3 was originally applied as
the first step in a network-based model for detecting periodicity in time series, such as the ones
from meteorological data (FERREIRA; ZHAO, 2014), and here we are taking advantage of its
rationale by applying it in the stock market context. During the operating phase, depending on
the community to which the node of the current price variation range belongs, the model then
infers whether it is an indication that the stock price is currently in an up, down or maybe in one
of its in-between trends, when compared to its price from v days ago. If the community of the
current price is different from the community of the previous day price, then a trend reversal
may be detected, and a buying or selling operation is triggered for the stock.

The trend detection phase is illustrated in Figure 20, where we have a stock EXMP3
with a sliding window v of 30 days for the price variation attribute. In this example, the training
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Figure 19 – Illustration showing how the price variation ranges are defined and later mapped as nodes
in the network. For this example, we use the first 50 days of stock GE, from NYSE, and,
for the sake of simplification, the daily price variations are calculated based on the initial
price, instead of using a sliding window. (a) After being sorted in ascending order, the price
variations are split into 7 equal parts (the square root of 50), thus delimiting the ranges R0 to
R6. (b) Each range becomes a node in the network, and two nodes are connected if they ever
appeared consecutively in the stock price time series. Note that node 2 is connected to node 0
due to the price drop happened on 2000-01-28.
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process resulted in 31 ranges r (labels 0 until 30) for categorizing the 30-days price variations,
and the community detection algorithm returned 2 communities (or clusters) to be used as labels
for the price trends. It is also important to observe in this figure that, here, the indexes and range
values start at 0 instead of at 1, and so we proceed when writing the algorithms. Therefore, in
case one wants to replicate our model and uses different indexing values, then he has to adapt
the code indexes correspondingly.

Regarding the processing time, all processes required by the model in the trend detection
phase have a linear time, hence with a time complexity of O(n), with the only exceptions being
the sorting operations, which are of type O(n logn), where n may represent the size of the input
dataset X , of subdataset Xtrain or of the network G , depending on the task.

6.3.3 Operating Phase

After having detected the trending patterns for the stock and properly assigned them as
labels for the subdataset Xtrain, we then proceed to the testing phase, in which we propagate
these labels to the future prices of the stock in Xtest . Here, this phase is named as the operating
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Figure 20 – An example of the trend detection phase for the stock EXMP3. (a) Fragment from the
subdataset Xtrain. The columns var-30, R and cm represent the discretized 30-days closing
price variations, the ranges used for categorizing the variations and the community to which
each range r belongs (added later from G ), respectively. (b) The network G resulted from
the application of Algorithm 3, to generate the adjacency matrix A. (c) The communities
identified in the network G . Note that, in this case, the green community represents the higher
ranges (from 15 to 30) and hence indicates an up trend, while the red community contains the
lower ranges (from 0 to 14) and hence indicates a down trend.

(a) Xtrain (b) Network (c) Communities

Source: Elaborated by the author.

phase, since depending on the labels assigned to the current prices, an operation of buying or
selling may also be triggered for the stock. We stipulate some rules for buying or selling the
stock according to which node, in the previously generated network G , the current stock price
variation range is. There is only one parameter required by the model in this phase – the number
of connector hubs h taken into account to identify possible reversals in the price trend. The
operating phase of the model can be summarized in the following steps below, in that order:

1. add columns R and cm in Xtest dataset by using the same conversion values between
attributes var-v, R and cm (community) obtained from the trend detection phase;

∙ in case a value from var-vtest
i is higher than max(var-vtraining), then its ri value should

be max(Rtraining);

∙ in case a value from var-vtest
i is lower than min(var-vtraining), then its ri value should

be 0;

2. perform buying and selling operations for the stock according to the rules described in
Algorithm 4; and

3. in case there is still an open position after processing the last row of Xtest with Algorithm 4,
this position then must be “closed” (sold) and its respective return should also be computed
in the overall model’s return for the stock.
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Algorithm 4 – Perform buy and sell operations.
Input: variation ranges network G, number of hubs considered h, prices list to operate X
Output: list with trading operations performed in X

1: procedure GET HUBS(G,h,cm1)
2: if cm1 = 0 then
3: cm2← 1
4: else
5: cm2← cm1−1
6: end if
7: nodes← [ ]
8: for v in Gvertices do
9: if v in Gclusters

cm1 then
10: nodes← append v
11: vk← 0
12: for j in vneighbors do
13: if j in Gclusters

cm2 then
14: vk+= 1
15: end if
16: end for
17: end if
18: end for
19: nodes← sort descending by vk

20: return nodes[:h]
21: end procedure
22: procedure TRADE(X ,G,h)
23: n← number of communities in G
24: downhubs← GetHubs(G,h,0)
25: uphubs← GetHubs(G,h,n−1)
26: t← length of X
27: list← [ ]
28: f lat← True
29: for i = 0 to t do
30: if flat then
31: if XR

i in uphubs then
32: list← add dict with buying info (price, date)
33: f lat← False
34: end if
35: else
36: if XR

i in downhubs then
37: list← add dict with selling info (price, date, return, length)
38: f lat← True
39: end if
40: end if
41: end for
42: return list
43: end procedure

The rules for buying and selling the stock during the operating phase are described in
Algorithm 4, in which X , in this case, stands for Xtest . The first step of the Trade procedure,
in Algorithm 4, is to identify the h downhubs and the h uphubs in the network G , through the
GetHubs procedure. The downhubs are the h vertices within the lowest community (label 0)
with most links to vertices from its immediately higher community (label 1). These connector
hubs thus indicate the beginning of a down trend for the stock price, according to our model.
On the other hand, the uphubs are the h vertices within the highest community (n− 1) with
most links to vertices from its immediately lower community (n−2), where n is the number of
communities in G . These connector hubs thus indicate the beginning of an up trend for the stock
price, according to our model.

In the second step of the Trade procedure, in Algorithm 4, the model may execute a
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buying or a selling order according to the price’s variation range (represented by a node in the
trade data network), as well as its current position in the stock. The model performs a buying
operation when it is currently flat, i.e. it is not already positioned in the stock, and the variation
range (XR

i ) of the current price (Xclose
i ) is among one of the uphubs. Conversely, it performs a

selling operation for the stock when it is currently positioned in the stock and the variation range
(XR

i ) of the current price (Xclose
i ) is among one of the downhubs. When the current price variation

range reaches one of the h “entry” connector hubs from the higher ranges’ community, then it is
a sign of trend reversal with the stock price entering in an up trend, so the model advises to buy
the stock at that moment. On the other hand, when it reaches one of the h “entry” connector hubs
from the lower ranges’ community, then it is also a sign of trend reversal, this time with the stock
price entering in a down trend, so the model advises to sell the stock at that moment. Taking
Figure 20c as an example, in this case, when h = 3, the downhubs in the network would be the
connector hubs 11, 13 and 14, while the uphubs would be the connector hubs 15, 16 and 17.

Note that, by proceeding this way, we are here also assuming that the price oscillation
patterns identified for the stock during the trend detection phase will still remain during the
operating phase, i.e., after the γ days previously stipulated for splitting the dataset into Xtrain and
Xtest . It is also important to emphasize that the model only buys the stock when it is “flat”, i.e., it
is not currently already positioned in the stock (hence there are no “averaging down” strategies
here) and, conversely, it only sells the stock when it is currently positioned in it (hence “short
selling” strategies are not allowed here either).

Regarding the time complexity of the model during the operating phase, there are two
tasks with linear time (O(n)), where n represents the size of subdataset Xtest , and one task with
logarithmic time (O(n logn)), which is the GetHubs procedure from Algorithm 4, where n then
represents the size of network G .

6.3.4 Database

In the stock market, the returns of trading operations depend on specific timing strategies
for buying and selling the stock. The proposed model defines these timings strictly according
to the trending patterns detected through a network-based technique, for each stock. Hence, in
order to evaluate the model, we compare its performance, in terms of financial return, with the
one provided by the stock price during the same period of the tests, i.e., with the returns obtained
by the “buy and hold” strategy. The database we build for the tests comprises the daily closing
price histories of 10 of the most traded stocks from NYSE and 10 of the most traded stocks from
the Brazilian Stock Exchange (Bovespa). These stocks are listed in Table 12, along with their
respective time ranges considered. Eventual stock splits and consolidations are also taken into
account and appropriately reflected into the price histories for generating the model’s input data.

In order to obtain the results, we run the model using different values for the sliding
window parameter v and for the number of hubs parameter h, when processing all stocks in
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Table 12 – Time series used as database, obtained from NYSE and Bovespa Stock Exchange

Ticker Company d0 d f Days
N

Y
SE

BAC Bank of America 1999-11-22 2019-11-20 7303
EFX Equifax 1999-11-22 2019-11-20 7303
F Ford Motor 1999-11-22 2019-11-20 7303
GE General Electric 1999-11-22 2019-11-20 7303
JPM JPMorgan 1999-11-22 2019-11-20 7303
M Macy’s 1999-11-22 2019-11-21 7304
SCHW Charles Schwab 1999-11-22 2019-11-21 7304
PFE Pfizer 1999-11-22 2019-11-20 7303
T AT&T 1999-11-22 2019-11-20 7303
X United States Steel 1999-11-22 2019-11-20 7303

B
ov

es
pa

ABEV3 Ambev 1999-09-17 2019-11-19 7368
BBAS3 Banco do Brasil 1998-03-16 2019-11-19 7918
BRFS3 Brasil Foods 2009-12-10 2019-11-19 3631
BRKM5 Braskem 2002-09-02 2019-11-19 6287
CIEL3 Cielo 2009-12-18 2019-11-19 3623
CSNA3 CSN 1998-03-16 2019-11-19 7918
ITSA4 Itaúsa 1998-03-16 2019-11-19 7918
JBSS3 JBS 2007-03-29 2019-11-19 4618
PETR4 Petrobras 1998-03-16 2019-11-19 7918
VALE3 Vale 1998-03-16 2019-11-19 7918

Source: Research data.

the database, such that v ∈ (5,10,30,60,120,180), and h ∈ [1,10]. The number of days γ for
splitting X into Xtrain and Xtest is fixed as 1000, which represents almost 4 years of trading days.
The values of var-v are discretized through a simple rounding function, for the sake of converting
them into integers, and the length l of each range r is defined as the square root of the length of
Xtrain, which results in n = l, for all cases. For detecting communities in the network, we make
use of the fast greedy algorithm (NEWMAN, 2004).

6.4 Results and Discussion

In this section, we present the obtained results when applying the proposed model on
historical data from NYSE and Bovespa stocks.

6.4.1 Generated Networks

We start by showing, in Figure 21, the networks, detected communities and the evolution
of the values in Xvar-v

train obtained from the trend detection phase for the stock CSNA3, for v = 5
and v = 180, respectively. We present the plots for the same stock with these specific values of
v with the aim of demonstrating how the parameter v may affect the training process’ output.
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Figure 21 – Output from the trend detection phase for stock CSNA3, when the sliding window v = 5 days
(above) and v = 180 days (below). Left column: Network G . Middle column: Communities
detected. Right column: Price variation ranges evolution. The colors in (c) and (f) denote the
communities to which each variation range belongs. Note that, when comparing the price
variations, in the third column, the ranges for v = 180 follow much longer trends and also
reach higher values, both on the positive and on the negative sides.
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Source: Elaborated by the author.

For lower values of v, the network G tends to have a higher average degree (Figure 21a) and
the price variations tend to present a lower autocorrelation (Figure 21c). In opposition, higher
values of v tend to result in a network G with lower average degree (Figure 21d) and to incur
a higher autocorrelation for the price variations (Figure 21f). A lower v also tends to increase
the number of trades performed by the model during the operating phase, as the nodes get more
interconnected and so there are more chances of the price variation ranges to reach the uphubs

and the downhubs in the network. Another consequence of having lower values for the sliding
window v is that it makes the average length of the trades shorter (Figure 22), for the same reason
explained above. Therefore, we can say that if one is planning to make use of the model with the
goal of optimizing short-term trading operations, then he is advised to choose lower values of v.
While if one plans to optimize long-term trading operations, then a higher value of v is indicated.
The parameter h may also affect the number of operations performed by the model, since lower
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Figure 22 – Box plots of the average length of trades l (in days) according to sliding window parameter v
(also in days) in the operating phase for both NYSE and Bovespa databases, considering all
values of parameter h. Usually, as lower the value chosen for v, the shorter is the expected
length of the trading operations performed by the model. The outliers shown in this figure
occur for small values of h, such as 1 or 2.

Source: Elaborated by the author.

values of h, such as 1 or 2, tend to lessen its probability of triggering new operations, both for
buying and for selling.

6.4.2 Obtained Returns

The returns achieved by the model in the operating phase, considering all values of
parameters v and h, both for NYSE and Bovespa databases, are displayed in Figure 23 and
summarized in Table 13, grouped by stock. The first column in Table 13, rstock, shows the stock
return in terms of its price variation within the period of the operating phase, i.e., the time
range provided in Xtest . The column rmodel shows the average return achieved by the model,
considering all values of v and h. The columns d*0 and d*f display the initial and final dates taken
into consideration by the model for achieving the best return r*model for each stock. The value
of d*0 may some times differ from the operating phase’s initial date due to the sliding window
parameter v*.

For the NYSE database, the model’s average return rmodel is able to surpass the stock
price return rstock in the period for 6 out of the 10 cases considered, with the exceptions being
EFX, JPM, SCHW and T. As for the model’s best return r*model , it is able to outperform the stock
price return in 8 out of the 10 cases considered, with the 2 exceptions being EFX and SCHW.
The best case, in terms of return optimization, is achieved for stock F, in which the stock price
return for the period is -33.46% while the model’s best return is 673.3% in the same period. This
return rate for F is achieved through 131 trading operations, with an average length of 26 days
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Figure 23 – Box plots of the returns achieved by the model rmodel (in %) in the operating phase on the
NYSE and Bovespa databases, grouped by stock, considering all values of parameters v and
h. For NYSE, the highest return is obtained for stock F, of 673%. For Bovespa, the returns
obtained for stock CSNA3 really stand out from the others, reaching more than 8000%.

Source: Elaborated by the author.

Table 13 – Main results obtained from the tests: the returns r are expressed in percentages (%).
The mark * indicates the best result for each stock. The columns n*, l

*
and r* show the

total number of trades, average length per trade and the geometric mean return per trade,
respectively.

Model’s average results Model’s best results
Trades info

rstock rmodel r*model d*0 d*f v* h* n* l
*

r*

stock

N
Y

SE

BAC -56.03 -5.46 146.04 2003-11-21 2019-11-20 5 6 193 21 0.47
EFX 478.34 152.10 415.04 2003-12-30 2019-11-20 30 2 4 1402 50.65
F -33.46 3.55 673.30 2003-12-01 2019-11-20 10 3 131 26 1.57
GE -60.55 -15.60 64.72 2004-05-10 2019-11-20 120 2 14 275 3.63
JPM 263.52 54.19 264.65 2003-12-01 2019-11-20 10 1 1 5831 264.65
M -35.74 135.43 424.95 2004-08-05 2019-11-21 180 2 3 1191 73.80
SCHW 308.77 67.70 183.73 2003-12-30 2019-11-21 30 1 61 66 1.72
PFE 17.06 18.13 64.12 2004-08-05 2019-11-20 180 2 12 253 4.21
T 47.07 4.44 92.59 2004-08-05 2019-11-20 180 10 4 1222 17.80
X -64.00 57.32 404.96 2003-12-30 2019-11-20 30 3 155 19 1.05

B
ov

es
pa

ABEV3 360.16 71.14 318.10 2004-04-20 2019-11-19 5 2 1 5676 318.10
BBAS3 906.37 394.20 1423.18 2002-04-29 2019-11-19 10 1 1 6307 1423.18
BRFS3 -24.48 19.85 71.10 2014-01-13 2019-11-19 10 1 44 25 1.23
BRKM5 87.82 84.67 455.75 2006-09-13 2019-11-19 5 2 185 15 0.93
CIEL3 -77.06 -32.67 19.47 2014-01-14 2019-11-19 5 8 78 4 0.23
CSNA3 451.51 2541.69 8887.88 2002-05-24 2019-11-19 30 10 120 28 3.82
ITSA4 602.62 133.33 514.82 2002-12-20 2019-11-19 180 2 4 837 57.47
JBSS3 390.74 179.46 354.17 2011-07-14 2019-11-19 60 1 5 521 35.35
PETR4 313.28 382.56 1241.27 2002-04-15 2019-11-19 5 10 397 9 0.66
VALE3 660.68 399.17 1300.08 2002-06-03 2019-11-19 10 2 151 28 1.76

Source: Research data.
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Source: Elaborated by the author.

and a geometric mean return of 1.57% per operation. For the stock JPM, the model’s best return
is only 1% higher than the stock price’s return for the period, and this return is achieved through
1 operation alone. Looking at the trades list of that stock, for these parameters, we noted that the
model in fact just performed the equivalent to a “buy and hold” strategy in this case, buying the
stock on 2003-12-02 and having being forced to sell it just at the end of the simulation’s period
in order to compute its return.

The most surprising item in the results for Bovespa database is the high rates of return
obtained for the stock CSNA3. Since these values really stand out from the others, we have
double checked these numbers in order to be sure that the model’s calculations and the input
data are both correct. The average return from the model rmodel for CSNA3 (2,541%) – which
is the arithmetic mean of the returns obtained for all values of parameters v and h – is already
much higher than the stock return rstock for the same period (451%). The best return obtained by
the model r*model (8,887%) though, when v = 30 and h = 10, is even higher. This high return is
achieved from a total of 120 trades, with an average length of 28 days and a geometric mean
return of 3.82% per trade. Overall, the average return from the model is able to outperform the
stock return in 4 out of 10 cases: BRFS3, CIEL3, CSNA3 and PETR4. As for the model’s best
return, it is able to outperform the stock price return in 7 out of 10 cases, with the 3 exceptions
being ABEV3, ITSA4 and JBSS3. For ABEV3 and BBAS3, the model achieved its best return
with only 1 trade, being that in the case of BBAS3 it was nevertheless able to outperform the
stock price return in the same period by a high margin (1,423% versus 906%). Looking at this
individual trade in the stock’s trades list for these parameters (v = 10 and h = 1), we observe that
the model waited for the stock initial price to decrease before opting for buying it, on 2002-08-12.
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Table 14 – Annualized Sharpe Ratio (SR) obtained by a “buy and hold” strategy and the one from the
proposed model’s best returns, for the NYSE and Bovespa stocks in the database.

Buy & Hold Model
SR SR t-stats

NYSE 0.17 2.14 8.46
Bovespa 0.56 1.99 7.33

Source: Research data.

To help us understand how the model is able to achieve such higher returns for stocks
F, from NYSE, and CSNA3, from Bovespa, we generate Figure 24, in which it is possible
to see some examples of the operations performed by the model when using the respective
optimal values of the parameters h and v for these stocks. The first trading operation shown
in this figure, for stock F, is the most profitable of all, achieving a return of 337% (by buying
it at 1.74 on 2009-03-09 and selling it at 7.61 on 2009-08-26). As it can be noted from the
remaining operations shown for this stock in the figure, the model is very successful at detecting
the price trending patterns during this period, both when buying and selling the stock. It is worth
remembering that, evidently, during the operating phase only the historical and current prices are
acknowledged by the model, and not the future prices. Hence, we can also say that the model
is accurately predicting the future prices for the stock during this period, thus the high return
rates achieved in these trading operations. The same observations can also be made for the stock
CSNA3 during the period shown in Figure 24.

In Table 14, we make a comparison between the annualized Sharpe ratio of a “buy and
hold” strategy and the one from the proposed model’s best returns, for the NYSE and Bovespa
stocks in the database. The Sharpe ratio (SHARPE, 1966) is the average return earned in excess
of the risk-free rate over the strategy volatility or standard deviation, and it is widely used in
finance. Generally, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted
return. In this case, we assume that the risk-free rate is equal to zero. The statistical significance
of the mean obtained returns is given by t-statistic = Sharpe Ratio ×

√
number of years. As

it is shown in Table 14, the strategy from the proposed model’s best returns outperforms the
buy-and-hold one for both NYSE and Bovespa stocks in the considered periods.

6.5 Chapter Remarks

In this chapter, we introduced a network-based model to detect price trends and also to
automate decision-making processes in stock market trading operations in order to optimize
the returns. The model starts by mapping the stock’s historical price variation ranges into a
network and then generates the trend labels based on its topological structure. These labels,
which represent the price’s up and down trending patterns identified in this phase, are later
propagated to the future prices, and the network’s connector hubs are used as indicators of price
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trend reversals, triggering operations for buying or selling the stock accordingly. The results
obtained through the application of the model to real financial time series, both from NYSE and
the Brazilian Stock Exchange, are promising, and future studies should be made with the aim of
applying it to larger databases as well as of possibly improving its efficiency, in terms of return
rates optimization.
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CHAPTER

7
PREDICTING COVID-19 NEW CASES AND

DEATHS IN A REGION

In this chapter, we approach the problem of predicting the evolution of new COVID-19
cases and deaths in a region through a network-based regression model. The proposed model
works as a multiple regression analysis, and starts by mapping each time series as node in a
set of static networks, each one representing a time step t, with the connections between each
pair of nodes being based on how similar are their respective variations, at the time t. Then, a
community detection algorithm is ran, in each static network, and time series from nodes which
have shared a same community in the past are considered by the model to be correlated, and this
information is later used for prediction purposes. Hence, we can also say that the model treats
the set of generated static networks in the form of a temporal network. The proposed model is
evaluated by applying it to predict new COVID-19 cases and deaths for the 27 federal units of
Brazil, on a weekly basis, and the obtained results are encouraging, when compared to other
similar studies, in terms of mean absolute percentage error.

7.1 Introduction

Since the first human populations started to live in groups, the epidemic diseases have
been one of the greatest problems faced by humanity. In the modern era, this problem has been
aggravated by two combined factors : (1) the fact that human beings have been living more and
more in concentrated urban spaces, and (2) that these great concentrations of people, by their turn,
are increasingly more interconnected through faster and more efficient worldwide transportation
routes (HARARI, 2014). The most recent example regarding this problem involves the COVID-
19, which was officially characterized as a pandemic only around four months after its first cases
were reported, in China. The fast dissemination of this disease can be particularly challenging
for policy makers around the world, which have to face the difficult task of developing efficient
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strategies for controlling the spread of the disease among the population, oftentimes by taking
severe measures to restrict the local activities, both socially and economically. Within this context,
models which can help on predicting the spread evolution of the disease in each region would
surely help the authorities on their resources planning.

Currently, the most common strategy to deal with the COVID-19 pandemic, among
policy makers, is to implement isolation policies in the population, through quarantines or
lockdowns. These measures have the aim of delaying the peak of the dissemination curve, in
order to avoid a suddenly rise on COVID-19 hospitalizations. In this sense, it is more desirable
for a given region that its dissemination curve can be more similar to the curves of countries
which were less affected by the disease, such as Japan, South Korea and Germany, for instance,
than to the curves of countries more severely affected by the disease, such as Italy, Spain and US,
for instance. In this study, we take this type of reasoning one step further, by introducing a semi-
supervised regression model which detects the correlations between the COVID-19 curves from
different regions, and makes use of these detected correlations for predicting future values for
new confirmed cases and deaths on a given region. The model starts by mapping the COVID-19
time series to static networks, where each network represents the current correlations between
the time series, at each time step t. Each node in these networks represents the time series for a
specific region, and the edges are generated according to the detected correlations between each
pair of nodes. Afterwards, these static networks are analyzed in the form of a temporal network,
in order to predict the evolution of a specific time series, for the period considered.

The novelty of this model consists in the use of a form of multiple regression analysis, in
which it does not take into account the predicted time series’ own prior curve for making the
predictions. Instead, the model considers, as input attributes, only the curves from other time
series in the dataset identified as more correlated to the series to be predicted, and whose lengths
are greater or equal to the predicted time step t. Hence, this model is indicated for cases when
the time series in the dataset present different initial dates, and one wants to investigate whether
it is possible to generate predictions based on the correlations detected between the series. We
evaluate the proposed model by applying it on preliminary COVID-19 data from different world
regions for predicting the future confirmed cases and deaths in the 27 federal units of Brazil.
The obtained results are promising, with the model being able to predict, on a weekly basis, the
number of new confirmed cases in each state with a median and mean absolute percentage error
of 21% and 24%, respectively, and the new confirmed deaths in each state with a median and
mean absolute percentage error of 16% and 23%, respectively.

Regarding the organization of this chapter, besides this introduction, we discuss, in
section 7.2, the motivations for conceiving this study. In section 7.3, a description of the method-
ology and the model is provided, showing how the networks are generated from the input data,
and how the predictions are made. In section 7.4, we present the results obtained by applying the
model to real preliminary COVID-19 spreading data, from world regions and from Brazilian
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federal units. In section 7.5, we conclude this chapter with some final remarks.

7.2 Motivation

Networks (or graphs) are powerful modeling tools for exploring a dataset in terms of
the relations between the data instances, both in a static or in a dynamic way. Mathematically, a
network can be defined as a graph G = (V ,E ), where V is a set of nodes and E is a set of tuples
representing the edges between pairs of nodes (i, j) : i, j ∈ V . A temporal network is a specific
type of multilayer network or multiplex (DOMENICO et al., 2013), in the form of G = (V ,E ,D),
in which the additional dimension D contains an ordered set of temporal indices that represents
time (KIVELÄ et al., 2014). Among the phenomena which have already been modeled through
temporal networks are brain connectivity (THOMPSON; BRANTEFORS; FRANSSON, 2017),
fires events in the Amazon (XUBO et al., 2020), political parties (COLLIRI; ZHAO, 2019;
AREF; NEAL, 2020) and corruption scandals (LUNA-PLA; NICOLÁS-CARLOCK, 2020).

Although complex networks is a relative new field of study, there are also already well-
known network-based models developed specifically to approach problems regarding the spread
of epidemic diseases. These models do not necessarily need to make use of very advanced mathe-
matical calculus since, oftentimes, simple models can help to further understand the transmission
of infectious agents within human communities (ANDERSON; ANDERSON; MAY, 1992).
The SI, SIS and SIR models (PASTOR-SATORRAS; VESPIGNANI, 2001; BARTHÉLEMY
et al., 2005), for instance, allow one to estimate what would be the critical threshold, in terms
of the percentage of infected individuals in a population, for an infectious disease to become
endemic. These models can also help on determining which immunization strategies are expected
to be more effective, according to the topological characteristics of the network formed by the
individuals susceptible to the disease (PASTOR-SATORRAS; VESPIGNANI, 2002; DEZSŐ;
BARABÁSI, 2002). A very interesting survey on this topic was made by Costa et al. (COSTA et

al., 2011).

Some recent studies have applied machine learning techniques to predict the spread of
epidemics, on a weekly basis. The study made by Al-qaness et al. (2020) forecasts the number of
weekly new confirmed cases of influenza in China, based on the previously confirmed cases, by
using an improved adaptive neuro-fuzzy inference system (ANFIS), achieving a mean absolute
percentage error of 32% and 45%, respectively, on the two datasets analyzed. In the work from
Arora, Kumar and Panigrahi (2020), an artificial recurrent neural network (RNN) was applied
on a 7-days testing dataset to predict new confirmed cases of COVID-19 in the states of India,
obtaining a mean absolute percentage error of around 6% when predicting the weekly new
confirmed cases in 4 states.
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7.3 Materials and Methods

The research methodology used in this study is summarized below. We start by, in
subsection 7.3.1, describing the database used for the model’s application and evaluation. Then,
in subsection 7.3.2, we explain the proposed prediction model in details, showing how the
networks are generated from the input time series dataset. Afterwards, in subsection 7.3.3, we
provide a simple application example, for illustrative purposes.

7.3.1 Database

The database used in this study is built from the preliminary data made publicly available
by Dong, Du and Gardner (2020). This dataset comprises the daily evolution of COVID-19
confirmed cases and deaths in 261 different regions or countries, from 01-22-2020 until 05-26-
2020. We also make use of another dataset (BRASIL.IO, 2020), this one comprising the daily
evolution of COVID-19 confirmed cases and deaths in each of the 27 federal units of Brazil, from
02-25-2020 until 05-26-2020. The real values from the later dataset are the ones to be predicted
by the model and, for this reason, the future values from each federal unit are suppressed, prior to
each prediction, and these values are used later exclusively for performance measuring purposes.

7.3.2 Description of the Time Series Prediction Model

Regression analysis is a statistical method building a mathematical model that best fits
the data for the prediction of the output variable (KOSTOPOULOS et al., 2018). In simple
regression, there is only one independent variable x that affects the value of the dependent
variable y, while in multiple regression there are more than one. In this work, for predicting
the evolution of the spread of COVID-19 in a given region, we conceive a semi-supervised

regression model which predicts future values for a time series in a dataset, i.e., the dependent
variable, based on the detected similarities between this time series and the other time series in
the same dataset, through a correlations temporal network. In this case, we are aiming to detect
hidden evolution patterns among groups of time series in the dataset, in order to make use of
these patterns for prediction purposes. Therefore, this model can be applied in cases when the
time series in the dataset present different initial dates, and one wants to investigate the existence
of possible correlation patterns between them and, if that is the case, to estimate future values
for a given time series based on these detected correlations.

In machine learning applied to time series, initially we have an input dataset comprising
n instances (or time series) and m time steps t, in the form of X = {X1,X2,X3, ...,Xn}, where
each instance i consists of m elements, such that Xi = (xi,t=0,xi,t=1,xi,t=2,xi,t=3, ...,xi,t=m), as in
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the following 2d array: 
x1,1 x1,2 x1,3 ... x1,m

x2,1 x2,2 x2,3 ... x2,m

... ... ... ... ...

xn,1 xn,2 xn,3 ... xn,m

 . (7.1)

The model proposed in this work starts by bringing all time series in X to a same starting point
t = 1. Next, it calculates the variation δXi,t for each time series i at each time step t, which is
yielded by:

δXi,t =
Xi,t−Xi,t−1

Xi,t−1
. (7.2)

This provides us with a 2d variations array δX , containing n instances (the time series), and a
maximum of m−1 columns (the time steps) for each time series. Afterwards, each row δXt in
this array is mapped as a network Gt , where each node represents a time series and the edges
between each pair of nodes are generated according to the similarities between their variations at
the time t. The neighbors connected to each vertice i, in each network Gt , are given by:

N(it) = ε-radius(it), (7.3)

where ε-radius(it) yields a set of instances whose variations δXi,t are within the range [−ε,+ε].
Following, a community detection algorithm is ran in the networks, in order to group the time
series with more similar variations, at each time step t. For this end, one can use, for instance,
the fast greedy algorithm (NEWMAN, 2004), which detects the community structure based
on the greedy optimization of the modularity measure, or also the walktrap algorithm (PONS;
LATAPY, 2005) which, roughly speaking, is based on the idea that short random walks tend to
stay in the same community in the network. At this point, we end up with a set of static networks
G = {Gt=2,Gt=3,Gt=4, ...,Gt=m}, with each of them representing the topological space emerged
from the current relations between the variations in δX at the time slice t. Hence, we can also
say that this set forms the temporal network G , and each element in the set represents a different
time slice t of the temporal network G .

Following, a dictionary Di is created, for each time series i in the dataset, in the form of
a list D = {D1,D2,D3, ...Dn}. The set of keys K in Di are given by all instances j in the dataset
which have shared the same community with i, at any time step t, i.e., in any of the networks
in G . The set of values V in Di, for any key j, are given by the respective number of times that
the instances i and j have shared the same community in G . Mathematically, we have that a
dictionary can be defined as:

D⊆ {(k,v) | k ∈ K∧ v ∈V}∧∀(q,w) ∈ D : k = q→ v = w , (7.4)

and, in the proposed model, the set of keys K and the set of values V in Di are yielded by:

DK
i = { j | j ∈ GC

t,i}∧ t ∈ [2,m]∧ j ∈ [1,n]∧ j ̸= i, and (7.5)

DV
i = u({Gt | j ∈ GC

t,i})∧ t ∈ [2,m]∧ j ∈ [1,n]∧ j ̸= i , (7.6)



122 Chapter 7. Predicting COVID-19 New Cases and Deaths in a Region

Table 15 – Time series example dataset

X1 X2 X3 X4 X5
1/1/2020 10 2 - - -
1/2/2020 15 4 - - -
1/3/2020 20 8 3 - -
1/4/2020 25 16 6 6 -
1/5/2020 30 32 12 9 1
1/6/2020 35 64 24 12 2

Source: Research data.

where GC
t,i provides a set with all instances that share the same community with i in the network

Gt .

Finally, the predicted variation for a time series i, at the time step t > 2, is equal to the
averaged variations of the time series which are in the keys of the dictionary Di whose length is
equal or longer than t, weighted by their respective values in Di. Thus, the predicted variation
δ̂Xi,t is given by:

δ̂Xi,t =


∑ j DV

i [k→ j] δX j,t

∑ j DV
i [k→ j]

,∀ j ∈ DK
i | j ∈ Gt ∧u( j)≥ t,

if { j | j ∈ DK
i ∧ j ∈ Gt ∧u( j)≥ t} ̸= /0

/0, otherwise

(7.7)

where u( j) returns the length of array j. In this way, the model is able to predict variations for a
time series i, on a time step t, only if at least one of the time series in Di has a length equal or
longer than t. Note that the model, hence, performs a form of multiple regression analysis, in
which the prior evolution curve of the time series i (which is the dependent variable) is not taken
into account in the predictions, and the independent variables (or predictors) considered in this
case are the evolution curves from longer time series in the dataset which are more correlated
to i. In this sense, it is worth highlighting the important role played by the ε-radius threshold
parameter in the model, used for generating the edges in the networks. Smaller values of ε make
the predictions performed by the model more sensitive to local averages in the dataset, with the
risk of overfitting, while, conversely, higher values of ε result in the model considering broader
averages when making the predictions, with the risk of underfitting. It is also worth noting that,
in Equation 7.7, by weighting the time series variations more correlated to i by the number of
times this correlation has occurred, prior to the time t of the prediction, we are here assuming
that the time series i tends to preserve these same correlations in the future.

7.3.3 Model’s Demonstration Through a Simple Example

In order to illustrate how the proposed model works, we now present its application on a
simple dataset, to be used as example. Let us consider a dataset X , comprising five time series:
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Table 16 – Daily variations (%) for the example dataset

X1 X2 X3 X4 X5
1st day 50.0 100.0 100.0 50.0 100.0
2nd day 33.3 100.0 100.0 33.3
3rd day 25.0 100.0 100.0
4th day 20.0 100.0
5th day 16.7 100.0

Source: Research data.

X1,X2,X3,X4 and X5, with different initial dates and different lengths, as shown in Table 15.
Since the model makes use of data from the longer time series in the dataset, in order to perform
the predictions, then in this case it will be able to predict future values only for X3, X4 and X5.
One can observe, from Table 15, that X1 and X4 follow an arithmetic progression, while X2

and X3 follow a geometric progression, and X5 – which is the most recent one, having only 2
observations so far – could either follow an arithmetic or a geometric progression in the future.
However, let us suppose that, in the current context, we are not aware of these evolution patterns
for any of these time series, and hence we expect the model to correctly detect these evolution
patterns for us, and to also estimate the future values for X3, X4 and X5 accordingly.

The first step in the proposed model is to bring all time series to a same starting point
t = 1, and then to calculate the daily variations, as it is shown in Table 16. Next, the model
generates 5 networks, i.e., the maximum length of the series in X subtracted by 1, where each
node represents a time series in X and the edges between them are created according to the
similarities of their daily variations, on each time step t. For accomplishing this task, in this
example, we make use of the nearest neighbor technique based on a radius ε = 10. Then, the fast

greedy community detection algorithm is ran in the networks. This results in a temporal network
G , formed by the set {Gt | t ∈ [1,5]}. Note that, in this step, the model groups the time series
with more similar variations, at each time step t, and, as t gets bigger, only the nodes from time
series with longer lengths are left in G . The edges evolution among the nodes of G is shown in
Figure 25, where each row represents one time series in the dataset and each column represents
one time slice of the temporal network. The colors denote the community to which each node
belongs, at each time slice. In this case, if a node has a white color, it means that this node is not
in the temporal network at this time slice.

Following, the model creates a dictionary for each time series i, with a set of keys
containing the instances that have shared the same community with i, and a set of values equal to
the number of times this community sharing has occurred. Hence, in this case, we have that the
dictionaries for X3, X4 and X5 are: D3 = {X2 : 3,X5 : 1},D4 = {X1 : 2} and D5 = {X2 : 1,X3 : 1},
respectively. Therefore, according to Equation 7.7, the variation predicted for X5 at the time step
t = 2, is given by: (1δX2,2 +1δX3,2)/(1+1). In Figure 26, we show all predictions made by the
model for the example dataset. As one may observe, the model is capable to correctly detect the
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Figure 25 – Time slices showing the edges evolution in the temporal network, for the example dataset.
Each row represents one time series and each column represents one time slice of the temporal
network. The colors denote the community to which each node belongs, at each time slice. In
this case, if a node has a white color, it means that this node is not in the temporal network at
this time slice.

Source: Elaborated by the author.

Figure 26 – Predictions performed by the model for the time series (a) X3, (b) X4 and (c) X5, from the
example dataset. The blue line shows the series data provided in the dataset, while the blue
dashed line indicates the predicted data.
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evolution patterns between X1 and X4 and between X2 and X3, and to make use of these detected
correlations for predicting future values for X3 and X4. In the case of X5, which could either
evolve as an arithmetic progression or as a geometric one, the model ends up correlating it to X2,
and therefore the predictions for X5 follow a geometric progression.
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Figure 27 – Boxplots of the overall prediction absolute percentage errors, grouped by week, for the (a)
confirmed new cases in the next 7 days (51 predictions in total) and (b) confirmed new deaths
in the next 7 days (25 predictions in total), for each of the 27 federal units of Brazil.
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(a) Confirmed new cases in the next 7 days: overall
prediction results.
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(b) Confirmed new deaths in the next 7 days: over-
all prediction results.

Source: Elaborated by the author.

7.4 Results and Discussion

In this section, we present the obtained results when applying the proposed model to
COVID-19 preliminary data, in order to predict the future number of confirmed cases and deaths
in the 27 federal units of Brazil.

In order to apply the proposed time series prediction model on the COVID-19 datasets,
we start by converting the confirmed cases and deaths daily variations in the database to weekly
variations. In this manner, given that the first confirmed case of COVID-19 in Brazil dates from
02-25-2020, in the state of SP, and that the final date in the database is 05-26-2020, we end up
with a maximum of 12 weeks for the COVID-19 time series, considering all federal units of
Brazil. We predict the number of new confirmed cases and deaths for the next 7 days in each
federal unit, for all units which presented at least 20 confirmed cases or deaths in the considered
period. Additionally, we opt for not considering the time series from regions located in China
from the database as predictors, since these time series may present later corrections in their
data, which affects the prediction outputs. We set the value of the ε radius threshold parameter,
used for generating the edges in the networks, as ε = Q(δXt , .2), where Q(A,n) stands for the
n-th quantile of the array A. For detecting communities in the network, we use the fast greedy

community detection algorithm.

In Figure 27, we show the boxplots of the absolute percentage errors for the obtained
results when predicting the number of COVID-19 confirmed new cases and deaths in the next
7 days, for each of the 27 federal units of Brazil, from weeks 9 to 12. To avoid the inclusion
of outliers, we did not consider in this figure predictions made for regions with a current total
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Table 17 – Confirmed cases in the next 7 days: most recent predictions performed by the model for the
federal units of Brazil.

Label Week Date Predicted Real Error Labels included in the prediction
AC 10 2020-05-26 1121 2019 0.44 Oman, PB, Japan
AL 11 2020-05-24 2003 2398 0.16 Oman, Afghanistan, Kuwait
AM 9 2020-05-15 6256 7665 0.18 Dominican Republic
AP 9 2020-05-22 1865 2025 0.08 Bahrain, RS, Mexico
BA 11 2020-05-22 3840 4429 0.13 Algeria, MG, Belarus
CE 8 2020-05-11 4389 6559 0.33 Denmark, Panama
DF 11 2020-05-23 2384 2108 0.13 RS, Bahrain, Bulgaria
ES 11 2020-05-21 2465 3065 0.20 Algeria, BA, DF
GO 10 2020-05-21 514 695 0.26 Guatemala, Iraq, Senegal
MA 9 2020-05-22 6690 7175 0.07 Pakistan, PE
MG 11 2020-05-24 1948 2057 0.05 RS, Armenia, DF
MS 10 2020-05-23 251 350 0.28 Singapore, Congo (Brazzaville), Gabon
MT 9 2020-05-22 405 479 0.15 Kenya, El Salvador, Jordan
PA 9 2020-05-20 4971 8585 0.42 Alberta, Qatar, Belarus
PB 10 2020-05-21 2187 2877 0.24 Sudan, Bolivia, AC
PE 10 2020-05-21 5341 8323 0.36 Belarus, Pakistan, Qatar
PI 9 2020-05-21 1048 1169 0.10 PB, Sudan, Bolivia
PR 10 2020-05-21 444 764 0.42 Cuba, MG, Bosnia and Herzegovina
RJ 11 2020-05-21 7149 12622 0.43 Qatar, Belarus, Bangladesh
RN 10 2020-05-21 1084 1465 0.26 Cote dIvoire, DF, Bahrain
RO 9 2020-05-22 772 980 0.21 Afghanistan, Bahrain, PB
RR 9 2020-05-23 629 733 0.14 GO, El Salvador, Guatemala
RS 11 2020-05-26 1165 2987 0.61 DF, Bahrain, Armenia
SC 10 2020-05-21 1371 1278 0.07 Ghana, MG, Bahrain
SE 10 2020-05-23 2351 1996 0.18 Bolivia, AL, Afghanistan
SP 12 2020-05-19 14972 18276 0.18 Quebec, Mexico
TO 9 2020-05-20 766 947 0.19 Belarus, Gabon, PI

Source: Research data.

number of confirmed cases or deaths less than 50, in each week. After applying this filter, we end
up with a total of 51 predictions of new confirmed cases and 25 predictions of new confirmed
deaths included in the boxplots. The median and mean absolute percentage error for the new
cases prediction results, in Figure 27a, are 21% and 24%, respectively. This mean absolute
percentage error (MAPE) is smaller than the ones obtained by Al-qaness et al. (2020), when
forecasting the weekly new confirmed cases of influenza in China, which are of 32% and 45%,
respectively, on each dataset analyzed. The accuracy obtained by Arora, Kumar and Panigrahi
(2020), with a MAPE of around 6%, is higher than the one we obtained. However, it is worth
mentioning that the testing data used in their study comprised only 4 Indian states and a 7-days
time range, while in our case we consider 51 different weekly predictions, for more than 20
states. The median and mean absolute percentage error for the new deaths prediction results, in
Figure 27b, are 16% and 23%, respectively.

We believe the prediction accuracy is relatively higher for the number of new confirmed
deaths for the reason that these numbers tend to be more reliable than the statistics regarding
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Table 18 – Confirmed deaths in the next 7 days: most recent predictions performed by the model for the
federal units of Brazil.

Label Week Date Predicted Real Error Labels included in the prediction
AC 10 2020-05-26 31 24 0.29 Afghanistan, Israel, Belarus
AL 11 2020-05-24 103 106 0.03 Israel, Belarus, BA
AM 10 2020-05-22 579 338 0.71 Peru, PE
AP 9 2020-05-22 41 54 0.24 MG, Luxembourg, PR
BA 11 2020-05-22 123 118 0.04 Egypt, MG, Israel
CE 10 2020-05-25 642 745 0.14 Peru
DF 11 2020-05-23 19 39 0.51 Afghanistan, MG, Belarus
ES 11 2020-05-21 118 114 0.04 South Africa, BA, Moldova
GO 10 2020-05-21 22 18 0.22 North Macedonia, Iraq, Bolivia
MA 9 2020-05-22 156 198 0.21 Romania, Austria
MG 11 2020-05-24 32 70 0.54 Bulgaria, Pakistan, Slovenia
PA 6 2020-04-29 18 113 0.84 PB, Bosnia and Herzegovina
PB 10 2020-05-21 59 85 0.31 Saudi Arabia, MG, Bosnia and Herzegovina
PE 10 2020-05-21 524 627 0.16 AM, Peru, Mexico
PI 9 2020-05-21 28 33 0.15 PR, Afghanistan, Saudi Arabia
PR 10 2020-05-21 17 22 0.23 Saudi Arabia, RS, Slovenia
RJ 11 2020-05-21 1168 1165 0.00 SP
RN 10 2020-05-21 44 59 0.25 Cuba, MG, PB
RO 9 2020-05-22 30 44 0.32 Afghanistan, Israel, Belarus
RS 11 2020-05-26 55 43 0.28 Saudi Arabia, US, Slovenia
SC 10 2020-05-21 16 20 0.20 PR, Tunisia, Saudi Arabia
SE 10 2020-05-23 22 33 0.33 MG, Bulgaria
SP 11 2020-05-12 1095 1098 0.00 RJ

Source: Research data.

the new confirmed cases, since the later are subject to some difficulties, such as limited testing
capabilities in each region and also the lack of symptoms on some individuals infected by the
disease. One can also note, still in Figure 27, that the boxplot for week 12 is smaller than the
ones from previous weeks. This is due to the fact that, up to this date, only the state of SP in
Brazil has been infected by COVID-19 for more than 11 weeks, hence this boxplot actually
includes only the prediction of new cases performed for the state of SP.

In Table 17 and Table 18, we present the most recent predictions performed by the model
for the Brazilian federal units, for new confirmed cases and deaths in the next 7 days, respectively,
along with their respective real values and absolute percentage errors. The last column in these
tables shows the labels with the highest weights considered in each prediction, i.e., the regions in
the database whose time series the model identified as being most correlated to the predicted
time series and whose lengths are greater or equal to the predicted period. The states of MS,
MT, RR and TO do not appear in Table 18 either because they presented less than 20 confirmed
deaths caused by COVID-19 in the considered period or because their weekly deaths variations
did not match any other in the period, and hence the model did not attempt to perform predictions
of new confirmed deaths for these states.

One can note, in Table 17 and Table 18, that the model is able to predict both smaller
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values, as for the new confirmed deaths in GO, PR and SC, and also larger values, such as
the new confirmed deaths in SP and RJ. This is because the predictions are made in terms of
variations, and not in terms of the actual numbers. It is interesting to analyze these two tables
along with Figure 28, in which we have examples of the correlations networks built by the model
for weeks 5, 7 and 9 for the federal units of Brazil and their respective neighbors, i.e., their most
correlated world regions in each week. The left column in Figure 28 shows the correlations
networks for new confirmed cases, while the right column shows the correlations networks for
the new confirmed deaths. In this sense, one can note, for instance, that the states of RJ and SP
presented similar new deaths variations, on week 5, and thus formed the community denoted
by the aquamarine color in Figure 28b. On weeks 7 and 9, the new deaths variation in these
same states did not match the variation from any other region, hence they both appear isolated in
Figure 28d and Figure 28f. In Table 18, the model took into account only the correlation detected
in Figure 28b for predicting the new deaths in these two states on week 11, and both predictions
achieved a very high accuracy in this case, with an absolute percentage error of less than 1%.

Although the model is able to perform relatively accurate predictions for some regions,
as it is shown in Table 17 and Table 18 and in the overall performance shown in Figure 27, it
also has some limitations. The most recent predictions made for the state of PA, for instance,
listed in the mentioned tables, obtained a high absolute percentage error, of 42% and 84%, for
the prediction of new cases and deaths, respectively. This happens when the time series to be
predicted presents a drastic shift in its curve, such that this shift does not match the variation from
any other time series in the dataset, for that same time step. That is the case for the state of PA,
which suffered from a suddenly rise in both of its COVID-19 curves, after the 5th week, causing
it to appear isolated in Figure 28c, Figure 28d, Figure 28e, and Figure 28f, and which also
prevented the model from predicting new deaths for this state after the 6th week, on 2020-04-29.
This issue should be addressed in future versions of the model, by allowing it to adapt to such
situations, in order to improve its prediction capabilities.

7.5 Chapter Remarks

In this chapter, we introduced a semi-supervised regression model which predicts future
values for time series based on a correlations temporal network. The obtained results, by applying
the model to predict the new confirmed cases and deaths related to COVID-19, in the 27 federal
units of Brazil, are promising, with a mean absolute percentage error of 24%, for the new cases
prediction, and a mean absolute percentage error of 23%, for the new deaths prediction. We
consider these preliminary results as satisfactory. Especially when we take into account that the
data concerning the context of this application are subject to the influence of external conditions,
such as isolation policies, for example, and that the model did not consider any of these external
factors for generating the predictions. Thus, the fact that the model was still able to perform
fairly well, despite the difficulties involved in this application, corroborates to demonstrate that
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Figure 28 – Examples of correlations networks formed by the federal units of Brazil and their respective
neighbors which, in this case, represent their most correlated regions in each week, in terms
of COVID-19 confirmed cases (left) and deaths (right) weekly variations. The colors denote
the network communities. For the sake of visibility, not all labels are shown in these figures.
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the model’s rationale is valid, and might as well be applied successfully to predict time series
from different contexts and areas.
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CHAPTER

8
DETECTING SIGNS OF HEPATIC, RENAL
AND RESPIRATORY INSUFFICIENCY IN

COVID-19 PATIENTS

In this chapter, we introduce a network-based classification technique to assist medical
professionals on the COVID-19 severity assessment by detecting early signs of insufficiency in
infected patients using only Complete Blood Count (CBC) test results. The method proposed
in this study can be especially useful for those healthcare professionals who work in regions
with scarce material and human resources, as it is the case in some regions of Brazil, where
complementary tests to detect the severity of COVID-19 in patients at high risk of complications
may not be available.

The proposed model consists of a modified high level classification technique, whose
main improvements are: (1) the option to reduce the size of the network, during the training
phase, for saving processing time and making the technique more efficient, and (2) the design of
a parameter optimization criteria, based on a variant of Kullback-Leibler divergence, to make the
technique more adaptable to each dataset. The model is evaluated firstly by using benchmark
classification datasets, both artificial and real ones. Afterwards, we apply the model to detect
early signs of hepatic, renal and respiratory insufficiency in COVID-19 patients of a dataset from
one of the main hospitals in Brazil, based on their CBC test results. The model’s performance is
compared to those achieved by traditional and well-known classification models, when applied
on the same data.

8.1 Introduction

Since the COVID-19 outbreak, within a short period of time, advanced machine learning
techniques have been applied in the development of clinical decision support tools, to help
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medical workers on guiding the monitoring and treatment plans for COVID-19 patients. Wang
et al. (2020) presented a diagnosis and screening method for COVID-19 patients based on
the analysis of breathing patterns. Metsky et al. (2020) provided assay designs for detection
of viral species and subspecies, including SARS-CoV-2, through a CRISPR-based detection
system. Gozes et al. (2020) and Shan et al. (2020) proposed an automated analysis of computed
tomography (CT) images for the monitoring of COVID-19 patients over time. Yan et al. (2020)
predicted the mortality of patients, by using three biomarkers, selected from blood samples.

In this study, we present a technique which may assist medical professionals on the
patients’ severity assessment by detecting early signs of insufficiency in COVID-19 patients using
only CBC test results, before the consequences become irreversible. Specifically, our approach
can help to identify the level of risk and the type of insufficiency for each patient. We start by
building a dataset comprising results from both CBC and specific tests to detect signs of hepatic,
renal and respiratory insufficiency, from a total of 2,982 COVID-19 patients who received
treatment in the Israelite Albert Einstein Hospital, from Sao Paulo, Brazil (FAPESP, 2020). Next,
we identify which CBC tests are more effective to be used as biomarkers to detect signs from
each type of insufficiency. The training dataset resulting from this analysis is then delivered
to a modified network-based high-level classification technique, which is also introduced in
this study. The obtained classification results present competitive performance of the technique
compared to classic and the state-of-the-art ones.

The main contributions are summarized as follows:

∙ Introducing a modified network-based high level classification technique with the following
main improvements: (1) Presenting a network reduction method to make the technique
more efficient, and (2) Designing a parameter optimization criteria, based on a variant of
Kullback-Leibler divergence, to make the technique more adaptable to each dataset.

∙ Applying the technique to detect insufficiency signs in COVID-19 patients, along with a
performance comparison to classic and the state-of-the-art classification techniques.

∙ Building a training dataset from the unlabeled original data, which can be also used in
other relevant researches.

Regarding the organization of this chapter, besides this introduction, we discuss, in
section 8.2, the motivations for this study. In section 8.3, the proposed technique is described in
details. We also introduce in this section the datasets used for evaluating the model, including
the COVID-19 dataset, which was especially built for this study. In section 8.4, we start by
showing the performance of the model when applied to benchmark datasets and, afterwards, we
present the results obtained when the model is applied to predict early signs of insufficiency in
COVID-19 patients. At the end, in section 8.5, we close this chapter with some final remarks.
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8.2 Motivation

When a new COVID-19 case is confirmed, the clinical protocol involves an initial
assessment by healthcare professionals to classify its severity as a mild, moderate or severe case.
This procedure usually includes a Complete Blood Count (CBC), which is a series of tests used
to evaluate the composition and concentration of the cellular components of blood. Such type
of testing, as the CBC, is widely used, because it can be easily collected at any place, even in
situations of medical resource scarcity. Moreover, it is usually processed in a matter of minutes,
up to two hours. Therefore, it is considered as a fast, low-cost and reliable resource to assess the
patient’s overall conditions. Based on the constant monitoring of these tests results, the healthcare
professionals then need to decide whether or not to order complementary tests for detecting signs
of hepatic, renal or respiratory insufficiency. Because the progressive respiratory failure is the
primary cause of death of COVID-19, the monitoring activity hence is critical for the patient.
However, we must face the problem that such complementary tests incur high costs and may not
even be available in some specific places due to scarcity of material and human resources, as it
is the case in some regions of Brazil. In this sense, the study presented in this chapter has the
potential of helping healthcare workers, specially the ones who are based in regions with scarce
material resources, on this monitoring activity, by introducing a risk assessment technique which
is based solely on CBC test results.

Real-world datasets usually contain complex and organizational patterns beyond the
physical features (similarity, distance, distribution, etc.). Data classification, which take into
account not only physical features, but also the organizational structure of the data, is referred to
as high level classification. Complex networks are suitable tools for data pattern characterization
due to their ability of capturing the spatial, topological, and functional relationship among data.
In this study, we present a modified high-level classification technique based on complex network
modeling. It can perform classification tasks taking into account both physical attributes and
pattern formation of the data. Basically, the classification process measures the compliance of the
test instance to the pattern formation of each network constructed from a class of training data.
The approach presented in this work is inspired by the high-level data classification technique
introduced by Carneiro and Zhao (2017), Colliri et al. (2018) and Silva and Zhao (2012a).

8.3 Materials and Methods

In this section, we describe the modified optimized Network-Based High Level (MNBHL)
classification technique, as well as introduce the datasets and indicators used for evaluating its
performance. We start by providing an overview of the model, in subsection 8.3.1. Then, in
subsection 8.3.2, we explain in details how the network is generated from the training data. In
subsection 8.3.3, we demonstrate how the labels are assigned to new data instances, during the
testing phase. In subsection 8.3.4, we provide more details regarding the cost function used
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for optimizing the parameters of the model. At the end of the section, in subsection 8.3.5, the
datasets and indicators used for evaluating the model are presented.

8.3.1 Model Overview

In classic supervised learning, initially we have an input dataset comprising n instances
in the vector form Xtrain = (x1,x2, ...,xn), where each instance xi itself is a m-dimensional vector,
such that xi = (xi,1,xi,2, ...,xi,m), representing m features of the instance. Correspondingly, the
labels of the instances are represented by another vector Y = (y1,y2, ...,yn), where yi ∈L =

{L1...,LC} and Li is the label of the ith class. The objective of the training phase is to construct
a classifier by generating a mapping f : Xtrain

∆−→ Y . In the testing phase, we use the classifier
constructed so far to classify new data instances without label. The test dataset is denoted as
Xtest .

A network can be defined as a graph G = (V ,E ), where V is a set of nodes, V =

{v1,v2, ...,vn} and E is a set of tuples, E = {(i, j) : i, j ∈ V }, representing the edges between
each pair of nodes. In the proposed high-level classification model, each node in the network
represents a data instance xi in the dataset. The connections (or edges) between the nodes are
created based on the similarity of their corresponding data instances in the attribute space,
according to a combination of two rules: kNN and ε-radius, which will be detailed later.

In the training phase, we start by generating the balancing parameter α for dealing with
unbalanced datasets. Then, each network component is constructed for the data instances of each
class. Afterwards, we introduce a method to reduce the network, by maintaining only the r%
most central nodes in each network measured by a selected centrality index. At the last step of
training phase, the model calibrates the parameters, through a cost function optimization and
updates the network by using these optimum values. In the testing phase, each data instance
is inserted as a new node in the network, one at a time, by using the same rules of the training
phase. In the case only one component from the network is affected by the insertion, then its label
will be equal to the respective class of the affected component. For cases when more than one
component is affected by the insertion, then its label will be given by the class whose component
is the least impacted by the new node’s insertion, in terms of the network topological measures.

8.3.2 Description of the Training Phase

8.3.2.1 Balancing

The training phase starts by normalizing the values in Xtrain. For dealing with unbalanced
datasets, we introduce a quantity α , which has the role of balancing the different size effect
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yielded for each class, during the testing phase. The values of α are calculated by:

αL =
|Xy=L

train|
|Xtrain|

,∀L ∈L , and (8.1)

αL =
αL

∑α
. (8.2)

where |Xtrain| is the total number of elements of the training set and |Xy=L
train| is the number of

elements with class label L.

8.3.2.2 Network Generation

The edges between nodes in the network are generated by measuring the pairwise
similarity of the corresponding data instances in the attribute space and it is a combination of two
rules: kNN and ε-radius. The ε-radius rule is used for dense regions, while the kNN is employed
for sparse regions. The value of ε is yielded by:

ε = Q(D, p) , (8.3)

where Di is a 1d vector containing the Euclidean distances between each element and element
xi in Xtrain, and Q is a function which returns the p-th quantile of the data in D. Thus, given
that the value of ε depends on the p-th quantile of D and considering that the value of ε will
be calibrated later still in the training phase, we fix the bounds for parameter ε in terms of the
quantile p ∈ [0.015,0.025]. Since we still do not know the optimum value for ε at the beginning,
we set it as Q(D,0.02), which is the averaged value of its boundaries.

The second rule used for generating the edges in the network is the kNN. In the same
manner of ε , this parameter will also be calibrated later in the training phase, so we decide to fix
the boundaries of k at the beginning and we set its initial value as the average of its boundaries.
The bounds are given by k ∈ [3,0.025v], where v is a vector containing the number of data
instances per each class in the dataset. Hence, the maximum possible value for k will be the
average number of data instances per class in the dataset multiplied by the same upper bound
of the quantile used for calculating the parameter ε . Note that, by proceeding this way, we
are therefore linking the maximum value of k both to the characteristics of each dataset (here
represented by v) and to the maximum value of ε . This is a novelty introduced in this study, and
it is aimed to avoid exaggerated disproportions between the number of edges yielded by the two
rules. However, for cases when the number of data instances in one class is either smaller than
the lower bound or is very large, e.g., bigger than one million, then one can also adjust the k

bounds accordingly.

With the initial values of ε and k being set, the model then proceeds to generate the edges
of the network G . The neighbors connected to a training node xi are yielded by:

N(xi) =

ε-radius(xi,yi), if ε-radius(xi,yi)> k

kNN(xi,yi), otherwise ,
(8.4)
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where yi denotes the class label of the training instance xi, ε-radius(xi,yi) returns the set {x j,∀ j ∈
V | dist(xi,x j)≤ ε ∧yi = y j}, and kNN(xi,yi) returns the set containing the k nearest vertices of
the same class of xi. This combination of rules is the same one used by Silva and Zhao (2012a).

8.3.2.3 Network Reduction

At this point of the training phase, there is an option to reduce the number of vertices in
the network, for the sake of saving processing time, both in the training phase and in the testing
phase. There are several possible strategies for reducing a network (VALEJO et al., 2020) and, in
this work, we opt for a quite simple one, which consists in keeping only the nodes which occupy
more central positions in it. For this end, we make use of the betweenness centrality measure
(BRANDES, 2001). This measure, broadly speaking, estimates the extent to which a vertex lies
on paths between other vertices, and is considered essential in the analysis of complex networks.
In a network which does not present communities, the nodes with higher betweenness centrality
are among the most influential ones (CHEN et al., 2012), and in a network which presents
communities, these nodes are the ones which usually work as links between the communities.
We chose to use this measure for believing that it is able to depict the most representative nodes
in the network, such that we can use only these selected nodes for the classification task.

For controlling this option, we add a reduction parameter r ∈ [0,1] in the model, such
that when its value is set as less than 1.0, then only the ratio of r vertices with higher betweenness
centrality measures are kept in the network. In this case, the values in Xtrain and Y are also
reduced, accordingly. The value of ε is updated, and the network edges are generated again,
by using the same rules provided in Equation 8.3 and Equation 8.4, respectively. If, after this
procedure, the number of components in the network is higher than the number of classes in
the dataset, then the value of k is increased by 1, and the edges are updated accordingly. This
step can be repeated more times, if necessary, until we have, at the end, one component in the
network per class in the dataset.

8.3.2.4 Parameters ε and k Calibration

The last step in the training phase is to find the optimum values for the parameters ε

and k, to be used in the testing phase. This is made by minimizing the cost function estimated
for the classifier, i.e., by forcing the model to classify the data instances from Xtrain, varying
the values of ε and k between their respective boundaries, at each time, and also estimating the
corresponding cost associated, by using the labels from Y . In this procedure, we associate once
again the value of k to the parameter ε . This is because ε is a continuous variable and k is a
discrete variable, and finding the minimum of a continuous function is less complex than finding
the minimum of a mixed discrete-continuous function. Therefore, for optimization purposes, we
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opt to yield the values of k according to:

k = Kmin +

⌊
n−Nmin

Nmax−Nmin

⌉
(Kmax−Kmin) , (8.5)

where ⌊x⌉ stands for x rounded to the nearest integer, n is the quantile used to generate the current
parameter ε , and K and N are the possible values for k and n, respectively. The association of the
value of k to the value of ε , besides saving processing time, also makes the optimization search
more rational, since the values for these two variables are the ones responsible for generating the
edges, with smaller values for both of them resulting in a less connected network and, alternately,
higher values for both of them resulting in a more connected network. The details regarding
the cost function optimization used in the model are provided in subsection 8.3.4. At the end of
the parameters calibration procedure, the network G is updated for the last time, by using the
optimum values achieved for ε and k.

The complete process of the training phase is outlined in Algorithm 5. In lines 2-4, we
have the balancing tasks, in which the parameter α is generated and the values in Xtrain are
normalized. Then, in line 5, the network G is built, by using the initial values for the parameters
ε and k. In lines 6-11, there is the optional procedure to reduce the size of the network, by leaving
only the r% most central nodes in it, and also the validation of whether the number of network
components is equal to the number of classes from the training data. In line 12, the cost function
optimization routine is called, and the optimum values for ε and k are defined. Finally, in line 13,
the final network is generated, which is the one to be used in the testing phase.

Algorithm 5 – Training phase
1: procedure FIT(X ,Y )
2: α ← fraction of items per class (balancing parameter)
3: if normalize then
4: normalize values in X
5: end if
6: G← initial network, resulted from initial ε and k
7: vs← the r% most central nodes in G
8: G← reduced version of G, leaving only vs
9: X ,Y ← reduced versions of X ,Y

10: while len(Gcomponents)> number of classes in Y do
11: k+= 1
12: G← network resulted from ε and k
13: end while
14: ε,k← optimum values, using the cost function
15: G← network resulted from final ε and k
16: end procedure

8.3.3 Description of the Testing Phase

In the testing phase, the data instances from Xtest are inserted as new vertices in the
network G , one at a time, and the model then needs to infer the label of each testing instance.
The model extracts two groups of network measures for each component, before and after the
insertion of a testing instance, respectively. The testing instance is classified to the class of the
component which its insertion caused the smallest variation in the network measures. In other
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words, a testing instance is classified to a certain class because it conforms the pattern formed
by the training data of that class. In this way, the data instances from Xtest are inserted in the
network, to be classified, one by one.

The new node’s insertion is made by using the same rules described in Equation 8.4
for generating the edges between the new node and the other nodes in the network. The only
difference now is that, since we do not know the class of the new data instance xi, the “same
label” restriction is removed from the procedure, so that the nodes to be connected to xi are
yielded by:

N(xi) =

ε-radius(xi), if ε-radius(xi)> k

kNN(xi), otherwise ,
(8.6)

where ε-radius(xi) returns the set {x j,∀ j ∈ V | dist(xi,x j) ≤ ε}, and kNN(xi) returns the set
containing the k nearest vertices of xi. Note that, in this phase, the optimum values of ε and k are
used in this procedure.

The model will assign the label for the new node according to the number of components
affected by the node’s insertion in the network. In case only one component is affected by its
insertion, i.e., when all the target nodes of its edges belong to the same component, then the
model will assign the class of this component for the new node. On the other hand, when more
than one component is affected by the insertion, then the model will extract new measures of the
affected components and assign a class label to the testing node as the label of the component
which was less impacted by the insertion, in terms of measures. In this work, we use betweenness

centrality for measuring the impacts on each network’s component.

The overall impact IL on each affected component of class L, caused by the insertion of
the testing node, is calculated and balanced as follows:

IL = α
L (M

L
1 −ML

0 )

ML
0

, (8.7)

where ML
0 and ML

1 are the extracted network measures for the component representing class L,
before and after the insertion of the testing node, respectively. The probability P(xŷi=L

i ) of the
testing instance xi to belong to class L is given by the reciprocal of the value in vector I in the
normalized form, as in:

P(xŷi=L
i ) =


1/IL

∑L 1/IL , if CL is affected

0, otherwise,
(8.8)

where CL is the network component representing class L. Finally, the label ŷi to be assigned for
xi is yielded by:

ŷi = L
argmaxL P(xŷi=L

i )
. (8.9)

The complete process of the testing phase is described in Algorithm 6. In lines 4-5, an
initial empty list is created to store the predicted labels for each data instance in Xtest and the
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current measures of each network’s component are extracted. At lines 6-15, the model generates
a label for each testing instance, one by one. In case only one component is affected by the
insertion of the testing node, then the label receives this component’s class. In case more than one
component is affected by the insertion, then the testing instance is classified to that class whose
component is least impacted by the insertion in terms of the betweenness centrality measure. At
the last row of the for-loop, in line 16, the classification list is updated with each predicted label.

Algorithm 6 – Testing phase
1: procedure PREDICT(X)
2: if normalize then
3: normalize X , using original values from Xtrain
4: end if
5: Ŷ ← [ ]
6: M0← initial measures of each component in G
7: for x in X do
8: insert x in G, using ε and k
9: if x affects only one component in G then

10: ŷ← class of affected component
11: else
12: M1← new measures of each component in G
13: I← α ·abs(M1−M0)/M0
14: P← 1.0/I
15: P← P/sum(P)
16: ŷ← class of argmax(P)
17: end if
18: Ŷ ← append ŷ
19: end for
20: return Ŷ
21: end procedure

8.3.4 Cost Function Optimization

In order to calibrate the values of parameters ε and k, we here introduce a cost function
for optimization based on a variant of the Kullback-Leibler (KL) divergence (KULLBACK;
LEIBLER, 1951). The KL divergence between a true probability distribution p and the estimated
probability distribution q is given by:

DKL(p || q) = H(p,q)−H(p) , (8.10)

where H(p) is the entropy (SHANNON, 1948) of the true probability distribution p and H(p,q)

is the cross-entropy loss. This cost function is commonly used in deep learning models for
optimization purposes. However, in this work, we make a slight change in Equation 8.10 by
switching its second term, so it becomes:

F(p || q) = H(p,q)−H(q) , (8.11)

which, in the case of one-hot vectors, i.e., when one class j has a probability of 100% and the
rest have 0%, it is equivalent to:

F(p || q) =− log(q j)+∑
i

qi log(qi) | p j = 1 . (8.12)
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In this manner, the first term of the cost function in Equation 8.12 continues to penalize smaller
probabilities given for the true label, while the second term penalizes probability distributions
with a smaller entropy. At first, the role of the second term in Equation 8.12 might not make
much sense since, in machine learning models, probability distributions with a smaller entropy
are usually more desirable. To understand this, we need to consider the fact that, in the proposed
model, the estimated probability distribution q will assume the form of a one-hot vector, i.e.,
with zero entropy, exclusively in cases when only one network component is affected by the new
data instance’s insertion. Consequently, in these cases, the network measures will not be taken
into account in the classification process. Hence, by inserting the second term in Equation 8.12,
we are forcing the model to prioritize classifications which are based on the impacts of the new
data instance on the network measures.

For the optimization search, we make use of the “brute force” method for estimating
the minimum cost, i.e., we compute the cost function value at each point of a multidimensional
grid of points, each time with a different value for ε and k, to find the global minimum of the
function.

8.3.5 Database

We first evaluate the performance of the proposed modified network-based high level
(MNBHL) model by applying it to well-known benchmark datasets, both artificial and real ones,
which are intended for machine learning classification tests. Afterwards, we apply the MNBHL
model to a dataset specially built for this work, obtained from the analysis of publicly available
data of COVID-19 patients from one of the main hospitals in Brazil. In subsubsection 8.3.5.1
and subsubsection 8.3.5.2, we provide more information concerning these two databases.

Regarding the proposed network reduction parameter r, we set r = 0.1 (10%) when
processing the Digits benchmark dataset and the COVID-19 dataset, and r = 0.2 (20%) when
processing the Breast Cancer and Pima benchmark datasets. For the remaining datasets, we set
r = 1, i.e., we do not make use of the network reduction option when processing them, since
they are smaller ones. For the sake of comparison, the following traditional classification models
are applied on the same datasets: Decision Tree (SAFAVIN; LANDGREBE, 1991), Logistic
Regression (GELMAN; HILL, 2007), Multilayer Perceptron (MLP) (HINTON, 1989), Support
Vector Machines (SVM) with an RBF kernel (VAPNIK, 2000) and Naive Bayes (RISH, 2001).
We also apply the following ensemble methods: Bagging of Decision Tree and Bagging of MLP
(BREIMAN, 1996), Random Forest (BREIMAN, 2001) and AdaBoost (FREUND; SCHAPIRE,
1995). All traditional models are implemented through the tool introduced by Pedregosa et al.

(2011) and we kept their respective default parameters values, in all tests performed.
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8.3.5.1 Benchmark Datasets

A succinct meta-information of the selected benchmark datasets used for obtaining the
experimental results is given in Table 19. Circles_00 and Circles_02 datasets are two concentric
circles without noise and with a 20% noise, respectively. Moons_00 and Moons_02 datasets
are two moons (or bananas) without noise and with a 20% noise, respectively. For a detailed
description of the real datasets, one can refer to Lichman (2013). For splitting each dataset into
2 subdatasets, for training and testing purposes, we make use of a function which shuffles the
data, through a random seed value, and returns a train-test split with 75% and 25% the size of
the inputs, respectively.

Table 19 – Meta information of the classification datasets used in the experimental results, for evaluating
and comparing the MNBHL model

No of Samples No of Features No of Classes

A
rt

ifi
ci

al Circles_00 100 2 2
Circles_02 100 2 2
Moons_00 100 2 2
Moons_02 100 2 2

R
ea

l

Breast Cancer 569 30 2
Digits 1,797 64 10

Iris 150 4 3
Pima 768 8 2
Wine 178 13 3
Zoo 101 16 7

Source: Research data.

8.3.5.2 The COVID-19 Dataset

We build a training dataset from the unlabeled COVID-19 dataset (FAPESP, 2020),
which is collected from COVID-19 patients of the Israelite Albert Einstein Hospital, located
at Sao Paulo city and one of the main hospitals in Brazil. The original database comprises a
total of 1,853,695 results from 127 different tests, collected from 43,562 de-identified patients,
who received treatment in the hospital from January 1, 2020 until June 24, 2020. We firstly
identify the patients who tested positive in at least one of the COVID-19 detection tests. The
tests considered for this end are:

∙ polymerase chain reaction (PCR),

∙ immunoglobulin M (IgM),

∙ immunoglobulin G (IgG), and

∙ enzyme-linked immunosorbent assay (ELISA).
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Next, we filter the patients and left in the dataset only the ones who have made at least one
complete blood count (CBC) test, in a date no earlier than the date to be tested positive for
COVID-19. In the case that a patient has made more than one CBC test, we consider only
the results of the first one for predicting signs of hepatic, renal or respiratory insufficiency.
Afterwards, we run an algorithm to automatically label each patient of the dataset by the type of
insufficiency detected from the results of additional specific tests of the patients and according to
the reference values provided in the same database. After the data cleansing, we end up with
a dataset with a total of 2,982 different patients. Each patient of the dataset belongs to one of
the following 4 classes: Healthy, Sign of Hepatic Insufficiency, Sign of Renal Insufficiency, and
Sign of Respiratory Insufficiency.

In Table 20, we provide an overview of the COVID-19 dataset. The dataset is split into 2
subdatasets, one for training and another for testing purposes. The training-testing splitting is
half-half. Thus, the training set is composed of the first 1,471 data instances, and the remaining
1,471 data instances are used for testing purposes. All tests considered in this analysis are listed
in Table 21. For determining the predictive attributes for each type of insufficiency, we make use
of the Pearson correlation coefficient (PEARSON, 1895; BRAVAIS, 1844), selecting the CBC
tests whose results are most correlated to the labels, i.e., to each type of insufficiency.

Table 20 – Overview of the patients in the COVID-19 dataset

Healthy With Signs of Insufficiency
Age Total Hepatic Renal Respirat.
00-20 57 25 19 22 9
21-40 830 467 258 191 134
41-60 1279 516 554 404 373
61-80 688 135 388 377 404
80+ 128 5 84 98 88
Total 2982 1148 1303 1092 1008

Source: Research data.

The models performances were evaluated by assessing the classification accuracy (ratio
of true predictions over all predictions), precision, sensitivity/recall and F1 scores, as defined
below:

Precision =
TP

TP+FP
(8.13)

Sensitivity =
TP

TP+FN
(8.14)

F1 =
2×Precision×Sensitivity

Precision+Sensitivity
(8.15)

where TP, TN, FP and FN stand for true positive, true negative, false positive and false negative
rates, respectively.
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Table 21 – Tests considered for identifying signs of hepatic, renal and respiratory insufficiencies in patients,
along with the respective attributes used for detecting those signs

Attributes for each patient vertex v

Tests considered for the detection of signs
(labels generation) Age

Neu
tro

ph
ils

Baso
ph

ils

Lym
ph

oc
yte

s

Eos
ino

ph
ils

RDW

In
su

ffi
ci

en
cy

Hepatic
∙ transaminase TGO (AST)

x x x x x∙ transaminase TGP (ALT)
∙ alkaline phosphatase
∙ gamma-glutamyl transpeptidase (GGT)

Renal
∙ creatinine clearance (urine test)

x x x∙ creatinine (blood test)
∙ blood urea nitrogen (BUN)

Respiratory

∙ arterial blood gas

x x x
∙ respiratory pathogen panel
∙ lactate
∙ ionized calcium
∙ potassium

Any x x x x x

Source: Research data.

8.4 Results and Discussion

In this section, we start by presenting the obtained results when assessing the performance
of the proposed MNBHL model when applying it to benchmark classification datasets, in
subsection 8.4.1, and then, in subsection 8.4.2, we present the obtained results when applying it
to the COVID-19 dataset.

8.4.1 Tests Performed on Benchmark Datasets

In this subsection, we present the obtained results when applying the proposed MNBHL
model to both artificial and real benchmark classification datasets, along with a comparison of
its performance with the ones achieved by traditional classification models, on the same data.

In Table 22, we present the obtained results, in terms of accuracy, from the application
of the proposed MNBHL model to the benchmark datasets, as well as the comparison with the
performances achieved by traditional models. These results indicate that the model’s overall
performance is competitive, being ranked as third one when compared to traditional models, in
the average rank. We highlight the good performance achieved by the model on three datasets:
Moons_00, Moons_02 and Zoo, in which it obtained an 100% accuracy in the classification
task. We also would like to remember that we make use of the model’s network reduction option
for processing the Breast Cancer, Digits and Pima datasets, with a reduction to 20%, 10% and
20% of the training data, respectively. Therefore, these results also help to demonstrate that the
rationale behind the network reduction process – which keeps only the most central nodes in the
network, in terms of betweenness centrality – is valid, since the model was still able to achieve a
relative good performance on those datasets, especially for the Breast Cancer dataset.

In Table 23, we show the running times of all considered models, when processing each
benchmark dataset, for comparison purposes. Although the proposed model is overall slower
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Table 22 – Experimental results: accuracy rates (%) for each dataset obtained by the following models,
in that order: MNBHL, AdaBoost, Bagging of Decision Tree, Bagging of MLP, Decision
Tree, Logistic Regression, MLP, Naive-Bayes, Random Forest and SVM. The values between
parenthesis indicate the rank achieved by each model on each dataset.

MNBHL Ada BagDT BagMLP DT LR MLP N-B RF SVM
Breast Cancer 95.1 (3) 97.2 (1) 96.5 (2) 89.5 (7) 94.4 (4) 93.7 (5) 90.9 (6) 95.1 (3) 95.1 (3) 68.5 (8)
Circles_00 88.0 (2) 92.0 (1) 88.0 (2) 68.0 (5) 84.0 (3) 48.0 (7) 80.0 (4) 88.0 (2) 84.0 (3) 56.0 (6)
Circles_02 68.0 (4) 84.0 (1) 76.0 (3) 52.0 (6) 84.0 (1) 52.0 (6) 80.0 (2) 64.0 (5) 76.0 (3) 40.0 (7)
Digits 93.3 (6) 25.1 (10) 93.6 (5) 99.3 (1) 83.1 (8) 97.1 (3) 98.7 (2) 85.3 (7) 94.2 (4) 35.6 (9)
Iris 94.7 (3) 86.8 (4) 86.8 (4) 100. (1) 86.8 (4) 97.4 (2) 100. (1) 94.7 (3) 86.8 (4) 94.7 (3)
Moons_00 100. (1) 100. (1) 92.0 (3) 92.0 (3) 92.0 (3) 88.0 (4) 92.0 (3) 92.0 (3) 96.0 (2) 92.0 (3)
Moons_02 100. (1) 100. (1) 100. (1) 92.0 (2) 100. (1) 88.0 (3) 92.0 (2) 88.0 (3) 100. (1) 100. (1)
Pima 68.8 (6) 72.9 (1) 72.4 (2) 70.8 (4) 66.7 (7) 72.4 (2) 70.3 (5) 71.9 (3) 72.9 (1) 61.5 (8)
Wine 95.6 (3) 97.8 (2) 95.6 (3) 55.6 (4) 95.6 (3) 97.8 (2) 42.2 (5) 97.8 (2) 100. (1) 40.0 (6)
Zoo 100. (1) 69.2 (4) 100. (1) 100. (1) 100. (1) 96.2 (2) 100. (1) 100. (1) 100. (1) 84.6 (3)
Average Rank 3rd 2nd 2nd 6th 7th 8th 4th 5th 1st 9th

Table 23 – Running times, in seconds, on each dataset, measured for the following models, in that order:
MNBHL, AdaBoost, Bagging of Decision Tree, Bagging of MLP, Decision Tree, Logistic
Regression, MLP, Naive-Bayes, Random Forest and SVM.

MNBHL Ada BagDT BagMLP DT LR MLP N-B RF SVM
Breast Cancer 2.296 0.248 0.083 5.551 0.022 0.021 0.529 0.002 0.081 0.064
Circles_00 1.926 0.193 0.032 1.167 0.001 0.001 0.120 0.001 0.027 0.001
Circles_02 1.864 0.124 0.029 1.176 0.001 0.001 0.123 0.001 0.028 0.001
Digits 13.495 0.333 0.189 21.581 0.026 0.300 2.887 0.005 0.120 0.803
Iris 3.601 0.126 0.028 1.401 0.001 0.001 0.146 0.001 0.026 0.001
Moons_00 1.469 0.128 0.026 1.158 0.001 0.001 0.135 0.001 0.027 0.001
Moons_02 1.578 0.129 0.028 1.173 0.001 0.001 0.126 0.001 0.029 0.001
Pima 5.290 0.180 0.063 7.561 0.008 0.020 0.959 0.001 0.075 0.071
Wine 5.058 0.137 0.032 0.677 0.002 0.003 0.033 0.001 0.029 0.005
Zoo 3.115 0.127 0.025 1.557 0.001 0.002 0.161 0.002 0.024 0.002

than the traditional ones, we believe its running time is still quite affordable. Note that, when
compared to the Bagging of MLP model, the MNBHL model can even be faster on some datasets.
We remember, again, that we opted for the network reduction when processing the Breast Cancer,
Digits and Zoo datasets. Without this reduction, the running time for these three datasets would
certainly be much higher than the timings shown in this table. However, as the results from
Table 22 indicate, the network reduction does not seem to cause prejudice to the model’s overall
performance. In fact, when it comes to larger datasets, the network reduction option may actually
increase the model’s performance, by making use of only those data instances from the training
dataset whose nodes the model identifies as being the most representative ones, for training
purposes.

8.4.2 Experimental Results

In this subsection, we present the obtained results when applying the proposed MNBHL
model to the COVID-19 dataset, along with a comparison of its performance with the ones
achieved by traditional classification models, on the same data.
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Figure 29 – Plots showing four different processing stages of the MNBHL proposed model, when applied
to detect respiratory insufficiency signs.
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We start by showing an example of the different processing stages from the proposed
model, when applied to detect respiratory insufficiency signs. In Figure 29a, there is the initial
network built by the model, i.e., the network formed by all training data instances. This network
has 1,491 nodes in total (representing the patients), and two classes (with and without insuffi-
ciency signs), denoted by the blue and orange colors. In Figure 29b, we have the reduced version
of this network, with only the 10% nodes (149 in total) with the highest betweenness values. The
parameters ε and k used for building this network are the optimum ones, found by the model’s
cost function optimization (Figure 29c). In this case, the optimum values are the ε resulted from
a 0.0192 quantile and k = 7, with a minimum cost of 0.00336. In the testing phase, the model
makes use of these parameters when inserting a new data instance to be classified, which is
denoted by the black color in Figure 29d. In this example, the new node’s insertion affected both
network components, and hence its label will be yielded by the class whose component is least
impacted, in terms of the betweenness centrality.

In Table 24, we display the results obtained by all classification models under comparison,
in terms of accuracy, on detecting signs of each type of insufficiency. Overall, all models are
more successful on detecting signs of respiratory insufficiency, over other types, with most



146 Chapter 8. Detecting Signs of Hepatic, Renal and Respiratory Insufficiency in COVID-19 Patients

Table 24 – Accuracy rates (%) for each insufficiency type, obtained by each classification technique. The
values between parenthesis indicate the rank achieved by each technique, in each row.

MNBHL Ada BagDT BagMLP DT LR MLP N-B RF SVM
Any 67.9 (3) 67.9 (2) 63.5 (8) 67.1 (5) 59.9 (10) 68.1 (1) 67.0 (6) 67.5 (4) 64.4 (7) 62.6 (9)
Hepatic 64.2 (1) 62.7 (6) 58.4 (8) 63.7 (2) 54.7 (10) 63.2 (4) 63.0 (5) 63.5 (3) 59.4 (7) 56.1 (9)
Renal 70.6 (2) 68.3 (6) 65.1 (8) 69.8 (4) 59.6 (10) 71.0 (1) 69.4 (5) 70.2 (3) 65.3 (7) 64.4 (9)
Respiratory 76.1 (2) 75.8 (4) 71.3 (7) 76.1 (1) 66.2 (10) 76.0 (3) 75.3 (5) 75.2 (6) 70.8 (9) 71.2 (8)
Average Rank 1st 5th 8th 3rd 10th 2nd 6th 4th 7th 9th

Source: Research data.

of them achieving an accuracy of more than 70% on this task. The most difficult signs to be
detected are those regarding the hepatic insufficiency, with an accuracy slightly over 60%, for
most classifiers. The proposed MNBHL and Logistic Regression are the ones which achieved
the best performances, considering all tasks, with an average rank of first and second places,
respectively, followed by the BagMLP model.

Given the nature of the COVID-19 dataset, the input data may become more or less
unbalanced in each age group. In this sense, younger patients, from age groups 00-20 and 21-40
years old, are expected to present a lower incidence of insufficiency cases than older patients,
from age groups 60-80 and 80+ years old (see Table 20). For analyzing how such differences
may affect the model’s performance, we present, in Figure 30, the overall accuracy obtained by
the MNBHL model, on each age group. The boxplots indicate that the model is able to achieve
higher performances when analyzing data from older patients, reaching an accuracy of more
than 90% for the 80+ years old age group.

People who are older than 60 years are in the high risk group for COVID-19. If any sign
of insufficiency is detected in patients from this group, prompt measures should be taken by
healthcare professionals, oftentimes by making use of mechanical ventilation. For this reason,
we also evaluate, in Table 25, how the models perform, in terms of precision, sensitivity and F1
score, specifically on data from this group, when detecting signs from any type of insufficiency
(hepatic, renal or respiratory). From this table, we see that the new MNBHL technique again
obtains competitive results in comparison to classic ones.

8.5 Chapter Remarks

In this chapter, we present a modified network-based high-level classification technique
that comprises two major improvements: (1) a network reduction method, to both reduce the
model’s running time and potentially enhance its performance, by selecting the network’s most
central nodes in the training phase, and (2) a cost function to optimize the network-building
parameters ε and k. We initially evaluate the model by applying it to benchmark datasets and
comparing it to traditional classification techniques, obtaining favorable results in this assessment.
Afterwards, we applied the model to detect early insufficiency signs in COVID-19 patients, using



8.5. Chapter Remarks 147

Table 25 – Precision, sensitivity and F1 score achieved by each technique, when detecting signs from any
type of insufficiency (hepatic, renal or respiratory) in COVID-19 patients over 60 years old.

Precision Sensitivity F1 score
MNBHL 0.891 0.982 0.933
Ada 0.884 0.993 0.934
BagDT 0.901 0.945 0.922
BagMLP 0.884 0.996 0.935
DT 0.894 0.869 0.882
LR 0.886 0.993 0.935
MLP 0.884 0.998 0.936
N-B 0.893 0.973 0.931
RF 0.897 0.963 0.928
SVM 0.882 0.975 0.925

Source: Research data.

Figure 30 – Boxplots of the overall performance, in terms of accuracy, achieved by the proposed technique
on detecting insufficiency signs in COVID-19 patients, grouped by age.
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CBC test results as biomarkers. The experimental results obtained on this task are competitive,
when compared to those achieved by classic and state-of-the-art classification techniques.

At this point, we would like to emphasize that the method proposed in this study cannot
substitute specific medical tests for detecting signs of insufficiency in patients. Rather than that,
the intention is to use the proposed method as an additional tool in the severity assessment of
COVID-19 patients, thus helping healthcare professionals, specially those who work in regions
with scarce material and human resources, to detect the severity of COVID-19 patients at high
risk of complications, before the consequences become irreversible.
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CHAPTER

9
CONCLUSIONS

9.1 Concluding Remarks

In this work, we have approached problems from very diverse fields through the de-
velopment of novel machine learning techniques based on complex networks. We started by
introducing two high level data classification techniques which were evaluated by applying them
to benchmark datasets, both real and artificial ones, and by comparing their performances to
those obtained by traditional classification models, on the same data. The first technique infers
the label for a new data instance based on the detected impacts pattern from its insertion on the
network topological structure, for each class. The main novelty of this model is in the fact that
the low level method, which was required in the preceding technique, is no longer necessary for
the classification process. The main novelty of the second technique proposed in this work is
that it maps each data instance’s attribute as a node in the network, instead of mapping each data
instance as a node, as usual. Additionally, the technique is able to infer the labels for new data
instances based solely on the modularity measure.

The other studies presented in this work are focused on offering solutions for specific
and relevant problems encountered in the real world, also through the development of novel
network-based machine learning techniques. The first problem concerns the analysis of voting
data from Brazilian representatives, covering a time range of almost 30 years of legislative works.
We demonstrate how the changes in the topological structure of the congresspeople temporal
network reflect the main political changes happened in Brazil during the same period, in terms
of the influence from each political party on the legislative decisions. Another finding of this
research is with regard to the uncovering of an unexpected relationship between the voting
history and convictions of corruption or other financial crimes among Brazilian representatives.
This finding has motivated us to develop a predictive model for assessing the chances of a
congressman for being convicted of corruption or other financial crimes in the future, solely
based on how similar are his past votes and the voting record of already convicted congressmen.
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In another investigation, we build an investment model to automate decision makings
in the stock market, by adapting a model which was originally applied to detect periodicity in
meteorological data. The model identifies up and down trends for a financial asset based on
the price-variations network topological structure, and may automatically trigger a buying or
selling order for the asset, accordingly. We have tested the proposed model by applying it to 10
of the most traded stocks from NYSE and Bovespa, and the preliminary obtained results were
promising, with the model being able to outperform the “buy and hold” strategy, for the same
period, in 15 out of the 20 considered cases.

The two remaining applications developed in this work are related to the COVID-19
pandemic, which arose during the period of our research. The first technique predicts new
confirmed cases and deaths provoked by COVID-19 in a region through a temporal network
built from the similarities between the COVID-19 variation curves in each region, pairwise. It
works in the form of a multi correlation regression analysis, with the predicted values for a
region being provided by considering the curve variation of regions within the same community
in the temporal network. We evaluated the model by applying it to predict new COVID-19
cases and deaths for the 27 federal units of Brazil, on a weekly basis, in a total of 76 different
predictions for a period of 3 weeks, including new cases and deaths. The obtained results indicate
that, although our approach can be considered relatively simple – in the sense that it does not
consider other important factors, such as local isolation policies, for instance – it was still able to
outperform predictive models from similar studies, in terms of the mean absolute percentage
error (MAPE).

In the last application, a technique for help monitoring COVID-19 patients was intro-
duced. The model is able to detect early signs of hepatic, renal or respiratory insufficiency
through the analysis of Complete Blood Count (CBC) test results. The main advantage of this
technique is in the fact that CBC tests are easier to collect and cheaper than other additional
tests, and hence the proposed model can be used as a supplementary tool to help healthcare
professionals, specially those who work in regions with scarce material and human resources,
to detect the severity of COVID-19 patients at high risk of complications. The high level data
classification technique developed in this research is an improved version of the NBHL model,
introduced in the first study, with two main novelties: (1) a network reduction method, to re-
duce processing time and, in some cases, also the noise in the input data, and (2) a parameters
optimization procedure, based on a cost function. We believe these two improvements made
in the high level data classification model are quite relevant, given that they provide a way of
solving two issues left pending from the earlier models presented in this work: the parameters
automation and the time complexity reduction.
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9.2 Future Works

Regarding the first two high level network-based classification techniques presented in
this work, the NBHL technique, presented in Chapter 3, can be extended by the addition of
new network measures. Intuitively, it is expected that as more relevant measures are taken into
account, the higher will be the classifier’s robustness and efficiency. In the MBHL technique,
presented in Chapter 4, although our current choice for adopting the Ridge Regression for the
sake of generating the values of parameter γ has demonstrated, based on the obtained results, to
be quite fair, we still consider that other forms of generating these values should definitely be
explored in the future, such as the Elastic Net regression, for instance.

In the MNBHL model, presented in Chapter 8, we were able to successfully address
two important points in both NBHL and MBHL models: (1) the network-building parameters
optimization, through a cost function, so that they become adaptive, according to the features of
each training dataset, and (2) the lowering of the model’s memory consumption and running time,
through a network reduction method used in the training phase, thus favoring the use of larger
datasets for evaluation and application purposes. In the future, we plan to explore the possibility
of extending the MNBHL classification technique by using additional centrality measures, in a
combined form, both in the network reduction method and in the new node’s insertion impact
evaluation. We also plan to make applications on larger datasets, such as X-ray and CT images,
to further assess the model’s robustness.

With regard to the modeling and other application techniques, we plan to extract other
measures from the congressmen temporal network, presented in Chapter 5, such as the tem-
poral betweenness centrality, the temporal closeness centrality and bursting measure, to better
understand its topological structure. Other network building methods can also be developed to
include more relevant information from congresspeople, such as the federal state that each of
them represents, original profession, sex, age, kinship among them, and so on. For the conviction
prediction task, one can, for instance, filter the representatives voting records by types of bills
and then identify which categories are more likely to be linked to corruption and other financial
crimes. So we can alert people to pay more attention to those types of bills.

In the stock trading technique, presented in Chapter 6, one remaining open question is to
uncover the main factors that contribute to a better performance of the model for a specific stock
over others. The answer for it could be, for instance, in the topological properties of the network
resulted from the trend detection phase, with some specific network structural patterns being
more suitable to the model than others. In case there is such a correlation, then a preliminary
stock filtering process, based on their resulting network topological properties, would help on
determining the ones which are more likely to have their returns optimized by the model. Another
possible improvement in this model, which would be interesting to test and check the results, is
in turning its trend detection phase more dynamic. At the way it is now, it makes use of the first
γ days of the stock’s historical prices to generate the variation ranges network, which remains
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unchanged during the whole operating phase. Additionally, updating the network regularly, as
newer price variations are known during the operating phase, could lead to higher overall returns.
Preferably, the network should be updated daily, but for testing purposes one can make use of a
monthly update, i.e., around every 21 trading days. The parameter γ , in this case, could also be
used as a sliding window, for saving processing time in the tests as well as for keeping the trend
detection process concise and always up to date.

As for the COVID-19 prediction technique, presented in Chapter 7, we believe it can
be applied to predict the evolution of the COVID-19 curve in each region more locally, such
as in each city, for instance. The only requirement for such application is to have access to the
COVID-19 evolution data from the cities to be predicted. Additionally, the proposed model can
be improved, in order to allow it to perform predictions also in situations when the past variations
of the time series to be predicted do not match any other time series in the dataset. Moreover, we
also plan to explore other forms of analyzing the model’s output data. One of the possibilities, in
this sense, is to generate indexes for measuring how much the evolution of a given time series is
correlated to the global and local averages evolution in the temporal network, for instance.

9.3 Publications During the Doctorate Period

During the doctorate period, eight articles have been generated, with two of them
published in international journals, four of them in international conferences, one of them
currently accepted as a book chapter and one published as a preprint research paper. The
complete list of articles is provided below.

∙ Colliri, Tiago; Zhao, Liang. Predicting Corruption Convictions Among Brazilian Repre-
sentatives Through a Voting-History Based Network. Corruption Networks: Concepts and

Applications, 2021. Springer book chapter. (accepted)

∙ Colliri, Tiago; Zhao, Liang. Stock Market Trend Detection and Automatic Decision-
Making Through a Network-Based Classification Model. Natural Computing, 2021, pp.
1-14, doi: 10.1007/s11047-020-09829-9.

∙ Colliri, Tiago; Delbem, Alexandre; Zhao, Liang. Predicting the Evolution of COVID-19
Cases and Deaths Through a Correlations-Based Temporal Network. Cerri R., Prati R.C.

(eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science, vol 12320,

pp. 397-411. Springer, Cham. doi: 10.1007/978-3-030-61380-8_27.

∙ Colliri, T.; Weiguang, L.; Zhao, L. An Optimized Modularity-Based High Level Classifi-
cation Model, 2020, Glasgow, United Kingdom. 2020 International Joint Conference on

Neural Networks (IJCNN), 2020, pp. 1-8, doi: 10.1109/IJCNN48605.2020.9206755.
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∙ Colliri, Tiago; Zhao, Liang. Analyzing the Bills-Voting Dynamics and Predicting Corruption-
Convictions Among Brazilian Congressmen Through Temporal Networks. Scientific Re-

ports, v. 9, 16754 (1 - 11), 2019. https://doi.org/10.1038/s41598-019-53252-9.

∙ Colliri, Tiago; Zhao, Liang. A Network-Based Approach to Predict New Affected Regions
and the Spread Evolution of COVID-19. SSRN 3577663, 2020.

∙ Colliri, Tiago; Zhao, Liang. A Network-Based Model for Optimizing Returns in the Stock
Market, 2019, Salvador. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS),
2019, pp. 645-650, doi: 10.1109/BRACIS.2019.00118.

∙ Colliri, Tiago; Ji, Donghong; Pan, Heng; Zhao, Liang. A Network-Based High Level Data
Classification Technique, 2018, Rio de Janeiro. 2018 International Joint Conference on

Neural Networks (IJCNN), pp. 1-8, doi: 10.1109/IJCNN.2018.8489081.
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HULOVATYY, Y.; CHEN, H.; MILENKOVIĆ, T. Exploring the structure and function of
temporal networks with dynamic graphlets. Bioinformatics, Oxford University Press, v. 31,
n. 12, p. i171–i180, 2015. Citation on page 86.

JAEGER, P. T.; BERTOT, J. C. Transparency and technological change: Ensuring equal and sus-
tained public access to government information. Government Information Quarterly, Elsevier,
v. 27, n. 4, p. 371–376, 2010. Citation on page 82.



Bibliography 161

JÄKEL, F.; SCHÖLKOPF, B.; WICHMANN, F. A. Generalization and similarity in exemplar
models of categorization: Insights from machine learning. Psychonomic Bulletin & Review,
Springer, v. 15, n. 2, p. 256–271, 2008. Citation on page 27.

JEBARA, T.; WANG, J.; CHANG, S.-F. Graph construction and b-matching for semi-supervised
learning. In: Proceedings of the 26th Annual International Conference on Machine Learn-
ing. 2009. p. 441–448. Citation on page 47.

JI, L.-J.; ZHANG, Z.; GUO, T. To buy or to sell: Cultural differences in stock market decisions
based on price trends. Journal of Behavioral Decision Making, Wiley Online Library, v. 21,
n. 4, p. 399–413, 2008. Citation on page 102.

KARYPIS, G.; HAN, E.-H.; KUMAR, V. Chameleon: hierarchical clustering using dynamic
modeling. Computer, v. 32, n. 8, p. 68–75, 1999. Citation on page 44.

KIRKLAND, J. H.; GROSS, J. H. Measurement and theory in legislative networks: The evolving
topology of Congressional collaboration. Social Networks, v. 36, n. 1, p. 97–109, 2014. ISSN
03788733. Citation on page 82.

KIVELÄ, M.; ARENAS, A.; BARTHELEMY, M.; GLEESON, J. P.; MORENO, Y.; PORTER,
M. A. Multilayer networks. Journal of Complex Networks, Oxford University Press, v. 2, n. 3,
p. 203–271, 2014. Citation on page 119.

KOSTOPOULOS, G.; KARLOS, S.; KOTSIANTIS, S.; RAGOS, O. Semi-supervised regression:
A recent review. Journal of Intelligent & Fuzzy Systems, IOS Press, v. 35, n. 2, p. 1483–1500,
2018. Citation on page 120.

KROT, A.; PROKHORENKOVA, L. O. Local clustering coefficient in generalized preferential
attachment models. In: SPRINGER. International Workshop on Algorithms and Models for
the Web-Graph. 2015. p. 15–28. Citation on page 41.

KRUSCHKE, J. K. Alcove: an exemplar-based connectionist model of category learning. Psy-
chological Review, American Psychological Association, v. 99, n. 1, p. 22, 1992. Citation on
page 27.

KULLBACK, S.; LEIBLER, R. A. On information and sufficiency. The Annals of Mathemati-
cal Statistics, JSTOR, v. 22, n. 1, p. 79–86, 1951. Citations on pages 30 and 139.

LAKE, B. M.; LAWRENCE, N. D.; TENENBAUM, J. B. The emergence of organizing structure
in conceptual representation. Cognitive Science, v. 42, n. S3, p. 809–832, 2018. Citation on
page 27.

LAKE, B. M.; ULLMAN, T. D.; TENENBAUM, J. B.; GERSHMAN, S. J. Building machines
that learn and think like people. Behavioral and Brain Sciences, Cambridge University Press,
v. 40, p. e253, 2017. Citation on page 27.

LEE, K.; JO, G. Expert system for predicting stock market timing using a candlestick chart.
Expert Systems with Applications, v. 16, n. 4, p. 357 – 364, 1999. ISSN 0957-4174. Citations
on pages 29 and 101.

LIBEN-NOWELL, D.; KLEINBERG, J. The link-prediction problem for social networks. Jour-
nal of the American Society for Information Science and Technology, Wiley Online Library,
v. 58, n. 7, p. 1019–1031, 2007. Citations on pages 89 and 95.



162 Bibliography

LICHMAN, M. UCI Machine Learning Repository. 2013. Available: <http://archive.ics.uci.
edu/ml>. Citations on pages 61, 76, and 141.

LIU, W.; LÜ, L. Link prediction based on local random walk. EPL (Europhysics Letters), IOP
Publishing, v. 89, n. 5, p. 58007, 2010. Citation on page 41.

LIU, W.; SUZUMURA, T.; JI, H.; HU, G. Finding overlapping communities in multilayer
networks. PLoS One, Public Library of Science, v. 13, n. 4, p. e0188747, 2018. Citation on
page 44.

LOGLISCI, C.; MALERBA, D. Leveraging temporal autocorrelation of historical data for
improving accuracy in network regression. Statistical Analysis and Data Mining: The ASA
Data Science Journal, Wiley Online Library, v. 10, n. 1, p. 40–53, 2017. Citation on page 44.

LOHMANN, G.; MARGULIES, D. S.; HORSTMANN, A.; PLEGER, B.; LEPSIEN, J.; GOLD-
HAHN, D.; SCHLOEGL, H.; STUMVOLL, M.; VILLRINGER, A.; TURNER, R. Eigenvector
centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS
One, Public Library of Science, v. 5, n. 4, p. e10232, 2010. Citation on page 41.

LUNA-PLA, I.; NICOLÁS-CARLOCK, J. R. Corruption and complexity: a scientific framework
for the analysis of corruption networks. Applied Network Science, Springer, v. 5, n. 1, p. 1–18,
2020. Citations on pages 83 and 119.

MALKIEL, B. G.; FAMA, E. F. Efficient capital markets: A review of theory and empirical
work. The Journal of Finance, Wiley Online Library, v. 25, n. 2, p. 383–417, 1970. Citation
on page 100.

MASO, C. D.; POMPA, G.; PULIGA, M.; RIOTTA, G.; CHESSA, A. Voting behavior, coalitions
and government strength through a complex network analysis. PLoS One, Public Library of
Science, v. 9, n. 12, 2014. ISSN 19326203. Citations on pages 29, 32, and 82.

MEO, P. D.; FERRARA, E.; FIUMARA, G.; PROVETTI, A. Generalized Louvain method
for community detection in large networks. In: IEEE. 2011 11th International Conference on
Intelligent Systems Design and Applications. 2011. p. 88–93. Citation on page 87.

METSKY, H. C.; FREIJE, C. A.; KOSOKO-THORODDSEN, T.-S. F.; SABETI, P. C.;
MYHRVOLD, C. CRISPR-based surveillance for COVID-19 using genomically-comprehensive
machine learning design. BioRxiv, Cold Spring Harbor Laboratory, 2020. Citation on page 132.

MITCHELL, M. Complex systems: Network thinking. Artificial Intelligence, Elsevier, v. 170,
n. 18, p. 1194–1212, 2006. Citation on page 100.

MITCHELL, T. M. Machine Learning. USA: New York, NY: McGraw-Hill, Inc, 1997. Citation
on page 43.

MONTOYA, J. M.; SOLé, R. V. Small world patterns in food webs. Journal of Theoretical
Biology, v. 214, n. 3, p. 405–412, 2002. Citations on pages 38 and 99.

MOODY, J.; MUCHA, P. J. Portrait of political party polarization. Network Science, Cambridge
University Press, v. 1, n. 1, p. 119–121, 2013. Citations on pages 29, 32, and 82.

MORENO, Y.; NEKOVEE, M.; PACHECO, A. F. Dynamics of rumor spreading in complex
networks. Physical Review E, APS, v. 69, n. 6, p. 066130, 2004. Citation on page 42.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Bibliography 163

MOTTER, A. E.; LAI, Y.-C. Cascade-based attacks on complex networks. Physical Review E,
APS, v. 66, n. 6, p. 065102, 2002. Citation on page 100.

NEAL, Z. P. A sign of the times? Weak and strong polarization in the US Congress, 1973–2016.
Social Networks, Elsevier, 2018. Citation on page 82.

NETO, F. A.; ZHAO, L. High level data classification based on network entropy. Neural
Networks (IJCNN), The 2013 International Joint Conference on. IEEE, 2013. Citation on
page 44.

NEWMAN, M. E. Mixing patterns in networks. Physical Review E, APS, v. 67, n. 2, p. 026126,
2003. Citations on pages 41 and 57.

. Fast algorithm for detecting community structure in networks. Physical Review E, APS,
v. 69, n. 6, p. 066133, 2004. Citations on pages 110 and 121.

. Modularity and community structure in networks. Proceedings of the National Academy
of Sciences, National Acad Sciences, v. 103, n. 23, p. 8577–8582, 2006. Citations on pages 28,
41, and 67.

NI, B.; YAN, S.; KASSIM, A. Learning a propagable graph for semisupervised learning: Classi-
fication and regression. Knowledge and Data Engineering, IEEE Transactions on, v. 24, n. 1,
p. 114–126, 2012. Citation on page 44.

OSLER, C. L. Support for resistance: technical analysis and intraday exchange rates. Economic
Policy Review, v. 6, n. 2, 2000. Citation on page 103.

PAGE, L.; BRIN, S.; MOTWANI, R.; WINOGRAD, T. The PageRank citation ranking:
Bringing order to the web. Stanford InfoLab, 1999. Citations on pages 41, 46, and 89.

PALLA, G.; DERÉNYI, I.; FARKAS, I.; VICSEK, T. Uncovering the overlapping community
structure of complex networks in nature and society. Nature, Nature Publishing Group, v. 435,
n. 7043, p. 814–818, 2005. Citations on pages 44 and 99.

PASTOR-SATORRAS, R.; CASTELLANO, C.; MIEGHEM, P. V.; VESPIGNANI, A. Epidemic
processes in complex networks. Reviews of Modern Physics, APS, v. 87, n. 3, p. 925, 2015.
Citation on page 30.

PASTOR-SATORRAS, R.; VESPIGNANI, A. Epidemic spreading in scale-free networks. Phys-
ical Review Letters, APS, v. 86, n. 14, p. 3200, 2001. Citations on pages 30, 100, and 119.

. Immunization of complex networks. Physical Review E, APS, v. 65, n. 3, p. 036104,
2002. Citations on pages 100 and 119.

PEARSON, K. Note on regression and inheritance in the case of two parents. Proceedings of
the Royal Society of London, The Royal Society London, v. 58, n. 347-352, p. 240–242, 1895.
Citation on page 142.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL,
O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.;
PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825–
2830, 2011. Citations on pages 58, 59, 61, 76, and 140.



164 Bibliography

PONS, P.; LATAPY, M. Computing communities in large networks using random walks. In:
SPRINGER. International Symposium on Computer and Information Sciences. 2005. p.
284–293. Citation on page 121.

POOLE, D. L.; MACKWORTH, A. K.; GOEBEL, R. Computational intelligence: a logical
approach. : Oxford University Press New York, 1998. Citation on page 37.

REGNAULT, J. Calcul des chances et philosophie de la bourse. : Mallet-Bachelier, 1863.
Citation on page 100.

RIBEIRO, H. V.; ALVES, L. G.; MARTINS, A. F.; LENZI, E. K.; PERC, M. The dynamical
structure of political corruption networks. Journal of Complex Networks, Oxford University
Press, v. 6, n. 6, p. 989–1003, 2018. Citations on pages 42, 83, 92, 93, 97, and 98.

RISH, I. An empirical study of the naive bayes classifier. IJCAI 2001 Workshop on Empirical
Methods in Artificial Intelligence, v. 3, n. 22, 2001. IBM New York. Citations on pages 58,
76, 102, and 140.

ROBERTS, H. V. Stock-market “patterns” and financial analysis: methodological suggestions.
The Journal of Finance, JSTOR, v. 14, n. 1, p. 1–10, 1959. Citation on page 100.

ROHBAN, M. H.; RABIEE, H. R. Supervised neighborhood graph construction for semi-
supervised classification. Pattern Recognition, Elsevier, v. 45, n. 4, p. 1363–1372, 2012. Cita-
tion on page 47.

ROSSI, R. G.; LOPES, A. de A.; REZENDE, S. O. Optimization and label propagation in
bipartite heterogeneous networks to improve transductive classification of texts. Information
Processing & Management, Elsevier, v. 52, n. 2, p. 217–257, 2016. Citation on page 44.

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach. : Malaysia; Pearson
Education Limited„ 2016. Citation on page 37.

SAFAVIN, S. R.; LANDGREBE, D. A survey of decision tree classifier methodology. IEEE
Trans. Syst., Man, Cybern., v. 21, n. 3, p. 660–674, 1991. Citations on pages 58, 76, 102,
and 140.

SALTON, G.; MCGILL, M. J. Introduction to modern information retrieval. : McGraw-Hill,
Inc., 1986. Citation on page 89.

SAMUEL, A. L. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, IBM, v. 3, n. 3, p. 210–229, 1959. Citation on page 43.

SCHAEFFER, S. E. Graph clustering. Computer Science Review, v. 1, n. 1, p. 27–64, 2007.
Citation on page 44.

SEITZ, A. R.; KIM, D.; WATANABE, T. Rewards evoke learning of unconsciously processed
visual stimuli in adult humans. Neuron, Elsevier, v. 61, n. 5, p. 700–707, 2009. Citation on
page 27.

SHAN, F.; GAO, Y.; WANG, J.; SHI, W.; SHI, N.; HAN, M.; XUE, Z.; SHI, Y. Lung
infection quantification of COVID-19 in CT images with deep learning. arXiv preprint
arXiv:2003.04655, 2020. Citation on page 132.



Bibliography 165

SHANNON, C. E. A mathematical theory of communication. The Bell System Technical
Journal, Nokia Bell Labs, v. 27, n. 3, p. 379–423, 1948. Citation on page 139.

SHARPE, W. F. Mutual fund performance. The Journal of Business, JSTOR, v. 39, n. 1, p.
119–138, 1966. Citation on page 115.

SILVA, T. C.; ZHAO, L. Network-based high level data classification. Neural Networks and
Learning Systems, IEEE Transactions on, v. 23, n. 6, p. 954–970, 2012. Citations on pages
28, 32, 33, 34, 44, 45, 46, 47, 51, 52, 53, 58, 102, 133, and 136.

. Network-based stochastic semisupervised learning. Neural Networks and Learning
Systems, IEEE Transactions on, v. 23, n. 3, p. 451–466., 2012. Citation on page 44.

. Stochastic competitive learning in complex networks. Neural Networks and Learning
Systems, IEEE Transactions on, v. 23, n. 3, p. 385–398, 2012. Citation on page 44.

. High-level pattern-based classification via tourist walks in networks. Information Sci-
ences, v. 294, p. 109–126, 2015. Citations on pages 27, 28, 34, 46, 52, and 53.

. Machine Learning in Complex Networks. : Heidelberg: Springer, 2016. Citations on
pages 33, 44, and 45.

SILVA, T. C.; ZHAO, L.; CUPERTINO, T. H. Handwritten data clustering using agents com-
petition in networks. J. Math. Imaging Vis., v. 45, n. 3, p. 264–276, 2013. Citation on page
44.

SOUSA, C. A. R. de; REZENDE, S. O.; BATISTA, G. E. Influence of graph construction on
semi-supervised learning. In: SPRINGER. Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. 2013. p. 160–175. Citation on page 47.

SPICER, J.; SANBORN, A. N. What does the mind learn? a comparison of human and machine
learning representations. Current Opinion in Neurobiology, v. 55, p. 97 – 102, 2019. ISSN
0959-4388. Machine Learning, Big Data, and Neuroscience. Citation on page 27.

SPORNS, O. Network analysis, complexity, and brain function. Complexity, v. 8, n. 1, p. 56–60,
2002. Citations on pages 38 and 99.

SPORNS, O.; TONONI, G.; KÖTTER, R. The human connectome: a structural description
of the human brain. PLoS Comput Biol, Public Library of Science, v. 1, n. 4, p. e42, 2005.
Citation on page 42.

STF. Processos. https://portal.stf.jus.br/. [Accessed on October, 22, 2019]. 2019. Citation
on page 84.

TALUKDAR, P. P.; CRAMMER, K. New regularized algorithms for transductive learning. In:
SPRINGER. Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. 2009. p. 442–457. Citation on page 44.

THOMPSON, W. H.; BRANTEFORS, P.; FRANSSON, P. From static to temporal network
theory: Applications to functional brain connectivity. Network Neuroscience, v. 1, n. 2, p.
69–99, 2017. Citations on pages 86 and 119.

VALEJO, A.; FERREIRA, V.; FABBRI, R.; OLIVEIRA, M. C. F. d.; LOPES, A. d. A. A critical
survey of the multilevel method in complex networks. ACM Computing Surveys (CSUR),
ACM New York, NY, USA, v. 53, n. 2, p. 1–35, 2020. Citation on page 136.



166 Bibliography

VANDERMONDE, A.-T. Remarques sur les problèmes de situation. Mémoires de l’Académie
Royale des Sciences (Paris), v. 2, p. 566–574, 1771. Citation on page 37.

VAPNIK, V. N. The Nature of Statistical Learning Theory. : New York: Springer, 2000.
Citations on pages 58, 76, 101, and 140.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.;
KAISER, L.; POLOSUKHIN, I. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017. Citations on pages 32, 68, and 74.

VEGA-OLIVEROS, D. A.; BERTON, L.; EBERLE, A. M.; LOPES, A. de A.; ZHAO, L. Regular
graph construction for semi-supervised learning. In: IOP PUBLISHING. Journal of Physics:
Conference series. 2014. v. 490, n. 1, p. 012022. Citation on page 44.

VERRI, F. A. N.; URIO, P. R.; ZHAO, L. Network unfolding map by vertex-edge dynamics
modeling. IEEE Transactions on Neural Networks and Learning Systems, IEEE, v. 29, n. 2,
p. 405–418, 2016. Citation on page 44.

VICTOR, J. N.; MONTGOMERY, A. H.; LUBELL, M. The Oxford Handbook of Political
Networks. : Oxford University Press, 2017. Citation on page 82.

WACHS, J.; YASSERI, T.; LENGYEL, B.; KERTÉSZ, J. Social capital predicts corruption risk
in towns. Royal Society Open Science, The Royal Society, v. 6, n. 4, p. 182103, 2019. Citation
on page 82.

WANG, J.-L.; CHAN, S.-H. Stock market trading rule discovery using pattern recognition and
technical analysis. Expert Systems with Applications, Elsevier, v. 33, n. 2, p. 304–315, 2007.
Citation on page 100.

WANG, X. F.; CHEN, G. Complex networks: small-world, scale-free and beyond. IEEE Circuits
and Systems Magazine, v. 3, n. 1, p. 6–20, 2003. Citation on page 100.

WANG, Y.; HU, M.; LI, Q.; ZHANG, X.-P.; ZHAI, G.; YAO, N. Abnormal respiratory patterns
classifier may contribute to large-scale screening of people infected with COVID-19 in an
accurate and unobtrusive manner. arXiv preprint arXiv:2002.05534, 2020. Citation on page
132.

WATTS, D. J. Six degrees: The science of a connected age. : WW Norton & Company, 2004.
Citation on page 100.

WATTS, D. J.; STROGATZ, S. H. Collective dynamics of “small-world” networks. Nature,
Nature Publishing Group, v. 393, n. 6684, p. 440, 1998. Citations on pages 31, 38, 39, and 99.

WAUGH, A. S.; PEI, L.; FOWLER, J. H.; MUCHA, P. J.; PORTER, M. A. Party polarization in
congress: A network science approach. arXiv preprint arXiv:0907.3509, 2009. Citations on
pages 29, 32, and 82.

WEST, G. B.; BROWN, J. H.; ENQUIST, B. J. A general model for the structure, and allometry
of plant vascular systems. Nature, v. 400, p. 125–126, 2009. Citations on pages 38 and 99.

WORLDOMETER. Coronavirus Update. https://www.worldometers.info/coronavirus/.
[Accessed on February, 1, 2021]. 2021. Citation on page 33.



Bibliography 167

XUBO, G.; QIUSHENG, Z.; VEGA-OLIVEROS, D. A.; LEANDRO, A.; ZHAO, L. Temporal
network pattern identification by community modelling. Scientific Reports, Nature Publishing
Group, v. 10, n. 1, 2020. Citation on page 119.

YAN, L.; ZHANG, H.-T.; GONCALVES, J.; XIAO, Y.; WANG, M.; GUO, Y.; SUN, C.; TANG,
X.; JING, L.; ZHANG, M. et al. An interpretable mortality prediction model for COVID-19
patients. Nature Machine Intelligence, Nature Publishing Group, p. 1–6, 2020. Citation on
page 132.

ZHU, X. J. Semi-supervised learning literature survey. University of Wisconsin-Madison
Department of Computer Sciences, Madison, Wisconsin, 2005. Citation on page 44.



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of symbols
	Contents
	Introduction
	Objectives
	Motivations
	Organization of the Remainder of the Document

	Relevant Concepts and Techniques
	Complex Networks
	Commonly Used Network Measures
	Network-Based Modeling Applied to Real-World Phenomena

	Machine Learning
	Network-Based High Level Classification
	Graph-Formation Techniques on Supervised Learning

	A Network-Based High Level Data Classification Technique
	Introduction
	Motivation
	Materials and Methods
	Model Overview
	Description of the Training Phase
	Description of the Testing Phase
	Network Measures Used for Testing

	Results and Discussion
	Tests Performed on Toy Data
	Tests Performed on Real Data

	Chapter Remarks

	A Modularity-Based High Level Data Classification Technique
	Introduction
	Motivation
	Materials and Methods
	Model Overview
	Description of the Training Phase
	Description of the Testing Phase
	Database

	Results and Discussion
	Chapter Remarks

	Analyzing Voting Data and Predicting Corruption Among Brazilian Congressmen
	Introduction
	Motivation
	Materials and Methods
	Database
	Static Network Generation
	Temporal Network Generation
	Conviction Prediction
	Conviction Prediction Based on the Weight Matrix
	Conviction Prediction Based on Link Prediction


	Results and Discussion
	Political Scenario Through the Analysis of the Representatives' Networks
	Prediction of Conviction Among Representatives
	Results Based on the Weight Matrix
	Results Based on a Link Prediction Model


	Chapter Remarks

	Trend Detection and Automatic Decision-Making in the Stock Market
	Introduction
	Motivation
	Materials and Methods
	Model Overview
	Trend Detection Phase
	Operating Phase
	Database

	Results and Discussion
	Generated Networks
	Obtained Returns

	Chapter Remarks

	Predicting COVID-19 New Cases and Deaths in a Region
	Introduction
	Motivation
	Materials and Methods
	Database
	Description of the Time Series Prediction Model
	Model's Demonstration Through a Simple Example

	Results and Discussion
	Chapter Remarks

	Detecting Signs of Hepatic, Renal and Respiratory Insufficiency in COVID-19 Patients
	Introduction
	Motivation
	Materials and Methods
	Model Overview
	Description of the Training Phase
	Balancing
	Network Generation
	Network Reduction
	Parameters  and k Calibration

	Description of the Testing Phase
	Cost Function Optimization
	Database
	Benchmark Datasets
	The COVID-19 Dataset


	Results and Discussion
	Tests Performed on Benchmark Datasets
	Experimental Results

	Chapter Remarks

	Conclusions
	Concluding Remarks
	Future Works
	Publications During the Doctorate Period

	Bibliography

