
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Multi-layer analysis of convolutional neural networks for
transfer learning applications

Rayner Harold Montes Condori
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Rayner Harold Montes Condori

Multi-layer analysis of convolutional neural networks for
transfer learning applications

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Odemir Martinez Bruno

USP – São Carlos
January 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

M772m
Montes Condori, Rayner Harold
 Multi-layer analysis of convolutional neural
networks for transfer learning applications /
Rayner Harold Montes Condori; orientador Odemir
Martinez Bruno. -- São Carlos, 2022.
 215 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2022.

 1. Deep Learning. I. Martinez Bruno, Odemir ,
orient. II. Título.

Rayner Harold Montes Condori

Análise multicamada de redes neurais convolucionais para
aplicações de transferência de conhecimento

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Odemir Martinez Bruno

USP – São Carlos
Janeiro de 2022

I would like to dedicate this thesis to my mother Giovanna, my father Juvenal and girlfriend

Daysi Katherine and all my family.

Also I say thank you to everybody that help me throughout these years

ACKNOWLEDGEMENTS

“As invenções são, sobretudo,

o resultado de um trabalho de teimoso.”

(Santos Dumont)

RESUMO

RAYNER H. M. CONDORI. Análise multicamada de redes neurais convolucionais para
aplicações de transferência de conhecimento. 2022. 212 p. Tese (Doutorado em Ciências –
Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

O aprendizado profundo tornou-se um tema quente na inteligência artificial devido à sua capaci-
dade de modelar conceitos complexos a partir de conceitos simples. Nesse sentido, a rede neural
convolucional (CNN) é um dos tipos mais populares de redes neurais atualmente utilizadas
em visão computacional e áreas afins. Em geral, os seguintes fatores contribuíram para sua
popularidade. (i) Com dados suficientes, a maioria das CNNs podem ser treinadas do zero e
aprender representações poderosas que resolvem a tarefa em jogo. (ii) Por outro lado, com um
volume limitado de dados, é possível também aprender representações poderosas adaptando o
conhecimento de um modelo CNN pré-treinado por meio de uma estratégia de aprendizagem
por transferência. Como resultado, as CNNs avançaram o estado da arte em muitas tarefas de
reconhecimento visual, levando a inúmeras aplicações em vários campos fora da ciência da
computação, como medicina e biologia. No entanto, muitos dos melhores esforços de pesquisa
estão focados em melhorar o estado da arte só em alguns conjuntos de dados, como ImageNet
para classificação de imagens e COCO para detecção de objetos. Porém, o progresso da pes-
quisa em muitos outros domínios é reduzido a aplicar cegamente as abordagens existentes ou
reinventar tudo do zero, resultando no desenvolvimento de métodos falhos em ambos os casos.
Portanto, esta tese se foca em entender por meio de experimentos sistemáticos por que e quando
um modelo CNN pré-treinado apresenta desempenho inferior em uma determinada tarefa, a
fim de propor soluções adequadas. Na primeira parte de nosso estudo, examinamos a tarefa
de reconhecimento de textura e descobrimos que todos os trabalhos anteriores tendiam a se
concentrar exclusivamente em conjuntos de dados de textura baseados em categorias, levando
à ideia equívoca de que apenas as camadas mais profundas tinham as informações de textura
necessárias para resolver essa tarefa. . Mostramos então, propondo estratégias de aprendizagem
por transferência multicamadas, que a contribuição de camadas rasas não é trivial e deve ser
utilizada em determinadas aplicações. Na segunda parte do nosso estudo, focamos em tarefas
desafiadoras de detecção de objetos (detecção de grãos de pólen e localização de estômatos),
onde observamos uma situação semelhante à do reconhecimento de texturas. Portanto, em ambos
os casos, também aplicamos a análise multicamada para propor detectores rápidos de estágio
único que podem lidar com imagens muito grandes com precisão e eficiência.

Palavras-chave: Redes neurais convolucionais, Transferência de conhecimento, Visão por
computador, Mapas de ativação, Classificação de Imagens, Detecção de Objetos .

ABSTRACT

RAYNER H. M. CONDORI. Multi-layer analysis of convolutional neural networks for
transfer learning applications. 2022. 212 p. Tese (Doutorado em Ciências – Ciências de
Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2022.

Deep learning has become a hot topic in artificial intelligence due to its ability to model complex
concepts from simple ones. In this regard, the convolutional neural network (CNN) is one
of the most popular kinds of neural networks currently used in computer vision and related
areas. In general, the following factors contributed to its popularity. (i) With enough data, most
CNNs can be trained from scratch and learn powerful representations that solve the task at
stake. (ii) On the other hand, with a limited volume of data, it is possible to also learn powerful
representations by adapting the knowledge of a pre-trained CNN model via a transfer learning
strategy. As a result, CNNs have advanced the state-of-the-art in many visual recognition tasks,
leading to numerous applications in various fields outside of computer science, such as medicine
and biology. Nevertheless, many of the best research efforts are focused on improving the
state-of-the-art on a few datasets, such as ImageNet for image classification and COCO for
object detection. On the other hand, research progress in many other domains is reduced to
blindly applying existing approaches or re-inventing everything from scratch, resulting in the
development of flawed methods in both cases. Therefore, this thesis focuses on understanding
through systematic experiments why and when a pre-trained CNN model underperforms on a
given task, to propose suitable solutions. In the first part of our study, we examined the task
of texture recognition and discovered that all previous studies tended to focus exclusively on
category-based texture datasets, leading to the misconception that only the deepest layers had the
texture information needed to solve that task. We then show, by proposing multilayer transfer
learning strategies, that the contribution of shallow layers is not trivial and should be used in
certain applications. In the second part of our study, we focus on challenging object detection
tasks (pollen grain detection and stomata localization), where we observe a situation similar
to that of texture recognition. Therefore, in both cases, we also applied multilayer analysis to
propose fast single-stage detectors that can handle large images accurately and efficiently.

Keywords: Convolutional neural networks, Transfer learning, Computer vision, Activation
maps, Image Classification, Object Detection.

LIST OF FIGURES

Figure 1 – High-level view of exemplary modified models for TL. (a) Base architec-
ture of a pre-trained CNN model with four blocks ("1 – "4) in its feature

extraction component. (b) Modified model that reuses the first three blocks of
(a) and provides single-layer feature representations to the new components.
(c – d) Modified models that compute multi-layer feature representations. Un-
like (c), the choice of layers in (d) is unambiguous and valid for all truncated
CNN models with the same base architecture. (: sub-sampling layer. #8: 8-th
newly added component. %: component that yields the final predictions for
the classification or detection task. 41

Figure 2 – Introduction to deep learning. (a) Deep Learning (DL) is a specific class
of Machine Learning (ML) techniques. (b) Traditional ML (top diagram)
frequently needs the help of human experts to create relevant representa-
tions, while DNN (bottom diagram) learns increasingly meaningful layered
representations from the training data. 48

Figure 3 – Two visual recognition tasks. There is only one object per image in clas-
sification tasks, and there are multiple objects per image in detection tasks.
. 51

Figure 4 – Examples of 2D and 4D tensors. The feature extraction part of most CNN
models only works with 4D tensors of shape (#� ×� ×, ×�), while the
classification part mainly works with 2D tensors of shape (#� × (). (: num-
ber of features, #� : number of images, �: number of channels, , : width,
�: height. 52

Figure 5 – LENET-5 architecture. Two convolutional layers (Conv), two pooling lay-
ers (MP), and three fully connected layers (FC). For better visualization,
we display 3D tensors of shape (� ×, ×�) instead of 4D tensors of shape
(#� ×� ×, ×�). AM: Activation Map, FV: Feature Vector. 53

Figure 6 – Exemplary activation maps. (a) Input image taken from the Flowers
dataset (Nilsback; Zisserman, 2008), (b–f) activation maps computed by
five different layers within a trained CNN model. We only display one activa-
tion map per layer. The layers are ordered by their depth, from shallowest to
deepest. 54

Figure 7 – Training and inference. 55

Figure 8 – Comparison of loss curves for classification and regression tasks. 61

Figure 9 – Global Average Pooling layer. It returns a feature vector for each input set
of activation maps. For better visualization, we show how this layer works for
single image inputs (#� = 1). The input image was taken from the Flowers
dataset (Nilsback; Zisserman, 2008). 66

Figure 10 – Examples of activation functions. All curves are compared to the ReLU
curve. 67

Figure 11 – A typical transfer learning situation. Dataset 1 and dataset 2 become the
source and target datasets, respectively. Consequently, the model learned
from the first dataset becomes the source predictive function 5S(·), and
the model learned from the second dataset becomes the target predictive
function 5T(·). 72

Figure 12 – First step of the general TL strategy. (a) Pre-trained CNN model with
four blocks ("1 – "4). (b) Modified model that results from first removing
the block "4 of (a), and then adding new components (#1, #2, . . .) and
connections. %: component that computes the final predictions for the
classification or detection task. 74

Figure 13 – Architecture of VGG-16 and VGG-19. Both models have five modules
in their feature extraction part, and three fully-connected layers in their
classification part. There is a flattening layer between the last max-pooling
layer and first fully-connected layer (not shown in the image). FC: Fully-
connected layer, MP: max-pooling layer, conv: convolutional layer. 77

Figure 14 – Two different versions of the same inception block. The INCEPTION-V2
version replaces the 5×5 filters with two consecutive 3×3 filters. 79

Figure 15 – Types of building blocks in RESNET. The normal building block works
very well on relatively small RESNET models (up to 49 layers), and the
“bottleneck” building block works best on larger CNN models (up to 152
layers). 80

Figure 16 – Dense Block operations. At the 9-th dense layer, the composite function F
process the output tensors from all previous dense layers [� (8)0 , �

(8)
1 , . . . , �

(8)
9−1]. 80

Figure 17 – High-level view of two splitting strategies. In the first case, the folds ensure
that each image in the dataset will appear exactly once in the test set, while
in case two, there is no such guarantee. 93

Figure 18 – Exemplary images from five texture datasets. Only images of two classes are
displayed for each dataset. The training and test sets correspond to one split

of the dataset (either randomly-generated or predefined). (a) Outex10 (pre-

defined), (b) Kth-Tips2b (predefined), (c) MBT (random), (d) FMD (random),
and (e) DTD (predefined). 95

Figure 19 – CUReT_Q4 and its predefined splits. CUReT_Q4 is the result of transforming
every image from CUReT into four sub-images. These sub-images are reorga-
nized according to their regions of origin (&1,&2,&3,&4). Each predefined
split uses a different combination of two regions to create �train and �test. . 96

Figure 20 – Comparison of different annotation types and their number of parameters.
This thesis performed manual annotation of microscopic images with square
bounding boxes. At the image level, annotations with square bounding boxes
can depend on two parameters instead of three if the same side length is used
in all of them. 98

Figure 21 – Exemplary microscopic images of the leaf epidermis of 11 species. (a) Hy-

menaea Courbaril (SimoneDB dataset), (b) Schizolobium parahyba (SimoneDB
dataset), (c-d) Ctenanthe Oppenheimiana (Ctenanthe dataset), (e) Ilex

affinis (WoodyL dataset), (f) Symplocos nitens (WoodyL dataset), (g) Pop-

ulus balsamifera (Poplar dataset), (h) Ginkgo biloba (Ginkgo dataset),
(i) Diatenopteryx sorbifolia (CuticleDB dataset), (j) Diospyros nicaraguen-

sis (CuticleDB dataset), (k) Cinnamomum camphora (USNM/USBG dataset),
(l) Carya glabra (USNM/USBG dataset). 102

Figure 22 – Exemplary microscopic images of pollen grains of six tree genus. (a) Be-
tula, (b) Carpinus, (c) Corylus, (d) Fagus, (e) Quercus, (f) Salix. 104

Figure 23 – Feature extraction with two TL strategies. Both FC-CNN and GAP-CNN
compute feature vectors that are used to train and evaluate a dedicated classi-
fier. 112

Figure 24 – Layers that were considered for each pre-trained CNN model. Layers are
displayed in ascending order of depth level, from left to right. (a) BN-VGG-
19, (b) INCEPTION-V3, (c) RESNET-50. # of AM: number of activation
maps each layer can compute. Layer names come from Keras (CHOLLET et

al., 2015). 128

Figure 25 – Proposed TL strategy. The input image is processed by a collection �

of deep composite functions. Then, a global pooling measurement 6(·) is
computed for each resulting activation map. Finally, the set of =Φ calculated
measurements forms the feature vector (FVec). 129

Figure 26 – Accuracy rates achieved by GP-CNN across multiple layers and datasets.
The horizontal axis of each chart displays the layers in order of increasing
depth. Additionally, all charts provide only GAP-related results. 133

Figure 27 – General scheme of the proposed approach for ranking the deep composite
functions. 136

Figure 28 – Comparison of the top-1500 DCFs computed by ANOVA, ET, and MI.
Input parameters: the set of predefined layers from INCEPTION-V3, BI+D,
and =chosen = 1500. 139

Figure 29 – Comparison of accuracy rates between GP-CNN*, RANKGP-CNN++,
and RANKGP-3M-CNN++. GP-CNN* presents the GP-CNN results
on the layer, where it achieved the highest average accuracy rate (see Ta-
ble 13).Regarding RANKGP-CNN++ and RANKGP-3M-CNN++, we only
show the results associated with ANOVA. 143

Figure 30 – General architecture of our proposed method. The input image � is pro-
cessed by the backbone. Then, the resulting activation map � is further
processed by two (1×1) convolutional layers, which produce one map of re-
gression coefficients and one map of labels scores. At test time, both outputs
are combined and decoded to obtain the predicted bounding boxes. 150

Figure 31 – The common architectural pattern of CNN models. The convolutional
part of all the CNN models considered in this chapter is composed of six
chunks. Between every two contiguous chunks, there is a sub-sampling layer
in charge of reducing the width and height of its input activation map by a
factor of two. 151

Figure 32 – Examples of L (:) and T (:)G at two different anchor box sizes. The yellow
and green areas in L correspond to the foreground and background labels
respectively. The regression coefficients are only active when their corre-
sponding label coefficients are positive. Although it seems the opposite, the
spatial size of the original images (�� ×,�) is much larger than the spatial
size (,� ×��) of their corresponding L (:) and T (:)G . (a) Corylus pollen
grains, (b) Fagus pollen grains. 153

Figure 33 – Comparison between the NMS algorithm and our modified version. Our
modified NMS algorithm generates better-located bounding boxes than the
classical NMS algorithm. (a-c) Corylus pollen grains, (d-f) Betula pollen
grains. 156

Figure 34 – Computed mAPs values at multiple CIoU. The backbone RESNET34-5S is
more robust across the range of IoU thresholds (0.5 ≤ CIoU ≤ 0.9). 160

Figure 35 – Average execution time per image vs. mAP0.5. All processed images are
of size (1280×960). The execution time of POLLENDET was computed with
different backbones for the localization + classification task. In particular,
RESNET34-5S offers the best accuracy/speed trade-off. On the contrary,
RESNET152-5S and SERESNET50-5S obtain the worst trade-off. 161

Figure 36 – General architecture of STOMADET, #A = 4. The input image is pro-
cessed by the FE subnet. Then, the resulting collection of activation maps
is transformed into sets of classification and regression maps. At inference
time, these two outputs are decoded into bounding boxes representing the
detected stomata. For visualization purposes, we show the softmax output
for the predicted classification maps. 163

Figure 37 – Architectural pattern of backbone networks. F8 is the set of 2-D activa-
tion maps computed by the 8-th block. In STOMADET, the fourth, fifth and
sixth blocks are respectively named as L2, L3, and L4. The term SL is the
abbreviation for sub-sampling layer. The proportions between the spatial
resolutions of F4, F5 and F6 were readjusted for better visualization. 165

Figure 38 – Simplified training process of STOMADET, #A = 4. Each training image
is processed with seven data augmentation strategies. The resulting image
is processed by STOMADET yielding the predicted sets of classification
and regression maps, while the resulting bounding boxes are encoded into
sets of ground truth classification and regression maps. The training loss
computed between predicted and ground truth sets is back-propagated and all
parameters are updated with the ADAM optimizer. CE;>BB = Cross Entropy
loss, and SL1;>BB = Smooth L1 loss. For better visualization, we show the
softmax output of the predicted classification maps. 167

LIST OF ALGORITHMS

Algorithm 1 – General Evaluation Scheme . 105
Algorithm 2 – Feature extractors – Training process 113
Algorithm 3 – Feature extractors – Prediction process 113
Algorithm 4 – Deep Composite Functions – Training process 130
Algorithm 5 – Deep Composite Functions – Feature extraction 131

LIST OF SOURCE CODES

LIST OF TABLES

Table 1 – Comparison of the most popular CNN models. The “Full Size” column
contains the number of trainable parameters in the entire CNN model. On the
other hand, the “FE Size” column counts only the parameters in the feature
extraction part of the CNN model. Additionally, we provide the number of
activation maps computed by the last convolutional layer of each CNN model.
The ImageNet top 1 and top 5 accuracy values merely indicative, since they
can vary from one library to another. 75

Table 2 – Benchmark datasets used for texture recognition. The symbols #ipc and #splits

indicate the number of images per class and the total number of dataset splits,
respectively. Additionally, # (train)

ipc and # (test)
ipc are, respectively, the average

number of training and test images per class. Datasets with two splitting
strategies can also have two different values for # (train)

ipc , # (test)
ipc and #B?;8CB.

(C): category-based datasets, (I): instance-based datasets. 94

Table 3 – Datasets used to train and evaluate STOMADET. H: holdout, P: predefined,
#img: number of images, #sp: number of species, #stoma: average number of
stomata per split. 99

Table 4 – Pollen dataset summary. Corylus and Betula have significantly more sam-
ples than the other pollen types. 103

Table 5 – Confusion matrix for binary classification tasks. There are two classes: the
positive and negative class. 105

Table 6 – Comparison between different feature extractors. In bold, the two highest
accuracy rates (%) per dataset, one given to a CNN-based method and the
other given to a hand-engineered method. (*) The feature extraction time
of TH-MR8 cannot be estimated in the same fashion as the other feature
extractors, since it depends not only on the resolution of the image but also on
the number of classes found in the analyzed dataset. 117

Table 7 – Accuracy rates (%) achieved by combinations of two CNN-based feature
extractors. The row “Baseline” shows the accuracy rates obtained with each
CNN-based method alone. For each column, the best accuracy improvement is
emphasized in bold, while the best accuracy rate for each dataset is highlighted
in red bold font. Accuracy rates of combinations that are not significantly
better than their corresponding baselines are crossed out. This significance
was verified with the McNemar test, using U = 0.05. EFFNET-B1 is the
abbreviation for EFFICIENTNET-B1. 119

Table 8 – Comparison between combinations of one CNN-based method and one
hand-engineered method. The row “Baseline” shows the accuracy rates (%)
obtained by each CNN-based method alone. The highest accuracy rate per
column is emphasized in bold and the best result per dataset is highlighted
in red bold font. The accuracy rates that are not significantly higher than
their respective baselines are displayed as strike-through text. The statistical
significance was verified with the McNemar test, using U = 0.05. EFFNET-B1
is the abbreviation for EFFICIENTNET-B1. 121

Table 9 – Comparison of accuracy rates across different classifiers. The row “Base-

line” shows the accuracy rates obtained with GAP-DENSENET-121 for each
dataset and classifier. The best accuracy rate per column is shown in bold,
while the best result for each dataset is displayed in red bold font. The accu-
racy rates of combinations that did not significantly improve their respective
baselines are shown as strike-through text. The McNemar test was used to ver-
ify the statistical significance, with U = 0.05. EFFNET-B1 is the abbreviation
for EFFICIENTNET-B1. 123

Table 10 – Comparison of accuracy rates when dimensionality reduction is used.
The best accuracy improvement per column is emphasized in bold, while
the best result for each dataset is highlighted in red bold font. Non-significant
accuracy improvements are displayed in a strike-through format. The statistical
significance was verified with the McNemar test, using U = 0.05. EFFNET-B1
is the abbreviation for EFFICIENTNET-B1. 125

Table 11 – Highest accuracy rates (%) achieved by GP-CNN. This table allows com-
parisons between CNN models, global pooling layers, and datasets. The
highest result per group is emphasized in bold. 134

Table 12 – Accuracy results achieved by RANKGP-CNN. The last column (Mean
acc.) presents the accuracy rates averaged across all datasets. Results in
bold indicate highest accuracy rates per combination of (i) CNN model, (ii)
meta-dataset, and (iii) texture dataset. Similarly, results highlighted in bold
red font represent the highest accuracy rates per combination of (i) CNN
model and (ii) dataset. 138

Table 13 – Accuracy rates averaged across six datasets (FMD, Kth-Tips2b, MBT, Outex10,
Outex12 and Outex13). In GP-CNN, ;1 to ;6 are layers sorted in increasing
depth. RANKGP-CNN++ is a variant of RANKGP-CNN that use BDTD for
category-based datasets, and BI+D for instance-based datasets. The best result
per column is in bold red font. 140

Table 14 – Accuracy rates (%) achieved by RANKGP-3M-CNN. The results are avail-
able for six texture datasets, three feature ranking approaches and two meta-
datasets. The last column has the mean accuracy values. 142

Table 15 – Comparison of accuracy rates (%) between RANKGP-3M-CNN++ and alter-
native CNN-based methods for texture recognition. (*) Results were extracted
from (LIU et al., 2016). 145

Table 16 – Localization + classification performance comparison between the NMS
algorithm and our modified version in 18 backbones. The performance is
measured with mAP0.5(%) and mAP0.75(%) values. Therefore, there is a total
of 36 comparisons, in which our modified NMS always achieves better results
than the original NMS algorithm. 157

Table 17 – Localization + classification performance results of POLLENDET with
backbones that have 3 to 6 chunks. The performance is measured with
mAP0.5(%) values, in which the backbones with five chunks always achieve
the best results. 158

Table 18 – Detailed analysis of the performance results of POLLENDET at different
backbones. This analysis is carried out at the tasks: (i) localization and (ii)
localization + classification of pollen grains. In the second task, the results
on each pollen type are also included. (a) The performance is measured with
mAP0.5 values. (b) The performance is measured with mAP0.75 values. . . . 159

Table 19 – F1-scores, precision and recall rates for combinations of FE subnets and
training policies at the WoodyL dataset. The best F1-scores (%) for each
family of backbone networks is emphasized in bold font. The last column
displays the average inference times (IT) in seconds (s) for images of size
(2000×1500). 171

Table 20 – F1 scores (%) achieved by NMS and mNMS on the BAll dataset. The best
result for each pair of one FE subnet and one training policy is emphasized in
bold font. EFFNET: abbreviation for EFFICIENTNET. 172

Table 21 – F1-scores for small (F1B), medium-sized (F1<) and large (F1;) stomata
on the BAll dataset. For each column, the best result is emphasized in bold
font. EFFNET: abbreviation for EFFICIENTNET. 173

Table 22 – F1-scores for all datasets included in BAll. The best result for each dataset
is highlighted in red bold font, and the second best F1-score is emphasized in
bold font. EFFNET: abbreviation for EFFICIENTNET. 174

LIST OF ABBREVIATIONS AND ACRONYMS

AdaGrad Adaptive Gradient algorithm

ADAM Adaptive Moment Estimation

ANN Artificial Neural Network

ANNs Artificial Neural Networks

ANOVA One-way Analysis Of Variance

BN Batch Normalization

CNNs Convolutional Neural Networks

DCF Deep Composite Function

DL Deep Learning

ET Extremely Randomized Trees

FL Focal Loss

FPN Feature Pyramid network

GAP Global Average Pooling

GD Gradient Descent

GEP Global Entropy Pooling

GMTP Global Mean Thresholding Pooling

GP Global Pooling

GPU Graphical Processing Units

GPUs Graphics Processing Units

LSTM Long Short-Term Memory network

MI Mutual Information

RPN Region Proposal Network

SE “Squeeze-and-Excitation”

SGD Stochastic Gradient Descent

SSA Selective Search Algorithm

TL Transfer Learning

TPUs Tensor Processing Units

LIST OF SYMBOLS

#� — Number of images or batch size (first dimension of the 4D tensor)

� — Number of channels (second dimesion of the 4D tensor)

� — Height (third dimension of the 4D tensor)

, — Width (fourth dimension of the 4D tensor)

I — Image Space

Y — Label Space

DS — Source Domain

DT — Target Domain

TS — Source Task

TT — Target Task

�S — Source Domain Dataset

�T — Target Domain Dataset

=S — Number of samples in �S

=T — Number of samples in �T

5S(·) — Source Predictive Function

5T(·) — Target Predictive Function

#splits — Number of dataset splits

� — Image

I — Set of images

H — Target

. — Set of targets

CONTENTS

1 INTRODUCTION . 39
1.1 Contextualization . 39
1.2 Objectives . 43
1.3 Contributions . 43
1.4 Text organization . 44

I THEORETICAL BACKGROUND 45

2 DEEP LEARNING IN COMPUTER VISION 47
2.1 Initial considerations . 47
2.2 Historical perspective of Deep Learning and CNN 48
2.3 Computer vision and visual recognition tasks 50
2.4 Convolutional Neural Networks: Basic concepts 51
2.4.1 Tensors . 51
2.4.2 Parts of the CNN model . 52
2.4.3 Activations maps and feature vectors 53
2.4.4 Layers, blocks, and composite functions 54
2.5 Training and inference . 55
2.5.1 Before training . 55
2.5.2 Training process . 57
2.5.3 Other topics relevant to the training process 59
2.5.4 Inference Process . 63
2.6 Layer types . 63
2.6.1 Convolutional layer . 63
2.6.2 Fully connected layer . 65
2.6.3 Pooling layer . 65
2.6.4 Global Average Pooling layer . 65
2.6.5 Activation function . 66
2.6.6 Normalization layer . 67
2.7 Final considerations . 69

3 TRANSFER LEARNING AND DEEP CNN MODELS 71
3.1 Initial considerations . 71

3.2 Transfer Learning definitions . 71
3.3 Transfer learning and CNN models . 72
3.3.1 CNN models as predictive functions 73
3.3.2 General Transfer Learning strategy . 73
3.4 Main CNN models used as source predictive functions 74
3.4.1 LeNet, AlexNet, and ZFNet . 75
3.4.2 VGG models . 76
3.4.3 Network in Network . 77
3.4.4 Inception and Xception . 78
3.4.5 ResNet, DenseNet, ResNeXt, and SENet models 79
3.4.6 NASNet and EfficientNet . 81
3.4.7 Other important CNN models . 82
3.5 Transfer Learning for image classification tasks 82
3.5.1 Type 1: Pre-trained part of the modified CNN model used as a

feature extractor . 83
3.5.2 Type 2: Fine-tuning the modified CNN model 85
3.6 Transfer Learning for object detection tasks 86
3.6.1 From image classification to object detection 86
3.6.2 Types of object detectors . 87
3.7 Final considerations . 89

4 DATASETS AND EVALUATION METRICS 91
4.1 Initial considerations . 91
4.2 Datasets . 92
4.2.1 Splits and splitting strategies . 92
4.2.2 Datasets for texture classification . 93
4.2.3 Datasets for single-class stomata detection 96
4.2.4 A dataset for multi-class pollen detection 102
4.3 Evaluation Metrics . 104
4.3.1 General Evaluation Scheme . 104
4.3.2 Evaluation metrics for classification tasks 105
4.3.3 Evaluation metrics for detection tasks 106
4.4 Final considerations . 107

II EXPERIMENTS 109

5 CNN-BASED FEATURE EXTRACTORS VS. HAND-ENGINEERED
METHODS FOR TEXTURE ANALYSIS 111

5.1 Initial considerations . 111

5.2 Target task, datasets and pre-trained models 112
5.3 General experimental settings . 113
5.3.1 Hand-engineered feature extraction details 114
5.3.2 Implementation details for the CNN-based methods 114
5.4 Experiments . 115
5.4.1 CNN-based methods vs. Hand-Engineered (HE) methods 116
5.4.2 Combining pairs of CNN-based methods 118
5.4.3 Combining CNN-based methods with HE methods 119
5.4.4 The classifier effect . 122
5.4.5 Using feature selection . 122
5.5 Final considerations . 124

6 CNN MODELS AS COLLECTIONS OF DEEP COMPOSITE FUNC-
TIONS . 127

6.1 Initial considerations . 127
6.2 Target task, datasets and pre-trained models 128
6.3 CNN models treated as collections of deep composite functions . . 128
6.4 Proposed TL strategy . 129
6.4.1 Feature extraction, training and prediction subroutines 130
6.4.2 Proposed global pooling layers . 131
6.5 GP-CNN: definition and selection strategy 132
6.5.1 Experimental settings . 132
6.5.2 Performance of GAP features across multiple depth levels 132
6.5.3 Comparison of global pooling layers 134
6.6 RankGP-CNN: Multi-layer feature extraction using a feature rank-

ing approach . 135
6.6.1 Selection Strategy . 135
6.6.2 Experimental settings . 137
6.6.3 Accuracy rates for different sets of input parameters 137
6.6.4 Comparing RankGP-CNN with GP-CNN 139
6.7 RankGP-3M-CNN: combining BN-VGG-19, Inception-V3, and ResNet-

50 . 140
6.7.1 Selection strategy and experimental settings 141
6.7.2 Accuracy rates for different sets of input parameters 141
6.8 Comparing RankGP-3M-CNN++ with alternative CNN-based meth-

ods . 142
6.9 Final considerations . 146

7 EXPLORING DETECTION . 147
7.1 Initial considerations . 147

7.2 Target task, datasets and pre-trained models 148
7.3 PollenDet . 148
7.3.1 General architecture . 149
7.3.2 Implementation details . 150
7.3.2.1 Training time: Ground truth encoding . 151
7.3.2.2 Training the pollen dataset . 152
7.3.2.3 Testing new pollen images . 154
7.3.3 Experimental Settings . 155
7.3.4 Comparison between the NMS algorithm and our modified version 156
7.3.5 Analysis of backbones with different number chunks 157
7.3.6 Comparison of backbones from different CNN models 157
7.3.7 backbone behavior across multiple IoU thresholds 160
7.3.8 Execution time comparison . 160
7.4 StomaDet . 161
7.4.1 Previous Works . 161
7.4.2 General architecture . 162
7.4.2.1 The feature extraction subnet (backbone) 162
7.4.2.2 Bounding box encoding . 164
7.4.2.3 Classification and regression subnets . 166
7.4.3 Implementation details . 167
7.4.3.1 Data Augmentation . 167
7.4.3.2 Training . 168
7.4.3.3 Inference . 169
7.4.4 Experimental Settings . 170
7.4.5 Comparison of feature extraction subnets and training policies on

WoodyL . 170
7.4.6 mNMS versus NMS . 171
7.4.7 Detection of small, medium-sized and large stomata 172
7.4.8 Performance across different datasets 173
7.5 Final considerations . 174

8 CONCLUSIONS . 177
8.1 Futures Perspectives . 178
8.2 Bibliographical Production . 179

BIBLIOGRAPHY . 181

APPENDIX A HAND-ENGINEERED FEATURE EXTRACTORS FOR
TEXTURE ANALYSIS 205

A.1 Gray Level Co-occurrence Matrix (GLCM) 205

A.2 Gabor wavelets (GW) . 205
A.3 Local Binary Patterns (LBP) . 206
A.4 Fractal Descriptors (FDs) . 207
A.5 Deterministic Tourist Walks (DTWs) 207
A.6 Texton histograms . 208
A.7 Fourier Magnitude Sampling . 208

APPENDIX B TRADITIONAL FEATURE RANKING APPROACHES 211

39

CHAPTER

1
INTRODUCTION

1.1 Contextualization

Deep Learning (DL) is a class of machine learning techniques that allows computational
models to learn features with multiple abstraction levels (LECUN; BENGIO; HINTON, 2015).
Since most DL models organize their features in multiple layers, some authors also refer to DL
as layered representations learning or hierarchical representations learning (CHOLLET, 2017a,
Sec. 1.1.4).

DL frameworks like PyTorch (PASZKE et al., 2017) and Keras (CHOLLET et al.,
2015) implement DL models as computational graphs to ensure adequate training and inference
processes. From a high-level standpoint, every layer in a DL model becomes a node, and its
connections to other layers symbolize the edges. Therefore, one way to estimate the "depth" of any
DL model is to calculate the length of its computational graph’s longest path (GOODFELLOW;
BENGIO; COURVILLE, 2016, Ch. 1). Then, given an input sample, a DL model generates a
hierarchy of feature representations by traversing its computational graph from start to finish. This
means that each new visited node outputs a feature representation by applying a mathematical
function to the representations previously calculated by its neighboring nodes. During training,
the DL model goes from initially calculating only low-level feature representations to computing
multiple low, mid, and high-level feature representations. As a consequence, every feature in
a trained DL model is the result of a – typically large – composition of learned functions. In
general, layers toward the end of the graph learn more abstract features than those learned in
initial or intermediate layers (ZEILER; FERGUS, 2014; OLAH et al., 2020).

DL models make extensive use of deep Artificial Neural Networks (ANNs) due to
their great flexibility and ability to learn from vast amounts of data (ZHANG et al., 2018a;
Kolesnikov et al., 2019; Brown et al., 2020). In this regard, numerous deep ANN models have
been developed over the past decade, most of which achieved impressive performance on a

40 Chapter 1. Introduction

wide variety of challenging tasks (RAGHU; SCHMIDT, 2020). Indeed, given the ubiquity
of DL, the number of research articles is staggeringly high in practically all areas of knowledge.
Therefore, today it is common to find comprehensive review articles dedicated to analyzing
and comparing DL models applied to particular topics, such as small object detection (TONG;
WU; ZHOU, 2020), citation recommendation (ALI et al., 2020) texture analysis (LIU et al.,
2019), plant phenotyping (SINGH et al., 2018; MOCHIDA et al., 2019), or medicine-related
applications (MEYER et al., 2018; PICCIALLI et al., 2021).

Since the arrival of the ALEXNET model in 2012 (KRIZHEVSKY; SUTSKEVER; HIN-
TON, 2012), computer vision has become one of the main fields in which DL research achieved
groundbreaking advances. In this regard, although some promising Transformer-based DL mod-
els1 emerged very recently (Carion et al., 2020; DOSOVITSKIY et al., 2021), Convolutional
Neural Networks (CNNs) remain by far the most successful ANNs used in computer vision.
Indeed, the scientific community continually advances the capabilities and performance of CNN
models by developing innovative architectural designs (KHAN et al., 2020). However, CNN
models require training processes with large datasets such as ImageNet (RUSSAKOVSKY et

al., 2015) or JFN-300M (SUN et al., 2017) to learn robust features for the task at stake. Further-
more, even with enough data, training large CNN models from scratch is impractical without
the computing power of numerous Graphics Processing Units (GPUs) or Tensor Processing
Units (TPUs) (JOUPPI et al., 2017; TANG et al., 2019). Therefore, in situations where large
datasets are not available, or there is little access to high-performance computing hardware, most
researchers resort to Transfer Learning (TL) strategies (OQUAB et al., 2014; CIMPOI et al.,
2016).

Within this thesis framework, we refer to TL as a class of strategies that take a pre-trained
CNN model and adapt its semantically robust features to solve a target domain task. In this regard,
the term “pre-trained” refers to any CNN model successfully trained on a proper source domain
dataset. We specially focus on a TL setting known as inductive TL, in which both the source
and target domains contain labeled data (Ribani; Marengoni, 2019). Hence, this thesis does
not include any pre-trained CNN model that originated from unsupervised or self-supervised
learning algorithms, e.g., SIMCLR (Chen et al., 2020). Additionally, we limited our research
to TL strategies applied to the following tasks: (i) image classification and (ii) object detection.

A classification task consists of assigning a new image to one of a set of predefined
classes based on its visual attributes. On the other hand, a detection task involves locating
and recognizing multiple objects within an image (DHILLON; VERMA, 2020). In this regard,
given the sustained release of pre-trained CNN models using ImageNet as their source domain
dataset (HUANG et al., 2017; Hu et al., 2019; TAN; LE, 2019), numerous TL strategies have
been developed for classification and detection tasks over the years. As shown in Figure 1a,
despite the great diversity of architectural designs, many pre-trained CNN models share a base

1 Transformers are very powerful DL models mainly used in natural language processing.

1.1. Contextualization 41

architecture that has the following traits. (i) It has an initial feature extraction component that
characterizes the input image via a set of activation maps and a final classification component

that computes the class label probabilities. (ii) The feature extraction component consists of
two or more consecutive blocks, each involving a simple or elaborate arrangement of primarily
convolutional layers, pooling layers, normalization layers (IOFFE; SZEGEDY, 2015; WU; HE,
2018), and dropout layers (SRIVASTAVA et al., 2014). (iii) There is at least one sub-sampling
layer between each pair of consecutive blocks, which is responsible for halving the resolution of
the set of activation maps generated from one block to the next (Springenberg et al., 2015).

Figure 1 – High-level view of exemplary modified models for TL. (a) Base architecture of a pre-trained
CNN model with four blocks ("1 – "4) in its feature extraction component. (b) Modified
model that reuses the first three blocks of (a) and provides single-layer feature representations to
the new components. (c – d) Modified models that compute multi-layer feature representations.
Unlike (c), the choice of layers in (d) is unambiguous and valid for all truncated CNN models
with the same base architecture. (: sub-sampling layer. #8: 8-th newly added component.
%: component that yields the final predictions for the classification or detection task.

P

Feature extraction component

M1 M2 M3 M4S S S

(a)

M1 M2 M3S S N1 N2

Truncated CNN model

P

New components

(b)

M1 M2 M3S S

Truncated CNN model

N1 N2 P

New components

(c)

M1 M2 M3S S N1 N2

Truncated CNN model

P

New components

(d)

Source: Elaborated by the author.

In image classification, most TL strategies construct a modified model by truncating a
pre-trained CNN model at a chosen layer and replacing the removed layers with new trainable
components (see Figure 1b, Figure 1c, and Figure 1d). Given a target dataset, there are two
primary methodologies for training the modified model. (i) The fine-tuning methodology, which
involves optimizing the entire model in an end-to-end manner (ANDREARCZYK; WHELAN,
2016; ZHANG; XUE; DANA, 2017; ZHENG et al., 2017; LI; HOIEM, 2018; CASTRO et

al., 2018). (ii) The static feature extraction methodology, in which only the new components
are optimized with feature representations from the truncated CNN model (RAZAVIAN et al.,
2014; YOO et al., 2015; SONG et al., 2016; SCABINI et al., 2019). The first methodology
usually leads to better performance results than the second (Kornblith; Shlens; Le, 2019), but
it also requires much longer training times and more careful experimental planning to find the
right hyperparameters (LI et al., 2020). Additional improvements in predictive power were
obtained through TL strategies that integrated the above methodologies into a unified training
process (Guo et al., 2019) or through the creation of modified models from several pre-trained

42 Chapter 1. Introduction

CNN models (Rusu et al., 2016; LIN; ROYCHOWDHURY; MAJI, 2018).

Since most of the above TL strategies use only the last layer of the truncated model to
generate feature representations for the new components (see Figure 1b), a critical issue that any
TL strategy must address is where to truncate the pre-trained CNN model. In this regard, the layer-
by-layer experiments conducted by Yosinski et al. (2014) (fine-tune methodology) and Cimpoi
et al. (2016) (static feature extractor methodology) revealed that truncating the pre-trained model
at its last convolutional layer often results in a successful modified model. On the other hand,
Mormont, Geurts and Marée (2018) showed that earlier layers end up being better options for
target domains that differ significantly from the source (e.g., digital histology vs. photographs of
everyday objects). Some research works also studied modified models that incorporate multiple
layers of the truncated model to increase the diversity of feature representations delivered to the
new components (see Figure 1c and Figure 1d). However, while these multi-layer TL strategies
achieved excellent results in some cases (SONG et al., 2016; RAKHLIN et al., 2018), they
performed poorly in others (Mormont; Geurts; Marée, 2018). These conflicting results reveal a
lack of understanding of how and when to use multi-layer feature representations.

Regarding TL strategies applied to object detection, they also construct modified models
that resemble those shown in Figure 1. In this regard, most authors refer to the truncated part
of these modified models as the backbone (CHEN et al., 2019; LIU et al., 2020). However,
unlike image classification, TL strategies applied to object detection require backbones to
compute feature representations that, in addition to being semantically strong, have enough
spatial resolution to adequately detect small, medium, and large objects. Therefore, many TL
strategies improved significantly as their backbone networks shifted from generating single-
scale feature representations (see Figure 1b) (Girshick et al., 2014; Girshick, 2015; REN et

al., 2017; REDMON; FARHADI, 2017) to computing multi-scale feature representations (see
Figure 1d) (LIU et al., 2016; LIN et al., 2017; Redmon; Farhadi, 2018; CAI; VASCONCELOS,
2018; ZHAO et al., 2019; Tan; Pang; Le, 2020). Indeed, the choice of layers in modern TL
strategies generally follows a pyramidal pattern that is easy to implement across backbone
networks that share a common base architecture (TONG; WU; ZHOU, 2020).

Given the popularity of object detection datasets like Pascal-VOC (EVERINGHAM et

al., 2010) and MS-COCO (Lin et al., 2014), much of the research has focused on developing
TL strategies that achieve high detection rates in the domain of everyday objects. In contrast,
when it comes to detection tasks in other domains, significant innovations are less frequent.
For example, in two challenging biological tasks: stomata detection and pollen detection, many
researchers choose between blindly using famous TL strategies from the domain of everyday
objects (FUENTES et al., 2017; FUENTES et al., 2018; BHUGRA et al., 2019; SAKODA
et al., 2019) or implementing novel TL strategies that disregard previous advances in other
domains (AONO et al., 2019; FETTER et al., 2019). While some of the above TL strategies have
acceptable performances, we believe that greater computational efficiency and higher detection

1.2. Objectives 43

rates are achievable by developing novel TL strategies that combine the ideas from popular TL
strategies with those resulting from an in-depth analysis of the detection task.

1.2 Objectives

The lack of prior work to fully understand the benefits and cons of multi-layer feature
representations in different target domains motivates the present project. We hypothesize that
pre-trained CNN models can lead to higher transfer learning results in classification and detection
tasks by identifying the features of one or more layers that are most appropriate for the target
domain at stake.

Indeed, this project relies on the work of Cui et al. (2018), which found that domain
similarity plays a fundamental role at determining how good the transfer learning results will be.
However, instead of focusing on pretraining CNN models on a source domain that is similar to
the target domain, this project focuses on developing transfer learning methods that maximize
the transferability power of an already pre-trained CNN model for classification and detection
tasks. In more detail, this project has the following objectives.

• Analysis of the predictive power of multiple layers in classification and detection tasks.

• Investigation of the relationship between transfer learning capacity of pre-trained CNN
models in different target tasks.

• Development of new methods that can adaptively select the best activation maps from a
pre-trained CNN model for a target domain.

1.3 Contributions

This thesis has many contributions. The following three are the main ones.

• A systematic performance comparison of various pre-trained CNN models in classification
and detection tasks.

• New methods that can perform an efficient multi-layer feature extraction from a pre-trained
CNN model.

• Very fast single-stage object detectors applied to two challenging biological tasks: grain
pollen detection and stomata localization.

• Almost 80000 manual annotations of bounding boxes for stomata localization tasks.

44 Chapter 1. Introduction

1.4 Text organization
The thesis is organized into two parts. The first part contains the theoretical background

necessary to understand the second part, which, in turn, includes the description, systematic
analysis, results, and discussion of proposed methods.

Consequently, the first part is divided into the following three chapters. Chapter 2 intro-
duces the concepts of deep learning (DL) and convolutional neural networks (CNN), including
the notion of base architecture, optimization algorithms, and different layer types. This chapter
primarily focused on image classification and object detection tasks. In Chapter 3, we discuss
more advanced concepts related to transfer learning and, also present the analysis and comparison
of different CNN families (e.g., ResNet, EfficientNet, DenseNet). The description of all datasets
that will be the subject of this thesis is presented in Chapter 4, along with the evaluation metrics
and the general evaluation scheme that will be applied to all classification and detection tasks.

As for the second part, it is also divided into three chapters. Chapter 5 performs a system-
atic comparison between CNN-based TL methods and hand-engineered methods. Based on the
results obtained in the previous chapter, Chapter 6 proposes viewing CNN models as collections
of deep composite functions and presents TL strategies that extract feature representations from
multiple layers. Chapter 7 presents TL strategies applied to two very challenging tasks: (i) pollen
grain detection and (ii) stomata localization. Finally, the conclusions are shown in Chapter 8.

Part I

Theoretical Background

47

CHAPTER

2
DEEP LEARNING IN COMPUTER VISION

2.1 Initial considerations

Deep learning (DL) is a highly researched class of machine learning techniques (see
Figure 2a) that excels at learning consecutive levels of increasingly meaningful data representa-
tions (CHOLLET, 2017a, Ch. 1). In this context, the term representation can be understood as
a different way of looking at the data, where each piece of information in the representation is
called a feature (GOODFELLOW; BENGIO; COURVILLE, 2016). The ability of DL systems
to learn robust representations makes them suitable for many different tasks, including object
detection, speech recognition, language understanding, image classification and video captioning.
Therefore, most of the research in DL is focused on finding architectural designs and algorithmic
improvements that allow for efficient learning and storage of data representations.

Most DL models learn representations via Deep Neural Networks (DNNs), which offer
great flexibility and performance on numerous supervised learning tasks (e.g., speech recognition
and object detection) (LECUN; BENGIO; HINTON, 2015). As shown in Figure 2b, the main
difference between a traditional ML system and a DNN model is in the approach they use
to create their representations. In the former case, human experts propose hand-engineered
representations (feature engineering). In contrast, in the second case, the DNN model learns
layered representations (feature learning) via an end-to-end learning process from a considerable
amount of training data (O’MAHONY et al., 2020).

There are numerous DNN types, such as stacked autoencoders (Le, 2013; ZHOU;
PAFFENROTH, 2017), deep belief networks (Liu et al., 2014), generative adversarial net-
works (CRESWELL et al., 2018), and deep Boltzmann machines (SRIVASTAVA; SALAKHUT-
DINOV, 2014). We refer the reader to (GOODFELLOW; BENGIO; COURVILLE, 2016) for
details on the base architectures, main properties, and application areas of each of the above
DNN types.

48 Chapter 2. Deep Learning in computer vision

Figure 2 – Introduction to deep learning. (a) Deep Learning (DL) is a specific class of Machine Learning
(ML) techniques. (b) Traditional ML (top diagram) frequently needs the help of human experts
to create relevant representations, while DNN (bottom diagram) learns increasingly meaningful
layered representations from the training data.

Artificial Intelligence

Machine Learning

Deep Learning

(a) Difference between Artificial In-
telligence, Machine Learning,
and Deep learning.

Hand-engineered

Representation
Prediction

Shallow

Classifier

Raw data

Prediction
Multiple layers of learned

representations + classifier
Raw data

(b) Traditional ML (top) vs. DNN (bottom).

Source: Elaborated by the author.

Computer vision is one of the main areas where DL has been particularly successful. In
this sense, despite recent advances in transformer-based DL models that achieved competitive
results on some visual recognition tasks (Carion et al., 2020; DOSOVITSKIY et al., 2021),
the Convolutional Neural Network (CNN) is still the most widely used DNN type in computer
vision (VOULODIMOS et al., 2018; DHILLON; VERMA, 2020; TONG; WU; ZHOU, 2020).
Therefore, this chapter will mainly cover CNN related topics.

In more detail, the remainder of this chapter is structured as follows. We begin by
presenting an historical perspective of DL. We then list the main visual recognition tasks and
explain some fundamental CNN concepts. Next, we detail the training and inference processes
that all CNN models follow to solve the given visual recognition tasks. Finally, we will present
the most commonly used CNN layer types.

2.2 Historical perspective of Deep Learning and CNN

Over the years, the history of deep learning (DL) has been characterized by numerous
breakthroughs and setbacks. It started in the 1940s when McCulloch and Pitts (1943) presented
the first mathematical model of neurons. Later, Rosenblatt (1957) proposed Perceptron as the
first Artificial Neural Network (ANN) with a functional learning algorithm. After the initial
enthusiasm, the scientific community found intrinsic limitations in Perceptron, the main one
being its inability to solve non-linear separable classification tasks (MINSKY; PAPERT, 1969).
This limitation caused the first severe popularity decline of neural networks.

Meanwhile, Hubel and Wiesel (1959) made a relevant neuroscientific contribution by
discovering particular types of neurons in the primary visual cortex, called simple cells and
complex cells. In this regard, while simple cells can recognize edges and bars of particular
orientations at specific locations, complex cells can collect the information provided by multiple

2.2. Historical perspective of Deep Learning and CNN 49

simple cells to recognize edges and bars anywhere in the scene. The above idea of creating
complex detectors out of simple ones led to the appearance of several ANN types, such as
the Neocognitron (FUKUSHIMA; MIYAKE, 1982), which is the predecessor of modern CNN
models.

In the early 1980s, ANN models consisting of multiple layers were known to solve
non-linear separable problems. However, there was no learning algorithm that could train them
efficiently. The situation substantially improved when Rumelhart, Hinton and Williams (1986)
proposed a successful learning algorithm using the back-propagation method. This publication
triggered a second wave of popularity for ANN models, leading to the emergence of famous ANN
types, such as the debut of the Long Short-Term Memory network (LSTM) (HOCHREITER;
SCHMIDHUBER, 1997) and the Convolutional Neural Network (CNN) (LECUN et al., 1989).

However, the mid-1990s saw a further decline in the popularity of ANNs. According to
Goodfellow, Bengio and Courville (2016), this decrease was mainly due to the following two
factors. (i) There were irrational expectations that the ANN models of the time failed to meet.
(ii) Alternative machine learning tools appeared, such as Support Vector Machines (BOSER;
GUYON; VAPNIK, 1992), achieving reliable performance with much less training effort. Regard-
less, the fraction of the scientific community that remained was enough to publish ANN models
that obtained impressive results on challenging tasks like handwritten digit recognition (LECUN
et al., 1998).

In the mid-2000s, the publication of a multi-layer ANN model with a low training
cost (HINTON; OSINDERO; TEH, 2006) sparked the third wave of popularity. Indeed, as more
research works were published, ANN models with at least one hidden layer became known as
Deep Neural Networks (DNN) or Deep Learning (DL). Furthermore, two more factors were
crucial for the increase in the number of research articles on DL. (i) The release of increasingly
powerful Graphical Processing Units (GPU), which made the training of DNN models feasible.
(ii) The publication of large datasets that allowed DNN models to learn meaningful representa-
tions. The combination of the above factors led to the work of Krizhevsky, Sutskever and Hinton
(2012), who developed a CNN model with eight layers that far surpassed any other method of
the time.

Since then, computer vision was one of the main fields where DL received the most
attention from the scientific community. Consequently, deeper CNN models were proposed over
the years, such as VGG (SIMONYAN; ZISSERMAN, 2015), INCEPTION (SZEGEDY et al.,
2015; SZEGEDY et al., 2017), RESNET (HE et al., 2016), RESNEXT (Xie et al., 2017), and
EFFICIENTNET (TAN; LE, 2019) leading to a breakthrough in computer vision tasks, such image
classification, object detection, semantic segmentation and video understanding.

50 Chapter 2. Deep Learning in computer vision

2.3 Computer vision and visual recognition tasks

Computer vision is a field of computer science that seeks to develop techniques that
allow computers to understand the content of digital images or videos. According to Szeliski
(2011), computer vision follows the inverse problem of computer graphics. In this sense, while
computer graphics tries to model how to project visual content onto an image, computer vision
attempts to describe the content of a given image by extracting relevant properties such as shape,
texture, and color.

Among the many computer vision tasks, visual recognition tasks have gained much atten-
tion in the last decade due to the following factors. (i) The appearance of a significant number of
robust annotated datasets (Lin et al., 2014; RUSSAKOVSKY et al., 2015; TRIANTAFILLOU et

al., 2020). (ii) The arrival of powerful Graphics Processing Units (GPUs) and Tensor Processing
Units (TPUs) that enable efficient training of deep CNN models (JOUPPI et al., 2017; TANG et

al., 2019). Below are short descriptions of well-researched visual recognition tasks.

• Instance recognition. Given two images (�1 and �2), the task is to determine whether the
object appearing in �1 also appears in �2. Potential challenges occur when the object in
question is viewed from a different perspective, with partial occlusions, or is on a cluttered
background.

• Image classification. Given an image �, the task is to assign � to one of the predefined
classes based on its visual features. This task is much more challenging than the previous
one because it requires recognizing any valid instance of each predefined class. Figure 3a
shows an example of a coin classification task, where there are five classes, namely, 5c,
10c, 25c, 50c, and 1 real.

• Object detection. Given an image �, the task is to locate and classify all objects in � that
are valid instances of at least one predefined foreground class. As illustrated in Figure 3b,
the localization sub-task involves generating bounding boxes, each denoting the presence
of an object. On the other hand, the classification sub-task entails assigning a class label
to each bounding box. In this sense, a detection task can also be referred to as an object
localization task if there is only one foreground class. Famous object detection examples
are: (i) face recognition, (ii) pedestrian recognition, and (iii) generic object detection.

• Image segmentation. Given an image �, the task is to classify and delineate the boundaries
of all objects in � that are valid instances of at least one predefined class. Popular examples
are: (i) per-pixel segmentation, (ii) instance segmentation, and (iii) pose estimation.

• Video understanding. The task is to track all the objects in a video that belong to at least
one predefined class. For example, monitoring human activity.

2.4. Convolutional Neural Networks: Basic concepts 51

Figure 3 – Two visual recognition tasks. There is only one object per image in classification tasks, and
there are multiple objects per image in detection tasks.

25c 10c 1 real

50c 5c

(a) Coin classification (five images)

 5c

 5c

 5c

 5c

 5c

 5c

 5c

 5c

 5c
 5c

(b) Coin detection (one image)

Source: Elaborated by the author.

2.4 Convolutional Neural Networks: Basic concepts

Convolutional neural networks (CNN) are a type of DNN initially proposed for the
recognition of handwritten digits (LECUN et al., 1989). They work well on several types of
media, e.g., audio, image, and video (HOU; CHEN; SHAH, 2017; XU et al., 2018). However,
due to the characteristics and objectives of this project, we limited the scope of the following
definitions to image classification and object detection tasks.

2.4.1 Tensors

Before describing the CNN architecture and other related concepts, we introduce the
notion of tensor. In machine learning, tensors are data containers used to store and manipulate
numerical data of an arbitrary number of spatial dimensions (3) (see Figure 4). Additionally,
tensors obey certain transformation rules (e.g., dot product, and cross-product), making them
suitable for use in deep learning. Therefore, as shown in Figure 5, the inputs, intermediate results,
and predictions made by the CNN are all stored in tensors.

Tensors that only store one number are known as scalars or 0D tensors (3 = 0). When the
number of dimensions is at least one (3 ≥ 1), the tensor can be represented as a 3-way data array.
Therefore, tensors can be thought as the high-dimensional generalization of array-based data
structures, like vectors (1D tensors) and matrices (2D tensors) (ZHANG et al., 2017). In this
regard, each numerical element in the tensor is called a scalar component, and it can be accessed
by specifying 3 indices. For example, given a 3D tensor T of shape (=1×=2×=3), each scalar
component is denoted T[8, 9 , :], where the indices 8, 9 , and : are integer numbers (1 ≤ 8 ≤ =1,
1 ≤ 9 ≤ =2, and 1 ≤ : ≤ =3). Additionally, each time we slice a tensor along one or more
dimensions, we will use the colon operator ‘:’. For instance, T[:, 9 , :] means “to fully slice the
tensor along the first and third dimensions and then to return the 2D tensor of index 9”.

The dimensionality of a tensor determines what data it can store. In this context, single-

52 Chapter 2. Deep Learning in computer vision

channel images require at least 2D tensors, while multi-channel ones require at least 3D ten-
sors (AUDEBERT; SAUX; LEFEVRE, 2019). On the other hand, deep learning frameworks,
such as Keras (CHOLLET et al., 2015) and PyTorch (PASZKE et al., 2017), group various
multi-channel images into 4D tensors of shape (#� ×� ×, ×�), where the #� represents the
number of images, and the other three denote the number of channels, the width, and the height
of the input images, respectively. Figure 4b illustrates an example of such a tensor.

Figure 4 – Examples of 2D and 4D tensors. The feature extraction part of most CNN models only works
with 4D tensors of shape (#� ×� ×, ×�), while the classification part mainly works with
2D tensors of shape (#� × (). (: number of features, #� : number of images, �: number of
channels,, : width, �: height.

S

N
I

(a) 3×7 tensor

CC
W

C

H

NI

WW

(b) 3×5×6×6 tensor

Source: Elaborated by the author.

2.4.2 Parts of the CNN model

In classification tasks, the basic architecture of a CNN consists of several stages of
convolutional and pooling layers followed by one or more fully connected layers (LECUN;
BENGIO; HINTON, 2015). For instance, Figure 5 shows the architecture of LENET-5, a
CNN model with two convolutional layers, two pooling layers, and three fully connected
layers (LECUN et al., 1998). Over time, CNN models with much more complex architectures
were developed (Zhang et al., 2017; Tan et al., 2019). However, all CNN models have two
well-defined parts despite their differences: the feature extraction part and the classification
part. The first part corresponds to the portion of the CNN model where all convolutional layers
reside, and the second part consists of the remaining fully connected layers.

In object detection, the feature extraction part of the CNN model is called the backbone.
Additionally, CNN models have a regression head, which generates bounding boxes for de-
tected objects, and a classification head, which assigns class labels to the predicted bounding
boxes (REN et al., 2017). Of the three, the backbone is typically the longest and most important
part of the CNN model from which the other parts make predictions. Therefore, backbones that
perform well for image classification tasks are often reused for object detection tasks (TONG;

2.4. Convolutional Neural Networks: Basic concepts 53

WU; ZHOU, 2020). Additionally, unlike the image classification case, the regression head and
the classification head can include convolutional layers, fully connected layers, or both.

Figure 5 – LENET-5 architecture. Two convolutional layers (Conv), two pooling layers (MP), and
three fully connected layers (FC). For better visualization, we display 3D tensors of shape
(�×,×�) instead of 4D tensors of shape (#� ×�×,×�). AM: Activation Map, FV: Feature
Vector.

Feature extraction part

Conv 5 × 5 MP 2 × 2 Conv 5 × 5 MP 2 × 2 FC FC

Output 10

AM 6 × 28 × 28

AM 6 × 14 × 14 AM 16 × 10 × 10

AM 16 × 5 × 5

 FV 120
FV 84

Image 1 × 32 × 32

FC

Classification part

Source: Elaborated by the author.

2.4.3 Activations maps and feature vectors

As stated in subsection 2.4.1, each batch of #� input images given to the CNN model
comes in the form of a 4D tensor. Then, for each batch, the feature extraction part of the CNN
model returns a 4D tensor containing #� sets of activation maps. Indeed, the returned tensor
maintains the same format as that shown in Figure 4b, namely the first dimension represents the
number of images (#�), and the other three dimensions denote the number of channels (�), the
width (,), and the height (�) of the resulting sets of activation maps (CHOLLET, 2017a).

In more detail, let us consider A as the tensor of size (#� ×� ×, ×�) computed by the
CNN model. In this context, A[8, :, :, :] (or simply A[8]) represents the set of activation maps
associated with the 8-th input image (1 ≤ 8 ≤ #�). Likewise, A[8, 2, :, :] (or A[8, 2]) represents the
2-th activation map of size (, ×�) associated with the 8-th input image (1 ≤ 2 ≤ �).

Figure 6 shows the activation maps computed by different layers within a CNN model
that classify flower types. While some of these activation maps only reveal generic features,
others can contain high-level patterns that are meaningful for the visual recognition task at
stake (ZEILER; FERGUS, 2014; Yosinski et al., 2015). For example, Figure 6c shows the edges
of the flower (low-level feature), whereas Figure 6f seems to indicate the existence of the flower
itself (high-level feature).

In image classification tasks, the classification part of the CNN model takes 2D tensors of
shape (#� × () as input, where #� is the number of images and (is the number of features (see

54 Chapter 2. Deep Learning in computer vision

Figure 6 – Exemplary activation maps. (a) Input image taken from the Flowers dataset (Nilsback;
Zisserman, 2008), (b–f) activation maps computed by five different layers within a trained
CNN model. We only display one activation map per layer. The layers are ordered by their
depth, from shallowest to deepest.

(a) (b)

(d)

(c)

(e) (f)

Source: Elaborated by the author.

Figure 4a). In this regard, given a (#� × () tensor X, we define the feature vector X[8, :] (or
X[8]) as the 1D tensor of shape (() associated with the 8-th input image (1 ≤ 8 ≤ #�). Ideally, the
elements in a feature vector represent information that is relevant to the visual recognition task
at stake. However, unlike activation maps, there is not spatial relationship between consecutive
elements in the feature vector.

2.4.4 Layers, blocks, and composite functions

As shown in subsection 2.4.2, every CNN model has distinct parts that work together to
accomplish the visual recognition task at stake. Each part consists of multiple interconnected
layers. In this context, a layer represents a function ℎℓ (·) that takes one or more tensors as input,
passes them through a mathematical transformation, and returns an output tensor. The suffix ℓ
indicates the layer index. Various layer types exist; some have trainable parameters (or weights)
that must be optimized in a training process, while others have only fixed parameters or none at
all. We detail the most relevant layer types in section 2.6.

Furthermore, a block comprises at least two interconnected layers that work together
to fulfill a given role. Hence, a block can be viewed as a composite function �1 (·), where 1
indicates its index. Over the years, many proposed blocks gained fame because their ingenious
structures led to the emergence of increasingly powerful CNN models. Examples of such blocks
are: the inception block (SZEGEDY et al., 2015), the “bottleneck” building block (HE et al.,
2016), the dense block (HUANG et al., 2017), and the squeeze-excitation block (Hu et al., 2019).

In the broadest sense of the term, one could consider the parts of the CNN model and
even the CNN model itself as blocks. Since the above interpretation could lead to confusing

2.5. Training and inference 55

situations, we limit the scope of the term block to refer to a set of continuous layers within the
CNN model’s feature extraction part. Additionally, we use the block index 1 to differentiate
the output tensors generated by distinct blocks. For example, A1 represents the 4D tensor that
originated from the 1-th block of the CNN model.

2.5 Training and inference
CNN-based solutions for visual recognition tasks involve two essential processes: training

and inference. As shown in Figure 7a, training is the process of teaching the CNN model how
to solve a given task using a series of examples (images and targets). In contrast, Figure 7b
illustrates the inference process, which involves feeding the trained CNN model with a novel
image. The model then returns a prediction based on the content of the image and the knowledge
acquired during training. These two processes have many internal details, which are covered in
the following subsections.

Figure 7 – Training and inference.

Training

Inference

Training

Dataset

 Predictions () Ŷ

Learned parameters

CNN model
(⋅)HΘ

 Images

 Gradient (J) ∇Θ Cost Function J(Θ)

Novel Image
CNN model

(⋅)HΘ
Decoder Output

 Targets

(a)

(b)

 Encoded targets (Y) Encoder

 Prediction () ŷ

Source: Elaborated by the author.

2.5.1 Before training

There are at least two main aspects that must be covered before starting the training
process: the design of the CNN model and its initialization strategy.

Designing the CNN model

The architecture of a CNN plays a crucial role in determining its performance in terms
of predictive power, time and memory efficiency (HANIN; ROLNICK, 2018; TAN; LE, 2019).
Consequently, many research articles present their own CNN models using either manual or
automated approaches. Below, we briefly describe some of the manual approaches.

• The most basic manual approach is for a human expert to design the architecture through
various trial and error rounds with different combinations of layers (SZEGEDY et al.,
2015; Zhang et al., 2017).

56 Chapter 2. Deep Learning in computer vision

• Since the above approach is time and resource-consuming, some works focus on testing
small but effective changes to the architecture of an existing CNN model (HE et al., 2019).

• An alternative approach is to combine the architectures and core ideas of two or more
existing CNN models to generate a new one with greater predictive power (SZEGEDY et

al., 2017; Bello et al., 2021).

• Another successful approach involves designing a block of layers that serves a specific
purpose. Then, copies of the proposed block are used to replace others blocks within an
existing CNN model or are inserted at different locations throughout the model. Examples
of popular blocks are: “bottleneck” building blocks (HE et al., 2016), depth-wise separable
convolutions (CHOLLET, 2017b), dense blocks (HUANG et al., 2017), and squeeze-
excitation blocks (Hu et al., 2019).

As for automated approaches, the idea is to discover increasingly solid architectures
by testing different combinations of layers and blocks in a predefined search space. However,
instead of a brute-force or a random search approach, the most relevant automated approaches
use sophisticated search algorithms, such as those based on reinforcement learning (ZOPH et al.,
2018; Tan et al., 2019), evolution (REAL et al., 2019), and gradient-based optimization (LIU;
SIMONYAN; YANG, 2019; Wu et al., 2019).

Parameter initialization

After designing the CNN model, the next step is to initialize its set of trainable parame-
ters Θ. This step is very challenging because inadequate parameter initialization leads to both
longer training processes and poor performance (HANIN; ROLNICK, 2018).

Multiple initialization strategies have been proposed over the years (GLOROT; BORDES;
BENGIO, 2011; He et al., 2015; ARPIT; CAMPOS; BENGIO, 2019). Most of them involves
randomly sampling initial values from a uniform distribution U(−

√
:,
√
:) or from a normal

distribution N(`,f). In this context, the initialization strategy proposes a method to calculate
: , `, and f. For instance, the PyTorch framework (PASZKE et al., 2017) by default initializes
the parameters of fully connected layers using a uniform distribution with : = 1/fan-in, where
fan-in is the number of input units in the layer.

A very different initialization strategy is the parameter transfer approach. In this
strategy, some of the CNN model parameters are initialized with those of an already-trained CNN
model, while the remaining parameters follow the regular random initialization process (Ribani;
Marengoni, 2019). The above topic becomes part of a class of methods known as Transfer
Learning (TL), which will be covered in Chapter 3.

2.5. Training and inference 57

2.5.2 Training process

In supervised learning, a CNN model describes a hypothesisHΘ(·) that maps an input
image � to a predicted output Ĥ. More specifically, HΘ(·) represents a composite function
with a set of trainable parameters Θ = {\1, \2, . . . , \#Θ}, such that Ĥ = HΘ(�). In general, the
performance ofHΘ(·) depends on Θ, which must be learned during the training process.

During training, the predictive power ofHΘ(·) is evaluated via the cost function � (Θ),
which reflects the discrepancy between the model predictions for the current state of Θ and the
targets. Consequently, the goal of training is to minimize � (Θ) by adjusting the parameters in Θ
via an optimization algorithm (or optimizer) that learns from the training dataset. Below, more
details about the optimization algorithm.

Basic gradient-based optimization algorithm

Gradient-based optimizers involve multiple forward and backward passes over the train-
ing data until � (Θ) converges to a local or global minimum. As depicted in Figure 7a, the forward
pass includes the following steps:

1. Take a random batch of #� examples from the training dataset, where the 8-th example
consists of one image and corresponding target, 1 ≤ 8 ≤ #� .

2. UseHΘ(·) to process the #� images, and obtain the set of predictions .̂ = {Ĥ1, . . . , Ĥ#� }.

3. Encode the #� targets into a format that make them compatible with .̂ . The output of this
step is a set of #� encoded targets . = {H1, . . . , H#� }.

4. Finally, use the predefined cost function � (Θ) to measure the performance of HΘ(·) by
comparing . and .̂ .

As for the backward pass, it includes the steps below.

1. Use the back-propagation algorithm (RUMELHART; HINTON; WILLIAMS, 1986) to
estimate the gradient of � (Θ) as a vector of #Θ partial derivatives. We denote the gradient
of the cost function by ∇Θ� (Θ), and the partial derivative with respect to the 9-th parameter
by m� (Θ)

m\ 9
; 1 ≤ 9 ≤ #Θ.

2. Use an update rule to modify the parameters in Θ. For instance, one of the simplest
learning rules is to update the parameters in the negative direction of the gradient: Θ←
Θ−[· ∇Θ� (Θ), where [is the learning rate.

Let us define |� | as the number of examples in the training dataset. The above opti-
mization algorithm is called the Gradient Descent (GD) algorithm if every batch of training

58 Chapter 2. Deep Learning in computer vision

examples covers the entire dataset (#� = |� |). In general, GD is a suitable choice for train-
ing DNNs when |� | is small. However, as |� | grows, GD becomes much more expensive in
terms of time and memory resources. Therefore, the typical choice for training large CNN
models is the Stochastic Gradient Descent (SGD) algorithm (also known as the Mini-batch
Gradient Descent), which is as powerful as GD but uses far fewer training examples to com-
pute ∇Θ� (Θ); (1 ≤ #� � |� |) (GOODFELLOW; BENGIO; COURVILLE, 2016, Sec. 5.9).

Other gradient-based optimization algorithms

More complex optimizers based on GD and SGD have been proposed over the years.
For example, Qian (1999) extended the SGD update rule by incorporating a momentum term to
calculate the exponential moving average of previous gradients. The goal is to reduce fluctuations
in the velocity and direction at which each parameter \ 9 ∈ Θ move within the parameter space.
Therefore, the momentum term can accelerate convergence in high-curvature regions and prevent
premature convergence in low-curvature ones. Additionally, Sutskever et al. (2013) proposed
the Nesterov momentum, which is a simple variation of the standard momentum term that can
obtain faster convergence times in some specific situations.

On the other hand, Duchi, Hazan and Singer (2011) proposed the Adaptive Gradient
algorithm (AdaGrad). AdaGrad defines a learning rate [9 for each parameter \ 9 ∈ Θ. Then, [9
decreases with each iteration in proportion to the accumulation of all past squared gradients
calculated for \ 9 . Despite its relevant theoretical properties, AdaGrad often terminates the training
process prematurely as it brings most learning rates to near zero. In an effort to overcome the
problems of AdaGrad, Zeiler (2012) proposed Adadelta. Although Adadelta also accumulates
all past squared gradients, it does so using the exponential moving average, which causes the
influence of older gradients to decrease exponentially.

The literature offers many more optimization algorithms that work well in certain
situations. According to the analysis of Ruder (2016), the most successful SGD variant is
the Adaptive Moment Estimation (ADAM) algorithm (KINGMA; BA, 2015). In this regard,
ADAM has an update rule that includes first- and second-order moments of the gradient, which
are represented in Equation 2.1 by the letters B and A, respectively.

B← ?1B+ (1− ?1)∇Θ� (Θ), A← ?2A + (1− ?2) (∇Θ� (Θ))2 , (2.1)

Both ?1 ∈ [0,1] and ?2 ∈ [0,1] are hyper-parameters with default values of 0.9 and
0.999, respectively. In the first few iterations, these default values cause estimated moments to
be biased towards zero. Since such outcomes are detrimental to the training process, ADAM
corrects the biased estimates with Equation 2.2 below.

B̂ =
B

1− ?C1
, Â =

A

1− ?C2
, (2.2)

where C is the number of iterations. Note that as C increases, the influence of ?1 and ?2 decays
exponentially in Equation 2.2. Then, the update rule of ADAM is as follows: Θ← Θ−[B̂√

Â+X
,

2.5. Training and inference 59

where [is the global learning rate and X is a small constant (e.g., 1e-10) for numerical stability.
The experimental part of this project uses either SGD or ADAM.

2.5.3 Other topics relevant to the training process

The training process still has several topics worth describing. Although subsection 2.5.2
presented some of these topics, more details will be provided below.

Target encoding

Each training example consists of an image � and its corresponding target. In image
classification tasks, a target is generally a single number that represents a class label, while
in object detection tasks, it is a list containing bounding box coordinates and class labels that
describe valid objects within �. During training, the dataset provides #� training examples
to the optimization algorithm. Then, as shown in Figure 7a, the targets are encoded into a
format that allows the cost function � (Θ) to compare them with the predictions of the CNN
modelHΘ(·). For instance, in image classification tasks, researchers convert labels to vectors
using one-hot encoding or other more sophisticated target embedding methods (RODRÍGUEZ et

al., 2018). As for object detection tasks, researchers often encode the bounding box coordinates
by parameterizing them relative to a set of reference boxes (REN et al., 2017).

Back-propagation algorithm

The role of back-propagation is often confused with that of the optimizer. However, back-
propagation is an algorithm designed only for the rapid calculation of gradients ∇Θ� (Θ) (RUMEL-
HART; HINTON; WILLIAMS, 1986). Internally, the back-propagation algorithm visits each
layer of the CNN model in reverse order, from deepest to shallowest. Then, in each layer, it
propagates the gradient of the previous layers using the chain rule, resulting in a set of partial
derivatives of � (Θ) with respect to each parameter from the layer. In general, back-propagation
works well on tensors of arbitrary dimensionality, making it portable to any DNN architecture.
We refer the reader to (GOODFELLOW; BENGIO; COURVILLE, 2016, Ch. 6.5) for more
information on this topic.

Loss function vs. Cost function

Although both terms are often used interchangeably, they differ in the following aspect:
The loss function estimates how closely the predicted output matches the target in a single
training example. In contrast, the cost function � (Θ), which is also known as the objective
function, computes the average loss across a batch of training examples:

� (Θ) = 1
#�

#�∑
8=1

! (HΘ(�8), H8) (2.3)

60 Chapter 2. Deep Learning in computer vision

where (�8, H8) indicates the 8-th training example, ! (·) is the loss function, andHΘ(·) is the CNN
model. Below is a list of the most popular loss functions used for object detection and image
classification tasks.

• Cross entropy loss (CE). This loss function is a popular choice for classification tasks. It
quantifies the difference between two probability distributions:

CE(Ĥ, H) = −
#�∑
2=1

H[2] log (Ĥ[2]) (2.4)

Within the context of image classification tasks, #� is the number of classes, and 2 is the
class label. Furthermore, Ĥ is a vector of #� predicted probabilities, where Ĥ[2] represents
the confidence that the model has to classify the input image in the 2-th class. On the other
hand, H is the encoded target, represented as a binary vector, in which only a single cell
contains the value 1, and the rest of the cells only include zeros. Therefore, both predicted
and target vectors satisfy the following conditions:

∑#�
2 H[2] = 1;

∑#�
2 Ĥ[2] = 1. Let us

define 2̃ as the class label where H[2̃] = 1, then Equation 2.4 can be simplified as follows:

CE(Ĥ, H) = − log(Ĥ[2̃]) (2.5)

As shown in Figure 8a, CE provides a higher loss value as the difference between Ĥ[2̃]
and H[2̃] increases. In general, CE is the default choice for image classification and object
detection tasks.

• Focal loss (FL). It was proposed by Lin et al. (2017) as an improved version of the CE
loss. FL modifies Equation 2.5 as follows:

FL(Ĥ, H) = −(1− Ĥ[2̃])_ log(Ĥ[2̃]) (2.6)

where _ ∈ [0,∞) is a hyper-parameter that governs how much the relative loss of well-
classified examples will be reduced. When _ = 0, the FL curve is the same as the CE curve.
Figure 8a shows different FL curves for distinct values of _.

• Square error loss (SE). Both CE and FL are loss functions for classification tasks. In the
case of regression tasks, researchers often choose the SE loss, which has a very simple
equation:

SE(Ĥ, H) = (Ĥ− H)2 (2.7)

In this case, Ĥ and H are scalars. Additionally, note that the quadratic formula amplifies
large differences and reduces small ones (see Figure 8b).

• Smooth L1 loss (SL1). It is also known as the Huber loss. This loss function is less
sensitive to outliers than the SE loss, which in some cases prevents the exploding gradients

2.5. Training and inference 61

problem (Girshick, 2015). Its equation is given by:

SL1(Ĥ, H) =

(Ĥ−H)2

2V , if | Ĥ− H | < V,

| Ĥ− H | − V

2 , otherwise,
(2.8)

where V is a hyper-parameter, whose default value is 1, Ĥ is the predicted scalar, and H is
the target scalar. Note that Equation 2.8 has two parts, one of them is almost the same as
Equation 2.7, and the other is linear. See Figure 8b for a comparison between the SE loss
curve and three SL1 loss curves (each with a different V). In general, object detectors use
the S!1 loss for training the bounding box regression subnet of the CNN model (LIN et

al., 2017; Tan; Pang; Le, 2020).

Additionally, � (Θ) can include two or more loss functions. For example, in object
detection tasks, � (Θ) generally combines two loss functions: one for evaluating the correctness
of the predicted bounding box coordinates, and another for measuring the accuracy of the
predicted bounding box classes (LIN et al., 2017; Tan; Pang; Le, 2020). In certain situations,
researchers extends Equation 2.3 by adding a penalty norm term UΩ(Θ), where U ∈ [0,∞) is a
hyper-parameter that controls the relative contribution of the penalty term to � (Θ), and Ω(Θ) is
the penalty function that limits the growth capacity of all the CNN model parameters, so that the
trained model can avoid overfitting the training dataset.

Figure 8 – Comparison of loss curves for classification and regression tasks.

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability ŷ for class 1

0

2

4

6

L
os

s
L

(ŷ
,y

=
1)

CE (or FL (λ = 0))

FL (λ = 1)

FL (λ = 2)

FL (λ = 5)

FL (λ = 10)

(a) For classification tasks

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Predicted ŷ

0

1

2

3

L
os

s
L

(ŷ
,y

=
0)

SE

SL1 (β = 0.5)

SL1 (β = 1)

SL1 (β = 2)

(b) For regression tasks

Source: Elaborated by the author.

Overfitting and regularization strategies

Overfitting is a recurring problem that occurs when HΘ(·) achieves excellent results
in the training data, but it is unable to predict the correct output for novel images. Multiple
strategies exist to reduce overfitting. Below are brief descriptions of the most popular strategies.

• Adding a penalty term UΩ(Θ) to � (Θ). It forces the model parameters to take only small
values, thereby making its distribution more regular. In this sense, when the additional
cost of Ω(Θ) is proportional to the absolute value of the parameters in Θ, it is called

62 Chapter 2. Deep Learning in computer vision

L1 regularization. On the other hand, when the additional cost is proportional to the
square of the value of the parameters in Θ, it is called L2 regularization or weight
decay (CHOLLET, 2017a, Ch 4). The main drawback of this strategy is that it can cause
an underfitting problem, which occurs when CNN model stops “learning” from the training
data. Therefore, the value of U ∈ [0,∞] plays a crucial role, since it governs how much
regularization is added to � (Θ).

• Adding one or more dropout layers. Proposed by Srivastava et al. (2014). During train-
ing, the dropout layer randomly zeroes some of the previous layer’s output feature elements.
Then, the new set of features elements becomes the input for the next layer. These feature
elements can be as small as single values from a feature vector or as big as entire activation
maps. There is also a hyper-parameter called the dropout rate, which determines how
many elements will be zeroed. Consequently, the dropout layer encourages HΘ(·) to
generalize better by learning more independent features.

• Data Augmentation. Its main objective is to increase the amount of training data by apply-
ing some mathematical transformations on the training images. These transformations then
generate a greater variety of images with different scales, aspect ratios, perspectives, orien-
tations, brightness, and with more complex properties (MIKOłAJCZYK; GROCHOWSKI,
2018). Indeed, it is currently a highly researched topic because, when used correctly, it
can provide significant improvements in CNN model performance, especially in domains
with small to medium-sized training data available. Therefore, in most computer vision
competitions, the candidate solutions generally use a large number of data augmentation
techniques to increase their chances of winning (Ha; Liu; Liu, 2020). We refer the reader
to (ZOPH et al., 2020a) for a great analysis and categorization of data augmentations
techniques applied to object detection tasks.

• Early Stopping. Here, the training data is typically divided into two subsets, one for
training and one for validation purposes. Then, in each iteration of the optimization
algorithm, two cost function results are computed, one from the training subset and the
other from the validation subset. Note that the training cost is the only one that provides
gradients to the optimization algorithm. In this regard, the early stopping aims to halt
the optimization algorithm when the validation cost reaches a minimum value. Since
there is no deterministic way to know when the validation cost is minimal, the early
stopping strategy defines a hyper-parameter called patience as the maximum number of
iterations the validation cost has to reach a new minimum (GOODFELLOW; BENGIO;
COURVILLE, 2016, Sec. 7.8). However, due to recent scientific discoveries, such as the
phenomenon of double and triple descent, early stopping should be used with care to
avoid sub-optimal results, especially in large deep models (NAKKIRAN et al., 2020;
ASCOLI; SAGUN; BIROLI, 2020).

2.6. Layer types 63

2.5.4 Inference Process

Once the training process is complete, the CNN model is ready to handle new images
through a mechanism known as the inference process. In this sense, Figure 7b presents the basic
steps that each new image must go through during the inference. A brief description of each step
is below.

1. Use the trained CNN model to process the novel image �, and get a prediction Ĥ =HΘ(�).
This step is equivalent to the forward pass computed by the optimization algorithm during
training.

2. Then follows a decoding step, consisting of transforming Ĥ into a human-readable format,
such as class labels (in image classification tasks) or bounding box coordinates (in object
detection tasks).

In general, the inference process takes less time than its training counterpart as no
gradient calculation befalls. Furthermore, the inference process can be included in an evaluation
scheme when we want to know whether HΘ(·) achieves good levels of generalization or not.
The evaluation scheme and its metrics will be explained in section 4.3.

2.6 Layer types
A layer represents a function that takes one or more tensors as input, passes them through

a mathematical transformation, and delivers the resulting tensor to the next layer. Although there
are several layer types, they all receive either 2D tensors of size (#� × () (Figure 4a) or 4D
tensors of size (#� ×� ×, ×�) (Figure 4b), where #� is the number of input images, � is the
number of channel in the tensor (or depth),, is the width, � is the height, and (is the number
of features. Additionally, (,,�) is often referred to as the spatial size. Below, we describe the
different layer types that commonly appear on most CNN models.

2.6.1 Convolutional layer

This layer type is named after the convolution operation, which is the mathematical
transformation the convolutional layer always applies to its inputs. In this regard, convolutional
layers are very effective in learning spatially localized features from their input data (CHOLLET,
2017a, Ch. 5). Therefore, they are usually found in the feature extraction part of the CNN
model (see Figure 5).

Given an input tensor A of shape (#� ×�8=×,8=×�8=), the convolutional layer uses its
internal tensor of trainable parameters called filter bank (F) to compute Â, an output tensor of
shape (#� ×�>DC ×,>DC ×�>DC). The subscripts 8= and >DC indicate the dimensions by which the
input and output tensors may diverge.

64 Chapter 2. Deep Learning in computer vision

Regarding F, it consists of �>DC filters of shape (�8=×, 5 ×� 5). In this context, the filter
width (, 5) and the filter height (� 5) form the kernel size, a hyper-parameter that require manual
setting. Typical choices for the kernel size are (1×1), (3×3), (5×5), and (7×7). Over the years,
new hyper-parameters were proposed that increased the complexity of this layer type. Below is a
list that explains how a convolutional layer works with respect to each new hyper-parameter.

• Basic convolution operation (without extra hyper-parameters). The convolution op-
eration occurs between each input tensor A[8, :, :, :] of shape (�8= ×,8= ×�8=) and each
filter F[9 , :, :, :] of shape (�8= ×, 5 ×� 5), 1 ≤ 8 ≤ #� ;1 ≤ 9 ≤ �>DC . Then, the output
of A[8, :, :, :] ⊗ F[9 , :, :, :] becomes the activation map Â[8, 9 , :, :] of shape (,>DC ×�>DC),
where,>DC =,8=−, 5 +1 and �>DC = �8=−� 5 +1.

• Padding (?). The convolution operation described above crops away some of the spatial
resolution from A[8, :, :, :] each time the kernel size is larger than (1× 1). When such a
result is undesirable, the convolutional layer adds some padding to the input tensor before
applying the filter. Specifically, setting ? > 0 allows A[8, :, :, :] to temporarily increase its
shape from (�8=×,8=×�8=) to (�8=× (,8= +2?) × (�8= +2?)). For example, a kernel size
of (3×3) requires padding of 1 to preserve spatial resolution between the input and output
tensors. Similarly, a kernel size of (5×5) requires padding of 2, and so on.

• Step size or stride. In the basic operation, the filter F[9 , :, :, :] works as a sliding window
function that transverse the spatial dimension of A[8, :, :, :] with step size of 1. Larger
step sizes lead to output tensors with lower spatial resolutions. For example, as explored
in (Springenberg et al., 2015), convolutional layers with a step size of 2 and ? = 0 can
successfully work as pooling layers because they also halve the spatial resolution of the
input tensor (,>DC =,8=/2 and �>DC = �8=/2).

• Dilation rate. This hyper-parameter defines the spacing between the filter values during
the convolution operation. For example, a (3×3) kernel size with a dilation rate of 1 will
match the receptive field of a (5×5) kernel size. Therefore, one of the main properties of
this hyper-parameter is that it allows having larger receptive fields without incrementing
the computational cost. We refer the reader to (YU; KOLTUN, 2016; LI et al., 2019) for a
detailed explanation of the benefits of using this hyper-parameter within the architecture
of a CNN model.

• Number of groups. This hyper-parameter was proposed in (Xie et al., 2017). In the
basic convolution operation, there is only one group, which means that each input tensor
A[8, :, :, :] will eventually be convolved with every filter F[9 , :, :, :]. When there are two
groups, A[8, :, :, :] is partitioned into the tensors A[8,1 : �8=2 , :, :] and A[8, �8=2 +1 : �, :, :],
each of shape (�8=2 ×,8=×�8=). Then, half of the filters operate over the first tensor and
the other half operate over the second one. In this context, an operation called depthwise

2.6. Layer types 65

convolution occurs, when the number of groups is set to �8=, and �>DC = :∗�8=, (: is an
integer number).

2.6.2 Fully connected layer

Fully connected layers are essential for the proper functioning of CNN models. Therefore,
as shown in Figure 5, the classification part of the CNN model includes at least one fully
connected layer. Additionally, this layer type can serve as auxiliary classifiers that help increase
the performance of the CNN model (SZEGEDY et al., 2015).

Given an input tensor T of size (#� × (8=), the fully connected layer returns an output
tensor T̂ of shape (#� × (>DC) by multiplying T with an internal set of trainable parameters W,
followed by the addition of multiple bias terms b. In this regard, #� is the number of images,
(8= is the number of input features, and (>DC is the number of output features. Regarding W and
b, the former is a 2D tensor of shape ((8=× (>DC), while the latter is a 1D tensor of shape ((>DC).
Therefore, unlike convolutional layers that can process input tensors of arbitrary spatial sizes,
fully connected layers can only process input tensors with fixed-sized dimensions.

2.6.3 Pooling layer

Pooling layers are simple but powerful layer types that have no trainable parameters. Their
purpose is to reduce the spatial size of the input tensor while preserving its spatial information.
Therefore, pooling layers allow convolutional layers to focus on detecting high-level features
rather than minor local distortions (KHAN et al., 2020).

Given an input tensor A of size (#� ×� ×,8= ×�8=), the pooling layer divides each
activation map A[8, 2, :, :] into multiple areas of size (,? ×�?), where,? and �? are the kernel
width and the kernel height of the pooling layer, respectively (1 ≤ 8 ≤ #� ; 1 ≤ 2 ≤ �). The values
of each generated area then become the input of a pooling function, which returns a single value
as output. Consequently, the processing of all the activation maps in A yields an output tensor Â
of shape (#� ×� ×,>DC ×�>DC), where,>DC =

,8=
,?

;�>DC = �8=
�?

.

Regarding the pooling functions, the simplest ones perform max pooling or average
pooling operations (LECUN et al., 1998). On the other hand, more complex pooling functions
are those that combine multiple levels of max-average pooling operations (YU et al., 2014; LEE;
GALLAGHER; TU, 2016), or those that follow second-order pooling approaches (GAO et al.,
2019). Additionally, He et al. (2015) proposed the spatial pyramidal pooling, which consists
of using different kernel sizes to generate pooling areas of various shapes.

2.6.4 Global Average Pooling layer

One of the pooling layers that currently stands out from the rest is the Global Average
Pooling (GAP) layer (LIN; CHEN; YAN, 2013). The GAP layer is equivalent to the conventional

66 Chapter 2. Deep Learning in computer vision

average pooling layer, whose kernel size completely covers the area of the input activation
map A[8, 2, :, :] (,? =,8=;�? = �8=). Consequently, only one pooling operation occurs for each
activation map 6(A[8, 2, :, :]), which returns a single scalar G2, as shown in Figure 9.

In this context, upon processing an input tensor of size (#� ×� ×,8= ×�8=), the GAP
layer returns an (#� ×� ×1×1) tensor, which can be written as a 2D tensor of shape (#� ×�).
Indeed, the simplicity and versatility of the GAP layer are what make it applicable for many
CNN architectures. For example, in classification tasks, it is common for modern CNN models
to include a GAP layer after their feature extraction parts (SZEGEDY et al., 2016; He et al.,
2015; Zhang et al., 2017; TAN; LE, 2019). Furthermore, the global context provided by the GAP
layers has proven to be well suited for use in various locations within the feature extraction part
of the CNN model (Hu et al., 2019).

Figure 9 – Global Average Pooling layer. It returns a feature vector for each input set of activation maps.
For better visualization, we show how this layer works for single image inputs (#� = 1). The
input image was taken from the Flowers dataset (Nilsback; Zisserman, 2008).

FVec

x1

x3

x4

xC

x2

Activation MapsInput Image

g(⋅)
g(⋅)
g(⋅)

g(⋅)

g(⋅)

CNN
Prediction

Win

2
3

1

4Hin

C

Source: Elaborated by the author.

2.6.5 Activation function

Neural networks that consist of only convolutional layers or fully connected layers
cannot replicate nonlinear functions, such as the XOR function (GOODFELLOW; BENGIO;
COURVILLE, 2016, ch. 6.1). This limitation occurs because convolutional layers and fully
connected layers can only apply linear transformations to their input tensors.

Therefore, CNN models include layers that perform nonlinear operations called acti-
vation functions to circumvent the above limitation. In this sense, given an input tensor A of
an arbitrary number of dimensions, the activation function applies a nonlinear operation I(·)
as follows: G>DC = I(G8=),∀G8= ∈ A, where G8= is an element from the input tensor, and G>DC is
the transformed element. Consequently, the activation function returns an output tensor that
maintains the same shape as the input.

2.6. Layer types 67

Before deep learning became a mainstream phenomenon, the most popular activation
functions were the logistic function (or Sigmoid): G>DC = 1/(1+ exp(−G8=)) and the hyperbolic
tangent (Tanh): G>DC = (exp(G8=) − exp(−G8=))/(exp(G8=) + exp(−G8=)). However, although Sig-
moid and Tanh are still relevant in some specific deep learning applications, they have mostly
been replaced by other activation functions that offer greater advantages (APICELLA et al.,
2021).

Nowadays, the most popular activation function is the Rectified Linear Unit (ReLU): G>DC =
max(0, G8=). Compared to Tanh or Sigmoid, ReLU offers faster training times and can address
the vanishing gradient problem more effectively (GLOROT; BORDES; BENGIO, 2011). Ad-
ditionally, Lin and Jegelka (2018) demonstrated that deep CNN models with ReLU layers can
successfully approximate any nonlinear function. However, ReLU still has some drawbacks that
were addressed by alternative activation functions, such as Leaky ReLU (MAAS; HANNUN;
NG, 2013), Parametric ReLU (He et al., 2015), Exponential Linear Unit (ELU) (CLEVERT;
UNTERTHINER; HOCHREITER, 2016), Swish (RAMACHANDRAN; ZOPH; LE, 2018), and
Mish (MISRA, 2020).

Figure 10 shows the curves followed by many types of activation functions, from which
two conclusions emerge: (i) The curves of Tanh and Sigmoid differ greatly from the ReLU curve.
(ii) Despite some of the more recent activation functions have an additional trainable parameter U
that modifies the amplitude of their curves, they are all not that different from ReLU. We refer
the reader to (APICELLA et al., 2021) for more information on these layers.

Figure 10 – Examples of activation functions. All curves are compared to the ReLU curve.

−1

0

1

2

3

4

x
ou
t

ReLU

Tanh

ReLU

Sigmoid

ReLU

Leaky ReLU
(α = 0.01)

ReLU

Leaky ReLU
(α = 0.1)

−4 −2 0 2 4
xin

−1

0

1

2

3

4

x
ou
t

ReLU

Swish

−4 −2 0 2 4
xin

ReLU

Mish

−4 −2 0 2 4
xin

ReLU

ELU
(α = 0.5)

−4 −2 0 2 4
xin

ReLU

ELU (α = 1)

Source: Elaborated by the author.

2.6.6 Normalization layer

In traditional ML, data normalization is one of several methods that aim to make
different samples look more similar, making it easier for the model to learn and generalize to new

68 Chapter 2. Deep Learning in computer vision

data (CHOLLET, 2017a, ch. 7.3.1). Consequently, data normalization is a crucial pre-processing
step that can significantly affect the performance of the trained ML model (LUOR, 2015). As for
CNN models, despite their greater complexity compared to classic ML models, they still benefit
from data normalization. Indeed, for image classification tasks, the default protocol followed
by many DL libraries, such as PyTorch (PASZKE et al., 2017), is to compute the per-channel
mean `2 and the per-channel standard deviation f2 from the set of training images. Then, during
the training or the inference processes, every input image � of shape (� ×, ×�) is transformed
as follows:

� [2, :, :] ← � [2, :, :] − `2
f2

(2.9)

where 2 is the channel index, 1 ≤ 2 ≤ �.

Unlike traditional ML models, CNN models typically have multiple hidden layers, where
the output of one layer feeds into one or more subsequent layers. In this regard, the optimization
algorithm explained in subsection 2.5.2 works under the assumption that each layer generates
outputs with distributions that do not change over time. However, as the optimization algorithm
updates all the CNN model parameters simultaneously, the above assumption is often unfulfilled,
leading to unexpected results and instability that slows down the training process or causes it to
fail (GOODFELLOW; BENGIO; COURVILLE, 2016, Ch. 8.7). This issue is called the internal
covariance shift problem, and strategies for mitigating it have been proposed over the years.

For instance, Ioffe and Szegedy (2015) proposed Batch Normalization (BN), a layer
that transforms its input tensor using mathematical operations similar to Equation 2.9. The
BN layer commonly works on both 2D and 4D input tensors. In more detail, given a 4D
tensor A of shape (#� ×� ×,8=×�8=), the batch normalization layer computes the mini-batch
mean: `2 = mean(A[:,c, :, :]) and the mini-batch standard deviation: f2 = std(A[:,c, :, :]) for
each channel 2, 1 ≤ 2 ≤ �. Then, each activation map is normalized using the following equation:

A[8, 2, :, :] ← W2
A[8, 2, :, :] − `2

f2
+ V2 , (2.10)

where W2 and V2 are trainable parameters. In general, Equation 2.10 is suitable for training
the CNN model. However, it can fail during inference because an accurate estimate of `2 and
f2 requires random mini-batches of #Test images, where #Test is at least equal to the training
batch-size (#�). Therefore, during training, most BN implementations replace `2 and f2 in

Equation 2.10 with the exponential moving averages (̂̀2 and
√
f̂2
2) below:

̂̀2← (<) ̂̀2 + (1−<)`2, f̂2
2 ← (<)f̂2

2 + (1−<)f2
2 , (2.11)

where < ∈ [0,1] is an hyper-parameter with default value of 0.1. During inference, ̂̀2 and
√
f̂2
2

remain unchanged.

Although there is some debate about whether BN actually mitigates the internal co-
variance shift problem (SANTURKAR et al., 2018), there is not doubt that BN allowed CNN

2.7. Final considerations 69

models to achieve higher levels of generalization with less training effort. Consequently, BN
has been present in the architecture of most CNN models since its introduction (KHAN et al.,
2020). Similar to the ReLU activation function, there are also many variants of BN, such as
Layer Normalization, Instance Normalization, Group Normalization (WU; HE, 2018), and Filter
Response Normalization (FRN) (SINGH; KRISHNAN, 2020). Although these variants solve
many intrinsic problems of BN, only FRN seems to compete with BN in practice.

2.7 Final considerations
Convolutional Neural Networks are powerful DL tools for solving challenging visual

recognition tasks. This chapter has covered the most relevant CNN definitions for efficiently
using and creating CNN models. Additionally, due to the characteristics and objectives of this
project, the content of this chapter was oriented towards image classification and object detection
tasks. The next chapter will cover different deep learning models and transfer learning strategies.

71

CHAPTER

3
TRANSFER LEARNING AND DEEP CNN

MODELS

3.1 Initial considerations

The previous chapter presented the fundamental concepts for Convolutional Neural
Networks (CNN). This chapter will explore more advanced CNN concepts that are relevant to
this project. In short, we will formally describe the details of Transfer Learning (TL), a powerful
class of strategies that allows successful CNN models to transfer their knowledge from a source
domain (e.g., everyday object images) to a target domain (e.g., biological images). We will
primarily focus on inductive transfer learning strategies, where labeled data is available in the
source and target domains (Ribani; Marengoni, 2019). Next, we will present some relevant CNN
models commonly used for TL applications, such as ALEXNET, RESNET, POLYNET, NASNET,
SENET, and EFFICIENTNET. Finally, we will show some TL strategies for image classification
and object detection tasks.

3.2 Transfer Learning definitions

Applying the notation presented in (PAN; YANG, 2010) to a visual recognition context,
a domain D is defined by an image space I and a marginal probability distribution %(�),
where � = {�1, �2, . . . , �=} ∈ I is a set of = training images. Additionally, a task T in the domainD
is defined by two components: a label space Y and a predictive function 5D (·). In this regard, a
dataset � results from associating = training images �8 ∈ I with = class labels H8 ∈ Y; (1 ≤ 8 ≤ =).
Then, during training, 5D (·) learns from � to predict the class label for each novel input
image �=4F ∈ D.

Let us now define DS and DT as the source and target domains, respectively. By the
same logic, we designate TS and TT as the source and target tasks, respectively. Then, TL is

72 Chapter 3. Transfer learning and deep CNN models

defined as follows: given DS, TS, DT, and TT, TL attempts to improve the target predictive
function 5T(·) by combining the information from DS and TS with that from DT and TT. As
a prerequisite, the source predictive function 5S(·) must have a high chance of predicting the
correct output for unseen input images ∈ IS, whereas 5T(·) should still have significant room for
improvement. For example, as shown in Figure 11, typical TL situations occur when the number
of training samples in DS is much higher than that of DT, (=S � =T).

Figure 11 – A typical transfer learning situation. Dataset 1 and dataset 2 become the source and target
datasets, respectively. Consequently, the model learned from the first dataset becomes the
source predictive function 5S(·), and the model learned from the second dataset becomes the
target predictive function 5T(·).

Dataset 2

Good
performance

Bad
performance

(large amount of

training data)

(Small amount of

training data)

Dataset 1

Model 2

Model 1

(a) Without TL

Good
performance

(large amount of

training data)

(Small amount of

training data)

Transfer Learning
Strategy

Good
performance

Dataset 1

Model 2

Model 1Dataset 1
(large amount of

training data)

Dataset 2

(b) With TL

Source: Elaborated by the author.

3.3 Transfer learning and CNN models
CNN models have consistently achieved outstanding results in various domains since

the arrival of ALEXNET (SINGH et al., 2018; TONG; WU; ZHOU, 2020; PICCIALLI et al.,
2021). In this regard, three factors mainly affect the performance of CNN models: (i) their
architectural design, (ii) their size, and (iii) the amount of training data available. Indeed, with
enough training data, deep CNN models can reach greater levels of generalization than their
shallower versions (Xie et al., 2017; TAN; LE, 2019). However, when the data is scarce, deep
CNN models will likely have overfitting problems (OQUAB et al., 2014).

The above situation has led to an increasing effort to collect large amounts of data. While
there is a great success in some domains (SUN et al., 2017; Sumbul et al., 2019), there are
still many other domains where large-scale data collection is not feasible. Fortunately, there
are at least two classes of strategies that can mitigate the lack of training data. One is data
augmentation, and the other is transfer learning (TL). Indeed, both classes of strategies have
been actively researched throughout the years (ZOPH et al., 2020a; Ha; Liu; Liu, 2020). This
project focuses on a particular TL setting, Inductive TL, in which the training samples from the
source and target domains are known in advance (Ribani; Marengoni, 2019).

3.3. Transfer learning and CNN models 73

3.3.1 CNN models as predictive functions

Using the definitions from section 3.2, CNN models are predictive functions that map
images into class labels (in classification tasks) or labeled bounding boxes (in detection tasks). In
this sense, TL requires that any CNN model serving as a source predictive function 5S(·) satisfy
the following criteria: (i) it must have been trained on a large-scale dataset from a domain that
contains rich information, and (ii) it must have high predictive performance in the assigned task.

For the first requirement, the scientific community typically uses ImageNet (RUS-
SAKOVSKY et al., 2015), a dataset with about 1.2 million training samples organized in 1000
class labels. Additionally, since ImageNet has a wide variety of everyday objects, it typically
leads to semantically strong CNN models that satisfy the second requirement. Therefore, in
terms of TL, ImageNet becomes the source dataset. Over the years, some datasets with many
more training samples than ImageNet have emerged (SUN et al., 2017). However, only a small
number of researchers has access to these larger source datasets.

Once we have a good 5S(·), we can apply TL in target domains where the training data
cannot effectively cope with the given task. For instance, as shown in Figure 11a, domains with
small datasets usually fall into this category. Popular target datasets include Pascal-VOC (EV-
ERINGHAM et al., 2010), Flowers (Nilsback; Zisserman, 2008), StanfordCars (Krause et

al., 2013), and COCO (Lin et al., 2014).

3.3.2 General Transfer Learning strategy

Over the years, many researchers have proposed multiple TL strategies for different
target tasks (OQUAB et al., 2014; Guo et al., 2019; Tan; Pang; Le, 2020) and domains (SAHA
et al., 2016; LU et al., 2018). Despite the large number of TL strategies available, most of them
receive as input one source predictive function 5S(·) and one target dataset (see Figure 11b).
In general, 5S(·) is commonly referred to as the pre-trained CNN model (see Figure 12a).
Then, the TL strategy generates an improved target predictive function 5T(·) by repurposing the
knowledge stored in 5S(·) with the information from the target dataset. In more detail, most TL
strategies have a general template consisting of the following two steps.

1. Modify the pre-trained CNN model. As shown in Figure 12, this step consists of trun-
cating the pre-trained CNN model at some layer, and then adding one or more new
components. In this sense, a component may be a block, an encoder, a traditional classifier,
or any other structure that receives and outputs data. Indeed, this modification can be as
simple as replacing the last fully-connected layer with another (YOSINSKI et al., 2014)
or as complex as adding multiple components and connections to the pre-trained CNN
model (CAI; VASCONCELOS, 2018; Guo et al., 2019).

2. Train the modified model. The training protocol can be applied to only the newly added

74 Chapter 3. Transfer learning and deep CNN models

components (RAZAVIAN et al., 2014; CIMPOI et al., 2016; SONG et al., 2016), or to the
entire modified CNN model (ZHANG; XUE; DANA, 2017; LI et al., 2019), or to only a
few selected layers and blocks (Rusu et al., 2016; Guo et al., 2019).

Figure 12 – First step of the general TL strategy. (a) Pre-trained CNN model with four blocks ("1
– "4). (b) Modified model that results from first removing the block "4 of (a), and then
adding new components (#1, #2, . . .) and connections. %: component that computes the final
predictions for the classification or detection task.

PM1 M2 M3 M4

Pre-trained CNN model

(a) 5S (·)

M1 M2 M3 N1 N2

Truncated CNN model

P

New components

(b) Improved 5T (·)

Source: Elaborated by the author.

3.4 Main CNN models used as source predictive func-
tions

The effectiveness of the TL strategy is directly associated with the quality of the pre-
trained CNN model (Kornblith; Shlens; Le, 2019; ZHANG; DAVISON, 2020). Hence, the choice
of a pre-trained CNN model is of particular importance in obtaining satisfactory TL results.
Fortunately, numerous repositories in popular DL frameworks, including Keras (CHOLLET et

al., 2015) and PyTorch (PASZKE et al., 2017), have made public an updated list of pre-trained
CNN models that use ImageNet as their source dataset. However, selecting the best model is
not a trivial matter, as the list of CNN models with innovative architectural designs is vast and
continually growing (KHAN et al., 2020).

Several factors influence the decision to prefer one pre-trained CNN model over another.
Table 1 lists some of these factors. For instance, a typical approach is to select the pre-trained
CNN model that achieved the highest ImageNet top 1 accuracy value. In support of this idea,
Kornblith, Shlens and Le (2019) found a positive correlation between the ImageNet top 1
accuracy value and the one obtained by the modified model in the target task.

Another relevant factor is the size of the CNN model. For example, some of the top CNN
models shown in Table 1 have above 100M trainable parameters, which becomes problematic in
target tasks that require as quick inference times as possible. On the other hand, TL strategies
that only train the newly-added components of the modified CNN model may find it helpful
to choose the pre-trained model based on the number of activation maps it generates at its last
convolutional layer. A final point to keep in mind is related to the work of Mormont, Geurts and
Marée (2018), which showed that the correlation between accuracy values in the source and

3.4. Main CNN models used as source predictive functions 75

Table 1 – Comparison of the most popular CNN models. The “Full Size” column contains the number
of trainable parameters in the entire CNN model. On the other hand, the “FE Size” column
counts only the parameters in the feature extraction part of the CNN model. Additionally, we
provide the number of activation maps computed by the last convolutional layer of each CNN
model. The ImageNet top 1 and top 5 accuracy values merely indicative, since they can vary
from one library to another.

CNN model Full Size FE Size # Act. maps Top 1 Acc. Top 5 Acc.

ALEXNET (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) 61M 2M 256 56.5% 79.1%
VGG-16 (SIMONYAN; ZISSERMAN, 2015) 138M 15M 512 71.6% 90.4%
VGG-19 (SIMONYAN; ZISSERMAN, 2015) 144M 20M 512 72.4% 90.9%

RESNET-18 (HE et al., 2016) 12M 11M 512 69.8% 89.1%
RESNET-50 (HE et al., 2016) 26M 24M 2048 76.1% 92.9%
RESNET-152 (HE et al., 2016) 60M 58M 2048 78.3% 94.1%
DENSENET-121 (HUANG et al., 2017) 8M 7M 1024 74.4% 92.0%
DENSENET-201 (HUANG et al., 2017) 20M 18M 1920 77.3% 93.5%

INCEPTION-V3 (SZEGEDY et al., 2016) 24M 22M 2048 77.3% 93.5%
XCEPTION (CHOLLET, 2017b) 23M 21M 2048 79.1% 94.4%
INCEPTION-V4 (SZEGEDY et al., 2017) 43M 41M 1536 80.1% 95.0%
INCEPTIONRESNET-V2 (SZEGEDY et al., 2017) 56M 54M 1536 80.5% 95.3%
POLYNET (Zhang et al., 2017) 95M 93M 2048 81.0% 95.6%

RESNEXT-50-32X4D (Xie et al., 2017) 25M 23M 2048 77.6% 93.7%
RESNEXT-101-32X4D (Xie et al., 2017) 44M 42M 2048 78.8% 94.4%
SERESNET-50 (Hu et al., 2019) 28M 26M 2048 77.6% 93.8%
SERESNET-152 (Hu et al., 2019) 67M 65M 2048 78.7% 94.4%
SERESNEXT-50-32X4D (Hu et al., 2019) 28M 26M 2048 79.1% 94.4%
SERESNEXT-101-32X4D (Hu et al., 2019) 49M 47M 2048 80.2% 95.0%
SENET-154 (Hu et al., 2019) 115M 113M 2048 81.3% 95.5%

NASNET-A (ZOPH et al., 2018) 89M 85M 4032 82.7% 96.1%
EFFICIENTNET-B0 (TAN; LE, 2019) 5M 4M 1280 77.7% 93.5%
EFFICIENTNET-B1 (TAN; LE, 2019) 8M 7M 1280 78.6% 94.2%
EFFICIENTNET-B2 (TAN; LE, 2019) 9M 8M 1408 80.6% 95.3%
EFFICIENTNET-B3 (TAN; LE, 2019) 12M 11M 1536 82.0% 96.1%
EFFICIENTNET-B4 (TAN; LE, 2019) 19M 18M 1792 83.4% 96.6%
EFFICIENTNET-B5 (TAN; LE, 2019) 30M 28M 2048 83.4% 96.6%
EFFICIENTNET-B6 (TAN; LE, 2019) 43M 41M 2304 84.0% 96.9%
EFFICIENTNET-B7 (TAN; LE, 2019) 66M 64M 2560 84.1% 96.9%

RESNET-RS-50 (Bello et al., 2021) 36M 34M 2048 79.9% 95.0%
RESNET-RS-101 (Bello et al., 2021) 64M 62M 2048 82.3% 96.0%
RESNET-RS-152 (Bello et al., 2021) 87M 85M 2048 83.7% 96.6%
RESNET-RS-270 (Bello et al., 2021) 130M 128M 2048 84.4% 97.0%
RESNET-RS-350 (Bello et al., 2021) 164M 162M 2048 84.7% 97.0%
RESNET-RS-420 (Bello et al., 2021) 192M 190M 2048 85.0% 97.1%

Source: Research data.

target tasks is more diffuse in target domains that substantially differ from the source domain
The following subsections will detail the architectures of the most relevant CNN models used for
TL.

3.4.1 LeNet, AlexNet, and ZFNet

LENET is a pioneering family of small CNN models that were used for recognizing low-
resolution images, such as handwritten digits. For instance, Figure 5 shows LENET-5 (LECUN
et al., 1998), a CNN model with five trainable layers: two convolutional layers in its feature

76 Chapter 3. Transfer learning and deep CNN models

extraction part and three fully-connected layers in its classification part. Furthermore, there
is a flattening layer between the feature extraction and classification parts that reshapes the
4D tensors into 2D ones Other important traits of LENET-5 are as follows: (i) it has a sub-
sampling layer after each convolutional layer, (ii) its activation function is a hyperbolic tangent,
and (ii) its last fully-connected layer has Gaussian connections. Although LENET-5 achieved
high predictive power, it was only applied to low resolution images at the time due to limited
computing resources.

Many years later, Krizhevsky, Sutskever and Hinton (2012) proposed ALEXNET, a CNN
model that dramatically outperformed all traditional methods in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) (RUSSAKOVSKY et al., 2015). In general, ALEXNET is
a larger version of LENET-5 and its training would not have been possible without the arrival
of Graphics Processing Units. In more detail, ALEXNET is deeper than LENET-5 as it has two
more convolutional layers, and it is wider since it includes more filters per convolutional layer.
Additionally, its feature extraction part reduces the size of each input image by approximately 32
times. Last, ALEXNET uses two regularization techniques to minimize overfitting: (i) it places a
dropout layer between two consecutive fully-connected layers (SRIVASTAVA et al., 2014) and
(ii) data augmentation.

Zeiler and Fergus (2014) proposed ZFNET, a CNN model derived from smartly tweaking
the ALEXNET hyper-parameters. For example, ZFNET uses 7× 7 filters instead of the 11×
11 filters from ALEXNET. The main contribution of ZFNET was to demonstrate that it is
not necessary to drastically change the architecture of a CNN model to achieve significant
improvements in recognition accuracy.

3.4.2 VGG models

The Visual Geometry Group 1 developed VGG (SIMONYAN; ZISSERMAN, 2015), a
family of CNN models that also follow the LENET design pattern. In more detail, as shown in
Figure 13, the feature extraction part of all VGG models comprises five blocks of contiguous
convolutional layers. Each block ends with a max-pooling layer that reduces the spatial size
of the input activation maps by half. As for the classification part, it always involves three
fully-connected layers.

Indeed, the researchers created different VGG models to explore the limits of how many
convolutional layers can be included in a CNN model without adversely affecting performance.
In particular, the researchers found that VGG-16 (see Figure 13a) and VGG-19 (see Figure 13b),
with 13 and 16 convolutional layers, respectively, offered the best trade between training cost and
predictive power. However, beyond 16 convolutional layers, the marginal increase in predictive
power does not compensate for the additional cost associated with training the model.

1 The Visual Geometry Group belong to the Department of Engineering Science, University of Oxford.
Website: <http://www.robots.ox.ac.uk/~vgg/>.

http://www.robots.ox.ac.uk/~vgg/

3.4. Main CNN models used as source predictive functions 77

VGG models also have the following properties: (i) They only include 3×3 filters with a
stride of one. (ii) They used mini-batch GD with momentum to optimize the trainable parameters
of the CNN model. (iii) Lastly, they combined two regularization techniques to avoid overfitting
during training (dropout layers and L2 penalty)

Figure 13 – Architecture of VGG-16 and VGG-19. Both models have five modules in their feature
extraction part, and three fully-connected layers in their classification part. There is a flattening
layer between the last max-pooling layer and first fully-connected layer (not shown in the
image). FC: Fully-connected layer, MP: max-pooling layer, conv: convolutional layer.

(a) VGG-16

(b) VGG-19

Source: Elaborated by the author.

3.4.3 Network in Network

A major drawback of the LENET, ALEXNET, and VGG models is that they can only
process fixed-size input images. This limitation stems from the flattening layer that all these
models use to convert the feature extraction part output into a format suitable for the classification
part. In more detail, the flattening layer, as the name suggests, reshapes the (#� ,�,,,�) input
tensor into an (#� ,� ∗, ∗�) output tensor by treating each spatial position as a scalar value.

In this context, Lin, Chen and Yan (2013) developed NIN, a CNN model whose feature
extraction part consists of four blocks, with three convolutional layers per block. The architecture
of NIN presents the following particularities.

• Two of the three convolutional layers in each NIN block have kernel sizes of 1× 1.
Internally, each 1×1 filter works as a fully-connected layer that acts independently on
every pixel location of the tensor along the channel dimension.

78 Chapter 3. Transfer learning and deep CNN models

• Additionally, NIN uses a global average pooling layer (GAP) instead of a flattening layer.
Since the GAP layer does not take into account the spatial information of the input tensor
(see subsection 2.6.4), the NIN model can process input images of arbitrary sizes.

• Lastly, NIN does not have an explicit classification part, as the output of the GAP layer
becomes the prediction.

Despite not being as popular as other CNN models, NIN greatly influenced the architec-
ture of many modern CNN models. Indeed, the rest of this section will present only CNN models
that have at least have one GAP layer and one convolutional layer with kernel sizes of 1×1.

3.4.4 Inception and Xception

INCEPTION is a family of CNN models that combines the ideas from NIN (GAP layer,
1×1 filters) with the paradigm of repeated blocks. In general, there are four pure INCEPTION

models, where each of them is based on an older version, if any. In this sense, the first version is
INCEPTION-V1, and the last is INCEPTION-V4. Each of these versions are described below.

• INCEPTION-V1 or GOOGLENET (SZEGEDY et al., 2015). It consists of two initial con-
volutional layers followed by nine inception blocks, a GAP layer, and a fully-connected
layer. To accelerate the training process, INCEPTION-V1 also has auxiliary classifiers
that are connected to earlier inception blocks. This version rapidly popularized for three
primary reasons: (i) it won the ILSVRC challenge in 2014, (ii) it dramatically reduced the
number of trainable parameters related to previous ILSVRC winners by having a classifi-
cation part with only one fully-connected layer instead of three, and (iii) it introduced the
inception block. As shown in Figure 14a, an inception block contains parallel subnetworks
that apply different sets of operations to the same input. For example, one subnetwork
may apply a max pooling operation followed by a convolution with a filter size of 5×5,
while another may only apply a convolution with a 1×1 filter size. Then, at the end of
each inception block, there is a concatenation layer responsible for merging the outputs of
all the subnetworks.

• INCEPTION-V2 and INCEPTION-V3 (SZEGEDY et al., 2016). It increased the number
of inception blocks to eleven. Also, it introduced the idea of factoring convolutions,
which within the context of convolutional layers it is the replacement of big filter sizes
with a series of smaller ones. For instance, Figure 14b shows how a convolutional layer
with a filter size of 5×5 can be replaced by two contiguous convolutional layers of 3×3.
INCEPTION-V2 introduced the idea of asymmetric convolutions, in which it replaced a 7×7
filter with one 7×1 filter followed by another 1×7 filter. As for INCEPTIONV3, it maintains
almost the same architecture as INCEPTIONV2, but it adds batch normalization (IOFFE;
SZEGEDY, 2015) to the auxiliary classifiers.

3.4. Main CNN models used as source predictive functions 79

• INCEPTION-V4 (SZEGEDY et al., 2017). It applied all the concepts introduced in the
previous versions to create a more uniform architecture. In more detail, this version has
three primary inception blocks, which were repeated several times. Consequently, the total
number of inception blocks in INCEPTION-V4 is higher than the one in INCEPTION-V3.
Additionally, this version explicitly defines two reduction blocks, in charge of reducing
the spatial size of the input sets of activation maps.

Figure 14 – Two different versions of the same inception block. The INCEPTION-V2 version replaces
the 5×5 filters with two consecutive 3×3 filters.

(a) Inception block (INCEPTION-V1) (b) Inception block (INCEPTION-V2)

Source: Elaborated by the author.

On the other hand, Chollet (2017b) proposed XCEPTION, a CNN model that reinterprets
all INCEPTION-V3 blocks as depthwise separable convolutions. In the paper, the depthwise
separable convolution is defined as a pointwise convolution followed by a depthwise convo-
lution. In this regard, the pointwise convolution is equivalent to the standard convolution with
a 1×1 filter size. In contrast, the depthwise convolution is the grouped convolution when the
number of groups is equal to the number of channels in the input tensor. See subsection 2.6.1
for more information concerning the grouped convolutions. XCEPTION achieved slightly bet-
ter results than INCEPTION-V3 on the ImageNet and JFT datasets using the same number of
trainable parameters.

3.4.5 ResNet, DenseNet, ResNeXt, and SENet models

RESNET (HE et al., 2016) is a simple yet powerful family of CNN models whose feature
extraction part can easily contains more than 100 convolutional layers. Indeed, its architecture is
almost as simple as the VGG model. However, RESNET can reach much deeper architectures
(up to 152 layers) while still providing a reasonable balance between training cost and predictive
power. The success of RESNET stems from the concept of building blocks. As shown in
Figure 15, each building block receives an input tensor �8 and applies a transformation F (�8, {,8})
over it. Then, instead of returning just F (�8, {,8}), the building block returns the sum �8+1 =

F (�8, {,8}) + �8. Note that ,8 contains the trainable parameters of the building block, and F
becomes the residual mapping to learn.

80 Chapter 3. Transfer learning and deep CNN models

There are two types of building blocks in RESNET models: (i) normal (see Figure 15a)
and (ii) “bottleneck” (see Figure 15b). According to the original authors, both types are suitable
for small and large RESNET models. However, the “bottleneck” building blocks are significantly
less expensive than the normal ones. Therefore, they are recommended for RESNET models
with 50 layers or more. Regarding their training process, the RESNET models usually adopt the
parameter initialization from (He et al., 2015), use BN layers (IOFFE; SZEGEDY, 2015), and
avoid the dropout layers.

Figure 15 – Types of building blocks in RESNET. The normal building block works very well on
relatively small RESNET models (up to 49 layers), and the “bottleneck” building block works
best on larger CNN models (up to 152 layers).

256
conv
3 × 3

256
conv
3 × 3

Ii +

F() +Ii Ii

(a) Normal building block

128
conv
1 × 1

128
conv
3 × 3

512
conv
1 × 1

Ii +

F() +Ii Ii

(b) Bottleneck building block

Source: Elaborated by the author.

In response to the success of RESNET, Huang et al. (2017) developed DENSENET, a
family of CNN models that support architectures with up to 264 layers. In this regard, the feature
extraction part of every DENSENET model is organized into four dense blocks, each of which
is subdivided into several dense layers. As shown in Figure 16, within the 8-th dense block
(1 ≤ 8 ≤ 4), the 9-th dense layer must process the concatenation of activation maps generated
by all preceding dense layers [� (8)0 , �

(8)
1 , . . . , �

(8)
9−1]. Then, the transformation F9 is applied as

follows: � (8)
9
= F9 ([� (8)0 , �

(8)
1 , . . . , �

(8)
9−1]). In general, F9 is defined as a composite function of three

consecutive operations: BN + ReLU + convolutional layer. Additionally, between each pair of
contiguous dense blocks, a transition layer reduces the spatial size of the tensor given from one
dense block to the next. Finally, there is a GAP layer that communicates the output from the last
dense block to the fully-connected layer that generates the predictions.

Figure 16 – Dense Block operations. At the 9-th dense layer, the composite function F process the
output tensors from all previous dense layers [� (8)0 , �

(8)
1 , . . . , �

(8)
9−1].

F1 F2 F3 F4I
(i)
1 I

(i)
2 I

(i)
3 I

(i)
4I

(i)
0

Source: Elaborated by the author.

3.4. Main CNN models used as source predictive functions 81

RESNEXT (Xie et al., 2017) and SENET (Hu et al., 2019) are other highly influential
CNN models built on RESNET. As for the RESNEXT models, they are multi-branch architectures
that were proposed as an extension of the RESNET models. More specifically, the building blocks
of these models include grouped convolutions (see subsection 2.6.1), in which independent set
of filters see different parts of the input activation maps. Regarding the SENET models, they
include several “Squeeze-and-Excitation” (SE) blocks, which can be inserted after any other
block or layer. For example, it is frequently plugged after the building blocks of the RESNET or
RESNEXT models. A SE block explicitly models the channel inter-dependencies of its input
activation maps, which has proven to be useful for improving the performance of other CNN
models in several datasets.

3.4.6 NASNet and EfficientNet

Zoph et al. (2018) used Google’s vast computing resources to develop NASNET, a family
of CNN models whose architectures were learned directly from the dataset. In more detail, the
goal was to find the optimal blocks and cells (groups of blocks) within a search space that included
13 different operations, such as 1×1 convolutions, 3×3 depthwise separable convolutions, and
3×3 max-pooling. The authors used a reinforcement learning (RL)-based approach to perform
the search process, and used the CIFAR-10 dataset as their learning target. In this regard, the RL-
based approach rewarded architectures with high accuracy values at each search step. Following
the RL-based approach’s execution, the architecture obtained was extended by stacking multiple
copies of its cells. The resulting architecture became a NASNET model, which then followed
the training from scratch procedure on ImageNet (see subsection 2.5.2).

NASNET has the merit of paving the way for large-scale neural architecture search
approaches. Consequently, CNN models with automatically derived architectures have been
proposed over the years, outperforming their hand-engineered counterparts on various reference
datasets (LIU; SIMONYAN; YANG, 2019; REAL et al., 2019; Wu et al., 2019; TAN; LE,
2021). One of the most prominent examples is EFFICIENTNET (TAN; LE, 2019), a family
of CNN models typically included in the winning solutions to a range of visual recognition
challenges (Ha; Liu; Liu, 2020).

With the aid of an RL-based algorithm, EFFICIENTNET is the result of a Pareto solu-
tion that optimizes both time efficiency (measured in FLOPS) and accuracy. Unlike NASNet,
EfficientNet performed the architecture search on the ImageNet dataset. We refer the reader to
(Tan et al., 2019) for details about how the RL-based search algorithm works. The output of
the searching process was a baseline CNN model that received the name of EFFICIENTNET-B0.
Regarding its architecture, EFFICIENNET-B0 consists of seven blocks, where the operations,
connections, and number of identical layers in each block were all determined by the RL-based
search algorithm. In the case of EFFICIENTNET-B1, it is a scaled-up version of the baseline
CNN model. As a result, the scaling increased (i) the input image resolution at training time

82 Chapter 3. Transfer learning and deep CNN models

from 224× 224 to 240× 240, (ii) the depth by self-repeating the sub-blocks of layers within
each block, and (iii) the width by generating more activation maps at each block. These three
dimensions are further scaled up in EFFICIENTNET-B2, EFFICIENTNET-B3, and so on.

3.4.7 Other important CNN models

Many other CNN models can fulfill the role of source predictive functions. For example,
Szegedy et al. (2017) proposed INCEPTION-RESNET, a family of CNN models that successfully
combined the ideas of inception blocks and residual units. In more detail, the INCEPTION-
RESNET models have two types of blocks: (i) pure inception blocks and (ii) residual inception
blocks. Essentially, the first type of block reduces the resolution of the input set of activation
maps by half, while the second type follows the residual unit formula �8+1 = � (�8) + �8. However,
in this case, � is an inception block that differs from those described in (SZEGEDY et al., 2015)
in two ways: (i) it ends with a 1×1 convolutional layer that forces the output channel dimension
of � (�8) to match that of �8, and (ii) it does not include pooling layers.

POLYNET (Zhang et al., 2017) is the polynomial version of the INCEPTION-RESNET

model. In short, as opposed to the RESNET and INCEPTION-RESNET models whose blocks
only follow the structure � (�8) + �8, POLYNET proposed the following types of blocks: (i)
�8+� (�8) +� (�8)2, (ii) �8+� (�8) +�� (�8), and (iii) �8+� (�8) +� (�8), where � and� are inception
blocks.

Lastly, Bello et al. (2021) presented RESNET-RS, another highly effective class of CNN
models with the potential to compete with much more complex CNN models in both accuracy
and inference speed. According to RESNET-RS, scaling rules are more important than optimizing
architectural changes. Consequently, RESNET-RS did not substantially modify the architecture
of the classic RESNET models. Instead, it employed an exhaustive search algorithm to derive
the following scaling rules. First, use depth-scaling when overfitting is a concern, otherwise use
width-scaling. Second, increase the input image resolution more slowly than EFFICIENTNET.
For instance, instead of starting with 224×224 input images, RESNET-RS began with 128×128.

3.5 Transfer Learning for image classification tasks
In essence, (i) ImageNet is the source domain dataset (�S), (ii) the source task (TS)

is generic object recognition, and (iii) the source predictive function (5S(·)) is the chosen pre-
trained CNN model. Now, this section will cover TL strategies when given a target domain T, a
target domain dataset �T, and a image classification task TT.

Due to the boom in deep learning research, there is also an enormous variety of TL
strategies. Nonetheless, as described in subsection 3.3.2, the goal of all TL strategies is to
repurpose the knowledge from the pre-trained CNN model to solve the target classification task
at stake. Consequently, every TL strategy involves two basic steps: (i) modify the pre-trained

3.5. Transfer Learning for image classification tasks 83

CNN model and (ii) train the modified model. Based on these basic steps, there are two primary
types of TL strategies.

• TL strategies that employ the pre-trained part of the modified model to yield feature vectors
that later will serve to train the newly-added components (RAZAVIAN et al., 2014; SONG
et al., 2016; Wang et al., 2019)

• TL strategies that follow a fine-tuning process. During fine-tuning, old and new compo-
nents are trained together (ANDREARCZYK; WHELAN, 2016; ZHANG; XUE; DANA,
2017; Guo et al., 2019).

The next subsections contain brief descriptions of the main TL strategies for each type.

3.5.1 Type 1: Pre-trained part of the modified CNN model used as
a feature extractor

In this type of TL strategies, all the parameters belonging to the pre-trained part of the
modified CNN model are frozen. Then, these TL strategies propose algorithms for transforming
the pre-trained part output tensors into semantically-strong feature vectors. Next, a dedicated
classifier is trained and evaluated using feature vectors computed from the labeled and unlabeled
samples. Brief descriptions of some TL strategies of this type are provided below.

• FC-CNN (RAZAVIAN et al., 2014). It truncates the pre-trained CNN model up to one of
its hidden fully-connected layers and attaches a dedicated classifier (e.g., Support Vector
Machine classifier) at the end of truncated model. Consequently, unlike other TL strategies,
FC-CNN does not propose a new algorithm for computing feature vectors. It instead
trains and evaluates the dedicated classifier using the feature vectors computed by the
fully-connected layer. FC-CNN has a fast computation time and consistently produces
good results with both ALEXNET and VGG models. Nevertheless, it is not recommended
for pre-trained CNN models with a single fully-connected layer because it could result in
feature vectors that are too biased towards the source domain.

• GAP-CNN. It has been integrated into many DL frameworks despite not being formally
proposed by any research group. For example, in Keras (CHOLLET et al., 2015), the
definition of every pre-trained CNN model includes two parameters (“include_top” and
“pooling”) that facilitate the creation and configuration of GAP-CNN. In this regard,
the following two situations arise when assembling the modified CNN model. (i) The
pre-trained CNN model has a GAP layer2 connecting its feature extraction part with its
classification part, or (ii) it does not have one. In the former case, GAP-CNN truncates

2 Global Pooling Average layers are covered in subsection 2.6.4.

84 Chapter 3. Transfer learning and deep CNN models

the model up to its GAP layer, while in the latter case, GAP-CNN truncates the model
up to its last convolutional layer and then attaches a new GAP layer. The modified model
ends with a dedicated classifier that processes the features vectors computed by the GAP
layer. Mormont, Geurts and Marée (2018) and Scabini et al. (2019) used GAP-CNN to
compare different pre-trained CNN models for digital pathology classification and texture
recognition tasks, respectively. Moreover, Mormont, Geurts and Marée (2018) conducted
experiments by truncating the pre-trained CNN model at intermediate convolutional layers.
In this project, we will extend the above idea by including feature selection approaches
into GAP-CNN.

• FV-CNN (CIMPOI et al., 2016). The Fisher Vector encoder (FV) is one of the most
powerful versions of the bag of visual words (BoW) approach (PERRONNIN; SáNCHEZ;
MENSINK, 2010). Here, FV is used to transform sets of activation maps into high-
dimensional feature vectors. Then, FV-CNN reduces the size of the resulting feature
vectors with the Principal Component Analysis (PCA) method. As with the previous
TL methods, the modified model also ends with a dedicated classifier (e.g., a Support
Vector Machine), where the training and evaluation processes occur. Experimental results
presented in the original study indicated that truncating the pre-trained CNN model
at its last convolutional layer led to higher accuracy rates for category-based texture
datasets3 than when truncating the CNN model at any other layer. Furthermore, FV-CNN
consistently outperforms FC-CNN across a variety of datasets. However, FV-CNN is also
more computationally expensive than FC-CNN because it needs to generate a codebook
before computing the feature vectors. This codebook can be thought of as an intermediate
representation that summarizes the information provided by the truncated model.

• Neural-based Feature Transformation (NFT) (SONG et al., 2016). It is a computationally
expensive TL strategy based on FV-CNN and FC-CNN. In more detail, NFT starts by
concatenating the feature vectors generated by FV-CNN and FC-CNN for each input image.
This set of feature vectors then feeds a set of feed-forward neural networks (FFN). By
taking the intermediate feature representations from the hidden layer of FNN, NFT creates
another set of feature vectors. Lastly, NFT uses the new set of feature vectors to train and
evaluate the dedicated classifier. Based on the research paper, the NFT results are superior
to the FV-CNN results, but training will take more time.

• EASYTL (Wang et al., 2019). This TL strategy focuses on improving the dedicated
classifier. Therefore, the first step of EASYTL is to perform an intra-domain alignment
between two different sets of feature vectors. Specifically, the first set should be drawn
from the training data in �T, whereas the second set should be unlabeled data. This
alignment is intended to identify common elements between the two sets. After completing
the alignment process, it yields a set of feature vectors that act as fixed parameters for a

3 Definition and examples of category-based texture datasets are in subsection 4.2.2.

3.5. Transfer Learning for image classification tasks 85

predefined cost function �. Then, following the minimization of �, unlabeled samples will
receive corresponding class labels. According to the authors, EASYTL is most appropriate
for datasets where there is a high degree of intra-class variability between the labeled and
unlabeled data. Indeed, datasets that meet the above criteria are not highly uncommon.
Examples of such datasets are: KTH-TIPS2b, Outex10, and Outex12.

3.5.2 Type 2: Fine-tuning the modified CNN model

This type of TL also involves modifying the pre-trained CNN model. Consequently, as
shown in Figure 12, the modified model must include a pre-trained component with connections
to one or more newly-added components. Then, the fine-tuning process consists of partially or
entirely retraining the modified model with samples from the target dataset �) .

In general, TL strategies of this type can achieve outstanding results. However, they have
two primary drawbacks. (i) the fine-tuning process may take various minutes or several days,
depending on the size of the dataset. (ii) There is a need to set hyper-parameters carefully, as
they can dramatically affect the fine-tuning process positively or negatively. Both drawbacks
are intertwined, as it is necessary to fine-tune the modified CNN model numerous times to find
an optimal hyper-parameter set (LI et al., 2020). The following paragraphs describe some TL
methods of this type.

• Standard fine-tuning. Here, the pre-trained CNN model is truncated at some layer. After-
ward, the modified model is built by adding a fully-connected layer of 2 neurons at the end
of the truncated model, where 2 is the number of classes in the target dataset. Additionally,
Yosinski et al. (2014) demonstrated that simply replacing the original fully-connected
layer with one containing c neurons is sufficient to observe the benefits of using this TL
strategy.

• T-CNN (ANDREARCZYK; WHELAN, 2016). In addition to adding a fully-connected
layer of 2 neurons to the truncated CNN model, T-CNN proposed the inclusion of an
energy layer between the last convolutional layer and the first fully-connected layer of the
modified CNN model. This energy layer is responsible for computing the energy statistic
for each given activation map. As an additional note, T-CNN discussed the benefits of
reusing earlier convolutional layers of the AlexNet model.

• Deep Texture Encoding Network (DEEPTEN) (ZHANG; XUE; DANA, 2017). This TL
strategy results from combining the main ideas of FV-CNN with the standard fine-tuning
method. In this regard, DEEPTEN introduced a new encoding layer, which unlike the one
in FV-CNN, is fully differentiable, allowing optimization algorithms such as SGD to be
applied. Then, DEEPTEN builds a modified CNN model by placing the new encoding
layer between the truncated CNN model and the fully-connected layer of 2 neurons. As

86 Chapter 3. Transfer learning and deep CNN models

an additional note, the encoding layer can learn robust residual encoders, which makes it
appropriate for texture classification tasks.

• SPOTTUNE (Guo et al., 2019). Only RESNET models are compatible with this TL strategy.
In more detail, SPOTTUNE performs adaptive fine-tuning by running two copies of the
pre-trained RESNET model, referred to as (i) the fine-tune route and (ii) the frozen
route. As their names suggest, the fine-tune route optimizes its internal parameters during
training, while the frozen route does not. Moreover, SPOTTUNE introduced a policy
network, which determines which route each training sample from the target dataset must
take. For example, the first routing decision entails selecting the initial building block from
one of the two RESNET copies. Likewise, there are two possible paths to take for each
successive routing decision. Hence, each training sample follows a dynamic route, which
terminates in a fully-connected layer of 2 neurons. SPOTTUNE optimizes all non-frozen
layers, including those from the policy network, during training. Performance-wise, this
TL strategy achieves promising results across many target domains (e.g., sketch images
and texture images).

3.6 Transfer Learning for object detection tasks

Once again, (i) the source domain (�S) is ImageNet, (ii) the source task (TS) is generic
object recognition, and the source predictive function (5s(·)) is the chosen pre-trained CNN
model. This section will briefly explain some object detection models (5T(·)) that deal with an
object detection task (TT), when given a dataset (�T) in a target domain) .

3.6.1 From image classification to object detection

With the tremendous advances made in image classification tasks over the last decade,
object detection tasks have also received a great deal of attention. Indeed, it is becoming more
common for researchers to publish a novel CNN model that faces image classification tasks
alongside a modified version designed for object detection tasks (ZOPH et al., 2018; Tan et al.,
2019; WANG et al., 2020).

In general, when a CNN model performs well in image classification tasks it modified
version also does well in object detection tasks (LIU et al., 2020). Several factors can contribute
to this situation. For example, as described in section section 2.3, all object detection tasks
have an internal classification sub-task. Indeed, even when there is a single foreground class, a
classification step must be performed to distinguish foreground from background.

In practice, the modified versions used for object detection result from using an intrinsic
TL strategy, in which the feature extraction part of the original CNN model receives new connec-
tions to components tasked with locating and classifying the objects in an image. Consequently,

3.6. Transfer Learning for object detection tasks 87

as discussed in subsection 2.4.2, the feature extraction part of an object detector is referred to as
the backbone, and it is easily interchangeable with any other backbone that uses the same base
architecture (Ghiasi; Lin; Le, 2019; TONG; WU; ZHOU, 2020).

Two backbones share the same base architecture, when each can be divided into #1
blocks such that blocks at the same level compute activation maps with the same spatial resolution.
For instance, all RESNET models share a five-block architecture, in which there is a subsampling
layer at the end of each block that reduces the spatial resolution of the input activation maps by
half. As the above situation occurs with other CNN families, such as DENSENET, RESNEXT,
and EFFICIENTNET, it is relatively easy to replace the backbones within an object detector.

3.6.2 Types of object detectors

As described in section 2.3, object detection tasks are inherently more challenging
than image classification tasks. Therefore, the two types of TL strategies discussed in section
section 3.5 are irrelevant in this case as the majority of TL strategies for object detection rely on
fine-tuning approaches. Nevertheless, these TL strategies can still be categorized based on the
number of stages the modified model will take to generate its final predictions (LIU et al., 2020).
The following are brief descriptions of each type and its principal representatives.

Two-stage and multi-stage detectors

The modified model of a two-stage detector generally includes the backbone of the
pre-trained CNN model, a region-proposal component, and a final prediction component. More
specifically, two-stage detectors became popular after the introduction of R-CNN (Girshick et

al., 2014). The first stage of R-CNN generates numerous region proposals using the Selective
Search Algorithm (SSA), which is directly applied to the input images. Then, the second stage
encodes, refines, and classifies those region proposals based on the pre-trained CNN model, a
bounding box regression module and a class-specific linear SVM classifier. Note that only the
second stage of R-CNN used the pre-trained CNN model.

The author of R-CNN also proposed FAST R-CNN (Girshick, 2015), a TL strategy that
achieved faster processing times than RCNN by doing the following modifications. (i) It only
reuses the feature extraction part of the pre-trained CNN model (the backbone), while R-CNN
reused layers up to the classification part. (ii) Although FAST R-CNN also uses SSA to generate
the region proposals, it applies SSA to the set of activation maps generated by the backbone
instead of applying it to the input image. (iii) Finally, in the prediction stage, FAST R-CNN uses
fully-connected layers to classify and refine the region proposals.

FASTER R-CNN (REN et al., 2017) is an object detector that significantly improved
its region-proposal stage by introducing the Region Proposal Network (RPN). In this sense,
RPN is a fast and independent component that receives activation maps from the backbone and

88 Chapter 3. Transfer learning and deep CNN models

generates region proposals. Additionally, RPN can be trained simultaneously with the rest of the
modified model. On the other hand, dai et al. (2016) developed R-FCN, a fully-convolutional
object detector, allowing it to achieve better processing speed than FASTER R-CNN. In more
detail, R-FCN modifies the second stage of FASTER R-CNN by replacing the fully-connected
layers with convolutional layers. These convolutional layers are responsible for generating one
activation map per class. Then, each set of feature maps computes a class score for every region
proposal provided by RPN. Lin et al. (2017) presented the Feature Pyramid network (FPN), an
upgrade to RPN that exploits the inherent multi-scale nature of the backbone architecture. Thus,
unlike RPN, FPN can generate region proposals for both small and large objects within a single
image.

Regarding multi-stage object detectors, they often include one or more prediction stages,
responsible for refining and correcting the results of the previous stages. Consequently, this type
of object detector typically achieves higher predictive power but at the cost of taking longer
processing times. In this regard, CASCADE R-CNN (CAI; VASCONCELOS, 2018) is one of
the most reliable multi-stage object detectors due to its simple implementation and consistent
detection gains across several applications. Indeed, CASCADE R-CNN inspired other multi-stage
object detectors, such as HTC (Chen et al., 2019) and CASCADE R-CNN-RS (Du et al., 2021).

One-stage detectors

By merging the region-proposal and prediction stages into one, one-stage (or unified)
object detectors can significantly reduce the computational burden of two- and multi-stage
object detectors. They became popular after the publication of OVERFEAT, which locates and
classifies objects using a sliding-window approach over the set of activation maps computed by
the pre-trained backbone of ALEXNET. Moreover, OVERFEAT creates a pyramid of images of
different resolutions for each image, allowing it to detect small and large objects. In this sense,
OVERFEAT may be considerably slower when the task involves detecting both small and large
objects due to the need for higher image resolutions. In general, OverFeat inspired other very
popular one-stage detectors, such as SSD (LIU et al., 2016) and YOLO (REDMON; FARHADI,
2017; Redmon; Farhadi, 2018).

However, the higher speed of one-stage detectors came at the expense of lower accuracy
results. In this regard, Lin et al. (2017) concludes that this lower accuracy results primarily from
an imbalance between the foreground and background classes, i.e., RPN or FPN tend to create
many more region proposals for the background class than for the foreground class. Therefore,
Lin et al. (2017) proposed an improved one-stage detector called RETINANET that could equal
the accuracy of state-of-the-art two-stage detectors. In more detail, RETINANET adds a factor
to the cross-entropy loss function to boost the reward of well-classified region proposals. This
slightly modified loss function received the name of Focal Loss (FL).

The success of RETINANET inspired more evolved one-stage detectors such as RE-

3.7. Final considerations 89

FINEDET (ZHANG et al., 2018b), M2DET(ZHAO et al., 2019), EFFICIENTDET (Tan; Pang; Le,
2020), and RETINANET-RS (Du et al., 2021).

3.7 Final considerations
When training data is limited, transfer learning (TL) is one of the best techniques in

DL for producing CNN models with enough predictive power to handle challenging target
tasks. This chapter covered different the basic definitions in TL, the general steps that each
TL strategy follows, the most used pre-trained CNN models, and the main TL strategies for
image classification and object detection tasks. Finally, we also discussed that, despite the large
and growing number of TL strategies, it is crucial to choose a pre-trained CNN model that can
maximize the benefits of the chosen TL strategy.

91

CHAPTER

4
DATASETS AND EVALUATION METRICS

4.1 Initial considerations

This chapter describes the datasets and evaluation metrics used in the experimental part
of this thesis. In a supervised machine learning environment, the above two elements are essential
in determining whether a proposed predictive model outperforms others on a specific task.

Datasets are helpful to identify the strengths and weaknesses of different predictive
models. Therefore, the scientific community continually publishes robust datasets as benchmark-
ing tools that help researchers identify the domains where their predictive models outperform
others (Lin et al., 2014; RUSSAKOVSKY et al., 2015; Bansal et al., 2017; Sumbul et al.,
2019). This situation has spawned a growing effort to collect diverse and challenging publicly
available datasets to understand better the pros and cons of predictive models across multiple
domains (Hurt et al., 2018; TRIANTAFILLOU et al., 2020).

As for evaluation metrics, they allow scientists to quantify the performance of individual
predictive models on a specific task. This quantification typically involves splitting a given
dataset � into two disjoint sets (�train, �test). The model then goes through a training phase
at �train, followed by a test phase at �test. The chosen evaluation metric assigns a score to the
predictive model by comparing its predicted outputs with the real ones. Although multiple
evaluation metrics are available for each task (HOSSIN; SULAIMAN, 2015; MOCCIA et al.,
2018; LIU et al., 2020), some may give misleading results in certain situations. For example, in
classification tasks with imbalanced datasets, a badly-chosen evaluation metric can erroneously
assigns good scores to models that only predict a single class (Fatourechi et al., 2008).

92 Chapter 4. Datasets and Evaluation Metrics

4.2 Datasets

This project considers twenty-two annotated datasets: fourteen for image classification
tasks and eight for object detection tasks. Regarding the classification tasks, Table 2 presents the
description of 14 texture datasets. Regarding the detection tasks, Table 3 presents the description
of seven datasets for single-class stomata detection, and Table 4 describe one dataset for single-
class and multi-class pollen detection.

4.2.1 Splits and splitting strategies

Before detailing the datasets for classification and detection tasks, here we define two
fundamental terms: (i) split and (ii) splitting strategy. Given the annotated dataset �, the term
split refers to one of the many possible partitions of � into two non-overlapping sets, namely the
training set (�train) and the test set (�test), where � = �train∪�test. In this regard, every split is
essential as it allows predictive models to have proper training and evaluation procedures.

Some datasets provide predefined splits that allow researchers to successfully benchmark
their models against one another. On the other hand, when a dataset � has no predefined splits,
it is up to the researcher to generate them using a splitting strategy. Indeed, there are various
splitting strategies in the literature, each with its own advantages and disadvantages (Raschka,
2018). We briefly describe some of them in the following paragraphs.

• Stratified :-fold cross-validation. It first generates : non-overlapping folds by randomly
shuffling � in a stratified manner. Then, it creates : splits, where the training set (�train) of
each split contains a different combination of : −1 folds, and �test contains the remaining
fold. See Figure 17a for an example of the stratified three-fold cross-validation.

• Leave-one-out validation. It is equal to the :-fold cross-validation approach with : = =�,
where =� is the total number of samples in �. In more detail, this strategy generates =�
splits, where each one assigns a single sample to �test, and the remaining =� −1 samples
to �train.

• Stratified <-repeated holdout validation. It involves creating < stratified random splits,
each with ?% of the samples from � going to �train, and the other (100-?)% going to �test.
See Figure 17b for an example of this strategy with < = 3 and ? = 50%.

For benchmarking purposes, this project generally uses the predefined splits of each
dataset, if available. Otherwise, we generate splits with the :-fold cross-validation approach or
the <-repeated holdout validation approach. The following subsections describe the twenty-two
datasets in more detail.

4.2. Datasets 93

Figure 17 – High-level view of two splitting strategies. In the first case, the folds ensure that each image
in the dataset will appear exactly once in the test set, while in case two, there is no such
guarantee.

FoldsDataset

B

Stratified

shuffling

 +

Fold creation

 Split creation
 Split creation

Split

creation

Split 1 Split 2 Split 3

Btrain

Btest

Btest

Btrain

Btrain

Btest

Btrain

Fold 1

Fold 2

Fold 3

(a) Stratified :-fold cross validation (:=3)

Dataset

 Stratified shuffling + Split creation

B

 Stratified shuffling + Split creation

Stratified

shuffling

 +

Split creation

Split 1 Split 3Split 2

Btrain

Btest

Btrain

Btest

Btrain

Btest

(b) Stratified <-repeated holdout validation (< = 3, ? = 50%)

Source: Elaborated by the author.

4.2.2 Datasets for texture classification

In image analysis, texture is an intrinsic visual attribute that contains rich semantic
information. Although there is no consensus about the exact definition of texture, we perceive
it as the organization (or even the disorganization) of simple or complex pixel patterns in an
image. Its analysis is of great importance in many disciplines (ZARITSKY et al., 2011; VIDYA
et al., 2015). Therefore, the scientific community continuously searches for the methods that
best characterize the texture information in an image (HUMEAU-HEURTIER, 2019).

In this sense, Table 2 provides details on fourteen datasets typically used in following
texture recognition task: given an image with some unknown texture, the question is to assign
the image to one of a set of predefined classes based on the information that is embodied in
its pixel values. Except for CUReT_Q4, all the datasets in Table 2 have been extensively studied
over the years (HOSSAIN; SERIKAWA, 2013; CAVALIN; OLIVEIRA, 2017; LIU et al., 2019).
Indeed, as shown in Figure 18, these datasets have different challenges and goals resulting from
two main factors: (i) the type of texture problem they address and (ii) the splitting strategy used.

– First factor: instance-based vs category-based datasets

Texture datasets can be grouped into (i) instance-based datasets and (ii) category-based
datasets. We refer the reader to the last column of Table 2 to learn which type of texture problem

94 Chapter 4. Datasets and Evaluation Metrics

Table 2 – Benchmark datasets used for texture recognition. The symbols #ipc and #splits indicate the num-
ber of images per class and the total number of dataset splits, respectively. Additionally, # (train)

ipc

and # (test)
ipc are, respectively, the average number of training and test images per class. Datasets

with two splitting strategies can also have two different values for # (train)
ipc , # (test)

ipc and #B?;8CB.
(C): category-based datasets, (I): instance-based datasets.

Texture
Dataset

#
Classes

#ipc
Splitting
strategy

#B?;8CB #
(train)
ipc #

(test)
ipc

(C)-
(I)?

Brodatz (BRODATZ, 1966) 111 10 Holdout/CV 10 5/9 5/1 I
UIUC (LAZEBNIK; SCHMID; PONCE, 2005) 25 40 Holdout/CV 10 20/36 20/4 I
USPtex (BACKES; CASANOVA; BRUNO, 2012) 191 12 Holdout/CV 10 6/10.8 6/1.2 I
STex (KWITT, 2010) 476 16 Holdout 10 8 8 I
Vistex (PICARD et al., 1995) 54 16 Holdout 10 8 8 I
CUReT (DANA et al., 1999) 61 92 Holdout 10 46 46 I
CUReT_Q4 (modified from Drbohlav and Leonardis (2010)) 61 368 Predefined 6 184 184 I
Outex10 (O10) (OJALA; PIETIKAINEN; MAENPAA, 2002) 24 180 Predefined 1 20 160 I
Outex12 (012) (OJALA; PIETIKAINEN; MAENPAA, 2002) 24 380 Predefined 1 20 360 I
Outex13 (013) (OJALA et al., 2002) 68 20 Predefined/CV 1/10 10/18 10/2 I
MBT (ABDELMOUNAIME; DONG-CHEN, 2013) 154 16 Holdout/CV 10 8/14.4 8/1.6 I
FMD (SHARAN; ROSENHOLTZ; ADELSON, 2009) 10 100 Holdout 10 50 50 C
Kth-Tips2b (CAPUTO; HAYMAN; MALLIKARJUNA, 2005) 11 432 Predefined 4 324 108 C
DTD (CIMPOI et al., 2016) 47 120 Predefined 10 80 40 C

Source: Research data.

each dataset addresses.

Instance-based datasets contain classes with images that belong to the same physical
sample. In this sense, more challenging datasets are those that consider rotation, illumination,
and/or viewpoint changes like the CUReT and Outex suites. Figure 18a and Figure 18c show
exemplary images from instance-based datasets. On the other hand, category-based datasets
consider more physical samples for the same class. Therefore, the task is to discriminate between
the physical samples that belong to different classes. See Figure 18b, Figure 18d, and Figure 18e
for exemplary images from category-based datasets.

In general, there is more intra-class variability in category-based datasets than in instance-
based datasets. However, while instance-based datasets seem easier than their category-based
equivalents, some texture datasets such as Outex10 and Outex12 proved particularly challenging
for some highly regarded predictive models, like FV-CNN (LIU et al., 2019).

– Second factor: predefined splits vs. randomly-generated splits

We can also group texture datasets according to the splitting strategy they follow in the
experiments. In this sense, the fourth column of Table 2 shows the strategies we use for each
dataset. As stated in subsection 4.2.1, except for the Outex13 dataset, we do not generate new
splits on datasets that already include predefined ones. This decision is motivated by the fact
that datasets that provide predefined splits, generally evaluate specific aspects of the proposed
models. For example, Outex10 and Outex12 evaluate whether the proposed model is robust
against rotation and illumination changes (see Figure 18a). Similarly, each predefined split in

4.2. Datasets 95

Figure 18 – Exemplary images from five texture datasets. Only images of two classes are displayed for
each dataset. The training and test sets correspond to one split of the dataset (either randomly-
generated or predefined). (a) Outex10 (predefined), (b) Kth-Tips2b (predefined), (c) MBT
(random), (d) FMD (random), and (e) DTD (predefined).

Class 1 Class 2 Class 1 Class 2

(a)

(b)

(e)

(d)

(c)

Training Set Test Set

Source: Research data.

Kth-Tips2b ensures that images belonging to the same physical sample can only go either to
�train or to �test (see Figure 18b). Additional details for datasets with predefined splits are as
follows:

• DTD. Since each predefined split includes a training, validation, and test set, the first two
sets are merged into �train, and the remaining one becomes �test.

• Kth-Tips2b. In each split, �train contains the images from three of the four physical
samples, and �test includes the images from the remaining physical sample.

• Outex suites. We use their predefined splits without further processing.

• CUReT_Q4. It was inspired by the work of Drbohlav and Leonardis (2010), who discovered
inherent problems with the CUReT dataset that cause predictive models to yield misleading
results. In this sense, Drbohlav and Leonardis (2010) achieved more reliable outcomes
by using the following splitting strategy. (i) First, he doubled the number of samples in
CUReT by horizontally slicing every CUReT image into two sub-images of the same size.
(ii) Then, the sub-images in the upper half went to �train, and those in the lower half went
to �test. On the other hand, CUReT_Q4 is the result of cutting every image from CUReT
horizontally and vertically. This slicing procedure generates four sub-images of equal size

96 Chapter 4. Datasets and Evaluation Metrics

Figure 19 – CUReT_Q4 and its predefined splits. CUReT_Q4 is the result of transforming every image from
CUReT into four sub-images. These sub-images are reorganized according to their regions of
origin (&1,&2,&3,&4). Each predefined split uses a different combination of two regions to
create �train and �test.

C
U

R
e

T

D
a
ta

se
t

Q3 Q4

Q1Q2

C
U

R
e

T
_

Q
4

D

a
ta

se
t

 Split creation

Cut images in four

parts + Reorganize

Split 1 Split 2 Split 3 Split 6

Q2

Btrain

Btest

Q1 Q1

Q2Q3

Q1

Q4

Q2 Q3

Q4

Q4

Q3

Q2

Q3

Q4

Q1

Source: Elaborated by the author.

per image. Consequently, CUReT_Q4 has four times the number of samples as CUReT, and
their sub-images are organized according to their region of origin: &1, &2, &3, &4 (see
Figure 19). Next, we define six splits with the following splitting strategy: the training
set of each split includes all the sub-images that belong to a different combination of two
regions (e.g., &1 and &3), and the test set consists of all the sub-images that belong to the
other two regions (e.g., &2 and &4).

Most of the datasets listed in Table 2 do not provide predefined splits. In such cases, we
use the following splitting strategies to generate stratified random splits.

• Stratified <-repeated holdout validation (with < = 10, ? = 50%), which is also used by
many deep learning related publications (CIMPOI et al., 2016; LIU et al., 2016; ZHANG;
XUE; DANA, 2017; LIU et al., 2019)

• The stratified :-fold cross validation (with : = 10), which is highly recommended by many
researchers (Raschka, 2018).

4.2.3 Datasets for single-class stomata detection

This thesis also proposes predictive models that deal with the task of single-class stomata
detection. We refer to as stomata detection, the automatic generation of bounding boxes that

4.2. Datasets 97

correctly enclose all stomata in a given microscopic image of the leaf epidermis. In this regard,
we use the term “single-class” because there is only one foreground class: the stoma.

– A little context in plant stomata research

Stomata are vital microstructures found primarily in the epidermis of plant leaves.
Anatomically, a stoma is a microscopic pore whose aperture is regulated by a pair of surrounding
guard cells (SANTELIA; LAWSON, 2016). Additionally, many plant species have special
epidermal cells, known as subsidiary cells, that surround each stoma. Indeed, many authors use
the number, shape and arrangement of subsidiary cells as relevant features that define different
stomata types (CARPENTER, 2005; RUDALL; CHEN; CULLEN, 2017).

When opened, the stoma allows gas exchange between the plant and the environment1.
This exchange is crucial for the photosynthesis and transpiration of plants. Therefore, many
research works have studied the impact of stomatal features (i.e., size, density, and distribution
pattern) on the productivity and transpiration efficiency of some plant species (LAWSON;
BLATT, 2014; MORALES-NAVARRO et al., 2018; CAINE et al., 2019).

In general, each new study requires biologists to perform manual stomata phenotyping
on microscopic images of epidermal leaf tissues. The quality of these images depends on the
sample preparation technique and the imaging method used (YUAN et al., 2020). For example,
some sample preparation techniques require placing the epidermal tissues in staining solutions
to improve stomata visualization (EISELE et al., 2016). In this context, predictive models that
perform automatic stomata detection can substantially speed up new studies.

– Manual microscopic image annotation

Within the context of a generic object detection task, a valid training sample consists
of an image (�) and a set of rectangular bounding box annotations (�) (Lin et al., 2014). Each
annotation (6 ∈ �) can be described by five parameters 〈6; , 6G , 6H, 6F, 6ℎ〉, where 6; is its class
label, (6G , 6H) indicates the pixel coordinates of its top left corner, and (6F, 6ℎ) defines its size.

For stomata detection, a valid training sample also consists of an image and a set of
annotations. However, the number and type of parameters used in the annotations may differ
from those commonly used in generic object detection. For example, since there is only one
foreground class, 6; becomes an implicit parameter that always represents the class “stoma”.
Additionally, as all existing stomata datasets provide incomplete training samples (images
without annotations), we annotated them manually. This situation allowed us to choose the
annotation type that best suits the task. In more detail, we considered three annotation types:
(i) rotated ellipses, (ii) rectangular bounding boxes, and (iii) square bounding boxes. Of the
three, the first and third types take advantage of the stomatal morphological characteristics (see

1 Typically, the entry of CO2 and the release of water vapor.

98 Chapter 4. Datasets and Evaluation Metrics

Figure 20 – Comparison of different annotation types and their number of parameters. This thesis per-
formed manual annotation of microscopic images with square bounding boxes. At the image
level, annotations with square bounding boxes can depend on two parameters instead of three
if the same side length is used in all of them.

major axis

minor axis

rotation angle

center point (x,y)

(a) Rotated ellipses

top left corner (x,y)

height

width

(b) Rectangular bounding boxes

top left corner (x,y)

side length
(the same in all annotations)

(c) Square bounding boxes

Source: Elaborated by the author.

Figure 20). At the end, given that our goal was to annotate as many images as possible, we
opted for the third approach. Therefore, Table 3 reports the number of images and the number of
stomata we annotated using square bounding boxes. The details on how we arrived at the above
decision are as follows.

Although most object detection literature relies on bounding boxes (LIU et al., 2020;
DHILLON; VERMA, 2020), some evidence suggests that using rotated ellipses can yield more
reliable results in certain domains (WANG et al., 2019). As shown in Figure 20a, this evidence
may also be valid for stomata detection, where the shape of a stoma is close to that of a rotated
ellipse. However, manual annotation with rotated ellipses requires adjusting five parameters
per stoma (Figure 20a), while rectangular and square bounding box annotations require four
(Figure 20b) and three parameters (Figure 20c), respectively.

In practice, the time it takes to create an annotation is directly proportional to the number
of parameters we need to adjust. This time difference becomes evident when the annotation
occurs under unfavorable imaging conditions (e.g., the stoma is partially outside the image
limits or in a blurred region) and when the number of stomata to annotate is large. Since our
study includes up to 350 stomata per image, we used square bounding boxes. Consequently, we
manually annotated 77202 stomata within 1703 microscopic images (see Table 3).

As shown in Figure 20c, each square bounding box annotation depends on three param-
eters: the pixel coordinates of its top left corner and its side length. However, as the stomata
within an image are similar in size, we managed to speed up the annotation process by using only
bounding boxes of equal side length. Therefore, for each image, the annotation process focused
on adjusting two parameters instead of three. Finally, we corrected the size of the bounding

4.2. Datasets 99

Table 3 – Datasets used to train and evaluate STOMADET. H: holdout, P: predefined, #img: number of
images, #sp: number of species, #stoma: average number of stomata per split.

Dataset
Splits

Training Set Test Set
Magnification

Sample
Preparation
Technique

Imaging
MethodDataset #img #sp #stoma #img #sp #stoma

SimoneDB H(5) 58 4 7863 58 4 7791
Ctenanthe (FILHO; DE, 2018) H(5) 44 1 7093 43 1 7147 50, 100 Direct Isolation Reflected light
WoodyL (SILVA et al., 2016) P(1)/H(5) 95 21 7887 116 32 9410 100, 200 Clear & stain Transmitted light
Poplar (FETTER et al., 2019) P (1) 24 1 825 60 1 2074 400 Nail Polish DIC
Ginkgo (BARCLAY; WING, 2016) P (1) 120 1 1431 64 1 1099 200 Lamina Peel SEM
CuticleDB (BARCLAY et al., 2007) P (1) 140 137 3596 252 231 6149 400 Clear & stain Brightfield
USNM/USBG (FETTER et al., 2019) P (1) 239 103 5138 390 116 9699 100, 200, 400 Nail Polish DIC, SEM

StomaDB (all datasets) P(1)/H(5) 720 268 33833 983 386 43369 – – –

Source: Research data.

boxes that needed it.

The amount of manually annotated images per dataset can be calculated by summing
the #img values from the “Training set” and “Test set” columns in Table 3. In general, the
rate of annotated images is not very high in many datasets. For example, we only annotated
#img = 140 of the 678 training images in CuticleDB. Two main reasons explain the above
situation. (i) The dataset had many low-quality images that we removed (e.g., stomata are in large
blurred regions). (ii) Because manual annotation is still a laborious task, we preferred diversity
to quantity. Therefore, datasets that include fewer plant species or fewer magnification factors
(e.g., 50x, 100x, 200x) are less likely to end up with a high proportion of annotated images.

– Details of each stomata dataset

This thesis performs experiments on the seven datasets listed in Table 3. These datasets
contain microscopic images of leaf surfaces and involve different plant species, sample prepa-
ration techniques, and imaging methods. Figure 21 presents one or two exemplary images per
dataset. For better visualization of the stomata, these exemplary images display relatively small
cropped regions rather than full-size microscopic images.

In general, microscopic images within a dataset share similar global characteristics, and
images between datasets do not. For example, as shown in Figure 21e and Figure 21f, WoodyL
images are predominantly red, while those from SimoneDB are mainly blue (see Figure 21a
and Figure 21b). However, these exemplary images also reveal that, despite sharing the same
coloration, epidermal surfaces are often quite different between plant species. Below is a brief
description of each stomata dataset.

• SimoneDB. It contains 15654 stomata distributed in 116 microscopic images from four
plant species. Since this dataset does not provide any predefined split, we created five splits

using the repeated holdout validation method with ? = 50%. We stratified every split by

100 Chapter 4. Datasets and Evaluation Metrics

plant species to ensure that all training and test sets have approximately the same number
of stomata.

• Ctenanthe (FILHO; DE, 2018). It consists of 87 microscopic images containing a total
of 14240 stomata. We generated five splits using the stratified holdout validation method
with ? = 50%. In this case, the term “stratified” means that both the training and test sets
ended up with approximately the same amount of 50x and 100x microscopic images. All
images belong to the abaxial side of Ctenanthe Oppenheimiana leaf surfaces. Figure 21c
and Figure 21d show cropped images at 100x and 50x magnification, respectively. These
leaves come from plants, which at an early stage of development, were placed in controlled
growth chambers and subjected for 60 days to the following conditions: relative humidity
of 55%, photon flux density of 150`mol/<2, and hydration regimen of 50ml of �2$ per
day. Additionally, half of the plants were subjected to 4-hour photoperiods and the other
half to 24-hour photoperiods. The sample preparation involved mounting 0.52<2 sections
of live Ctenanthe leaves on glass slides. These sections were then hydrated with distilled
water and covered with glass coverslips. Finally, the abaxial surface of each leave were
digitalized using the Axio-Lab light microscope from Zeiss. We refer the reader to (FILHO;
MACHICAO; BRUNO, 2017) for more details concerning the sample preparation and
imaging methods used in this dataset.

• WoodyL (SILVA et al., 2016). It contains 17297 stomata spread across 211 microscopic
images of abaxial leaf surfaces from 32 woody species. We refer the reader to (SILVA et

al., 2017) for details of the protocol followed to create this dataset. Two exemplary images
are shown in Figure 21e and Figure 21f. We rearranged this dataset by first partitioning it
into 32 subsets, where each subset includes all images of a single woody species. Then,
subsets with at least six elements formed the first group, and the remaining subsets formed
the second group. The first group ended up with about 66% of the woody species and
concentrated more than 85% of the images. The two groups followed different splitting
strategies. In the first group, we created five splits using the stratified holdout validation
method with ? = 50%, where each split received about the same number of images per
woody species. By contrast, the images from the second group formed a predefined split

of only one test set. Then, we generated five new splits by appending the images from the
predefined split to every randomly generated split. Therefore, Table 3 shows that WoodyL
has, on average, more samples in its test set than in its training set.

• Poplar. This dataset contains microscopic images of the abaxial and adaxial sides of
Populus Balsamifera leaves. We refer the reader to (FETTER et al., 2019) for details on
the sample preparation technique and the imaging method used in this dataset. The original
version of this dataset includes a predefined split with 3123 training images and 175 test
images. Since it is not possible to manually annotate all the images, we selected some of
them. Indeed, as this dataset only involves one plant species and one magnification (x400),

4.2. Datasets 101

all images are visually similar to the cropped image shown in Figure 21g. Therefore, we
annotated 24 images from the training set and 60 images from the test set.

• Ginkgo. This dataset contains microscopic images of Ginkgo Biloba leaf surfaces at x200
magnification. The unannotated version of Ginkgo provides a predefined split with 408
training images and 200 test images. The sample preparation technique and the imaging
method used in this dataset are described in (BARCLAY; WING, 2016). Additionally, as
shown in Figure 21h, Ginkgo images possess unique characteristics that make them stand
out from images in other datasets. In total, we manually annotated 120 images from the
training set and 64 images from the test set.

• CutibleDB (BARCLAY et al., 2007). The original dataset (without annotations) includes
a predefined split of 678 training images and 696 test images. Each image shows optical
microscopy of adaxial and abaxial plant cuticles placed side by side. Besides, unlike
previous datasets, CutibleDB involves many different plant species, with almost one
microscopic image per plant species. The annotation process consisted of the following
steps. (i) We discarded poor-quality microscopic images as in previous datasets. (ii) We
removed the adaxial side of each image because it generally exhibits poorly visualized
stomata. (iii) We randomly selected 140 images from the training set and 252 images from
the test set for manual annotation. Given the high number of plant species in this dataset,
we tried to annotate as many images as possible, especially in the test set. Therefore, the
proportion of manually annotated images in the training set is around 20%, while in the
test set, it is 36%. Figure 21i and Figure 21j show two exemplary images from this dataset.

• USNM/USBG (FETTER et al., 2019). This dataset also includes a large number of plant
species, although not as many as CuticleDB. The unannotated version of USNM/USBG has
409 training images and 696 test images. As in the above datasets, we first discarded all
images where stomata are poorly visualized. We randomly selected 239 training images and
390 test images from the original dataset for manual annotation. Therefore, the proportion
of annotated images is 58% in the training set and 56% in the test set. Figure 21k and
Figure 21l show two exemplary images from this dataset.

• StomaDB. It has 77202 annotated stomata distributed over 1703 microscopic images of
leaf surfaces. StomaDB resulted from merging the seven datasets in Table 3. Since the
merging process’s main task was to obtain the splits for StomaDB, we arranged the input
datasets into two groups according to their number of splits. More specifically, datasets
with one split went to the first group, and those with five splits went to the second
group. Next, we obtained two temporary datasets (StomaDB� and StomaDB�) by merging
each group’s datasets. In more detail, StomaDB� acquired one split by concatenating the
individual splits provided by Poplar, Ginkgo, CuticleDB, and USNM/USBG. Additionally,
StomaDB� obtained five splits, where its 8-th split resulted from concatenating the 8-th

102 Chapter 4. Datasets and Evaluation Metrics

Figure 21 – Exemplary microscopic images of the leaf epidermis of 11 species. (a) Hymenaea Cour-
baril (SimoneDB dataset), (b) Schizolobium parahyba (SimoneDB dataset), (c-d) Ctenan-
the Oppenheimiana (Ctenanthe dataset), (e) Ilex affinis (WoodyL dataset), (f) Sym-
plocos nitens (WoodyL dataset), (g) Populus balsamifera (Poplar dataset), (h) Ginkgo
biloba (Ginkgo dataset), (i) Diatenopteryx sorbifolia (CuticleDB dataset), (j) Diospy-
ros nicaraguensis (CuticleDB dataset), (k) Cinnamomum camphora (USNM/USBG dataset),
(l) Carya glabra (USNM/USBG dataset).

(a) (b)

(f)(e)

(l)(k)(j)(i)

(h)(g)

(d)(c)

Source: Research data.

splits of SimoneDB, Ctenanthe, and WoodyL (1 ≤ 8 ≤ 5). Finally, StomaDB obtained five
splits by concatenating each split of StomaDB� with a copy of the split of StomaDB�.
Given the different imaging methods, sample preparation techniques, and plant species
involved, StomaDB has enough data to train and evaluate solid predictive models.

4.2.4 A dataset for multi-class pollen detection

This thesis proposes predictive models that address the task of multi-class pollen detec-
tion. In more detail, given a microscopic image, the task is to locate and classify the pollen grains
within the image. Therefore, unlike stomatal detection, predictive models for pollen detection
must not only generate precise bounding boxes but also assign the correct pollen type to each
of them. This thesis considers six different pollen types. Table 4 shows the name and family of
each pollen type.

– A little context in pollen research

Palynology is an interdisciplinary science that focuses on the study of pollen and other
bioparticles. In this context, pollen is a non-living type of bioaerosol that plays a crucial role in
the development and evolution of ecosystems (FRÖHLICH-NOWOISKY et al., 2016). Therefore,

4.2. Datasets 103

Table 4 – Pollen dataset summary. Corylus and Betula have significantly more samples than the other
pollen types.

Pollen Genus Family # Images # Pollen grains

Betula Betulaceae 20 138
Carpinus Betulaceae 26 29
Corylus Betulaceae 25 194
Fagus Fagaceae 30 34
Quercus Fagaceae 36 47
Salix Salicaceae 27 59

Source: Research data.

the study of different pollen types has led to multiple applications, such as allergy diagnosis
(D’AMATO et al., 2007; BARBER et al., 2008; PABLOS et al., 2016), climate change analysis
(ZISKA et al., 2011; D’AMATO et al., 2015), palaeoclimatic reconstruction (AMOROSI et al.,
2004; BERTINI, 2010; MAGRI et al., 2017) and pesticide monitoring during agronomic seasons
(MCART et al., 2017; BÖHME et al., 2018). In general, these applications rely on the correct
identification of pollen grains in microscopic images. However, since manual identification of
pollen types is time-consuming, automated approaches have been proposed throughout the years.
We refer the reader to (HOLT; BENNETT, 2014) for a review of proposed automated methods
from 1997 to 2013.

– Manual annotation of pollen grains

As explained in subsection 4.2.3, a valid training sample consists of an image (�) and
a set of annotations (�). Therefore, since we received a dataset consisting of 164 microscopic
images without annotations, we manually annotated them using square bounding boxes. We
opted for the above annotation type for the following reasons. (i) Given that pollen grains are
nearly spherical (see Figure 22), they can fit well in bounding boxes with aspect ratios close
to 1:1. (ii) Besides, manual annotation processes are much faster with square bounding boxes
than with their rectangular equivalents because the former requires one less parameter to adjust
than the latter (see Figure 20).

Therefore, within the framework of a pollen detection task, each annotation (6 ∈ �) is
described by four parameters 〈6; , 6G , 6H, 6B〉, where 6; is its pollen type, (6G , 6H) indicates the
coordinates of its top left corner, and 6B is its side length.

– Details of the pollen dataset

This dataset consists of 501 pollen grains distributed over 164 microscopic images. These
images are (1280×960) in size, and there is at least one pollen grain per image. Besides, this
dataset considers the six tree pollen types listed in Table 4. These pollen types are often found in

104 Chapter 4. Datasets and Evaluation Metrics

Figure 22 – Exemplary microscopic images of pollen grains of six tree genus. (a) Betula, (b) Carpinus,
(c) Corylus, (d) Fagus, (e) Quercus, (f) Salix.

(a) (b) (d)(c) (f)(e)

Source: Research data.

air samples and are directly related to a significant number of type I hypersensitivity reactions
(D’AMATO et al., 2007; PABLOS et al., 2016; ŠAULIENĖ et al., 2016).

A relevant aspect of this dataset is that each microscopic image contains pollen grains
that belong to the same pollen type. Therefore, Table 4 also shows the number of images and
pollen grains associated with each pollen type. Finally, since this dataset does not provide
predefined splits, we generated ten random splits using the stratified holdout validation method
with ? = 50%.

4.3 Evaluation Metrics

Evaluation metrics play a fundamental role in discriminating between solid and weak
predictive models (Raschka, 2018). Within the framework of this thesis, each evaluation metric
is a function that receives (i) model predictions and (ii) target values; and returns a performance
score. In general, this performance score is a real number, where the higher the score, the better
the model. In this section, we first introduce the general evaluation scheme and then describe the
evaluation metrics we used in the experiments.

4.3.1 General Evaluation Scheme

Algorithm 1 presents the general evaluation scheme for estimating the average perfor-
mance of a predictive model (") when given a dataset (�) and an evaluation metric (E). In more
detail, as shown in lines 5–8 of Algorithm 1, " follows training, prediction, and evaluation
processes with each split of �. Eventually, the evaluation scheme returns the average of the
partial scores generated by E (line 11).

In addition to E, Algorithm 1 shows two other relevant functions: TRAINMODEL and
PREDICT. Since these functions vary from one proposed predictive method to another, they will
be detailed in later chapters.

4.3. Evaluation Metrics 105

Algorithm 1 – General Evaluation Scheme
1: procedure GENEVALUATION(",�,E) ⊲ Model " , dataset �, and eval metric E
2: 1← 0
3: 2← 0
4: for all (�train, �test) ∈ � do ⊲ For all splits in �
5: "̂← TRAINMODEL(" , �train) ⊲ "̂ is the trained model
6: (Itest,.test) ← �test ⊲ Separate �test into images and target values
7: .̂test← PREDICT("̂, Itest) ⊲ .̂test has the model predictions
8: 1← 1 +E(.̂test,.test) ⊲ Performance estimation
9: 2← 2+1

10: end for
11: return 1/2 ⊲ Average performance
12: end procedure

4.3.2 Evaluation metrics for classification tasks

In classification tasks, most evaluation metrics compute a confusion matrix by comparing
predicted class labels (model predictions) against target class labels (HOSSIN; SULAIMAN,
2015). For instance, Table 5 shows the confusion matrix for a binary classification task (=2 = 2),
where =2 represents the number of classes, tp and tn denote the number of correctly classified
samples, and fn and fp denote the number of misclassified samples.

Table 5 – Confusion matrix for binary classification tasks. There are two classes: the positive and
negative class.

Target positive class Target negative class

Predicted positive class # true positives (tp) # false positives (fp)
Predicted negative class # false negatives (fn) # true negatives (tn)

Source: Elaborated by the author.

Several metrics can be computed using the confusion matrix above. Some of them are
briefly described below.

• Accuracy rate (Acc). It measures the ratio of correct predictions over the total number of
predictions. It can be computed as follows: Acc = tp +tn

tp +tn +fp +fn .

• Precision (Pr). It measures the ratio of correct predictions in the positive class over the
total number of positive predictions. It has the following equation: Pr = tp

tp +fp .

• Recall (Re). It measures the ratio of correct predictions in the positive class over the total
number of positive samples. It can be computed as follows: Re = tp

tp +fn .

• False positive rate (FPR). It measures the ratio of false positives over the total number of
negative samples. It can be computed as follows: FPR = fp

tn +fp .

106 Chapter 4. Datasets and Evaluation Metrics

• F1-Score (F1). It is the harmonic mean between the precision and recall values. It has the
following equation: F1 = 2∗Pr ∗Re

Pr +Re .

• Area under the ROC curve (AUC-ROC). Unlike the previous metrics, AUC-ROC works
with estimated probabilities rather than predicted labels. Each probability ? represents
the chance of a sample belonging to the positive class. Therefore, given a threshold) ,
each sample is classified as positive if ? >) , and negative otherwise. Since the number
of positive predictions tends to decrease as) increases, AUC-ROC measures how much
the recall and FPR results vary with respect to different values of) . In general, AUC-ROC

can take values between 0 and 1, where 0.5 indicates random predictions, zero symbolize
predictions that are always wrong, and one indicates predictions that are always correct.

The above evaluation metrics can be extended to classification tasks with =2 > 2 classes
by constructing =2 ×=2 confusion matrices. In this setting, every class has its own tp , fp , and
fn . For example, a true positive for the 8-th class occurs if both the predicted and target labels
belong to that class. A false positive for the 8-th class occurs if only the predicted label belongs
to the 8-th class, while a false negative for the 8-th class occurs if only the target label belongs to
the 8-th class.

After calculating the value of tp , fp , and fn for each class, the precision, recall, and
F1-score calculation follows the same formulas as in the binary classification case. The results
by class are then averaged to obtain a single value per evaluation metric. Finally, the accuracy
metric is equal to the number of correct predictions (tp of all classes) over the sum of all the
elements of the confusion matrix.

4.3.3 Evaluation metrics for detection tasks

Evaluating the performance of predictive models for object detection involves comparing
sets of ground-truth bounding boxes against predicted ones. This comparison returns three integer
numbers for each foreground class: number of true positives (tp), number of false positives (fp),
and number of false negatives (fn).

A true positive occurs whenever a ground-truth bounding box and a predicted one
meet the following criteria: (i) they belong to the same class, and (ii) their Intersection-over-

Union (IoU) is equal to or greater than the threshold CIoU. In any other case, the predicted and
ground-truth bounding boxes are, respectively, counted as fp and fn .

In general, we can correctly assess the size and location of every predicted bounding box
by setting CIoU ≥ 0.5. Indeed, as proposed in (Lin et al., 2014), studying predictive models at
various CIoU is helpful for identifying those that predict the most accurate bounding boxes. Once
tp , fp , and fn are computed for each foreground class, they become essential pieces of the
following evaluation metrics.

4.4. Final considerations 107

• Precision (Pr), Recall (Re), and F1-score (F1). In detection tasks with a single fore-
ground class (=2 = 1), these metrics have the same formulas as their equivalents defined for
classification tasks (subsection 4.3.2). In the case of =2 ≥ 2, these metrics are computed
per class and then averaged.

• Mean Average Precision (mAP). It can take values from zero to one (or 0% to 100%),
where one indicates that the detector can perfectly locate and classify the objects within an
image. In more detail, the steps to compute mAP are as follows. (i) Generate the precision
vs. recall curve for every foreground class. (ii) At each curve, compute the 101-point
interpolated Average Precision (AP). (iii) Finally, take the mean of the computed AP s.
Indeed, mAP has been used in popular papers, such as (He et al., 2017; Redmon; Farhadi,
2018). Additionally, the value of CIoU is used as a suffix of mAP to distinguish between mAP

results computed with different CIoU values. For example, for CIoU = 0.5 and CIoU = 0.75, the
corresponding abbreviations are mAP 0.5 and mAP 0.75, respectively.

4.4 Final considerations
This chapter presented the datasets and the evaluation metrics we will use throughout the

experimental part of this thesis. In total, we consider twenty-two datasets, fourteen of which are
for image classification. Specifically, the fourteen datasets address the task of texture recognition.
Meanwhile, the remaining eight datasets pertain to object detection tasks. Indeed, seven of eight
datasets will deal with stomata localization tasks, while the remaining one will deal with grain
pollen detection.

We also introduced the concept of split as the division of a dataset into training and test
sets. Next, we discussed the most relevant splitting strategies, including the stratified :-fold cross-
validation and the stratified <-repeated hold-out validation. Finally, in addition to describing
the functioning of some evaluation metrics, we presented the general evaluation scheme as a
subroutine applicable to both image classification and object detection tasks.

Part II

Experiments

111

CHAPTER

5
CNN-BASED FEATURE EXTRACTORS VS.

HAND-ENGINEERED METHODS FOR
TEXTURE ANALYSIS

5.1 Initial considerations

The previous chapters of this thesis covered the theoretical background of CNNs, from
fundamental definitions, such as tensors and activation maps, to advanced topics, such as different
types of TL strategies. Additionally, as explained in section 2.1, CNN-based methods mainly
differ from traditional hand-engineered methods in the approach they take to compute their
features. In more detail, hand-engineered methods require a human expert to design features in
advance, while CNN-based methods derive they automatically from multiple data observations.

According to (LIU et al., 2019), CNN-based methods can successfully outperform
hand-engineered feature extractors in many datasets. Hence, given the target task of gray-level
texture recognition, the purpose of this chapter is to present situations where CNN models are
not as good as traditional hand-engineered methods. Specifically, this chapter systematically
examines several factors using seventeen feature extractors and five gray-level texture datasets.
In this context, a feature extractor is represented by either (i) a hand-engineered method or (ii) a
CNN-based method derived from the TL strategy that uses pre-trained CNN models as feature
extractors (see subsection 3.5.1).

In more detail, we first compare the individual performances of the seventeen feature
extractors using a dedicated classifier. Then, we demonstrate that several hand-engineered
methods can still be useful when comparing the accuracy results of (i) all pairings of two CNN-
based methods, and (ii) all pairings of a CNN-based method with a hand-engineered method.
Finally, this chapter analyzes the effect of changing the dedicated classifier and the effects of the
so-called “curse of dimensionality” in the performance of high-dimensional feature vectors.

112 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

5.2 Target task, datasets and pre-trained models
The prevailing idea of all methods studied here, whether hand-engineered or CNN-based,

is to transform an image into a feature vector. Then, each feature vector is fed to a dedicated
classifier such as Support Vector Machine (CORTES; VAPNIK, 1995) to solve the following
texture task. Given a gray-level image with some unknown texture, the classification task involves
assigning the image to one of several predefined classes based on the information contained in its
feature vector. Hence, after training and evaluating the dedicated classifier with non-overlapping
sets of feature vectors, the result is an accuracy rate that indicates to what extent the task has
been accomplished.

We conducted systematic experiments on five texture datasets Outex013, USPtex, MBT,
CUReT_Q4, and UIUC (described in subsection 4.2.2) with the 17 feature extractors listed below.

• Ten CNN-based methods. They result from two TL strategies: GAP-CNN and FC-CNN
(introduced in subsection 3.5.1), each with five pre-trained CNN models: VGG-19 (SI-
MONYAN; ZISSERMAN, 2015), INCEPTION-V3 (SZEGEDY et al., 2015), RESNET-50
(HE et al., 2016), DENSENET-121 (HUANG et al., 2017) and EFFICIENTNET-B1 (TAN;
LE, 2019). Figure 23 a high-level view of how GAP-CNN and FC-CNN compute a feature
vector from an input image.

• Seven hand-engineered methods. Gray Level Co-occurrence Matrix (GLCM) (HARAL-
ICK; SHANMUGAM; DINSTEIN, 1973), Gabor Wavelet (GW) (MANJUNATH; MA,
1996), Local Binary Patterns (LBP) (OJALA; PIETIKAINEN; MAENPAA, 2002), Deter-
ministic Tourist Walks (DTW) (A. R. Backes and W. N. Gonçalves and A. S. Martinez
and O. M. Bruno, 2010), the Fractal Dimension (FD) (FLORINDO; BRUNO, 2012),
MR8 Texton histograms (TH-MR8) (VARMA; ZISSERMAN, 2005) and Fourier Magni-
tude Sampling (FMS) (GONZALEZ; WOODS; EDDINS, 2009). We refer the reader to
Appendix A for the description of each traditional method.

Figure 23 – Feature extraction with two TL strategies. Both FC-CNN and GAP-CNN compute feature
vectors that are used to train and evaluate a dedicated classifier.

Processed by the
CNN model up to its
last fully-connected

layer
�1000

�3

�2

�1

Input Image FV

�4

(a) FC-CNN

 GAP
Processed by

the CNN model
up to its last
convolutional

layer

�� ��

�3 GAP

 GAP �2

�1 GAP

Input Image Activation maps FV

(b) GAP-CNN

Source: Elaborated by the author.

5.3. General experimental settings 113

5.3 General experimental settings

In all experiments, we used the general evaluation scheme described in Algorithm 1. In
this regard, the evaluation metric E was the accuracy rate, and the predictive model " comprised
both a feature extractor "feat and a dedicated classifier "clf. Additionally, the training and
inference processes of Algorithm 1 are detailed in Algorithm 2 and Algorithm 3, respectively.

In more detail, as shown in Algorithm 2, "feat transforms the set of training images �train

into a set of feature vectors -train during training. Next, -train follow a feature standardization
process which first computes the mean and standard deviation values for each feature, and then
transforms -train according to those statistics. Lastly, the dedicated classifier is trained using
the transformed set of feature vectors and corresponding labels. During inference, as shown
in Algorithm 3, "feat again transforms all test images into a set of feature vectors -test. After
that, -test is subjected to a standardization process using the mean and standard deviation values
computed during training. Finally, the trained classifier computes the predicted labels.

Algorithm 2 – Feature extractors – Training process
1: procedure TRAINMODEL(",�train) ⊲ Model " and training split �train
2: 〈"feat, "clf〉 ← " ⊲ feature extractor "feat and dedicated classifier "clf
3: 〈Itrain,.train〉 ← �train ⊲ Training images Itrain and labels .train
4: -�train ← "feat(Itrain) ⊲ -�train is the set of feature vectors
5: 〈-̂�train ,U,Σ〉 ← STANDARDIZEFVS(-�train) ⊲ U is the set of mean values
6: ⊲ Σ is the set of standard deviation values
7: "̂clf← TRAINCLASSIFIER("clf, -̂�train ,.train) ⊲ "̂clf is the trained classifier
8: "̂← 〈"feat, "̂clf,U,Σ〉
9: return "̂

10: end procedure

Algorithm 3 – Feature extractors – Prediction process

1: procedure PREDICT("̂, Itest) ⊲ Trained model "̂ and test images Itest
2: 〈"feat, "̂clf,U,Σ〉 ← "̂ ⊲ See line 8 of Algorithm 2 .
3: -�test ← "feat(Itest) ⊲ Set of test feature vectors -�test

4: -̂�test ← STANDARDIZEFVS(-�test ,U,Σ) ⊲ See line 5 of Algorithm 2
5: .̂test← "̂clf(-̂�test) ⊲ Predicted labels .̂test

6: return .̂test
7: end procedure

Regarding the splitting strategy, Outex013, USPtex, MBT and UIUC followed the stratified
ten-fold cross validation methodology (subsection 4.2.1), while CUReT_Q4 used the six predefined
splits shown in Figure 19. The specific settings for the hand-engineered and CNN-based methods
are given in the following subsections.

114 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

5.3.1 Hand-engineered feature extraction details

The parameters values for FMS, LBP, GW, and GLCM were chosen through an exhaustive
grid search with images from the Brodatz dataset (BRODATZ, 1966). On the other hand,
the parameters for DTW and TH-MR8 were respectively taken from (GONçALVES, 2010)
and (VARMA; ZISSERMAN, 2005). As for FD, no parameters are needed.

• GLCM. Two distances and four orientations were considered, namely 3 = {1,2} and
\ = {0◦,45◦,90◦,135◦}, leading to 8 GLCMs. From each of them we computed the contrast,
energy, correlation and homogeneity, leading to 32 feature values. Additionally, we used
GLCM of dimension 128×128, which is referred to as GLCM 128r.

• FMS. 140 radial samples and 140 circular samples were used at all experiments. Also,
we consider two variants of this method, one that normalize the Fourier spectrum mag-
nitude to the range [0, 1] (FMS-N), and the other one who do not use any normalization
method (FMS-U).

• GW. we set D; = 0.01 and Dℎ = 0.4, and considered the setting of 8 scales and 6 orientations
(GW 8s 6o), giving rise to feature vectors of 96 elements.

• LBP. histograms with 64 and 256 bins were considered, leading to feature vectors with 64
(LBP 64f) and 256 (LBP 256f) descriptors respectively.

• FD. the number of features of this method varied automatically according to the size of
the input image. For the CUReT_Q4 dataset, this number was 64, while 68 features were
calculated for the USPtex and Outex013 datasets. Finally, 79 features were extracted from
the UIUC dataset.

• DTW. we chose ' = 4, C0 = 13, C8=2 = 59, #) = 4, ` = 1, while the number of bins of the
resulting histogram was 7. Altogether, 56 descriptors were computed.

• TH-MR8. about 30% of the training set was used for the creation of the visual dictionary.
In this sense, each class contributes with 10 textons. Therefore, the size of the resulting
feature vectors is 10×#2, where #2 corresponds to the total number of classes.

Furthermore, a C++ implementation was written for FMS, GLCM, LBP, GW, and DTW,
while FD and TH-MR8 were implemented in MATLAB instead. Since MATLAB is typically
slower than C++, more careful optimizations were done for the former, such as using vectorized
methods instead of loops.

5.3.2 Implementation details for the CNN-based methods

We performed experiments using two TL strategies: FC-CNN and GAP-CNN. Both
strategies are shown in Figure 23. In total, there are ten CNN-based feature extractors as

5.4. Experiments 115

each TL strategy is applied to five pre-trained CNN models. They are named as follows: FC-
VGG-19, FC-INCEPTION-V3, FC-RESNET-50, FC-DENSENET-121, FC-EFFICIENTNET-
B1, GAP-VGG-19, GAP-INCEPTION-V3, GAP-RESNET-50, GAP-DENSENET-121, and
GAP-EFFICIENTNET-B1.

Pre-processing the texture image was required to comply with the input requirements
of each pre-trained CNN model. These preprocessing steps vary across the CNN models and
the deep learning libraries. In the experiments, we used the pre-trained CNN models from the
PyTorch library (PASZKE et al., 2017). Therefore, each gray-level texture image � undergoes to
the following preprocessing steps:

1. Range scaling. The pixel values of �, originally in the range [0, 255], are linearly re-scaled
to the interval of [0, 1].

2. Fixed spatial size. Then, the image � is resized to a predefined spatial resolution ((× ()
using bilinear interpolation. The term (is the same as that used by the CNN model
when it was trained in the source domain: (= 299 for INCEPTION-V3, (= 240 for
EFFICIENTNET-B1, and (= 224 for the remaining CNN models (VGG-19, RESNET-50
and DENSENET-121).

3. Three-channel conversion. By definition, � is a one-channel gray-level image. Therefore, �
is converted into a “color” image by copying its content into three channels.

4. Image standardization. Finally, we applied a per-channel standardization process of
the form � (8) = � (8)−` (8)

f (8)
, where 8 is the channel index, `(8) is the 8-th value from U =

{0.485,0.456,0.406}, and f (8) is the 8-th value from � = {0.229,0.224,0.225}. Both �

and U were collected from the PyTorch documentation (PASZKE et al., 2017).

We used the PyTorch 1.1 library (PASZKE et al., 2017) for the overall deep learning
support and its TorchVision 0.3 component to import four pre-trained CNN models: VGG-19,
INCEPTION-V3, RESNET-50 and DENSENET-121. EFFICIENTNET-B1, not yet included in
the official PyTorch repository yet, so we used an alternative PyTorch based library for this
pre-trained CNN model1.

5.4 Experiments

The experiments were organized in five parts. For each part, the feature extractors were
systematically compared for what concerns a different aspect. In the first part CNN-based
methods and hand-engineered methods were compared in terms of their accuracy rates and

1 Github repository for the PyTorch implementation of EFFICIENTNET-B1: <https://github.com/
rwightman/pytorch-image-models>

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

116 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

feature extraction times, where GAP-DENSENET-121, GAP-EFFICIENTNET-B1 and FC-
EFFICIENTNET-B1 achieved the highest accuracy rates at the five analyzed datasets.

The second part suggests the existence of a strong correlation between the features
computed by different CNN-based methods as no significant accuracy improvements were
typically obtained by their combinations. On the other hand, the third part reveals that some
hand-engineered methods such as FMS-N, FMS-U and LBP 256f are good options to be used in
combination with CNN-based methods.

The fourth part focuses on GAP-DENSENET-121, where different classifiers were used
in the experiments, showing that in some specific situations involving the SVM-L classifier,
GAP-EFFICIENTNET-B1 can successfully compete with its hand-engineered counterparts at
improving the accuracy rates of GAP-DENSENET-121. Finally, the fifth part shows that slightly
better accuracy rates were achieved at the analyzed datasets by including a dimensionality
reduction phase in the evaluation scheme.

5.4.1 CNN-based methods vs. Hand-Engineered (HE) methods

In this experiment, we used the general experimental settings and evaluation scheme
described in section 5.3 with the SVM-RBF classifier. In this sense, Table 6 compares nine
hand-engineered feature extractors and ten CNN-based methods in terms of (i) accuracy rates (%)
for different datasets, (ii) number of features computed per input image, and (iii) the average
feature extraction time (FE TIME).

Regarding the hand-engineered methods, TH-MR8 achieved the highest accuracy rates
on the UIUC and CUReT_Q4 datasets, while LBP (LBP 64f or LBP 256f) reached the best
performance for Outext013 and MBT. In the USPtex dataset, GW 8s 6o outperformed the other
methods. In general, FMS-N had relatively good performances on MBT, CUReT_Q4, and USPtex.
Lastly, the accuracy rates obtained with DTW, FD and GLCM 128r were mostly lower than
the ones obtained by the other hand-engineered methods. On the other hand, the accuracy
rates achieved by the ten CNN-based methods were significantly better than those obtained by
their hand-engineered counterparts, especially for the USPtex and CUReT_Q4 datasets. When
comparing the five FC-CNN methods, the accuracy rates obtained by FC-EFFICIENTNET-B1
were always higher than the ones reached by the others. As for the five GAP-CNN methods,
GAP-DENSENET-121 achieved the highest accuracy rates at all datasets.

Regarding the comparison between FC-CNN and GAP-CNN methods with respect to
the same CNN model, DENSENET-121 is the only CNN model that always achieved higher ac-
curacy rates as GAP-DENSENET-121 than as FC-DENSENET-121. Indeed, GAP-DENSENET-
121 obtained by far the best results among the ten feature extractors, while the second place is
disputed between FC-EFFICIENTNET-B1 and GAP-EFFICIENTNET-B1.

About the number of features computed per input image, most hand-engineered methods

5.4. Experiments 117

Table 6 – Comparison between different feature extractors. In bold, the two highest accuracy rates (%)
per dataset, one given to a CNN-based method and the other given to a hand-engineered method.
(*) The feature extraction time of TH-MR8 cannot be estimated in the same fashion as the
other feature extractors, since it depends not only on the resolution of the image but also on the
number of classes found in the analyzed dataset.

Accuracy rates (%) per dataset

Feature Extractor UIUC Outex013 USPtex MBT CUReT_Q4 # Features FE TIME (ms)

DTW 83.6 ± 3.2 72.4 ± 3.4 67.3 ± 4.2 61.1 ± 4.8 60.5 ± 4.1 56 440.3 ± 11.6
FD 79.5 ± 4.5 74.6 ± 3.3 67.7 ± 5.6 75.2 ± 2.8 64.9 ± 2.0 64 – 79 31.1 ± 2.0
FMS-N 73.0 ± 6.5 84.4 ± 2.3 78.5 ± 5.2 86.7 ± 2.6 77.1 ± 1.7 280 3.9 ± 0.3
FMS-U 75.0 ± 5.7 77.7 ± 2.3 79.3 ± 6.5 89.2 ± 2.4 77.9 ± 2.2 280 3.6 ± 0.2
GLCM 128r 79.1 ± 3.8 78.9 ± 2.7 78.3 ± 6.3 80.2 ± 3.5 43.5 ± 13.4 32 5.4 ± 0.2
GW 8s 6o 92.0 ± 3.7 79.6 ± 2.5 87.2 ± 5.4 91.1 ± 1.6 61.7 ± 11.3 96 401.3 ± 15.0
LBP 64f 78.3 ± 6.0 85.1 ± 1.7 86.9 ± 6.1 91.3 ± 2.1 63.6 ± 17.6 64 5.9 ± 0.4
LBP 256f 80.7 ± 4.2 83.0 ± 2.3 86.1 ± 6.7 91.4 ± 1.3 65.7 ± 16.4 256 5.9 ± 0.5
TH-MR8 95.5 ± 2.5 82.3 ± 1.4 84.3 ± 2.6 85.4 ± 2.2 79.9 ± 2.1 250 – 1920 (*)

FC-VGG-19 98.6 ± 1.1 84.2 ± 1.3 93.8 ± 2.4 89.0 ± 1.4 89.8 ± 1.2 1000 689.8 ± 10.8
FC-INCEPTION-V3 98.9 ± 0.9 85.2 ± 3.3 95.5 ± 2.0 92.7 ± 1.6 93.4 ± 1.1 1000 225.0 ± 6.2
FC-RESNET-50 99.3 ± 0.6 87.6 ± 2.7 96.3 ± 1.9 92.2 ± 1.0 94.2 ± 1.2 1000 147.2 ± 4.8
FC-DENSENET-121 99.5 ± 0.5 88.2 ± 2.4 96.4 ± 1.3 90.7 ± 1.9 93.8 ± 0.8 1000 141.8 ± 4.7
FC-EFFICIENTNET-B1 99.6 ± 0.7 89.6 ± 2.0 97.2 ± 1.5 94.8 ± 1.2 95.6 ± 1.0 1000 275.8 ± 8.9
GAP-VGG-19 96.1 ± 1.4 83.3 ± 3.5 94.9 ± 1.9 90.6 ± 1.4 89.4 ± 1.2 512 542.3 ± 17.4
GAP-INCEPTION-V3 98.8 ± 1.1 85.4 ± 2.8 96.4 ± 1.6 91.9 ± 1.2 92.2 ± 1.3 2048 224.1 ± 6.7
GAP-RESNET-50 98.8 ± 1.3 88.8 ± 2.5 97.7 ± 1.6 93.1 ± 1.3 94.2 ± 1.2 2048 146.8 ± 4.6
GAP-DENSENET-121 99.7 ± 0.5 91.4 ± 2.1 99.4 ± 0.5 95.0 ± 1.0 97.3 ± 0.8 1024 139.7 ± 4.3
GAP-EFFICIENTNET-B1 98.5 ± 1.1 89.9 ± 2.2 97.7 ± 1.4 94.8 ± 2.0 94.9 ± 1.1 1280 274.6 ± 7.3

Source: Elaborated by the author.

shown in Table 6 compute fixed-sized feature vectors. The only two exceptions are FD and TH-
MR8, where the length of these vectors depends on the input image size or the number of classes
in the analyzed dataset. On the other hand, feature vectors originating from CNN-based methods
are typically much longer than the ones from hand-engineered methods, the only exception being
TH-MR8, which for CUReT_Q4 and MBT yields feature vectors that are almost as large as those
computed by GAP-INCEPTION-V3 and GAP-RESNET-50. Such high-dimensional feature
vectors can lead to many problems, such: (i) classifiers usually need substantially longer training
times as the number of dimensions grows, and (ii) their accuracy rates might be negatively
impacted by the “curse of dimensionality” (see subsection 5.4.5). Indeed, this phenomenon might
explain the high accuracy rate achieved by TH-MR8 for the UIUC dataset (95.5%) and its much
lower performance for USPtex (82.3%) and MBT (85.4%).

As for the FE TIME needed to process an image of size 224× 224, it was estimated
by running the same experiment 1000 times and averaging its execution times. Also, for a
fair comparison, all FE TIMES were computed on a single CPU core belonging to an eight-
core laptop (CPU i7-7000HQ at 2.80 GHz) with a 64-bit Ubuntu 18.04 installed. As expected,
hand-engineered methods are generally faster than CNN-based feature extractors. Indeed, when
comparing the FE Time of the fastest hand-engineered method (FMS-U) with that of the fastest
CNN-based method (GAP-DENSENET-121), the former is approximately 40 times faster than
the latter. In addition, GAP-DENSENET-121 is both the fastest CNN-based method and the one
with the best accuracy rates at the analyzed datasets.

118 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

5.4.2 Combining pairs of CNN-based methods

In general, two feature extractors "1 and "2 are said to be combined when, for each
input image, they combine their computed feature vectors into one. Therefore, "1 +"2 acts as a
single feature extractor that computes feature vectors of length % +&, where % and & are the
lengths of the feature vectors computed by "1 and "2, respectively.

Here, we verified how much accuracy improvement can be achieved on every CNN-based
feature extractor in Table 6 by combining it with GAP-CNN feature extractors. Table 7 presents
the results in three subtables, one for each dataset. Also, we ignored the results for UIUC and
USPtex, since the very high accuracy rates reached in subsection 5.4.1 cannot be improved
significantly. Again, we used the same evaluation settings as the previous experiment, where
" = "1 +"2. Additionally, we applied the McNemar test to validate whether the accuracy
improvements were statistically significant or not. The results for each dataset in Table 7 are
presented and discussed below.

• Outex013. Table 7a reveals the following insights. (i) GAP-VGG-19 failed to signifi-
cantly increase the accuracy rates for eight of the nine CNN-based methods analyzed. (ii)
Similarly, GAP-INCEPTION-V3 and GAP-RESNET-50 could not increase the accuracy
rates for seven and four CNN-based methods, respectively. (iii) Although the accuracy
improvements accomplished by GAP-EFFICIENTNET-B1 were mostly statistically signif-
icant, it failed to improve the results of GAP-DENSENET-121, which is the CNN-based
method with the highest baseline accuracy rate (91.4%). (iv) GAP-DENSENET-121 is the
only feature extractor that was able to improve the results of the other nine CNN-based
methods evaluated. On the contrary, none of these nine methods substantially improved the
results of GAP-DENSENET-121. Essentially, there is no combination of two CNN-based
methods that led to an accuracy rate statistically superior than the baseline accuracy rates.

• MBT. Compared to Outex013, Table 7b shows a larger number of combinations that led to
significant accuracy improvements with respect to the baseline accuracy rates. Although
GAP-DENSENET-121 had the best baseline accuracy rate, GAP-EFFICIENTNET-B1
achieved the best accuracy improvements for eight of the nine CNN-based methods evalu-
ated. Indeed, not only led combination GAP-DENSENET-121 + GAP-EFFICIENTNET-B1
to the best result on the entire dataset (96.4%), but also it was significantly better than the
baseline accuracy rates of both GAP-DENSENET-121 (95.0%) and GAP-EFFICIENTNET-
B1 (94.8%).

• CUReT_Q4. The power of the McNemar test statistic increases as more samples are involved.
Therefore, since CUReT_Q4 has much more samples than the other datasets, there is a
tendency of having more significant results in Table 7c than in the previous datasets. As for
GAP-DENSENET-121 (97.3%), it was successfully enhanced when used in combination
with either FC-INCEPTION-V3, FC-RESNET-50 or FC-EFFICIENTNET-B1. In this

5.4. Experiments 119

Table 7 – Accuracy rates (%) achieved by combinations of two CNN-based feature extractors. The
row “Baseline” shows the accuracy rates obtained with each CNN-based method alone. For
each column, the best accuracy improvement is emphasized in bold, while the best accuracy
rate for each dataset is highlighted in red bold font. Accuracy rates of combinations that are
not significantly better than their corresponding baselines are crossed out. This significance
was verified with the McNemar test, using U = 0.05. EFFNET-B1 is the abbreviation for
EFFICIENTNET-B1.

(a) Outex013

FC-CNN GAP-CNN

VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1 VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1

Baseline→ 84.2 ± 1.3 85.2 ± 3.3 87.6 ± 2.7 88.2 ± 2.4 89.6 ± 2.0 83.3 ± 3.5 85.4 ± 2.8 88.8 ± 2.5 91.4 ± 2.1 89.9 ± 2.2

VGG-19 85.4 ± 2.5 87.9 ± 4.0 88.7 ± 2.1 88.4 ± 2.2 90.6 ± 1.7 – 86.4 ± 2.8 89.4 ± 2.5 91.6 ± 2.1 91.0 ± 1.9

INCEPTION-V3 87.3 ± 2.7 85.6 ± 2.8 87.9 ± 2.3 88.4 ± 3.2 89.5 ± 2.1 86.4 ± 2.8 – 88.1 ± 2.4 89.2 ± 2.6 90.2 ± 2.1

RESNET-50 89.6 ± 1.4 88.3 ± 3.0 88.9 ± 2.2 89.6 ± 2.9 90.3 ± 2.7 89.4 ± 2.5 88.1 ± 2.4 – 90.4 ± 2.6 90.5 ± 2.5

DENSENET-121 90.8 ± 2.0 90.4 ± 2.3 91.2 ± 2.4 90.7 ± 2.0 92.3 ± 2.6 91.6 ± 2.1 89.2 ± 2.6 90.4 ± 2.6 – 92.2 ± 2.5

+
G

A
P-

C
N

N

EFFNET-B1 91.0 ± 1.9 91.2 ± 2.1 90.4 ± 2.4 91.2 ± 2.6 90.9 ± 2.2 91.0 ± 1.9 90.2 ± 2.1 90.5 ± 2.5 92.2 ± 2.5 –

(b) MBT

FC-CNN GAP-CNN

VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1 VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1

Baseline→ 89.0 ± 1.4 92.7 ± 1.6 92.2 ± 1.0 90.7 ± 1.9 94.8 ± 1.2 90.6 ± 1.4 91.9 ± 1.2 93.1 ± 1.3 95.0 ± 1.0 94.8 ± 2.0

VGG-19 90.5 ± 1.5 93.6 ± 1.8 93.5 ± 0.6 93.1 ± 1.5 95.2 ± 0.7 – 92.6 ± 1.3 93.9 ± 1.1 94.9 ± 1.2 95.4 ± 1.5

INCEPTION-V3 93.3 ± 1.4 92.4 ± 1.1 93.6 ± 1.6 93.2 ± 1.3 94.6 ± 1.3 92.6 ± 1.3 – 94.4 ± 1.7 93.8 ± 1.4 94.7 ± 1.4

RESNET-50 93.7 ± 1.1 94.6 ± 1.7 93.2 ± 1.3 94.3 ± 1.4 95.1 ± 1.4 93.9 ± 1.1 94.4 ± 1.7 – 95.1 ± 1.5 95.3 ± 1.2

DENSENET-121 94.3 ± 1.1 94.5 ± 1.7 95.2 ± 1.3 93.9 ± 1.7 96.2 ± 1.0 94.9 ± 1.2 93.8 ± 1.4 95.1 ± 1.5 – 96.4 ± 1.5

+
G

A
P-

C
N

N

EFFNET-B1 95.2 ± 1.2 95.6 ± 1.7 95.6 ± 1.5 95.5 ± 1.7 95.7 ± 1.4 95.4 ± 1.5 94.7 ± 1.4 95.3 ± 1.2 96.4 ± 1.5 –

(c) CUReT_Q4

FC-CNN GAP-CNN

VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1 VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1

Baseline→ 89.8 ± 1.2 93.4 ± 1.1 94.2 ± 1.2 93.8 ± 0.8 95.6 ± 1.0 89.4 ± 1.2 92.2 ± 1.3 94.2 ± 1.2 97.3 ± 0.8 94.9 ± 1.1

VGG-19 91.2 ± 1.2 95.0 ± 1.1 94.9 ± 1.0 94.7 ± 1.0 96.1 ± 1.0 – 93.6 ± 1.3 94.8 ± 1.1 96.6 ± 0.9 95.2 ± 1.1

INCEPTION-V3 94.5 ± 1.1 93.1 ± 1.2 95.3 ± 1.0 95.1 ± 1.0 95.9 ± 1.0 93.6 ± 1.3 – 95.5 ± 1.1 96.2 ± 1.0 95.6 ± 1.1

RESNET-50 95.3 ± 1.2 95.9 ± 1.0 94.4 ± 1.2 95.8 ± 1.1 96.2 ± 1.1 94.8 ± 1.1 95.5 ± 1.1 – 96.6 ± 1.1 95.9 ± 1.1

DENSENET-121 97.0 ± 0.8 97.4 ± 0.8 97.4 ± 0.8 96.5 ± 0.8 97.7 ± 0.8 96.6 ± 0.9 96.2 ± 1.0 96.6 ± 1.1 – 97.1 ± 1.0

+
G

A
P-

C
N

N

EFFNET-B1 96.0 ± 1.0 96.4 ± 1.1 96.3 ± 1.2 96.4 ± 1.0 95.7 ± 1.2 95.2 ± 1.1 95.6 ± 1.1 95.9 ± 1.1 97.1 ± 1.0 –

Source: Elaborated by the author.

regard, the best result (97.7%) was reached by the combination FC-EFFICIENTNET-B1 +
GAP-DENSENET-121.

In general, the results of Table 7 show that the best accuracy rates per dataset are
achieved when GAP-DENSENET-121 is combined with either FC-EFFICIENTNET-B1 or GAP-
EFFICIENTNET-B1. In subsection 5.4.3, we compared these results with the ones achieved by
combining CNN-based methods with hand-engineered ones.

5.4.3 Combining CNN-based methods with HE methods

Here we measured the predictive power improvement that a hand-engineered method can
imply when used in combination with a CNN-based method. In this regard, we used the same

120 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

evaluation settings as in subsection 5.4.2. The results are presented in Table 8, and the highlights
are discussed in the following paragraphs.

• Outex013: DTW only achieved significant accuracy improvements for two of the ten
CNN-based feature extractors evaluated, while FD and FMS-U both only have six signif-
icant improvements. Regarding FMS-N and GW 8s 6o, they successfully increased the
baseline accuracy rates of all CNN-based feature extractors. The situation of TH-MR8
is worth mentioning, because it is very effective when combined with all CNN-based
methods except with GAP-DENSENET-121. This undermines the overall performance
of TH-MR8, as GAP-DENSENET-121 is the feature extractor with the most promising
baseline accuracy rate (91.4%). Fortunately, five of the eight hand-engineered methods
were able to substantially enhance the baseline results of GAP-DENSENET-121, from
which LBP 256f and FMS-N achieved respectively the highest (+1.6%) and second highest
(+1.4%) accuracy improvement.

• MBT: For this dataset, there are four hand-engineered methods that were able to increase the
baseline accuracy rates of all CNN-based feature extractors. TH-MR8 and GLCM 128r only
achieved five successful accuracy improvements each, while DTW and FD respectively
led to seven and nine significant improvements. When analyzing the largest accuracy
improvements accomplished for each CNN-based method separately, there is a clear
rivalry between FMS-U and LBP-256f. Although LBP-256f surpassed FMS-U at five
of the ten CNN-based methods, the performance of FMS-U is equal to or better than
LBP-256f in the most promising cases, involving: GAP-DENSENET-121 (95.0%), GAP-
EFFICIENTNET-B1 (94.8%), and FC-EFFICIENTNET-B1 (94.8%). Indeed, both FMS-U

and LBP-256f lead to a success rate of 96.8% when combined with GAP-DENSENET-121.

• CUReT_Q4: Unlike the previous datasets, the results from combinations involving LBP

256f and GW 8s 6o are unfavorable. This can potentially be explained by the results in
Table 6, where both LBP 256f and GW 8s 6o obtained poor accuracy rates (65.7% and
61.7%, respectively) for CUReT_Q4. On the contrary, both DTW and FD led to significant
accuracy improvements for all the CNN-based methods evaluated, despite also obtaining
poor accuracy rates in Table 6 (60.5% and 64.9%). Again TH-MR8 increased the baseline
accuracy rates of most CNN-based methods, with the exception of GAP-DENSENET-
121. FMS-U ended up having the most significant accuracy improvements. Indeed, the
combination GAP-DENSENET-121 + FMS-U achieved an accuracy rate of 98%, which is
+0.7% greater than the baseline accuracy rate of GAP-DENSENET-121 (97.3%).

In general, when comparing the accuracy improvements of Table 7 and Table 8 for each
dataset, there is a clear advantage of hand-engineered methods over CNN-based methods for
what concerns the increase in predictive power of GAP-DENSENET-121. Indeed, out of the

5.4. Experiments 121

Table 8 – Comparison between combinations of one CNN-based method and one hand-engineered
method. The row “Baseline” shows the accuracy rates (%) obtained by each CNN-based method
alone. The highest accuracy rate per column is emphasized in bold and the best result per dataset
is highlighted in red bold font. The accuracy rates that are not significantly higher than their
respective baselines are displayed as strike-through text. The statistical significance was verified
with the McNemar test, using U = 0.05. EFFNET-B1 is the abbreviation for EFFICIENTNET-B1.

(a) Outex013

FC-CNN GAP-CNN

VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1 VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1

Baseline→ 84.2 ± 1.3 85.2 ± 3.3 87.6 ± 2.7 88.2 ± 2.4 89.6 ± 2.0 83.3 ± 3.5 85.4 ± 2.8 88.8 ± 2.5 91.4 ± 2.1 89.9 ± 2.2

DTW 84.8 ± 1.5 85.7 ± 3.0 87.9 ± 2.8 89.2 ± 2.3 89.9 ± 2.2 85.1 ± 3.4 85.9 ± 2.7 88.8 ± 2.7 91.6 ± 2.1 90.2 ± 2.3
FD 85.2 ± 1.5 86.2 ± 2.8 88.0 ± 2.4 89.4 ± 2.6 90.2 ± 2.0 86.0 ± 3.4 86.1 ± 2.8 89.1 ± 2.5 91.7 ± 1.9 90.4 ± 2.3
FMS-N 87.3 ± 2.2 87.9 ± 2.6 89.9 ± 3.0 90.7 ± 1.8 91.0 ± 2.1 89.4 ± 2.4 87.1 ± 2.4 90.0 ± 2.3 92.8 ± 1.9 90.9 ± 2.1
FMS-U 86.5 ± 2.1 87.2 ± 2.9 88.2 ± 3.0 90.4 ± 2.5 90.3 ± 2.1 86.9 ± 3.7 87.1 ± 2.6 89.2 ± 2.4 92.7 ± 2.4 90.7 ± 2.3
GLCM 128r 85.4 ± 1.9 86.5 ± 3.2 88.5 ± 2.6 89.2 ± 2.5 89.9 ± 2.2 85.7 ± 3.3 86.0 ± 2.6 89.3 ± 2.9 92.1 ± 2.2 90.4 ± 2.2
GW 8s 6o 86.0 ± 1.9 86.5 ± 2.9 89.2 ± 3.0 89.7 ± 1.9 90.5 ± 2.0 86.2 ± 3.8 86.1 ± 2.7 89.6 ± 2.4 92.4 ± 1.7 90.7 ± 2.4
LBP 256f 87.1 ± 1.8 87.6 ± 2.4 89.0 ± 2.4 91.8 ± 2.4 91.4 ± 1.8 87.9 ± 2.4 87.2 ± 2.5 89.7 ± 2.6 93.0 ± 1.8 91.4 ± 1.6
TH-MR8 89.3 ± 1.2 88.2 ± 2.4 90.0 ± 2.4 91.3 ± 2.0 91.2 ± 1.8 87.8 ± 3.0 87.6 ± 2.5 90.9 ± 2.7 92.4 ± 2.2 91.3 ± 1.9

(b) MBT

FC-CNN GAP-CNN

VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1 VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1

Baseline→ 89.0 ± 1.4 92.7 ± 1.6 92.2 ± 1.0 90.7 ± 1.9 94.8 ± 1.2 90.6 ± 1.4 91.9 ± 1.2 93.1 ± 1.3 95.0 ± 1.0 94.8 ± 2.0

DTW 90.6 ± 1.4 93.0 ± 1.9 93.2 ± 0.9 91.9 ± 1.6 95.4 ± 1.2 92.1 ± 1.1 92.5 ± 1.1 93.5 ± 1.3 95.5 ± 1.2 95.1 ± 1.9
FD 90.8 ± 1.7 93.4 ± 1.6 93.6 ± 1.2 92.6 ± 1.3 95.6 ± 1.2 92.9 ± 0.7 92.5 ± 1.1 93.8 ± 1.2 95.9 ± 0.9 95.2 ± 2.0
FMS-N 92.5 ± 1.3 94.6 ± 1.4 94.4 ± 1.2 93.1 ± 1.7 95.9 ± 0.9 94.1 ± 1.5 93.2 ± 0.9 94.5 ± 1.3 95.8 ± 0.8 95.8 ± 1.6
FMS-U 92.9 ± 1.2 94.6 ± 1.1 94.8 ± 1.1 93.8 ± 1.6 96.5 ± 1.5 93.8 ± 1.1 93.2 ± 1.2 94.9 ± 1.3 96.8 ± 1.2 96.1 ± 1.8
GLCM 128r 90.4 ± 1.3 92.8 ± 1.6 93.1 ± 0.8 91.8 ± 1.6 95.0 ± 1.2 91.5 ± 1.0 92.1 ± 1.2 93.4 ± 1.2 95.2 ± 1.2 95.1 ± 2.0
GW 8s 6o 92.0 ± 1.6 93.9 ± 1.5 94.1 ± 1.4 93.1 ± 1.6 95.3 ± 1.3 93.8 ± 1.1 92.5 ± 1.2 94.0 ± 1.3 95.9 ± 1.0 95.3 ± 1.6
LBP 256f 93.1 ± 1.3 94.9 ± 1.6 95.2 ± 1.1 94.7 ± 1.2 96.4 ± 1.2 95.7 ± 0.7 93.5 ± 1.3 94.6 ± 1.4 96.8 ± 0.6 95.9 ± 1.6
TH-MR8 91.9 ± 1.9 93.8 ± 2.0 93.3 ± 1.5 92.9 ± 1.3 94.7 ± 1.3 91.7 ± 2.1 94.3 ± 1.7 94.3 ± 1.4 94.4 ± 1.5 94.7 ± 2.0

(c) CUReT_Q4

FC-CNN GAP-CNN

VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1 VGG-19 INCEPTION-V3 RESNET-50 DENSENET-121 EFFNET-B1

Baseline→ 89.8 ± 1.2 93.4 ± 1.1 94.2 ± 1.2 93.8 ± 0.8 95.6 ± 1.0 89.4 ± 1.2 92.2 ± 1.3 94.2 ± 1.2 97.3 ± 0.8 94.9 ± 1.1

DTW 91.5 ± 1.2 94.5 ± 1.0 94.8 ± 1.1 94.8 ± 0.8 96.1 ± 1.0 91.2 ± 1.2 92.9 ± 1.3 94.5 ± 1.2 97.6 ± 0.8 95.2 ± 1.1
FD 92.2 ± 1.3 94.7 ± 1.0 95.1 ± 1.0 95.1 ± 0.8 96.2 ± 0.9 92.3 ± 1.2 93.0 ± 1.2 94.7 ± 1.1 97.7 ± 0.8 95.4 ± 1.1
FMS-N 93.3 ± 1.1 95.2 ± 0.8 95.5 ± 0.9 95.4 ± 0.7 96.6 ± 0.9 93.8 ± 0.9 93.8 ± 1.0 95.3 ± 1.0 97.7 ± 0.6 96.0 ± 1.0
FMS-U 94.1 ± 1.3 95.9 ± 1.0 96.0 ± 1.1 96.1 ± 1.0 96.8 ± 0.9 94.3 ± 1.3 94.4 ± 1.2 95.6 ± 1.1 98.0 ± 0.8 96.2 ± 1.1
GLCM 128r 90.8 ± 1.3 94.0 ± 0.9 94.4 ± 1.2 94.1 ± 0.8 95.8 ± 1.0 89.9 ± 1.4 92.5 ± 1.3 94.3 ± 1.2 97.3 ± 0.7 95.0 ± 1.1
GW 8s 6o 88.8 ± 3.7 92.1 ± 3.2 92.9 ± 3.2 92.0 ± 3.5 94.1 ± 2.9 86.3 ± 6.3 91.8 ± 2.1 93.9 ± 1.7 95.6 ± 2.9 93.9 ± 2.5
LBP 256f 91.2 ± 3.1 94.0 ± 1.6 93.9 ± 2.1 93.4 ± 2.0 95.6 ± 1.5 88.0 ± 5.5 93.4 ± 1.1 94.6 ± 1.4 96.9 ± 0.8 95.2 ± 1.3
TH-MR8 94.3 ± 0.9 95.4 ± 0.6 96.0 ± 0.7 95.3 ± 0.7 96.7 ± 0.8 93.1 ± 1.2 94.4 ± 0.8 95.8 ± 1.0 97.1 ± 0.5 96.2 ± 1.1

Source: Elaborated by the author.

eight hand-engineered feature extractors studied, FMS-U and FMS-N demonstrated the most
consistent performance, increasing the GAP-DENSENET-121 accuracy rate for all datasets
evaluated.

These outcomes suggest that the texture information contained in the Fourier spectrum is
of high quality and could potentially be exploited to derive feature extractors that, in combination
with GAP-DENSENET-121, produce even higher accuracy rates. Additionally, given the very low
FE TIME of FMS-U and FMS-N, their use is recommended. Another good option is LBP 256f,
which sometimes leads to higher accuracy improvements than FMS-U.

122 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

5.4.4 The classifier effect

Here, we evaluated different dedicated classifiers to assess whether we still reach the
same conclusions as those reached with SVM-RBF. Additionally, we focused these experiments
on GAP-DENSENET-121, since it was identified as the best feature extractor in the preceding
experiments. Therefore, Table 9 shows the comparison of accuracy improvements achieved by
16 feature extractors when combined with GAP-DENSENET-121 for the Outex013, MBT and
CUReT_Q4 datasets, and the SVM-RBF, SVM-L and KNN classifiers. In the case of SVM-
RBF, it is the same classifier we used in the previous experiments. SVM-L is also a SVM, but
with a linear kernel and � = 10 instead, while KNN is a :-nearest neighbor classifier with : = 1.

The analysis of Table 9 shows that: (i) for every dataset, SVM-RBF led to slightly better
accuracy rates than SVM-L, whereas worst results were always achieved with KNN. (ii) Both
SVM-RBF and KNN achieved similarly larger accuracy improvements with hand-engineered
methods than with CNN-based feature extractors. (iii) The results for Outex013 and MBT datasets
show that the baseline accuracy rates of GAP-DENSENET-121 are harder to improve when
KNN is used instead of SVM-RBF or SVM-L. (iv) Regardless of the dataset and classifier, three
of the eight CNN-based methods never achieved significant accuracy improvements, so their
use is not recommended in any situation. (v) For similar reasons, we advise against the use of
GAP-VGG-19, FC-RESNET-50 and GAP-RESNET-50. (vi) As for FC-EFFICIENTNET-B1
and GAP-EFFICIENTNET-B1, they achieved successful accuracy improvements when they were
evaluated with SVM-L. (vii) Finally, out of the eight hand-engineered feature extractors, FMS-U

and FMS-N were the ones that led to the most stable results across the different datasets and
classifiers.

In summary, the results computed by SVM-L indicate that GAP-EFFICIENTNET-B1
may be used as a CNN-based alternative for the hand-engineered methods. However, the results
obtained with SVM-RBF still suggest that hand-engineered methods are more suitable to be
used in combination with GAP-DENSENET-121 than CNN-based methods. The possible causes
for this will be further explored in subsection 5.4.5.

5.4.5 Using feature selection

The previous parts showed that GAP-DENSENET-121 lead to higher accuracy rates in
combination with hand-engineered feature extractors than when combined with CNN-based
methods. However, this somehow contradicts Table 6, where most CNN-based methods obtained
much higher accuracy rates than their hand-engineered counterparts. For example, Table 6 shows
that GAP-DENSENET-121 and GAP-RESNET-50 achieved accuracy rates of 95.0% and 93.1%
respectively for MBT, while FMS-N only achieved 89.2% for the same dataset. Yet, even though
the accuracy rate achieved by GAP-RESNET-50 is almost 4% higher than that of FMS-N, the
combination of GAP-DENSENET-121 + GAP-RESNET-50 reached a non-significant result of
95.1%, while GAP-DENSENET-121 + FMS-N achieved a much significantly better accuracy

5.4. Experiments 123

Table 9 – Comparison of accuracy rates across different classifiers. The row “Baseline” shows the
accuracy rates obtained with GAP-DENSENET-121 for each dataset and classifier. The best
accuracy rate per column is shown in bold, while the best result for each dataset is displayed
in red bold font. The accuracy rates of combinations that did not significantly improve their
respective baselines are shown as strike-through text. The McNemar test was used to verify the
statistical significance, with U = 0.05. EFFNET-B1 is the abbreviation for EFFICIENTNET-B1.

GAP-DENSENET-121

Outex013 MBT CUReT_Q4

SVM-RBF SVM-L KNN SVM-RBF SVM-L KNN SVM-RBF SVM-L KNN

Baseline→ 91.4 ± 2.1 90.6 ± 2.4 86.9 ± 1.7 95.0 ± 1.0 94.3 ± 1.4 91.6 ± 0.8 97.3 ± 0.8 97.0 ± 0.9 94.0 ± 0.9

VGG-19 90.8 ± 2.0 90.6 ± 2.4 86.2 ± 2.4 94.3 ± 1.1 94.3 ± 0.8 90.2 ± 1.9 97.0 ± 0.8 96.8 ± 0.8 92.7 ± 0.9

INCEPTION-V3 90.4 ± 2.3 90.5 ± 2.7 84.3 ± 2.7 94.5 ± 1.7 94.7 ± 1.4 90.8 ± 1.2 97.4 ± 0.8 97.0 ± 0.8 93.9 ± 1.0

RESNET-50 91.2 ± 2.4 91.5 ± 1.7 86.8 ± 1.1 95.2 ± 1.3 94.8 ± 1.2 90.7 ± 1.0 97.4 ± 0.8 97.1 ± 0.8 93.8 ± 1.0F
C

-C
N

N

EFFNET-B1 92.3 ± 2.6 92.1 ± 2.2 87.4 ± 2.0 96.2 ± 1.0 96.3 ± 0.9 92.3 ± 1.4 97.7 ± 0.8 97.6 ± 0.7 95.1 ± 1.0

VGG-19 91.6 ± 2.1 91.3 ± 2.0 86.6 ± 1.5 94.9 ± 1.2 94.8 ± 1.0 91.4 ± 1.6 96.6 ± 0.9 97.3 ± 0.9 93.9 ± 1.0

INCEPTION-V3 89.2 ± 2.6 89.7 ± 3.2 83.5 ± 1.6 93.8 ± 1.4 94.2 ± 1.0 89.5 ± 1.4 96.2 ± 1.0 96.5 ± 0.9 92.0 ± 1.0

RESNET-50 90.4 ± 2.6 90.8 ± 2.4 87.2 ± 1.8 95.1 ± 1.5 95.0 ± 1.4 90.2 ± 2.1 96.6 ± 1.1 97.2 ± 0.9 93.7 ± 0.9

G
A

P
-C

N
N

EFFNET-B1 92.2 ± 2.5 92.3 ± 2.7 87.6 ± 1.6 96.4 ± 1.5 96.7 ± 1.2 92.7 ± 1.3 97.1 ± 1.0 97.8 ± 0.6 95.3 ± 0.8

DTW 91.6 ± 2.1 91.5 ± 2.6 87.4 ± 1.2 95.5 ± 1.2 95.2 ± 1.0 92.0 ± 0.8 97.6 ± 0.8 97.2 ± 0.8 94.7 ± 0.9

FD 91.7 ± 1.9 91.5 ± 2.6 87.3 ± 1.5 95.9 ± 0.9 95.7 ± 1.1 91.9 ± 0.5 97.7 ± 0.8 97.3 ± 0.8 94.6 ± 0.9

FMS-N 92.8 ± 1.9 92.9 ± 2.0 88.7 ± 2.5 95.8 ± 0.8 95.8 ± 0.9 92.2 ± 1.0 97.7 ± 0.6 97.4 ± 0.7 95.1 ± 0.8

FMS-U 92.7 ± 2.4 92.9 ± 2.4 87.7 ± 1.6 96.8 ± 1.2 96.5 ± 1.0 93.2 ± 0.9 98.0 ± 0.8 97.7 ± 0.9 95.6 ± 0.9
GLCM 128r 92.1 ± 2.2 91.5 ± 3.0 87.2 ± 1.7 95.2 ± 1.2 95.0 ± 1.2 92.0 ± 0.9 97.3 ± 0.7 96.9 ± 0.7 94.3 ± 0.9

GW 8s 6o 92.4 ± 1.7 92.4 ± 2.0 88.2 ± 2.0 95.9 ± 1.0 95.6 ± 1.0 92.6 ± 0.7 95.6 ± 2.9 95.9 ± 2.0 92.8 ± 1.3

LBP 256f 93.0 ± 1.8 92.9 ± 1.7 88.2 ± 2.1 96.8 ± 0.6 96.4 ± 0.8 93.3 ± 1.2 96.9 ± 0.8 96.4 ± 1.2 93.9 ± 0.8

TH-MR8 92.4 ± 2.2 92.5 ± 2.0 87.1 ± 1.9 94.4 ± 1.5 94.9 ± 1.5 90.2 ± 1.7 97.1 ± 0.5 97.1 ± 0.6 94.5 ± 0.6

Source: Elaborated by the author.

rate of 96.8%. The two most plausible explanations for these contradiction are:

1. Since all CNN-based methods were trained on the basis of the same source domain
dataset (ImageNet), there could be a strong correlation between the features computed by
different CNN-based methods.

2. Given that all CNN-based methods compute high-dimensional feature vectors, their per-
formance might be adversely affected due to the “curse of dimensionality”. Indeed, this is
similar to what we observed for TH-MR8, which, among the hand-engineered methods, is
the one that gives rise to the largest feature vectors and the worst accuracy improvements
when combined with GAP-DENSENET-121.

Here, we addressed the second explanation by using the ANOVA feature selection
technique (LOMAX; HAHS-VAUGHN, 2012, Ch. 1.3), which was applied to each combined
feature extractor of the form " = "1 +"2. In more detail, we reduced the number of features
computed by "1, which is always GAP-DENSENET-121, to 768 dimensions, whereas, whenever
possible, we reduced the number of features computed by "2 to 256 dimensions. Hence, "
ended up with up to 1024 dimensions.

124 Chapter 5. CNN-based feature extractors vs. Hand-engineered methods for texture analysis

Table 10 shows the comparison between 16 feature extractors with respect to the accuracy
improvement that each of them achieved over the baseline accuracy rates of GAP-DENSENET-
121. This comparison was performed for the same datasets and classifiers as in subsection 5.4.4.
Comparing Table 9 and Table 10, it is clear that the dimensionality reduction approach used in
this part played a interesting role as it led to higher accuracy rates at both GAP-DENSENET-121,
and its combinations with other feature extractors. Other key observations in Table 10 are as
follows.

• GAP-EFFICIENTNET-B1 is once again the CNN-based method with the highest accuracy
rates. However, although most of its results are often better than those presented in Table 9,
they were always inferior to those of FMS-N, FMS-U or LBP 256f.

• As for TH-MR8, its situation improved considerably, which suggest that the “curse of
dimensionality” indeed had a negative influence in this case.

• The results achieved by LBP-256, FMS-U and FMS-N followed a similar trend as the one
inferred from Table 9. FMS-U ended up as the hand-engineered feature extractor with the
most stable results, and LBP-256 reached accuracy improvements of 2.2% and 1.9% in the
Outex013 and MBT datasets, respectively.

In summary, the results in Table 10 suggest that dimensionality reduction benefits both
GAP-DENSENET-121 and hand-engineered methods to some extend, without increasing the
computational burden of the evaluation scheme. Therefore, its use is recommended. Besides,
as CNN-based methods did not increase the accuracy rates of GAP-DENSENET-121 as much
as expected, the “curse of dimensionality” is ruled out as the main reason for the low accuracy
improvements.

5.5 Final considerations

In this chapter, we presented a systematic comparison between the performance of CNN-
based methods, hand-engineered methods and combinations of pairs of them for the task of
gray-level texture recognition. This comparison was performed at five texture datasets: UIUC,
USPtex, Outex013, MBT and CUReT_Q4 and using three different classical machine learning
classifiers: SVM-RBF, SVM-L and KNN. The initial experiments confirmed the results of
previous works (LIU et al., 2019) that show CNN-based methods reaching higher accuracy rates
than hand-engineered methods.

Among the CNN-based methods, GAP-DENSENET-121 led to the best accuracy rates at
every dataset and, therefore, it should be the default option for use in all related tasks. Subsequent
experiments showed that combinations of two CNN-based methods often obtained non-significant

5.5. Final considerations 125

Table 10 – Comparison of accuracy rates when dimensionality reduction is used. The best accuracy
improvement per column is emphasized in bold, while the best result for each dataset is
highlighted in red bold font. Non-significant accuracy improvements are displayed in a strike-
through format. The statistical significance was verified with the McNemar test, using U = 0.05.
EFFNET-B1 is the abbreviation for EFFICIENTNET-B1.

GAP-DENSENET-121

Outex013 MBT CUReT_Q4

SVM-RBF SVM-L KNN SVM-RBF SVM-L KNN SVM-RBF SVM-L KNN

Baseline→ 91.4 ± 2.3 91.1 ± 1.6 88.4 ± 1.3 95.5 ± 0.9 95.2 ± 0.9 92.9 ± 1.1 97.7 ± 0.7 97.1 ± 0.8 95.0 ± 0.8

VGG-19 91.5 ± 1.8 91.1 ± 1.4 88.8 ± 1.4 95.6 ± 1.1 95.1 ± 1.4 92.9 ± 1.4 97.7 ± 0.7 97.2 ± 0.8 95.2 ± 0.9

INCEPTION-V3 91.9 ± 1.3 90.9 ± 1.6 86.9 ± 1.9 95.7 ± 1.3 95.4 ± 1.1 92.3 ± 1.3 97.9 ± 0.6 97.4 ± 0.7 95.4 ± 0.7

RESNET-50 92.1 ± 1.6 91.5 ± 1.2 87.6 ± 1.9 95.6 ± 1.2 95.2 ± 1.4 93.0 ± 1.3 97.9 ± 0.7 97.5 ± 0.8 95.4 ± 0.8

F
C

-C
N

N

EFFNET-B1 91.9 ± 1.7 91.8 ± 1.8 88.3 ± 1.8 96.3 ± 0.9 95.8 ± 1.0 93.8 ± 1.1 98.0 ± 0.6 97.7 ± 0.7 95.9 ± 0.8

VGG-19 91.5 ± 2.2 91.1 ± 1.9 88.2 ± 1.7 96.1 ± 1.1 95.8 ± 1.0 93.1 ± 1.1 97.7 ± 0.8 97.4 ± 0.8 95.4 ± 0.9

INCEPTION-V3 91.8 ± 1.8 91.4 ± 1.8 87.6 ± 1.5 95.9 ± 0.7 96.1 ± 0.8 93.0 ± 1.2 97.9 ± 0.7 97.4 ± 0.7 95.7 ± 0.7

RESNET-50 91.7 ± 1.8 91.5 ± 1.3 87.8 ± 1.9 96.0 ± 1.3 95.7 ± 1.2 93.0 ± 1.4 97.9 ± 0.7 97.7 ± 0.8 95.6 ± 0.8

G
A

P
-C

N
N

EFFNET-B1 93.0 ± 2.0 91.7 ± 1.9 88.3 ± 1.6 96.1 ± 0.8 95.8 ± 0.8 93.9 ± 1.1 98.1 ± 0.7 97.8 ± 0.7 96.1 ± 0.9

DTW 92.3 ± 2.6 91.8 ± 1.8 88.2 ± 1.7 95.8 ± 0.9 95.8 ± 0.9 93.1 ± 1.2 98.0 ± 0.6 97.4 ± 0.7 95.7 ± 0.7

FD 92.6 ± 2.7 91.8 ± 2.1 88.8 ± 1.5 96.4 ± 0.9 96.3 ± 0.7 93.4 ± 0.8 98.1 ± 0.7 97.5 ± 0.8 95.7 ± 0.7

FMS-N 93.4 ± 2.2 93.2 ± 1.3 89.3 ± 1.6 96.1 ± 1.0 96.4 ± 1.1 93.2 ± 1.2 98.1 ± 0.6 97.6 ± 0.7 96.1 ± 0.6

FMS-U 92.6 ± 1.8 92.8 ± 1.6 88.3 ± 2.0 97.1 ± 0.8 96.9 ± 0.9 94.5 ± 1.1 98.4 ± 0.7 97.9 ± 0.8 96.5 ± 0.8
GLCM 128r 92.2 ± 2.4 91.8 ± 2.1 88.5 ± 1.5 96.0 ± 1.0 95.7 ± 1.0 93.4 ± 1.0 97.7 ± 0.6 97.1 ± 0.6 95.2 ± 0.6

GW 8s 6o 92.9 ± 2.1 92.4 ± 1.4 88.5 ± 1.5 96.4 ± 0.7 96.2 ± 0.7 94.0 ± 1.0 95.3 ± 3.9 95.7 ± 2.6 93.1 ± 2.1

LBP 256f 93.6 ± 2.1 92.8 ± 2.0 89.3 ± 2.3 97.4 ± 1.1 97.3 ± 0.9 94.2 ± 1.1 96.8 ± 1.0 96.2 ± 1.6 94.4 ± 0.8

TH-MR8 92.8 ± 2.2 92.2 ± 1.6 90.1 ± 2.0 96.0 ± 1.0 96.0 ± 1.1 93.9 ± 1.3 97.9 ± 0.5 97.6 ± 0.5 96.3 ± 0.6

Source: Elaborated by the author.

accuracy rates with respect to those achieved by each separately. On the contrary, some hand-
engineered methods significantly improved the accuracy rates of CNN-based methods. Further
experiments with different classifiers confirmed these previous observations. The only CNN-
based method that competed with its hand-engineered counterparts was GAP-EFFICIENTNET-
B1, and it is only recommended when it is used together with a SVM classifier with linear
kernel.

Regarding the feature selection approach (ANOVA), it slightly improved most accuracy
rates, but the overall pattern of results previously inferred did not change much. Therefore, our
final recommendation for texture recognition and related tasks is to use GAP-DENSENET-121 in
combination with either LBP-256f, FMS-N or FMS-U, which are very efficient hand-engineered
methods with feature extraction times around 38x faster than GAP-DENSENET-121.

Also, it is strongly recommended the use of an SVM with RBF kernel and feature
selection. Indeed, feature selection will be heavily used in the next chapter, which will present
one of the proposed methods of this thesis.

127

CHAPTER

6
CNN MODELS AS COLLECTIONS OF DEEP

COMPOSITE FUNCTIONS

6.1 Initial considerations

Two conclusions can be drawn from the previous chapter. (i) CNN-based TL methods
generate semantically rich feature representations that are typically superior to those of hand-
engineered methods. (ii) However, a CNN-based TL method is more likely to obtain substantial
performance improvements when combined with a hand-engineered method than when combined
with another CNN-based method.

This chapter addresses the second conclusion raised above by proposing a generalized
TL strategy that treats each pre-trained CNN model as a collection of robust Deep Composite
Functions (DCFs). Indeed, the proposed TL strategy depends on the following hyper-parameters:
(i) the global pooling layer that connects the feature extraction part with the dedicated classifier,
and (ii) the strategy for selecting a relatively small collection of DCFs from one or more
pre-trained CNN models. In more detail, this chapter focuses on answering the questions below.

1. Are there other global pooling layers that can do a better job than the standard Global
Average Pooling (GAP) layer?. This chapter proposes (i) the Global Entropy Pooling (GEP)
layer, and (ii) the Global Mean Thresholding Pooling (GMTP) layer. More details in
subsection 6.4.2.

2. What is the best strategy for selecting the most significant DCFs for a given texture dataset?.
We first used the layer-by-layer approach (GP-CNN) described in section 6.5. Then we
ranked a predefined collection of DCF based on the activation maps they generates for a
given meta-dataset (RANKGP-CNN) (see section 6.6), and finally we extend RANKGP-
CNN to three pre-trained CNN models (RANKGP-3M-CNN) (see section 6.7).

128 Chapter 6. CNN models as collections of deep composite functions

6.2 Target task, datasets and pre-trained models
As shown in section 3.5 there are two primary types of TL strategies for image classifica-

tion problems: (i) those that use the CNN model as a pre-trained CNN model, and (ii) those that
perform fine-tuning on a modified CNN model. This chapter presents proposed TL strategies of
the first type.

However, unlike the previous chapter, we performed experiments on all datasets from
Table 2 except CUReT_Q4. Hence, this analysis includes both instance-based and category-based
texture datasets. Due to computer power limitation, only three CNN models were used in this
analysis: BN-VGG-19, INCEPTION-V3, and RESNET-50. In this sense, for each model, we
considered the six layers shown in Figure 24. Additionally, we used PyTorch 1.0 (PASZKE et

al., 2017) to import the pre-trained weights for BN-VGG-19 and INCEPTION-V3, and we used
Keras (CHOLLET et al., 2015) to import the pre-trained weights for RESNET-50.

Figure 24 – Layers that were considered for each pre-trained CNN model. Layers are displayed in
ascending order of depth level, from left to right. (a) BN-VGG-19, (b) INCEPTION-V3, (c)
RESNET-50. # of AM: number of activation maps each layer can compute. Layer names come
from Keras (CHOLLET et al., 2015).

Source: Adapted from M. Condori and Bruno (2021).

6.3 CNN models treated as collections of deep compos-
ite functions

The feature extraction part of a CNN model essentially applies a series of layer transfor-
mations to an input image to produce a set of 2D activation maps. These activation maps can
uncover many fundamental features of an input image (Springenberg et al., 2015), which are
then processed by the classification part to generate a prediction. Indeed, since each activation
map results from a unique path of transformations, we treat such a path as a Deep Composite
Function (DCF). Therefore, each pre-trained CNN model can be thought as a large collection of
powerful deep composite functions.

In more detail, a deep composite function (q(ℓ)2) is a subnetwork of the CNN model
that computes a 2D activation map for each input image � (q(ℓ)2 (�) = A(ℓ) [1, 2, :, :] = A(ℓ)2 ,1 ≤

6.4. Proposed TL strategy 129

2 ≤ � (ℓ))1. In this sense, ℓ indicates the layer on which the activation map is calculated, 2 is a
subscript that specify the location of the activation map within ℓ, and � (ℓ) indicates the number
of activation maps that layer ℓ calculates (the channel dimension). Additionally, 8 represents the
image index, which is one when there is only a single image to process.

6.4 Proposed TL strategy
Based on the notion of deep composite function (DCF), here we propose a generalized

TL strategy that uses a pre-trained CNN as a feature extractor. As shown in Figure 25, this TL
strategy builds a modified model by making the two decisions below.

1. Use an existing or proposed selection strategy to generate +dcf, a list containing the
locations of DCFs within one or more pre-trained CNN models. Then, during training or
testing, +dcf will be used to extract a collection Φ of =Φ selected DCFs. For simplicity, we
change the notation of a DCF from q

(ℓ)
2 to q 9 , where 9 indicates the position of the 9-th

DCF in the collection Φ = {q1, q2, . . . , q=Φ}.

2. Select an existing or proposed global pooling layer (subsection 2.6.3) that converts a set of
activation maps into a feature vector.

Figure 25 – Proposed TL strategy. The input image is processed by a collection � of deep composite
functions. Then, a global pooling measurement 6(·) is computed for each resulting activation
map. Finally, the set of =Φ calculated measurements forms the feature vector (FVec).

ϕ1

ϕ2

ϕ3

ϕnΦ

g(⋅)

g(⋅)

g(⋅)

g(⋅)

x1

x2

x3

x4

xnΦ

Available
selection
strategies

(1) All dfc from layer l (used in GP-CNN)

Input image

Collection Φ of deepnΦ

composite functions (dcf)

computed with one

selection strategy

ϕ4

Activation Maps

g(⋅)

FVec

(2) Subset of dfc from multiple layers L = { , , …} (used in RankGP-CNN)l1 l2

(3) Subset of dfc from three CNN models , , (used in RankGP-3M-CNN)L1 L2 L3

Source: Adapted from M. Condori and Bruno (2021).

1 In subsection 2.4.3, an activation map A[8, 2, :, :] is defined as a 2D slice made along the first and
second dimensions of a tensor of size (#� ,�,,,�);1 ≤ 8 ≤ #� ,1 ≤ 2 ≤ �.

130 Chapter 6. CNN models as collections of deep composite functions

6.4.1 Feature extraction, training and prediction subroutines

The general evaluation scheme outlined in subsection 4.3.1 applies here. Therefore, this
subsection describes the TRAINMODEL and PREDICT subroutines, which are essential for the
correct functioning of Algorithm 1.

For the training subroutine, we present Algorithm 4 as the upgraded version of Algo-
rithm 2 (Chapter 5). The highlights of this subroutine are as follows:

• As explained at the beginning of this section, in addition to "feat and "clf, the modified
model " is associated with a chosen global pooling layer 6(·) and a list of composite
indices +dcf that allows locating the selected DCFs. In this sense, if "feat spans only one
pre-trained CNN model, each composite index must contain exactly two sub-indices: one
to locate the layer, and another to locate the DFC within the layer. On the other hand, if
"feat spans two or more pre-trained CNN models, an additional sub-index is necessary to
locate the pre-trained model where the DCF resides.

• EXTRACTDCFS is a new sub-routine that uses the list of indices +dcf to extract the
collection Φ of selected DCFs from the feature extractor "feat.

• Finally, EXTRACTFEATURES is also a new subroutine that transforms a set of images into
a feature matrix (or set of feature vectors) of shape (=� ×=Φ). Its input consists of a set of
images I, a collection Φ of =Φ selected DCFs, and the chosen global pooling layer 6(·).
The details of the EXTRACTFEATURES subroutine is in Algorithm 5. It is important to
note that, although the algorithm appears to be very expensive, it has virtually the same
computational cost as GAP-CNN or FC-CNN because, by default, the pre-trained CNN
model always computes the entire collection of DCFs.

Algorithm 4 – Deep Composite Functions – Training process
1: procedure TRAINMODEL(",�train) ⊲ Model " and training split �train
2: 〈"feat, 6(·),+dcf, "clf〉 ← " ⊲ feature extractor "feat, dedicated classifier "clf,
3: ⊲ global pooling layer 6(·), list of composite indices +dcf
4: 〈I�train ,.�train〉 ← �train ⊲ Training images I�train and labels .�train

5: Φ← EXTRACTDCFS("feat,+dcf)
6: -�train ← EXTRACTFEATURES(I�train ,Φ, 6(·))
7: 〈-̂�train ,U,Σ〉 ← STANDARDIZEFVS(-�train) ⊲ U is the set of mean values
8: ⊲ Σ is the set of standard deviation values
9: "̂clf← TRAINCLASSIFIER("clf, -̂�train ,.�train) ⊲ "̂clf is the trained classifier

10: "̂← 〈"feat, 6(·), "̂clf,U,Σ〉
11: return "̂
12: end procedure

Similar to the TRAINMODEL subroutine, the PREDICT subroutine is the upgraded
version of Algorithm 3. Consequently, it also uses the EXTRACTDCFS and EXTRACTFEATURES

6.4. Proposed TL strategy 131

Algorithm 5 – Deep Composite Functions – Feature extraction
1: procedure EXTRACTFEATURES(I�,Φ, 6(·)) ⊲ Set of images I� from dataset �,
2: ⊲ collection of deep composite functions Φ,
3: ⊲ and global pooling layer 6(·)
4: -� [1 . . . =�;1 . . . =Φ] ⊲ Let - be a new matrix of size (=� ×=Φ)
5: for all �8 ∈ I� do
6: fv[1 . . . =Φ] ⊲ Let fv be a new array of =Φ elements
7: for all q 9 ∈ Φ do
8: fv[9] ← 6(q8 (�8)) ⊲ Transform �8 into single feature value
9: end for

10: -� [8, :] ← fv
11: end for
12: return -�
13: end procedure

subroutines to compute a feature matrix -�test from a test set of images �test. Finally, the trained
classifier predicts the set of labels .̂test from -�test .

6.4.2 Proposed global pooling layers

As explained in subsection 2.6.3, a pooling layer is a powerful layer type, used for
reducing the spatial size of a given set of activation maps. In this sense, a Global Pooling (GP)
layer is a particular instance of a pooling layer that always reduces the spatial size of every
activation map to a single value. In this chapter, in addition to GAP, we experimented with two
more types of global average pooling layers. Specifically we propose:

• Global Entropy Pooling (GEP): Rather than computing the average or taking the maximum
value, GEP calculates the entropy of each activation map A(ℓ)2 using Equation 6.1. In this
regard, ? (ℓ)2 is a probability distribution that results from the following steps. (i) First,
normalize A(ℓ)2 to the range [0, 255]. (ii) Then, calculate the histogram of the resulting
A(ℓ)2 using 256 bins. (iii) Lastly, divide the histogram values by its total sum.

GEP(A(ℓ)2) = −
∑
9

?
(ℓ)
2

[
9
]
ln

(
?
(ℓ)
2

[
9
])

(6.1)

• Global Mean Thresholding Pooling (GMTP): It results from an effort of including inter-
channel information into the output values. In this regard, Equation 6.2 shows the com-
putation of) (ℓ)6 , where D and E indicate a spatial position in A(ℓ)2 , =A(;) is the number
of activation maps, ℎA(;) is the height, and FA(;) is the width of each activation map.
Hence,) (ℓ)6 can be seen as the mean value of the set of activation maps in layer ℓ. Finally,

132 Chapter 6. CNN models as collections of deep composite functions

for each activation map A(ℓ) , GMTP returns the number elements whose values are lower
than) (ℓ)6 .

)
(ℓ)
6 =

∑
2

∑
E

∑
D (A

(ℓ)
2 [E,D])

=A(ℓ) ∗ ℎA(ℓ) ∗FA(ℓ)
, GMPT(A(ℓ)2) =

∑
D,E

(A(ℓ)2 [D, E] <) (ℓ)6) (6.2)

6.5 GP-CNN: definition and selection strategy
This subsection used the generalized TL strategy proposed in section 6.4 to explore GP-

CNN, a straightforward extension of GAP-CNN. In more detail, GP-CNN utilizes the following
selection strategy: add to the list +dcf, the locations of all DFCs originating from a particular
layer ℓ.

In general, many research works implicitly used the above selection strategy when
they conducted layer-by-layer analyses to demonstrate the higher predictive power of deeper
layers (RAZAVIAN et al., 2014; CIMPOI et al., 2016). However, since these previous analyses
mainly focused on category-based texture datasets (e.g., DTD), the following experiments will
show a systematic analysis using GP-CNN applied to both category-based and instance-based
texture datasets.

6.5.1 Experimental settings

Using the subroutines explained in subsection 6.4.1, we applied the general evaluation
scheme described in subsection 4.3.1 to evaluate GP-CNN 702 times. Each evaluation included
one combination of the following three parameters.

1. Datasets (�). All texture datasets from Table 2, except CUReT_Q4. There are thirteen
datasets in total. Regarding the spliting strategy, datasets without predefined splits followed
the stratified <-repeated holdout validation (with <=10 and ?=50%).

2. Collections of DCFs (Φ). Since the selection strategy of GP-CNN generates a list + (ℓ)dcf

per layer ℓ, and we considered the eighteen layers shown in Figure 24, there are eighteen
collections of DCFs in total.

3. GP layers 6(·). The three GP layers from subsection 6.4.2 (GAP, GMTP and GEP).

Regarding the dedicated classifier, it is a Support Vector Machine (SVM) classifier with
linear kernel and parameter � = 1.

6.5.2 Performance of GAP features across multiple depth levels

This analysis was designed to graphically demonstrate how the accuracy rate varies
across multiple depth levels within each dataset. In this context, we excluded the results of the

6.5. GP-CNN: definition and selection strategy 133

Figure 26 – Accuracy rates achieved by GP-CNN across multiple layers and datasets. The horizon-
tal axis of each chart displays the layers in order of increasing depth. Additionally, all charts
provide only GAP-related results.

Block4 - c
onv3

Block4 - c
onv4

Block5 - c
onv1

Block5 - c
onv2

Block5 - c
onv3

Block5 - c
onv4

Layer Name

65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

(a) BN-VGG-19

Mod6-C

Mod7-C

Mod8-C

Mod9-D

Mod10-E

Mod11-E

Layer Name

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

(b) Inception-V3

S4-blockD

S4-blockE

S4-blockF

S5-blockA

S5-blockB

S5-blockC

Layer Name

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

(c) ResNet-50

CUReT

DTD

FMD

Kth-Tips2b

MBT

O10

O12

O13

(d) datasets

Source: Adapted from M. Condori and Bruno (2021).

Brodatz, UIUC, Vistex, USPtex, and STex datasets because they were very similar to those of
CUReT. Additionally, we excluded the results associated with GEP and GMTP layers because they
revealed a highly similar trend as GAP. Consequently, of the 702 experiments we ran, Figure 26
shows only the accuracy rates of 144. Specifically, these 144 accuracy rates are distributed into
three sub-figures, one for each pre-trained CNN model.

In general, results from category-based texture datasets (especially DTDs and FMDs)
support the consensus that the predictive power associated with a particular layer correlates
with its depth (RAZAVIAN et al., 2014; CIMPOI et al., 2016). On the other hand, results from
instance-based texture datasets, like the Outex suites (O10, O12, O13) and MBT, demonstrates
that shallow layers can also generate features with competitive predictive power.

In this regard, the similarity between the source and target domain datasets (ImageNet vs.
texture datasets) may explain the accuracy rates of Figure 26. Essentially, we hypothesize that
deeper layers produce features that are too abstract (or domain-specific) to be used in challenging
instance-based texture datasets, but helpful for category-based datasets. Indeed, Cui et al. (2018)
have shown that measuring the similarity between the source domain and the target domain is
crucial for fine-tuning TL methods since it could determine beforehand whether good results are
possible in the target domain.

134 Chapter 6. CNN models as collections of deep composite functions

Table 11 – Highest accuracy rates (%) achieved by GP-CNN. This table allows comparisons between
CNN models, global pooling layers, and datasets. The highest result per group is emphasized
in bold.

DTD FMD Kth-Tips2b MBT O10 O12 O13

BN-VGG-19 GAP 69.2 ± 0.8 80.2 ± 1.5 89.7 ± 4.7 98.3 ± 0.2 85.4 86.7 93.1
GEP 69.9 ± 0.7 79.9 ± 1.5 89.6 ± 5.1 98.4 ± 0.4 85.1 87.2 93.2
GMTP 69.9 ± 0.8 80.2 ± 1.7 89.8 ± 5.1 98.4 ± 0.4 84.8 87.2 94.0

INCEPTION-V3 GAP 74.0 ± 0.9 82.5 ± 1.3 88.1 ± 4.3 93.7 ± 0.4 86.5 88 89.4
GEP 74.4 ± 0.6 82.3 ± 1.1 88.5 ± 3.8 94.0 ± 0.4 86.2 87.4 87.9
GMTP 74.5 ± 0.7 83.0 ± 1.3 88.4 ± 4.5 93.8 ± 0.4 87.9 88.2 88.8

RESNET-50 GAP 73.4 ± 0.8 82.6 ± 1.0 84.8 ± 5.4 98.0 ± 0.4 92.1 93 92.6
GEP 73.2 ± 0.9 83.0 ± 1.5 86.4 ± 5.6 96.3 ± 0.5 93.7 93.7 91.3
GMTP 73.5 ± 1.0 83.8 ± 2.5 85.1 ± 6.2 97.6 ± 0.3 93.4 93.5 92.8

Source: Adapted from M. Condori and Bruno (2021).

Figure 26c presents an interesting case study on Outex10 (O10) and Outex12 (O12). In
particular, it shows a sustained improvement in accuracy from the shallowest layer of RESNET-
50 to the S4-blockF layer, followed by a steady decline that ends at the last layer. These
results indicate that while layer abstraction increases with layer depth, the appropriate level of
abstraction differs from dataset to dataset.

Lastly, it should be noted that the results shown in Figure 26 may vary in several
circumstances due to the stochastic nature of the SGD algorithm. Therefore, it would be beneficial
to develop advanced selection strategies that filter in the best DCF from each layer.

6.5.3 Comparison of global pooling layers

Table 11 lists the highest accuracy rates obtained per model, dataset, and global pooling
layer. Based on the comparison of CNN models, INCEPTION-V3 performs well on all category-
based datasets but poorly on all instance-based datasets. Regarding BN-VGG-19 and RESNET-
50, the former outperforms the other CNN models in Kth-Tips2b, MBT, and Outex13 datasets,
while the latter is successful in most datasets, particularly in Outex10 and Outex12. Despite
the lack of clarity regarding which CNN model is best for a given dataset, INCEPTION-V3
seems to be a better fit for category-based datasets, while RESNET-50 seems more robust for
instance-based datasets.

Finally, the comparison different global pooling layers shows that GMTP features tend
to achieve the best results, especially in INCEPTION-V3 and RESNET-50 models. Nevertheless,
it should be noted that the accuracy improvements brought by GMTP are less than 2% in most
cases. Therefore, the following experiments will only include GAP features.

6.6. RANKGP-CNN: Multi-layer feature extraction using a feature ranking approach 135

6.6 RankGP-CNN: Multi-layer feature extraction using a
feature ranking approach

Based on the systematic experiments performed on GP-CNN (subsection 6.5.1), the
following patterns emerged: (i) The fact that a DCF originates from a very deep layer does not
necessarily make it highly effective for all situations. (ii) We can, however, increase our chances
of selecting the right set of DCFs for a given task if we provide further information, such as the
type of texture problem at stake.

The above observations led to the development of RANKGP-CNN, a TL strategy that
performs a smart selection of DCFs from a pretrained CNN model. For this purpose, RANKGP-
CNN uses two complementary approaches: (i) a feature ranking technique that assigns a score
value to every DCF and (ii) a meta-dataset B that provides the necessary information for the
correct functioning of the feature ranking technique. In this regard, a meta-dataset can be thought
as a collection of one or more distinct datasets.

Essentially, the score assigned to each DCF represents its ability to identify highly
discriminating features in the input images. Hence, the selection strategy involves assembling a
list +dfc with the locations of the : highest-ranked DCFs. RANKGP-CNN will be described in
detail in the following subsections.

6.6.1 Selection Strategy

Following are the steps involved in the classical feature selection pipeline. (i) First, with
the feature extraction algorithm, compute the feature matrices X(;)

�train
and X(;)

�test
for the training

and test sets, respectively. (ii) Then, with the feature ranking technique, process X(;)
�train

to obtain
a list of feature scores. (iii) Lastly, remove from both X(;)

�train
and X(;)

�test
the columns that reflect

the lowest-ranked features.

Even though the above pipeline is suitable for many applications, it may be counterpro-
ductive for datasets that evaluate particular image properties. For instance, the predefined test
set of Outex10 contains the same images as the training set but rotated at various angles (see
Figure 18a). Consequently, feature ranking on this training set may result in the removal of rele-
vant rotation-invariant features. Indeed, this situation is particularly troubling for CNN models,
where it has been demonstrated that some DCFs can generate rotation- and illumination-invariant
features (OLAH; MORDVINTSEV; SCHUBERT, 2017).

The selection strategy of RANKGP-CNN avoids the above problem by applying the
feature ranking technique to a meta-dataset B instead of the input training set �train. As shown
in Figure 27, the proposed selection strategy involves the following five stages.

1. Combining datasets. Input for this stage is a set of & datasets {�1, �2, . . . , �&}. These

136 Chapter 6. CNN models as collections of deep composite functions

Figure 27 – General scheme of the proposed approach for ranking the deep composite functions.

 : imagesB1 nB1
 : imagesB2 nB2

 : imagesBQ nBQ

B : imagesnB

Sorted list of scores : (× 3)V
(L)
B

n
C (L)

List of indices : (× 2)Vdcf nchosen

: (×)X
()ℓ1

B
nB n

C ()ℓ1

: ()yB nB

: (×)X
()ℓ2

B
nB n

C ()ℓ2

: ()yB nB

: (×)X
()ℓP

B
nB n

C ()ℓP

: ()yB nB

Feat. Matrix : (×)X
(L)
B

nB nC (L)

Class Labels : ()yB nB

Combining

datasets

Feature extraction

using GP-CNN

Concatenation of

feature matrices

Feature Ranking

= + + ⋯ +nB nB1
nB2

nBQ

= + + ⋯ +n
C (L) n

C ()ℓ1 n
C ()ℓ2 n

C ()ℓP

1.

2.

3.

4.

Feature Selection5.

Source: Adapted from M. Condori and Bruno (2021).

individual datasets form the meta-dataset B. This stage assumes that there is no overlap
between member datasets. Consequently, the number of samples in B is the sum of all the
samples in the individual datasets. The same occurs for the number of classes in B.

2. Feature Extraction using GP-CNN. The input for this stage is a set of % layers ! =
{ℓ1, ℓ2, . . . , ℓ%} that come from a pre-trained CNN model. Then, this stage uses the GP-CNN
selection strategy to extract the collection Φ(ℓ?) for each layer ℓ? ∈ !. Next, Algorithm 5
computes a feature matrix X(;?)B of size (=B ×=C(;?)) for each layer ;? by processing the
set of images from B with the collection Φ(ℓ?) and the chosen global pooling layer 6(·).

3. Concatenation of feature matrices. This stage horizontally concatenates the resulting
feature matrices from the previous stage. Therefore, the output of this stage is a large
feature matrix X(!)B of size (=B ×=� (!)).

4. Feature Ranking. Input for this stage is a feature ranking technique (Frank). Then, this
technique is applied to X(!)B , resulting in a list + (!)B of shape (=� (!) × 3). The first two
columns of + (!)B contain the location of each DCF associated with such score, and the
third column contains the scores sorted in descending order. The feature ranking technique
determines the computational cost of this stage; it could take from a few minutes to several
hours to complete.

5. Feature Selection. Input for this stage is =chosen, the desired number of DCFs to be

6.6. RANKGP-CNN: Multi-layer feature extraction using a feature ranking approach 137

extracted from +
(!)
B . In this regard, this final stage removes from +

(!)
B all DCFs that do not

appear in the top =chosen places. Finally, the resulting list is renamed +dcf.

6.6.2 Experimental settings

We used the subroutines explained in subsection 6.4.1 and the general evaluation scheme
described in subsection 4.3.1 to systematically evaluate RANKGP-CNN with multiple combina-
tions of the following input parameters.

1. Datasets (�). Two category-based datasets (Kth-Tips2b and FMD) and four instance-based
datasets (Outex10, Outex12, Outex13, and MBT).

2. Collections of DCFs (Φ). As shown in subsection 6.6.1, the selection strategy for
RANKGP-CNN requires four input parameters. The possible instances for each input
parameter are below.

• Meta-datasets (B). We proposed the following three meta-datasets:

– BIns: it includes all instance-based datasets that were not challenging enough for
GP-CNN. Specifically, USPtex, Vistex, STex, CUReT, UIUC, and Brodatz.

– BDTD: it is just the DTD dataset.

– BI+D: it comprises the same datasets as BIns, except CUReT, which were replaced
by DTD. Consequently, BI+D includes category-based and instance-based texture
information.

• Predefined sets of layers (!). Three sets of six layers, each corresponding to a
pre-trained CNN model. The three sets are depicted in Figure 24. For instance,
!INCEPTION-V3 = {Mod6-C, Mod7-C, Mod8-C, Mod9-D, Mod10-E, Mod11-E}.

• Feature ranking techniques (Frank). Mutual Information (MI), Extremely Random-
ized Trees (ET), and One-way Analysis Of Variance (ANOVA). These techniques
are briefly described in Appendix B.

• Number of selected DCFs (=chosen). We performed experiments with 250, 500,
1000, 1500, and 2048 chosen deep composite functions.

3. GP layers 6(·). Only GAP.

6.6.3 Accuracy rates for different sets of input parameters

Table 12 shows the accuracy rates achieved by RANKGP-CNN at multiple (i) meta-
datasets, (ii) feature ranking techniques, (iii) pre-trained CNN models, and (iv) texture datasets.
In this sense, we did not include the results for BIns since they were mostly lower than those
from BI+D.

138 Chapter 6. CNN models as collections of deep composite functions

Table 12 – Accuracy results achieved by RANKGP-CNN. The last column (Mean acc.) presents the
accuracy rates averaged across all datasets. Results in bold indicate highest accuracy rates per
combination of (i) CNN model, (ii) meta-dataset, and (iii) texture dataset. Similarly, results
highlighted in bold red font represent the highest accuracy rates per combination of (i) CNN
model and (ii) dataset.

(a) BN-VGG-19

FMD Kth-Tips2b MBT O10 O12 O13 Mean acc.

BDTD ANOVA 79.5 ± 1.7 89.7 ± 5.1 97.4 ± 0.4 89.8 91.5 92.9 90.1 ± 5.4

MI 80.3 ± 1.3 90.8 ± 5.2 97.6 ± 0.4 88.7 90.6 92.2 90.0 ± 5.2

ET 79.8 ± 1.2 90.6 ± 5.2 97.4 ± 0.4 89.1 91.3 93.4 90.3 ± 5.4

BI+D ANOVA 79.1 ± 1.3 88.5 ± 4.6 98.0 ± 0.4 92.6 93.7 92.8 90.8 ± 5.9
MI 78.5 ± 1.8 88.0 ± 4.9 98.3 ± 0.3 91.1 93.4 93.8 90.5 ± 6.2

ET 78.7 ± 1.4 88.8 ± 4.7 98.2 ± 0.3 89.7 92 93.4 90.1 ± 5.9

(b) INCEPTION-V3

FMD Kth-Tips2b MBT O10 O12 O13 Mean acc.

BDTD ANOVA 82.8 ± 0.9 89.0 ± 3.9 89.5 ± 0.7 94.2 93.5 84.8 89.0 ± 4.2

MI 82.2 ± 1.0 90.4 ± 4.7 90.9 ± 0.6 94.2 93.4 86.9 89.7 ± 4.1
ET 83.2 ± 1.4 88.7 ± 3.2 90.2 ± 0.8 93.1 92.8 84.8 88.8 ± 3.7

BI+D ANOVA 81.8 ± 1.5 88.8 ± 3.2 94.0 ± 0.7 97.3 96.2 88.1 91.0 ± 5.4
MI 81.4 ± 1.7 88.1 ± 2.5 93.9 ± 0.6 97.2 96.2 88.7 90.9 ± 5.5

ET 81.6 ± 1.2 87.9 ± 2.4 94.2 ± 0.3 96.4 95.6 89.1 90.8 ± 5.2

(c) RESNET-50

FMD Kth-Tips2b MBT O10 O12 O13 Mean acc.

BDTD ANOVA 80.3 ± 2.0 87.6 ± 1.5 96.3 ± 0.5 89.4 91.7 91.9 89.5 ± 4.9

MI 79.2 ± 2.0 87.6 ± 2.6 96.6 ± 0.5 90 90 91.6 89.2 ± 5.2

ET 80.9 ± 1.2 87.7 ± 2.6 96.4 ± 0.4 90.9 92.4 92.1 90.1 ± 4.8

BI+D ANOVA 78.0 ± 1.5 84.8 ± 1.7 97.1 ± 0.3 96.4 96.2 91.5 90.7 ± 7.1

MI 78.0 ± 1.8 82.5 ± 3.1 98.0 ± 0.3 97.3 96.6 93.2 90.9 ± 7.8

ET 79.0 ± 1.2 83.2 ± 3.4 97.3 ± 0.4 97.4 96.6 93.1 91.1 ± 7.3

Source: Adapted from M. Condori and Bruno (2021).

In general, Table 12a, Table 12b, and Table 12c share two interesting patterns. (i) BDTD is
better for category-based datasets, (ii) and BI+D is better for instance-based datasets. As a result,
since there are more instance-based datasets than category-based datasets, the mean accuracy
rates for BI+D are usually higher than those for BDTD. These patterns exhibit a strong correlation
with the concept of domain similarity, which suggests that the degree of similarity between
the source and target domains has an enormous influence on the performance of a TL strategy.
Therefore, a second possible application of RANKGP-CNN is determining the affinity between
a pre-trained CNN model and samples from a particular target domain.

The highlights of the comparison of pre-trained CNN models are as follows. (i) BN-
VGG-19 surpasses the other CNN models in the Kth-Tips2b, MBT, and Outex13 datasets.
However, it failed to perform well in the remaining datasets. (ii) INCEPTION-V3 achieved
impressive results in category-based datasets and, compared to other CNN models, it reduced

6.6. RANKGP-CNN: Multi-layer feature extraction using a feature ranking approach 139

the performance gap in some instance-based datasets, such as Outex10 and Outex12. However,
there is still a large performance gap (≈ 4%) between INCEPTION-V3 and the other CNN models
in MBT and Outex13. (iii) As for RESNET-50, its performance leaves much to be desired in
category-based datasets. For example, in Kth-Tips2b, there is a 2.7% performance gap between
the best RESNET-50 accuracy rates and those from the INCEPTION-V3 model.

The comparison of ANOVA, MI, and ET did not reveal a clear winner. Indeed, when
using the BI+D meta-dataset, the mean accuracy rates in Table 12b and Table 12c are nearly
identical for the three techniques. In this context, Figure 28 shows two diagrams that attempt to
explain the previous results by comparing the behavior of the three feature ranking techniques
for INCEPTION-V3 and BI+D. In more detail, Figure 28a shows, for each feature ranking method,
the distribution of its 1500 top-ranked DCFs across the set of layers of INCEPTION-V3. Despite
the slight differences, the three distributions look very similar. Indeed, the number of DCFs
always decreases with increasing depth in ANOVA and ET. As for MI, although the decreasing
tendency stops at layer Mod9-D, it resumes at the next layer.

As for the Venn diagram shown in Figure 28b, it presents the overlap between the top-
1500 DCFs generated by ANOVA, MI, and ET. In this regard, the diagram indicates that ANOVA,
MI, and ET share 72.7% (1091/1500) of the chosen DCFs. These results suggest that, in addition
to having similar DCF distributions, the three feature ranking techniques also generate similar
feature vectors. Additionally, 90% of the DCFs chosen by ANOVA also appears on ET and MI.
Finally, similar charts can be obtained for BN-VGG-19 and RESNET-50.

Figure 28 – Comparison of the top-1500 DCFs computed by ANOVA, ET, and MI. Input parameters:
the set of predefined layers from INCEPTION-V3, BI+D, and =chosen = 1500.

(a) Distribution of DCFs

9.9%
12.5%

8.5%

12.0%

8.9%
6.4%

72.7%

ANOVA ET

MI

(b) Overlapping of DCFs

Source: Adapted from M. Condori and Bruno (2021).

6.6.4 Comparing RankGP-CNN with GP-CNN

Table 13 compares the mean accuracy rates achieved by GP-CNN and RANKGP-CNN.
In this sense, the parameter combinations for GP-CNN are the same as those presented in

140 Chapter 6. CNN models as collections of deep composite functions

Table 13 – Accuracy rates averaged across six datasets (FMD, Kth-Tips2b, MBT, Outex10, Outex12 and
Outex13). In GP-CNN, ;1 to ;6 are layers sorted in increasing depth. RANKGP-CNN++ is a
variant of RANKGP-CNN that use BDTD for category-based datasets, and BI+D for instance-
based datasets. The best result per column is in bold red font.

BN-VGG-19 INCEPTION-V3 RESNET-50

GP-CNN ;1 86.0 ± 8.8 86.0 ± 6.1 85.6 ± 7.6

;2 86.4 ± 7.5 85.5 ± 4.0 87.4 ± 6.8

;3 87.2 ± 6.0 83.9 ± 1.9 89.7 ± 6.2

;4 86.7 ± 5.6 84.1 ± 3.1 87.8 ± 4.7

;5 86.2 ± 4.2 82.9 ± 3.8 86.8 ± 4.1

;6 83.6 ± 3.0 81.4 ± 5.0 84.9 ± 4.0

RANKGP-CNN ANOVA 90.8 ± 5.9 91.0 ± 5.4 90.7 ± 7.1

(BI+D) MI 90.5 ± 6.2 90.9 ± 5.5 90.9 ± 7.8

ET 90.1 ± 5.9 90.8 ± 5.2 91.1 ± 7.3

RANKGP-CNN++ ANOVA 91.0 ± 5.7 91.2 ± 5.1 91.5 ± 6.0

MI 91.3 ± 5.5 91.4 ± 5.1 92.0 ± 6.7

ET 90.6 ± 5.6 91.2 ± 4.7 92.2 ± 6.1

Source: Adapted from M. Condori and Bruno (2021).

subsection 6.5.2. In more detail, it involved (i) the eighteen sets of layers shown in Figure 24,
and (ii) the GAP layer. As for RANKGP-CNN, we considered (i) the three pre-trained CNN
models, (ii) the BI+D meta-dataset, (iii) three feature ranking strategies (ANOVA, MI, ET), and
(iv) the GAP layer. Lastly, we defined RANKGP-CNN++ as the RANKGP-CNN that uses BDTD

for categorical-based datasets and BI+D for instance-based datasets.

The highlights of Table 13 are as follows. (i) RANKGP-CNN performed better than
GP-CNN in all instances, demonstrating that, at least on average, selecting DCFs from multiple
layers is better than using those of a single layer. (ii) In every CNN model, the GP-CNN mean
accuracy rates of the deepest layer (;6) were significantly lower than those associated with the
other layers (;1 – ;5). (iii) Moreover, RANKGP-CNN improved the best results achieved by
GP-CNN in the BN-VGG-19, INCEPTION-V3 and RESNET-50 models by +3.6%, +5.0%,
and +1.4%, respectively. (iv) Finally, RANKGP-CNN++ further improved the previous results,
especially for the RESNET-50 model.

6.7 RankGP-3M-CNN: combining BN-VGG-19, Inception-
V3, and ResNet-50

Upon analyzing the results in Table 12 and Table 13, two points are evident. (i) Despite
RANKGP-CNN and GP-CNN computing a similar number of features, RANKGP-CNN always
produces better results than GP-CNN. (ii) Additionally, the comparison of the results obtained by
different CNN models demonstrates that no model outperforms the others in all cases. Therefore,
the question is whether it is possible to apply RANKGP-CNN to multiple CNN models without

6.7. RANKGP-3M-CNN: combining BN-VGG-19, INCEPTION-V3, and RESNET-50 141

damaging the predictive power of each CNN model individually. In response, we propose
RANKGP-3M-CNN, a helpful and straightforward variant of RANKGP-CNN that merges the
predefined layers from

{
BN-VGG-19, INCEPTION-V3 and RESNET-50

}
.

6.7.1 Selection strategy and experimental settings

The selection strategy of RANKGP-3M-CNN is straightforward. It consists of executing
three times the RANKGP-CNN selection strategy shown in Figure 27 (one for each pre-trained
CNN model). Then, the resulting lists of indices + (BN-VGG-19)

dcf , + (INCEPTION-V3)
dcf , + (RESNET-50)

dcf are
concatenated into a single list +dcf.

As for the experimental settings, we used the subroutines described in subsection 6.4.1
along with the general evaluation scheme presented in subsection 4.3.1 to systematically evaluate
RANKGP-3M-CNN with different combinations of the following parameters.

• Datasets (�). Two category-based datasets (FMD and Kth-Tips2b), and four instance-
based datasets (MBT, Outex10, Outex12, and Outex13).

• Collections of DCFs (�). The selection strategy of RANKGP-3M-CNN requires a com-
bination of four parameters. The limits and details for each of them are below.

– Meta datasets B. Only BDTD and BI+D.

– Predefined set of layers L. One that includes the eighteen layers from Figure 24.

– Feature ranking techniques Frank. ANOVA, MI, and ET.

– Number of selected DCFs (=chosen). we performed experiments with 400, 560 and
900 DCFs per pre-trained CNN model.

• GP layers. Only GAP.

6.7.2 Accuracy rates for different sets of input parameters

Here, we used the experimental settings described in subsection 6.7.1 to evaluate
RANKGP-3M-CNN with different parameter combinations. In more detail, for each dataset and
combination of (i) one meta-dataset and (ii) one feature ranking technique, Table 14 presents the
highest accuracy rate among those computed for different values of =chosen.

Some highlights of Table 14 are as follows. (i) BDTD is again associated with the highest
accuracy rates on category-based datasets, while the best results for instance-based datasets
were achieved when using BI+D. These results support the notion, discussed in subsection 6.6.3,
of domain similarity (Cui et al., 2018) being a critical aspect for selecting good collections of
DCFs. (ii) ANOVA is associated with the highest mean accuracy rate (92.6%) of all feature

142 Chapter 6. CNN models as collections of deep composite functions

Table 14 – Accuracy rates (%) achieved by RANKGP-3M-CNN. The results are available for six
texture datasets, three feature ranking approaches and two meta-datasets. The last column has
the mean accuracy values.

FMD Kth-Tips2b MBT O10 O12 O13 Mean acc.

BDTD ANOVA 82.6 ± 1.4 89.4 ± 4.0 97.4 ± 0.4 94.6 94.6 92.4 91.8 ± 4.8

MI 80.9 ± 1.7 91.1 ± 4.5 97.7 ± 0.2 94.4 95 92.8 92.0 ± 5.4

ET 82.6 ± 2.0 89.9 ± 3.7 97.8 ± 0.2 94.8 95.6 91.9 92.1 ± 5.0

BI+D ANOVA 80.4 ± 1.3 87.4 ± 3.2 98.3 ± 0.5 98.2 97.6 93.8 92.6 ± 6.7
MI 79.9 ± 1.6 85.7 ± 5.2 98.4 ± 0.3 97.0 96.8 94.6 92.1 ± 6.9

ET 79.6 ± 1.5 85.5 ± 5.6 98.5 ± 0.3 96.9 96.8 94.4 92.0 ± 7.0

Source: Adapted from M. Condori and Bruno (2021).

ranking techniques analyzed in this thesis. Nevertheless, these results are not conclusive enough
to suggest that ANOVA is superior to MI and ET.

Indeed, when considering RANKGP-3M-CNN++ as the TL strategy that uses BDTD

for category-based datasets, and BI+D for instance-based datasets, the mean accuracy rates for
ANOVA (93.3%), MI (93.1%), and ET (93.2%) are nearly identical. Nevertheless, MI and ET
are both less computationally efficient than ANOVA. For example, ANOVA could process BI+D

within seconds on a single-core machine, whereas MI would process it within several minutes.
In contrast, ET generally requires several hours to complete its work.

In Figure 29, we can easily observe the progress in the accuracy rates achieved by GP-
CNN*, RANKGP-CNN++, and RANKGP-3M-CNN++ for six texture datasets. In this context,
we only included the results associated with ANOVA for RANKGP-CNN++ and RANKGP-
3M-CNN++. Below are the main points of Figure 29. (i) RANKGP-CNN++ has a distinct
advantage over GP-CNN* when comparing the accuracy rates achieved by each pre-trained
CNN model, especially when using instance-based datasets (ii) Aside from that, the results
achieved by RANKGP-3M-CNN++ are comparable to or even superior to those achieved by
RANKGP-CNN++.

The above findings suggest that simultaneously using two or more collections of DCFs
is recommended to improve the classification results on each dataset. Similar charts are obtained
for other feature ranking techniques (MI and ET), but they are not shown here.

6.8 Comparing RankGP-3M-CNN++ with alternative CNN-
based methods

Table 15 shows the comparison of RANKGP-3M-CNN++ with alternative CNN-based
methods. Except for the Training From Scratch method, these methods are briefly described in
section 3.2. Indeed, for a fair comparison, RANKGP-3M-CNN++ and the alternative methods
use the dataset splits described in subsection 6.5.1. Following are the implementation details for

6.8. Comparing RANKGP-3M-CNN++ with alternative CNN-based methods 143

Figure 29 – Comparison of accuracy rates between GP-CNN*, RANKGP-CNN++, and RANKGP-
3M-CNN++. GP-CNN* presents the GP-CNN results on the layer, where it achieved the
highest average accuracy rate (see Table 13).Regarding RANKGP-CNN++ and RANKGP-
3M-CNN++, we only show the results associated with ANOVA.

FMD Kth-Tips2b MBT O10 O12 O13
Dataset Name

75

80

85

90

95

A
cc

ur
ac

y
(%

)

BN-VGG-19 (GP-CNN*)

Inception-V3 (GP-CNN*)

ResNet-50 (GP-CNN*)

BN-VGG-19 (RankGP-CNN++)

Inception-V3 (RankGP-CNN++)

ResNet-50 (RankGP-CNN++)

V19-IV3-R50 (RankGP-3M-CNN++)

Source: Adapted from M. Condori and Bruno (2021).

each alternative CNN-based method.

• Training From Scratch. We trained three CNN models (BN-VGG-19, INCEPTION-V3,
and RESNET-50) with the stochastic gradient descent (SGD) algorithm. Throughout each
experiment, SGD was supplied with the following input parameters: (i) a learning rate of
0.001, (ii) a momentum of 0.9, and (iii) a weight decay of zero. Additionally, we used the
default random initialization provided by PyTorch 0.4.1 (PASZKE et al., 2017). Finally,
the training process consisted of 150 epochs with mini-batches of eight texture images.

• Standard Fine-tuning. We fine-tuned the BN-VGG-19, INCEPTION-V3, and RESNET-50
models, using the same settings as the Training From Scratch method (except for the
initialization policy). Furthermore, we used the official TorchVision 0.2 library to import
the pre-trained CNN models into PyTorch.

• FV-CNN. We included the results published in the original FV-CNN paper (CIMPOI et al.,
2016) and those from other research works (LIU et al., 2019) when they employed the
same dataset splits that we used for RANKGP-3M-CNN++.

• DEEPTEN. We evaluated DEEPTEN (RESNET50) using the code provided by its authors2.
In this context, although we tried to keep the same hyper-parameters as in the original
paper (ZHANG; XUE; DANA, 2017), some changes were still necessary. (i) due to
memory constraints, we were unable to use a multi-size training procedure. Rather, we
used the standard method of resizing each image to a shortest dimension of 256 pixels
(without changing its aspect ratio). Then, to form mini-batches, each resized image is

2 DeepTen GitHub repository: <https://github.com/zhanghang1989/PyTorch-Encoding>

https://github.com/zhanghang1989/PyTorch-Encoding

144 Chapter 6. CNN models as collections of deep composite functions

randomly cropped to N pixels. (ii) In addition to random cropping, we did not apply any
data augmentation techniques.

• SPOTTUNE. In the same way as DEEPTEN, we evaluated several texture datasets using
SPOTTUNE’s source code3. In more detail, we performed all experiments on the RESNET-
26 model, since it was the only model available within the published code. However,
although we tried to maintain the same hyper-parameters as in the original paper (Guo et

al., 2019), the following changes were necessary. (i) Because SPOTTUNE is composed
of two RESNET copies and a policy network, even on a RESNET-26 model it was not
possible to allocate mini-batches greater than 30 samples on a single 11GB GPU core.
Therefore, we ran our experiments with two batch sizes: 15 and 30 samples. The highest
accuracy among both settings is reported in Table 15. (ii) Because the source code provided
different values for the weight decay hyper-parameter, we used the most common one:
“zero” throughout the experiments. (iii) Lastly, we resized and cropped the images the
same way as in DEEPTEN.

• EASYTL. The evaluation was conducted using the code published by the authors of
EASYTL4. EASYTL differs from previous TL methods in that its only parameter is the
intra-domain alignment algorithm. For this purpose, we used the CORAL algorithm as
suggested in the EASYTL original paper (Wang et al., 2019). As EASYTL processes sets
of feature vectors rather than sets of activation maps, we also had to choose which sets of
feature vectors to provide to EASYTL. Therefore, to find if EASYTL can achieve high
accuracy rates in instance-based datasets without having to resort to multi-layer feature
extraction, we chose to perform feature extraction from the last convolutional layer of
BN-VGG-19, INCEPTION-V3, and RESNET-50 using GP-CNN. Then, the resulting sets
of feature vectors became the input for EASYTL.

All the CNN-based methods requiring GPU acceleration were run on a GeForce GTX
1080 Ti. Below are the highlights of Table 15.

1. Regarding the Training from scratch and standard fine-tuning methods, their results were
not as good as those obtained through more sophisticated CNN-based methods.

2. Some alternative CNN-based methods achieved excellent results on category-based datasets.
For instance, the accuracy rate achieved by DEEPTEN for the FMD dataset were much better
than those reported in its original publication (85.0% vs. 80.2%). Accordingly, it seems
that the changes we made to the DEEPTEN’s hyper-parameters had a significant impact
on its behavior. Additionally, the pre-trained RESNET-50 model we used may be more
appropriate for FMD than the one used in the original paper.

3 SpotTune GitHub repository: <https://github.com/gyhui14/spottune>
4 EasyTL GitHub repository: <https://github.com/jindongwang/transferlearning/tree/master/code/

traditional/EasyTL>

https://github.com/gyhui14/spottune
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/EasyTL
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/EasyTL

6.8. Comparing RANKGP-3M-CNN++ with alternative CNN-based methods 145

Table 15 – Comparison of accuracy rates (%) between RANKGP-3M-CNN++ and alternative CNN-based
methods for texture recognition. (*) Results were extracted from (LIU et al., 2016).

CUReT FMD Kth-Tips2b MBT O10 O12 O13

BN-VGG-19 (scratch) 96.2 ± 0.5 25.0 ± 2.3 66.6 ± 3.3 31.6 ± 4.0 59.7 58.4 55.9
INCEPTION-V3 (scratch) 94.9 ± 1.3 30.5 ± 2.5 67.7 ± 6.1 83.6 ± 1.7 72.5 74.2 66.0
RESNET-50 (scratch) 90.4 ± 1.6 26.0 ± 1.4 69.0 ± 4.8 76.2 ± 1.9 70.6 72.4 76.2

BN-VGG-19 (standard fine-tuning) 87.7 ± 3.1 18.1 ± 2.7 59.2 ± 3.4 11.3 ± 4.3 30.1 37.8 40.0
INCEPTION-V3 (standard fine-tuning) 97.1 ± 1.6 36.5 ± 2.5 77.7 ± 4.6 87.8 ± 3.2 59.4 62.9 68.2
RESNET-50 (standard fine-tuning) 96.0 ± 1.3 30.5 ± 3.1 75.3 ± 6.8 82.0 ± 4.4 63.6 67.1 76.3

VGG-19 (FV-CNN) 99.0 ± 0.2 79.8 ± 1.8 88.2 (*) - 80.0 (*) 82.3 (*) -
RESNET-50 (DEEPTEN) 98.7 ± 0.7 85.0 ± 1.2 82.1 ± 2.3 81.4 ± 2.4 82.2 84.2 76.2
RESNET-26 (SPOTTUNE) 97.6 ± 0.9 30.5 ± 3.7 70.1 ± 7.9 97.3 ± 0.7 63.1 70.0 88.7

BN-VGG-19 (EASYTL) 84.2 ± 1.6 74.6 ± 1.5 84.3 ± 5.6 86.3 ± 1.1 86.2 85.5 84.0
INCEPTION-V3 (EASYTL) 84.9 ± 1.0 77.4 ± 1.4 81.2 ± 6.5 73.9 ± 1.3 87.6 87.0 73.4
RESNET-50 (EASYTL) 89.5 ± 1.5 81.1 ± 1.1 86.2 ± 7.7 89.5 ± 0.8 86.4 84.4 87.4

RANKGP-3M-CNN++ (ANOVA) 99.8 ± 0.2 82.6 ± 1.4 89.4 ± 4.0 98.3 ± 0.5 98.2 97.6 93.8
RANKGP-3M-CNN++ (MI) 99.8 ± 0.2 80.9 ± 1.7 91.1 ± 4.5 98.4 ± 0.3 97.0 96.8 94.6

Source: Adapted from M. Condori and Bruno (2021).

3. All alternative CNN-based approaches failed to perform well on two or more different
instance-based datasets. These results agree with those described in subsection 6.5.2, which
suggested that the final convolutional layer of a pretrained CNN model performs much
better for category-based datasets than for instance-based datasets. In contrast, SpotTune
achieved high accuracy (97.3%) in the MBT dataset, which indicates that fine-tuning
methods can successfully address the previous issue when given the appropriate hyper-
parameters. Unfortunately, despite testing two sets of hyper-parameters for SpotTune, they
were only successful on MBT. Consequently, we agree with Li et al. (2020), who state
that identifying the correct hyper-parameters for a dataset is a very resource-intensive and
challenging process that requires a well-designed search plan.

4. Based on EASYTL’s accuracy rates in instance-based datasets, it appears that semi-
supervised learning did not improve the quality of texture information provided by the last
convolutional layer of a pre-trained CNN model.

5. Overall, our method performs better on both category-based and instance-based datasets.
In this sense, though our method combines the predictive power of three CNN models,
the feature extraction part of our method is computationally more efficient than that of
the alternative CNN-based methods. Additionally, the computational cost of the selection
strategy is very low when using ANOVA.

146 Chapter 6. CNN models as collections of deep composite functions

6.9 Final considerations
For the target task of texture recognition, this chapter examined the quality of different

sets of 2D activation maps with global pooling layers. In more detail, we proposed a generalized
version of the TL strategy that uses a pre-trained CNN model as a feature extractor (e.g. GAP-
CNN, or FC-CNN). In this generalization, each CNN model is viewed as a collection of deep
composite functions (DCFs), each responsible for calculating one activation map per input image.
Selection strategies were also presented to reduce the large number of DCFs in a CNN model,
resulting in the generation of medium-sized feature vectors.

The main findings of this chapter were the following. (i) DCFs that perform well on
category-based datasets are likely to perform poorly on instance-based datasets (and vice versa).
(ii) The DCFs from shallower layers can have competitive predictive power. Indeed, using
these layers, we obtained good accuracy rates on datasets where previous CNN-based methods
performed poorly (e.g. Outex12) (LIU et al., 2019). (iii) We found some slight evidence that
GMPT can extract more relevant texture information than GAP. This point needs further research.
(iv) Domain-specific knowledge can be included via a meta-dataset to guide the selection of
proper DCFs. (v) Unlike the previous chapter, where combining two CNN models mostly yielded
poor performance gains, this chapter successfully combines the predictive power of multiple
CNN models, especially on instance-based texture datasets. Therefore, our final model achieved
excellent results on both category-based and instance-based datasets, without having to compute
huge feature vectors. Furthermore, given the simplicity and generality of our method, it can be
easily applied to newer CNN models such as SENET (Hu et al., 2019) or EFFICIENTNET (TAN;
LE, 2019).

147

CHAPTER

7
EXPLORING DETECTION

7.1 Initial considerations

In the previous chapters, we examined TL strategies for image classification tasks.
Specifically, we explored how earlier layers can contribute powerful features that allow pre-
trained CNN models to reach higher levels of generalization. This chapter will also study the
predictive power of layers at multiple depth levels but focusing on object detection tasks. In
more detail, this chapter proposes TL strategies for solving two biological tasks: (i) pollen grain
detection and (ii) stomata detection.

In general, both tasks are challenging and lead to multiple applications. The detection of
pollen grains, for instance, can aid in allergy diagnosis (PABLOS et al., 2016), climate change
analysis (D’AMATO et al., 2015), and pesticide monitoring during agronomic seasons (BÖHME
et al., 2018). On the other hand, stomata detection can help biologists to study the possible
correlations between the stomatal morphological features and the plant productivity/transpiration
efficiency across different species (MORALES-NAVARRO et al., 2018; CAINE et al., 2019).

As explained in section 2.3, object detection tasks are more challenging than image
classification tasks for the following reasons. (i) There are usually multiple objects within an
image, which can overlap. (ii) Objects come in a variety of shapes and sizes. (iii) Objects can
differ in size by several orders of magnitude. In this context, the inherent complexity of biological
imaging could increase the task difficulty even further. For example, microscopic images of the
plant leaf epidermis can contain anywhere from 5 to 400 stomata depending on the magnification
factor used. Therefore, the architectural design of the object detector must take into account the
morphological characteristics of the micro-structure it wants to detect.

By reviewing the literature for both grain pollen and stomata detection, we observed two
patterns: (i) the researchers directly train a popular object detector, or (ii) the researchers build
from scratch the design of a new detector. In the first case, the design of the detector disregards

148 Chapter 7. Exploring detection

the essential morphological characteristics of the pollen grains (or stomata), while in the second
case, the design of the detector ignores the new architectural innovations constantly proposed by
the scientific community. Therefore, in this chapter, we propose TL strategies that results from
an in-depth analysis of the particular target task while taking into consideration the innovative
architectural designs of popular object detectors.

7.2 Target task, datasets and pre-trained models

This chapter deals with two target tasks. (i) Pollen grain detection and (ii) Stomata
localization. Given an input image � of size (3000×2500), the first target task involves enclosing
within bounding boxes all the pollen grains in the image and then assigns each bounding box to
a valid target class. As for the stomata localization, since there is only one foreground class, it
only requires the object detector to locate and enclose all valid stomata within bounding boxes.

Regarding the datasets, they initially came without bounding boxes, so manual labeling
was performed under the supervision of an expert. The details of the pollen and stomata datasets
are in subsection 4.2.4 and subsection 4.2.3, respectively. Although pollen grain detection appears
to be a more challenging task than stomata localization, the opposite is true since the stomata
dataset originates from multiple sources, containing a variety of plant species, magnification
factors, sample preparation techniques, and imaging methods.

In both tasks we performed experiments with the following pre-trained CNN models
DENSENET-121, DENSENET-201, RESNET-34, RESNET-50, SERESNEXT-50_32X4D, and
SERESNEXT-101_32X4D. Additionally, in the pollen grain detection task we included the
backbones from SERESNET-50 and SENET-154, while in the stomata localization task, we
included the backbones from the EFFICIENTNET family.

The next sections present POLLENDET and STOMADET, two simple and fast one-stage
fully-convolutional detectors that can process images of up to (3000×2500) within microseconds.
Additionally, it is worth mentioning that in this chapter the terms “activation maps” and “feature
maps” will be used interchangeably.

7.3 PollenDet

Microscopic images of pollen grains are significantly different than everyday photographs
such as people faces or buildings. Therefore, the direct application of object detectors such as
Faster R-CNN or RETINANET to detect and classify pollen grains could lead to poor results. In
this sense, the main differences between pollen grains and everyday objects are:

1. Square bounding boxes: Since pollen grains are nearly spherical, they can be enclosed in
bounding boxes with aspect ratios of approximately 1:1, while everyday objects need a

7.3. POLLENDET 149

more extensive range of aspect ratios.

2. Similar scale: Given a microscopic image, pollen grains belonging to the same type are
approximately of the same scale. On the other hand, everyday objects can be found at
multiple scales in the same image.

3. Little intersection: There is little or not intersection between two or more pollen grains
inside a light microscopic image.

Using the information above, we developed POLLENDET, a fast and accurate TL strategy
for detecting pollen grains in microscopic images.

7.3.1 General architecture

As shown in Figure 30, the architecture of POLLENDET is composed of three main
components: (i) The backbone, (ii) the regression head, and (iii) the classification head. The first
component is in charge of computing a activation map � from a given input image �. Then, � is
processed by the second and third components, which respectively generates 4# regression
coefficients and # ∗ #� classification scores for each spatial position in �. The letters #
and #� are respectively the number of different anchor box sizes and the number of classes. In
this sense, the definition of anchor box is the same as in Ref. (REN et al., 2017), that is: the default
bounding box associated with one spatial position in �. Since pollen grains are approximately
spherical, only three square anchor box sizes are used in POLLENDET: = {128×128,181×181,
256×256}, # = 3. Regarding the number of classes (#�), there are two tasks that are addressed
by POLLENDET.

1. Localization task: It involves the prediction of bounding boxes associated with pollen
grains. Therefore, there are only #� = 2 classes, which correspond to the foreground (the
pollen grain) and background classes.

2. Localization + classification task: In addition to locating the pollen grains in �, it also
involves identifying their types. Therefore, #� is equal to the number of pollen types plus
the background class.

The regression and classification components are both constituted by a single convo-
lutional layer of kernel size: (1×1). We tested configurations of two and three convolutional
layers but only marginal improvements were obtained. At training time, the regression and
classification outputs are each compared against an encoded ground truth. On the other hand,
at test time, both outputs are combined and decoded to produce the predicted bounding boxes.
Detailed information about the training and test processes can be found in subsection 7.3.2.

150 Chapter 7. Exploring detection

Figure 30 – General architecture of our proposed method. The input image � is processed by the back-
bone. Then, the resulting activation map � is further processed by two (1×1) convolutional
layers, which produce one map of regression coefficients and one map of labels scores. At
test time, both outputs are combined and decoded to obtain the predicted bounding boxes.

W
I

HI

Input

W
F

HF

Feature map F from the
backbone architecture

HF

Classification
(NCNK)

HF

Regression
(4NK)

W
F

W
F

W
I

HI

Output

Source: Elaborated by the author.

7.3.2 Implementation details

As shown in Figure 31, there is a common architectural pattern among the CNN models
above: all of them are composed of six chunks or blocks, which are placed one after another.
Also, there is one sub-sampling layer between every two contiguous chunks. We mean by chunk:
the specific configuration of different type of layers dictated by the CNN model. Regarding the
sub-sampling layers, they reduce the spatial resolution of their input activation maps by a factor
of two.

In this context, the backbone of POLLENDET is designed to reuse the same structure and
parameter values of a pre-trained CNN model, starting from the first chunk up to a finite number (
of chunks, 1 ≤ (≤ 6. The parameter (also defines the spatial resolution of the activation map �
yielded by the backbone as follows:

,� =
,�

2(−1 , �� =
��

2(−1 , (7.1)

where,� and �� are respectively the width and height of �. On the other hand, � is the input
image of size (,� ×��), which is to be processed by the backbone. As a consequence, each
spatial position in � has a corresponding spatial block of size (2(−1×2(−1) in �.

Choosing the number of reused chunks is very important. For example, in the case
of object detectors, the level of semantic information that can be extracted from a particular

7.3. POLLENDET 151

Figure 31 – The common architectural pattern of CNN models. The convolutional part of all the CNN
models considered in this chapter is composed of six chunks. Between every two contiguous
chunks, there is a sub-sampling layer in charge of reducing the width and height of its input
activation map by a factor of two.

Chunk Chunk Chunk Chunk Chunk Chunk
1 2 3 4 5 6

Layer Layer... Sub-sampling
Layer

Source: Elaborated by the author.

backbone, generally increases as it is composed of more chunks. However, as indicated in (LIU
et al., 2016; Lin et al., 2017), this increment is always as the cost of losing spatial resolution
in �, which is detrimental to the detection of small objects. This situation can be repeated in
microscopic images, since pollen grains can be pretty small. Therefore, in subsection 7.3.5 we
perform several experiments to find the optimal number of chunks to be reused.

The convention used for naming any backbone is as follow: <CNN model name>-
<number of reused chunks>S. For example, a backbone composed by the first three chunks of
the RESNET152 model is written as RESNET152-3S.

7.3.2.1 Training time: Ground truth encoding

At training time, given an image � of spatial size (,� ×��) and a set of #� ground
truth bounding boxes � = {61, 62 . . . , 6#� }, an encoding procedure is performed by projecting
each 68 (1 ≤ 8 ≤ #�) into the spatial resolution (,� ×��) of the activation map � yielded by the
backbone. The steps of this procedure are as follows:

1. It starts by placing # anchor boxes of different sizes at the center of every (2(−1×2(−1)
spatial block in �, where (is the number of reused chunks in the backbone. Since there is a
one-to-one relationship between the spatial blocks in � and the spatial positions in �, there
is a total of # ∗,� ∗�� anchor boxes. In POLLENDET, the following # = 3 anchor
box sizes are considered: = {128×128,181×181, 256×256}.

2. Then, the Intersection-Over-Union (IoU) metric is computed between all pairs of ground
truth and anchor bounding boxes. Next, each anchor box is linked to the ground truth
bounding box with which it has reached the highest IoU overlap.

3. Each anchor box and its linked ground truth box yields one label ; and four bounding
box regression coefficients C = [CG , CH, CF, Cℎ]. A positive label (; > 0) is assigned when their

152 Chapter 7. Exploring detection

IoU overlap is at least 0.5. A negative label (; = −1) is assigned when their IoU overlap is
between 0.4 and 0.5. In all other scenarios, a label of zero (; = 0) is given. In localization

tasks, all positive labels are always set to number one (; = 1), while in localization +

classification tasks ; ∈ {1,2, ..., #� −1}. On the other hand, the regression coefficients C
are computed by measuring the “distance” between their bounding box coordinates. This
“distance” is computed using the same formulas proposed in the Faster R-CNN paper (REN
et al., 2017).

4. All labels (;) and regression coefficients (C) are grouped by their associated anchor box size.
Therefore, at the end of this encoding procedure, five 2-D tensors of size (,� ×��) are
generated for every unique anchor box size :: {L (:) ,T (:)G ,T (:)H ,T (:)F ,T (:)

ℎ
}, where : ∈ .

The first 2-D tensor (L (:)) is composed of only labels. The second 2-D tensor (T (:)G)
contains the first regression coefficients. The next 2-D tensor contains the second regression
coefficients, and so on. Since there are # = 3 anchor box sizes, a total of fifteen 2-D
tensors are computed for every input image �.

Figure 32 shows examples of L (:) and T (:)G at two different anchor sizes (: = 181×181
and : = 256×256) for the task of pollen localization. Also, as shown in Figure 32a, L (:) can
sometimes contain only zero and negative labels, which is the result of the anchor size : being
too large (or too small) for the given ground truth bounding boxes. This property ensures each
anchor size to be only associated to ground truth bounding boxes that are not very different in
scale.

7.3.2.2 Training the pollen dataset

Every training sample is represented by three terms: (�, L, T), where � is the original
image, L is the set of # tensors with label coefficients and T is the set of 4# tensors with
regression coefficients. The spatial size of � is denoted by (,� ×��), and the spatial size of every
tensor in L and T is denoted as (��2(−1 × ,�

2(−1) or (,� ×��), where (is the number of reused
chunks in the backbone.

As shown in Figure 30, for any input �, our model predicts another set of 4# tensors
with regression coefficients (denoted by T̂) and a set of #� ∗# score tensors (denoted by L̂),
where #� is the number of classes in the task at stake. To measure the prediction power of T̂
and L̂, they are compared with their ground-truth counterparts through two loss functions:
(i) the cross-entropy loss or ��;>BB (L, L̂), which measure the classification prediction of L̂
and (ii) the smoothed L1 loss or (!1;>BB (T , T̂), which is in charge of measuring the regression
prediction of T̂ . Some important implementation details of these loss functions are as follows:
(i) the ��;>BB do not take into account the predicted scores whose corresponding ground truth
labels are negative. (ii) The (!1;>BB only considers the predicted regression coefficients whose
corresponding predicted labels are correctly classified as foreground. Then, the total loss);>BB is

7.3. POLLENDET 153

Figure 32 – Examples of L (:) and T (:)G at two different anchor box sizes. The yellow and green
areas in L correspond to the foreground and background labels respectively. The regression
coefficients are only active when their corresponding label coefficients are positive. Although
it seems the opposite, the spatial size of the original images (�� ×,�) is much larger than the
spatial size (,� ×��) of their corresponding L (:) and T (:)G . (a) Corylus pollen grains, (b)
Fagus pollen grains.

(a) (b)

−1

0

1

−0.3

−0.2

−0.1
0.0
0.1
0.2
0.3

Source: Elaborated by the author.

defined as the pondered sum of those previously losses, which empirically is set to:

);>BB = (0.4)��;>BB (L, L̂) + (!1;>BB (T , T̂) (7.2)

As usually happens in the task of localization + classification (#� > 2), some foreground
classes have significantly more samples than the others. This is commonly known as the im-

balanced class problem and can be partially solved by adding a vector of #� class weights
coefficients (®F2;0BB) to the ��;>BB. In this sense, ®F2;0BB is used to balance the loss contribution
of each class by focusing more in the classes with less samples. In classification tasks, the
coefficients of ®F2;0BB are generally defined as inversely proportional to the number of training
samples of their respective classes. However, we found this definition insufficient for tasks that
involve localization as well. Therefore, for each foreground class, the total area of its ground
truth bounding boxes is also calculated. Without considering the background class, ®F2;0BB is
computed in the training set as follows.

®F2;0BB [2 > 0] = 1
2

norm
(

1
count(G)

)
+ 1

2
norm

(
1

area(G)

)
, (7.3)

where the subroutine count(·) returns a vector containing the total number of bounding boxes
for each foreground class. Similarly, the subroutine area(·) returns a vector containing the
total area covered by the bounding boxes of each foreground class. In this sense, the symbol G

154 Chapter 7. Exploring detection

represents the set of all ground truth bounding boxes in the training set. The term 2 is the class
identifier, where the background class is represented by 2 = 0, and the foreground classes are
symbolized as 2 > 0. Therefore, ®F2;0BB [2 > 0] can be read as the vector of weight coefficients
for the foreground classes. In addition, the subroutine norm(·) is used to divided an input vector
by its mean value. This normalization is important because it ensures that the total sum of
coefficients in ®F2;0BB [2 > 0] is equal to #� −1. Finally, the weight coefficient for the background
class is always set to number one (®F2;0BB [0] = 1)

By applying a fine-tuning approach with an ADAM optimizer, POLLENDET reduces the
loss function);>BB. This optimization updates the trainable parameters of POLLENDET, including
those from the backbone. In this context, before fine-tuning, the training data (a.k.a. training
split) is divided into two non-overlapping sets. Seventy percent of the training data is put into the
training set, and 30 percent goes into the validation set.

At each epoch, instead of using whole images of size (1280×960), random crops of
size (640×480) are used to train POLLENDET, making sure that there is at least one pollen grain
in every random crop. Furthermore, the resulting crops are also horizontally and/or vertically
flipped with a 50% chance of probability. The above steps are applied to both the training
and validation sets. Then, training and validation losses are computed with Equation 7.2 and
Equation 7.3. POLLENDET uses the validation loss to monitor the training process by saving a
copy of its trainable parameters each time the validation loss reaches a new minimum value. The
last saved version is retrieved after the fine-tuning process runs for 800 epochs with two images
per batch and a learning rate of 0.001.

7.3.2.3 Testing new pollen images

Similar to the training procedure, our trained model transforms a test image � into a
set of 4# tensors of regression coefficients (T̂) and #� ∗# tensors of score coefficients (L̂)
(see Figure 30). Once again, every tensor is bi-dimensional with a spatial size of (,� ×��) or
(��

2(−1 × ,�
2(−1), where (is the number of reused chunks in the backbone. To perform the bounding

box prediction, both L̂ and T̂ are processed as follows:

• Step 1: The set of tensors L̂ and T̂ are each partitioned into # subsets according to
their associated anchor box sizes. Therefore, each subset L̂ (:) and T̂ (:) (: ∈) contains
respectively #� and four bi-dimensional tensors of spatial size (,� ×��).

• Step 2: Each spatial position in L̂ (:) can be seen as a vector of #� score coefficients,
where the position of each of them indicates the corresponding class label. In this sense,
the class probabilities of those #� scores are computed by using the SOFTMAX function.
Then, the spatial position is assigned to the label (;̂) with the highest probability, if and
only if such probability is above a certain threshold CB<, otherwise, the spacial position

7.3. POLLENDET 155

is assigned a background label (;̂ = 0). This process is repeated for all spatial positions
in L̂ (:) .

• Step 3: Since there is a one-to-one relationship between the spatial positions of L̂ (:)

and T̂ (:) , we retrieve a predicted set of four regression coefficients (Ĉ = [ĈG , ĈH, ĈF, Ĉℎ])
from T̂ (:) , each time there is a predicted foreground label (;̂ > 0) in L̂ (:) at some spatial
position (G, H). Then, Ĉ is used to modify the bounding box coordinates of the anchor box
of size : placed at position (G, H). This modification uses the same formulas as in (REN
et al., 2017) and the result becomes one bounding box proposal. The set of computed
bounding box proposals are stored in a vector ®E11 of size (# 5 ×4), where # 5 is the total
number of foreground labels computed in step 2. Also, for each bounding box proposal,
its computed probability and predicted label are stored in vectors ®E? and ®E ;̂ respectively,
each of size (# 5).

• Step 4: As shown in Figure 33a and Figure 33d, there are lots of bounding box pro-
posals in ®E11 that need to be pruned. Usually, the non-maximum suppression (NMS)
algorithm is applied at this stage. NMS first ranks ®E11 and ®E ;̂ by sorting ®E? from high
to low. Then, it greedily keeps the bounding box proposals with the highest associated
probabilities and eliminates all other candidates that overlap with them. In this sense, a
lower-ranked bounding box proposal is considered to be overlapping a higher-ranked one
if its Intersection-over-Union metric (IoU) is greater than a predefined threshold C=<B. Two
exemplary outputs of the NMS algorithm are presented in Figure 33b and Figure 33e.
However, since there is no bounding box refinement at training time as in the Faster
RCNN method, the direct application of the NMS algorithm can yield poorly located
bounding boxes. Therefore, we leverage the specific pollen characteristics explained at
the beginning of section 7.3 to modify the NMS algorithm, so that, instead of removing
all the overlapping bounding box proposals, we create a refined bounding box by taking
its average. As can be observed in Figure 33c and Figure 33f, the modified NMS usually
achieves better localization results than the original NMS algorithm. More about this topic
in subsection 7.3.3. In the task of localization + classification (#� > 2), the vectors ®E ;̂
and ®E? are used to predict the foreground label of every refined bounding box by adding
one more functionality to the modified NMS algorithm. This functionality computes, for
each set of overlapping bounding box proposals, the sum of their associated probability
values for each different predicted label. Then, the refined bounding box is assigned to the
predicted label that gets the largest sum.

7.3.3 Experimental Settings

As explained in subsection 4.2.4, we used the stratified holdout validation method with
< = 10 to create 10 random splits. In addition, we also used the general evaluation scheme

156 Chapter 7. Exploring detection

Figure 33 – Comparison between the NMS algorithm and our modified version. Our modified NMS
algorithm generates better-located bounding boxes than the classical NMS algorithm. (a-c)
Corylus pollen grains, (d-f) Betula pollen grains.

(a) All bounding boxes (b) NMS (c) Modified NMS

(d) All bounding boxes (e) NMS (f) Modified NMS

Source: Elaborated by the author.

described in subsection 4.3.1 to train and evaluate POLLENDET. In this context, the TRAIN-
MODEL subroutine from Algorithm 1 corresponds to the fine-tuning approach described in
subsubsection 7.3.2.2, and the PREDICT subroutine corresponds to the test approach described
in subsubsection 7.3.2.3. By default, the thresholds CB< and C=<B are respectively set to 0.7 and
0.1. Additionally, the evaluation metric E used to measure the robustness of POLLENDET is the
mean Average Precision, which is explained in subsection 4.3.3.

All experiments were performed in a GeForce RTX 2080 Ti graphic card. In addition,
our code is mainly written in python 3.6, using the PyTorch 1.0.1 library. The pre-trained CNN
models RESNET34, RESNET50, RESNET152, DENSENET121, and DENSENET201 were
extracted from the official PyTorch package: Torchvision 0.2.1. On the other hand, SERESNET50,
SERESNEXT50_32X4D, SERESNEXT101_32X4D and SENET154 were extracted from a
popular alternative PyTorch package1.

7.3.4 Comparison between the NMS algorithm and our modified ver-
sion

As explained in subsubsection 7.3.2.3, we propose a modified version of the NMS
algorithm to improve the prediction of bounding boxes. In this sense, Table 16 presents the
comparison between the mAP (%) values reached by the NMS algorithm and the ones reached
by our modified version for the task of localization + classification of pollen grains. This analysis
is performed on 18 backbones, coming from the reuse of between four and five chunks of

1 Cadene repository: <https://github.com/Cadene/pretrained-models.pytorch>

https://github.com/Cadene/pretrained-models.pytorch

7.3. POLLENDET 157

Table 16 – Localization + classification performance comparison between the NMS algorithm and
our modified version in 18 backbones. The performance is measured with mAP0.5(%) and
mAP0.75(%) values. Therefore, there is a total of 36 comparisons, in which our modified NMS
always achieves better results than the original NMS algorithm.

(= 4 (= 5

mAP0.5(%) mAP0.75(%) mAP0.5(%) mAP0.75(%)

CNN model NMS Modified NMS Modified NMS Modified NMS Modified

RESNET34 80.8 ± 5.4 85.4 ± 2.5 59.6 ± 7.6 76.4 ± 3.4 89.7 ± 2.8 90.2 ± 2.6 83.9 ± 3.8 88.2 ± 2.0
RESNET50 74.3 ± 9.0 79.9 ± 8.7 42.5 ± 9.6 66.6 ± 9.4 86.4 ± 3.5 87.7 ± 2.8 72.2 ± 7.3 83.5 ± 4.3
RESNET152 76.9 ± 4.9 81.4 ± 6.2 51.8 ± 8.5 73.1 ± 4.6 87.7 ± 5.4 88.1 ± 4.3 76.5 ± 6.2 85.3 ± 4.1
DENSENET121 78.9 ± 5.1 85.6 ± 4.6 46.8 ± 8.3 72.4 ± 5.4 87.4 ± 5.1 89.3 ± 4.3 73.7 ± 7.4 85.1 ± 4.9
DENSENET201 82.5 ± 6.4 86.8 ± 4.2 49.6 ± 9.7 76.8 ± 4.1 88.2 ± 5.3 89.3 ± 4.1 73.2 ± 6.8 86.1 ± 4.0
SERESNET50 75.2 ± 5.8 82.7 ± 4.4 39.8 ± 8.2 66.2 ± 6.5 81.3 ± 5.3 84.3 ± 6.0 60.5 ± 9.0 77.2 ± 5.9
SERESNEXT50_32X4D 78.3 ± 5.2 85.3 ± 3.5 42.6 ± 9.8 70.7 ± 6.3 89.3 ± 2.8 91.2 ± 2.6 77.8 ± 4.3 88.0 ± 3.2
SERESNEXT101_32X4D 76.0 ± 8.8 81.3 ± 8.7 46.0 ± 9.0 68.1 ± 8.8 87.3 ± 4.3 90.2 ± 3.0 75.1 ± 7.4 86.0 ± 3.3
SENET154 83.3 ± 4.6 88.9 ± 4.3 57.6 ± 7.9 79.9 ± 4.9 84.8 ± 7.2 86.3 ± 6.5 70.9 ± 11.3 81.2 ± 7.4

Source: Elaborated by the author.

nine pre-trained CNN models. In all cases, our modified version achieved better mAP values
than the original NMS algorithm. However, the improvement in the mAP0.5 values is not very
high in backbones that reuse (= 5 chunks. Indeed, there is a notorious higher difference in the
comparison of mAP0.75 values than in the comparison of mAP0.5 values, which suggests that our
modified version contributes more to ensure that the predicted bounding boxes are better located
than to guarantee their better classification.

7.3.5 Analysis of backbones with different number chunks

As explained in subsection 7.3.2, finding good backbones is vital to the overall perfor-
mance of object detectors. In this regard, the number of reused chunks in the backbone is an
important parameter to consider. Table 17 shows the localization + classification mAP results
associated with sixteen backbones. These backbones reuse between 3 to 6 chunks from four
pre-trained CNN models. In all cases, there is a trend which suggest that better mAP values are
achieved as more chunks are reused. This tendency stops at (= 6, in which worse mAP values
are obtained. Although it is not shown, similar results were obtained in other pre-trained CNN
models such as RESNET152 or SERESNET50. Therefore, from now on, we only present the
results of backbones with (= 5 chunks.

7.3.6 Comparison of backbones from different CNN models

Table 18a and Table 18b respectively show the mAP0.5(%) and mAP0.75(%) results
associated with nine backbones for the tasks of (i) detection (#� = 2) and (ii) detection +
classification (#� = 7) of pollen grains. In this sense, to improve our analysis in the detection +
classification task, Table 18 also includes the AP values achieved in each foreground class. In
general, two expected phenomenons are seen at Table 18a and Table 18b.

158 Chapter 7. Exploring detection

Table 17 – Localization + classification performance results of POLLENDET with backbones that
have 3 to 6 chunks. The performance is measured with mAP0.5(%) values, in which the
backbones with five chunks always achieve the best results.

CNN model/# chunks (= 3 (= 4 (= 5 (= 6

RESNET34 76.2 ± 8.8 85.4 ± 2.5 90.2 ± 2.6 83.4 ± 4.4
SERESNEXT50_32X4D 72.6 ± 5.5 85.3 ± 3.5 91.2 ± 2.6 89.2 ± 2.7
DENSENET121 70.4 ± 6.5 85.6 ± 4.6 89.3 ± 4.3 81.0 ± 3.7
DENSENET201 72.8 ± 5.1 86.8 ± 4.2 89.3 ± 4.1 76.4 ± 9.7

Source: Elaborated by the author.

1. All mAP0.5 results are always higher than their corresponding mAP0.75 values. The reason
for this is in the definition of IoU, in which it is much harder to achieve an IoU above 0.75
than an IoU above 0.5.

2. All mAP0.5 and mAP0.75 results in the detection task are always higher than those of the
detection + classification task due to the difference in their number of classes.

About the specific results of Table 18a, the best backbone in the detection + classification

task is SERESNEXT50_32X4D-5S with mAP0.5=91.2%. However, there is no clear “winner”
in the detection task, since most backbones achieve mAP0.5 values between 96.1% and 96.5%.
The analysis of each individual foreground class is presented in the following lines:

• Betula pollen: It is by far the most difficult pollen type to detect. The best AP0.5 results
are achieved by SERESNEXT101_32X4D-5S and SERESNEXT50_32X4D-5S with
80.4% and 78.3% respectively. However, at both cases, the standard error is high (> 12%),
which means that there are some splits of the dataset that achieve very good results (above
90%), and other splits with no very good results (below 75%).

• Corylus pollen: Most methods achieve very accurate results (above 95%) and low standard
error (below 2.5%). This could be explained by the relatively high amount of Corylus
grains in the training set (approximately 68 grains per split). The best AP0.5 result is
achieved by SERESNET50-5S (97.3%).

• Carpinus pollen: There are three backbones with AP0.5 results above 90%. However,
although it is not as high as in the case of Betula pollen grains, the standard error is still
large (> 7%). A possible reason for these outcomes is related to the few Carpinus pollen
grains given to the training set at each split (approximately 10 grains).

• Fagus, Quercus and Salix pollen grains: Most backbones achieved AP0.5 results above
90%. In addition, there is a positive correlation between the number of training samples
and the computed AP0.5 values. In this sense, the best AP0.5 results for Fagus, Quercus and
Salix are respectively 93.8%, 95.1% and 95.6%, which in turn have corresponding 12, 16

7.3. POLLENDET 159

Table 18 – Detailed analysis of the performance results of POLLENDET at different backbones. This
analysis is carried out at the tasks: (i) localization and (ii) localization + classification of pollen
grains. In the second task, the results on each pollen type are also included. (a) The performance
is measured with mAP0.5 values. (b) The performance is measured with mAP0.75 values.

(a) Mean Average Precision with CIoU = 0.5

Localization Localization + classification

backbone mAP0.5 Betula Corylus Carpinus Fagus Quercus Salix mAP0.5

RESNET34-5S 96.5 ± 1.9 75.5 ± 8.7 96.4 ± 2.2 90.8 ± 8.3 93.5 ± 6.2 93.2 ± 4.3 91.7 ± 2.6 90.2 ± 2.6
RESNET50-5S 96.5 ± 2.9 73.2 ± 14.1 95.5 ± 2.4 84.3 ± 11.4 86.7 ± 9.4 92.1 ± 4.9 94.4 ± 3.4 87.7 ± 2.8
RESNET152-5S 96.2 ± 1.5 72.1 ± 15.2 93.4 ± 3.8 83.4 ± 10.5 93.8 ± 4.7 93.5 ± 4.3 92.6 ± 4.6 88.1 ± 4.3
DENSENET121-5S 95.7 ± 1.8 73.7 ± 12.5 95.5 ± 3.7 86.6 ± 8.7 91.4 ± 8.8 95.1 ± 4.8 93.9 ± 2.5 89.3 ± 4.3
DENSENET201-5S 96.3 ± 2.4 71.0 ± 14.2 96.0 ± 1.8 90.3 ± 10.0 92.0 ± 6.3 94.1 ± 5.0 92.5 ± 3.9 89.3 ± 4.1
SERESNET50-5S 93.8 ± 3.1 71.1 ± 13.1 97.3 ± 2.0 80.4 ± 21.8 72.9 ± 20.1 88.3 ± 8.9 95.6 ± 3.0 84.3 ± 6.0
SERESNEXT50_32X4D-5S 96.5 ± 2.2 79.3 ± 12.5 96.1 ± 2.0 91.2 ± 7.3 91.0 ± 6.0 94.8 ± 3.4 94.9 ± 3.4 91.2 ± 2.6
SERESNEXT101_32X4D-5S 96.2 ± 2.2 80.4 ± 12.3 96.6 ± 1.5 87.4 ± 6.6 86.9 ± 8.6 94.6 ± 4.0 95.2 ± 2.7 90.2 ± 3.0
SENET154-5S 96.1 ± 2.6 73.7 ± 12.2 91.6 ± 8.2 84.9 ± 11.3 87.1 ± 20.6 89.8 ± 8.0 90.8 ± 7.7 86.3 ± 6.5

(b) Mean Average Precision with CIoU = 0.75

Localization Localization + classification

backbone mAP0.75 Betula Corylus Carpinus Fagus Quercus Salix mAP0.75

RESNET34-5S 94.5 ± 2.4 73.8 ± 9.3 93.7 ± 2.0 89.3 ± 8.5 90.0 ± 7.6 90.5 ± 4.0 91.7 ± 2.6 88.2 ± 2.0
RESNET50-5S 90.6 ± 3.6 69.8 ± 14.3 91.8 ± 3.2 76.0 ± 15.7 81.8 ± 10.2 89.3 ± 6.8 92.1 ± 5.2 83.5 ± 4.3
RESNET152-5S 93.7 ± 2.1 67.8 ± 15.2 90.5 ± 4.8 81.0 ± 9.9 89.7 ± 6.5 91.9 ± 4.2 90.6 ± 6.0 85.3 ± 4.1
DENSENET121-5S 92.1 ± 3.1 61.8 ± 17.6 92.6 ± 3.4 84.5 ± 8.7 88.4 ± 8.7 90.7 ± 4.0 92.9 ± 3.5 85.1 ± 4.9
DENSENET201-5S 92.5 ± 3.0 66.9 ± 14.1 93.2 ± 3.3 84.4 ± 8.7 87.5 ± 6.5 92.5 ± 5.1 92.3 ± 3.8 86.1 ± 4.0
SERESNET50-5S 85.7 ± 5.0 60.9 ± 13.1 90.0 ± 4.3 72.1 ± 20.8 65.9 ± 20.8 83.8 ± 9.0 90.7 ± 6.8 77.2 ± 5.9
SERESNEXT50_32X4D-5S 92.3 ± 2.7 74.6 ± 11.4 92.5 ± 2.1 87.1 ± 11.0 87.7 ± 4.5 92.1 ± 4.8 93.6 ± 5.4 88.0 ± 3.2
SERESNEXT101_32X4D-5S 92.0 ± 3.2 74.8 ± 10.9 93.5 ± 3.3 80.6 ± 7.9 82.9 ± 6.8 91.5 ± 5.7 92.8 ± 3.6 86.0 ± 3.3
SENET154-5S 91.2 ± 4.4 69.2 ± 12.2 85.4 ± 11.8 79.9 ± 10.0 83.1 ± 23.4 81.1 ± 16.3 88.4 ± 11.6 81.2 ± 7.4

Source: Elaborated by the author.

and 21 training samples at each split. A similar correlation can be seen when considering
the number of backbones with AP0.5 results above 90%.

About the specific results in Table 18b, RESNET34-5S is the best backbone for both
localization and localization + classification tasks with corresponding mAP0.75 values of 94.5%
and 88.2%. Also, RESNET34-5S obtains the best AP0.75 results in the following foreground
classes: Corylus (93.7%), Carpinus (89.3%) and Fagus (90%). This suggests that RESNET34-5S
is capable of predicting better located bounding boxes than the rest of backbones evaluated
(more about this in the following subsection). Another backbone that achieved good results in
the localization + classification task is SERESNEXT50_32X4D-5S with mAP0.75 = 88%. On
the other hand, SENET154-5S do not perform well at both tasks. These outcomes contradict the
classification results achieved by the pre-trained CNN models in their original domain, in which
SENET154 is far superior than RESNET34. A plausible explanation for this contradiction is
given by the relatively few samples used to train POLLENDET. In this sense, as RESNET34-5S
have much less trainable parameters than almost every other backbone, it also needs less samples
to be properly trained. This opens up the possibility of further improving POLLENDET by
increasing the number of samples and thus leverage the prediction capacity of larger backbones.

160 Chapter 7. Exploring detection

Figure 34 – Computed mAPs values at multiple CIoU. The backbone RESNET34-5S is more robust
across the range of IoU thresholds (0.5 ≤ CIoU ≤ 0.9).

(a) Localization

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

tIoU

30

40

50

60

70

80

90

100

m
A

P
(%

)

ResNet34-5S

DenseNet201-5S

SEResNeXt50 32x4d-5S

SENet154-5S

(b) Localization + classification

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

tIoU

20

30

40

50

60

70

80

90

m
A

P
(%

)

ResNet34-5S

DenseNet201-5S

SEResNeXt50 32x4d-5S

SENet154-5S

Source: Elaborated by the author.

7.3.7 backbone behavior across multiple IoU thresholds

In the previous section, for the task of localization + classification of pollen grains,
we showed that the results of RESNET34-5S fell from mAP0.5 = 90.2% to mAP0.75 = 88.2%
(difference of 2%), while the results of SERESNEXT50_32X4D-5S fell from mAP0.5 = 91.2%
to mAP0.75 = 88% (difference of 3.1%). These results suggested that POLLENDET achieves
better localization results when RESNET34-5S is used. In Figure 34, we delve into this subject
by comparing the behaviour of four backbones across nine different IoU thresholds (from 0.5 to
0.9). In this sense, Figure 34a is focused in the localization task and Figure 34b is focused in the
localization + classification task. The results of this experiment clearly confirm the superiority
of RESNET34-5S in terms of predicting more precise bounding boxes at both tasks. It is also
interesting to observe that DENSENET121-5S achieves more accurate bounding boxes than
SERESNEXT50_32X4D-5S in the localization task. However, SERESNEXT50_32X4D-5S
is still slightly better in the localization + classification task, which could be explained by its
greater classification power.

7.3.8 Execution time comparison

In this final experiment, multiple tests are performed to measure the running time of
POLLENDET over microscopic images of size (1280×960). In this sense, Figure 35 shows the
average execution time per image vs. mAP0.5 of POLLENDET with different backbones for the
task of localization + classification. This comparison demonstrates that RESNET34-5S achieves
the best accuracy/speed trade-off with an average running time of 34 ms and a mAP value of
90.17%. On the other hand, SERESNEXT50_32X4D-5S reaches the best mAP value (91.22%)
and has an average speed of 75.55 ms, which is 2.22x slower than RESNNET34-5S. The worst
trade-off scenarios were obtained by SERESNET50-5S and RESNET152-5S, in which the
former has a mAP value of 84.28% (difference of -6.94% with the best mAP result) and a speed
of 56.82 ms (1.67x slower than RESNNET34-5S), and the latter has a mAP value of 88.12%
(difference of -3.1% with SERESNEXT50_32X4D-5S) and a speed of 103.46 ms (3.04x slower

7.4. STOMADET 161

Figure 35 – Average execution time per image vs. mAP0.5. All processed images are of size (1280×
960). The execution time of POLLENDET was computed with different backbones for the
localization + classification task. In particular, RESNET34-5S offers the best accuracy/speed
trade-off. On the contrary, RESNET152-5S and SERESNET50-5S obtain the worst trade-off.

35 45 55 65 75 85 95 105

Average execution time (ms)

84

85

86

87

88

89

90

91

92

m
A

P
0.

5
(%

)

ResNet34-5S

ResNet50-5S
ResNet152-5S

DenseNet121-5S DenseNet201-5S

SEResNet50-5S

SEResNeXt50 32x4d-5S

SEResNeXt101 32x4d-5S

Source: Elaborated by the author.

than RESNET34-5S). Although there is not shown in Figure 35, SENET154-5S reaches a speed
of 250.25 ms, which is 7.36x slower than RESNET34-5S.

7.4 StomaDet

STOMADET is an automatic stomata detector inspired by popular object detectors such
as FASTER RCNN (REN et al., 2017), R-FCN (DAI et al., 2016), and RETINANET (LIN
et al., 2017). Unlike similar research works such as (SAKODA et al., 2019), every aspect in
STOMADET was designed by analyzing the stomata found in many microscopic images of the
leaf epidermis. These aspects involve: (i) finding a good approach to perform manual stoma
annotations (see subsection 4.2.3), (ii) defining the STOMADET architecture that achieves both
rapid inference times and high detection rates (see subsection 7.4.2), (iii) creating a solid set of
data augmentation strategies (see subsubsection 7.4.3.1), and (iv) defining the post-processing
steps to be used at inference time (see subsubsection 7.4.3.3).

7.4.1 Previous Works

With respect to the related works in stomata phenotyping, Higaki, Kutsuna and Hasezawa
(2014) proposed a semi-automated approach for the detection of stomata regions on epidermal
leaves using a Self Organizing Map clustering approach that retrieve regions of interest (ROI)
that are similar to the ones that were manually annotated as stomata. A more automatic approach
was proposed in (VIALET-CHABRAND; BRENDEL, 2014), which uses a multi-scale sliding
window and a cascade classifier to discriminate between stoma and background ROIs. Another
automatic approach is described in (DUARTE; CARVALHO; MARTINS, 2017), which applies
the Wavelet Spot Detection method and a series of morphological operations to retrieve stomata
regions. The detection of stomata and the subsequent measurement of their opening pores was
presented in (JAYAKODY et al., 2017), in which a cascade classifier was used for the detection

162 Chapter 7. Exploring detection

part and a combination of image processing techniques such as binarization and skeletonization
was used for the pore estimation part.

Indeed, all the above methods use hand-engineered feature representations to characterize
the ROIs that are to be classified as stoma or background regions. However, as empirically proved
by (AONO et al., 2019), CNN feature representations usually achieve higher classification
success rates than their hand-engineered counterparts in the same task. Therefore, very recently,
more advance CNN models that use/adapt state-of-the-art object detectors were proposed. For
example, for stomata detection, a modified single shot multibox detector (SSD) (LIU et al.,
2016) trained from scratch with scanning electron microscopic images (SEM) was proposed in
(BHUGRA et al., 2019). Since there are only two classes, namely the background and stoma,
the evaluation in (BHUGRA et al., 2019) was made by computing precision and recall values,
which measure how the ground truth bounding boxes relate with the predicted ones in terms
of size and location. In the case of stomata counting, two approaches were found: (i) a direct
application of SSD in (SAKODA et al., 2019) and (ii) a fine-tuned version of the ALEXNET

model (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) in (FETTER et al., 2019). Indeed, as
the task of stomata counting do not require finding the exact location and size of each stoma, both
approaches compute '2 statistics to find the correlation between the number stomata counted
manually and automatically. Although the approach in (FETTER et al., 2019) also consider
precision and recall measures, they were defined for a classification task setting and, thus, can
not be compared with the precision and recall values used in a detection task setting.

In general, all of the CNN-based methods described above either directly use an object
detector with minimal modifications or implement their own from scratch without considering
current trends in object detection.

7.4.2 General architecture

Like POLLENDET, the architecture of STOMADET also has three components: (i) the
feature extraction (FE) subnet, (ii) the classification subnet, and (iii) the regression subnet (see
Figure 36). The details of each component are in the following subsections.

7.4.2.1 The feature extraction subnet (backbone)

The FE subnet of STOMADET computes a collection F of semantically strong activation
maps from an input image �. In this sense, the success of this component is mainly determined
by the performance of its backbone network, which is usually represented by the convolutional
part of a CNN model pre-trained on the ImageNet dataset (RUSSAKOVSKY et al., 2015).
In general, we aim to find the most suitable backbone network for stomata detection. Since
there is a large list of pre-trained backbone networks available in deep learning libraries such
as PyTorch (PASZKE et al., 2017), we restrict our search space to the following families of
backbone networks: (i) RESNET34 and RESNET50 (HE et al., 2016), (ii) DENSENET121 and

7.4. STOMADET 163

Figure 36 – General architecture of STOMADET, #A = 4. The input image is processed by the FE sub-
net. Then, the resulting collection of activation maps is transformed into sets of classification
and regression maps. At inference time, these two outputs are decoded into bounding boxes
representing the detected stomata. For visualization purposes, we show the softmax output
for the predicted classification maps.

Test Image Decoded Output

Classification
Subnet

Regression
Subnet

FE
Subnet

Classification Maps

Regression MapsFeature
Maps

Source: Elaborated by the author.

DENSENET201 (HUANG et al., 2017), (iii) SERESNEXT50_32X4D and SERESNEXT101_-
32X4D (Hu et al., 2019), and (iv) EFFICIENTNETB1, EFFICIENTNETB2, EFFICIENTNETB3,
EFFICIENTNETB4 and EFFICIENTNETB5 (TAN; LE, 2019)2 .

Despite their intrinsic differences, all the above backbone networks share the following
architectural pattern: They are organized into six blocks, where there is a sub-sampling layer
between every two consecutive blocks. Each block transforms its input set of 2-D activation
maps into another semantically stronger set of activation maps. On the other hand, each sub-
sampling layer reduce, by a factor of two, the spatial resolution of its input activation maps. This
pattern is depicted in Figure 37, where for an input image � of size (� ×,), the backbone 8-th
block (1 ≤ 8 ≤ 6) yields a set of activation maps F8 of spatial resolution (�28−1 × ,

28−1). Within the
context of STOMADET, the fourth, fifth and sixth blocks of any backbone network are named as
L2, L3 and L4, respectively.

Regardless of the backbone network used, there is a trade-off between (i) the semantic
information and (ii) the spatial resolution that a computed set of activation maps can possess.
For example, although the set of activation maps computed by L4 is semantically the strongest,
its low spatial resolution can make the detection of small stomata impossible. Therefore, the FE
subnet must provide to its classification and regression subnets, a collection F containing one

2 SENET implementation: <https://github.com/Cadene/pretrained-models.pytorch>. EFFICIENTNET

implementation: <https://github.com/rwightman/pytorch-image-models>. The remaining backbone
networks were taken from the official TorchVision 0.3 library.

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/rwightman/pytorch-image-models

164 Chapter 7. Exploring detection

or more sets of activation maps with sufficient spatial resolution to detect small stomata, and
semantically strong enough to avoid false positives. In this sense, preliminary experiments over
many microscopic images showed that the set of activation maps computed by L3 has sufficient
spatial resolution to properly detect stomata of up to a minimum size of (50×50), which is also
the smallest size found in the datasets in Table 3. Based on the above information, we explore
three adaptation strategies, each in charge of deciding which set or sets of activation maps should
be included in F . They are described as follows:

1. F5 strategy: For an input image � of size (�,,), L3 computes a set of activation maps F5

of spatial resolution (�16 ×
,
16). Then, F = {F5}. This adaptation strategy is the one depicted

in Figure 36 and Figure 38.

2. F5&F6 strategy: In this adaptation strategy, for a given image �, the blocks L3 and L4
of the backbone network are used to compute the sets of activation maps F5 and F6,
respectively (see Figure 37). Then, F = {F5,F6}.

3. F̂5&F̂6 strategy: This strategy is inspired by the Feature Pyramid Network (FPN) (Lin
et al., 2017). In this sense, the set of activation maps F6 computed by L4 is transformed
into another set of 256 activation maps F̂6 via a lateral connection consisting of a (1×1)
convolutional layer. Using the same approach, F5 is transformed into F̂5. Then, F̂(×2)

6 is
defined as the up-sampled version of F̂6, which through a bilinear interpolation is resized
to match the spatial resolution of F̂5. Next, F̂5 is updated as follows: F̂5 := F̂5 + F̂(×2)

6 .
Finally, F = {F̂5, F̂6}.

Therefore, we evaluate 33 different FE subnets, each represented by one pre-trained
backbone network and its adaptation strategy.

7.4.2.2 Bounding box encoding

Each training sample given to STOMADET is composed of a microscopic image � of size
(� ×,) and its set of square bounding boxes � = {61, . . . , 6#� }. However, before starting the
training process, � is encoded into a more suitable target output, consisting of a set L of ground
truth classification maps and a set T of ground truth regression maps (see Figure 38). We use the
encoding algorithm followed by most detectors of everyday objects, that rely on the use of anchor
sizes (REN et al., 2017; DAI et al., 2016; He et al., 2017). Formally, an anchor is defined as
the default bounding box whose size (ℎ×F) and center position (G, H) can be transformed into
those of a ground truth bounding box 68 ∈ �, (1 ≤ 8 ≤ #�), via a set of scaling and translation
operations.

7.4. STOMADET 165

Figure 37 – Architectural pattern of backbone networks. F8 is the set of 2-D activation maps computed
by the 8-th block. In STOMADET, the fourth, fifth and sixth blocks are respectively named
as L2, L3, and L4. The term SL is the abbreviation for sub-sampling layer. The proportions
between the spatial resolutions of F4, F5 and F6 were readjusted for better visualization.

SL
+

6th Block
(L4)

H

8
H

16
H

32

4th Block
(L2)

SL
+

5th Block
(L3)

Previous
Blocks and

Sub-sampling
Layers

F4
F5

F6

W
/8

W
/16

W
/32

H

W

Source: Elaborated by the author.

Encoding algorithm

Given an input set of #A anchor sizes A = {U1, . . . , U#A } and a predefined set of #A
reduction factors {A1, . . . , A#A }, each anchor size U 9 (1 ≤ 9 ≤ #A) is used to encode the set
of bounding boxes � as follows: First, the input image � of size (�,,) is partitioned into a
regular grid of size (�

A 9
× ,
A 9
). Then, an anchor of size U 9 is placed at the center of every cell

on the grid. To measure the overlap between each anchor and each bounding box 68 ∈ �, the
Intersection-over-Union (IoU) metric is used, where an IoU = 1 means complete overlap, and an
IoU = 0 means no overlap. In this context, each cell is classified as foreground or stoma (; = 1)
when its associated anchor achieves an IoU ≥ 0.5 with any 68 ∈ �. When the highest IoU overlap
obtained with an anchor is less than 0.4, its associated cell is classified as background (; = 0).
In the remaining cases, the associated cell is assigned a classification label of ; = −1. Each
foreground cell (; = 1) also stores four regression coefficients [CG , CH, CF, Cℎ], which are computed
with the encoding formulas in (REN et al., 2017). In this sense, the regression coefficients of a
given cell contain the information necessary to transform its associated anchor into the 68 ∈ �
with which it has the highest IoU overlap. In the case of every non-foreground cell (; ≠ 1), its
regression coefficients are represented by four zeros.

Next, the classification labels and regression coefficients on the grid are organized into
five tensors {L (9) ,TG (9) , TH (9) , Tℎ (9) , TF (9)}, each of spatial resolution (�

A 9
× ,
A 9
). As the above

process is repeated for every U 9 ∈ A, the set � is encoded into a set L of #A ground truth
classification maps, and a set T of 4#A ground truth regression maps (see Figure 38).

166 Chapter 7. Exploring detection

Set of anchor sizes for stomata detection

Due to the IoU metric, only the bounding boxes whose sizes are similar to a given U 9 ∈ A
are encoded into L (9) and T (9) . Therefore, when U 9 is too big (or too small) with respect to
every bounding box in �, the resulting L (9) and T (9) will contain only zeros. In this context,
given a training split �train, a well chosen set A must satisfy two conditions: (i) it includes
enough anchor sizes to properly encode all possible sets of bounding boxes from �train, and (ii)
every U 9 ∈ A is capable of encoding a substantial number of bounding boxes from �train.

Most detectors of everyday objects (LIN et al., 2017) use similar sets of anchor sizes.
However, since the bounding boxes employed to annotate stomata differ from those used to
annotate everyday objects, in STOMADET we created the following sets of anchor sizes:

• AWoodyL = {(56×56), (88×88), (120×120), (152×152)}. It was created by analyzing
the square bounding boxes from the WoodyL dataset, whose minimum and maximum areas
are 502 and 1602, respectively.

• AAll = {(56×56), (88×88), (120×120), (152×152), (184×184), (216×216)}. It was
created by analyzing the �All dataset, which revealed the existence of square bounding
boxes with areas of up to 2402 pixels. Therefore, AAll has two more anchors sizes
than AWoodyL.

The set of reduction factors {A1, . . . , A#A }, that dictate the spatial resolutions in L and T ,
is defined for every pair of one adaptation strategy (F5, F5&F6, F̂5&F̂6) and one set of an-
chor sizes (AWoodyL, AAll) as follows: (i) When F5 is used, all reduction factors associated
with AWoodyL and AAll are set to be {16,16,16,16} and {16,16,16,16,16,16}, respectively. (ii)
When either F5&F6 or F̂5&F̂6 is used, the set of reduction factors associated with AWoodyL

and AAll are established in {16,16,16,32} and {16,16,16,16,32,32}, respectively3.

7.4.2.3 Classification and regression subnets

The classification and regression subnets of STOMADET consist of one or more 1×1
convolutional layers, which are configured to yield a set L̂ of 2#A classification maps and a set T̂
of 4#A regression maps of similar characteristics to their ground truth counterparts (L,T). This
includes reusing the same values previously defined for {A1, . . . , A#A }. For example, when F̂5&F̂6

is used, STOMADET predicts two classification maps and four regression maps of size (�16 ×
,
16)

for each of the first three anchor sizes inAWoodyL, and two classification maps and four regression
maps of size (�32 ×

,
32) for the last anchor size in AWoodyL.

Therefore, as shown in Figure 38, there is a one-to-one correspondence between the
encoded ground truth (L,T) and the predicted output (L̂, T̂). More specifically, for each anchor,
3 We adapted and extended the AnchorBoxesManager class from <https://github.com/warmspringwinds/

pytorch-segmentation-detection/blob/master/pytorch_segmentation_detection/utils/detection.py>.

https://github.com/warmspringwinds/pytorch-segmentation-detection/blob/master/pytorch_segmentation_detection/utils/detection.py
https://github.com/warmspringwinds/pytorch-segmentation-detection/blob/master/pytorch_segmentation_detection/utils/detection.py

7.4. STOMADET 167

Figure 38 – Simplified training process of STOMADET, #A = 4. Each training image is processed with
seven data augmentation strategies. The resulting image is processed by STOMADET yielding
the predicted sets of classification and regression maps, while the resulting bounding boxes
are encoded into sets of ground truth classification and regression maps. The training loss
computed between predicted and ground truth sets is back-propagated and all parameters
are updated with the ADAM optimizer. CE;>BB = Cross Entropy loss, and SL1;>BB = Smooth
L1 loss. For better visualization, we show the softmax output of the predicted classification
maps.

 Classification Subnet

FE
Subnet

 Feature
 Maps

Predicted

Regression MapsClassification Maps

G
round Truth

Classification Maps Regression Maps

Training image

 Bounding box encoding

 Regression Subnet

Data
Augmentation
Processing

Source: Elaborated by the author.

in addition to its classification label ; ∈ L and its set of regression coefficients C = {CG , CH, Cℎ, CF},
(C ∈ T), there are also a set of predicted label scores ;̂ = {;̂1, ;̂ 5 } and a set of predicted regression
coefficients Ĉ = {ĈG , ĈH, Ĉℎ, ĈF}, (;̂ ∈ L̂, Ĉ ∈ T̂), where ;̂1 and ;̂ 5 are respectively the predicted label
scores for the background and the foreground (stoma) classes.

7.4.3 Implementation details

Now that we have defined the architecture details, we are ready to define the imple-
mentation details. There are three main topics: (i) data augmentation, (ii) training policy, and
(iii) inference. The following subsections will discuss each particular topic in detail.

7.4.3.1 Data Augmentation

As demonstrated in (ZOPH et al., 2020b), when data augmentation (DA) strategies are
applied correctly, the performance of any detector can be significantly increased. In STOMADET,
we propose seven DA strategies, which together with their probabilities of occurrence % were
chosen on the basis of: (i) the observed morphological characteristics of stomata on microscopic
images, and (ii) preliminary experiments using a reduced training set. The details for each DA

168 Chapter 7. Exploring detection

strategy are below.

• Multiscale Resizing (% = 50%). Using the bicubic interpolation algorithm, the image and
its associated ground truth bounding boxes are enlarged or reduced by a scaling factor
that is chosen randomly from the set "sca = [0.5,0.6,0.7,0.8,0.9, 1.1,1.2,1.3,1.4,1.5].
However, if at least one resized bounding box has an area that covers less than 502 pixels
or more than 2402 pixels, everything is restored to its original sizes, and this DA strategy
is recomputed with another scaling factor.

• Horizonal/Vertical Flipping. Each DA strategy is applied with a %=50% chance.

• Image Rotation (% = 50%). When activated, the image � and the central points of its
associated bounding boxes rotate \ degrees with respect to the center of �, where \ is
chosen randomly from "Θ = [5◦,10◦,15◦,20◦,25◦, 30◦,35◦,40◦,45◦]. Unlike the rotation
strategy used in (ZOPH et al., 2020b), square bounding boxes do not need to be expanded
after the rotation.

• Random Cropping (% = 100%). The input image is randomly cropped to the size
of (512×800) at training time, and to the size of (900×900) at validation time (subsub-
section 7.4.3.2). This cropping process is recomputed when the resulting image does not
contain at least one stoma.

• Equalization and gray-level transformation. Each DA strategy is applied with probabil-
ity %=40%. As for the equalization strategy, it is applied per image channel as in (ZOPH
et al., 2020b). Regarding the gray-level transformation, the resulting single-channel image
is copied into a three-channel one.

All the seven DA strategies are executed in the same order as listed above.

7.4.3.2 Training

Before initiating the training process, the training set is divided into two subsets, each
with 50% of the samples. The first subset (�train) is used to train STOMADET and the other, also
known as the validation set (�val), to select the best trained model that will be used at inference
time. Every training sample is represented by the pair (�,�), where � is the input image chosen
randomly from �train, and � is its set of bounding boxes. The training process of STOMADET

starts by applying the data augmentation strategies described in subsubsection 7.4.3.1 to transform
(�,�) into (�′,�′). Then, �′ is encoded into (L, T), and �′ is transformed into a collection of
activation maps F by the FE subnet. Next, F is processed by the classification and regression
subnets, which predict (L̂, T̂).

For each anchor, the quality of its associated predicted output (;̂ ∈ L̂, Ĉ ∈ T̂) with respect
to its ground truth counterpart (; ∈ L, C ∈ T) is measured with the Cross Entropy loss (��;>BB)

7.4. STOMADET 169

and the Smooth L1 loss (SL1;>BB) as follows:

);>BB (;̂ , ;, Ĉ, C) = _[; ≥ 0]��;>BB (;̂ , ;) + [(; = 1) AND (;̂ 5 > ;̂1)]SL1;>BB (Ĉ, C) (7.4)

where the brackets [·] indicate a conditional operation that returns 1 when the condition is
true and zero otherwise. For example, [; ≥ 0] outputs 1 when the anchor has a non-negative
classification label. Also, we set the weight _=1 when [(; = 1) AND (;̂ 5 > ;̂1)] evaluates to zero,
and _=0.4 otherwise. In this sense, the training loss is the average of the);>BB values computed
at all anchors.

At each epoch, the training loss is minimized with the ADAM optimizer (KINGMA; BA,
2015) using a learning rate of 0.001 and mini-batches of two training samples per iteration. After
completing the epoch, all samples from �val are used to compute the validation loss, once again
with Equation 7.4. Whenever this validation loss reaches a minimum value, we store the trainable
parameters of STOMADET on the disk. After completing all epochs, the parameters associated
with the minimum validation loss are restored to be used at inference time. Regarding the number
of epochs, in some experiments STOMADET is trained for 500 epochs, and in others, for 1k
epochs. Also, we consider the following training policies: (i) the “Train Everything” policy, in
which ADAM updates all STOMADET trainable parameters, and (ii) the “Train From L3” policy,
in which ADAM only updates the STOMADET parameters in layers from block L3 and onwards.

7.4.3.3 Inference

Once trained, STOMADET predicts the classification and regression maps (L̂, T̂) for a
given microscopic image � (see Figure 36). Then, the softmax function transforms the predicted
classification scores of every anchor ({;̂1, ;̂ 5 } ∈ L̂) into probabilities { ?̂1, ?̂ 5 }, where ?̂1 + ?̂ 5 = 1.
Every time the foreground probability of an anchor is equal to or greater than a certain threshold
(?̂ 5 ≥ Cst), the formulas from (REN et al., 2017) are used to decode its associated Ĉ ∈ T̂ into a
bounding box. In this sense, higher values for Cst means fewer bounding boxes decoded. Next,
all bounding boxes are ranked in descending order of their associated foreground probabilities,
forming the set �̂.

Popular object detectors such as (LIN et al., 2017; ZHANG et al., 2018b) use the non-
maximum suppression (NMS) algorithm to compute the final set of bounding boxes �̂final

from �̂. This NMS algorithm iterates over the following three steps until �̂ is empty: (i) The
best-ranked bounding box 1̂best is taken out from �̂. (ii) 1̂best is added to the final set of
bounding boxes �̂final. (iii) Every bounding box that reaches an IoU ≥ 0.25 with 1̂best is
permanently removed from �̂.

In STOMADET, we propose the mNMS algorithm, which modifies the step (ii) of the
original NMS algorithm as follows: 1̂best is only added to �̂final when there is at least two
bounding boxes in �̂ that overlap 1̂best with an IoU ≥ 0.5.

170 Chapter 7. Exploring detection

7.4.4 Experimental Settings

STOMADET uses almost the same experimental settings as POLLENDET (see subsec-
tion 7.3.3). There are only two differences

• While POLLENDET created ten splits, STOMADET only created five splits due to compu-
tational limitations.

• Since STOMADET only deals with object localization (one foreground class), the eval-
uation metrics E we used are the: Precision (Pr), Recall (Re) and F1-Score (F1) (see
subsection 4.3.3).

7.4.5 Comparison of feature extraction subnets and training policies
on WoodyL

Here, we compare the precision, recall and F1-scores associated with 22 FE subnets and
two training policies on the WoodyL dataset. In these experiments, we used the set of anchor
sizes AWoodyL, and 500 epochs per training process.

The analysis of Table 19 indicates that most precision rates are higher than their cor-
responding recall rates, which suggests that the inference process prioritizes having fewer
erroneous detections over having fewer undetected stomata. An extreme case of this is given by
the precision (99.4%) and recall (8.1%) rates obtained with SERESNEXT101_32X4D (F5&F6).

The comparison of training policies reveals the following situations: (i) all DENSENET,
RESNET and SERESNEXT backbone networks benefits the most from the “Train From L3”
policy, while (ii) EFFICIENTNET backbone networks usually benefits the most from the “Train
Everything” policy. However, regardless of the training policy used, the best F1-scores are
mainly achieved by EFFICIENTNET-based FE subnets, followed by SERESNEXT50_32X4D

(F5&F6) and SERESNEXT50_32X4D (F5). When comparing the two adaptation strategies (F5

and F5&F6) for each EFFICIENTNET backbone network, the F1-scores at the “Train Everything”
column tend to be larger for the F5 strategy than for the F5&F6, whereas the opposite happens
in the “Train From L3” column. Finally, the comparison between inference times (IT) shows
that deeper backbone networks lead to higher processing times, and that F5&F6 requires slightly
more IT than F5.

All subsequent experiments will be focused on EFFICIENTNETB1, EFFICIENTNETB3
and EFFICIENTNETB5 backbone networks as they offered the best trade-off between F1-score
and IT in the preceding experiments.

7.4. STOMADET 171

Table 19 – F1-scores, precision and recall rates for combinations of FE subnets and training poli-
cies at the WoodyL dataset. The best F1-scores (%) for each family of backbone networks is
emphasized in bold font. The last column displays the average inference times (IT) in seconds
(s) for images of size (2000×1500).

FE subnet
Train Everything Train From L3 IT

(s) ±
0.02

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

DENSENET121 (F5) 93.3 ± 3.8 67.9 ± 9.4 78.3 ± 6.3 92.6 ± 9.7 86.0 ± 2.6 88.9 ± 4.0 0.23
DENSENET121 (F5&F6) 95.5 ± 5.4 12.4 ± 9.3 20.9 ± 12.7 94.9 ± 3.6 86.3 ± 3.0 90.3 ± 1.3 0.24
DENSENET201 (F5) 81.0 ± 20.3 60.1 ± 17.9 67.7 ± 17.0 93.2 ± 5.8 86.2 ± 4.1 89.4 ± 3.3 0.28
DENSENET201 (F5&F6) 89.2 ± 17.2 8.2 ± 0.1 14.9 ± 0.4 90.3 ± 4.5 82.9 ± 5.9 86.4 ± 5.0 0.32

EFFICIENTNETB1 (F5) 98.0 ± 0.4 97.6 ± 0.2 97.8 ± 0.1 97.7 ± 0.6 95.0 ± 1.4 96.3 ± 0.9 0.19
EFFICIENTNETB1 (F5&F6) 98.5 ± 0.5 96.8 ± 1.5 97.6 ± 0.6 97.5 ± 0.9 95.9 ± 0.8 96.7 ± 0.3 0.20
EFFICIENTNETB2 (F5) 97.9 ± 0.8 96.3 ± 1.0 97.1 ± 0.6 97.5 ± 0.8 96.5 ± 1.9 97.0 ± 0.7 0.19
EFFICIENTNETB2 (F5&F6) 97.8 ± 0.7 96.3 ± 1.3 97.1 ± 0.7 97.4 ± 0.7 95.9 ± 0.7 96.6 ± 0.6 0.20
EFFICIENTNETB3 (F5) 98.1 ± 0.5 97.5 ± 0.7 97.8 ± 0.2 97.0 ± 0.4 97.7 ± 0.9 97.3 ± 0.4 0.21
EFFICIENTNETB3 (F5&F6) 97.8 ± 1.1 97.4 ± 1.5 97.6 ± 0.5 97.9 ± 0.7 96.9 ± 0.9 97.4 ± 0.5 0.22
EFFICIENTNETB4 (F5) 98.2 ± 0.2 97.4 ± 0.7 97.8 ± 0.3 98.0 ± 0.7 96.4 ± 1.1 97.2 ± 0.7 0.24
EFFICIENTNETB4 (F5&F6) 96.2 ± 4.7 97.7 ± 0.3 96.9 ± 2.5 97.9 ± 0.8 97.0 ± 1.0 97.5 ± 0.7 0.25
EFFICIENTNETB5 (F5) 98.5 ± 0.2 98.0 ± 0.3 98.3 ± 0.2 98.1 ± 0.5 97.2 ± 0.7 97.6 ± 0.4 0.28
EFFICIENTNETB5 (F5&F6) 98.1 ± 0.5 98.1 ± 0.6 98.1 ± 0.2 97.9 ± 0.5 97.6 ± 0.3 97.8 ± 0.2 0.31

RESNET34 (F5) 96.8 ± 1.1 84.1 ± 4.8 89.9 ± 2.6 97.0 ± 1.5 95.1 ± 1.2 96.1 ± 0.5 0.17
RESNET34 (F5&F6) 78.0 ± 32.3 27.9 ± 19.7 38.2 ± 23.9 97.0 ± 0.7 90.9 ± 1.3 93.9 ± 0.7 0.17
RESNET50 (F5) 96.6 ± 1.8 70.1 ± 11.2 80.8 ± 7.5 94.8 ± 2.9 89.2 ± 5.6 91.8 ± 2.9 0.20
RESNET50 (F5&F6) 66.6 ± 41.9 9.5 ± 1.7 14.9 ± 4.5 95.8 ± 0.8 85.4 ± 5.2 90.2 ± 2.9 0.21

SERESNEXT50_32X4D (F5) 94.9 ± 3.7 63.7 ± 18.3 75.4 ± 13.3 96.3 ± 1.8 96.7 ± 0.9 96.5 ± 0.6 0.25
SERESNEXT50_32X4D (F5&F6) 93.0 ± 8.9 8.2 ± 0.1 15.0 ± 0.2 97.8 ± 0.9 96.0 ± 0.6 96.9 ± 0.2 0.26
SERESNEXT101_32X4D (F5) 82.7 ± 30.0 9.2 ± 2.2 16.2 ± 3.7 94.6 ± 2.8 94.6 ± 3.2 94.6 ± 2.9 0.33
SERESNEXT101_32X4D (F5&F6) 99.4 ± 0.8 8.1 ± 0.1 15.1 ± 0.2 92.8 ± 1.5 91.1 ± 2.5 91.9 ± 1.5 0.36

Source: Elaborated by the author.

7.4.6 mNMS versus NMS

Here, we analyze how much the detection power of STOMADET changes when, at
inference time, our mNMS algorithm is replaced by the original NMS algorithm on the BAll

dataset. More specifically, for each training policy and FE subnet, Table 20 shows the comparison
between the F1-scores achieved by the NMS algorithm for three different thresholds Cst and by
the mNMS algorithm for Cst=0.5. Unlike the preceding experiments, we use the set of anchor
sizes AAll and 1000 epochs per training process.

Table 20 shows no clear distinction between the F1-scores obtained with the NMS
algorithm for Cst=0.5 and Cst=0.6. This can be explained by analyzing the positive correlation
between Cst and the precision rate (%A), and the negative correlation between Cst and the recall
rate ('4). A good example of this is given by EFFICIENTNETB1 (F̂5&F̂6), whose %A=95.6%
and '4=94.9% for Cst=0.5, changed to %A=96.0% and '4=94.3% for Cst=0.6. Consequently, the
F1-score is similar for both Cst=0.5 and Cst=0.6. Regarding Cst=0.7, it typically leads to lower
F1-scores as the trade-off between %A and '4 becomes very unbalanced.

172 Chapter 7. Exploring detection

Table 20 – F1 scores (%) achieved by NMS and mNMS on the BAll dataset. The best result for each
pair of one FE subnet and one training policy is emphasized in bold font. EFFNET: abbreviation
for EFFICIENTNET.

Train Everything Train From L3

NMS mNMS NMS mNMS

FE subnet Cst = 0.5 Cst = 0.6 Cst = 0.7 Cst = 0.5 Cst = 0.5 Cst = 0.6 Cst = 0.7 Cst = 0.5

EFFNETB1 (F5) 93.4 ± 1.6 93.4 ± 1.5 93.2 ± 1.5 93.5 ± 1.3 94.0 ± 1.8 94.1 ± 1.7 94.1 ± 1.7 94.6 ± 0.8
EFFNETB1 (F5&F6) 94.0 ± 2.3 94.1 ± 2.1 94.2 ± 1.9 95.3 ± 0.7 94.8 ± 0.8 94.9 ± 0.8 94.9 ± 0.8 95.0 ± 0.9
EFFNETB1 (F̂5&F̂6) 95.2 ± 0.5 95.2 ± 0.5 95.0 ± 0.5 95.4 ± 0.5 95.0 ± 0.8 94.9 ± 0.9 94.7 ± 1.1 95.1 ± 0.7

EFFNETB3 (F5) 94.4 ± 0.6 94.4 ± 0.7 94.2 ± 0.7 94.7 ± 0.9 93.7 ± 2.3 93.6 ± 2.4 93.4 ± 2.5 94.3 ± 2.3
EFFNETB3 (F5&F6) 92.8 ± 4.3 92.8 ± 4.4 92.7 ± 4.4 94.2 ± 2.0 93.5 ± 3.5 93.5 ± 3.5 93.3 ± 3.6 94.0 ± 3.7
EFFNETB3 (F̂5&F̂6) 94.1 ± 1.7 93.9 ± 1.7 93.6 ± 1.8 94.5 ± 1.5 95.5 ± 0.8 95.4 ± 1.1 95.2 ± 1.5 95.6 ± 1.3

EFFNETB5 (F5) 95.0 ± 1.4 94.9 ± 1.4 94.7 ± 1.3 95.1 ± 1.0 92.8 ± 3.7 92.8 ± 3.7 92.6 ± 3.7 94.7 ± 1.2
EFFNETB5 (F5&F6) 93.6 ± 1.0 93.4 ± 1.2 92.7 ± 1.6 93.6 ± 1.3 95.8 ± 0.4 95.9 ± 0.5 95.8 ± 0.5 96.2 ± 0.5
EFFNETB5 (F̂5&F̂6) 94.3 ± 1.2 94.3 ± 1.2 94.0 ± 1.1 94.8 ± 0.8 95.7 ± 0.6 95.7 ± 0.6 95.5 ± 0.7 95.9 ± 0.7

Source: Elaborated by the author.

For what concerns mNMS, Table 20 reveals that in 17 out of 18 cases, it achieved higher
F1-scores than their NMS counterparts. These results demonstrate that mNMS can successfully
mitigate the bad effects caused by the %A/'4 trade-off. Finally, the top three highest F1-scores
come from the “Train From L3” policy, where EFFICIENTNETB5 (F5&F6) is at the top (96.2%).

7.4.7 Detection of small, medium-sized and large stomata

Here, for each FE subnet and training policy used, we analyze the performance of
STOMADET at detecting small, medium-sized and large stomata on the BAll dataset. In this
context, we defined as F1B, F1< and F1; , the F1-scores for small (area ≤ 902), medium-sized
(902 < area ≤ 1802) and large stomata (area ≤ 902), respectively. To compute the above metrics,
we slightly redefined the terms: true positive (C ?), false positive (5 ?) and false negative (5 =).
For example, in the case of F1B, C ? becomes the amount of small stomata that were correctly
detected, 5 ? becomes the number of wrong detections whose areas match that of a small stoma,
and 5 = becomes the amount of small stomata that were never detected. By extension, C ?, 5 ?
and 5 = are similarly redefined for F1< and F1; . All other evaluation settings were the same as
those used in subsection 7.4.6.

The results in Table 21 show that there is a 2.4% gap between the best results obtained
with F1< and F1B, and a 0.4% gap between the best results obtained with F1; and F1<. These
suggest that STOMADET struggles more against small stomata than it does against medium-sized
or large stomata. When comparing the two training policies, similar to Table 20, the F1-scores
in Table 21 tend to be higher in the “Train From L3” columns than in the “Train Everything”
columns.

7.4. STOMADET 173

Table 21 – F1-scores for small (F1B), medium-sized (F1<) and large (F1;) stomata on the BAll
dataset. For each column, the best result is emphasized in bold font. EFFNET: abbreviation
for EFFICIENTNET.

FE subnet
Train Everything Train From L3

F1B F1< F1; F1B F1< F1;

EFFNETB1 (F5) 89.6 ± 2.8 96.2 ± 1.2 96.7 ± 0.5 92.2 ± 2.2 96.3 ± 0.4 94.5 ± 4.5
EFFNETB1 (F5&F6) 93.6 ± 1.2 96.5 ± 0.5 96.6 ± 1.1 92.9 ± 2.0 96.5 ± 0.5 97.6 ± 0.5
EFFNETB1 (F̂5&F̂6) 93.2 ± 1.4 96.8 ± 0.4 97.2 ± 0.8 92.7 ± 1.3 96.8 ± 0.6 97.1 ± 0.7

EFFNETB3 (F5) 91.9 ± 2.5 96.7 ± 0.4 95.0 ± 1.7 90.3 ± 6.2 96.9 ± 0.5 97.1 ± 1.1
EFFNETB3 (F5&F6) 91.0 ± 4.2 96.5 ± 0.7 95.5 ± 2.1 89.7 ± 9.7 96.7 ± 0.5 97.4 ± 0.7
EFFNETB3 (F̂5&F̂6) 91.6 ± 3.6 96.5 ± 0.6 96.7 ± 0.8 93.3 ± 3.3 97.2 ± 0.3 97.6 ± 0.8

EFFNETB5 (F5) 92.7 ± 2.2 96.8 ± 0.3 96.5 ± 0.4 92.2 ± 2.5 96.5 ± 0.5 96.5 ± 1.4
EFFNETB5 (F5&F6) 89.7 ± 2.2 96.3 ± 1.0 97.3 ± 0.4 94.8 ± 1.0 97.2 ± 0.2 97.5 ± 0.8
EFFNETB5 (F̂5&F̂6) 92.5 ± 1.6 96.4 ± 0.7 97.2 ± 1.0 94.3 ± 0.9 97.0 ± 0.5 97.5 ± 0.9

Source: Elaborated by the author.

Other interesting results in Table 21 are as follows: (i) When observing the results
associated with different adaptation strategies, the F1;-scores achieved by F5 are mostly surpassed
by those obtained with F5&F6 and F̂5&F̂6. This is explained by analyzing the grid resolution
from which STOMADET make predictions, where in the case of F5, it is enough for the detection
of small and medium-sized stomata, but it is too small for the detection of large stomata. (ii)
In general, the standard deviations associated with the F1B-scores are substantially higher than
those associated with F1< and F1; , which suggest that there are some unknown problems in the
training process that prevents STOMADET to always achieve good performances at detecting
small stomata. (iii) STOMADET reached its best results for F1B and F1<, and its second best result
for F1; , when it was trained with the “Train From L3” policy and used the EFFICIENTNETB5
(F5&F6) FE subnet.

7.4.8 Performance across different datasets

Table 22 shows the performance comparison of nine FE subnets on BAll and its con-
stituent datasets (see Table 3). Here, we only focus on the results associated with the “Train From
L3” policy since it led to the highest F1-scores in the preceding experiments. The evaluation
settings are the same as those in subsection 7.4.6 and subsection 7.4.7. However, in addition to
computing the global F1-score for BAll, the F1-scores for each of its constituent datasets were
also computed.

The analysis of Table 22 shows that: (i) the highest and the second highest F1-scores are
mostly concentrated in the EFFICIENTNETB5-based FE subnets. This agree with the fact that
deeper architectures generally lead to better results. (ii) There is a 4.3% gap between the most

174 Chapter 7. Exploring detection

Table 22 – F1-scores for all datasets included in BAll. The best result for each dataset is highlighted in
red bold font, and the second best F1-score is emphasized in bold font. EFFNET: abbreviation
for EFFICIENTNET.

FE subnet SimoneDB WoodyL Poplar Ginkgo CuticleDB USNM/USBG Ctenanthe BAll

EFFNETB1 (F5) 97.7 ± 0.3 95.4 ± 1.0 97.5 ± 0.2 96.2 ± 0.6 93.1 ± 0.9 92.2 ± 2.1 93.5 ± 6.9 94.6 ± 0.8
EFFNETB1 (F5&F6) 97.9 ± 0.2 95.7 ± 1.5 97.7 ± 0.2 96.7 ± 0.4 93.9 ± 0.7 92.0 ± 0.9 94.9 ± 4.3 95.0 ± 0.9
EFFNETB1 (F̂5&F̂6) 97.9 ± 0.2 96.6 ± 1.2 97.7 ± 0.3 96.4 ± 0.5 94.4 ± 0.6 91.8 ± 1.5 94.2 ± 3.2 95.1 ± 0.7

EFFNETB3 (F5) 97.9 ± 0.3 96.2 ± 1.4 97.9 ± 0.2 95.4 ± 1.1 94.7 ± 0.7 91.6 ± 1.6 89.3 ± 12.5 94.3 ± 2.3
EFFNETB3 (F5&F6) 97.5 ± 0.6 96.1 ± 1.6 97.7 ± 0.1 96.4 ± 0.9 93.9 ± 1.0 94.0 ± 1.1 82.3 ± 28.3 94.0 ± 3.7
EFFNETB3 (F̂5&F̂6) 97.7 ± 0.4 97.5 ± 0.4 97.6 ± 0.4 95.9 ± 0.5 94.8 ± 0.8 93.1 ± 1.4 94.2 ± 6.8 95.6 ± 1.3

EFFNETB5 (F5) 97.7 ± 0.3 94.6 ± 1.7 97.9 ± 0.2 95.3 ± 1.6 94.6 ± 1.5 92.5 ± 0.7 93.5 ± 6.0 94.7 ± 1.2
EFFNETB5 (F5&F6) 97.6 ± 0.8 97.2 ± 0.9 97.8 ± 0.2 96.0 ± 1.1 95.3 ± 0.2 93.7 ± 0.5 96.8 ± 1.9 96.2 ± 0.5
EFFNETB5 (F̂5&F̂6) 98.3 ± 0.1 97.0 ± 0.9 97.7 ± 0.3 96.5 ± 0.2 95.0 ± 0.3 93.2 ± 1.4 95.6 ± 2.1 95.9 ± 0.7

Source: Elaborated by the author.

difficult dataset (USNM/USBG) and the easiest one (SimoneDB). (iii) It seems that STOMADET

struggles more with the Ctenanthe dataset, as its computed F1-scores are usually associated
with very high standard deviations. (iv) Although STOMADET mainly achieved its best results
with EFFICIENTNETB5 (F5&F6), there are at least two datasets in which significantly higher
F1-scores were achieved by other FE subnets (+0.7% in the SimoneDB dataset and +0.7% in the
Ginkgo dataset). Therefore, future research works will be oriented in proposing methods for
solving this issue.

In summary, STOMADET achieves its best results when it uses the following settings: (i)
FE subnet: EFFICIENTNETB5 (F5&F6), (ii) Training policy: “Train From L3”, and (iii) Infer-
ence settings: CBC=0.5 + mNMS. Furthermore, using these previous settings, the best STOMADET

model achieved the following F1-scores: SimoneDB (97.6%), WoodyL (97.8%), Poplar (98.2%),
Ginkgo (96.7%), CuticleDB (95.3%), USNM/USBG (94.4%), Ctenanthe (97.7%), BAll (96.7%),
F1B=95.5%, F1<=97.5%, and F1;=97.6%.

7.5 Final considerations
In this chapter, we proposed two object detectors, one for detecting pollen grains

(POLLENDET), and the other for locating stomata (STOMADET). Both POLLENDET and STOM-
ADET are one-stage detectors whose inference time is mostly driven by the size of the backbone.

In POLLENDET, we systematically compare multiple backbones from nine pre-trained
CNN models, which empirically demonstrates that the optimal choice is always reusing the first
five chunks of the pre-trained CNN model. Then, we modified the NMS algorithm to improve the
localization of bounding box proposals as shown in subsection 7.3.4. In addition, the analysis
shows that POLLENDET with SERESNEXT50_32X4D-5S achieves the best results at both
tasks (mAP0.5 = 96.5% and mAP0.5 = 91.2% respectively) for an IoU threshold of CIoU = 0.5.

7.5. Final considerations 175

However, as higher IoU thresholds are employed, the use of RESNET34-5S emerges as a better
option. This suggests that: (i) SERESNEXT50_32X4D-5S is the best in producing activation
maps that benefit the classification of pollen grains, but (ii) RESNET34-5S makes possible the
generation of bounding boxes that better enclose such pollen grains. This scenario could change
as more samples and more pollen types are considered to train the larger backbones such as
SENET154-5S or SERESNEXT101_32X4D-5S. Finally, the running time analysis reinforces
the superiority of RESNET34-5S (34 ms per image) over the other backbones.

Due to its relatively large training set, STOMADET achieved high detection rates in
many types of microscopic images of the foliar epidermis of multiple plants species. Since the
backbone plays a fundamental role in the detection of stomata, several experiments were focused
on finding its best sub-components, which ended up being the EFFICIENTNETB5 backbone
network and the F5&F6 adaptation strategy. In addition, as demonstrated by the “Train From
L3” policy, freezing the early layers of the backbone network at training time helps STOMADET

to achieve higher detection performances. Also, we proposed a slight modification to the NMS
algorithm, which helps STOMADET to achieve even higher detection rates. Finally, the average
inference time of STOMADET is 310 milliseconds per (2000×1500) microscopic image.

177

CHAPTER

8
CONCLUSIONS

This project presented novel multilayer TL strategies for image classification and object
detection tasks. It has two well-defined parts,where the first part was dedicated to providing the
theoretical background for understanding the second part of the project.

Chapter 2 introduced the basic concepts of deep learning and convolutional neural
networks. In more detail, this chapter began with a discussion of the differences between
traditional machine learning and deep learning. Then, we presented a historical perspective of
deep learning and convolutional neural networks. Next, we discussed the main visual recognition
tasks in the field of computer vision, with particular attention to the two primary tasks we face in
this project: (i) image classification and (ii) object detection. Following, we explained the basic
definitions around a CNN model, such as tensors, the division of a CNN model into a feature
extraction part and classification part, layers, blocks, composite functions, activation maps, and
feature vectors. We ended the chapter explaining the training and inference cycle and the most
relevant layer types.

In Chapter 3, we presented more advanced concepts that built upon those presented in
Chapter 2. In this regard, we first described the notion of transfer learning (TL) and its necessity
in domains where data is scarce. Then, this chapter introduced formally the concept of TL, and
its main element: the pre-trained CNN model. Next, we presented the most relevant pre-trained
CNN models and discussed their main advantages and disadvantages. The chapter also presented
the two types of TL strategies for image classification tasks: (i) strategies that use the pre-trained
model as a feature extractor and (ii) strategies that fine-tune the pre-trained model. The chapter
ends by describing popular TL strategies for image classification and object detection tasks.

Chapter 4 presented the datasets we used in the experimental part of this project. We
mainly focused on three target tasks: (i) texture recognition, (ii) pollen grain detection, and (iii)
stomata detection. We also provided in the chapter the notion of splits and splitting strategies.
Next, we presented the common evaluation metrics used in image classification and object

178 Chapter 8. Conclusions

detection. Finally, we presented the most important concept of the chapter: the general evaluation
scheme, which every experiment in the next chapter follows.

Chapter 5 is the first chapter of the experimental part of this project. Here, we identified
some situations where traditional hand-engineered feature extractors achieved better results
than CNN-based TL methods. In more detail, we found out that the predictive power of most
CNN-based feature extractors increased more when combined with a hand-engineered method
than when combined with another CNN-based method. The situation was particularly interesting
because, individually, most CNN-based TL methods obtained accuracy rates that surpassed those
from the hand-engineered methods by at least 4%. The same situation happened across dedicated
classifiers and with feature selection approaches.

In Chapter 6 we performed a layer-by-layer approach to determine whether earlier layers
of a pre-trained CNN model can provide features with competitive predictive power. The results
somewhat contradict the literary review in texture analysis, which stated that the last layer of a
pre-trained CNN model has the most predictive power. Then, we realized that previous works
only performed layer-by-layer analysis on category-based datasets. With this information, we
proposed a novel multi-layer TL approach that treats pre-trained CNN models as deep composite
functions. In more detail, we proposed RANKGP-CNN, a TL strategy that selects the best deep
composite functions based on a defined global pooling layer and a feature ranking approach.
Finally, we extended the TL strategy to multiple pre-trained models (RANKGP-3M-CNN) and
compared its results with alternative CNN-based models. In general, the results of RANKGP-
3M-CNN surpass all the alternative CNN-based TL strategies in instance-based texture datasets.

Finally, Chapter 7 presented two TL strategies for two target tasks. The first TL strategy
was designed for the pollen detection task, and the second was designed for the stomata localiza-
tion task. Both approaches take into consideration the morphological characteristics of the target
tasks and the innovative architectural ideas of popular object detectors such as RETINADET and
FASTER-FCNN.

8.1 Futures Perspectives

Although RANKGP-3M-CNN achieved excellent results, we known that fine-tuning
methods can be powerful when given the correct hyper-parameters. Therefore, we want to include
in the near future, the concept of deep composite functions into a fine-tuning process. The basic
idea is to include a RankDropOut layer into the modified model which will work as a dropout
layer, removing randomly the connections, but instead of assigning the same drop probability
to every connection, the probability will be determined by the feature ranking approach in the
mini-batch.

Furthermore, we are particularly interested on applying RankGP-CNN to CNN models
trained in a self-supervised fashion (e.g., SIMCLR (Chen et al., 2020)) to see if they encode

8.2. Bibliographical Production 179

texture information differently. Additionally, we want to expand this analysis to real-life applica-
tions that involve texture recognition (e.g., biological and medical datasets) and then extend this
idea to object detectors, such as STOMADET and POLLENDET.

8.2 Bibliographical Production

Articles in scientific journals

• Condori, R. H., & Bruno, O. M. (2021). Analysis of activation maps through global
pooling measurements for texture classification. Information Sciences, 555, 260-279.

• Scabini, L. F., Condori, R. H., Gonçalves, W. N., & Bruno, O. M. (2019). Multilayer
complex network descriptors for color–texture characterization. Information Sciences, 491,
30-47.

Articles in Preparation

• Condori, R. H., Baetens, J. M., Martinez, A. S., & Bruno, O, M. (2022) Enhancing
CNN-based methods with hand-engineered features for gray-level texture recognition.

• Condori, R. H., Ribas, L. C., Biagioni S., Behling H., & Bruno, O, M. (2022) Fast
detection and classification of pollen grains through convolutional neural networks.

• Condori, R. H., & Bruno, O. M. (2021). StomaDet: A fast and proficient Convolutional
Neural Network for automatic stomata detection at different plant species.

Articles published in conference proceedings

• Condori, R. H., Romualdo, L. M., Bruno, O. M., & de Cerqueira Luz, P. H. (2017,
October). Comparison between traditional texture methods and deep learning descriptors
for detection of nitrogen deficiency in maize crops. In 2017 Workshop of Computer Vision
(WVC) (pp. 7-12). IEEE.

• Scabini, L. F., Condori, R. H., Ribas, L. C., & Bruno, O. M. (2019, September). Evaluating
Deep Convolutional Neural Networks as Texture Feature Extractors. In International
Conference on Image Analysis and Processing (pp. 192-202). Springer, Cham.

• Scabini, L. F., Condori, R. M., Munhoz, I. C., & Bruno, O. M. (2019, September). Deep
Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib.
In International Conference on Computer Analysis of Images and Patterns (pp. 389-401).
Springer, Cham.

181

BIBLIOGRAPHY

A. R. Backes and W. N. Gonçalves and A. S. Martinez and O. M. Bruno. Texture analysis
and classification using deterministic tourist walk. Pattern Recognition, Elsevier, v. 43, n. 3, p.
685 – 694, 2010. ISSN 0031-3203. Available: <https://doi.org/10.1016/j.patcog.2009.07.017>.
Citations on pages 112 and 207.

ABDELMOUNAIME, S.; DONG-CHEN, H. New Brodatz-Based Image Databases for Grayscale
Color and Multiband Texture Analysis. ISRN Machine Vision, v. 2013, p. 1–14, 2013. Available:
<https://doi.org/10.1155/2013/876386>. Citation on page 94.

ALI, Z.; KEFALAS, P.; MUHAMMAD, K.; ALI, B.; IMRAN, M. Deep learning in citation
recommendation models survey. Expert Systems with Applications, v. 162, p. 113790, 2020.
ISSN 0957-4174. Available: <https://doi.org/10.1016/j.eswa.2020.113790>. Citation on page
40.

AMOROSI, A.; COLALONGO, M.; FIORINI, F.; FUSCO, F.; PASINI, G.; VAIANI, S.; SARTI,
G. Palaeogeographic and palaeoclimatic evolution of the Po Plain from 150-ky core records.
Global and Planetary Change, Elsevier, v. 40, n. 1, p. 55–78, 2004. ISSN 0921-8181. Available:
<https://doi.org/10.1016/S0921-8181(03)00098-5>. Citation on page 103.

ANDREARCZYK, V.; WHELAN, P. F. Using filter banks in Convolutional Neural Networks for
texture classification. Pattern Recognition Letters, v. 84, p. 63 – 69, 2016. ISSN 0167-8655.
Available: <https://doi.org/10.1016/j.patrec.2016.08.016>. Citations on pages 41, 83, and 85.

AONO, A. H.; NAGAI, J. S.; DICKEL, G. d. S. M.; MARINHO, R. C.; OLIVEIRA, P. E. A. M.
de; FARIA, F. A. A Stomata Classification and Detection System in Microscope Images of Maize
Cultivars. bioRxiv, Cold Spring Harbor Laboratory, 2019. Available: <https://doi.org/10.1101/
538165>. Citations on pages 42 and 162.

APICELLA, A.; DONNARUMMA, F.; ISGRò, F.; PREVETE, R. A survey on modern trainable
activation functions. Neural Networks, v. 138, p. 14–32, 2021. ISSN 0893-6080. Available:
<https://doi.org/10.1016/j.neunet.2021.01.026>. Citation on page 67.

ARPIT, D.; CAMPOS, V.; BENGIO, Y. How to Initialize your Network? Robust Initialization
for WeightNorm & ResNets. In: Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2019. v. 32, p. 1–10. Available: <https://proceedings.neurips.cc/paper/
2019/file/e520f70ac3930490458892665cda6620-Paper.pdf>. Citation on page 56.

ASCOLI, S. d'; SAGUN, L.; BIROLI, G. Triple descent and the two kinds of overfitting:
where & why do they appear? In: LAROCHELLE, H.; RANZATO, M.; HADSELL, R.;
BALCAN, M. F.; LIN, H. (Ed.). Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2020. v. 33, p. 3058–3069. Available: <https://proceedings.neurips.cc/paper/
2020/file/1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf>. Citation on page 62.

AUDEBERT, N.; SAUX, B. L.; LEFEVRE, S. Deep Learning for Classification of Hyperspectral
Data: A Comparative Review. IEEE Geoscience and Remote Sensing Magazine, v. 7, n. 2, p.

https://doi.org/10.1155/2013/876386
https://doi.org/10.1016/j.eswa.2020.113790
https://doi.org/10.1016/S0921-8181(03)00098-5
https://doi.org/10.1016/j.patrec.2016.08.016
https://doi.org/10.1101/538165
https://doi.org/10.1101/538165
https://doi.org/10.1016/j.neunet.2021.01.026
https://proceedings.neurips.cc/paper/2019/file/e520f70ac3930490458892665cda6620-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e520f70ac3930490458892665cda6620-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf

182 Bibliography

159–173, 2019. ISSN 2168-6831. Available: <https://doi.org/10.1109/MGRS.2019.2912563>.
Citation on page 52.

BACKES, A. R.; CASANOVA, D.; BRUNO, O. M. Color texture analysis based on fractal
descriptors. Pattern Recognition, v. 45, n. 5, p. 1984 – 1992, 2012. ISSN 0031-3203. Available:
<https://doi.org/10.1016/j.patcog.2011.11.009>. Citation on page 94.

Bansal, A.; Nanduri, A.; Castillo, C. D.; Ranjan, R.; Chellappa, R. UMDFaces: An annotated
face dataset for training deep networks. In: 2017 IEEE International Joint Conference on
Biometrics (IJCB). IEEE, 2017. p. 464–473. ISBN 978-1-5386-1124-1. Available: <https:
//doi.org/10.1109/BTAS.2017.8272731>. Citation on page 91.

BARBER, D.; TORRE, F. D. L.; FEO, F.; FLORIDO, F.; GUARDIA, P.; MORENO, C.;
QUIRALTE, J.; LOMBARDERO, M.; VILLALBA, M.; SALCEDO, G.; RODRíGUEZ, R.
Understanding patient sensitization profiles in complex pollen areas: a molecular epidemio-
logical study. Allergy, v. 63, n. 11, p. 1550–1558, 2008. Available: <https://doi.org/10.1111/j.
1398-9995.2008.01807.x>. Citation on page 103.

BARCLAY, R.; MCELWAIN, J.; DILCHER, D.; SAGEMAN, B. The Cuticle Database: Devel-
oping an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record.
Courier-Forschungsinstitut Senckenberg, Schweizerbart Science Publishers, v. 258, p. 39–55,
2007. Available: <http://www.schweizerbart.de//publications/detail/isbn/9783510613885/CFS_
Courier_Forschungsinstitut_Senckenbe>. Citations on pages 99 and 101.

BARCLAY, R. S.; WING, S. L. Improving the Ginkgo CO2 barometer: Implications for the
early Cenozoic atmosphere. Earth and Planetary Science Letters, v. 439, p. 158–171, 2016.
ISSN 0012-821X. Available: <https://doi.org/10.1016/j.epsl.2016.01.012>. Citations on pages
99 and 101.

Bello, I.; Fedus, W.; Du, X.; Cubuk, E. D.; Srinivas, A.; Lin, T.-Y.; Shlens, J.; Zoph, B. Revis-
iting ResNets: Improved Training and Scaling Strategies. arXiv e-prints, p. 1–18, Mar. 2021.
Available: <https://arxiv.org/abs/2103.07579>. Citations on pages 56, 75, and 82.

BERTINI, A. Pliocene to Pleistocene palynoflora and vegetation in Italy: State of the art.
Quaternary International, Elsevier, v. 225, n. 1, p. 5–24, 2010. ISSN 1040-6182. Available:
<https://doi.org/10.1016/j.quaint.2010.04.025>. Citation on page 103.

BHUGRA, S.; MISHRA, D.; ANUPAMA, A.; CHAUDHURY, S.; LALL, B.; CHUGH, A.;
CHINNUSAMY, V. Deep Convolutional Neural Networks Based Framework for Estimation
of Stomata Density and Structure from Microscopic Images. In: Computer Vision – ECCV
2018 Workshops. Cham: Springer International Publishing, 2019. p. 412–423. ISBN 978-3-030-
11024-6. Available: <https://doi.org/10.1007/978-3-030-11024-6_31>. Citations on pages 42
and 162.

BÖHME, F.; BISCHOFF, G.; ZEBITZ, C. P. W.; ROSENKRANZ, P.; WALLNER, K. Pesticide
residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three
agricultural sites in South Germany. PLOS ONE, Public Library of Science, v. 13, n. 7, p. 1–21,
Jul 2018. Available: <https://doi.org/10.1371/journal.pone.0199995>. Citations on pages 103
and 147.

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A Training Algorithm for Optimal Margin
Classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning

https://doi.org/10.1109/MGRS.2019.2912563
https://doi.org/10.1016/j.patcog.2011.11.009
https://doi.org/10.1109/BTAS.2017.8272731
https://doi.org/10.1109/BTAS.2017.8272731
https://doi.org/10.1111/j.1398-9995.2008.01807.x
https://doi.org/10.1111/j.1398-9995.2008.01807.x
http://www.schweizerbart.de//publications/detail/isbn/9783510613885/CFS_Courier_Forschungsinstitut_Senckenbe
http://www.schweizerbart.de//publications/detail/isbn/9783510613885/CFS_Courier_Forschungsinstitut_Senckenbe
https://doi.org/10.1016/j.epsl.2016.01.012
https://arxiv.org/abs/2103.07579
https://doi.org/10.1016/j.quaint.2010.04.025
https://doi.org/10.1007/978-3-030-11024-6_31
https://doi.org/10.1371/journal.pone.0199995

Bibliography 183

Theory. New York, NY, USA: Association for Computing Machinery, 1992. p. 144–152. ISBN
089791497X. Available: <https://doi.org/10.1145/130385.130401>. Citation on page 49.

BRODATZ, P. Textures: a photographic album for artists and designers. New York, USA:
Dover Publications, 1966. Citations on pages 94 and 114.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.;
Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.;
Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.;
Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCand lish, S.; Radford, A.; Sutskever,
I.; Amodei, D. Language Models are Few-Shot Learners. arXiv e-prints, p. arXiv:2005.14165,
May 2020. Available: <https://arxiv.org/abs/2005.14165>. Citation on page 39.

CAI, Z.; VASCONCELOS, N. Cascade R-CNN: Delving Into High Quality Object Detection. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018. p.
6154–6162. ISBN 978-1-5386-6420-9. Available: <https://doi.org/10.1109/cvpr.2018.00644>.
Citations on pages 42, 73, and 88.

CAINE, R. S.; YIN, X.; SLOAN, J.; HARRISON, E. L.; MOHAMMED, U.; FULTON, T.;
BISWAL, A. K.; DIONORA, J.; CHATER, C. C.; COE, R. A.; BANDYOPADHYAY, A.;
MURCHIE, E. H.; SWARUP, R.; QUICK, W. P.; GRAY, J. E. Rice with reduced stomatal
density conserves water and has improved drought tolerance under future climate conditions.
New Phytologist, John Wiley & Sons, Ltd, v. 221, n. 1, p. 371–384, Jan 2019. ISSN 0028-646X.
Available: <https://doi.org/10.1111/nph.15344>. Citations on pages 97 and 147.

CAPUTO, B.; HAYMAN, E.; MALLIKARJUNA, P. Class-specific material categorisation. In:
Tenth IEEE International Conference on Computer Vision (ICCV’05). [s.n.], 2005. v. 2, p.
1597–1604. ISSN 1550-5499. Available: <https://doi.org/10.1109/ICCV.2005.54>. Citation on
page 94.

Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object
Detection with Transformers. In: The European Conference on Computer Vision (ECCV).
[s.n.], 2020. p. 1–17. Available: <https://arxiv.org/abs/2005.12872>. Citations on pages 40
and 48.

CARPENTER, K. J. Stomatal architecture and evolution in basal angiosperms. American
Journal of Botany, John Wiley & Sons, Ltd, v. 92, n. 10, p. 1595–1615, Oct 2005. ISSN
0002-9122. Available: <https://doi.org/10.3732/ajb.92.10.1595>. Citation on page 97.

CASTRO, F. M.; MARÍN-JIMÉNEZ, M. J.; GUIL, N.; SCHMID, C.; ALAHARI, K. End-
to-End Incremental Learning. In: Computer Vision – ECCV 2018. Springer International
Publishing, 2018. p. 241–257. ISBN 978-3-030-01258-8. Available: <https://doi.org/10.1007/
978-3-030-01258-8_15>. Citation on page 41.

CAVALIN, P.; OLIVEIRA, L. S. A Review of Texture Classification Methods and Databases.
In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials
(SIBGRAPI-T). [s.n.], 2017. p. 1–8. ISSN 2474-0705. Available: <https://doi.org/10.1109/
SIBGRAPI-T.2017.10>. Citation on page 93.

Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Shi, J.; Ouyang, W.;
Loy, C. C.; Lin, D. Hybrid Task Cascade for Instance Segmentation. In: 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. p. 4969–4978.

https://doi.org/10.1145/130385.130401
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/cvpr.2018.00644
https://doi.org/10.1111/nph.15344
https://doi.org/10.1109/ICCV.2005.54
https://arxiv.org/abs/2005.12872
https://doi.org/10.3732/ajb.92.10.1595
https://doi.org/10.1007/978-3-030-01258-8_15
https://doi.org/10.1007/978-3-030-01258-8_15
https://doi.org/10.1109/SIBGRAPI-T.2017.10
https://doi.org/10.1109/SIBGRAPI-T.2017.10

184 Bibliography

ISBN 978-1-7281-3293-8. Available: <https://doi.org/10.1109/CVPR.2019.00511>. Citation
on page 88.

Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of
Visual Representations. In: Proceedings of the International Conference on Machine Learn-
ing. [s.n.], 2020. p. 10709–10719. Available: <https://arxiv.org/abs/2002.05709>. Citations on
pages 40 and 178.

CHEN, Y.; YANG, T.; ZHANG, X.; MENG, G.; XIAO, X.; SUN, J. DetNAS: Backbone
Search for Object Detection. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2019. v. 32, p. 6642–6652. Available: <https://proceedings.neurips.cc/paper/
2019/file/228b25587479f2fc7570428e8bcbabdc-Paper.pdf>. Citation on page 42.

CHOLLET, F. Deep Learning with Python. 1. ed. Manning Publications, 2017.
ISBN 1617294438,9781617294433. Available: <https://www.manning.com/books/
deep-learning-with-python>. Citations on pages 39, 47, 53, 62, 63, and 68.

. Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. p. 1800–1807.
Available: <https://doi.org/10.1109/CVPR.2017.195>. Citations on pages 56, 75, and 79.

CHOLLET, F. et al. Keras. [S.l.]: GitHub, 2015. Available online: <https://github.com/fchollet/
keras>. Accessed: 2019-01-21. Citations on pages 17, 39, 52, 74, 83, and 128.

CIMPOI, M.; MAJI, S.; KOKKINOS, I.; VEDALDI, A. Deep Filter Banks for Texture Recogni-
tion, Description, and Segmentation. International Journal of Computer Vision, v. 118, n. 1,
p. 65–94, May 2016. ISSN 1573-1405. Available: <https://doi.org/10.1007/s11263-015-0872-3>.
Citations on pages 40, 42, 74, 84, 94, 96, 132, 133, and 143.

CLEVERT, D.; UNTERTHINER, T.; HOCHREITER, S. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). In: 4th International Conference on Learn-
ing Representations, ICLR 2016. [s.n.], 2016. Available: <http://arxiv.org/abs/1511.07289>.
Citation on page 67.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, p. 273–297,
Sep 1995. ISSN 1573-0565. Available: <https://doi.org/10.1007/BF00994018>. Citation on
page 112.

CRESWELL, A.; WHITE, T.; DUMOULIN, V.; ARULKUMARAN, K.; SENGUPTA, B.;
BHARATH, A. A. Generative Adversarial Networks: An Overview. IEEE Signal Processing
Magazine, IEEE, v. 35, n. 1, p. 53–65, 2018. ISSN 1558-0792. Available: <https://doi.org/10.
1109/MSP.2017.2765202>. Citation on page 47.

Cui, Y.; Song, Y.; Sun, C.; Howard, A.; Belongie, S. Large Scale Fine-Grained Categorization
and Domain-Specific Transfer Learning. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition. [s.n.], 2018. p. 4109–4118. ISSN 2575-7075. Available: <https:
//doi.org/10.1109/CVPR.2018.00432>. Citations on pages 43, 133, and 141.

DAI, j.; LI, Y.; HE, K.; SUN, J. R-FCN: Object Detection via Region-based Fully Convolutional
Networks. In: Proceedings of the 30th Conference on Neural Information Processing Sys-
tems. USA: Curran Associates, Inc., 2016. p. 379–387. Available: <http://papers.nips.cc/paper/
6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf>. Citations on
pages 88, 161, and 164.

https://doi.org/10.1109/CVPR.2019.00511
https://arxiv.org/abs/2002.05709
https://proceedings.neurips.cc/paper/2019/file/228b25587479f2fc7570428e8bcbabdc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/228b25587479f2fc7570428e8bcbabdc-Paper.pdf
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://doi.org/10.1109/CVPR.2017.195
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1007/s11263-015-0872-3
http://arxiv.org/abs/1511.07289
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/CVPR.2018.00432
https://doi.org/10.1109/CVPR.2018.00432
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf

Bibliography 185

D’AMATO, G.; CECCHI, L.; BONINI, S.; NUNES, C.; ANNESI-MAESANO, I.; BEHRENDT,
H.; LICCARDI, G.; POPOV, T.; CAUWENBERGE, P. V. Allergenic pollen and pollen allergy
in Europe. Allergy, John Wiley & Sons, Ltd, v. 62, n. 9, p. 976–990, Sep 2007. ISSN 0105-
4538. Available: <https://doi.org/10.1111/j.1398-9995.2007.01393.x>. Citations on pages 103
and 104.

D’AMATO, G.; HOLGATE, S. T.; PAWANKAR, R.; LEDFORD, D. K.; CECCHI, L.; AL-
AHMAD, M.; AL-ENEZI, F.; AL-MUHSEN, S.; ANSOTEGUI, I.; BAENA-CAGNANI, C. E.;
BAKER, D. J.; BAYRAM, H.; BERGMANN, K. C.; BOULET, L.-P.; BUTERS, J. T.; D’AMATO,
M.; DORSANO, S.; DOUWES, J.; FINLAY, S. E.; GARRASI, D.; GÓMEZ, M.; HAAHTELA,
T.; HALWANI, R.; HASSANI, Y.; MAHBOUB, B.; MARKS, G.; MICHELOZZI, P.; MON-
TAGNI, M.; NUNES, C.; OH, J. J.-W.; POPOV, T. A.; PORTNOY, J.; RIDOLO, E.; ROSÁRIO,
N.; ROTTEM, M.; SÁNCHEZ-BORGES, M.; SIBANDA, E.; SIENRA-MONGE, J. J.; VITALE,
C.; ANNESI-MAESANO, I. Meteorological conditions, climate change, new emerging fac-
tors, and asthma and related allergic disorders. A statement of the World Allergy Organization.
World Allergy Organization Journal, Elsevier, v. 8, Jan 2015. ISSN 1939-4551. Available:
<https://doi.org/10.1186/s40413-015-0073-0>. Citations on pages 103 and 147.

DANA, K. J.; GINNEKEN, B. van; NAYAR, S. K.; KOENDERINK, J. J. Reflectance and Texture
of Real-world Surfaces. ACM Transactions on Graphics, ACM, New York, NY, USA, v. 18,
n. 1, p. 1–34, jan 1999. ISSN 0730-0301. Available: <https://doi.org/10.1145/300776.300778>.
Citation on page 94.

DHILLON, A.; VERMA, G. K. Convolutional neural network: a review of models, method-
ologies and applications to object detection. Progress in Artificial Intelligence, v. 9, n. 2, p.
85–112, jun 2020. ISSN 2192-6360. Available: <https://doi.org/10.1007/s13748-019-00203-0>.
Citations on pages 40, 48, and 98.

DOSOVITSKIY, A.; BEYER, L.; KOLESNIKOV, A.; WEISSENBORN, D.; ZHAI, X.; UN-
TERTHINER, T.; DEHGHANI, M.; MINDERER, M.; HEIGOLD, G.; GELLY, S.; USZKOREIT,
J.; HOULSBY, N. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In: International Conference on Learning Representations. [s.n.], 2021. Available:
<https://openreview.net/forum?id=YicbFdNTTy>. Citations on pages 40 and 48.

DRBOHLAV, O.; LEONARDIS, A. Towards correct and informative evaluation methodology
for texture classification under varying viewpoint and illumination. Computer Vision and
Image Understanding, v. 114, n. 4, p. 439 – 449, 2010. ISSN 1077-3142. Available: <https:
//doi.org/10.1016/j.cviu.2009.08.006>. Citations on pages 94 and 95.

Du, X.; Zoph, B.; Hung, W.-C.; Lin, T.-Y. Simple Training Strategies and Model Scaling for
Object Detection. arXiv e-prints, p. 1–9, Jun. 2021. Available: <https://arxiv.org/abs/2107.
00057v1>. Citations on pages 88 and 89.

DUARTE, K. T.; CARVALHO, M. A. G. de; MARTINS, P. S. Segmenting high-quality digital
images of stomata using the wavelet spot detection and the watershed transform. In: VISIGRAPP
(4: VISAPP). [s.n.], 2017. p. 540–547. Available: <https://www.scitepress.org/Papers/2017/
61681/61681.pdf>. Citation on page 161.

DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. Journal of Machine Learning Research, v. 12, p. 2121–2159, Jul.
2011. ISSN 1532-4435. Available: <https://dl.acm.org/doi/10.5555/1953048.2021068>. Citation
on page 58.

https://doi.org/10.1111/j.1398-9995.2007.01393.x
https://doi.org/10.1186/s40413-015-0073-0
https://doi.org/10.1145/300776.300778
https://doi.org/10.1007/s13748-019-00203-0
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1016/j.cviu.2009.08.006
https://doi.org/10.1016/j.cviu.2009.08.006
https://arxiv.org/abs/2107.00057v1
https://arxiv.org/abs/2107.00057v1
https://www.scitepress.org/Papers/2017/61681/61681.pdf
https://www.scitepress.org/Papers/2017/61681/61681.pdf
https://dl.acm.org/doi/10.5555/1953048.2021068

186 Bibliography

EISELE, J. F.; FÄSSLER, F.; BÜRGEL, P. F.; CHABAN, C. A Rapid and Simple Method for
Microscopy-Based Stomata Analyses. PLOS ONE, Public Library of Science, v. 11, n. 10, p.
1–13, Oct 2016. Available: <https://doi.org/10.1371/journal.pone.0164576>. Citation on page
97.

EVERINGHAM, M.; GOOL, L. V.; WILLIAMS, C. K. I.; WINN, J.; ZISSERMAN, A.
The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vi-
sion, v. 88, n. 2, p. 303–338, Jun 2010. ISSN 1573-1405. Available: <https://doi.org/10.1007/
s11263-009-0275-4>. Citations on pages 42 and 73.

Fatourechi, M.; Ward, R. K.; Mason, S. G.; Huggins, J.; Schlögl, A.; Birch, G. E. Comparison of
Evaluation Metrics in Classification Applications with Imbalanced Datasets. In: 2008 Seventh
International Conference on Machine Learning and Applications. IEEE, 2008. p. 777–782.
ISBN 978-0-7695-3495-4. Available: <https://doi.org/10.1109/ICMLA.2008.34>. Citation on
page 91.

FETTER, K. C.; EBERHARDT, S.; BARCLAY, R. S.; WING, S.; KELLER, S. R. Stomata-
Counter: a neural network for automatic stomata identification and counting. New Phytologist,
v. 223, n. 3, p. 1671–1681, Aug 2019. ISSN 0028-646X. Available: <https://doi.org/10.1111/
nph.15892>. Citations on pages 42, 99, 100, 101, and 162.

FILHO, A.; DE, H. A. Redes complexas em sistemas celulares e moleculares de plantas. Phd
Thesis (text) — Universidade de São Paulo, May 2018. Available: <https://doi.org/10.11606/T.
76.2018.tde-17092018-102042>. Citations on pages 99 and 100.

FILHO, H. A. d. A.; MACHICAO, J.; BRUNO, O. M. Geometric plasticity at leaves from
Ctenanthe oppenheimiana probed by measure of distances between stomata. Journal of Physics:
Conference Series, IOP Publishing, v. 936, p. 012094, Dec 2017. ISSN 1742-6588. Available:
<https://doi.org/10.1088/1742-6596/936/1/012094>. Citation on page 100.

FLORINDO, J. B.; BRUNO, O. M. Fractal descriptors based on Fourier spectrum applied to
texture analysis. Physica A: Statistical Mechanics and its Applications, Elsevier, v. 391, n. 20,
p. 4909–4922, 2012. ISSN 0378-4371. Available: <https://doi.org/10.1016/j.physa.2012.03.039>.
Citations on pages 112 and 207.

FRÖHLICH-NOWOISKY, J.; KAMPF, C. J.; WEBER, B.; HUFFMAN, J. A.; PÖHLKER, C.;
ANDREAE, M. O.; LANG-YONA, N.; BURROWS, S. M.; GUNTHE, S. S.; ELBERT, W.; SU,
H.; HOOR, P.; THINES, E.; HOFFMANN, T.; DESPRÉS, V. R.; PÖSCHL, U. Bioaerosols in
the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, v. 182,
p. 346–376, Dec 2016. ISSN 0169-8095. Available: <https://doi.org/10.1016/j.atmosres.2016.07.
018>. Citation on page 102.

FUENTES, A.; YOON, S.; KIM, S. C.; PARK, D. S. A Robust Deep-Learning-Based Detector
for Real-Time Tomato Plant Diseases and Pests Recognition. Sensors, v. 17, n. 9, 2017. ISSN
1424-8220. Available: <https://doi.org/10.3390/s17092022>. Citation on page 42.

FUENTES, A. F.; YOON, S.; LEE, J.; PARK, D. S. High-Performance Deep Neural Network-
Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank. Fron-
tiers in Plant Science, v. 9, p. 1–15, 2018. ISSN 1664-462X. Available: <https://doi.org/10.
3389/fpls.2018.01162>. Citation on page 42.

https://doi.org/10.1371/journal.pone.0164576
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/ICMLA.2008.34
https://doi.org/10.1111/nph.15892
https://doi.org/10.1111/nph.15892
https://doi.org/10.11606/T.76.2018.tde-17092018-102042
https://doi.org/10.11606/T.76.2018.tde-17092018-102042
https://doi.org/10.1088/1742-6596/936/1/012094
https://doi.org/10.1016/j.physa.2012.03.039
https://doi.org/10.1016/j.atmosres.2016.07.018
https://doi.org/10.1016/j.atmosres.2016.07.018
https://doi.org/10.3390/s17092022
https://doi.org/10.3389/fpls.2018.01162
https://doi.org/10.3389/fpls.2018.01162

Bibliography 187

FUKUSHIMA, K.; MIYAKE, S. Neocognitron: A Self-Organizing Neural Network Model
for a Mechanism of Visual Pattern Recognition. In: Competition and Cooperation in Neural
Nets. [s.n.], 1982. p. 267–285. ISBN 978-3-642-46466-9. Available: <https://doi.org/10.1007/
978-3-642-46466-9_18>. Citation on page 49.

GAO, Z.; XIE, J.; WANG, Q.; LI, P. Global Second-Order Pooling Convolutional Networks. In:
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2019. (2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)), p.
3019–3028. ISSN 2575-7075. Available: <https://doi.org/10.1109/CVPR.2019.00314>. Citation
on page 65.

GEURTS, P.; ERNST, D.; WEHENKEL, L. Extremely randomized trees. Machine Learn-
ing, v. 63, n. 1, p. 3–42, Apr 2006. ISSN 1573-0565. Available: <https://doi.org/10.1007/
s10994-006-6226-1>. Citation on page 212.

Ghiasi, G.; Lin, T.; Le, Q. V. NAS-FPN: Learning Scalable Feature Pyramid Architecture
for Object Detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). [s.n.], 2019. p. 7029–7038. ISSN 2575-7075. Available: <https://doi.org/
10.1109/CVPR.2019.00720>. Citation on page 87.

Girshick, R. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision
(ICCV). IEEE, 2015. p. 1440–1448. ISSN 2380-7504. Available: <https://doi.org/10.1109/ICCV.
2015.169>. Citations on pages 42, 61, and 87.

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2014. p. 580–587. ISBN 978-1-4799-5118-5. Available: <https:
//doi.org/10.1109/CVPR.2014.81>. Citations on pages 42 and 87.

GLOROT, X.; BORDES, A.; BENGIO, Y. Deep Sparse Rectifier Neural Networks. In: Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics.
PMLR, 2011. v. 15, p. 315–323. Available: <https://proceedings.mlr.press/v15/glorot11a.html>.
Citations on pages 56 and 67.

GONZALEZ, R. C.; WOODS, R. E.; EDDINS, S. L. Digital Image Processing Using MAT-
LAB. 2nd edition. ed. [S.l.]: Gatesmark Publishing, 2009. ISBN 0982085400. Citations on
pages 112 and 208.

GONçALVES, W. N. Caminhadas Determinísticas em Redes Complexas Aplicadas em
Visão Computacional. Phd Thesis (PhD Thesis) — Universidade de São Paulo, Brazil, 2010.
Available: <https://doi.org/10.11606/D.55.2010.tde-08042010-112016>. Citation on page 114.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. MIT Press, 2016. ISBN
0262035618, 9780262035613. Available: <http://www.deeplearningbook.org>. Citations on
pages 39, 47, 49, 58, 59, 62, 66, and 68.

Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. SpotTune: Transfer Learning
Through Adaptive Fine-Tuning. In: The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). [s.n.], 2019. p. 4800–4809. ISSN 2575-7075. Available: <https:
//doi.org/10.1109/CVPR.2019.00494>. Citations on pages 41, 73, 74, 83, 86, and 144.

https://doi.org/10.1007/978-3-642-46466-9_18
https://doi.org/10.1007/978-3-642-46466-9_18
https://doi.org/10.1109/CVPR.2019.00314
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/CVPR.2019.00720
https://doi.org/10.1109/CVPR.2019.00720
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.11606/D.55.2010.tde-08042010-112016
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2019.00494
https://doi.org/10.1109/CVPR.2019.00494

188 Bibliography

Ha, Q.; Liu, B.; Liu, F. Identifying Melanoma Images using EfficientNet Ensemble: Winning
Solution to the SIIM-ISIC Melanoma Classification Challenge. arXiv e-prints, p. 1–6, Oct.
2020. Available: <https://arxiv.org/abs/2010.05351>. Citations on pages 62, 72, and 81.

HAN, J.; MA, K.-K. Rotation-invariant and scale-invariant Gabor features for texture image
retrieval. Image and Vision Computing, Elsevier, v. 25, n. 9, p. 1474 – 1481, 2007. ISSN
0262-8856. Available: <https://doi.org/10.1016/j.imavis.2006.12.015>. Citation on page 206.

HANIN, B.; ROLNICK, D. How to Start Training: The Effect of Initialization and
Architecture. In: Advances in Neural Information Processing Systems. Curran Asso-
ciates, Inc., 2018. v. 31, p. 1–11. Available: <https://proceedings.neurips.cc/paper/2018/file/
d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf>. Citations on pages 55 and 56.

HARALICK, R. M.; SHANMUGAM, K.; DINSTEIN, I. Textural features for image classifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics, IEEE, SMC-3, n. 6, p. 610–621,
Nov 1973. ISSN 0018-9472. Available: <https://doi.org/10.1109/TSMC.1973.4309314>. Cita-
tions on pages 112 and 205.

He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In: 2017 IEEE International
Conference on Computer Vision (ICCV). IEEE, 2017. p. 2980–2988. ISBN 978-1-5386-1032-
9. Available: <https://doi.org/10.1109/ICCV.2017.322>. Citations on pages 107 and 164.

He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. In: 2015 IEEE International Conference on Com-
puter Vision (ICCV). IEEE, 2015. p. 1026–1034. ISBN 978-1-4673-8391-2. Available:
<https://doi.org/10.1109/ICCV.2015.123>. Citations on pages 56, 66, 67, and 80.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Spatial Pyramid Pooling in Deep Convolutional Networks
for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. 37, n. 9, p. 1904–1916, Sept 2015. ISSN 0162-8828. Available: <https://doi.org/10.1109/
TPAMI.2015.2389824>. Citation on page 65.

. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). [s.n.], 2016. p. 770–778. Available: <https:
//doi.org/10.1109/CVPR.2016.90>. Citations on pages 49, 54, 56, 75, 79, 112, and 162.

HE, T.; ZHANG, Z.; ZHANG, H.; ZHANG, Z.; XIE, J.; LI, M. Bag of Tricks for Image Classifi-
cation with Convolutional Neural Networks. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2019. p. 558–567. ISSN 2575-7075. Available:
<https://doi.org/10.1109/CVPR.2019.00065>. Citation on page 56.

HIGAKI, T.; KUTSUNA, N.; HASEZAWA, S. Carta-based semi-automatic detection of stomatal
regions on an arabidopsis cotyledon surface. Plant Morphology, The Japanese Society of Plant
Morphology, v. 26, n. 1, p. 9–12, 2014. Available: <https://doi.org/10.5685/plmorphol.26.9>.
Citation on page 161.

HINTON, G. E.; OSINDERO, S.; TEH, Y.-W. A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation, MIT Press, Cambridge, MA, USA, v. 18, n. 7, p. 1527–1554, Jul. 2006.
ISSN 0899-7667. Available: <https://doi.org/10.1162/neco.2006.18.7.1527>. Citation on page
49.

https://arxiv.org/abs/2010.05351
https://doi.org/10.1016/j.imavis.2006.12.015
https://proceedings.neurips.cc/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2019.00065
https://doi.org/10.5685/plmorphol.26.9
https://doi.org/10.1162/neco.2006.18.7.1527

Bibliography 189

HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term Memory. Neural computation, MIT
Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735–1780, Nov. 1997. ISSN 0899-7667. Available:
<https://doi.org/10.1162/neco.1997.9.8.1735>. Citation on page 49.

HOLT, K. A.; BENNETT, K. D. Principles and methods for automated palynology. New Phytol-
ogist, John Wiley & Sons, Ltd, v. 203, n. 3, p. 735–742, Aug 2014. ISSN 0028-646X. Available:
<https://doi.org/10.1111/nph.12848>. Citation on page 103.

HOSSAIN, S.; SERIKAWA, S. Texture databases - A comprehensive survey. Pattern Recogni-
tion Letters, v. 34, n. 15, p. 2007–2022, 2013. ISSN 0167-8655. Available: <https://doi.org/10.
1016/j.patrec.2013.02.009>. Citation on page 93.

HOSSIN, M.; SULAIMAN, M. A Review on Evaluation Metrics for Data Classification Evalua-
tions. International Journal of Data Mining & Knowledge Management Process, v. 5, n. 2,
p. 01–11, Mar. 2015. ISSN 2231007X, 22309608. Available: <https://doi.org/10.5121/ijdkp.
2015.5201>. Citations on pages 91 and 105.

HOU, R.; CHEN, C.; SHAH, M. Tube Convolutional Neural Network (T-CNN) for Action
Detection in Videos. In: 2017 IEEE International Conference on Computer Vision (ICCV).
IEEE, 2017. p. 5823–5832. ISSN 2380-7504. Available: <https://doi.org/10.1109/ICCV.2017.
620>. Citation on page 51.

Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, p. 1–13, 2019. Available:
<https://doi.org/10.1109/TPAMI.2019.2913372>. Citations on pages 40, 54, 56, 66, 75, 81, 146,
and 163.

HUANG, G.; LIU, Z.; MAATEN, L. v. d.; WEINBERGER, K. Q. Densely Connected Convolu-
tional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). [s.n.], 2017. p. 2261–2269. ISSN 1063-6919. Available: <https://doi.org/10.1109/
CVPR.2017.243>. Citations on pages 40, 54, 56, 75, 80, 112, and 163.

HUBEL, D. H.; WIESEL, T. N. Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology, John Wiley & Sons, Ltd, v. 148, n. 3, p. 574–591, Oct 1959. ISSN
0022-3751. Available: <https://doi.org/10.1113/jphysiol.1959.sp006308>. Citation on page 48.

HUMEAU-HEURTIER, A. Texture Feature Extraction Methods: A Survey. IEEE Access, IEEE,
v. 7, p. 8975–9000, 2019. ISSN 2169-3536. Available: <https://doi.org/10.1109/ACCESS.2018.
2890743>. Citation on page 93.

Hurt, J. A.; Scott, G. J.; Anderson, D. T.; Davis, C. H. Benchmark Meta-Dataset of High-
Resolution Remote Sensing Imagery for Training Robust Deep Learning Models in Machine-
Assisted Visual Analytics. In: 2018 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR). IEEE, 2018. p. 1–9. ISBN 978-1-5386-9306-3. Available: <https://doi.org/10.1109/
AIPR.2018.8707433>. Citation on page 91.

IOFFE, S.; SZEGEDY, C. Batch Normalization: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on
Machine Learning. PMLR, 2015. v. 37, p. 448–456. Available: <http://proceedings.mlr.press/
v37/ioffe15.html>. Citations on pages 41, 68, 78, and 80.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1111/nph.12848
https://doi.org/10.1016/j.patrec.2013.02.009
https://doi.org/10.1016/j.patrec.2013.02.009
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1109/ICCV.2017.620
https://doi.org/10.1109/ICCV.2017.620
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1109/ACCESS.2018.2890743
https://doi.org/10.1109/ACCESS.2018.2890743
https://doi.org/10.1109/AIPR.2018.8707433
https://doi.org/10.1109/AIPR.2018.8707433
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

190 Bibliography

JAYAKODY, H.; LIU, S.; WHITTY, M.; PETRIE, P. Microscope image based fully automated
stomata detection and pore measurement method for grapevines. Plant methods, BioMed
Central, v. 13, p. 94–94, Nov 2017. ISSN 1746-4811. Available: <https://doi.org/10.1186/
s13007-017-0244-9>. Citation on page 161.

JOUPPI, N. P.; YOUNG, C.; PATIL, N.; PATTERSON, D.; AGRAWAL, G.; BAJWA, R.;
BATES, S.; BHATIA, S.; BODEN, N.; BORCHERS, A.; BOYLE, R.; CANTIN, P.-l.; CHAO, C.;
CLARK, C.; CORIELL, J.; DALEY, M.; DAU, M.; DEAN, J.; GELB, B.; GHAEMMAGHAMI,
T. V.; GOTTIPATI, R.; GULLAND, W.; HAGMANN, R.; HO, C. R.; HOGBERG, D.; HU, J.;
HUNDT, R.; HURT, D.; IBARZ, J.; JAFFEY, A.; JAWORSKI, A.; KAPLAN, A.; KHAITAN,
H.; KILLEBREW, D.; KOCH, A.; KUMAR, N.; LACY, S.; LAUDON, J.; LAW, J.; LE, D.;
LEARY, C.; LIU, Z.; LUCKE, K.; LUNDIN, A.; MACKEAN, G.; MAGGIORE, A.; MAHONY,
M.; MILLER, K.; NAGARAJAN, R.; NARAYANASWAMI, R.; NI, R.; NIX, K.; NORRIE,
T.; OMERNICK, M.; PENUKONDA, N.; PHELPS, A.; ROSS, J.; ROSS, M.; SALEK, A.;
SAMADIANI, E.; SEVERN, C.; SIZIKOV, G.; SNELHAM, M.; SOUTER, J.; STEINBERG,
D.; SWING, A.; TAN, M.; THORSON, G.; TIAN, B.; TOMA, H.; TUTTLE, E.; VASUDEVAN,
V.; WALTER, R.; WANG, W.; WILCOX, E.; YOON, D. H. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture. Association for Computing Machinery, 2017. p. 1–12. ISBN 978-
1-4503-4892-8. Available: <https://doi.org/10.1145/3079856.3080246>. Citations on pages 40
and 50.

KANDASWAMY, U.; SCHUCKERS, S. A.; ADJEROH, D. Comparison of texture analy-
sis schemes under nonideal conditions. IEEE Transactions on Image Processing, v. 20,
n. 8, p. 2260–2275, Aug 2011. ISSN 1057-7149. Available: <https://doi.org/10.1109/TIP.2010.
2101612>. Citation on page 205.

KHAN, A.; SOHAIL, A.; ZAHOORA, U.; QURESHI, A. S. A survey of the recent architectures
of deep convolutional neural networks. Artificial Intelligence Review, v. 53, n. 8, p. 5455–
5516, Dec 2020. ISSN 1573-7462. Available: <https://doi.org/10.1007/s10462-020-09825-6>.
Citations on pages 40, 65, 69, and 74.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. In: 3rd International
Conference on Learning Representations, ICLR. [s.n.], 2015. Available: <http://arxiv.org/
abs/1412.6980>. Citations on pages 58 and 169.

Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung, J.; Gelly, S.; Houlsby, N. Big Transfer
(BiT): General Visual Representation Learning. arXiv e-prints, p. arXiv:1912.11370, Dec. 2019.
Available: <https://arxiv.org/abs/1912.11370>. Citation on page 39.

Kornblith, S.; Shlens, J.; Le, Q. V. Do Better ImageNet Models Transfer Better? In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [s.n.], 2019.
p. 2656–2666. ISSN 2575-7075. Available: <https://doi.org/10.1109/CVPR.2019.00277>. Cita-
tions on pages 41 and 74.

Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3D Object Representations for Fine-Grained Catego-
rization. In: 2013 IEEE International Conference on Computer Vision Workshops. IEEE,
2013. p. 554–561. ISBN 978-1-4799-3022-7. Available: <https://doi.org/10.1109/ICCVW.2013.
77>. Citation on page 73.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. In: Proceedings of the 25th International Conference on

https://doi.org/10.1186/s13007-017-0244-9
https://doi.org/10.1186/s13007-017-0244-9
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/TIP.2010.2101612
https://doi.org/10.1109/TIP.2010.2101612
https://doi.org/10.1007/s10462-020-09825-6
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1912.11370
https://doi.org/10.1109/CVPR.2019.00277
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/ICCVW.2013.77

Bibliography 191

Neural Information Processing Systems. USA: Curran Associates Inc., 2012. p. 1097–1105.
Available: <http://dl.acm.org/citation.cfm?id=2999134.2999257>. Citations on pages 40, 49,
75, 76, and 162.

KWITT, P. M. R. Salzburg texture image database (STex). 2010. Available online: <http:
//wavelab.at/sources/STex/>. Accessed: 2021-11-01. Citation on page 94.

LAWSON, T.; BLATT, M. R. Stomatal Size, Speed, and Responsiveness Impact on Photosyn-
thesis and Water Use Efficiency. Plant Physiology, v. 164, n. 4, p. 1556–1570, Apr 2014. ISSN
0032-0889. Available: <https://doi.org/10.1104/pp.114.237107>. Citation on page 97.

LAZEBNIK, S.; SCHMID, C.; PONCE, J. A sparse texture representation using local affine
regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 27, n. 8,
p. 1265–1278, Aug 2005. ISSN 0162-8828. Available: <https://doi.org/10.1109/TPAMI.2005.
151>. Citation on page 94.

Le, Q. V. Building high-level features using large scale unsupervised learning. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. [s.n.], 2013. p. 8595–
8598. ISBN 978-1-4799-0356-6. Available: <https://doi.org/10.1109/ICASSP.2013.6639343>.
Citation on page 47.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, p. 436–444, May 2015.
Available: <https://doi.org/10.1038/nature14539>. Citations on pages 39, 47, and 52.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD,
W.; JACKEL, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation, v. 1, n. 4, p. 541–551, Dec 1989. ISSN 0899-7667. Available: <https://doi.org/10.
1162/neco.1989.1.4.541>. Citations on pages 49 and 51.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 2278–2324, Nov 1998. ISSN
0018-9219. Available: <https://doi.org/10.1109/5.726791>. Citations on pages 49, 52, 65,
and 75.

LEE, C.-Y.; GALLAGHER, P. W.; TU, Z. Generalizing Pooling Functions in Convolutional
Neural Networks: Mixed, Gated, and Tree. In: Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics. PMLR, 2016. v. 51, p. 464–472. Available:
<http://proceedings.mlr.press/v51/lee16a.html>. Citation on page 65.

LEUNG, T.; MALIK, J. Representing and recognizing the visual appearance of materials using
three-dimensional textons. International Journal of Computer Vision, v. 43, n. 1, p. 29–44,
Jun 2001. ISSN 1573-1405. Available: <https://doi.org/10.1023/A:1011126920638>. Citation
on page 208.

LI, H.; CHAUDHARI, P.; YANG, H.; LAM, M.; RAVICHANDRAN, A.; BHOTIKA, R.;
SOATTO, S. Rethinking the Hyperparameters for Fine-tuning. In: International Conference
on Learning Representations. [s.n.], 2020. p. 1–20. Available: <https://openreview.net/forum?
id=B1g8VkHFPH>. Citations on pages 41, 85, and 145.

LI, Y.; CHEN, Y.; WANG, N.; ZHANG, Z. Scale-Aware Trident Networks for Object Detection.
In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. p.
6053–6062. ISSN 2380-7504. Available: <https://doi.org/10.1109/ICCV.2019.00615>. Citations
on pages 64 and 74.

http://dl.acm.org/citation.cfm?id=2999134.2999257
http://wavelab.at/sources/STex/
http://wavelab.at/sources/STex/
https://doi.org/10.1104/pp.114.237107
https://doi.org/10.1109/TPAMI.2005.151
https://doi.org/10.1109/TPAMI.2005.151
https://doi.org/10.1109/ICASSP.2013.6639343
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
http://proceedings.mlr.press/v51/lee16a.html
https://doi.org/10.1023/A:1011126920638
https://openreview.net/forum?id=B1g8VkHFPH
https://openreview.net/forum?id=B1g8VkHFPH
https://doi.org/10.1109/ICCV.2019.00615

192 Bibliography

LI, Z.; HOIEM, D. Learning without Forgetting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, v. 40, n. 12, p. 2935–2947, Dec. 2018. ISSN 1939-3539. Available:
<https://doi.org/10.1109/TPAMI.2017.2773081>. Citation on page 41.

LIN, H.; JEGELKA, S. ResNet with One-Neuron Hidden Layers is a Universal Approximator.
In: Proceedings of the 32nd International Conference on Neural Information Processing
Systems. Curran Associates Inc., 2018. p. 6172–6181. Available: <https://dl.acm.org/doi/10.
5555/3327345.3327515>. Citation on page 67.

LIN, M.; CHEN, Q.; YAN, S. Network In Network. CoRR, abs/1312.4400, 2013. Available:
<http://arxiv.org/abs/1312.4400>. Citations on pages 65 and 77.

Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for
Object Detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2017. p. 936–944. ISBN 978-1-5386-0457-1. Available: <https://doi.org/10.
1109/CVPR.2017.106>. Citations on pages 88, 151, and 164.

LIN, T.; GOYAL, P.; GIRSHICK, R.; HE, K.; DOLLáR, P. Focal Loss for Dense Object Detection.
In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. p. 2999–
3007. ISSN 2380-7504. Available: <https://doi.org/10.1109/iccv.2017.324>. Citations on pages
42, 60, 61, 88, 161, 166, and 169.

Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan,
D.; Zitnick, C. L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv e-prints, p.
arXiv:1405.0312, May 2014. Available: <https://arxiv.org/abs/1405.0312>. Citations on pages
42, 50, 73, 91, 97, and 106.

LIN, T.-Y.; ROYCHOWDHURY, A.; MAJI, S. Bilinear Convolutional Neural Networks for
Fine-Grained Visual Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. 40, n. 6, p. 1309–1322, Jun. 2018. ISSN 1939-3539. Available: <https://doi.org/
10.1109/TPAMI.2017.2723400>. Citation on page 42.

LIU, H.; SIMONYAN, K.; YANG, Y. DARTS: Differentiable Architecture Search. In: In-
ternational Conference on Learning Representations. [s.n.], 2019. p. 1–13. Available:
<https://openreview.net/forum?id=S1eYHoC5FX>. Citations on pages 56 and 81.

LIU, L.; CHEN, J.; FIEGUTH, P.; ZHAO, G.; CHELLAPPA, R.; PIETIKÄINEN, M. From
BoW to CNN: Two Decades of Texture Representation for Texture Classification. International
Journal of Computer Vision, v. 127, n. 1, p. 74–109, Jan 2019. ISSN 1573-1405. Available:
<https://doi.org/10.1007/s11263-018-1125-z>. Citations on pages 40, 93, 94, 96, 111, 124, 143,
and 146.

LIU, L.; FIEGUTH, P.; WANG, X.; PIETIKÄINEN, M.; HU, D. Evaluation of LBP and
Deep Texture Descriptors with a New Robustness Benchmark. In: Computer Vision – ECCV
2016: 14th European Conference, Amsterdam, The Netherlands. Cham: [s.n.], 2016. p.
69–86. ISBN 978-3-319-46487-9. Available: <https://doi.org/10.1007/978-3-319-46487-9_5>.
Citations on pages 27, 96, and 145.

LIU, L.; OUYANG, W.; WANG, X.; FIEGUTH, P.; CHEN, J.; LIU, X.; PIETIKÄINEN, M.
Deep Learning for Generic Object Detection: A Survey. International Journal of Computer
Vision, v. 128, n. 2, p. 261–318, Feb 2020. ISSN 1573-1405. Available: <https://doi.org/10.1007/
s11263-019-01247-4>. Citations on pages 42, 86, 87, 91, and 98.

https://doi.org/10.1109/TPAMI.2017.2773081
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/iccv.2017.324
https://arxiv.org/abs/1405.0312
https://doi.org/10.1109/TPAMI.2017.2723400
https://doi.org/10.1109/TPAMI.2017.2723400
https://openreview.net/forum?id=S1eYHoC5FX
https://doi.org/10.1007/s11263-018-1125-z
https://doi.org/10.1007/978-3-319-46487-9_5
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1007/s11263-019-01247-4

Bibliography 193

Liu, P.; Han, S.; Meng, Z.; Tong, Y. Facial Expression Recognition via a Boosted Deep Belief
Network. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. [s.n.],
2014. p. 1805–1812. ISBN 978-1-4799-5118-5. Available: <https://doi.org/10.1109/CVPR.2014.
233>. Citation on page 47.

LIU, W.; ANGUELOV, D.; ERHAN, D.; SZEGEDY, C.; REED, S.; FU, C.-Y.; BERG, A. C. SSD:
Single Shot MultiBox Detector. In: Computer Vision – ECCV 2016. Springer International
Publishing, 2016. p. 21–37. ISBN 978-3-319-46448-0. Available: <https://doi.org/10.1007/
978-3-319-46448-0_2>. Citations on pages 42, 88, 151, and 162.

LOMAX, R. G.; HAHS-VAUGHN, D. L. Statistical Concepts: A Second Course. 4th ed. ed.
Routledge, 2012. ISBN 9781136490064. Available: <https://books.google.com.br/books?id=
coz_Fss1tY8C>. Citations on pages 123 and 211.

LU, H.; CAO, Z.; XIAO, Y.; FANG, Z.; ZHU, Y. Toward Good Practices for Fine-Grained Maize
Cultivar Identification With Filter-Specific Convolutional Activations. IEEE Transactions on
Automation Science and Engineering, v. 15, n. 2, p. 430–442, April 2018. ISSN 1545-5955.
Available: <https://doi.org/10.1109/TASE.2016.2616485>. Citation on page 73.

LUOR, D.-C. A comparative assessment of data standardization on support vector machine for
classification problems. Intelligent Data Analysis, IOS Press, v. 19, p. 529–546, 2015. ISSN
1571-4128. Available: <https://doi.org/10.3233/IDA-150730>. Citation on page 68.

M. Condori, R. H.; BRUNO, O. M. Analysis of activation maps through global pooling mea-
surements for texture classification. Information Sciences, v. 555, p. 260–279, 2021. ISSN
0020-0255. Available: <https://doi.org/10.1016/j.ins.2020.09.058>. Citations on pages 128,
129, 133, 134, 136, 138, 139, 140, 142, 143, and 145.

MAAS, A. L.; HANNUN, A. Y.; NG, A. Y. Rectifier nonlinearities improve neural network
acoustic models. In: in ICML Workshop on Deep Learning for Audio, Speech and Lan-
guage Processing. [s.n.], 2013. Available: <https://ai.stanford.edu/~amaas/papers/relu_hybrid_
icml2013_final.pdf>. Citation on page 67.

MAGRI, D.; Di Rita, F.; ARANBARRI, J.; FLETCHER, W.; GONZáLEZ-SAMPéRIZ, P.
Quaternary disappearance of tree taxa from Southern Europe: Timing and trends. Quaternary
Science Reviews, Elsevier, v. 163, p. 23–55, 2017. ISSN 0277-3791. Available: <https://doi.org/
10.1016/j.quascirev.2017.02.014>. Citation on page 103.

MANJUNATH, B. S.; MA, W. Y. Texture features for browsing and retrieval of image data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 18, n. 8, p. 837–842,
Aug 1996. ISSN 0162-8828. Available: <https://doi.org/10.1109/34.531803>. Citations on
pages 112, 205, and 206.

MCART, S. H.; FERSCH, A. A.; MILANO, N. J.; TRUITT, L. L.; BÖRÖCZKY, K. High
pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass
blooming crop. Scientific Reports, v. 7, n. 1, p. 46554, Apr 2017. ISSN 2045-2322. Available:
<https://doi.org/10.1038/srep46554>. Citation on page 103.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, v. 5, n. 4, p. 115–133, Dec 1943. ISSN 1522-9602.
Available: <https://doi.org/10.1007/BF02478259>. Citation on page 48.

https://doi.org/10.1109/CVPR.2014.233
https://doi.org/10.1109/CVPR.2014.233
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://books.google.com.br/books?id=coz_Fss1tY8C
https://books.google.com.br/books?id=coz_Fss1tY8C
https://doi.org/10.1109/TASE.2016.2616485
https://doi.org/10.3233/IDA-150730
https://doi.org/10.1016/j.ins.2020.09.058
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/10.1016/j.quascirev.2017.02.014
https://doi.org/10.1016/j.quascirev.2017.02.014
https://doi.org/10.1109/34.531803
https://doi.org/10.1038/srep46554
https://doi.org/10.1007/BF02478259

194 Bibliography

MEYER, P.; NOBLET, V.; MAZZARA, C.; LALLEMENT, A. Survey on deep learning for ra-
diotherapy. Computers in Biology and Medicine, v. 98, p. 126–146, Jul. 2018. ISSN 00104825.
Available: <https://doi.org/10.1016/j.compbiomed.2018.05.018>. Citation on page 40.

MIKOłAJCZYK, A.; GROCHOWSKI, M. Data augmentation for improving deep learning
in image classification problem. In: 2018 International Interdisciplinary PhD Workshop
(IIPhDW). IEEE, 2018. p. 117–122. ISBN 978-1-5386-6143-7. Available: <https://doi.org/10.
1109/IIPHDW.2018.8388338>. Citation on page 62.

MINSKY, M.; PAPERT, S. Perceptrons: An introduction to computational geometry. MIT
press, 1969. ISBN 978-0-262-13043-1. Available: <https://mitpress.mit.edu/books/perceptrons>.
Citation on page 48.

MISRA, D. Mish: A Self Regularized Non-Monotonic Activation Function. In: 31st
British Machine Vision Conference 2020. BMVA Press, 2020. Available: <https://www.
bmvc2020-conference.com/assets/papers/0928.pdf>. Citation on page 67.

MOCCIA, S.; De Momi, E.; El Hadji, S.; MATTOS, L. S. Blood vessel segmentation algorithms
— review of methods, datasets and evaluation metrics. Computer Methods and Programs in
Biomedicine, v. 158, p. 71–91, 2018. ISSN 0169-2607. Available: <https://doi.org/10.1016/j.
cmpb.2018.02.001>. Citation on page 91.

MOCHIDA, K.; KODA, S.; INOUE, K.; HIRAYAMA, T.; TANAKA, S.; NISHII, R.; MELGANI,
F. Computer vision-based phenotyping for improvement of plant productivity: a machine learning
perspective. GigaScience, v. 8, n. 1, 12 2019. ISSN 2047-217X. Available: <https://doi.org/10.
1093/gigascience/giy153>. Citation on page 40.

MORALES-NAVARRO, S.; PéREZ-DíAZ, R.; ORTEGA, A.; MARCOS, A. de; MENA, M.;
FENOLL, C.; GONZáLEZ-VILLANUEVA, E.; RUIZ-LARA, S. Overexpression of a SDD1-
Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance
in Arabidopsis and Cultivated Tomato. Frontiers in Plant Science, v. 9, p. 940, 2018. ISSN
1664-462X. Available: <https://doi.org/10.3389/fpls.2018.00940>. Citations on pages 97
and 147.

Mormont, R.; Geurts, P.; Marée, R. Comparison of Deep Transfer Learning Strategies for Digital
Pathology. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). [s.n.], 2018. p. 2343–234309. ISSN 2160-7516. Available: <https:
//doi.org/10.1109/CVPRW.2018.00303>. Citations on pages 42, 74, and 84.

NAKKIRAN, P.; KAPLUN, G.; BANSAL, Y.; YANG, T.; BARAK, B.; SUTSKEVER, I. Deep
Double Descent: Where Bigger Models and More Data Hurt. In: International Conference on
Learning Representations. [s.n.], 2020. p. 1–24. Available: <https://openreview.net/forum?id=
B1g5sA4twr>. Citation on page 62.

Nilsback, M.; Zisserman, A. Automated Flower Classification over a Large Number of Classes.
In: 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing. IEEE,
2008. p. 722–729. ISBN 978-0-7695-3476-3. Available: <https://doi.org/10.1109/ICVGIP.2008.
47>. Citations on pages 15, 16, 54, 66, and 73.

OJALA, T.; MAENPAA, T.; PIETIKAINEN, M.; VIERTOLA, J.; KYLLONEN, J.; HUOVINEN,
S. Outex - new framework for empirical evaluation of texture analysis algorithms. In: Object
recognition supported by user interaction for service robots. [s.n.], 2002. v. 1, p. 701–706.

https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
https://mitpress.mit.edu/books/perceptrons
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://doi.org/10.1016/j.cmpb.2018.02.001
https://doi.org/10.1016/j.cmpb.2018.02.001
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.3389/fpls.2018.00940
https://doi.org/10.1109/CVPRW.2018.00303
https://doi.org/10.1109/CVPRW.2018.00303
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=B1g5sA4twr
https://doi.org/10.1109/ICVGIP.2008.47
https://doi.org/10.1109/ICVGIP.2008.47

Bibliography 195

ISSN 1051-4651. Available: <https://doi.org/10.1109/ICPR.2002.1044854>. Citation on page
94.

OJALA, T.; PIETIKAINEN, M.; MAENPAA, T. Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, IEEE, v. 24, n. 7, p. 971–987, 2002. ISSN 0162-8828. Available: <https:
//doi.org/10.1109/TPAMI.2002.1017623>. Citations on pages 94, 112, and 206.

OLAH, C.; CAMMARATA, N.; SCHUBERT, L.; GOH, G.; PETROV, M.; CARTER, S. Zoom
In: An Introduction to Circuits. Distill, 2020. Available: <https://doi.org/10.23915/distill.00024.
001>. Citation on page 39.

OLAH, C.; MORDVINTSEV, A.; SCHUBERT, L. Feature Visualization. Distill, 2017. Available:
<https://doi.org/10.23915/distill.00007>. Citation on page 135.

O’MAHONY, N.; CAMPBELL, S.; CARVALHO, A.; HARAPANAHALLI, S.; HERNANDEZ,
G. V.; KRPALKOVA, L.; RIORDAN, D.; WALSH, J. Deep Learning vs. Traditional Computer
Vision. In: Advances in Computer Vision. Springer International Publishing, 2020. p. 128–
144. ISBN 978-3-030-17795-9. Available: <https://doi.org/10.1007/978-3-030-17795-9_10>.
Citation on page 47.

OQUAB, M.; BOTTOU, L.; LAPTEV, I.; SIVIC, J. Learning and Transferring Mid-level Image
Representations Using Convolutional Neural Networks. In: 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition. [s.n.], 2014. p. 1717–1724. ISSN 1063-6919. Available:
<https://doi.org/10.1109/CVPR.2014.222>. Citations on pages 40, 72, and 73.

PABLOS, I.; WILDNER, S.; ASAM, C.; WALLNER, M.; GADERMAIER, G. Pollen Allergens
for Molecular Diagnosis. Current Allergy and Asthma Reports, v. 16, n. 4, p. 31, Mar 2016.
ISSN 1534-6315. Available: <https://doi.org/10.1007/s11882-016-0603-z>. Citations on pages
103, 104, and 147.

PAN, S. J.; YANG, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge
and Data Engineering, v. 22, n. 10, p. 1345–1359, Oct 2010. ISSN 1041-4347. Available:
<https://doi.org/10.1109/TKDE.2009.191>. Citation on page 71.

PASZKE, A.; GROSS, S.; CHINTALA, S.; CHANAN, G.; YANG, E.; DEVITO, Z.; LIN, Z.;
DESMAISON, A.; ANTIGA, L.; LERER, A. Automatic differentiation in PyTorch. In: NIPS
2017 Workshop Autodiff. [S.l.: s.n.], 2017. Citations on pages 39, 52, 56, 68, 74, 115, 128,
143, and 162.

PERRONNIN, F.; SáNCHEZ, J.; MENSINK, T. Improving the Fisher Kernel for Large-Scale
Image Classification. In: Computer Vision – ECCV 2010. Springer, 2010. p. 143–156. ISBN
978-3-642-15561-1. Available: <https://doi.org/10.1007/978-3-642-15561-1_11>. Citation on
page 84.

PICARD, R.; GRACZYK, C.; MANN, S.; WACHMAN, J.; PICARD, L.; CAMPBELL,
L.; NEGROPONTE, N. Vision texture database. [S.l.]: the Media Laboratory, MIT, Cam-
bridge, Massachusetts, 1995. Available online: <https://vismod.media.mit.edu/vismod/imagery/
VisionTexture/vistex.html>. Accessed: 2020-12-01. Citation on page 94.

PICCIALLI, F.; SOMMA, V. D.; GIAMPAOLO, F.; CUOMO, S.; FORTINO, G. A survey on
deep learning in medicine: Why, how and when? Information Fusion, v. 66, p. 111 – 137, 2021.

https://doi.org/10.1109/ICPR.2002.1044854
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00007
https://doi.org/10.1007/978-3-030-17795-9_10
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1007/s11882-016-0603-z
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1007/978-3-642-15561-1_11
https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

196 Bibliography

ISSN 1566-2535. Available: <https://doi.org/10.1016/j.inffus.2020.09.006>. Citations on pages
40 and 72.

QIAN, N. On the momentum term in gradient descent learning algorithms. Neural Net-
works, v. 12, n. 1, p. 145 – 151, 1999. ISSN 0893-6080. Available: <https://doi.org/10.1016/
S0893-6080(98)00116-6>. Citation on page 58.

RAGHU, M.; SCHMIDT, E. W. A Survey of Deep Learning for Scientific Discovery. arXiv
e-prints, abs/2003.11755, 2020. Available: <https://arxiv.org/abs/2003.11755>. Citation on
page 40.

RAKHLIN, A.; SHVETS, A.; IGLOVIKOV, V.; KALININ, A. A. Deep Convolutional Neural
Networks for Breast Cancer Histology Image Analysis. In: Image Analysis and Recognition.
Cham: Springer International Publishing, 2018. p. 737–744. ISBN 978-3-319-93000-8. Available:
<https://doi.org/10.1007/978-3-319-93000-8_83>. Citation on page 42.

RAMACHANDRAN, P.; ZOPH, B.; LE, Q. V. Searching for Activation Functions. In: 6th
International Conference on Learning Representations, ICLR 2018. OpenReview.net, 2018.
Available: <https://openreview.net/forum?id=Hkuq2EkPf>. Citation on page 67.

Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning.
arXiv e-prints, p. 1–49, Nov. 2018. Available: <https://arxiv.org/abs/1811.12808>. Citations
on pages 92, 96, and 104.

RAZAVIAN, A. S.; AZIZPOUR, H.; SULLIVAN, J.; CARLSSON, S. CNN Features Off-the-
Shelf: An Astounding Baseline for Recognition. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition Workshops. [s.n.], 2014. p. 512–519. ISSN 2160-7516. Avail-
able: <https://doi.org/10.1109/CVPRW.2014.131>. Citations on pages 41, 74, 83, 132, and 133.

REAL, E.; AGGARWAL, A.; HUANG, Y.; LE, Q. V. Regularized Evolution for Image Classifier
Architecture Search. Proceedings of the AAAI Conference on Artificial Intelligence, v. 33,
n. 01, p. 4780–4789, Jul 2019. ISSN 2374-3468. Available: <https://doi.org/10.1609/aaai.v33i01.
33014780>. Citations on pages 56 and 81.

REDMON, J.; FARHADI, A. YOLO9000: Better, Faster, Stronger. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). [s.n.], 2017. p. 6517–6525. ISSN
1063-6919. Available: <https://doi.org/10.1109/CVPR.2017.690>. Citations on pages 42 and 88.

Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv e-prints, p.
arXiv:1804.02767, Apr. 2018. Available: <https://arxiv.org/abs/1804.02767>. Citations on
pages 42, 88, and 107.

REN, S.; HE, K.; GIRSHICK, R.; SUN, J. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, v. 39, n. 6, p. 1137–1149, June 2017. ISSN 0162-8828. Available:
<https://doi.org/10.1109/TPAMI.2016.2577031>. Citations on pages 42, 52, 59, 87, 149,
152, 155, 161, 164, 165, and 169.

Ribani, R.; Marengoni, M. A Survey of Transfer Learning for Convolutional Neural Networks. In:
32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T).
[s.n.], 2019. p. 47–57. ISSN 2474-0705. Available: <https://doi.org/10.1109/SIBGRAPI-T.2019.
00010>. Citations on pages 40, 56, 71, and 72.

https://doi.org/10.1016/j.inffus.2020.09.006
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/2003.11755
https://doi.org/10.1007/978-3-319-93000-8_83
https://openreview.net/forum?id=Hkuq2EkPf
https://arxiv.org/abs/1811.12808
https://doi.org/10.1109/CVPRW.2014.131
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1109/CVPR.2017.690
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/SIBGRAPI-T.2019.00010
https://doi.org/10.1109/SIBGRAPI-T.2019.00010

Bibliography 197

RODRÍGUEZ, P.; BAUTISTA, M. A.; GONZàLEZ, J.; ESCALERA, S. Beyond one-hot en-
coding: Lower dimensional target embedding. Image and Vision Computing, Elsevier, v. 75,
p. 21–31, 2018. ISSN 0262-8856. Available: <https://doi.org/10.1016/j.imavis.2018.04.004>.
Citation on page 59.

ROSENBLATT, F. The Perceptron - A Perceiving and Recognizing Automaton. [S.l.], 1957.
Available: <https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf>. Citation on
page 48.

ROSS, B. C. Mutual information between discrete and continuous data sets. PLoS ONE, v. 9,
n. 2, p. e87357, Feb. 2014. ISSN 1932-6203. Available: <https://doi.org/10.1371/journal.pone.
0087357>. Citation on page 211.

RUDALL, P. J.; CHEN, E. D.; CULLEN, E. Evolution and development of monocot stomata.
American Journal of Botany, John Wiley & Sons, Ltd, v. 104, n. 8, p. 1122–1141, Aug 2017.
ISSN 0002-9122. Available: <https://doi.org/10.3732/ajb.1700086>. Citation on page 97.

Ruder, S. An overview of gradient descent optimization algorithms. arXiv e-prints, p. 1–14,
Sep. 2016. Available: <https://arxiv.org/abs/1609.04747>. Citation on page 58.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by back-
propagating errors. Nature, v. 323, p. 533–536, Oct 1986. ISSN 1476-4687. Available: <https:
//doi.org/10.1038/323533a0>. Citations on pages 49, 57, and 59.

RUSS, J. C. Fractal surfaces. New York, US: Springer, 1994. Citation on page 207.

RUSSAKOVSKY, O.; DENG, J.; SU, H.; KRAUSE, J.; SATHEESH, S.; MA, S.; HUANG,
Z.; KARPATHY, A.; KHOSLA, A.; BERNSTEIN, M.; BERG, A. C.; FEI-FEI, L. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
v. 115, n. 3, p. 211–252, 2015. Available: <https://doi.org/10.1007/s11263-015-0816-y>. Cita-
tions on pages 40, 50, 73, 76, 91, and 162.

Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.;
Pascanu, R.; Hadsell, R. Progressive Neural Networks. arXiv e-prints, Jun. 2016. Available:
<https://arxiv.org/abs/1606.04671>. Citations on pages 42 and 74.

SAHA, B.; GUPTA, S.; PHUNG, D.; VENKATESH, S. Multiple task transfer learning with
small sample sizes. Knowledge and Information Systems, v. 46, n. 2, p. 315–342, Feb 2016.
ISSN 0219-3116. Available: <https://doi.org/10.1007/s10115-015-0821-z>. Citation on page
73.

SAKODA, K.; WATANABE, T.; SUKEMURA, S.; KOBAYASHI, S.; NAGASAKI, Y.;
TANAKA, Y.; SHIRAIWA, T. Genetic Diversity in Stomatal Density among Soybeans Eluci-
dated Using High-throughput Technique Based on an Algorithm for Object Detection. Scientific
Reports, v. 9, n. 1, p. 7610, May 2019. ISSN 2045-2322. Available: <https://doi.org/10.1038/
s41598-019-44127-0>. Citations on pages 42, 161, and 162.

SANTELIA, D.; LAWSON, T. Rethinking Guard Cell Metabolism. Plant Physiology, v. 172,
n. 3, p. 1371–1392, 09 2016. ISSN 0032-0889. Available: <https://doi.org/10.1104/pp.16.00767>.
Citation on page 97.

https://doi.org/10.1016/j.imavis.2018.04.004
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://doi.org/10.1371/journal.pone.0087357
https://doi.org/10.1371/journal.pone.0087357
https://doi.org/10.3732/ajb.1700086
https://arxiv.org/abs/1609.04747
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1606.04671
https://doi.org/10.1007/s10115-015-0821-z
https://doi.org/10.1038/s41598-019-44127-0
https://doi.org/10.1038/s41598-019-44127-0
https://doi.org/10.1104/pp.16.00767

198 Bibliography

SANTURKAR, S.; TSIPRAS, D.; ILYAS, A.; Mądry, A. How Does Batch Normalization Help
Optimization? In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems. Curran Associates Inc., 2018. p. 2488–2498. Available: <https://dl.acm.
org/doi/10.5555/3327144.3327174>. Citation on page 68.

ŠAULIENĖ, I.; ŠUKIENĖ, L.; KAINOV, D.; GREIČIUVIENĖ, J. The impact of pollen load on
quality of life: a questionnaire-based study in Lithuania. Aerobiologia, v. 32, n. 2, p. 157–170,
Jun 2016. ISSN 1573-3025. Available: <https://doi.org/10.1007/s10453-015-9387-1>. Citation
on page 104.

SCABINI, L. F. S.; CONDORI, R. H. M.; RIBAS, L. C.; BRUNO, O. M. Evaluating Deep Con-
volutional Neural Networks as Texture Feature Extractors. In: Image Analysis and Processing
– ICIAP 2019. Springer International Publishing, 2019. p. 192–202. ISBN 978-3-030-30645-8.
Available: <https://doi.org/10.1007/978-3-030-30645-8_18>. Citations on pages 41 and 84.

SHARAN, L.; ROSENHOLTZ, R.; ADELSON, E. Material perception: What can you see in a
brief glance? Journal of Vision, v. 9, n. 8, p. 784–784, Aug. 2009. ISSN 1534-7362. Available:
<https://doi.org/10.1167/9.8.784>. Citation on page 94.

SILVA, N. R. da; OLIVEIRA, M. W. d. S.; FILHO, H. A. d. A.; PINHEIRO, L. F. S.; ROSSATTO,
D. R.; KOLB, R. M.; BRUNO, O. M. Leaf epidermis images for robust identification of plants.
Scientific Reports, v. 6, n. 1, p. 1–10, May 2016. ISSN 2045-2322. Available: <https://doi.org/
10.1038/srep25994>. Citations on pages 99 and 100.

SILVA, N. R. da; OLIVEIRA, M. W. d. S.; FILHO, H. A. d. A.; PINHEIRO, L. F. S.; KOLB,
R. M.; BRUNO, O. M. Automatic Leaf Epidermis Assessment Using Fourier Descriptors in
Texture Images. Bio-protocol, Bio-protocol LLC., v. 7, n. 23, p. 1–13, Dec 2017. ISSN 2331-
8325. Available: <https://doi.org/10.21769/BioProtoc.2630>. Citation on page 100.

SIMONYAN, K.; ZISSERMAN, A. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In: 3rd International Conference on Learning Representations, ICLR. [s.n.],
2015. Available: <http://arxiv.org/abs/1409.1556>. Citations on pages 49, 75, 76, and 112.

SINGH, A. K.; GANAPATHYSUBRAMANIAN, B.; SARKAR, S.; SINGH, A. Deep Learning
for Plant Stress Phenotyping: Trends and Future Perspectives. Trends in Plant Science, v. 23,
n. 10, p. 883 – 898, 2018. ISSN 1360-1385. Available: <https://doi.org/10.1016/j.tplants.2018.
07.004>. Citations on pages 40 and 72.

SINGH, S.; KRISHNAN, S. Filter response normalization layer: Eliminating batch dependence
in the training of deep neural networks. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2020. p. 11234–11243. ISBN 978-1-7281-7168-5.
Available: <https://doi.org/10.1109/CVPR42600.2020.01125>. Citation on page 69.

SONG, Y.; LI, Q.; FENG, D.; ZOU, J. J.; CAI, W. Texture image classification with discriminative
neural networks. Computational Visual Media, v. 2, n. 4, p. 367–377, Dec 2016. ISSN 2096-
0662. Available: <https://doi.org/10.1007/s41095-016-0060-6>. Citations on pages 41, 42, 74,
83, and 84.

Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All
Convolutional Net. In: International Conference on Learning Representations (workshop
track). [s.n.], 2015. p. 1–14. Available: <https://arxiv.org/abs/1412.6806>. Citations on pages
41, 64, and 128.

https://dl.acm.org/doi/10.5555/3327144.3327174
https://dl.acm.org/doi/10.5555/3327144.3327174
https://doi.org/10.1007/s10453-015-9387-1
https://doi.org/10.1007/978-3-030-30645-8_18
https://doi.org/10.1167/9.8.784
https://doi.org/10.1038/srep25994
https://doi.org/10.1038/srep25994
https://doi.org/10.21769/BioProtoc.2630
http://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.tplants.2018.07.004
https://doi.org/10.1016/j.tplants.2018.07.004
https://doi.org/10.1109/CVPR42600.2020.01125
https://doi.org/10.1007/s41095-016-0060-6
https://arxiv.org/abs/1412.6806

Bibliography 199

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUTDINOV,
R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The journal of
machine learning research, v. 15, n. 1, p. 1929–1958, 2014. ISSN 1532-4435. Available:
<http://jmlr.org/papers/v15/srivastava14a.html>. Citations on pages 41, 62, and 76.

SRIVASTAVA, N.; SALAKHUTDINOV, R. Multimodal Learning with Deep Boltzmann Ma-
chines. The Journal of Machine Learning Research, JMLR.org, v. 15, n. 1, p. 2949–2980,
Jan. 2014. ISSN 1532-4435. Available: <https://dl.acm.org/doi/10.5555/2627435.2697059>.
Citation on page 47.

Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. Bigearthnet: A Large-Scale Benchmark
Archive for Remote Sensing Image Understanding. In: IGARSS 2019 - 2019 IEEE Inter-
national Geoscience and Remote Sensing Symposium. IEEE, 2019. p. 5901–5904. ISBN
978-1-5386-9154-0. Available: <https://doi.org/10.1109/IGARSS.2019.8900532>. Citations on
pages 72 and 91.

SUN, C.; SHRIVASTAVA, A.; SINGH, S.; GUPTA, A. Revisiting Unreasonable Effectiveness
of Data in Deep Learning Era. In: 2017 IEEE International Conference on Computer Vision
(ICCV). [s.n.], 2017. p. 843–852. ISSN 2380-7504. Available: <https://doi.org/10.1109/ICCV.
2017.97>. Citations on pages 40, 72, and 73.

SUTSKEVER, I.; MARTENS, J.; DAHL, G.; HINTON, G. On the importance of initialization
and momentum in deep learning. In: Proceedings of the 30th International Conference on
Machine Learning. PMLR, 2013. v. 28, n. 3, p. 1139–1147. Available: <https://proceedings.
mlr.press/v28/sutskever13.html>. Citation on page 58.

SZEGEDY, C.; IOFFE, S.; VANHOUCKE, V.; ALEMI, A. A. Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-17). AAAI Press, 2017. p. 4278–4284.
Available: <https://dl.acm.org/doi/10.5555/3298023.3298188>. Citations on pages 49, 56, 75,
79, and 82.

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.; ERHAN,
D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with convolutions. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). [s.n.], 2015. p. 1–9.
ISSN 1063-6919. Available: <https://doi.org/10.1109/CVPR.2015.7298594>. Citations on
pages 49, 54, 55, 65, 78, 82, and 112.

SZEGEDY, C.; VANHOUCKE, V.; IOFFE, S.; SHLENS, J.; WOJNA, Z. Rethinking the
Inception Architecture for Computer Vision. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). [s.n.], 2016. p. 2818–2826. ISSN 1063-6919. Available:
<https://doi.org/10.1109/CVPR.2016.308>. Citations on pages 66, 75, and 78.

SZELISKI, R. Computer Vision: Algorithms and Applications. 1. ed. Springer-Verlag
London, 2011. 812 p. (Texts in Computer Science). ISBN 978-1-84882-935-0. Available:
<https://doi.org/10.1007/978-1-84882-935-0>. Citation on page 50.

Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q. V. MnasNet:
Platform-Aware Neural Architecture Search for Mobile. In: The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). [s.n.], 2019. p. 2815–2823. Available:
<https://doi.org/10.1109/CVPR.2019.00293>. Citations on pages 52, 56, 81, and 86.

http://jmlr.org/papers/v15/srivastava14a.html
https://dl.acm.org/doi/10.5555/2627435.2697059
https://doi.org/10.1109/IGARSS.2019.8900532
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1109/ICCV.2017.97
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://dl.acm.org/doi/10.5555/3298023.3298188
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1007/978-1-84882-935-0
https://doi.org/10.1109/CVPR.2019.00293

200 Bibliography

TAN, M.; LE, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
In: Proceedings of the 36th International Conference on Machine Learning. PMLR, 2019.
v. 97, p. 6105–6114. Available: <http://proceedings.mlr.press/v97/tan19a.html>. Citations on
pages 40, 49, 55, 66, 72, 75, 81, 112, 146, and 163.

. Efficientnetv2: Smaller models and faster training. In: MEILA, M.; ZHANG, T. (Ed.). Pro-
ceedings of the 38th International Conference on Machine Learning. PMLR, 2021. v. 139,
p. 10096–10106. Available: <https://proceedings.mlr.press/v139/tan21a.html>. Citation on page
81.

Tan, M.; Pang, R.; Le, Q. V. EfficientDet: Scalable and Efficient Object Detection. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
p. 10778–10787. ISBN 978-1-7281-7168-5. Available: <https://doi.org/10.1109/CVPR42600.
2020.01079>. Citations on pages 42, 61, 73, and 89.

TANG, Z.; WANG, Y.; WANG, Q.; CHU, X. The Impact of GPU DVFS on the Energy and
Performance of Deep Learning: An Empirical Study. In: Proceedings of the Tenth ACM
International Conference on Future Energy Systems. New York, NY, USA: Association for
Computing Machinery, 2019. p. 315–325. ISBN 9781450366717. Available: <https://doi.org/10.
1145/3307772.3328315>. Citations on pages 40 and 50.

TONG, K.; WU, Y.; ZHOU, F. Recent advances in small object detection based on deep learning:
A review. Image and Vision Computing, v. 97, p. 1–14, 2020. ISSN 0262-8856. Available:
<https://doi.org/10.1016/j.imavis.2020.103910>. Citations on pages 40, 42, 48, 53, 72, and 87.

TRIANTAFILLOU, E.; ZHU, T.; DUMOULIN, V.; LAMBLIN, P.; EVCI, U.; XU, K.;
GOROSHIN, R.; GELADA, C.; SWERSKY, K.; MANZAGOL, P.-A.; LAROCHELLE, H.
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. In: Interna-
tional Conference on Learning Representations. [s.n.], 2020. Available: <https://openreview.
net/forum?id=rkgAGAVKPr>. Citations on pages 50 and 91.

VARMA, M.; ZISSERMAN, A. A Statistical Approach to Texture Classification from Single
Images. International Journal of Computer Vision, v. 62, n. 1, p. 61–81, Apr 2005. ISSN
1573-1405. Available: <https://doi.org/10.1023/B:VISI.0000046589.39864.ee>. Citations on
pages 112, 114, and 208.

VIALET-CHABRAND, S.; BRENDEL, O. Automatic measurement of stomatal density from
microphotographs. Trees, v. 28, n. 6, p. 1859–1865, Dec 2014. ISSN 1432-2285. Available:
<https://doi.org/10.1007/s00468-014-1063-5>. Citation on page 161.

VIDYA, K. S.; NG, E.; ACHARYA, U. R.; CHOU, S. M.; TAN, R. S.; GHISTA, D. N. Computer-
aided diagnosis of Myocardial Infarction using ultrasound images with DWT, GLCM and HOS
methods: A comparative study. Computers in Biology and Medicine, Elsevier, v. 62, p. 86 –
93, 2015. ISSN 0010-4825. Available: <https://doi.org/10.1016/j.compbiomed.2015.03.033>.
Citation on page 93.

VOULODIMOS, A.; DOULAMIS, N.; DOULAMIS, A.; PROTOPAPADAKIS, E. Deep Learn-
ing for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience,
Hindawi, v. 2018, p. 1–13, Feb 2018. ISSN 1687-5265. Available: <https://doi.org/10.1155/
2018/7068349>. Citation on page 48.

http://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v139/tan21a.html
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1145/3307772.3328315
https://doi.org/10.1145/3307772.3328315
https://doi.org/10.1016/j.imavis.2020.103910
https://openreview.net/forum?id=rkgAGAVKPr
https://openreview.net/forum?id=rkgAGAVKPr
https://doi.org/10.1023/B:VISI.0000046589.39864.ee
https://doi.org/10.1007/s00468-014-1063-5
https://doi.org/10.1016/j.compbiomed.2015.03.033
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1155/2018/7068349

Bibliography 201

Wang, J.; Chen, Y.; Yu, H.; Huang, M.; Yang, Q. Easy Transfer Learning By Exploiting
Intra-Domain Structures. In: The IEEE International Conference on Multimedia and Expo
(ICME). IEEE, 2019. p. 1210–1215. ISSN 1945-788X. Available: <https://doi.org/10.1109/
ICME.2019.00211>. Citations on pages 83, 84, and 144.

WANG, Q.; WU, B.; ZHU, P.; LI, P.; ZUO, W.; HU, Q. Eca-net: Efficient channel attention for
deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). [S.l.]: IEEE, 2020. p. 11531–11539. ISBN 978-1-7281-
7168-5. Citation on page 86.

WANG, Z.; DONG, N.; ROSARIO, S. D.; XU, M.; XIE, P.; XING, E. P. Ellipse Detection of Op-
tic Disc-and-Cup Boundary in Fundus Images. In: 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019). IEEE, 2019. p. 601–604. ISSN 1945-8452. Available:
<https://doi.org/10.1109/ISBI.2019.8759173>. Citation on page 98.

Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K.
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[s.n.], 2019. p. 10726–10734. ISSN 2575-7075. Available: <https://doi.org/10.1109/CVPR.2019.
01099>. Citations on pages 56 and 81.

WU, Y.; HE, K. Group Normalization. In: Computer Vision – ECCV 2018. Springer Interna-
tional Publishing, 2018. p. 3–19. ISBN 978-3-030-01261-8. Available: <https://doi.org/10.1007/
978-3-030-01261-8_1>. Citations on pages 41 and 69.

Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep
Neural Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2017. p. 5987–5995. ISBN 978-1-5386-0457-1. Available: <https://doi.org/10.
1109/CVPR.2017.634>. Citations on pages 49, 64, 72, 75, and 81.

XU, Y.; KONG, Q.; WANG, W.; PLUMBLEY, M. D. Large-Scale Weakly Supervised Au-
dio Classification Using Gated Convolutional Neural Network. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. p. 121–125.
ISSN 2379-190X. Available: <https://doi.org/10.1109/ICASSP.2018.8461975>. Citation on
page 51.

YOO, D.; PARK, S.; LEE, J.; KWEON, I. S. Multi-scale pyramid pooling for deep convolutional
representation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). [s.n.], 2015. p. 71–80. ISSN 2160-7516. Available: <https://doi.org/10.
1109/CVPRW.2015.7301274>. Citation on page 41.

YOSINSKI, J.; CLUNE, J.; BENGIO, Y.; LIPSON, H. How Transferable Are Features
in Deep Neural Networks? In: Advances in Neural Information Processing Systems
27. Curran Associates, Inc., 2014. p. 3320–3328. Available: <http://papers.nips.cc/paper/
5347-how-transferable-are-features-in-deep-neural-networks.pdf>. Citations on pages 42,
73, and 85.

Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding Neural Networks
Through Deep Visualization. arXiv e-prints, p. 1–12, Jun. 2015. Available: <https://arxiv.org/
abs/1506.06579>. Citation on page 53.

https://doi.org/10.1109/ICME.2019.00211
https://doi.org/10.1109/ICME.2019.00211
https://doi.org/10.1109/ISBI.2019.8759173
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/ICASSP.2018.8461975
https://doi.org/10.1109/CVPRW.2015.7301274
https://doi.org/10.1109/CVPRW.2015.7301274
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf
https://arxiv.org/abs/1506.06579
https://arxiv.org/abs/1506.06579

202 Bibliography

YU, D.; WANG, H.; CHEN, P.; WEI, Z. Mixed Pooling for Convolutional Neural Networks.
In: Rough Sets and Knowledge Technology. Springer International Publishing, 2014. p. 364–
375. ISBN 978-3-319-11740-9. Available: <https://doi.org/10.1007/978-3-319-11740-9_34>.
Citation on page 65.

YU, F.; KOLTUN, V. Multi-Scale Context Aggregation by Dilated Convolutions. In: 4th Inter-
national Conference on Learning Representations, ICLR. [s.n.], 2016. p. 1–13. Available:
<http://arxiv.org/abs/1511.07122>. Citation on page 64.

YUAN, J.; WANG, X.; ZHOU, H.; LI, Y.; ZHANG, J.; YU, S.; WANG, M.; HAO, M.; ZHAO,
Q.; LIU, L.; LI, M.; LI, J. Comparison of Sample Preparation Techniques for Inspection of Leaf
Epidermises Using Light Microscopy and Scanning Electronic Microscopy. Frontiers in Plant
Science, v. 11, p. 133, 2020. ISSN 1664-462X. Available: <https://doi.org/10.3389/fpls.2020.
00133>. Citation on page 97.

ZARITSKY, A.; NATAN, S.; HOREV, J.; HECHT, I.; WOLF, L.; BEN-JACOB, E.; TSARFATY,
I. Cell Motility Dynamics: A Novel Segmentation Algorithm to Quantify Multi-Cellular Bright
Field Microscopy Images. PLoS ONE, Public Library of Science, v. 6, n. 11, p. 1–10, 11 2011.
ISSN 1932-6203. Available: <https://doi.org/10.1371/journal.pone.0027593>. Citation on page
93.

Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. arXiv e-prints, p.
arXiv:1212.5701, Dec. 2012. Available: <https://arxiv.org/abs/1212.5701>. Citation on page 58.

ZEILER, M. D.; FERGUS, R. Visualizing and Understanding Convolutional Networks. In:
Computer Vision – ECCV 2014. Springer International Publishing, 2014. p. 818–833. ISBN
978-3-319-10590-1. Available: <https://doi.org/10.1007/978-3-319-10590-1_53>. Citations on
pages 39, 53, and 76.

ZHANG, H.; XUE, J.; DANA, K. Deep TEN: Texture Encoding Network. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). [s.n.], 2017. p. 2896–
2905. ISSN 1063-6919. Available: <https://doi.org/10.1109/CVPR.2017.309>. Citations on
pages 41, 74, 83, 85, 96, and 143.

ZHANG, Q.; YANG, L. T.; CHEN, Z.; LI, P. A survey on deep learning for big data. Information
Fusion, v. 42, p. 146 – 157, 2018. ISSN 1566-2535. Available: <https://doi.org/10.1016/j.inffus.
2017.10.006>. Citation on page 39.

ZHANG, S.; WEN, L.; BIAN, X.; LEI, Z.; LI, S. Z. Single-shot refinement neural net-
work for object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. IEEE, 2018. p. 4203–4212. ISBN 978-1-5386-6420-9. Available: <https:
//doi.org/10.1109/CVPR.2018.00442>. Citations on pages 89 and 169.

Zhang, X.; Li, Z.; Change Loy, C.; Lin, D. PolyNet: A Pursuit of Structural Diversity in Very
Deep Networks. arXiv e-prints, p. arXiv:1611.05725, Nov. 2017. Available: <http://arxiv.org/
abs/1611.05725>. Citations on pages 52, 55, 66, 75, and 82.

ZHANG, Y.; DAVISON, B. D. Impact of imagenet model selection on domain adaptation. In:
2020 IEEE Winter Applications of Computer Vision Workshops (WACVW). IEEE, 2020. p.
173–182. ISBN 978-1-7281-7163-0. Available: <https://doi.org/10.1109/WACVW50321.2020.
9096945>. Citation on page 74.

https://doi.org/10.1007/978-3-319-11740-9_34
http://arxiv.org/abs/1511.07122
https://doi.org/10.3389/fpls.2020.00133
https://doi.org/10.3389/fpls.2020.00133
https://doi.org/10.1371/journal.pone.0027593
https://arxiv.org/abs/1212.5701
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/CVPR.2017.309
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1109/CVPR.2018.00442
https://doi.org/10.1109/CVPR.2018.00442
http://arxiv.org/abs/1611.05725
http://arxiv.org/abs/1611.05725
https://doi.org/10.1109/WACVW50321.2020.9096945
https://doi.org/10.1109/WACVW50321.2020.9096945

Bibliography 203

ZHANG, Z.; BATSELIER, K.; LIU, H.; DANIEL, L.; WONG, N. Tensor Computation: A
New Framework for High-Dimensional Problems in EDA. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, IEEE, v. 36, n. 4, p. 521–536, 2017. ISSN
1937-4151. Available: <https://doi.org/10.1109/TCAD.2016.2618879>. Citation on page 51.

ZHAO, Q.; SHENG, T.; WANG, Y.; TANG, Z.; CHEN, Y.; CAI, L.; LING, H. M2Det: A
Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network. Proceedings of
the AAAI Conference on Artificial Intelligence, v. 33, n. 01, p. 9259–9266, Jul. 2019. ISSN
2374-3468. Available: <https://doi.org/10.1609/aaai.v33i01.33019259>. Citations on pages 42
and 89.

ZHENG, H.; FU, J.; MEI, T.; LUO, J. Learning Multi-attention Convolutional Neural Network
for Fine-Grained Image Recognition. In: 2017 IEEE International Conference on Computer
Vision (ICCV). Venice: [s.n.], 2017. p. 5219–5227. ISBN 978-1-5386-1032-9. Available: <https:
//doi.org/10.1109/ICCV.2017.557>. Citation on page 41.

ZHOU, C.; PAFFENROTH, R. C. Anomaly Detection with Robust Deep Autoencoders. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Association for Computing Machinery, 2017. p. 665–674. ISBN 978-1-4503-
4887-4. Available: <https://doi.org/10.1145/3097983.3098052>. Citation on page 47.

ZISKA, L.; KNOWLTON, K.; ROGERS, C.; DALAN, D.; TIERNEY, N.; ELDER, M. A.;
FILLEY, W.; SHROPSHIRE, J.; FORD, L. B.; HEDBERG, C.; FLEETWOOD, P.; HOVANKY,
K. T.; KAVANAUGH, T.; FULFORD, G.; VRTIS, R. F.; PATZ, J. A.; PORTNOY, J.; COATES,
F.; BIELORY, L.; FRENZ, D. Recent warming by latitude associated with increased length of
ragweed pollen season in central North America. Proceedings of the National Academy of
Sciences, National Academy of Sciences, v. 108, n. 10, p. 4248–4251, 2011. ISSN 0027-8424.
Available: <https://doi.org/10.1073/pnas.1014107108>. Citation on page 103.

ZOPH, B.; CUBUK, E. D.; GHIASI, G.; LIN, T.-Y.; SHLENS, J.; LE, Q. V. Learning Data
Augmentation Strategies for Object Detection. In: Computer Vision – ECCV 2020. Cham:
Springer International Publishing, 2020. p. 566–583. ISBN 978-3-030-58583-9. Available:
<https://doi.org/10.1007/978-3-030-58583-9_34>. Citations on pages 62 and 72.

. Learning data augmentation strategies for object detection. In: VEDALDI, A.; BISCHOF,
H.; BROX, T.; FRAHM, J.-M. (Ed.). Computer Vision – ECCV 2020. Cham: Springer
International Publishing, 2020. p. 566–583. ISBN 978-3-030-58583-9. Available: <https:
//doi.org/10.1007/978-3-030-58583-9_34>. Citations on pages 167 and 168.

ZOPH, B.; VASUDEVAN, V.; SHLENS, J.; LE, Q. V. Learning transferable architectures
for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE, 2018. p. 8697–8710. ISSN 2575-7075. Available: <https://doi.org/
10.1109/CVPR.2018.00907>. Citations on pages 56, 75, 81, and 86.

https://doi.org/10.1109/TCAD.2016.2618879
https://doi.org/10.1609/aaai.v33i01.33019259
https://doi.org/10.1109/ICCV.2017.557
https://doi.org/10.1109/ICCV.2017.557
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1073/pnas.1014107108
https://doi.org/10.1007/978-3-030-58583-9_34
https://doi.org/10.1007/978-3-030-58583-9_34
https://doi.org/10.1007/978-3-030-58583-9_34
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2018.00907

205

APPENDIX

A
HAND-ENGINEERED FEATURE

EXTRACTORS FOR TEXTURE ANALYSIS

This appendix presents a list of hand-engineered feature extractors for texture analysis.
We refer the reader to (KANDASWAMY; SCHUCKERS; ADJEROH, 2011) for an extensive
comparison between most of the traditional methods.

A.1 Gray Level Co-occurrence Matrix (GLCM)

The GLCM, originally proposed in 1973 (HARALICK; SHANMUGAM; DINSTEIN,
1973), has become a well-established method for texture characterization. Essentially, a GLCM
is a square matrix of size !, corresponding to the number of gray levels in an image �. Each
entry in a GLCM may be interpreted as a probability ?3,\ (8, 9), reflecting the relative frequency
of all pairs of pixels in an image � with gray levels 8 and 9 that are separated by a given distance
3 and an angle \. Typically, 3 = {1,2} and \ = {0◦,45◦,90◦,135◦}.

After setting up the GLCMs for different combinations of 3 and \, second-order statistics
are computed, such as the contrast, homogeneity, energy and correlation. Consequently, the
number of descriptors in the resulting feature vector is given by the number of GLCMs times the
number of second-order statistics.

A.2 Gabor wavelets (GW)

A two-dimensional Gabor filter 6(G, H), also referred to as a mother wavelet (MANJU-
NATH; MA, 1996), is given by:

6(G, H) = 1
2cfGfH

exp

[
−1

2

(
G2

f2
G

+ H
2

f2
H

)
+2c 9,G

]
, (A.1)

206 APPENDIX A. Hand-engineered feature extractors for texture analysis

while its Fourier transformation � (D, E) reads:

� (D, E) = exp
[
1
2

[
(D−,)2

f2
D

+ E
2

f2
E

]]
. (A.2)

The parameters fG and fH control the filter bandwidth along the G and H axes respectively,
fD =

1
2cfG , fE = 1

2cfH and the pair (,,0) represents the center frequency of the filter, when
plotted with rectangular coordinates (D, E) in the frequency domain (HAN; MA, 2007).

Upon choosing #B scales and #> orientations, a bank of self-similar Gabor filters can
be obtained by dilating and rotating 6(G, H). More specifically, the Gabor filter for a scale B and
orientation > is given by:

6B,> (G, H) = 0−B6(G′, H′), (A.3)

where B = 1 . . . #B, > = 1 . . . #>, 0 > 1 is a parameter, G′ = 0−B (G cos\+ H sin\), H′ = 0−B (−G sin\+
H cos\) and \ = >c/#>. The scale factor is 0−B.

In order to compute the parameters 0,fD,fE and , , the following formula can be
used (MANJUNATH; MA, 1996):

0 =

(
Dℎ

D;

) 1
(−1

, fD =
(0−1)Dℎ
(0 +1)

√
2ln2

, , = Dℎ,

fE = tan
(c
2:

) [
Dℎ −2ln

(
2f2

D

Dℎ

)] [
2ln2−

(2ln2)2f2
D

D2
ℎ

]−1/2

,

where D; and Dℎ denote the lower and upper center frequencies of interest, respectively.

An image � can now be convolved with each Gabor filter in the filter bank, and statistics
such as the average and standard deviation of the pixel values of the filtered images can be
computed. Finally, a feature vector is created by concatenating these statistics. Thus, the number
of descriptors is #B ×#> times the number of statistics.

A.3 Local Binary Patterns (LBP)

Local Binary Patterns were introduced in (OJALA; PIETIKAINEN; MAENPAA, 2002).
This texture method transforms an image � into an image �′ by replacing every pixel value ?8 9
of � by a binary pattern that consists of eight bits reflecting whether or not the pixel value of
the concerning neighboring pixel is smaller or larger than ?8 9 . A bit one is added to the binary
pattern for every neighboring pixel value that is equal or larger than ?8 9 , whereas a zero is added
if the opposite is true. Then, the resulting 8-bit patterns are replaced by their integer number
representations ?′

8 9
. Finally, the feature vector represents the histogram of these integer numbers

in �′ for a given number of bins.

A.4. Fractal Descriptors (FDs) 207

A.4 Fractal Descriptors (FDs)

First of all, the power spectrum %� of an image � is computed. In this sense, any position
in %� is expressed in polar coordinates %� (5 , q). Then, %̂� (5) is defined as the average value
of all pixels in %� lying at the frequency 5 . Finally, a log− log scale is used for %̂� (5). Since
the power spectrum curve obeys a power law (RUSS, 1994), %̂� (5) can be approximated on
a log-log scale by a straight line. The slope of this line is the corresponding fractal dimension.
In (FLORINDO; BRUNO, 2012), a multiscale transformation of the log-log curve is proposed
to account for the intrinsic multiscale nature of the previous approach. It implies analyzing the
log-log curve at multiple scales. Therefore, instead of having one fractal dimension, in the end, a
set is obtained, one for each scale. The resulting values compose the feature vector of an image �.

A.5 Deterministic Tourist Walks (DTWs)

An image � is mapped onto an undirected regular graph � (+,�), in such a way that the
pixel with coordinates (G, H) in � corresponds to the vertex EG,H ∈ + (A. R. Backes and W. N.
Gonçalves and A. S. Martinez and O. M. Bruno, 2010). The edges 4(E, E′) ∈ � are established
by connecting the vertices E′

G ′,H′ ∈ + whose Euclidean distance from the vertex EG,H is less or
equal than a given value '. Moreover, a weighting function is defined F : � → R : F(E, E′) =
|� (G, H) − � (G′, H′) |. Now, a set of thresholds) is defined, i.e.) = {C0, C0 + C8=2, C0 +2 C8=2, . . . , C0 +
(#) − 1) C8=2}, after which every threshold C8 ∈) can be used to convert the original graph
� (+,�) to the graph �8 (+,�′) by removing all edges 4(E, E′) whose F(E, E′) is greater than the
threshold C8. Clearly, �′ ⊂ � .

Each graph �8 (+,�′) can subsequently be analyzed by using DTWs. A DTW can be
understood as the computation of a path of vertices ?. Let ?: indicate a vertex at position :
in the path ?. The vertex ?:+1 is computed by choosing the minimum (or maximum) weight
F(?: , E′) for which there is an edge 4(?: , E′) ∈ �′ that is not yet among the last ` vertices of
the path ?. In this context, ` is known as the memory of the DTW. The path ? will eventually
get trapped inside a cycle that is called the attractor. The number of vertices that make up the
attractor is denoted by 0.

The set of vertices that lies between the initial vertex of ? and the last point before the
attractor is called the transient, and its length is denoted by 1.

Every vertex EG,H ∈ + in the graph �8 (+,�′) is considered as the starting point to initiate
a DTW, so there are as many DTWs as there are vertices in the graph �8 (+,�′) for each memory
`. Then, histograms representing the number of DTWs with memory `, that have a length equal
to 0 + 1 are constructed. Finally, all histograms resulting from the different thresholds C8 and
memories ` are concatenated into a feature vector.

208 APPENDIX A. Hand-engineered feature extractors for texture analysis

A.6 Texton histograms

This method was introduced in (LEUNG; MALIK, 2001) and then improved in (VARMA;
ZISSERMAN, 2005). In contrast to the previous methods, this method requires the generation
of a visual dictionary before computing a feature vector from a given image �. This dictionary

is assembled using #2 image sets T = {T1 . . .T#2 }, where #2 corresponds to the number of
classes of the image dataset being analyzed. Each image � from a particular set T9 is convolved
with a filter bank F creating a set of filter responses. These filter responses are stacked to # 5 -
dimensional vectors, where # 5 is the number of filter responses. The # 5 -dimensional vectors
of all images in T9 are aggregated and clustered using the K-Means algorithm. The resulting
:-cluster centers are called textons and are added to the visual dictionary. The same procedure
is repeated for each image set in T . Since each image set T9 contributes : textons, a visual

dictionary of length #2 × : is created. The procedure for computing a feature vector from a
given image � is as follows: (i) � is convolved with F . (ii) The Euclidean distances between the
resulting # 5 -dimensional vectors of � and the textons in the visual dictionary are computed. (iii)
A label is assigned to each # 5 -dimensional vector indicating the position of the texton that lies
closest to it. (iv) Finally, the feature vector of � is represented by a histogram of #2 × : bins of
those labels.

In this project, we chose the MR8 filter bank (VARMA; ZISSERMAN, 2005), which
consists of 38 filters. The first two filters are respectively a Gaussian filter and a Laplacian of
the Gaussian filter, both with f = 10. Edge and bar filters at three scales and six orientations
complete the set. All filter responses from edge filters that are on the same scale are merged by
taking the maximum response value across all orientations. The same procedure is repeated with
the filter responses from bar filters. Thus, only 8 filter responses are computed in the MR8 filter
bank. This method is rotation invariant since all rotational responses are merged. In Section ??,
this method is referred to as TH-MR8.

A.7 Fourier Magnitude Sampling

Fourier Magnitude Sampling (FMS) was adapted from (GONZALEZ; WOODS; ED-
DINS, 2009). FMS analyzes a given image � by estimating the behaviour of its Fourier magnitude
spectrum � through two different sampling schemes: radial and circular. More specifically, let us
define � (A, \) as the Fourier magnitude spectrum of � expressed in polar coordinates, where A is
the radial component (0 ≤ A ≤ 1) and \ is the angular component (0 ≤ \ ≤ 2c). By convention,
the point located at the center of � is its origin (A = 0). In this context, A = 1 corresponds to the
maximum radius position that can be considered in � from every angle \. Then, a radial sample
�AB→A 5 (\̂) is defined as the vector that contains all the values from � (AB, \̂) to � (A 5 , \̂), where
0 ≤ AB < A 5 ≤ 1. Similarly, a circular sample �\B→\ 5 (Â) consists of all values from � (Â , \B) to
� (Â , \ 5), where 0 ≤ \B < \ 5 ≤ 2c.

A.7. Fourier Magnitude Sampling 209

Let us define as Θ̂ = {\̂1, \̂2, . . . , \̂"}, (" ≥ 2), the set of angles from which radial samples
are generated in such a way that: \̂1 = \B, \̂" = \ 5 and \̂8 = \B + (8−1)\BC4?, where \BC4? =

\ 5 −\B
"−1 .

Likewise, the set of radii '̂ = {Â1, Â2, . . . , Â# }, (# ≥ 2) needed to generate the # circular samples,
are specified as follows: Â1 = AB, Â# = A 5 and Â 9 = AB + (9 −1)ABC4?, where ABC4? =

A 5 −AB
#−1 . Finally,

for each retrieved sample (circular and/or radial), its average is computed and a feature vector of
size " +# is composed by those average values.

211

APPENDIX

B
TRADITIONAL FEATURE RANKING

APPROACHES

The feature ranking approaches described here take as input: (i) a feature matrix (#)
of size (#), and (ii) a set of # class labels (#). The term # indicates the number of samples
in the texture dataset # , and # indicates the number of extracted features at the layer # of a
pre-trained CNN model (similar to GP-CNN). Additionally, # represents the set of # unique
class labels, and # indicates the #-th feature candidate located at the #-th column of # , # . A
feature ranking approach then assigns one score # to every candidate # , where higher scores
mean better feature candidates. The following lines contain a brief description of each feature
ranking approach used in this paper.

The feature ranking approaches described here take as input: (i) a feature matrix (X(;)
�

)
of size (=� × =�(;)), and (ii) a set of =� class labels (H�). The term =� indicates the number of
samples in the texture dataset �, and =�(;) indicates the number of extracted features at the layer
; of a pre-trained CNN model (similar to GP-CNN). Additionally, �� represents the set of =��
unique class labels, and ®D 9 indicates the 9-th feature candidate located at the 9-th column of
X(;)
�

, 1 ≤ 9 ≤ =�(;) . A feature ranking approach then assigns one score B(®D 9) to every candidate
®D 9 , where higher scores mean better feature candidates. The following lines contain a brief
description of each feature ranking approach used in this paper.

• Mutual Information (MI): It ranks each feature candidate (®D 9) according to its high or
low relationship with H�. Given that ®D 9 is a continuous variable and H� is discrete, we
estimate MI using the approach described in (ROSS, 2014).

• One-way ANOVA F-test (ANOVA): It ranks the features in X(;)
�

according to their F-
ratios. In this sense, ANOVA uses H� to estimate the inter-class vs. intra-class variability
for each ®D 9 (LOMAX; HAHS-VAUGHN, 2012). More specifically, we compute the F-ratio
as "(betw/"(with, where "(betw = ((betw/(=�� −1) and "(with = ((with/(=�−=��). In

212 APPENDIX B. Traditional feature ranking approaches

this sense, the sum of ((betw and ((with is the same as computing the sample variance
of ®D 9 , and their relationship provides valuable information about the distribution of the
samples from ®D 9 among the class labels (H�). Therefore, we obtain a high F-ratio when
((betw is high and ((with is low, which means that samples belonging to different class
labels are far apart, and samples within the same class label are very close.

• Extremely Randomized Decision Trees (ET): It is a tree-based ensemble method that
ranks the =�(;) features candidates from X(;)

�
by computing their Gini importances. In

more detail, this method grows =tree independent trees. The growing algorithm (GEURTS;
ERNST; WEHENKEL, 2006) of every tree starts when its root node creates two child
nodes by splitting the =� samples from X(;)

�
into two non-overlapping subsets. More

specifically, this splitting procedure involves choosing 2
√
=�(;) feature candidates randomly.

Then, it computes one splitting point (? 9) per chosen feature candidate (®D 9) as a random
value that falls within the range of ®D 9 . Next, ET uses the feature candidate with the highest
decrease of impurity (®Dbest) to split the set of samples. A set of zero impurity contains
only samples that belong to the same class label. By contrast, a set with a high degree of
impurity contains similar proportions of samples belonging to different class labels. ET
recursively applies the same splitting procedure to every child node until: (i) it already
achieved zero impurity or (ii) it consists of only constant features. When all trees stop
growing, ET estimates the importance of each feature (®D 9) by computing its total decrease

of impurity per tree and then averaging these results.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Contextualization
	Objectives
	Contributions
	Text organization

	Theoretical Background
	Deep Learning in computer vision
	Initial considerations
	Historical perspective of Deep Learning and CNN
	Computer vision and visual recognition tasks
	Convolutional Neural Networks: Basic concepts
	Tensors
	Parts of the CNN model
	Activations maps and feature vectors
	Layers, blocks, and composite functions

	Training and inference
	Before training
	Training process
	Other topics relevant to the training process
	Inference Process

	Layer types
	Convolutional layer
	Fully connected layer
	Pooling layer
	Global Average Pooling layer
	Activation function
	Normalization layer

	Final considerations

	Transfer learning and deep CNN models
	Initial considerations
	Transfer Learning definitions
	Transfer learning and CNN models
	CNN models as predictive functions
	General Transfer Learning strategy

	Main CNN models used as source predictive functions
	LeNet, AlexNet, and ZFNet
	VGG models
	Network in Network
	Inception and Xception
	ResNet, DenseNet, ResNeXt, and SENet models
	NASNet and EfficientNet
	Other important CNN models

	Transfer Learning for image classification tasks
	Type 1: Pre-trained part of the modified CNN model used as a feature extractor
	Type 2: Fine-tuning the modified CNN model

	Transfer Learning for object detection tasks
	From image classification to object detection
	Types of object detectors

	Final considerations

	Datasets and Evaluation Metrics
	Initial considerations
	Datasets
	Splits and splitting strategies
	Datasets for texture classification
	Datasets for single-class stomata detection
	 A dataset for multi-class pollen detection

	Evaluation Metrics
	General Evaluation Scheme
	Evaluation metrics for classification tasks
	Evaluation metrics for detection tasks

	Final considerations

	Experiments
	CNN-based feature extractors vs. Hand-engineered methods for texture analysis
	Initial considerations
	Target task, datasets and pre-trained models
	General experimental settings
	Hand-engineered feature extraction details
	Implementation details for the CNN-based methods

	Experiments
	CNN-based methods vs. Hand-Engineered (HE) methods
	Combining pairs of CNN-based methods
	Combining CNN-based methods with HE methods
	The classifier effect
	Using feature selection

	Final considerations

	CNN models as collections of deep composite functions
	Initial considerations
	Target task, datasets and pre-trained models
	CNN models treated as collections of deep composite functions
	Proposed TL strategy
	Feature extraction, training and prediction subroutines
	Proposed global pooling layers

	GP-CNN: definition and selection strategy
	Experimental settings
	Performance of GAP features across multiple depth levels
	Comparison of global pooling layers

	RankGP-CNN: Multi-layer feature extraction using a feature ranking approach
	Selection Strategy
	Experimental settings
	Accuracy rates for different sets of input parameters
	Comparing RankGP-CNN with GP-CNN

	RankGP-3M-CNN: combining BN-VGG-19, Inception-V3, and ResNet-50
	Selection strategy and experimental settings
	Accuracy rates for different sets of input parameters

	Comparing RankGP-3M-CNN++ with alternative CNN-based methods
	Final considerations

	Exploring detection
	Initial considerations
	Target task, datasets and pre-trained models
	PollenDet
	General architecture
	Implementation details
	Training time: Ground truth encoding
	Training the pollen dataset
	Testing new pollen images

	Experimental Settings
	Comparison between the NMS algorithm and our modified version
	Analysis of backbones with different number chunks
	Comparison of backbones from different CNN models
	backbone behavior across multiple IoU thresholds
	Execution time comparison

	StomaDet
	Previous Works
	General architecture
	The feature extraction subnet (backbone)
	Bounding box encoding
	Classification and regression subnets

	Implementation details
	Data Augmentation
	Training
	Inference

	Experimental Settings
	Comparison of feature extraction subnets and training policies on WoodyL
	 mNMS versus NMS
	 Detection of small, medium-sized and large stomata
	 Performance across different datasets

	Final considerations

	Conclusions
	Futures Perspectives
	Bibliographical Production

	Bibliography
	Hand-engineered feature extractors for texture analysis
	Gray Level Co-occurrence Matrix (GLCM)
	Gabor wavelets (GW)
	Local Binary Patterns (LBP)
	Fractal Descriptors (FDs)
	Deterministic Tourist Walks (DTWs)
	Texton histograms
	Fourier Magnitude Sampling

	Traditional feature ranking approaches

