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RESUMO

GARCIA, K. D. Abordagens de aprendizagem não supervisionada para fluxos de dados
não estacionários. 2021. 132 p. Tese (Doutorado em Ciências – Ciências de Computação e Ma-
temática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2021.

A sociedade moderna está cercada por diversos aplicativos que geram diariamente grandes
volumes de dados. Atualmente, qualquer usuário pode monitorar suas atividades físicas, em
tempo real, usando seus celulares ou dispositivos vestíveis. Além disso, empresas e governos
podem aprender mais sobre seus clientes e cidadãos analisando dados disponíveis em mídias
sociais, por exemplo. Esses dados são chamados de fluxo contínuo de dados quando são
gerados em sequência e continuamente, geralmente em alta velocidade. Esses dados também são
potencialmente ilimitados em tamanho e podem não ser estritamente estacionários.

Extrair conhecimento de fluxos de dados é desafiador devido a várias restrições. O fluxo
contínuo de dados requer que um algoritmo de aprendizagem atue em ambientes dinâmicos.
O que significa que o algoritmo de aprendizagem deve permitir o processamento em tempo
real. Além disso, deve ser capaz de se adaptar às mudanças ao longo do tempo, considerando a
natureza não estacionária do fluxo de dados.

Nas últimas décadas, muitas abordagens de aprendizado de máquina foram propostas para fluxo
contínuo de dados. A maioria dessas abordagens é baseada na aprendizagem supervisionada.
Essas abordagens dependem de dados rotulados para adaptar seus modelos às mudanças nos
fluxos de dados. No entanto, o processo de rotular os dados costuma ser caro e pode exigir a
utilização de especialistas no domínio em questão. Além disso, se os dados forem coletados em
alta velocidade, pode não haver tempo suficiente para rotulá-los.

Nesta tese, propomos algoritmos de aprendizado de máquina incremental e não supervisionado
para fluxo contínuo de dados. Esses algoritmos são capazes de atualizar seus modelos de classifi-
cação com pouco ou sem feedback externo. Começamos abordando o problema de mudança
de conceito em fluxo contínuo de dados, com poucos dados rotulados. Para esse problema,
propomos uma abordagem semi-supervisionada chamada Sliding Window Clusters. Este método
aprende os padrões atuais do fluxo contínuo de dados selecionando e resumindo os dados mais
relevantes. A segunda abordagem é um algoritmo de aprendizagem não supervisionada cha-
mada Higia que é capaz de classificar os dados em normal, novidade ou mudança de conceito.
Na terceira abordagem presente nesta tese, propomos um algoritmo para combinar diferentes
abordagens não supervisionadas em um modelo de classificação. Testamos essa abordagem
considerando dois cenários. O primeiro é denominado Homogeneous Ensemble Clustering

para Data Streams e é baseado na combinação de diferentes execuções do mesmo algoritmo
de agrupamento. Neste estudo, também consideramos o cenário denominado Heterogeneous



Ensemble Clustering para Data Streams, que se baseia na combinação de diferentes algoritmos
de agrupamento de dados. Esses métodos permitem o uso de abordagens de agrupamento com
um viés diferente para obter um modelo de classificação mais robusto. Além disso, avaliamos
as abordagens do estado da arte, comumente citadas na literatura de detecção de novidades em
fluxos de dados.

A maior parte desta tese enfoca abordagens de agrupamento. Porém, dada a popularidade das
redes neurais, também propomos o Ensemble of Auto-Encoders. Essa abordagem é baseada na
combinação de auto-encoders em um conjunto de modelos. Cada auto-encoder é especializado
em reconhecer uma classe particular. O Conjunto de auto-encoders possui uma estrutura modular
que tem a vantagem de tornar o modelo facilmente adaptado às mudanças dos dados. Além disso,
permite modelos personalizados, pois o modelo pode se adaptar às classes mais frequentes. Esta
contribuição se aplica ao problema do Reconhecimento da Atividade Humana. Os resultados
experimentais mostram o potencial das abordagens mencionadas.

Palavras-chave: Fluxo Continuo de Dados, Aprendizado de Máquina Não-Supervisionado,
Aprendizado incremental.



ABSTRACT

GARCIA, K. D. Unsupervised learning approaches for non-stationary data streams. 2021.
132 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2021.

Modern society is surrounded by several applications which are daily generating large volumes of
data. Nowadays, anyone can monitor their physical activities in real-time by using smartphones
or wearable devices. Also, business and governments can learn more about their clients and
citizens by analysing information from social media, for example. This data is called data

streams when it is a sequence of data generated continuously, usually at high speed. This data is
also potentially unbounded in size and may not be strictly stationary.

Extracting useful knowledge from data streams is challenged due to several constraints. A
data stream requires that a learning algorithm acts in dynamic environments. Meaning that the
learning algorithm should allow for real-time processing. Moreover, it should be able to adapt to
changes over time, considering the non-stationary nature of the data stream.

In the last few decades, many machine learning approaches have been proposed for data streams.
Most of them are based on supervised learning. These approaches rely on labelled data to adapt
their models to the changes in data streams. However, the process of labelling data is usually
costly and can require domain expertise. Besides, if the data is collected at high speed, it may be
the case that there will not be enough time to label it.

In this thesis, we aim to propose unsupervised and incremental machine learning algorithms
for data streams. We focus on algorithms able to update their classification model with few or
without external feedback. We start by addressing the problem of concept drift in data streams
with few labelled data. For that problem, we propose a semi-supervised approach called Sliding

Window Clusters. This method learns the current patterns from the data stream by selecting
and summarising the most relevant data. We also study how to learn from data streams when
novelties appear over time. So, we proposed an unsupervised learning method called Higia

which is able to classify data as normal, novelty or concept drift. In this thesis, we propose an
approach to combine different unsupervised approaches into a classification model. We test
this approach considering two scenarios. The first is called Homogeneous Ensemble Clustering

for Data Streams and it is based on the combination of different runs from the same clustering
algorithm. In this study, we also consider the scenario called Heterogeneous Ensemble Clustering

for Data Streams, which is based on the combination of different clustering algorithms. These
methods allow for the use of clustering approaches with a different bias to obtain a more robust
classification model. Furthermore, we evaluate the state-of-art approaches, commonly referred
to in the literature of novelty detection in data streams.



Most of this thesis focus on clustering approaches. However, given the popularity of neural
networks, we also propose Ensemble of Auto-Encoders. This approach is based on the combina-
tion of auto-encoders into an ensemble model. Each auto-encoder is specialised on recognising
one particular class. The Ensemble of Auto-Encoders has a modular structure that has the
advantage of making the model easily adapted to the changes from the data. Besides, it allows for
personalised models because the model can adapt to the most request classes. This contribution is
applied to the problem of Human Activity Recognition. Experimental results show the potential
of the approaches mentioned.

Keywords: Data Streams, Unsupervised Learning, Incremental Learning.



SAMENVATTING

GARCIA, K. D. Abordagens de aprendizagem não supervisionada para fluxos de dados
não estacionários. 2021. 132 p. Tese (Doutorado em Ciências – Ciências de Computação e Ma-
temática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2021.

In onze moderne samenleving zijn applicaties, die dagelijks grote hoeveelheden data genereren,
overal aanwezig. Tegenwoordig kan iedereen zijn of haar fysieke activiteiten monitoren met
behulp van smartphones of draagbare apparaten. Verder kunnen bedrijven en overheden meer
leren over hun klanten en burgers, bijvoorbeeld door het analyseren van informatie afkomstig van
social media. Dit soort data heten data streams als ze een reeks data zijn, die continu gegenereerd
worden, meestal op hoge snelheid. Een data stream is potentieel onbegrensd in grootte en hoeft
niet strikt stationair te zijn.

Het extraheren van nuttige kennis uit data streams wordt bemoeilijkt door meerdere beperkingen.
Een data stream vereist dat een learning algorithm, een algoritme dat informatie uit een data
stream haalt, in een dynamische omgeving ageert. Dit betekent dat dit learning algorithm
verwerking in real-time mogelijk moet maken. Bovendien moet het zich kunnen aanpassen aan
veranderingen in de loop van de tijd, gezien de niet-stationaire aard van de data stream.

In de afgelopen decennia zijn veel benaderingen die baseren op machine learning voorgesteld
voor data streams. De meeste hiervan zijn gebaseerd op supervised learning. Deze aanpakken
hebben gelabelde data nodig om hun modellen aan veranderingen in de data streams te kunnen
aanpassen. Echter is het proces van het labelen van data duur en kan domeindeskundigheid
vereisen. Bovendien kan het zijn dat, als de data met hoge snelheid worden verzameld, er niet
genoeg tijd is om te labelen.

In dit proefschrift is ons doel om unsupervised en incrementele machine learning algoritmes
voor data streams voor te stellen. We concentreren ons op algoritmes die hun classificatiemodel
met weinig of zonder externe feedback kunnen updaten. We beginnen met het aanpakken van het
probleem van concept drift in data streams met weinig gelabelde data. Voor dit probleem stellen
we een semi-supervised benadering voor, die Sliding Window Clusters heet. Deze methode leert
de actuele patronen uit de data streams door de meest relevante data te selecteren en samen te
vatten. We bestuderen ook hoe van data streams geleerd kan worden als novelties (data met
nieuwe kenmerken of patronen) na verloop van tijd verschijnen. We stellen een unsupervised
learning methode Higia voor, die data kan classificeren als normal, novelty of concept drift.
In dit proefschrift stellen we een benadering voor, die verschillende unsupervised aanpakken
combineert in één classificatiemodel. We testen deze benadering, rekening houdend met twee
scenario’s. De eerste heet Homogeneous Ensemble Clustering for Data Streams en is gebaseerd
op het combineren van meerdere runs van hetzelfde clustering algoritme. We kijken ook naar het



scenario dat Heterogeneous Ensemble Clustering for Data Streams heet, dat gebaseerd is op het
combineren van verschillende clustering algoritmes. Deze methodes maken het mogelijk om
benaderingen voor clustering, die verschillende biases hebben, te combineren om een robuuster
classificatiemodel te verkrijgen. Verder evalueren we state-of-the-art benaderingen, waar vaak
naar wordt verwezen in de literatuur over novelty detection in data streams.

De belangrijkste focus van dit proefschrift ligt op aanpakken voor clustering. Echter gezien
de populariteit van neurale netwerken stellen we ook een Ensemble of Auto-Encoders voor.
Deze aanpak is gebaseerd op het combineren van auto-encoders in een ensemble model. Elke
auto-encoder is gespecialiseerd in het herkennen van één specifieke klasse. De Ensemble of Auto-
Encoders heeft een modulaire structuur, die het voordeel heeft dat het model zich gemakkelijk
kan aanpassen aan veranderingen in de data. Bovendien maakt dit gepersonaliseerde modellen
mogelijk, omdat het model zich kan aanpassen een de meeste request classes. Deze contributie
passen wij toe op het probleem van Human Activity Recognition. Experimentele resultaten tonen
het potentieel van deze genoemde benaderingen aan.

Trefwoorden: data streams, unsupervised learning, incremental learning.
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CHAPTER

1
INTRODUCTION

It is a very sad thing that nowadays

there is so little useless

information.

Oscar Wilde

Recent technological advancements have led to significant changes in modern society.
Nowadays, the world is surrounded by several digital applications, which are daily generating
large volumes of data. These applications can be found in many different areas, such as healthcare,
meteorological analysis, stock market analysis, network traffic monitoring, businesses, social
networking, etc.

Many of these applications produce online data. In literature, this data is called data

stream. A data stream is a sequence of instances continuously produced, usually at high speed.
This data is potentially unbounded in size because its generation can occur without interruption.
Additionally, the data generated may not be strictly stationary, meaning that its underlying
probability distribution can change over time, sometimes presenting temporal correlation (AG-
GARWAL, 2007).

In the past few decades, extracting knowledge from data stream has been the core of
much academic research and many business applications. For example, the knowledge from the
data collected by smartphones, or wearable devices, can help healthcare professionals to monitor
the daily routines of their patients (DOBBINS; RAWASSIZADEH; MOMENI, 2017). Another
example is in businesses, where valuable knowledge can be used to predict users interests in
advertisements, to recommend entertainment options and to make decisions regarding loan
applications (FERREIRA et al., 2019).

In this thesis, we focus on proposing novel incremental learning methods capable of
learning from data stream. Each proposed algorithm was designed to achieve maximum predictive
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performance with minimum time and memory costs. This chapter is structured as follows: we
briefly describe in Section 1.1 the main challenges involving data stream. In Section 1.2, we
present our objectives and research questions. In Section 1.3, we present our main contributions.
Finally, we present the thesis outline in Section 1.4.

1.1 Learning From Data Streams
The classical machine learning approaches are based on batch learning, usually coming

from fixed-size datasets. In these approaches, ideally, the model is trained with instances that
represent all classes that are part of the dataset application domain. After that, the model is
tested on a new dataset. It is expected that the test dataset is from the same stationary probability
distribution as the train dataset (GAMA, 2010).

Data streams impose a challenge to classical machine learning because they have char-
acteristics that are limitations to these approaches. Since they are designed for static datasets,
they are not capable of analysing continuous data, mainly due to memory constraints. Moreover,
they do not allow for incremental learning, meaning that they are not able to detect and adapt to
changes over time.

Data streams continuously generate new data and, because of their non-stationary nature,
the underlying probability distribution of this new data can change over time. This means that
algorithms that learn from data streams need to be able to adapt to a dynamic environment.
Due to this and to memory constraints, learning from this type of data requires real-time
processing (AGGARWAL, 2007). Depending on the changes in the probability distribution, three
different phenomena can occur (GAMA et al., 2014):

∙ Concept drift refers to changes in the statistical properties of a concept that was previously
learned by a model;

∙ Novel concepts are patters that were not present during the training of a model, but appear
in the stream;

∙ Recurring concepts are a special type of concept drift in which concepts forgotten by the
model may reappear in the future.

Due to changes in the probability distribution, a learning algorithm needs to update its
model with the incoming data. Otherwise, the model can become outdated and its predictive
performance can decrease over time. Figure 1 illustrates what can happen to a model that does
not update itself when the data distribution changes. In Figure 1a, the model correctly classifies
the input data because the data is from the same probability distribution as the training set. In
(b), the model misclassifies some of the data because of concept drifts in the data from the two
classes (red diamond and blue circle). Finally, in (c), the model misclassified all data from the
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(a) Original data (b) Concept drift (c) Novel Concept

Figure 1 – Classification in different situations. Each geometric figure (circle, diamond and square)
represents a concept and the dashed line represents the model.

new concept (green square) because the model only learned two concepts, the ones represented
by the blue circle, and the red diamond. In this case, the data from the new concept is classified
as the blue circle.

In order to act in data stream, one important property for a learning algorithm is to be
incremental (GAMA, 2010). Incremental learning can, for example, deal with concept changes 1

by explicitly detecting changes in parts of the stream (BIFET et al., 2013; BIFET; GAVALDÀ,
2007; LOSING; HAMMER; WERSING, 2016). For that, the model needs to assess whether the
data from different periods of time follows the same probability distribution. Usually, the data
from past concepts is compared with the data from the current stream.

Many of the machine learning approaches proposed for data stream are based on su-
pervised learning. Most of them deal with concept changes by continuously calculating the
predictive performance of the classification model. In order to do so, the accuracy of e.g. a
classification model is monitored over time (GAMA et al., 2004; ZLIOBAITE; KUNCHEVA,
2009; MASUD et al., 2013). A concept change is detected when the accuracy falls below a given
threshold. The essential assumption here is that label of this incoming data is available.

There are two main problems of assuming that the arriving data is labelled. First, the
process of labelling usually has a cost, which increases with the complexity and the need of
domain expertise. Second, if the data arrives at a high speed, there will not be enough time to
label the data. Hence, for many applications, we can assume that the data arrives unlabelled.

Due to the lack of labelled data, the update of the model can rely only on the predictive
attribute values. In this situation, to detect concept changes and update the model, it is possible
to use clustering algorithms. These algorithms can extract patterns, clusters, from the current
stream and compare them with previous patterns from other periods of the stream. The clusters
can be used to summarise the relevant data by letting a set of clusters represent a concept.

1 novelties and concept drift
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Furthermore, they can be updated to incorporate concept changes and to detect changes in the
stream (AGGARWAL, 2007).

1.2 Research Objective and Research Questions
In this thesis, we aim to design new unsupervised and incremental machine learning

algorithms for learning concept changes in data streams. Our focus is on algorithms able to
automatically choose the moment to update their models. In that sense, the update of a model
should be done with little or no external feedback. To achieve this goal, we address the following
objectives:

∙ To develop unsupervised learning algorithms that can detect and learn concept changes in
data streams;

∙ To develop algorithms for multi-class problems; thus, models that can detect more than
one concept change at the same time;

∙ To develop algorithms that can differentiate novelties from concept drift;

∙ To evaluate the algorithms’ predictive performance, considering their recall over time.

For that, this research will be based on the following specific research questions:

∙ RQ1: How to reduce the amount of data used to train a model and how to select the most

representative data to update a model in data streams?

∙ RQ2: How to incrementally learn concept changes in data streams, considering an unsu-

pervised approach, without storing data for future analysis?

∙ RQ3: How to combine clustering partitions from different clustering techniques and use

them as a classification model in data streams?

∙ RQ4: In which data streams can an ensemble model of clusters from different clustering

approaches achieve higher predictive performance than an ensemble model of clusters

from the same clustering approach?

∙ RQ5: How to use a set of auto-encoders for classification of data streams?

The answers to these research questions will enable us to develop algorithms that satisfy
one or more of the objectives. Therefore, we address the research questions in the following
chapters. In Chapter 3, RQ1 is addressed in the context of concept drift. The RQ2 is addressed in
Chapter 4. In Chapter 5, we answer the questions RQ3 and RQ4. We address RQ5 in Chapter 6
in the context of human activity recognition, a real-world data stream application.
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1.3 Contributions of this thesis

In this section, we give an overview of the contributions of this thesis and its motivations.

Data streams pose several challenges for machine learning applications. Among these
challenges, this thesis focuses on proposing solutions to the topics of concept drift and novelty
detection in data streams. We consider data streams with little labelled data, for these we
proposed semi-supervise approaches. We also consider data streams without labelled data, where
we proposed unsupervised approaches. The thesis conceptually consists of five parts.

The first part address to the problem of concept drift in data streams with little labelled
data. In data streams applications, the classification algorithm k-nearest neighbours (kNN) is
often implemented with a sliding window, also called temporary memory, that contains a certain
amount of data, which is used as its training data. This training data is called prototypes and,
ideally, it should be representative of the concepts presented in the data stream. In this first
chapter (Chapter 3), we investigate how to select prototypes to incrementally update a model
based on kNN. As a result of the investigation, we propose a method called Sliding Window
Clusters (SWC). This method stores into a sliding window a set of clusters, summarising the
concepts, and the representative data, according to a statistical test.

In the second part, we study unsupervised solutions to learn concept drift and novelty
detection in data streams with unlabelled data. In Chapter 4, we propose a new method based
on the kNN classifier that incrementally detects and learns the concept changes. This method,
called Higia, uses micro-clusters as prototypes to model the current concepts in a stream. Each
micro-cluster has a centroid, a radius and a threshold. These properties are used to define if the
incoming data will be classified as a normal class, concept drift or novelty. Each micro-cluster
can be incrementally updated when a new instance is close to its centre. Furthermore, new
micro-clusters can be incorporated into the model when novelties are detected in the stream.

The two methods proposed in Chapter 3 and Chapter 4 are both based on a single model,
which contains prototypes extracted by a single clustering partition. In the third part (Chapter 5),
we study how to combine clustering partitions to build an ensemble model in data streams, since
we assume that an ensemble can have a higher predictive performance than a single model. We
propose a method based on an ensemble obtained by the combination of clustering partitions
from one clustering algorithm, which we refer to as HoCluS. We also propose another method
based on an ensemble of different clustering algorithms, referred to as HeCluS. Finally, in this
chapter, we also compare the predictive performance of these methods considering different data
streams. Both methods allow for the use of clustering techniques with different bias, in order to
obtain more robust classification models.

In the fourth part of this thesis (Chapter 6), we propose a new method for Human Activity
Recognition, a real-world data stream application. We propose an ensemble model to classify
human physical activities based on auto-encoders, called Ensemble of Auto-Encoders (EAE).
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In EAE, each auto-encoder is trained with data from one class. Thus, in the context of human
activity recognition, each auto-encoder is associated with a label/activity. As new data arrives
for classification, the reconstruction loss is calculated for each auto-encoder. The data is then
classified with the label from the auto-encoder with the lowest reconstruction loss.

In Chapter 7, we investigate the impact of varying the hyperparameters associated with
most methods proposed for human activity recognition applications. In this study, we also analyse
how data from different users can impact on the accuracy of a predictive model. We measure the
energy and time consumption to process and to classify new data. We conduct the experiments
on a hardware system running an Android mobile operating system.

1.4 Thesis outline

This thesis is presented as a series of papers in the form of self-contained chapters. These
are papers that have been published and peer-reviewed. Each chapter represents the progress of
this research and the solutions proposed to the problems identified by this research. One can
notice that there are similarities between the chapters, mainly because of the literature review.
More concretely, the rest of this thesis is based on the following papers:

Chapter 3, A Cluster-Based Prototype Reduction for Online Classification (GARCIA;
CARVALHO; MENDES-MOREIRA, 2018). This paper presents a semi-supervised method,
called SWC, that incrementally updates a classification model when concept drift is detected.
This paper was published in the proceedings of the International Conference on Intelligent Data
Engineering and Automated Learning, 2018.

In Chapter 4, Online Clustering for Novelty Detection and Concept Drift in Data

Streams (GARCIA et al., 2019c), presents an unsupervised approach for concept changes
in data streams. This paper was published in the proceedings of the EPIA 2019 conference.

In Chapter 5, An Ensemble of Unsupervised Approaches for Novelty Detection in Data

Streams, we propose two ensembles of clustering for data streams. This paper, which has
been submitted to the Machine Learning Journal, is an extension of a previous work. The
paper (GARCIA et al., 2019a) was published in the proceedings of the Discovery Science 2019
conference.

Chapter 6, An Ensemble of Autonomous Auto-Encoders for Human Activity Recog-

nition (GARCIA et al., 2021), proposes an ensemble of auto-encoders for human activity
recognition. This chapter was published in the Neurocomputing Journal 2021.

Chapter 7, A Study on Hyperparameter Configuration for Human Activity Recogni-

tion (GARCIA et al., 2019b). This paper presents an empirical study on how the hyperparameters
of an algorithm for human activity recognition can affect the model performance in terms of
accuracy and computer resources. This chapter was published in the proceedings of the Inter-
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national Conference on Soft Computing Models in Industrial and Environmental Applications,
2019.

Finally, Chapter 8, gives an overview of the main contributions and findings in this PhD
thesis.
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CHAPTER

2
BACKGROUND

How hard it must be to live only

with what one knows and what one

remembers, cut off from what one

hopes for!

Albert Camus, The Plague

Data stream is related to data constantly generated at a high rate and in a non-stationary
way. Learning from data stream requires machine learning algorithms capable of dealing with
large volumes of data, real-time processing, and online learning.

In this chapter, we formally describe data stream and its constraints to classical machine
learning algorithms. We also discuss how to summarise data for future analysis. Additionally,
we define concept drift and novelty detection. Finally, we present human activity recognition as
an example of a real-world application of data stream.

2.1 Data Stream
In machine learning literature, a data stream D is represented as a potentially infinite

sequence of data. This data is composed of instances, each one arriving at a timestamp t. Thus,
each instance at time t is denoted by Xt . In supervised problems, Xt can be associated to a target
class, yt . According to this description, a data stream can be represented as (FARIA; GAMA;
CARVALHO, 2013):

Dt = {(X1,y1),(X2,y2), ...,(Xt ,yt)} .

Data streams has a non-stationary nature; therefore, the probability distribution that
generates the data can change over time (AGGARWAL, 2007). Depending on these changes,
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different phenomena can occur. In literature, these phenomena are named as concept drift,
recurrent concept or novelty/new concepts. In these situations, a model must update itself;
otherwise, its predictive performance can decrease over time. Thus, a learning algorithm has to
take into account the following characteristics of data streams:

∙ It is a sequence of instances arriving online, usually at a high rate;

∙ It is potentially unbound in size;

∙ It is not possible to store all data into the main memory for future analysis;

∙ The probability distribution that generates the data is possible non-stationary.

In data streams, due to memory constraints, it is not possible to store all data into the main
memory. However, there are some strategies to store parts of it. One of these strategies is the use
of summarising approaches (AGGARWAL, 2007; GAMA, 2010; ZHANG; RAMAKRISHNAN;
LIVNY, 1996). The idea is to maintain only the statistical information of past concepts and
update it with the new data. The summary information of the stream should preserve the meaning
of the original data, by representing its concepts, and allow for the efficient analysis of less
data (AGGARWAL et al., 2003).

2.2 Statistical Summary of Data Streams

Considering that the data stream is unbounded in size, it is not possible to store all data
in the main memory for consultation. However, a compact representation of the data can be used
for storing statistic summaries of the data stream (SILVA et al., 2013).

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) (ZHANG; RA-
MAKRISHNAN; LIVNY, 1996) is a clustering algorithm that uses feature vectors for sum-
marising data. Each vector Cluster Feature Vector (CF-Vector), CF = (N, ~LS, ~SS), is a condense
representation of a cluster from the dataset. In that sense, a cluster is a group of similar data,
according to a similarity measure like Euclidean distance (PANG-NING et al., 2006). The
CF-Vector has three components:

∙ N: the number of instances;

∙ ~LS: the linear sum of the N instances, i.e., ∑
N
i=1
−→
Xi ;

∙ ~SS: the sum of squared the N instances, i.e., ∑
N
i=1
−→
Xi

2.

From these three components is possible to compute other statistical measures, such as:
mean, standard deviation and correlation of features (GAMA, 2010). Besides, the CF-Vector
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has incremental and additive properties that allow for the online update of the clusters. This
properties are as follows:

∙ Additivity: it is possible to join two or more CF-Vector with the Theorem of Additiv-
ity (ZHANG; RAMAKRISHNAN; LIVNY, 1996). As an example, considering the two
CF-Vectors CF1 e CF2:

CF1 +CF2 = (N1 +N2, ~LS1 + ~LS2, ~SS1 + ~SS2).

The reverse operation is also valid, which means that it is possible to separate clusters.

∙ Incrementality: The Theorem of Additivity can also explain the property of incrementality.
A new instance, Xt , can be inserted into a CF-Vector by updating its statistics properties as
follows:

~LS← ~LS+XN (2.1)

~SS← ~SS+(XN)2 (2.2)

N = N +1 (2.3)

The CF-Vector is a data structure that can be adapted to summarise data stream. It is
efficient because it stores less data and contains information that is accurate enough to calculate
the statistical measures used by learning algorithms. Note that the original CF-Vector was not
originally designed for data streams, however many adaptations of it were proposed, such us:
CluStream (AGGARWAL et al., 2003), DenStream (CAO et al., 2006), ClusTree (KRANEN et

al., 2011).

In this thesis, we use the CF-Vector properties in Chapter 3, Chapter 4 and Chapter 5.
Thus, a CF-Vector is used to represent a concept, Ct , in a timestamp t. Each concept contains:

∙ a centroid ct : a vector that contains the average of all data inside the cluster;

∙ a radius rt : the distance between the centroid and the farthest instance from the clus-
ter (MASUD et al., 2010);

∙ a threshold T : a constant value multiplied by the radius of the concept.
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2.3 Concept Drift

In data streams, the data distribution can unexpectedly change over time. In that sense,
concept drift can be considered as the natural tendency of a data stream to evolve over time (AG-
GARWAL, 2007). In which, essentially, can be a change in the stochastic process that generates
the data. These changes can occur, for example: due to changes in personal interesting about an
online news (ŽLIOBAITĖ; PECHENIZKIY; GAMA, 2016); a medicine impacting on a patient
blood pressure (MELLO et al., 2019); changes in the patterns of physical activities on an elderly
indicating immediate emergencies, such as falls (ZDRAVEVSKI et al., 2017).

There are many definitions of concept drift in literature (GAMA et al., 2014; ŽLIOBAITĖ;
PECHENIZKIY; GAMA, 2016; AGGARWAL, 2007; MORENO-TORRES et al., 2012). In
this thesis, we follow the notation used in (GAMA et al., 2014). In that sense, considering a
distribution P, in a given time t, on the instance X and label y. The concept drift happens when
P suffers changes affecting the conditional probability, X : Pt(X ,y) ̸= Pt+1(X ,y). As a result, a
model built during time t could be outdated in time t +1.

The term concept drift is used as a generic term to describe many different changes. To
simplify, two types of drifts can be distinguished, depending on the nature of the problem, as
follows (GAMA et al., 2014):

∙ The posterior probability P(y|X) may change over time. These changes are independent of
changes in P(X);

∙ The distribution of P(X) changes without affecting P(y|X).

In this thesis, we focus our research on the drifts that change the data distribution without
knowing the true labels; therefore, P(X) changes. We are interested in problems related to
concept drift in situations where labels are never available (unsupervised learning); or where
some percentage of labels is available (semi-supervised learning).

2.4 Novelty Detection

In data streams, not only old concepts can change over time, but also new concepts can
appear. The new concepts are patterns that were not present during the training phase of a model
but appear later in the stream (FARIA; GAMA; CARVALHO, 2013).

There are several real-world applications in which new patterns can appear online: to
perform intrusion detection in network systems (SPINOSA; CARVALHO; GAMA, 2008), to
detect fraudulent credit (CHANDOLA; BANERJEE; KUMAR, 2009), to detect new physical
activities performed by a person (GUO et al., 2016). In healthcare applications, for example,
monitoring sensing data from patients can help medical staff to receive a warning message
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immediately after an event happens, such as falling. That way, sick people can receive medical
attention as soon as needed.

Novelty detection refers to the ability of models to learn new concepts (GAMA, 2012).
In the presence of new concepts, a model needs to extend its representation by learning the new
concepts. In that sense, this is different from batch methods because the data from the stream
does not match its current model. Thus, for machine learning models, the challenge of detecting
the new concepts relies on defining what is abnormal and what is normal to its model (GAMA,
2012).

The abnormal classes can also be named as not normal (SPINOSA; CARVALHO;
GAMA, 2009), anomaly (MASUD et al., 2013) or novel/new (FARIA; GAMA; CARVALHO,
2013) classes. We followed the notation from (FARIA; GAMA; CARVALHO, 2013). In the
latter, normal concepts are a set of classes used to train the classification model and novelty
concepts are the new classes that emerge over time (FARIA; GAMA; CARVALHO, 2013). This
approach can be consider as a binary classification task, composed by normal and abnormal

classes (SPINOSA; CARVALHO; GAMA, 2009). However, it can also be consider as a multi-
class classification task (FARIA; GAMA; CARVALHO, 2013), in which more than one new
class can emerge in the stream.

Several methods for novelty detection in data streams are divided in two phases: an offline

and an online phase (SPINOSA; CARVALHO; GAMA, 2008; FARIA; GAMA; CARVALHO,
2013; MASUD et al., 2010; ABDALLAH et al., 2016; MELLO et al., 2019). In the offline phase,
a model (or an ensemble of models) is trained with a static and labelled dataset. Considering, for
example, that this dataset has m classes, then Y Nor = {y1,y2, ...,ym} represents the set of normal

classes. The initial model trained with this dataset is used to classify the new data.

In the online phase, the new data arrives for classification as a stream of data. The model
classifies the new data as normal or as unknown. The unknown data corresponds to patterns that
significantly differentiate from the normal classes. Later, this unknown data can be identified as
outlier, concept drift or novelty.

Novelty and outlier are correlated terms. Both are related to patterns that are different
from the normal patters (FARIA et al., 2016). However, we assume that the outliers are undesired
patterns in non-dense areas, which means that they cannot form clusters. The outliers are
candidates to aberrant data that could be resulted of human error, noise in the sensor reading or
malicious activities (GOGOI et al., 2011). They are not interesting to learn because there is no
guarantee that they represent concepts.

On the other hand, a novelty is a group of similar data found in a dense area. Thus,
the novelties are part of the natural evolution of the stream, and the model must learn them.
Moreover, a dense group of data should be required as evidence of the appearance of a novel
concept (GAMA, 2010).
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When a novel class (or concept) with label ym+1 emerges, a novelty detection algorithm
must be able to detect it and update the model. One strategy of novelty detection is storing the
unknown data into a buffer, temporary memory. Considering that the buffer contains the potential
novelties and concept drift, the buffer should be analysed periodically. This analysis can be done
by clustering this data and compare the clusters found with the normal concepts.

In that sense, each new cluster should be labelled as a concept drift if the similarity
between the new cluster and its most similar normal cluster is inside of a given boundary; or a
novelty if the similarity between the cluster and all normal concepts is outside of each normal
concept boundary. In this thesis, we define the boundary of a concept, called here as the threshold,
as a constant value multiplied by the radius of the concept.

2.5 Human Activity Recognition
Data streams can be considered as stochastic processes, in which the instances are

independent from each other (GAMA, 2010). However, when the data is from recording devices,
this data likely has temporal dependence (ŽLIOBAITĖ et al., 2015). This means that the data
stream is consistent with consecutive instances that exhibit temporal dependence, also known as
temporal correlation, between each other.

An example of an application of data streams with temporal dependence is in Human
Activity Recognition. Human Activity Recognition is a research field focused on the use of
sensing technology to classify human physical activities and to infer on human behaviour
(DOBBINS; RAWASSIZADEH; MOMENI, 2017). The data collected from sensing devices is a
potential infinity sequence of data that usually arrives at a high rate. This data can be unbounded
in size if we consider that the data is continuously collected. The sensing data is collected from
devices such as accelerometers, gyroscopes, and magnetometers; located on one or more body
positions of an individual. Furthermore, the dataset contains the sensing data from a group of
people performing a set of physical activities.

Most machine learning approaches for human activity recognition are based on a model
trained with a dataset containing sensing data (LARA; LABRADOR, 2013; MANNINI et al.,
2013; GUO et al., 2016). It is unlikely that this model will have the same predictive performance
for all types of people. Due to many factors like age, physical conditions and health; each
individual might perform the same activity differently (KRISHNAN; COOK, 2014). Besides, it
is expected a natural change in the way an individual performs a physical activity. For example,
the way a person runs can change as they get at older ages. Moreover, the preference for physical
activities can be different from person to person. Thus, the model needs: to adapt to different
individuals; to adapt itself over time; to learn new activities when they are detected.

In this thesis, we address the problem of human activity recognition in Chapter 6 and
Chapter 7.
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Abstract

Data stream is a challenging research topic in which data can continuously arrive with
a probability distribution that may change over time. Depending on the changes in the data
distribution, different phenomena can occur, for example, a concept drift. A concept drift occurs
when the concepts associated with a dataset change when new data arrive. This paper proposes
a new method based on k-Nearest Neighbors that implements a sliding window requiring less
instances stored for training than existing methods. For such, a clustering approach is used to
summarise data by placing labelled instances considered similar in the same cluster. Besides,
instances close to the uncertainty border of existing classes are also stored, in a sliding window,
to adapt the model to concept drift. The proposed method is experimentally compared with
state-of-the-art classifiers from the data stream literature, regarding accuracy and processing time.
According to the experimental results, the proposed method has better accuracy and less time
consumption when less information about the concepts are stored in a single sliding window.
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3.1 Introduction

In real-world data analysis, data can continuously arrive in streams, with a probability
distribution that can change over time. These data are known as data streams. Depending on the
changes in the data distribution, different phenomena can occur, like concept drift (GAMA et al.,
2014). In these situations, it is essential to adapt the classification model to the current stream;
otherwise, its predictive performance can decrease over time.

Several algorithms proposed for data stream mining are based on online learning (FARIA;
GAMA; CARVALHO, 2013; BIFET et al., 2013; GAMA et al., 2014; LOSING; HAMMER;
WERSING, 2016). Some of them are based on the kNN algorithm. In the data stream mining,
the kNN algorithm maintains a sliding window with a certain amount of labelled data, which is
used as its training data.

Other algorithms from the literature deal with concept drift by explicitly detecting
changes in parts of the stream, comparing the current concept with previous concepts from time
to time (LOSING; HAMMER; WERSING, 2016). Some of them continuously calculate the
model classification error. For such, they assume that the label of the data arriving in the stream
is available.

However, there is a cost associated with the data labelling process that can become
prohibitive or unfeasible when data arrive in high speed or volume. In online classification, the
labelling of incoming instances can have a high cost (ZLIOBAITE et al., 2014). The lack of the
label makes the measure of classification error a problematic task.

Despite its simplicity, kNN has been largely used in literature, because it is nonparametric,
favouring its use in scenarios with few available information and with known concepts changing
over time (BIFET et al., 2013). However, the use of a sliding window may ignore instances with
relevant information about persistent concepts. Furthermore, the size of a sliding window affects
its efficient use.

This article proposes Sliding Window Clusters (SWC), a method based on kNN that
implements a sliding window whose number of instances stored can be reduced. SWC sum-
marises data streams by creating a set of clusters, each one representing similar labelled instances.
Instances close to decision border of each cluster are also stored, so they can be used to adapt the
model to concept drift.

An experimental evaluation shows that SWC can increase the predictive performance
and reduce both computational and time consumption than related methods based on kNN and
sliding window.

This paper is structured as follows. Section 3.2, presents previous related works using
kNN and sliding window. Data stream and concept drift are introduced in 3.3. The proposed
method is described in Section 3.4. Sections 3.5 presents the experimental setup and analyses the
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results obtained. Finally, Section 3.6 has main conclusions and points out future work directions.

3.2 Related Work

This section briefly presents previous works using kNN for data stream classification
with concept drift. These works use variations of sliding window to store the training instances.

One alternative of online learning is to randomly select instances to maintain or discard
in the sliding window. This is the case of the method Probabilistic Approximate Window (PAW)
method (BIFET et al., 2013), a probabilistic measure used to decide which instance will be
discarded from the sliding window when a new instance arrives. Thus, the size of the window
is variant and represents a mix of outdated and recent relevant instances. The kNNW method
combines the PAW method couplet with the kNN classifier.

Another related method, ADaptive sliding WINdowing (ADWIN) (BIFET; GAVALDÀ,
2007), is a concept drift tracker able to monitor changes in data streams. The algorithm automat-
ically grows the sliding window when no change is detected in the stream. When a change is
detected, the algorithm shrinks the sliding window and forgets the sub-window that is outdated.
In the combination of kNN with PAW and ADWIN (BIFET et al., 2013), kNNWA, ADWIN is
used to keep only the data related to the most recent concept from the stream, the rest of the
instances are discarded.

A deficiency of updating instances using a sliding window is the possibility to forget
old but relevant information. To avoid losing relevant information, another method named Self
Adjusting Memory (SAM) (LOSING; HAMMER; WERSING, 2016), to adapt a model to
concept drift by explicitly separating current and past information. SAM uses two memory
structures to store information, one based on short-term-memory and the other on long-term-
memory. The short-term-memory contains data associated with the current concept, and the
long-term-memory maintains knowledge (old models) from past concepts. SAM is couplet with
a kNN classifier.

The implementations and variations of kNN for data stream mining are available in the
MOA framework . Due to memory and computational limitations, the implementations use a
fixed-size window of 1000 labelled instances.

3.3 Problem Formalisation

A possible unbounded amount of data can sequentially arrive in a data stream. These data
can often change their distribution over time, which may require the adaptation of the current
model context (GAMA et al., 2014).

Formally, a data stream is a sequence of instances, potentially infinity that can be
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represented by (FARIA; GAMA; CARVALHO, 2013):

Dtr = {(X1,y1),(X2,y2), ...,(Xtr,ytr)}

where Xtr is an instance arriving in time tr and ytr is the target class. Each instance needs to be
processed only once due to finite resources.

Concept drift is a change in the distribution probability of target classes (GAMA et al.,
2014). Formally, a distribution P in a given time tr conditioned by the instance X and label y can
suffer changes affecting the conditional probability Ptr+1(X ,y). As a result, a model built during
time tr could be outdated in time tr+1.

X : Ptr(X ,y) ̸= Ptr+1(X ,y)

3.4 Methodology
In data stream mining, an ideal classifier should be able to learn the current concept in

feasible time without forgetting relevant past information (BIFET et al., 2013).

The proposed method is described in Algorithm 1. Instead of storing all instances that fit
in a sliding window (for representing both old and current concepts), SWC stores compressed
information about concepts and instances close to uncertainty border of each class. As the
previous methods, SWC is combined with the kNN classifier in the MOA framework (BIFET et

al., 2010a).

Algorithm 1 – SWC: Online Window Update
1: input: Xtr, W, T, ρ

2: output: W
3: rand← random(0, 1)
4: if rand≤ ρ then
5: for all w in W do
6: Let Xtr be the nearest to w (w ∈W )
7: dist← EuclidianDistance(Xtr,w)
8: if dist < wradius then
9: W ←U pdateCluster(Xtr,w)

10: else
11: if dist ≤ T then
12: W ← W ∪ Xtr
13: end if
14: end if
15: end for
16: end ifreturn W

A more detailed description of how SWC works is presented next. Initially, all instances
arriving from the stream are stored in the form of clusters. The clusters are created using the
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CluStream algorithm (AGGARWAL et al., 2003). A constrain implying that each cluster must
contain only instances from the same class was included.

As data arrives, a parameter based on probability, ρ , is used to decide if a new instance,
Xtr, will be incorporated to the model W . If Xtr is inside a radius from an existing cluster, the
instance is incorporated to this cluster. However, if Xtr inside the uncertainty border, Xtr is
incorporated to the model alone, outside the existing clusters, for such, the uncertainty border is
defined as the area outside the radius of a cluster, but inside a given threshold.

As is illustrated in Figure 2, if the instance, X1, is inside the radius of the closest cluster,
then it will be incorporated to the existing cluster, however, if the instance, X2, is closer to an
uncertainty border, it is stored alone.

X2

C1 C2 C3 C4
X2

X1

Sliding
Window

Stream

X1X2Xm P < 0.2

X1

C1

Figure 2 – Instances X1 and X2 are stored within the sliding window. The first instance, X1, is closer to
cluster C1 and inside its radius. The second instance, X2, is outside cluster area, but close to the
uncertainty border.

It must be observed that not all instances in the stream are included into the sliding
window. For each instance, arriving in the stream, SWC randomly decides if the instance will
be learned or not. A similar procedure is used in (BIFET et al., 2013), which uses a probability
ρ = 0.5. SWC uses a lower probability, consider that the learning process can be done with a
lower probability of ρ = 0.2, without significant predictive performance loss, but with a lower
processing cost.

3.5 Experimental Evaluation

This section experimentally compares SWC with other methods implemented in the
MOA framework that use kNN with sliding window, namely kNN, kNNW , kNNWA and SAM.
The experimental evaluated used was Interleaved Test-Train to incremental learning (BIFET et

al., 2013).
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Table 1 – Characteristics of datasets evaluated.

Datasets Samples Features Class

SEA 5.000 / 50.000 (total) 3 2
Mixed Drift 60.000 / 600.000 (total) 2 15
Rotating Hyperplane 20.000 / 200.000 (total) 10 2
Forest Cover Type 58.101 / 581.012 (total) 54 7
Airlines 53.938 / 539.383 (total) 4 2
Moving RBF 20.000 / 200.000 (total) 10 5

3.5.1 Datasets

Table 1 describes the datasets used in the experiments. Before the streaming, in an offline
phase, all methods started with a batch of labelled data representing 10% of each dataset. The
remaining data arrived in the stream. Real and artificial datasets were used.

Artificial Datasets

The SEA Concepts Dataset (STREET; KIM, 2001) has four concepts. A concept drift
occurs at each 15.000 instances, with different thresholds for the concept.

The Rotating Hyperplane dataset is based on a hyperplane of d-dimensional space which
is continuously changing in position and orientation. It is available in the MOA framework and
was used in (BIFET et al., 2013; LOSING; HAMMER; WERSING, 2016).

Moving RBF is a dataset, generated by MOA framework, based on Gaussian distributions
with random initial positions, weights and standard deviations. Over time, these Gaussian
distributions suffer changes. This dataset is used by (BIFET et al., 2013; LOSING; HAMMER;
WERSING, 2016).

Mixed Drift (BIFET et al., 2013; LOSING; HAMMER; WERSING, 2016) is a mix of
tree datasets: Interchanging RBF, Moving Squares and Transient Chessboard. Data from each
dataset are alternatively presented in the stream.

Real World Datasets

The Forest Cover Type (DHEERU; TANISKIDOU, 2017) data set is a well-known
benchmark for the evaluation of algorithms for data stream mining, being used continuously
to validate proposed methods (LOSING; HAMMER; WERSING, 2016; BIFET et al., 2013;
ZLIOBAITE et al., 2014).

The Airlines dataset has data from US flight control (ZLIOBAITE et al., 2014). It has
two classes, one indicating that a flight will be delayed, and the other that the flight will arrive on
time.



3.5. Experimental Evaluation 49

3.5.2 Results and discussion

The proposed method, SWC, is compared with the methods kNN, kNNW , kNNWA and
SAM. For all methods, one nearest neighbour (k = 1) is adopted. The remaining parameters use
default values, including a fixed window size (w = 1000).

The ρ parameter, chance of updating the model, in the SWC method is defined for
an acceptable trade-off between accuracy and time cost. A parameter of threshold T = 1.1,
uncertainty border, is also defined for each cluster. The threshold is multiplied by the radius of
each cluster and indicates how much the cluster can expand. Both parameters were explained in
Section 3.4.

Experiments were performed to decide the value of ρ and for SWC. Figure 3 shows that
there is an increase of accuracy with ρ = 0.5, meaning that an instance has 50% of chance to be
learned by the model. However, the selected value was ρ = 0.2, which results in a better balance
between accuracy and time cost.
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Figure 3 – SWC accuracy performance of all datasets varying ρ value in 5% to 50%.

Table 2 shows the average accuracy and total time cost. It must be observed that accuracy
is the measure of instances correctly classified over test/train interleaved evaluation (BIFET et

al., 2013).

The results show that SWC is competitive with state-of-the-art SAM and is considerably
faster. The method baseline kNN presented the worst performance, which was expected, once it
does not learn over time. However, it is a good baseline to measure how much time each other
method take to learn new instances.

Both methods kNNW and kNNWA present similar accuracy rates. However, kNNWA has a
higher cost due to the use of ADWIN.
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Table 2 – Accuracy and time cost (in seconds) for each method.

Dataset kNN kNNW kNNWA SAM SWC

SEA 77.24 (6) 77.25 (9) 77.25 (10) 80.53 (18) 83.49 (8)
Mixed Drift 16.82 (68) 53.62 (94) 53.62 (102) 80.53 (2724) 72.46 (73)
Rotating Hyperplane 50.00 (63) 66.42 (88) 68.42 (91) 70.27 (318) 80.17 (70)
Forest Cover Type 23.46 (614) 54.56 (898) 55.56 (1024) 89.84 (3422) 93.12 (394)
Airlines 54.37 (91) 52.53 (163) 52.53 (146) 88.37 (1530) 93.07 (120)
Moving RBF 26.07 (62) 59.98 (89) 59.97 (100) 69.92 (1788) 64.22 (71)

Table 3 – P-values obtained for the multiple comparison post-hoc Nemenyi test.

kNN kNNW kNNWA SAM

kNNW 0.8536 - - -
kNNWA 0.7591 0.9998 - -
SAM 0.0090 0.1506 0.2201 -
SWC 0.0024 0.0621 0.0987 0.9962

Finally, although SAM and SWC obtained predictive accuracy similar to SWC, for some
cases, SWC was better. Besides, SWC is faster due to the use of only one sliding window with
compressed concepts and relevant instances.

To assess their statistical significance, a Friedman rank sum test combined with Nemenyi
post-hoc test (DEMSAR, 2006), both with a significance level of 5%, was applied to the
experimental results. A p− value = 0.000441 was obtained in the Friedman test, showing a
significant difference between the five methods. Additionally, the Nemenyi post-hoc test, Table 3,
showed meaningful statistical differences between the following pair of methods: SWC≻kNN.
There is no significant difference between all remaining pairs. However we emphasise that
SWC≻kNNW and SWC≻kNNWA have relatively low p-values (less than 10%).

3.6 Conclusion and Future Work

This paper presented a new method, SWC, based on k-Nearest Neighbors that implements
a sliding window that stores less training instances than related methods. SWC stores in a
sliding window clusters and instances close to uncertainty border of each class. The clusters are
compressed stable concepts, and the instances are possible drifts of these concepts.

Considering accuracy performance, time and storage cost, SWC was experimentally
compared with state-of-the-art related methods. According to the experimental results, SWC
presented higher predictive performance, with lower processing and memory cost than the
compared methods.

As future work, the authors want to distinguish concept drift from novelty detection and
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study an efficient alternative to discard outdated information. Besides, they intend to include an
unsupervised concept drift tracker.





53

CHAPTER

4
ONLINE CLUSTERING FOR NOVELTY

DETECTION AND CONCEPT DRIFT IN
DATA STREAMS

Collaborating authors

Mannes Poel
University of Twente, Enschede, The Netherlands

Joost N. Kok
University of Twente, Enschede, The Netherlands

André C. P. L. F. de Carvalho
University of São Paulo, São Carlos, Brazil

Abstract

Data streams are related to large amounts of data that can continuously arrive with
a probability distribution that may change over time. Depending on the changes, different
phenomena can occur, like new classes can appear, or concept drift can occur in existing classes.
New classes are patterns that are not seen during the training of the current classification model
but appear after some time. Concept drift occurs when the concepts associated with a dataset
change as new data arrive. This paper proposes a new algorithm based on kNN that uses micro-
clusters as prototypes and incrementally updates the micro-clusters or creates new micro-clusters
when novelties are detected. The proposed algorithm is experimentally compared with a state-of-
the-art classifier from the data stream literature and one baseline. According to the experimental
results, the proposed algorithm increases the predictive performance over time by incrementally
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learning changes in the data distribution.

4.1 Introduction

Data streams are known as data that can continuously arrive in streams, with a probability
distribution that can change over time (GAMA, 2010). As new data arrives, models previously
induced can become outdated (SILVA et al., 2013). In addition, due to the great amount of
data generated, it is not feasible to store all incoming data in the main memory, requiring the
removal of previous outdated data and online processing of incoming data (FARIA; GAMA;
CARVALHO, 2013; GARCIA; CARVALHO; MENDES-MOREIRA, 2018).

Depending on the changes in the data distribution, different phenomena can occur,
like concept drifts (GAMA, 2010; ZLIOBAITE et al., 2014) and novelties (FARIA; GAMA;
CARVALHO, 2013; MARKOU; SINGH, 2003). Concept drift refers to changes in the con-
cept definitions of a normal class (GAMA et al., 2014). Novelties concepts are patterns that
are not present during the training of the classification model but appear later on in the data
stream (FARIA; GAMA; CARVALHO, 2013). In these situations, it is important to adapt the
classification model to the current data distribution; otherwise, its predictive performance can
decrease along the time.

In this work, normal concepts are a set of normal classes used to train the classification
model, and novelties concepts are the new classes that emerge in a data stream along the
time (FARIA; GAMA; CARVALHO, 2013).

Novelty detection is a Machine Learning (ML) task based on the identification of
novelties in the data (DING et al., 2014). In data streams, the novelty detection can be divided into
two phases: offline and online phase. In the offline phase, a classification model is trained using
an initial, static, labelled dataset. In the online phase, the model is updated using unlabelled data
arriving in streams. The update occurs when the predictive performance of the model decreases,
usually because of a change in the data distribution. Thus, the model can be continuously
updated (GAMA et al., 2014).

One of the strategies to deal with novelty detection and concept drift is by explicitly
detecting changes in parts of the stream, comparing the current concept with previous concepts
from time to time (LOSING; HAMMER; WERSING, 2016). An example of this strategy is to
continuously calculate the model classification error. This strategy assumes that the data arriving
in the stream are labelled.

Another strategy is to store in a buffer the potential novelty classes instances. However,
the use of a buffer with a fixed size may ignore instances with relevant information about
persistent concepts. Furthermore, the size of the buffer affects its efficient use when the degree
and speed of changes vary in the data stream. Another deficiency of updating the model using a
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buffer with a fixed size is the possibility to forget old, but relevant information.

There are two problems in assuming that the arriving data is labelled. First, the process
of labelling an instance usually has a cost, which increases with the complexity and the need for
domain expertise. Second, if the data arrives in high speed, there will not be enough time to label
them. Thus, in this paper, we assume that the instances in a data stream come unlabelled.

Due to the lack of labelled data in data streams, the update of the model can rely only
on the predictive attribute values. Clustering algorithms can be used to deal with this limitation.
Clusters can summarise the main data profiles present in a data stream and be updated to
incorporate changes in class profiles and detect the appearance of novelties (AGGARWAL, 2007).
When clustering algorithms are applied to data streams, micro-clusters can be used as a strategy
to summarise data present in different periods of time (AGGARWAL et al., 2003). Each micro-
cluster can be structured as a temporal extension of a CF (Cluster Feature Vector) (ZHANG;
RAMAKRISHNAN; LIVNY, 1996), which is a compact statistical representation of a set of
instances.

In this paper we propose Higia, a novelty detection algorithm based on k-Nearest Neigh-
bor (kNN) that uses micro-clusters (AGGARWAL et al., 2003) as prototypes and incrementally
updates the micro-clusters or creates new micro-clusters when a novelty is detected. Higia

training is divided into offline learning and online learning. During the offline learning phase,
we assume that there is data from one or more normal classes. The instances from each normal
class are summarised into a set of micro-clusters. Each micro-cluster has instances from the
same normal class label. In the online learning phase, each instance close to a micro-cluster is
considered an extension of the micro-cluster, a concept drift. This instance is then used to adapt
the predictive model to this concept drift. However, if a set of new instances are close together in
a dense region, they are considered representative of new classes, named novelties.

This paper is structured as follows. Section 4.2, presents previous related works for
novelty and concept drift detection in data streams. The concepts data stream, novelty, concept
drift and micro-clusters are introduced in Section4.3. The proposed algorithm, Higia, is described
in Section 4.4. Section 4.5 presents the experimental setup and analyses the results obtained.
Finally, Section 4.6 has the main conclusions from this study and points out future work
directions.

4.2 Related Work

This section briefly presents previous works using ML-based approaches for novelty and
concept drift detection in data streams. Most of these studies use supervised algorithms to induce
classifiers.

Most of the classification algorithms proposed for data stream mining are based on
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online learning (FARIA; GAMA; CARVALHO, 2013; BIFET et al., 2013; GAMA et al., 2014;
LOSING; HAMMER; WERSING, 2016). Some of them continuously update the classification
model using true labelled data (MASUD et al., 2011; ABDALLAH et al., 2016; AL-KHATEEB
et al., 2012). However, as previously mentioned, true labels are not always available at feasible
time, delaying the updating of the classification model. Others classification algorithm apply
clustering algorithms in the arriving data when the data is unlabelled. Thus, the clusters are
representatives of normal and new classes (FARIA; GAMA; CARVALHO, 2013; SPINOSA;
CARVALHO; GAMA, 2009; HAYAT; HASHEMI, 2010; AMINI; TEH; SABOOHI, 2014).

One of the first algorithms to use clusters for novelty detection in data streams is OnLIne
Novelty and Drift Detection Algorithm (OLINDDA) (SPINOSA; CARVALHO; GAMA, 2009),
(SPINOSA; CARVALHO; GAMA, 2008). During the offline phase, a single model is built by
a set of clusters with data from the normal classes. After, in the online phase, whenever a new
instance arrives, it is calculated the distance between it and the closest cluster from the normal
model. When the distance is large, according to a threshold value, the instance is stored in a
buffer, where it can later be defined as a novelty after a clustering step.

Enhanced Classifier for Data Streams with novel class Miner (ECSMiner) (MASUD
et al., 2011) is an ensemble of models. Each model is represented by a set of clusters created
using the clustering algorithm k-means. ECSMiner also stores in a buffer the instances that are
distant from the normal clusters. The ensemble is updated when the instances stored in the buffer
receive their true label. Afterwards, the ensemble predictive accuracy is calculated. The model
with the lowest accuracy is updated with the novelties found in the buffer. While waiting for
labelled data, the model can wait for a long period of time to be updated, which could reduce the
accuracy of the ensemble. Besides, it is not always guaranteed that all data will be labelled, since
it may be application dependent.

Another novelty detection algorithm, MultI-class learNing Algorithm for data Streams
(MINAS) (FARIA; GAMA; CARVALHO, 2013), also uses an offline phase followed by an
online phase. In its offline phase, the data is separated by labels in subsets. From each subset, it
is generated a set of micro-clusters representing each class. In the online phase, the incoming
data is stored in a buffer if it is not identified by the model. When the buffer reaches a certain
size, a clustering algorithm is applied in the data stored in the buffer. Valid micro-clusters are
classified as extensions of normal classes or as novelties and are incorporated into the model.

4.3 Problem Formalisation

A data stream is a sequence of instances, potentially of infinity size, that can be formally
represented by (FARIA; GAMA; CARVALHO, 2013; GAMA et al., 2014; GARCIA; CAR-
VALHO; MENDES-MOREIRA, 2018): Dtr = {(X1,y1),(X2,y2), ...,(Xtr,ytr)}, where Xtr is an
instance arriving in time tr and ytr is the target class of this instance. Due to finite resources,
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each instance must be processed only once.

Concept drift is a change in the distribution probability of a problem target classes (GAMA
et al., 2014). Formally, the joint probability distribution Ptr+1(X ,y) over instances X and label y

can change over time, defined by tr, so that Ptr(X ,y) ̸= Ptr+1(X ,y).

Assuming that in the offline phase a dataset has m classes, the set Y Nor = {y1,y2, ...,ym}
represents the set of Normal Classes. These classes are used to build the initial classification
model. Afterwards, during the online phase, a novel class, ym+1, has the following property:
ym+1, /∈Y Nor i.e., ym+1 was not used in the training of the classification model, but emerges during
the online phase. Therefore, for any given new set of novel classes, Y New = {ym+1,ym+2, ...,yn}
any novelty detection approach must be able to fast detect novelties as they appear (FARIA;
GAMA; CARVALHO, 2013; GARCIA; CARVALHO; MENDES-MOREIRA, 2018). Consid-
ering the sets of normal classes and new classes, the total set of classes is simply defined as
Y = Y Nor∪Y New.

Micro-clustering (AGGARWAL et al., 2003) is a strategy commonly used to summarise
data coming from a stream in different periods of time. Each micro-cluster C j = (n, ~LS, ~SS, t)

stores four components: the number of its instances n, the linear sum of its instances ~LS, the
square sum of its instances ~SS and the timestamp, t, of when the last instance was incorporated
in the micro-cluster. By using these values, it is possible to calculate the centroid (c j = ~LS/n)
and the radius (rC j = 2× (~SS×n/n2 + ~SS/n2) ) of a micro-cluster, which can be used to classify
new instances.

4.4 Methodology

The proposed algorithm, Higia, is based on the assumption that in a data stream, an ideal
classifier should be able to learn the current concept in feasible time without forgetting relevant
past information (BIFET et al., 2013).

Higia induces a classification model using unsupervised online learning. The training also
occurs by an offline phase followed by an online phase. In the offline phase, a predictive model,
illustrated by Figure 4, is induced from a batch containing labelled data. As in (FARIA; GAMA;
CARVALHO, 2013), the model is composed of micro-clusters created using the CluStream
algorithm (AGGARWAL et al., 2003).
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In the online phase, illustrated by Figure5, as new data arrives, the model classify each
new instance as normal, extension or unknown. For the classification, the model calculates the
euclidean distance between each instance and the centroids of the micro-clusters from the normal

classes.

Algorithm 2 – Higia: Online Phase
1: input: Xtr, T, k
2: Let ψk be a list of the k nearest micro-clusters to Xtr
3: if majority of ψk have the same label then
4: Let C j be the nearest micro-cluster to Xtr
5: Let c j be the centroid of C j
6: Let radius

(
C j

)
be the radius of C j

7: dist← EuclidianDistance(Xtr,C j)
8: if dist ≤ radius

(
C j

)
then

9: update C j with Xtr
10: classify Xtr with the same label of C j
11: else if dist ≤

(
radius

(
C j

)
×T

)
then

12: create extension of C j with centroid Xtr and radius 0.5
13: classify Xtr with the same label of C j
14: end if
15: else
16: add Xtr to buffer
17: classify Xtr as unknwon
18: end if

Algorithm 2 describes how Higia works in the online learning phase when a new instance,
Xtr, arrives. First, Higia finds the k micro-clusters closest to Xtr. If the majority of these micro-
clusters have the same label and if the smallest distance is less than the radius of the nearest
micro-cluster C j, the instance is classified with the label of C j. Besides, C j is updated with Xtr.
If the distance is larger than the radius of C j but is smaller than a given threshold of T , the
instance is added to the model as an extension. The threshold is multiplied by the radius of C j

and indicates the maximum drift of C j.

If the distance is larger than the radius of C j and T , then Xtr is labelled as unknown and
stored in a buffer. The instances stored in the buffer are incrementally forming micro-clusters.
When a micro-cluster has a given amount of instances, defined by a hyperparameter, a novelty is
found, and the new micro-cluster is added to the model as a new class.

4.5 Experimental Evaluation
In this section, we present the experiments carried out to assess the predictive performance

of Higia. In these experiments, Higia was compared with two other algorithms, MINAS and the
kNN algorithm. From the algorithms described in Section 4.2, MINAS is the only unsupervised
algorithm for multiclass novelty detection. The kNN algorithm from the MOA framework (BIFET
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et al., 2010b) was used as a baseline. In the offline phase, all three algorithms are initialised with
the same batch of labelled data representing 10% of the dataset. We assume that the instances
in the training data are from the normal classes and that new classes can continuously appear
during the online phase.

We adopted the accuracy measure to evaluate the predictive performance of the models
over time. The accuracy is the amount of correctly classified data divided by the amount of
total data in a window of 1000 instances. We also use the total accuracy measure to evaluate the
performance for the whole dataset.

For more detailed analyses, we used the evaluation approach proposed in (MASUD et al.,
2011). This evaluation approach has 3 measures: MNew = the percentage of instances from the
new classes misclassified as existing class, FNew = the percentage of instances from the normal
classes classified as novelties, and Err = average misclassification error.

In the evaluation metric accuracy, the instances classified as unknown are counted as
misclassification. To analyse the algorithms in terms of misclassification of the total classes, (Y ),
without the influence of unknown, we used the Err measure.

4.5.1 Datasets

The experiments were performed on both synthetic and real datasets, commonly used in
novelty detection studies (MASUD et al., 2011; IENCO; ZLIOBAITE; PFAHRINGER, 2014;
AL-KHATEEB et al., 2012; FARIA et al., 2016; AGGARWAL et al., 2003; CAO et al., 2006).
The synthetic datasets are MOA, SynD, CDT, UG and Gear. The real dataset used was the Forest
Cover dataset.

The MOA dataset (FARIA; GAMA; CARVALHO, 2013) has concept drift, the appearance
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Table 4 – Statistical information for each dataset

Statistics 1CDT MOA Gear UG SynD Forest Cover

Attributes 2 4 2 2 10 54
Classes 2 4 2 2 2 7
Normal Classes 1 2 2 1 2 3
New Classes 1 2 0 1 0 4
Instances MinCla 7199 9987 99935 44999 124660 587
Instances MajCla 7200 18180 100065 45000 125340 18350

of new classes, recurrence and disappearance of existing classes. The real shape of the clusters
in this dataset is normally distributed hyper-spheres. The SynD (MASUD et al., 2011; AL-
KHATEEB et al., 2012; FARIA et al., 2016) has no novelty, but the concept associated with
known classes changes over time. Finally, CDT, UG and Gear are non stationary datasets 1.
In these datasets, a single novelty occurs, and concept drifts happen at every interval of 400
instances in CDT, 1000 instances in UG and 2000 instances in Gear.

Regarding the only real dataset, Forest Cover (ASUNCION; NEWMAN, 2007), it
contains observations from 7 types of forest in the United States. It has 7 classes and 54 attributes.
In the experiments, the training set is formed by observations from 3 normal classes.

Table 4 presents some basic statistics collected from these datasets: the number of normal
and new classes, number of attributes, number of instances in the minority and majority classes.

4.5.2 Results and discussion

In these experiments, we used the default parameters of MINAS. Because MINAS uses
the label of the nearest micro-cluster to classify a new instance, we set k = 1 in the Higia
algorithm. As for the other parameter of Higia, the threshold, we set it to threshold = 1.1 as in
MINAS (FARIA; GAMA; CARVALHO, 2013). Also for Higia, we experimentally defined the
parameter radius = 0.5. The kNN has the default parameters, k = 1 and window size (w = 1000),
and there is no online training. It is used to understand how the model loses predictive accuracy
over time without its update to the changes in the data stream.

Next, we present the predictive accuracy overtime of the 3 algorithms. As can be seen
in Figure 6, the predictive performance of Higia was better than those obtained by MINAS and
the kNN baseline. Higia incrementally updates the normal and the new micro-clusters in the
classification model. As a consequence, the model represents the current probability distribution
of the data streams better than MINAS. The model induced and updated by the MINAS algorithm
is sensitive to the buffer size, i.e., the model needs to wait until the buffer is full of unknown

1 https://www.sites.google.com/site/nonstationaryarchive/
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instances to be updated. Thus, by not being able to quickly adapt to the changes in the data
stream, the model loses accuracy along the time.
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Figure 6 – Predictive accuracy over time.

The baseline, kNN, presented the worst predictive performance in most of the datasets.
This is somewhat expected since it does not learn along the time. However, we can see from
Figure 6e that, for one of the datasets, the baseline had the best predictive accuracy. A possible
reason is that the training set of this dataset has data from all classes. Meanwhile, for this dataset,
different from the baseline, the generalisation of the models induced by MINAS and Higia was
not able to capture the behaviour of the data. This indicates the importance of the initial training
even in data stream scenarios with concept drift.

Table 5 summarises the predictive performance obtained by the Higia and MINAS
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Table 5 – Performance metrics for each algorithm

MNew FNew Err Acc

Higia MINAS Higia MINAS Higia MINAS Higia MINAS
MOA 0.11 0.00 0.00 0.46 0.08 0.48 0.62 0.46
SynD 0.00 0.00 0.00 0.00 0.30 0.34 0.70 0.66
CoverType 0.18 0.46 0.49 0.24 0.49 0.54 0.37 0.23
CDT 0.43 0.00 0.01 0.00 0.46 0.03 0.47 0.68
GEARS 0.00 0.00 0.00 0.00 0.34 0.66 0.66 0.34
UG 0.78 0.41 0.03 0.36 0.60 0.70 0.68 0.24
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Figure 7 – Higia accuracy over time in CDT dataset varying k.

algorithms in all datasets. According to these results, for the datasets MOA, CDT and UG, Higia
had the lowest FNew, but the highest MNew. This shows that Higia models gave more relevance to
the normal classes than to the novelties. The only exception is the CoverType dataset. However,
these results did not seem to affect the accuracy, Acc, of Higia in most datasets. Higia presented
the lowest Err values in almost all datasets, meaning that, for these datasets, the model made
fewer misclassifications and labelled less instances as unknown than MINAS.

An exception occurred for the dataset CDT, which has a seasonal overlap between the
normal class and the new class. For this dataset, Higia incremental learning mixed instances
from different classes into the same micro-clusters, reducing Acc and increasing Err.

Additional experiments were performed to analyse the impact of the parameter k (k =
1,3,5,10,20) in Higia predictive accuracy. We used the CDT dataset because Higia had a lower
performance with this dataset. Figure 7 shows that, for this dataset, the accuracy is more stable
over time for higher k. We also see a reduction of Err, Table 6, with the increase of the parameter
k.
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Table 6 – Higia (k = 1,3,5,10,20) performance metrics for dataset CDT

MNew FNew Err ACC

1NN 0.43 0.01 0.46 0.47
3NN 0.42 0.01 0.41 0.51
5NN 0.38 0.01 0.32 0.54
10NN 0.32 0.02 0.32 0.47
20NN 0.45 0.02 0.35 0.60

4.6 Conclusions and Future Work
Data stream mining has gained a great deal of attention in the last decades. Novelty

detection algorithms have been successfully applied to many applications. However, most of the
proposed algorithms assume that instances arriving in a stream are labelled, which is often not
the case.

This paper presented Higia, a new unsupervised learning algorithm based on micro-
clusters for novelty and concept drift detection in data streams. The micro-clusters are incremen-
tally updated every time a new instance arrives from a data stream. When a novelty is detected,
Higia creates new micro-clusters to represent the new class.

Considering several performance metrics, Higia was compared with MINAS, a state-of-
the-art unsupervised novelty detection algorithm, and a k-NN-based baseline. According to the
experimental results, Higia presented a better predictive performance than these other algorithms.
Besides, Higia labelled less instances as unknown because it can faster adapt the model to the
current concept than the compared algorithms.

As future work, the authors want to study alternatives to discard outdated information
and the inclusion of an unsupervised concept drift tracker.
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Abstract

In data streams, new classes can appear over time due to changes in the statistical data
distribution. Consequently, models can become outdated, which requires the use of incremental
learning algorithms capable of detecting and learning the changes over time. However, when
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a single classification model is used for novelty detection, there is a risk that its bias may not
be suitable for new data distributions. A solution could be the combination of several models
into an ensemble. We propose two unsupervised ensemble approaches for novelty detection in
data streams: one combining clustering partitions using the same clustering technique; and other
using different clustering techniques. We compare the performance of the proposed methods
with well-known novelty detection algorithms. The methods were tested on datasets commonly
used in the novelty detection literature. The experimental results show that proposed ensembles
have competitive performance for novelty detection in data streams.

5.1 Introduction

In many real-world scenarios, data continuously arrives at a high rate and in a non-
stationary way. This type of data is commonly referred to as data streams. As new data arrives,
previously trained models can become outdated (SILVA et al., 2013). Thus, a model needs to
be incrementally updated to prevent predictive loss. In addition, due to the great amount of
data generated, it is impossible to store it all in the main memory, requiring the elimination of
outdated data and the online processing of the incoming data (FARIA; GAMA; CARVALHO,
2013).

Three types of changes can be found in the literature of data streams: concept drift (GAMA
et al., 2014), recurring concepts (AL-KHATEEB et al., 2012) and novel concepts (FARIA;
GAMA; CARVALHO, 2013). Concept drift refers to changes in the statistical properties of
a known concept; for example, it can be a change in the stochastic process that generates the
data (GAMA et al., 2014). Recurring concepts are a special type of concept drift in which
concepts that appeared in the past may recur in the future (AL-KHATEEB et al., 2012). Novelty
concepts are patterns that are not present during the training of a classification model (FARIA;
GAMA; CARVALHO, 2013) but appear in the data stream.

Novelty detection is a machine learning task based on the identification of new con-
cepts (DING et al., 2014). This approach can be consider as a binary classification task, composed
by normal and abnormal classes (SPINOSA; CARVALHO; GAMA, 2009). However, it can also
be consider as a multi-class classification task (FARIA; GAMA; CARVALHO, 2013), in which
more than one new class can emerge in the stream. The abnormal classes can also be named
as not normal (SPINOSA; CARVALHO; GAMA, 2009), anomaly (MASUD et al., 2013) or
novel/new (FARIA; GAMA; CARVALHO, 2013) classes. In this paper, we followed the notation
from (FARIA; GAMA; CARVALHO, 2013). In the latter, normal concepts are a set of classes
used to train the classification model and novelty concepts are the new classes that emerge over
time.

Most of the existing approaches for novelty detection consider that a model is updated
only with labelled data. This implies that a model needs to wait for the data‘s label before update
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itself. However, this delay can affect the predictive performance of the model over time. In the
absence of labels, an alternative is to use unsupervised approaches. In this case, the clusters
represent normal and new classes (AMINI; TEH; SABOOHI, 2014), where a class can be
composed of one or more clusters (SPINOSA; CARVALHO; GAMA, 2009).

A consistent and representative clustering partition should be able to address scala-
bility; moreover, should detect concept changes over time in the data streams (AGGARWAL
et al., 2003). However, a unique partition could not well represent the statistical distribution
of a dataset (VEGA-PONS; RUIZ-SHULCLOPER, 2011). For example, the k-means algo-
rithm (BISHOP, 2007) can build different partitions, even with the same hyper-parameters, due
to the randomness in the algorithm initialisation.

Instead of using one clustering partition, we propose an ensemble of clustering partitions
for novelty detection in data streams. We consider one ensemble obtained by the combination of
the CluStream algorithm (AGGARWAL et al., 2003), referred here as Homogeneous ensemble
Clustering for data Streams (HoCluS). We also consider another ensemble with different cluster-
ing techniques, referred here as Heterogeneous ensemble Clustering for data Streams (HeCluS).
This approach allows the use of clustering techniques with different bias, in order to obtain more
robust classification models. Hence, as new data s, each clustering technique can independently
create and update a predefined number of partitions.

In order to compare the performance of these two different approaches, we implemented
them in MINAS (MultI-class learNing Algorithm for data Streams) (FARIA; GAMA; CAR-
VALHO, 2013), a single classifier novelty detection algorithm for data streams. We conducted a
set of experiments using datasets, commonly referred to in the novelty detection literature.

This work is an extension of (GARCIA et al., 2019a). In this study, our main objectives
are:

∙ To investigate if the use of an ensemble of clustering can improve the predictive perfor-
mance of a single model classifier, in this case, the algorithm MINAS.

∙ To empirically study the behaviour of an ensemble of the same clustering approach and
different approaches of clustering.

∙ To investigate if the proposed ensembles of clustering achieve competitive predictive
performance in comparison to ensembles of supervised algorithms.

This paper is organised as follows. In Section 5.2 we present related work on novelty
detection in data streams. In Section 5.4, we describe the proposed approaches and how they
are incorporated into the MINAS algorithm. Section 5.5 presents the experiments performed.
Finally, we conclude and discuss future research in Section 5.6.
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5.2 Related Work

Several machine learning approaches have addressed novelty detection in data streams.
Following we describe the principal approaches according to two aspects: i) number of classifi-
cation models and ii) strategy to update the classification model.

Considering the first aspect, we can divide the existing approaches in the single classi-
fication model or the ensemble of models. Most of the single classification approaches use a
kNN classification model based on a clustering approach (SPINOSA; CARVALHO; GAMA,
2009; HAYAT; HASHEMI, 2010; FARIA; GAMA; CARVALHO, 2013; ABDALLAH et al.,
2016). These approaches can forget old clusters, insert new clusters and update the existing ones.
However, even though a single model is computationally less costly to train and update, it may
not be the most suitable to all periods of a stream.

In contrast, other works focus on ensemble models. Ensemble classification for novelty
detection in data streams are usually formed by combining classification models from the same
strategy (MASUD et al., 2010; MASUD et al., 2011; Farid; Rahman, 2012; FARID et al., 2013;
AL-KHATEEB et al., 2012). In most approaches, the update of an ensemble consists of replacing
the worst accurate model by a new one. The new model is trained with the last labelled data
chunk. However, the disadvantage is that the ensemble can wait for an extended period before
the labels are known. During this waiting period, the predictive performance of the ensemble
could decrease drastically.

Considering the second aspect, the possible update strategies are: the supervised or the
unsupervised; which will depend on the presence/absence of labelled instances. Supervised
approaches assume that the true label of all instances will eventually be available to update the
model. Some examples of models using supervised learning are decision trees (MASUD et al.,
2010; MASUD et al., 2011; Farid; Rahman, 2012; FARID et al., 2013) and kNN (AL-KHATEEB
et al., 2012; MASUD et al., 2011; HAQUE; KHAN; BARON, 2015).

On the other hand, unsupervised learning approaches assume that the true label will
not be available. Therefore, they need to update the classification model without external feed-
back (SPINOSA; CARVALHO; GAMA, 2009; FARIA; GAMA; CARVALHO, 2013; HAYAT;
HASHEMI, 2010; TAN; TING; LIU, 2011). In general, they use the k-means algorithm to
extract clusters to represent the current classes. As a result, they have some limitations: find only
hyperspherical clusters, have a fixed number of clusters and are sensitive to outliers.

5.3 Problem Formalisation

Formally a data stream Dt is a potentially infinite sequence of instances arriving in a time
t, t ∈ {1, ...,∞}. Where, each instance, X , contains d dimensions denoted by Xt = (X1, ...,Xd)

and a target class yt . A data stream can be represented as (FARIA; GAMA; CARVALHO, 2013;
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GARCIA; CARVALHO; MENDES-MOREIRA, 2018): Dt = {(X1,y1),(X2,y2), ...,(Xt ,yt)}.

A concept is a cluster Ct that contains a centroid ct , a radius rt , a threshold Tt and a class
label y. The radius of a cluster is the Euclidean distance between its centroid and the farthest
data point in that cluster (MASUD et al., 2011). The threshold is the area outside a cluster where
the cluster could extend. Thus, this area is Tt = h* rt , where h is a given value.

Concept drift is a change in the distribution probability of target classes (GAMA et al.,
2014). Formally, a distribution P in a given time t conditioned by the instance X and label y

can suffer changes affecting the conditional probability, X : Pt(X ,y) ̸= Pt+1(X ,y). As a result, a
model built during time t could be outdated in time t +1.

In data streams the novelty detection can be divided into two phases: the offline and
the online phase. Assuming that in the offline phase, a dataset has m classes. Then, Y Nor =

{y1,y2, ...,ym} represents the set of normal classes. These class labels and the corresponding
data samples are used to build the initial classification model. When during the online phase, a
novel class with label ym+1 emerges, a novelty detection approach needs to detect this new class
(concept) as quickly as possible and update the classification model accordingly.

5.4 Ensemble Clustering for Data Streams

The idea of Ensemble Clustering for Data Streams is similar to the general concept of
combining classification models to construct an ensemble (VEGA-PONS; RUIZ-SHULCLOPER,
2011). For that reason, it can be used to find a set of partitions to represent a dataset. The
most common ensemble learning algorithms are AdaBoost (FREUND; SCHAPIRE, 1997) and
Bagging (BREIMAN, 1996).

In this work, we created an ensemble of clustering. This process is divided in: the
generation of a set of partitions and the combination of partitions into an ensemble of clustering.

5.4.1 The MINAS Algorithm

To test the proposed approaches, we implemented HoCluS and HeCluS into the algorithm
MINAS (FARIA; GAMA; CARVALHO, 2013). The algorithm MINAS, in the offline phase, has
a single model trained with labelled data from the normal classes. This phase happens only once
at the initial stage. The dataset with the labelled instances is split into subsets of data, each one
containing data from one class in Y Nor. Then, a clustering algorithm is applied to each subset
to create a partition for each class. These partitions will form a single model that contains the
clusters found in the offline phase.

In the online phase, it is calculated the Euclidean distance between each new instance
and all the centroids of the clusters from the model. If the smallest distance is less than the radius
of the closest cluster, then the instance is labelled with the same label of the cluster. Otherwise,
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the instance is labelled as unknown and stored in a fixed size buffer for future analysis. When the
buffer reaches its limit, a clustering algorithm is applied to obtain new clusters.

A new cluster is incorporated into the model as concept drift if the distance between its
centroid and the centroid from the nearest cluster, from a normal class, is below the threshold
from the nearest cluster. Otherwise, the cluster is considered a novelty. At the end of this process,
the buffer is empty and the process is repeated every time the buffer is full with unknown

instances.

5.4.2 Ensemble Clustering Applied To MINAS Algorithm

In this section, we will explain how the two HoCluS and HeCluS were embedded in the
MINAS algorithm 1. Considering the MINAS implementation, in both offline and online phase,
the ensemble of partitions are created following the two steps: generation and combination. In the
generation step, a predefined number of P partitions from N clustering techniques is generated,
from the dataset Dt . The output is an ensemble, LN , containing P×N clustering partitions.

In the offline phase, the labelled instances are separated by their labels in subsets. For
each subset, it is applied an Ensemble Clustering Generator, Algorithm 3, and P partitions from
N clustering techniques are generated. This process is illustrated in Figure 8. The figures in grey
represent the original MINAS algorithm, and the coloured figures with dashed lines indicate our
proposed method.

Labeled
Data

Clustering
Technique

Class 1

Class m

Clustering
Technique

Ensemble

Clustering
Technique

Clustering
Technique

Figure 8 – Offline Phase with the implementation of the algorithm Ensemble Clustering Generator

The online phase is represented in Figure 9. To classify an incoming instance each
partition from the ensemble, blue diamond figure, gives a vote about the label of the instance.
The class is determined by the majority vote of the partitions from the ensemble. Thus, an
instance is classified as normal, if the majority agrees on the label; or as unknown, if there is no
agreement about the instance label. The instances classified as unknown are stored in a buffer for
future analysis.

1 The codes of HoCluS and HeCluS are available at: <https://github.com/Keh/
Ensemble-Clustering-For-Data-Streams.git>

https://github.com/Keh/Ensemble-Clustering-For-Data-Streams.git
https://github.com/Keh/Ensemble-Clustering-For-Data-Streams.git
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Algorithm 3 – Ensemble Clustering Generator
1: input: P, N, Dt
2: output: LN
3: LN ← NewList({}) . Start an empty list
4: for i = 1 to N do
5: Li← NewList({}) . Start an empty list
6: for j = 1 to P do
7: Pj←Clustering(Dt) . A generic Clustering function receives as input the data
8: Li.insert(Pj)
9: end for

10: LN .insert(Li)
11: end for
12: return LN

When the buffer reaches a given size of W , new partitions are generated. In Figure 9, the
circles/ellipses figures represent clusters and each colour is a label. The Ensemble Clustering
Combiner (Algorithm 4), blue rectangle, is applied on these new partitions. In this step, we verify
which clusters, from different partitions, are similar to each other, so, they can be labelled as
the same cluster. For that, the consensus function computes the Euclidean distance between the
centroids of each cluster from the different partitions.

Algorithm 4 – Ensemble Clustering Combiner
1: input: LN
2: output: LN
3: label← null
4: for each pi in LN do
5: for each c j in pi do
6: label← c j.label
7: for all ck in LN∖{pi} do
8: dist← EuclideanDistance(c j,ck)
9: if dist < (radiusc j + radiusck) then

10: ck.label← label
11: end if
12: end for
13: end for
14: end for
15: return LN

The consensus function is based on the rule: a cluster C j with centroid c j is similar
to a cluster Ck if the Euclidean distance between them is less than the sum of their radius:
D(c j,ck)< (r j + rk). The latter, it will be maintained only the clusters that are similar to other
clusters from different partitions. The ones that are not similar are discarded. These remaining
clusters, Consensus Clustering, can be classified as novelties or concept drifts.

A new cluster will be considered a novelty if the distance of its centroid is bigger than
the threshold of the closest cluster from the model. Otherwise, the cluster is a concept drift if
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the distance of its centroid is bigger than the radius of the closest cluster from the model, but is
smaller than the threshold of the closet cluster.

Consensus  
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Clustering 2Clustering 1 Consensus Clustering

Clustering TechniqueEnsemble

Clustering N
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not identified objects
Valid
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stream

Figure 9 – Online Phase with the implementation of the algorithm Ensemble Clustering Combiner

5.4.2.1 Homogeneous Ensemble Clustering for Data Streams

We define Homogeneous ensemble Clustering for data Streams (HoCluS) as an ensemble
clustering obtained by the combination of P partitions from the same clustering algorithm. In this
work, we will use the algorithm for clustering in data streams CluStream (AGGARWAL et al.,
2003). CluStream is based on the k-means algorithm. Because of the random initialisation phase
of k-means, different partitions can be obtained. Because of that, an ensemble of CluStream
partitions can be more robust for novelty detection than a single partition of CluStream.

5.4.2.2 Heterogeneous Ensemble Clustering in Data Streams

We define a Heterogeneous Ensemble Clustering for data Streams (HeCluS) as the
combination of P partitions from N different clustering techniques. In this work, the HeCluS has
one ensemble model built from each one of the following clustering algorithms for data streams:
CluStream (AGGARWAL et al., 2003), DenStream (CAO et al., 2006) and ClusTree (KRANEN
et al., 2011). The main motivation to use DenStream is because it is a stream clustering algorithm
that is able to find clusters with arbitrary shape. Besides, it can also handle outliers (CAO et al.,
2006). We also use the ClusTree algorithm because it has a different bias from the other two
algorithms. ClusTree builds clusters in a hierarchical data structure and can automatically set
clusters with arbitrary shape.
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5.5 Experimental setup and results

We conducted several experiments to compare the predictive performance of our methods
and other well-known novelty detection methods for data streams.

5.5.1 Datasets

The experiments were performed with synthetic and real datasets, both commonly used
in novelty detection studies (MASUD et al., 2011; FARIA et al., 2016; AGGARWAL et al.,
2003; CAO et al., 2006). Table 7 presents for each dataset: the number of normal and new classes,
number of attributes, number of instances in the minority and majority classes.

The synthetic datasets used are: MOA, SynD, 1CDT, UG_2C_2D and Gear. The MOA

dataset (FARIA; GAMA; CARVALHO, 2013) has concept drift, the appearance of new classes,
recurrence and disappearance of existing classes. The clusters in this dataset are shaped as
normally distributed hyperspheres. The SynD (MASUD et al., 2011) does not contain new
classes, but does include concept drift. Finally, 1CDT, UG_2C_2D and Gear are non stationary
datasets 2. In these datasets a single novelty occurs and concept drifts happen every 400 instances
in 1CDT, 1000 instances in UG_2C_2D and 2000 instances in Gear. We also used in the
experiments two real datasets: Forest Cover and KDD-CUP’99 NetWork Intrusion3. The KDD

dataset was used by (AGGARWAL et al., 2003) and (CAO et al., 2006).

Table 7 – Statistical information for each dataset

Statistics 1CDT MOA Gear UG_2C_2D SynD Forest Cover KDD99

Attributes 2 4 2 2 10 54 38
Classes 2 4 2 2 2 7 23
Normal Classes 1 2 2 1 2 3 18
New Classes 1 2 0 1 0 4 5
Instances MinCla 7199 9987 99935 44999 124660 587 2
Instances MajCla 7200 18180 100065 45000 125340 18350 254058

5.5.2 Evaluation

We assume that the instances in the training data are the normal classes and the new

classes/concept drifts can appear during the online phase. In the offline phase, all methods are
initialised with a batch of labelled data representing 10% of the data. The rest of the data comes
as a stream during the online phase.

We present the results of each experiment with a confusion matrix (e.g. Table 8). For
each method, the table contains the percentage of: the instances from class C1 correctly classified

2 <https://www.sites.google.com/site/nonstationaryarchive>
3 <http://archive.ics.uci.edu/ml/index.php>

https://www.sites.google.com/site/nonstationaryarchive
http://archive.ics.uci.edu/ml/index.php
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Table 8 – Example of a confusion matrix

C1 C2

C1 TP FP
C2 FN TN

Novelty
Unknown

F-Measure

(T P), the instances from C2 correctly classified (T N), the instances from C2 misclassified as
C1 (FP) and instances from C1 misclassified as C2, unknown or novelty (FN). The unknown

is the percentage of instances that the ensemble did not agree on a label. The novelty is the
percentage of instances classified as novelty. The sum of each column should be 1. However,
since we represent the average of 30 runs, the sum might not precisely be 1.

Whenever an instance is labelled as unknown, it is considered as a classification error,
and it counts as a false negative (FN), which is a different approach adopted by (FARIA et al.,
2016). For this reason, a high percentage of instances labelled as unknown will force the recall to
be lower. This will make the comparison of the models fairer.

The F-Measure is the weighted harmonic mean of the precision, pi, and the recall,
ro (FARIA et al., 2016):

FMeasure =
2* pi* ro

pi+ ro

where, pi = T P
T P+FP and ro = T P

T P+FN .

We also studied the predictive performance of the MINAS, HoCluS and HeCluS over
time. We computed the F-Measure of these methods every 10.000 instances. The CLAM, MINER
and SAND were not used in this analysis due to difficulties to obtain the necessary information
to calculate the F-Measure over time.

5.5.3 Hyperparameter tuning

We study how the predictive performance, F-Measure, of MINAS can be affected by
varying its hyperparameters. We hope to see if an ensemble can outperform the most suitable
hyperparameter configuration. In this experiment, MINAS was trained with the dataset Forest

Cover. The hyperparameters of MINAS are: k (number of clusters), W (window size) and
T (cluster threshold). We conducted this experiment by varying the number of clusters k ∈
{10,20,40,80,100}, window size W ∈ {500,1000, . . . ,3500,4000} and cluster threshold T ∈
{1,1.25,1.5,1.75,2.0}.

The results obtained are presented in Figure 10, where each subplot represents a different
number of clusters, k. In each subplot, the x-axis represents the window size, W; and the grade
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of the blue colour of the dots represents the cluster threshold, T. From this plot, we observe
that k seems to affect the performance more than the other hyperparameters. In terms of the
window size W, the models tend to obtain higher F-Measure with small windows. For example,
when k = 100, the F-Measure is higher for W = 500 and W = 1000, than when the W = 3000
and W = 4000. From this experiment, it is also possible to conclude that the performance can
be affected by the randomisation of the algorithm. For example, when k = 80 or k = 100 and
W = 500 the F-Measure has high variance, regardless of the threshold, T , value.
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Figure 10 – MINAS with 3 hyperparameters x F-Measure for Forest Cover dataset

We also studied the performance of HoCluS with different numbers of partitions. We
used this study to select the number of models in the remaining experiments. In Figure 11 the
boxplots represent the variance of F-Measure of the HoCluS with different number of partitions
when trained with the Forest Cover dataset. We tested HoCluS with 3, 10, 20 and 30 partitions,
for each configuration we repeat the experiment 30 times. We observe that the variance of
F-Measure reduces with the number of models. For example, we see that the variance is smaller
with 30 models than with 3 or 10 models. However, to avoid the high computational cost, we
decided to use HoCluS with 10 models.

In terms of the HeCluS, since the DenStream and the ClusTree have high computational
cost, we used only 1 partition of each of the 3 different clustering approaches.

We compared the predictive performance of our methods with the original MINAS and
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Figure 11 – Variability in F-Measures of different number of models of HoCluS for Forest Cover dataset

with three other supervised novelty detection methods: Miner (MASUD et al., 2011), CLAM (AL-
KHATEEB et al., 2012) and SAND (HAQUE; KHAN; BARON, 2015). For simplicity, we use
the default hyperparameters of the existing algorithms.

5.5.4 Results

In this section, we present and discuss the main results of the experiments. We note that
the comparison between the performance of supervised and unsupervised approaches is not
trivial. One might think that it is possible that the supervised approaches will always have a
better performance because they have access to the true labels. However, in real scenarios, it is
not always guaranteed that the incoming data is labelled. Thus, a supervised model can wait for
longs periods of time to be updated.

5.5.4.1 Gear dataset

The Gear dataset has two normal classes, C1 and C2, both with concept drift in the
online phase. In this experiment, we hope to understand how the predictive performance of the
methods is affected by concept drift.

We can observe in Table 9 that the HeCluS has the highest F-Measure, compared with
the other unsupervised methods, MINAS and HoCluS. Moreover, HeCluS does not misclassified
C2 as a novelty; therefore, correctly detecting the concept drift in both classes. HeCluS is able to
build models with non-spherical clusters, which can better represent the classes of this dataset.
In terms of the supervised methods, MINER has the best F-Measure, with few misclassifications
in both classes. In the case of SAND, it correctly classified C1; however, misclassified C2 as
novelties or as unknown. Finally, CLAM correctly classified C1 but misclassified some data from
C2 as C1 and the rest were classified as unknown. In other words, this means that CLAM was
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not able to learn the patterns presented in the window containing the unknown data.

Table 9 – Confusion matrix for Gear dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 1.00 0.00 1.00 0.25 0.97 0.04 0.82 0.03 0.88 0.06 0.94 0.06
C 2 0.00 0.00 0.00 0.00 0.03 0.96 0.08 0.90 0.06 0.86 0.06 0.94
Novelty 0.00 0.57 0.00 0.00 0.00 0.00 0.10 0.07 0.02 0.03 0.00 0.00
Unknown 0.00 0.43 0.00 0.75 0.00 0.00 0.00 0.00 0.04 0.03 0.02 0.03
F-Measure 0.50 0.80 0.98 0.92 0.93 0.97

In Figure 12 we have the F-Measure of the unsupervised methods over time. The methods
HeCluS and HoCluS had more stable F-Measure than MINAS, especially the HeCluS method,
which means that the ensembles adapted to the concept drift in a more efficient time than MINAS.
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Figure 12 – F-measure of the unsupervised methods in the Gears dataset

5.5.4.2 SynD dataset

In the SynD dataset, C1 and C2 are the normal classes, and both classes have concept
drift over time.

We observe in Table 10 that the unsupervised methods HeCluS and HoCluS have better
performance than MINAS. We can see that these methods did not misclassify the concept drift
as novelties. Considering the supervised methods, SAND had F-Measure 0.77; however, it has
the highest percentage of unknown instances. The CLAM method did not classify any instance
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as unknown but misclassified C1 as C2 and C2 as C1. The MINER has the highest score and did
not misclassify any instance as unknown.

Table 10 – Confusion matrix for Synd dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 0.64 0.00 0.50 0.45 0.88 0.18 0.63 0.34 0.66 0.31 0.69 0.34
C 2 0.00 0.60 0.50 0.55 0.12 0.82 0.37 0.66 0.30 0.70 0.32 0.65
Novelty 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unknown 0.36 0.40 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00
F-Measure 0.77 0.69 0.92 0.76 0.78 0.79

In Figure 13 we have the F-Measure of the unsupervised methods over time. The methods
are stable; however, they all lose a bit of F-Measure over time. The HeCLUS is slightly better
than HoCluS and MINAS in most of the stream.
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Figure 13 – F-measure of the unsupervised methods in the SynD dataset

5.5.4.3 1CDT dataset

The 1CDT dataset has two classes: a normal class (C1) and a new class (C2) with concept
drift. With this dataset, we want to evaluate the performance of the models regarding novelty
detection during the online phase. We note that MINAS, HoCluS and HeCluS are unsupervised
methods; thus, even though they detect C2 as a novel class, their predictions are only represented
as novelty.



5.5. Experimental setup and results 79

Considering the unsupervised approaches, Table 11, MINAS and HoCluS have better
score than HeCluS. HeCluS misclassified C2 as C1, which influenced in its F-Measure. Although
the good performance of MINAS and HoCluS, these methods presented a higher percentage
of unknown data than HeCluS. In terms of the supervised approaches, SAND presented the
lowest F-Measure, because misclassified most data from C2 as C1. The reason for that could
be that SAND gives a confidence score for each of its models, depending on their previous
performance. Because of that, older models could have a higher score than new models, which
could explain the misclassification of the new class C2. Both methods CLAM and MINER had a
high performance for C2, combining the percentage of correct classification and novelty.

Table 11 – Confusion matrix for 1CDT dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 1.00 0.84 1.00 0.00 1.00 0.00 0.94 0.00 0.94 0.00 1.00 0.20
C 2 0.00 0.03 0.00 0.73 0.00 0.71 0.00 0.00 0.09 0.00 0.00 0.00
Novelty 0.00 0.11 0.00 0.27 0.00 0.27 0.04 0.87 0.00 0.87 0.00 0.75
Unknown 0.00 0.02 0.00 0.00 0.00 0.02 0.06 0.12 0.00 0.13 0.00 0.06
F-Measure 0.62 0.92 0.99 0.95 0.95 0.93

In Figure 14, we have the F-Measure of the unsupervised methods over time. We can see
that the methods HoCluS and MINAS have stable F-Measure during the entire stream. In the
case of HeCluS, it decreases F-Measure at the beginning of the stream, probably because of the
appearance of the new class. However, HeCluS was able to update itself, which is possible to
verify by the increasing F-Measure over time.

5.5.4.4 Forest Cover dataset

The Forest Cover dataset has 3 normal classes and 5 novel classes. Due to space con-
straints, we present the classes in the confusion matrix, Table 12, grouped in 2 groups: C1
represents the group of the normal classes and C2 represents the group of the new classes.

We can see in Table 12 that the unsupervised method HeCluS has the highest F-Measure,
0.73, of the methods, including in comparison with the supervised ones. The methods MINAS
and HoCluS have both F-Measure of 0.67, which could indicate that the heterogeneous strategy
of HeCluS works better for this dataset. The supervised method SAND has performance of 0.32,
its low performance is explained by the misclassification of the normal and the novel classes.
This could be because of its confidence score, tending to privilege majority classes, which is
the case of the normal classes. The CLAM has a performance of 0.72, because it was able to
learn most of the novel classes. Finally, the MINER had a F-Measure lower than CLAM, and
misclassified part of C2 as C1.
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Figure 14 – F-measure of the unsupervised methods in the 1CDT dataset

This dataset has recurring classes that appear only during some periods. Due to this fact,
CLAM showed higher F-Measure than MINER and SAND, because it is the only method with a
mechanism for detecting recurrent classes.

The seasonal changes in this dataset affected all models, specially MINAS and HoCluS.
We can observe in Figure 15 that HeCluS has higher F-Measure over time than MINAS and
HoCluS. Until period 20 HoCluS has higher F-Measure than MINAS. After this period, MINAS
has higher F-Measure than HoCluS.

Table 12 – Confusion matrix for Forest Cover dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2
C1 0.34 0.66 0.51 0.21 0.43 0.44 0.33 0.00 0.28 0.00 0.43 0.00
C2 0.47 0.14 0.24 0.53 0.27 0.37 0.00 0.00 0.00 0.00 0.00 0.00
Novelty 0.01 0.21 0.25 0.69 0.19 0.44 0.50 0.68 0.42 0.66 0.35 0.80
Unknown 0.00 0.03 0.22 0.07 0.00 0.00 0.03 0.05 0.17 0.14 0.04 0.02
F-Measure 0.32 0.72 0.59 0.67 0.67 0.73

5.5.4.5 KDD dataset

The KDD dataset has 18 normal classes and 5 novel classes. Due to space constraints, in
Table 13, C1 represents the group of normal classes and C2 represents the novel classes. This
dataset is an example in which the methods have low F-Measure, which means that they were
not able to learn the normal classes and to adapt to the changes over time.



5.5. Experimental setup and results 81

0.25

0.50

0.75

1.00

0 20 40
Time

F
m

ea
su

re

Algorithms HeCluS HoCluS MINAS

Figure 15 – F-measure of the unsupervised methods in the Forest Cover dataset

In Table 13, we see that HeCluS was slightly better than MINAS and HoCluS, because
it correctly classified the normal classes. However, they are all unable to learn the new classes.
The high dimensionality of this dataset could explain this. Besides that, this dataset has classes
that probably were labelled as outliers. For example, see Table 7, the smallest class has only
2 instances. The CLAM was the supervised method that better classified the normal class C1;
however, the rest of the data was classified as unknown. One can argue that classifying as
unknown is better than misclassifying it as another class; however, although the method was able
to recognize patterns that were different from the normal classes, it was not able to learn and
adapt itself over time.

In Figure 16, we see the F-Measure overtime of the unsupervised methods. During period
0 to 15, all methods had unstable F-Measure; however, HeCluS had a higher score, than MINAS
and HoCluS. During the time 15 to 30, HeCluS was stable with F-Measure close to 1.0, after
this period it shows great instability. This could indicate that the HeCluS learned some classes
that are more present during the period 15 to 30. However, we can see that MINAS and HoCluS,
during the same period, did not learn the same classes. Thus, MINAS and HoCluS have low
performance.

5.5.4.6 MOA dataset

The MOA dataset has 2 normal classes and 2 novel classes. Due to space constrains, in
Table 14, C1 represents the group of normal classes and C2 represents the novel classes. In this
dataset, the normal classes have concept drifts from time 0 to 90 and from time 30 to 55 they
overlap. The first new class emerge at time 35 and second new class emerge after time 75.
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Table 13 – Confusion matrix for KDD dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2
C 1 0.23 0.00 0.64 0.00 0.32 0.00 0.10 0.00 0.08 0.00 0.30 0.00
C 2 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00
Novelty 0.25 0.23 0.00 0.00 0.15 0.04 0.46 0.05 0.46 0.06 0.18 0.14
Unknown 0.18 0.63 0.23 0.66 0.04 0.23 0.35 0.71 0.34 0.70 0.30 0.40
F-Measure 0.27 0.32 0.30 0.10 0.10 0.31
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Figure 16 – F-measure of the unsupervised methods in the KDD dataset

In Table 14, we see that HeCluS has higher F-Measure than HoCluS and MINAS, mainly
because it correctly classified more data from C1 than the other unsupervised methods. In terms
of the supervised methods, SAND has F-Measure 0.88; however, it misclassified some data of
C2 as C1 and C1 as a novelty. The CLAM classified C1 correctly; however, it was not able to
learn the novelties, since all data from C2 was labelled as unknown. Finally, MINER has the
highest score, 0.90.

In Figure 17, we can see that HeCluS had better predictive performance during the entire
stream. Also, HeClus had more periods of stability than HoCluS and MINAS. HeCluS was less
affected by the appearance of new classes (time 35 and time 75) than the other models. In terms
of performance, HoCluS is not different than MINAS.

5.5.4.7 UG_2C_2D dataset

The UG_2C_2D dataset has one normal class and one new class, both with concept
drift and overlap. Analysing the unsupervised methods, Table 15, HeCluS classified all data as
C1, which means it did not learn the new class. HoCluS had slightly higher F-Measure than
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Table 14 – Confusion matrix for MOA dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2
C 1 0.62 0.25 0.79 0.00 1.00 0.00 0.31 0.00 0.31 0.00 0.60 0.00
C 2 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
Novelty 0.18 0.75 0.00 0.00 0.00 0.00 0.66 0.99 0.62 0.98 0.40 0.99
Unknown 0.02 0.00 0.16 1.00 0.00 0.01 0.02 0.01 0.04 0.02 0.00 0.01
F-Measure 0.88 0.44 0.99 0.71 0.71 0.86
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Figure 17 – F-measure of the unsupervised methods in the MOA dataset

MINAS; however, both methods misclassified a great percentage of C2 and C1. Besides that,
HoCluS and MINAS learned the new class. For the supervised methods, SAND and MINER also
misclassified C2 as C1. MINER also misclassified more C1 as C2 than the other methods, which
explain its low F-Measure in comparison with the other supervised methods. CLAM presented
the highest score, especially because did not misclassifies C2 as C1.

In Figure 18, we see that the F-Measure of HeClus is constant during all the stream.
This dataset has balanced classes, see Table 15, which means that both classes appear in the
stream at an equal rate. In the case of the methods HoCluS and MINAS the F-Measure was lower
and unstable, especially during the period 0.25 and 0.70. After the period 0.75, HoCluS shows
stability and F-Measure of 0.5, while MINAS had a lower score than the others.
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Table 15 – Confusion matrix for UG_2C_2D dataset

Supervised Unsupervised

SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 0.71 0.50 1.00 0.02 0.50 0.58 0.42 0.45 0.45 0.50 1.00 1.00
C 2 0.10 0.07 0.00 0.70 0.46 0.37 0.00 0.00 0.00 0.00 0.00 0.00
Novelty 0.28 0.44 0.00 0.00 0.01 0.01 0.51 0.46 0.50 0.43 0.00 0.00
Unknown 0.01 0.06 0.00 0.28 0.03 0.04 0.07 0.09 0.05 0.07 0.00 0.00
F-Measure 0.72 0.91 0.60 0.43 0.45 0.50
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Figure 18 – F-measure of the unsupervised methods in the UG_2C_2D dataset

5.6 Conclusions

In this work, we proposed the methods HeCluS and HoCluS for unsupervised detection
of novelties and concept drift in data streams. These ensembles combine several partitions from
one or more clustering techniques. This allows the use of clustering techniques with different
bias, in order to obtain more robust classification models. When new instances arrive, each
clustering technique can independently create and update its partitions. To test the efficiency of
the proposed methods, we implemented each method in a single model algorithm for novelty
detection in data streams.

In the experiments, we observed that HoCluS and HeCluS are competitive with the other
tested methods. In most cases, the ensembles have better performance than the single model
MINAS. Observing the performance of the unsupervised methods over time, we conclude that
HeCluS is usually more stable and has higher F-Measure than HoCluS and MINAS. This shows
that an ensemble built with different clustering techniques can better detect the changes in the
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data streams. Moreover, the use of the heterogeneous ensemble is a promising strategy, because
its bias can be more suitable for a given data stream or for specific periods in the same data
stream. The proposed methods have an advantage of not need the labels to update themselves;
still, they have a competitive performance with the supervised methods.

The experiments also showed that the performance of all tested methods were affected
by the changes in the data streams. Thus, a method can have better performance in periods of the
stream. Therefore, as future work, we would like to investigate a mechanism to automatic adapt
an algorithm hyperparameters since this could improve predictive performance over time.
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Abstract

Human Activity Recognition is focused on the use of sensing technology to classify
human activities and to infer human behavior. While traditional machine learning approaches
use hand-crafted features to train their models, recent advancements in neural networks allow for
automatic feature extraction. Auto-encoders are a type of neural network that can learn complex
representations of the data and are commonly used for anomaly detection. In this work we
propose a novel multi-class algorithm which consists of an ensemble of auto-encoders where
each auto-encoder is associated with a unique class. We compared the proposed approach with
other state-of-the-art approaches in the context of human activity recognition. Experimental
results show that ensembles of auto-encoders can be efficient, robust and competitive. Moreover,
this modular classifier structure allows for more flexible models. For example, the extension of
the number of classes, by the inclusion of new auto-encoders, without the necessity to retrain the
whole model.

6.1 Introduction

Human Activity Recognition (HAR) is a research field focused on the use of sensing
technology to classify human activities and to infer human behaviour (DOBBINS; RAWAS-
SIZADEH; MOMENI, 2017). A HAR system can use data from different sources, like wearables,
sensors from objects and cameras. These systems have been successfully applied for health and
well-being (BAÑOS et al., 2014b), tracking and mobile security (SPINSANTE et al., 2016) and
elderly care (YAO et al., 2017).

Most HAR machine learning approaches found in the literature, such as: decision
trees (LARA; LABRADOR, 2013), support vector machines (MANNINI et al., 2013) and
k-Nearest Neighbor (YAO et al., 2017) rely on the use of heuristic hand-crafted feature extraction
to train their models. That includes, for example, time-domain calculations, mean and standard
deviation for each sensor signal and correlation (Pearson correlation) between axes for the 3D
sensors.

In our previous work (GARCIA et al., 2019b) we studied a semi-supervised ensemble,
EkVN, which combined 3 different algorithms (k-Nearest Neighbour, Very Fast Decision Tree
and Naive Bayes). This method relies on heuristic hand-crafted feature extraction for HAR. The
features were extracted from the raw data of different types of sensors: accelerometer, gyroscope
and magnetometer sensors. We investigated the impact of some hyperparameters in the accuracy
of EkVN. We found that the accuracy of EkVN is more sensitive to data from different users,
to the window size and to the overlapping factor. We also found that the feature extraction
process has a relatively high energy and time costs. This can have implications, for example in
mobile applications, where the use of resources must be carefully managed in order to keep the
application efficiently working for long periods of time.
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An alternative to the manual extraction of features is the automatic feature extraction
with neural networks (PLÖTZ; HAMMERLA; OLIVIER, 2011). One type of neural network
commonly used as a powerful tool for discovery of features is the Auto-Encoder (AE). This
type of neural network tries to learn two functions, an encoder, which maps the input to the
hidden layers (the bottleneck), and a decoder, which maps the hidden layers to the output layer.
In other words, an AE can learn compact representations of the input data in an unsupervised
manner (WANG et al., 2019). Therefore, the output of an auto-encoder is the reconstruction of
its input.

In this work, an extension of (GARCIA et al., 2019b), we propose a classification
approach which is an Ensemble of AEs (EAE). In this EAE each AE is trained with data from
one class 1. Thus, in the context of HAR, each AE is associated with a label/activity. As new
data arrives for classification, the reconstruction loss is calculated for each AE. The data is then
classified with the label from the AE which obtained the lowest reconstruction loss. When used in
online learning, the ensemble model can be updated with the user’s data when the reconstruction
loss drops below a given threshold. To the best of our knowledge there are no approaches that
use AEs as an ensemble classifier.

We tested two variants of EAE in HAR data, an online and an offline one. Both variants
learn from the same train data, however the first also learns incrementally when the loss increases
more than an user-defined threshold. Experimental results show that the EAEs are efficient,
robust and competitive with state-of-the-art approaches.

This paper is structured as follows. Section 6.2 presents the related work on machine
learning for HAR. Section 6.3 describes the method proposed in this study. The results obtained
are presented and discussed in Section 6.4. Finally, Section 6.5 summarises the main conclusions
and points out future work directions.

6.2 Related Work

The main goal of HAR is to recognize human physical activities from sensing data. In this
research area many approaches were presented in the last decade (NIAZI et al., 2017; ZHENG et

al., 2016; ZOU et al., 2018; SEYFIOGLU; ÖZBAYOGLU; GURBUZ, 2018). These approaches
vary depending on the sensor technologies used to collect the data, the machine learning algorithm
and the features created to train the model. In relation to extraction and selection of features, the
models can be trained using hand-crafted feature extraction or automatic feature extraction.

The conventional approaches in HAR use hand-crafted feature extraction, which means
that these approaches rely on human domain knowledge. Those features often include statis-
tical information, such as: mean, variance, standard deviation, frequency and Pearson Corre-
lation (FIGO et al., 2010). These approaches use traditional machine learning methods such
1 This type of ensemble might also be known as Mix of Experts (MAKKUVA et al., 2019).
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as: SVM classifiers, k-Nearest Neighbour, decision tree, Naive Bayes classifiers, Random For-
est (MANNINI et al., 2013; BEDOGNI; FELICE; BONONI, 2012; LARA; LABRADOR, 2013;
DOBBINS; RAWASSIZADEH; MOMENI, 2017). Others focus on the combination of these
machine learning approaches as ensembles in order to improve accuracy (GARCIA et al., 2019b;
DOBBINS; RAWASSIZADEH; MOMENI, 2017). It is generally known that ensembles with
bagging and boosting techniques can increase the performance of classifiers (DIETTERICH,
2000). In most of these studies the improvements proposed are more focused in the tuning of
hyperparamenters that are common in HAR (e.g. window size and overlapping factor) (BAÑOS
et al., 2014b) and feature construction (DOBBINS; RAWASSIZADEH; MOMENI, 2017).

In contrast to that, Neural Networks methods (a.k.a Deep Learning) have the capacity to
automatically learn relevant features from raw data without human domain knowledge (WANG et

al., 2019). Many different deep learning architectures have been proposed, such as Convolutional
Neural Networks (CNN) (ZHENG et al., 2016; SEYFIOGLU; ÖZBAYOGLU; GURBUZ, 2018;
PANWAR et al., 2017), recurrent neural networks (ZOU et al., 2018) and AEs (WANG, 2016;
GAO et al., 2019; VINCENT et al., 2010).

Mostly used for computer vision, CNN models have also demonstrated to be effective in
natural language processing (KIM, 2014), speech recognition (ABDEL-HAMID et al., 2012)
and text analysis (SANTOS; GATTI, 2014). In terms of HAR, CNNs have also been used to
extract features from sensing data and to classification tasks (WANG et al., 2019). Approaches
for HAR based on CNNs can learn the correlation between nearby signals and be scale-invariant
for different frequencies (WANG et al., 2019; PANWAR et al., 2017). Some of these approaches
process each dimension of a signal (e.g. a 3D accelerometer signal) as a channel. In other
words, that means that to each channel is applied a 1D convolution. After that, the outputs from
all channels are flattened to unified layers. Chen and Xue (CHEN; XUE, 2015) used a CNN
model with a modified convolution kernel to adapt to the characteristics of 3D signals. On the
other hand, 2D convolutions can present better results compared to 1D convolutions. Ha and
Choi (HA; CHOI, 2016) proposed 2D convolutions where CNNs were used with partial and full
weight sharing structures to investigate the performance of different weight-sharing techniques.
Weight-sharing is a technique used to incorporate invariance, to reduce complexity and to speed
up the training process of CNNs (WANG et al., 2019). To use 2D convolutions, some approaches
resize the inputs from the signals as virtual 2D images (HA; YUN; CHOI, 2015).To learn the
dependencies between signals they applied a CNN using a 2D convolution kernel and a 2D
pooling kernel. Following this idea Jiang and Yin (JIANG; YIN, 2015) designed a more complex
process to transform the signals into 2D image description and applied 2D convolution to extract
features.

AEs are one family of neural networks which can learn a compact representation of the
input signals. Stacked Auto-Encoder (SAE), for example, stack the learned features which can
later be used to build a classification model (WANG et al., 2019). Wang et al. (WANG, 2016)
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proposed a Continuous AE that converts high-dimensional continuous data to low-dimensional
data in the encoding process. The features are extracted by AEs with multiple hidden layers.
Gao et al. (GAO et al., 2019) proposed the combination of Stacking Denoising AE for feature
extraction with LightGBM as the classifier. Ensemble of AEs can also be used for unsupervised
outlier detection. For example, Chen et al. (CHEN et al., 2017) proposed an ensemble of
AEs randomly connected with different structures and connection densities, which reduces
computational costs. The outliers are detected by computing the median of the AEs reconstruction
error. In HAR, the features learned by Denoising Stacked AEs can be used by a random forest
algorithm to build an ensemble classifier (THOMAS; BOUROBOU; LI, 2018).

6.3 Methodology

In this section we start by describing the EkVN method with the hand-crafted feature
extraction, presented in (GARCIA et al., 2019b). Afterwards, we describe the proposed method,
the Ensemble of Auto-Encoders (EAE). Both methods are semi-supervised learning approaches.
This means that they are incrementally updated after the data from a specific user is classified.

6.3.1 Ensemble of kVN

The EkVN is an ensemble model composed by three classifiers: kNN, Very Fast Decision
Tree (VFDT) and Naive Bayes. The implementation of the ensemble classifier is the combination
of Democratic Co-Learning and Tri-Training (ZHOU; LI, 2005). This method uses a vector of
hand-crafted features as input, both in its training and test phase, as illustrated in Figure 19.
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Figure 19 – Overview of the ensemble model, EkVN, for HAR.

The top pipeline in Figure 19 shows the offline training using raw data extracted from
different wearables and/or smartphone sensors. In the first step, window segmentation & overlap-

ping, the raw data is stored in sliding windows and consecutive windows are overlapped. The
window size (w) and overlap factor (ovl) are user defined values.
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Data from sensors is usually susceptible to noise, especially accelerometer data (DOB-
BINS; RAWASSIZADEH; MOMENI, 2017). Thus, the preprocessing step is important for
calibration and filtering of the input data in order to reduce the noise. After that, a new instance
is created containing the features that will be used to train the model, the feature extraction step.
These features include time-domain calculations, specifically the mean, the standard deviation
and the Pearson Correlation of each axis for the 3D sensors. Afterwards these instances are used
to train (training step) one model from each one of the algorithms: kNN, VFDT and Naive Bayes.
Then, they are combined as an ensemble of models.

In the online phase, new data is collected from a specific user. This data is preprocessed
as described in the steps from the training phase: window segmentation & overlapping, prepro-

cessing and feature extraction. Each new instance is classified by the ensemble, which provides
a confidence factor for the classification. The instances classified with high confidence, more
than 99%, are used to update the model.

6.3.2 Ensemble Of Auto-Encoders

A basic AE is a neural network model in which the output replicates the input, yi =

xi (WANG, 2016). An AE consists of two parts, an Encoder and a Decoder, Figure 20. The
encoder learns to compress the inputs into a smaller number of encoded features, which is called
the bottleneck. Given the encoded features, the decoder learns how to reconstruct the original
input. Therefore, the output of an AE is an approximate reconstruction of the input (ZOU et al.,
2018).

Input Output

Encoder Decoder

Compressed
representation

Figure 20 – An auto-encoder fully-connected structure with 3 hidden layers.

In this work, we propose to use a set of AE, as an ensemble, for classification. The code is
available on GitHub 2. Figure 21 illustrates the steps for training the Ensemble of Auto-Encoders
2 <https://github.com/Keh/EAE.git>

https://github.com/Keh/EAE.git
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(EAE) (offline phase) and how it can be used for classification (online phase). In the offline phase
a batch of data from multiple users is used to train one AE per class. Thus, each AE learns a
different activity.

In the online phase, as new data arrives, each AE tries to reconstruct the original input.
Then the AE with the smallest reconstruction error, minError, is selected. The data is then
classified with the label corresponding to the AE with the minError. During this online phase,
each AE is updated whenever the reconstruction error falls below a user-defined threshold, T .
By default, we define this threshold as X standard deviations of the training error. The threshold
is a hyperparameter to set a high confidence factor, as in the method explained in Section 6.3.1.
In both offline and online phases, the raw data is segmented according to a user defined window
size (w) and an overlapping factor (ovl).

Window
Segmentation &

Overlaping
Multiple
Users

Ensemble

Ensemble

error AE n

error AE 2

error AE 1

Activity

MinError

OFFLINE TRAINING PHASE

ONLINE TEST PHASE

Activity 1

Activity 2

Activity N

Training

Window
Segmentation &

Overlaping

Split by 
activity

One
User

Figure 21 – Overview of the ensemble model, EAE, for HAR.

To illustrate how the EAE works, we present in Figure 22 a simple example. The red
line represents the real signal (used as the input data) and the blue line depicts the reconstructed
signal by each AE. In this example, the model is composed by 6 AEs, where each was trained
with data from one of the following activities: Walking Downstairs, Jogging, Sitting, Standing,
Walking Upstairs and Walking. In Figure 22 one can see that the AE which better reconstructs
the signal is the Sitting AE. Therefore, the model classifies this activity as Sitting. Finally, if its
error is below the defined threshold T , the AE is updated with this new signal.
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Downstairs Jogging Sitting

WalkingUpstairsStanding

Figure 22 – The reconstruction of the signal by each AE. The color red represents the original signal and
the color blue represents the reconstructed signal.

6.4 Experiments

We conducted several experiments to compare the predictive performance of the EAE,
with the EkVN and 5 other deep learning approaches. These methods are briefly described in
Section 6.2 and as in (JORDAO et al., 2018) will be referred by the name of their author as:
ChenXue (CHEN; XUE, 2015), HaChoi (HA; CHOI, 2016), Haetal (HA; YUN; CHOI, 2015),
JiangYin (JIANG; YIN, 2015), Panwaretal (PANWAR et al., 2017). The performance of all the
methods was tested in 3 datasets commonly used in the literature of HAR.

6.4.1 Datasets

In Table 16 we can see some statistics with a brief description of each dataset. Figure 23
illustrates the frequency of activities that each dataset has. They all include standard activities,
such us: Walking, Jogging/Running, Standing, Sitting and Climbing Stairs. The activities can be
divided in Static, such us Standing and Sitting, and Dynamic, such us Walking and Jogging. The
datasets MHealth and PAMAP2 also have more complex activities, such us house cleaning or
sports. By complex activities we refer to activities that can be decomposed into others activities.
For example, Vacuum Cleaning can be decomposed in: Standing, Walking and Bending Forward.
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Figure 23 – Frequency per class of each dataset.

The WISDM dataset (KWAPISZ; WEISS; MOORE, 2010) contains sensor data from
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phone-based accelerometers 3. The data was collected by an application installed on each user‘s
phone. It has 1.098.209 records, of a 3-axis accelerometer sensor, from 29 users carrying a
smart-phone placed on their front pants‘ pocket. In this dataset, there is no information about the
age, gender or physical/behaviour characteristics of the users. The data was collected at 20Hz

samples per second. The distribution of the classes can be seen in Figure 23. The most common
activities are: Jogging and Walking.

The MHealth dataset (BAÑOS et al., 2014c) has sensor data from 10 users performing
12 activities 4. The data was collected from 3 devices with the following embedded sensors:
a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis magnetometer and an electrocardiogram
sensor. These sensors were placed on different body locations, such as, chest, hand and ankle.
There is also no personal information about the users. This dataset has 1.215.745 instances in
total and has reasonably well balanced classes. The class with less data is Jump front & Back.

Finally, the PAMAP2 dataset (REISS; STRICKER, 2012) is a public dataset of human
physical activities 5. The data was collected from 3 devices positioned in different body locations:
hand, chest and ankle. Each device has three embedded sensors: a 3-axis accelerometer, a 3-
axis gyroscope and a 3-axis magnetometer. This dataset contains 1.926.896 samples of raw
sensor data from 9 different users and 18 activities. The authors divided these activities in: basic
activities (Walking and Running), posture activities (Lying and Standing) and house cleaning
(Ironing and Vacuum Cleaning). Also, part of the users performed optional activities, such us
Rope Jumping.

Table 16 – Details of the 3 HAR datasets used in this work (A=accelerometer, G=gyroscope,
M=magnetometer, C=electrocardiograph).

Dataset #Users S. Rate #Activity #Samples Sensors body location

WISDM 36 20 Hz 6 1.098.209 A front pants‘ pocket
MHealth 10 50 Hz 12 1.215.745 A,G,M,C Chest,Hand,Ankle
PAMAP2 9 100 Hz 18 1.926.896 A,G,M Chest,Hand,Ankle

6.4.2 Experimental setup

We analysed the performance of all the tested methods in terms of accuracy and computa-
tional cost. The latter was measured in seconds both in training and testing. For a fair comparison
between the models, we only used the accelerometer data from each dataset. We trained the
models with a fixed window size, w, of 160. Although other alternatives can be considered for
the choice of the window size, for example, dynamic window size (MA et al., 2020), it would
require additional steps such as compression or concept drift detectors, which would increase
3 <http://www.cis.fordham.edu/wisdm/dataset.php>
4 <http://archive.ics.uci.edu/ml/datasets/mhealth+dataset>
5 <http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring>

http://www.cis.fordham.edu/wisdm/dataset.php
http://archive.ics.uci.edu/ml/datasets/mhealth+dataset
http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
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the computational cost. Therefore, for simplicity, we used a fixed window w = 160. In practical
terms, this represents 8.0 seconds for WISDM (20 Hz), 3.2 seconds for MHealth (50 Hz) and 1.6
seconds for PAMAP2 (100 Hz). Each consecutive window is overlapped with ovl, overlap factor,
of 20% (GARCIA et al., 2019b). For the evaluation we used the leave-one-user-out approach.

We note that in the case of the proposed EAE the input is a vector with 480 entries.
Which consists of the 3 components of the accelerometer sensor: x-acceleration, y-acceleration,
and z-acceleration.

For the EkVN, we created the features: mean, standard deviation and Pearson Correlation.
We also use the confidence factor of 99% for updating the model.

In the EAE method, each AE is composed of 8 hidden layers. The encoder has one input
layer with 480 nodes, and 4 hidden layers with respectively, 200, 100, 80 and 32 nodes. The
decoder has the opposite structure: 4 hidden layers of 32, 80, 100 and 200 nodes and with an
output layer of 480. The first and the second layers of the AE have the ReLU activation function
and the third and last layer a linear activation function. Each AE was trained for 250 epochs
with a shuffled batch of size 256. The loss function used was the MAE and the optimiser was the
adaptive moment estimation (Adam). In the online phase, the AE is updated when the minError

(Section 6.3) is less minError ≤ threshold,T , where T = 0.01.

To train the methods ChenXue, HaChoi, Haetal, JiangYin, Panwaretal, we used the same
configuration proposed by the authors. The only difference is that we use the same window size
w = 160, for a fair comparison with the other methods.

For each dataset, we analyse the mean and the dispersion of the accuracy per model.
For that, in the first analysis, we are including all the experiments in which the data was
divided by user. In the second analysis we focus in the accuracy of the models per user. Due
to space constrains, we only present the results from the experiments with data collected from
accelerometers placed in one body location, the hand or the pocket. Finally, we measure how the
accuracy varies with the data collected from an accelerometer placed on different body locations.
In this third analysis we present the average accuracy of the models per body location.

6.4.3 Results and Discussion

In this section, we present and discuss the main results from the experiments. We note
that in the experiments that includes the deep learning models, we present the results of our
method with incremental learning, called EAE, and the model without incremental learning,
called EAE_Off. We present both versions so we can analyse the improvement of online model
update and also for a fair comparison with the other deep learning models that are not updated
online.
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6.4.3.1 WISDM Dataset

Considering the WISDM dataset, we can observe a plot containing 8 violin box-plots
representing the variation/dispersion of the accuracy per model Figure 24. In this graph, each
model is represented by a different colour. Each box-plot has the results of all the experiments
concerning the accuracy of each model per user.

In Figure 24 we notice that EAE has less dispersion in accuracy than the other models.
The median of the accuracy is around 87% for EAE, while for EkVN it is around 80%. As for
the other models, the median accuracy is around 87%, however their variance is larger than the
variance of EAE. As for the lowest accuracy, it can reach in some cases, less than 25%.

Figure 24 – Violin box-plot showing the dispersion of accuracy of the models in the dataset WISDM.

We can see in Table 17 that the deep learning models have similar average accuracy,
however the models Haetal and JiangYin show slightly better results. The average accuracy of
EAE and EkVN models are 0.82 and 0.73, respectively. In terms of computational cost, we see
that the model JiangYin took more time to train than the other methods. The EAE model has an
average training time similar to the HaChoi, Haetal and Panwaretal models. The models EkVN
model and ChenXue have the lowest training time. The ChenXue model has the simplest deep
learning architecture, so it is reasonable that its time consumption is lower than the others. In
terms of the testing computational cost, the EAE has the highest one. This can be due to the
number of AEs and also the incremental learning step. Overall, the results show that both the
EAE are learning meaningful representations of the activities in a reasonable time. However, the
time for prediction is superior due to the number of AE models and its incremental learning.

In Figure 25 we see the accuracy per user for the models EAE and the EkVN. The EAE
obtained a higher accuracy in 78% of the users as compared with EkVN. One of the most striking
differences is in user 30, where the accuracy of the EAE model is 71% while the accuracy of
EkVN model was only 16.7%. As mentioned before, we do not have demographic information
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Table 17 – Average Accuracy(Acc) and Time (Train/Test) for the models in the WISDM dataset.

ChenXue HaChoi Haetal JiangYin Panwaretal EAE EAE_Off EkVN

Acc 0.83 0.81 0.84 0.84 0.81 0.82 0.81 0.73
Time (s) 65/0.1 104/0.1 196/0.1 430/0.1 109/0.1 172/20.0 172/14.0 50/0.2

Figure 25 – Accuracy per user for the EAE and the EkVN models for the WISDM dataset considering the
body location Pocket.

about the users, however we observe that the misclassification between Walking and Jogging

was more evident in some users than others. Since the difference between the activities is in the
intensity of the movement, it could have been useful to compare physical characteristics of the
users with the classification.

When looking at the confusion matrix of the EAE (Table 18), we can observe that the
classes with higher misclassification are Downstairs and Upstairs. They are often misclassified
with each other or with Walking. One difference between the classes Downstairs and Upstairs

is the orientation of the activity: one is descending stairs and the other is ascending stairs. This
concept might be hard to learn only from accelerometer data, since this sensor does not capture
the orientation of the movement. On top of that, we also notice that the AEs Downstairs and
Upstairs were trained with less data than others classes (Figure 23) which makes it even more
difficult for the models to learn them.

6.4.3.2 MHealth Dataset

In Figure 26, we can observe the dispersion of accuracy obtained by the models in the
MHealth dataset. The median of accuracy of the EAE model is above 90%. We note that the EAE
has less variance than EAE_Off, meaning that the incremental learning reduces variance. The
models ChenXue, HaChoi and JiangYin had higher variance than the other models. Although
the lowest variance is EkVN, its median accuracy of 75%.
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Table 18 – Average confusion matrix for the EAE model in the WISDM dataset considering the body
location Pocket. The columns represent the ground truth and rows represent the predicted.

Downstairs Jogging Sitting Standing Upstairs Walking

Downstairs 0.40 0.06 0.01 0.00 0.22 0.30
Jogging 0.01 0.96 0.00 0.00 0.01 0.02
Sitting 0.02 0.03 0.91 0.04 0.01 0.00

Standing 0.01 0.00 0.04 0.95 0.00 0.00
Upstairs 0.06 0.11 0.00 0.00 0.58 0.24
Walking 0.09 0.00 0.00 0.00 0.04 0.87

Figure 26 – Violin box-plot showing the dispersion of accuracy of the models in the dataset MHealth.

Table 19 – Average Accuracy(Acc) and Time (Train/Test) for the models in the MHealth dataset.

ChenXue HaChoi Haetal JiangYin Panwaretal EAE EAE_Off EkVN

Acc 0.76 0.69 0.77 0.74 0.70 0.82 0.75 0.67
Time (s) 65.1/0.1 49.4/0.1 385.1/0.4 83.3/0.1 197.0/0.1 209.9/36 209.9/31 79.3/1.1

For this experiment we consider only data from the body location hand. In terms of
average accuracy and time consumption, we can see in Table 19 that both the EAE and the EAE_-
Off are competitive results with the deep learning models. However, because of the incremental
learning of the EAE it obtained an even higher average accuracy than other models. On the other
hand, the only model that uses hand-crafted features, EkVN, had the lowest accuracy.

In terms of time consumption, one more, the models with simpler architectures are faster
to train (HaChoi and ChenXue). The EAE takes more time in the prediction phase, specially
because this phase includes the incremental learning of the model. Considering that this is an
ensemble, the amount of models influences on the time consumption of its testing phase.

When comparing the accuracy per user of the models EAE and EkVN (Figure 27) we can
observe that the EAE was better for all individuals. This shows, once again, that the proposed
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Figure 27 – Accuracy per user for the EAE and the EkVN models in the MHealth datasets, considering
the body location Hand.

method can learn meaningful representations of the activities.

By looking at the confusion matrix of the EAE model (Table 20) we see that the class
Stairs has an average accuracy of 93%. This class has data from Downstairs and Upstairs

combined. This shows that the model can learn better from the classes which are independent of
the orientation. The class Running was more misclassified as Jogging than the other way around,
which might be related to the pace that each individual takes to perform these activities.

Table 20 – Average confusion matrix for EAE model for MHealth dataset considering only the body
location Hand. The columns represent the ground truth and rows represent the predicted.

1 2 3 4 5 6 7 8 9 10 11 12

1 - Stand 0.89 0.04 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 - Sit 0.11 0.45 0.22 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00
3 - Lay 0.00 0.11 0.78 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00
4 - Walk 0.01 0.00 0.00 0.95 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 - Stairs 0.00 0.01 0.00 0.02 0.93 0.02 0.01 0.02 0.00 0.00 0.00 0.00
6 - Waist Bend 0.01 0.01 0.00 0.01 0.02 0.74 0.00 0.22 0.00 0.00 0.00 0.00
7 - Elevation 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
8 - Knees Bend 0.00 0.01 0.00 0.04 0.06 0.23 0.00 0.66 0.00 0.00 0.00 0.00
9 - Cycle 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00
10 - Jog 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.08 0.00
11 - Run 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.73 0.00
12 - Jump 0.00 0.00 0.02 0.06 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.88

6.4.3.3 PAMAP2 dataset

For the PAMAP2 dataset, we see in Figure 28 a high dispersion in the accuracy of
the models, specially for ChenXue, HaChoi and Panwaretal. Although EkVN also has a high
dispersion of the accuracy, it is the model with the highest median accuracy, around 70%. The
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Table 21 – Average Accuracy(Acc) and Time (Train/Test) for the models in the PAMAP2 dataset.

ChenXue HaChoi Haetal JiangYin Panwaretal EAE EAE_Off EkVN

Acc 0.63 0.57 0.70 0.64 0.63 0.63 0.62 0.71
Time (s) 79.3/0.4 654.1/0.3 563.7/0.5 347.2/0.3 960.1/0.3 249.4/38.2 249.4/31 130.4/2.0

model EAE has the median of accuracy slightly above 60%, presenting a small improvement
compared with the offline variant, EAE_Off.

The maximum accuracy reached by EAE is 0.91, which is the highest of the deep learning
methods. We also observed that the minimum accuracy of the EAE is always the highest in all
the datasets tested. In this case, the lower value is 0.44 which is the same as for EkVN.

Figure 28 – Violin box-plot showing the dispersion of accuracy of the models in the dataset PAMAP2.

In Table 21 we see that the average accuracy of the EkVN the highest, meaning that
traditional models can achieve better performance in some datasets. Haetal is the deep learning
model with the highest average accuracy. All the others, JiangYin, Panwaretal, ChenXue, EAE,
EAE_Off and HaChoi obtained very similar average accuracy.

In terms of time consumption, we see that ChenXue has a faster training time, however
the JiangYin and Panwaretal are faster for testing. We notice that, although EAE is an ensemble of
12 AEs the time of training is not higher that some other deep learning models (e.g. Panwaretal).
However the EAE model is the slowest in testing time. The time performance depends on the
complexity of the models, the amount of models and the amount of data. Therefore it is natural
that EAE shows a higher consumption time.

Considering the results per user of the models EAE and EkVN (Figure 29), we see
that the accuracy of EkVN was slightly higher for all individuals. However, in this dataset, the
analysis per user is not an easy task because the users did not perform the activities in equal
proportion. For example, the user 9 only performed the activity Jumping. This is reflected in
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Figure 23 where we can see that there is less data for some classes. This less amount of data has
obvious implications in the deep learning methods which are known to require more data than
classical approaches. This is more evident for the activities Ascending Stairs, Nordic Walking

and Rope Jumping. This dataset also have activities like Ironing and Vacuum Cleaning which are
a mix of activities, such us, Walking and Standing.

Figure 29 – Accuracy per user for the EAE and the EkVN models in the PAMAP2 datasets, considering
the body location Hand.

The average Confusion Matrix of PAMAP2 (Table 22) shows that the misclassification
occurs between classes that are not related. For example, Descending Stairs and Ironing. From
this, we can conclude that the EAE model did not learn the activities as good as in the other
datasets. The reason for that might be because this dataset was collected with a frequency of
100Hz (see Table 16). Because of the high frequency, the window size of 480 data points (160
data points per accelerometer axis) represents only 1.6 seconds for each activity, which is not
sufficient to learn meaningful representations of each activity. Thus, a bigger window should
have been used for this dataset.

6.4.4 Accuracy per body location

In Table 23, we present the average accuracy per body location of the models EAE and
EkVN, considering WISDM, MHealth and PAMAP2 dataset. For the WIDSM dataset, that only
have the body location Front Pocket, the average accuracy of EAE is higher than the EkVN
model. In terms of the sensors on different body locations for the dataset MHealth, the average
accuracy of the EAE for each position is higher than the EkVN. Moreover, we can see that the
accuracy of the EAE models is practically the same across the different body locations, while the
EkVN varies. Additionally, as expected, the combination of all the sensors placed on different
body locations (HCA) improved the results of both models. For the dataset PAMAP2 we see that
the average accuracy of the EkVN for each body location is higher than the EAE model. This is



6.4. Experiments 103

Table 22 – Average confusion matrix for EAE model for PAMAP2 dataset considering only the body
location Hand. The columns represent the ground truth and rows represent the predicted.

1 2 3 4 5 6 7 8 9 10 11 12

1 - Asc. Stairs 0.55 0.00 0.10 0.05 0.01 0.01 0.00 0.00 0.03 0.03 0.09 0.13
2 - Cycle 0.01 0.57 0.01 0.12 0.02 0.00 0.00 0.00 0.13 0.08 0.05 0.01
3 - Des. Stairs 0.16 0.00 0.42 0.21 0.01 0.00 0.00 0.00 0.03 0.05 0.06 0.05
4 - Ironing 0.02 0.01 0.04 0.60 0.02 0.01 0.00 0.00 0.14 0.07 0.09 0.01
5 - Lay 0.01 0.00 0.01 0.06 0.60 0.00 0.00 0.00 0.28 0.03 0.01 0.00
6 - Nord. Walk 0.16 0.00 0.02 0.08 0.00 0.40 0.01 0.00 0.09 0.01 0.21 0.02
7 - Jump 0.01 0.00 0.01 0.09 0.00 0.01 0.60 0.01 0.07 0.02 0.19 0.00
8 - Run 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.76 0.01 0.02 0.17 0.00
9 - Sit 0.02 0.00 0.01 0.09 0.03 0.01 0.00 0.00 0.73 0.10 0.02 0.00
10 - Stand 0.06 0.00 0.03 0.06 0.07 0.00 0.00 0.00 0.12 0.61 0.03 0.01
11 - Vac. Clean 0.10 0.00 0.02 0.24 0.01 0.01 0.00 0.00 0.03 0.03 0.52 0.03
12 - Walk 0.21 0.00 0.11 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.06 0.59

specially evident in HCA. However the EAE model has a lower variance, since all values are
around 60.0%.

Table 23 – Average accuracy for the EAE and the EkVN models for each dataset separated by body
location (HCA=Hand,Chest,Ankle).

Hand Chest Ankle HCA F.Pocket

EAE EkVN EAE EkVN EAE EkVN EAE EkVN EAE EkVN

WISDM - - - - - - - - 80.8 73.1
MHealth 82.0 67.2 82.8 74.4 82.0 69.2 94.8 83.4 - -
PAMAP2 60.0 70.7 60.0 60.8 59.0 70.7 56.0 80.8 - -

6.4.5 Aggregation of Classes

One advantage of the EAE structure is the possibility of aggregating classes in different
hierarchies in a simple manner. We can combine the AEs that represent similar classes and
consider super-classes.

Considering the dataset PAMAP2, for example, we can aggregate its classes into the
following super-classes: House Cleaning (which includes Ironing and Vacuum Cleaning), Dy-

namic Positions (Ascending/Descending Stairs and Walking), Static Positions (Lying, Sitting and
Standing) and Sports (Cycling, Nordic Walking, Rope Jumping and Running). In this experiment,
we still use the 12 AEs, however we consider as a true positive, when the classification is correct,
any class belonging to the super-class (Table 24). The average accuracy was 74.1%, which is
higher than the 60.0% showed in Table 22. This shows that AE from similar activities obtain
smaller errors. In particular, the misclassification between the Dynamic Positions and Static

Positions is quite low.
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Table 24 – Average confusion matrix for EAE model for PAMAP2 dataset considering the aggregation of
AEs.

Dynamic Positions Static Positions Sports House Cleaning

Dynamic Positions 0.82 0.05 0.00 0.13
Static Positions 0.05 0.86 0.01 0.09
Sports 0.09 0.13 0.56 0.23
House Cleaning 0.10 0.16 0.02 0.72

6.5 Conclusion

In this paper we proposed a new classification algorithm which we refer as Ensemble
of Auto-Encoders (EAE). It uses a set of AEs where each is trained to reconstruct the sensor
measurements from one unique class. This set of AE is then used as an ensemble for classification
by predicting the class which corresponds to the AE with the lowest reconstruction error. We
tested two variants of the EAE (one with online learning and other without) in HAR datasets and
compared them with other methods. One was an ensemble of traditional approaches, EkVN, and
the remaining are state-of-the-art deep learning approaches.

Experimental results show that the proposed EAE is competitive with existing methods
found in HAR literature. We observed that the minimum accuracy of the EAE is always the
highest in all the datasets tested. From this we can conclude that the EAE is more robust to data
from different users, which is also supported by the low variance in accuracy.

We note that the presented results were obtained from models trained with accelerometer
data only, which is usually a more challenging classification task. Moreover, a simple and unique
architecture was used for all AE in all datasets without hyperparameter tuning.

The modular structure of the EAE proposed in this work has the advantage of making
the model easily adapted. First of all, in the case of online learning, only the AEs corresponding
to the most frequent activities are updated which can save computation time. In this way it is not
necessary to retrain the whole model, as it would be necessary for most machine learning models.
Therefore the EAE can specialise in the most performed (or preferred) activities of each user.
Moreover this modular structure has also the advantage for the inclusion of new activities when
is needed. For that, it is only necessary to add more AE and train each one with each new class.
Likewise, it could be similarly adapted to forget activities, by simply removing the respective
AE from the ensemble. Finally, another advantage of the EAE is that each AE can have its own
architecture and even use different types of layers, such as Recurrent or Convolutional.

In terms of time consumption we see that models with more complex architectures are
slower to train than simpler ones. In that sense the EAE, even though it has multiples models,
has a similar time consumption to other deep learning models. However, since the concept of
EAE can use many different architectures of the AEs, the time consumption can be reduced with
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different ones. Moreover, in terms of test/prediction, the time consumption represented in the
results consider all the instances used in each experiment. Which means that the prediction of
each instance took less than half a second.

As future work we intend to combine AE with different architectures in the same
ensemble.

The final publication is available at <link.springer.com/chapter/10.1007/978-3-319-46307-0_1>

link.springer.com/chapter/10.1007/978-3-319-46307-0_1
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Abstract
Wearable technologies and smartphones have become more ubiquitous, and a large

amount of information about a person’s life has become available. Since each person has a
unique way of performing physical activities, a Human Activity Recognition system needs to be
adapted to the characteristics of a person in order to maintain or improve accuracy. Additionally,
when smartphones devices are used to collect data, it is necessary to manage its limited resources,
so the system can efficiently work for long periods of time. In this paper, we present a semi-
supervised ensemble algorithm and an extensive study of the influence of hyperparameter
configuration in classification accuracy. We also investigate how the classification accuracy is
affected by the person and the activities performed. Experimental results show that it is possible
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to maintain classification accuracy by adjusting hyperparameters, like window size and window
overlap, depending on the person and activity performed.

7.1 Introduction

Advanced mobile devices, such as smartphones, are usually integrated with several sen-
sors capable of any-time sensing and data collection. The different types of motions sensors, such
as accelerometers, gyroscopes and magnetometers, allow mobile devices to obtain substantial
user-related information by monitoring and tracking movements of their users (MILUZZO et al.,
2012).

Human Activity Recognition (HAR) is a machine learning task focused on the use of
sensing technologies to classify human activities and to infer human behaviour (KRISHNAN;
COOK, 2014). Extensive research has been carried out in this area in the last decade (AGGAR-
WAL; RYOO, 2011; LARA; LABRADOR, 2013; RAMAMURTHY; ROY, 2018; SHOAIB et

al., 2015), for applications like health and well-being (DOBBINS; RAWASSIZADEH; MO-
MENI, 2017), mobile security (MILUZZO et al., 2012; PISANI; LORENA, 2013) and elderly
care (KRISHNAN; COOK, 2014).

Most approaches of HAR found in the literature are based on supervised learning
algorithms and assume that the true data label is always available. However, this assumption may
not be feasible in real online scenarios, when labelled data is rare, and the system feedback has
to occur at runtime. As an example, in a fall detection system for elderly care, the classification
feedback must occur as close as possible to the real moment of the user’s fall (KRISHNAN;
COOK, 2014).

Besides, as human beings perform activities differently, dissonant input signals are
expected for the same activity (CARDOSO; MENDES-MOREIRA, 2016). To keep accuracy
over time, classification models, used in HAR systems, need to be adapted to the current user.
However, due to the limitations of most mobile devices, different hardware resources need to be
managed, such as battery and execution power, in order to keep the system efficiently working
and accurate over time. Thus, there is a trade-off between the amount of processed information
and the resources available.

This work is based on an ensemble classifier firstly described in (REISS; STRICKER,
2012). This algorithm has two phases, an offline and an online phase. In the beginning, the offline
phase, the ensemble model is trained with labelled data from several users. In the online phase,
this ensemble is used as a basic model to classify activities from a specific user, not present in
the ensemble training. The ensemble model can be updated online with the user’s data, if the
classification has a high confidence factor.

The main contributions of this work are the extensive study of two hyperparameters
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important for HAR classification: the window size and the overlapping between windows (overlap
factor). We analyse the impact of these hyperparameters in the model classification accuracy.
Additionally, we conducted experiments with an ODROID-XU+E board 1 to evaluate the impact
of these hyperparameters regarding energy consumption and execution time in a hardware similar
to a smartphone.

This paper is structured as follows. Section 7.2 presents the related work on HAR and
window parameterisation. In Section 7.3, we describe the methodology applied in this study.
The results obtained with the experiments are presented and discussed in Section 7.4. Finally, in
Section 7.5, we summarise our main conclusions and point out future work directions.

7.2 Related Work

Dobbins et al. (DOBBINS; RAWASSIZADEH; MOMENI, 2017) propose an approach
that uses personal data to infer on better lifestyle choices for its users. Considering only labelled
data, they evaluate the predictive performance of 10 supervised HAR classifiers in terms of
accuracy and mobile system performance (execution time and energy consumption). Their
experimental setup is based on a fixed window size of 512 samples and overlap factor of 0.5, i.e.,
256 samples are reused from the previous window and only 256 new samples are used for the
current window. They suggest that the sensing data should be processed in the cloud and not in
the device. However, personal privacy and Internet connection are not considered. Furthermore,
all data used is labelled, which cannot be guaranteed in a real online mobile system. The datasets
used in the experiments contain complex activities and different user’s data, but the results are
not compared in terms of accuracy per user.

Mannini et al. (MANNINI et al., 2013) propose an SVM classifier to detect 4 activities
from 33 different users. The classifier performance was tested for different window sizes, but not
for the overlap between consecutive windows. Also, they do not compare, in terms of execution
time, the classification task with different window sizes. The results show large variability among
users performing the same activity, due to the problem of different sensor body location.

Other authors have also discussed window size. For example, (BAÑOS et al., 2014b;
HARASIMOWICZ; DZIUBICH; BRZESKI, 2014; BAÑOS et al., 2014a; NIAZI et al., 2017)
compare the predictive performance of classifiers over a set of window sizes. However, most
studies do not consider the use of overlap factor and the impact of the user on the obtained
accuracy.

In (BAÑOS et al., 2014b) it is presented an extensive review of the literature in window
size and HAR. The accuracy of several classifiers was analysed for different window sizes, but

1 ODROID-XU+E is a board mainly consisting of an Exynos5 Octa SoC, which includes 2 quad cores
ARM CPUs and a PowerVR GPU, and a power measurement circuit to measure CPU, GPU and
DRAM power consumption. The Exynos5 Octa SoC is used in numbers of families of smartphones.
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Figure 30 – Overview of the semi-supervised ensemble model for HAR.

not regarding users. Additionally, the experimental setup was not elaborated with a leave-one-
user-out, which would be a more realist approach. Instead, they used a cross-validation approach,
which is more affected by user variability than leave-one-participant-out.

The study conducted in this paper uses the PAMAP2 public dataset (REISS; STRICKER,
2012). PAMAP2 includes a vast number of sensors and more complex activities than the data
used by many other studies. This dataset allows the study of the impact on HAR accuracy for
different window sizes, users and activities.

7.3 Activity Recognition Overview

The HAR classification task can be split into 4 main steps, as illustrated in Figure 30.
The steps 1,2 and 3 are the training phase with multiples users. The steps 1,2 and 4 are used for
the online user-specific classification.

Figure 30 shows a batch with raw data extracted from different wearable sensors and/or
smartphones. The raw data samples are stored in a sliding window with a fixed size. Ideally,
a sliding window should contain data from a unique activity. However, perfect segmentation
is not always feasible, so a between-window overlap factor can be used to include samples
from sequential activities. Also, the size of the sliding window is reduced by the overlap factor,
allowing a reduction of stored data. Thus, the step 1 is the window segmentation of the raw data
and the overlapping of sequential windows.

Sensor’s data are usually susceptible to noise, especially the accelerometers data (DOB-
BINS; RAWASSIZADEH; MOMENI, 2017). Thus, it is essential to process and convert the data
into meaningful values. A preprocessing step (step 2) may also include calibration and filtering of
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the input signals in order to reduce noise. Sequential to that, a Feature Extraction (step 2) is used
to calculate a single instance containing features that are then used for building the ensemble
model. These features (see, e.g., (FIGO et al., 2010)) include time-domain calculus, specifically
mean and standard deviation for each sensor signal and correlation (Pearson correlation) between
axes for the 3D sensors.

Each new instance is used to train (step 3) an ensemble model composed of three
classifiers: kNN, VFDT and Naive Bayes. The implementation of the ensemble classifier is the
combination of Democratic Co-Learning (ZHOU; GOLDMAN, 2004) and Tri-Training (ZHOU;
LI, 2005).

After training the ensemble model, in the online phase, sensors data are acquired from
a single user. This data is preprocessed, and features are extracted from them, similar to the
processes (step 1 and 2) described in the training phase. Each generated instance is classified
by the ensemble (step 4), which classifies the instance and provides a confidence factor for that
classification. The instances classified with high confidence, more than 99% value, are used to
update the ensemble model.

7.4 Experimental Results

We conducted several experiments with our approach using the PAMAP2 dataset (REISS;
STRICKER, 2012). The objectives of these experiments are: compare the accuracy of a super-
vised HAR versus a semi-supervised HAR when using different configurations of the hyper-
parameters: window size and overlap factor. We also intend to study a HAR system behaviour
with the different hyperparameters configurations in terms of classification accuracy, energy
consumption and execution time.

7.4.1 The PAMAP2 Dataset

The PAMAP2 (REISS; STRICKER, 2012) is a public dataset for human physical activi-
ties 2. The data was collected from tree devices positioned in different body areas: wrist, chest
and ankle. Each device has three sensors embedded: a 3-axis accelerometer, a 3-axis gyroscope
and a 3-axis magnetometer.

The PAMAP2 dataset contains 1.926.896 samples of raw sensor data from 9 different
users and 18 different activities. The activities executed by the users are divided into basic
activities (walking, running, Nordic walking and cycling), posture activities (lying, sitting and
standing), everyday activities (ascending and descending stairs), household (ironing and vacuum
cleaning) and fitness activities (rope jumping). Also, the users were encouraged to perform

2 http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
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Figure 31 – Supervised vs Semi-Supervised Ensemble accuracy: Overlap factor influence.

optional activities (watching TV, computer work, car driving, folding laundry, house cleaning,
and playing soccer).

7.4.2 Experimental setup

Using the PAMAP2 dataset (REISS; STRICKER, 2012), each ensemble was trained with
data from 8 users and tested with one isolated user, not presented in the training process. This
approach is called leave-one-user-out.

We conducted four experiments with two ensemble models, each one consisting of three
classifiers: kNN, Naive Bayes, and Hoeffding Tree (VFDT), as in (CARDOSO; MENDES-
MOREIRA, 2016). As verified in (DOBBINS; RAWASSIZADEH; MOMENI, 2017), these
three classifiers have good classification performance in HAR problems. Thus, we analyse the
accuracy performance of one ensemble model with a semi-supervised approach and another
ensemble model with a supervised approach.

The box-plots correspond to the variance in accuracy for different values of window size
(from 100 to 1000 with increments of 100), overlap factor (from 0.0 to 0.9 with increments of
0.1) and users (from 1 to 9 with increments of 1 user per experiment).

7.4.3 HAR Accuracy Results

Figure 31 presents the accuracy (axis y) for each value of the overlap factor, overlapping

(axis x). The semi-supervised model reduces accuracy variance, compared with supervised
model, for most of the overlapping and has average accuracy close to 90%. For both models,
overlapping has more influence on accuracy for values higher than 0.7, but the semi-supervised
model is less susceptible to that influence than the supervised model. As shown in Figure 32,
variance of accuracy (axis y) and window size (axis x), the semi-supervised model reduces
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Figure 32 – Supervised vs Semi-Supervised Ensemble accuracy: Overlap factor influence.
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Figure 33 – Supervised vs Semi-Supervised Ensemble accuracy: Overlap factor influence.

accuracy variance for each value of window size. We also notice that windows with small sizes
have worse results, especially for sizes of 100 and 200.

We analyse the models’ accuracy for each user. For that, we analyse the variance of
accuracy (axis y) when varying the hyperparameters window size and overlapping for each user

(axis x). In Figure 33, for both models, user 5 and 6 have variance higher than users 2 and 1.
The semi-supervised model reduces accuracy variance for users 4 and 8. An interesting case
to analyse is user 9. For most of the cases, the accuracy is 100%; however, user 9 only has
instances for the Rope Jumping activity, which means that this user influences the results to
higher values. In some cases, the individual accuracy can be lower, as we can see with users 2, 8
and 1, justifying the analyses by the user instead of analysing all population.

With the results, we can see that window size and overlapping do influence the accuracy
of the models. Based on these results and depending on the HAR application, one can decide
about the window size and overlap factor level that make possible a certain minimum desired
classification accuracy. The exhaustive exploration allows us also to understand the acceptable
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ranges to explore within an autotuning runtime system, e.g., to keep a minimum accuracy (e.g.
80%). These ranges can be used, at runtime, to search for the best combination of the hyperpa-
rameters that provide the best results, e.g., in terms of execution time or energy consumption. The
following subsection shows the impact on execution time and energy consumption of different
window sizes and overlap factor.

7.4.4 Execution Time and Energy Consumption

We also analyse the execution time and energy consumption for processing all the data
from the PAMAP2 dataset. For that, we conducted experiments in an ODROID-XU+E 3 system
running Android. The experiments focus on a single user, user 6, and the execution time and
energy required to process 250.096 raw samples.

The first experiment is about the execution time necessary to process all the data of user
6. The execution time was divided into three parts. The first part, samplingTime, represents the
time required to access all the data from the user and the instantiation of each data window
as an instance. The second part, featureTime is the feature extraction and the “final instance”
instantiation, this part depends on the window size and the overlap factor used. The last part,
classificationTime, is the total time required to classify all the instances calculated in the feature
extraction phase.

In Figure 34, since the feature extraction depends on the window size, the time to
calculate all instances increases as the window size also increases, despite the decreasing number
of calculated features. This means that the feature extraction phase is sensitive to the number of
raw instances to process. Furthermore, as we increase the overlap factor, due to the increased
number of instances that are calculated, the execution time also increases. The classification time
is rather short and slightly increases as the number of calculated features augments.

The second experiment is presented as a heat map representing the energy, Joules,
consumed to process raw data from user 6. For the different window sizes and overlap factors.
The colours represent a range of Joules, where the red colour depicts higher energy consumed
and, reversely, green colour depicts less energy consumed. The accuracy is also shown in the
map over each circle depicting the energy colour to compare the energy consumed with the
classification accuracy.

In Figure 35, we can see that smaller windows result in less energy consumption than
bigger windows. This is due to the increased effort to calculate features for larger window sizes.
It is also perceivable that increasing the overlap factor also increases the energy consumed,
essentially due to the increased number of feature calculations and classifications to be carried
out.

Relating the energy consumption with the accuracy achieved for a given configuration,

3 https://www.hardkernel.com/
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Figure 34 – Total execution time required (left axis) to process the PAMAP2 dataset, per window size
and overlap factor, divided in three parts: sampling (data extraction), features extraction and
classification. The number of classifications per configuration (right axis) is shown as triangle
marks.

it is observable that the best accuracy values reside in more “heated” zones, i.e., where energy
consumption is high. Smaller window sizes present lower accuracy, while larger window sizes
provide higher accuracy. For instance, in configurations without overlapping (i.e., with an overlap
factor of 0), the accuracy rises from 85% for a window of size 500 to 90% for a window of size
1000.

The overlap shows more fluctuations in terms of accuracy; however, with the best factors
concentrated between 0.1 and 0.5. This shows that it is not trivial to select a single-window size
and overlap factor if it is intended to have two possible scenarios, one where accuracy is the
most important factor and another one where energy consumption is the top priority but still with
a minimum accuracy value in mind.

7.5 Conclusion

In this work, we presented an analysis of the impact of hyperparameters, as window size
and overlap factor, on HAR classification accuracy, execution time and energy consumption. The
analysis was focused on a public dataset, which includes raw sensor data from 9 different users
and 18 physical activities.

The experimental results confirm the need for adapting the classification model to the
current user. Due to the impact of window size and overlap factor, each activity requires a specific
configuration of these hyperparameters in order to improve classification accuracy.

Furthermore, the results also motivate the development of a system that is able to adapt the
application at runtime when trade-offs between performance accuracy and energy consumption
need to be considered. Bearing in mind this, the window size and overlap factor can be used to
develop runtime strategies able to adapt these parameters according to the target goals.
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As future work, we plan to implement a system able to adjust the window size and
overlap factor dynamically and aware of activities and users. The dynamic adaptation needs to
consider an exploration of possible parameter configurations to find the best configurations for
each adaptation scenario, and thus, the experimental results presented in this paper are also part
of that exploration phase.
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CHAPTER

8
CONCLUSIONS AND FUTURE RESEARCH

Everything flows and nothing

abides; everything gives way and

nothing stays fixed.

Heraclitus of Ephesus

Learning from data stream is challenging because the data presents characteristics that
are limitations to classical machine learning approaches. Among the limitations, we addressed
the problem of the learning concept changes over time. These limitations require solutions
capable of incremental learning, so that the model can keep its predictive performance.

In this thesis, we proposed methods 1 capable of automatically choose the moment to
update the model to concept drift and novelties. The proposed methods can cope with changes
even in the case of unlabelled data. We considered solutions that are able to detect more than
one concept change at the same time. Our contributions are all incremental learning capable of
adapting their models to the changes of the data stream.

We first addressed the problem of concept drift by proposing a method that selects
representative data from the stream to update the model. Then, considering the problem of
concept drift and novelties, we proposed a method that incrementally updates its model every
time a new instance is classified. Considering the limitations of finding a suitable clustering
partition, we also proposed a method based on ensemble of partitions. Moreover, we proposed
two variations of this method: an ensemble of clustering from the same algorithm; and an
ensemble of clustering from different algorithms. Our final contribution is based on neural
networks, which is also unsupervised. In this contribution, we proposed an ensemble of specialist
models. We applied our last contribution in human activity recognition. We next present a
summary of the major contributions.

1 All algorithms presented in this thesis are available for consultation in<https://github.com/keh>

https://github.com/keh
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8.1 Conclusions
In Chapter 3, we presented our first contribution. We developed a new method for data

streams, based on the algorithm kNN, to address the problem of concept drift. This chapter is
addressed to answer RQ1:

How to reduce the amount of data used to train a model and how to select the most

representative data to update a model in data streams?

To answer RQ1, we proposed the method SWC for the selection and the reduction of
the prototypes used to train the classification model. SWC, stores only the representative data
from the stream into a fixed-length sliding window. For that, in its online phase, SWC selects the
data to be stored based on a probabilistic test. The method also decides when the data should be
compressed. For the task of reducing the data, it is applied a clustering approach based on the
kMeans algorithm. Moreover, SWC only requires the label of a new data when the model is not
confident about its classification decision. In the experiments, we compared our method with
other methods well-known in the literature. According to the experimental results, SWC has
competitive predictive performance, with lower processing and memory cost than the compared
methods. This work has been published in the following paper:

∙ Garcia, K. D., de Carvalho, A. C., & Mendes-Moreira, J. (2018, November). A cluster-
based prototype reduction for online classification. In International Conference on Intelli-
gent Data Engineering and Automated Learning (pp. 603-610). Springer.

We presented our second contribution in Chapter 4. We proposed an unsupervised
learning method, called Higia, to learn novelties and concept drift in data streams. Thus, this
chapter is addressed to answer RQ2:

How to incrementally learn concept changes in data streams, considering an unsu-

pervised approach, without storing data for future analysis?

Our contribution is a method capable of incrementally update its model every time a new
data is classified. Higia uses micro-clusters as representatives to the concepts presented in the
stream. The micro-clusters are a variation of the CF-Cluster, presented in Chapter 2. Higia can
incrementally form new clusters, without the necessity of waiting for an event to happen. The
new clusters can be incorporated into the model, or as novelties, or as concept drift, depending
on how different they are from the normal concepts. Moreover, Higia allows for using more than
one k (prototype) during the classification of new data. That way, the label of a new data (normal,
extension or unknown) is decided by the number of prototypes that is similar to the new data.
We compared Higia with the MINAS algorithm, the state-of-the-art algorithm for unsupervised
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learning in data streams. According to the experimental results, Higia presents a better predictive
performance than MINAS. In the experiments, Higia shows to be faster in adapting its model to
the current concepts than the MINAS algorithm. That shows the efficiency of the incremental
update of the model to each new arriving data. This work has been published in the following
paper:

∙ Garcia, K. D., Poel, M., Kok, J. N., & de Carvalho, A. C. (2019, September). Online Clus-
tering for Novelty Detection and Concept Drift in Data Streams. In the EPIA Conference
on Artificial Intelligence (pp. 448-459). Springer.

In Chapter 5, we presented our third contribution. We studied how to create clustering
partitions that could better represent the data stream. For that, we investigated how to combine
different clustering partitions into an ensemble for concept change detection in data streams.
Thus, we focused on answering the RQ3:

How to combine clustering partitions from different clustering techniques and use

them as a classification model in data streams?

In Chapter 5, we also addressed the RQ4:

In which data streams can an ensemble model of clusters from different clustering

approaches achieve higher predictive performance than an ensemble model of

clusters from the same clustering approach?

Considering RQ3, we based our contribution on two methods for ensemble clustering:
one homogeneous ensemble obtained by the combination of the CluStream algorithm (called
HoCluS); and one heterogeneous ensemble obtained by the combination of different clustering
technique (called HeCluS). These methods allow for the combination of clustering partitions with
different bias to obtain models that could better represent the data over time. In the experiments,
we observed that the ensemble methods HoCluS and HeCluS have better predictive performance
than the compared single model from the unsupervised method MINAS. The method HeCluS is
usually more stable and has higher F-Measure than HoCluS and MINAS. The proposed methods
showed to be competitive with the other tested methods. In most cases, the ensembles had better
performance than the single models.

The experiments also helped us to answer RQ4, as they showed that the HeCluS has
higher F-Measure than HoCluS, especially when applied on datasets with only concept drift.
The use of the heterogeneous ensemble is a promising strategy because the combination of
different biases creates a model that better represents the data. Both proposed methods have the
advantage of not needing the labels to update themselves. Moreover, both proposed methods have
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a competitive performance with the compared supervised methods. Furthermore, the experiments
showed us that all tested methods had better performance just in certain periods of the stream.
Thus, the predictive performance of all tested methods was affected by the changes in the data
streams. We concluded that a model with a single bias can be only suitable for a given data
stream or for specific periods in the same data stream. This work has been published in the
following paper:

∙ Garcia, K. D., de Faria, E. R., de Sá, C. R., Mendes-Moreira, J., Aggarwal, C. C., de
Carvalho, A. C., & Kok, J. N. (2019, October). Ensemble Clustering for Novelty Detection
in Data Streams. In International Conference on Discovery Science (pp. 460-470). Springer.

This work was extended and submitted to the Machine Learning Journal, and it is under
review.

Our fourth contribution, Chapter 6, is a new classification method called Ensemble of
Auto-Encoders (EAE). In this work, we focus on answering the RQ5.

How to use a set of auto-encoders for classification of data streams?

EAE is a set of auto-encoders in which each auto-encoder is trained to reconstruct
the sensor measurements from one unique class. This set of auto-encoders is then used as an
ensemble for classification. The classification of an instance is defined by the auto-encoder
with the lowest reconstruction error. EAE has a modular structure, which makes the model
easily adapted to concept changes. It is not necessary to retrain the whole model, as it would
be necessary for most machine learning models. In the context of human activity recognition,
for example, EAE can be specialised in the most performed (or preferred) activities of each
user; which makes it a personalised model to a specific user. This modular structure also has
the advantage for the inclusion of new activities, when new activities are detected. For that,
it is only necessary to add more auto-encoders and train each one with the data from each
new class. Likewise, it could be similarly adapted to forget activities by simply removing the
respective auto-encoder from the ensemble. Finally, another advantage of the EAE is that each
auto-encoder can have its architecture and even use different types of layers, such as Recurrent
or Convolutional.

We tested EAE in the context of human activity recognition. In the experiments, we
tested two variants of our method to analyse the improvement of the online learning. One variant
of EAE is with online learning and other variant is without online learning. We compared the
EAE variants with an ensemble of traditional approaches and with deep learning methods. The
experimental results shows that the minimum accuracy of the EAE is always the highest, in all
the datasets tested, in comparison with the other tested methods. The variant of EAE with online
learning has less variance that the variant of EAE without online learning. We concluded that the
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EAE is more robust to data from different users, which is also supported by its low variance of
accuracy. This work has been published in the following journal paper:

∙ Garcia, K. D., de Sá, C. R., Poel, M., Carvalho, T., Mendes-Moreira, J., Cardoso, J. M., de
Carvalho, A. C. & Kok, J. N. (2021). An Ensemble of Autonomous Auto-Encoders for
Human Activity Recognition. Neurocomputing 439 (2021): 271-280.

In Chapter 7, we analysed the impact of varying the hyperparameters from a classification
algorithm. For this problem, we considered a Human Activity Recognition system running in
a smartphone. The analysis was based on the accuracy of the classification model responsible
for classifying the user’s physical activities; on the execution time of the system, and the energy
consumption of the mobile device. The experimental results show that each activity requires
a specific configuration of the hyperparameters to improve classification accuracy. The results
also confirm the need of adapting the classification model to a specific user. Considering that the
accuracy performance was considerably different from user to user, even when performing the
same physical activity. Furthermore, the results also motivate the development of a system that
can adapt the application at runtime, when trade-offs between performance accuracy and energy
consumption need to be considered. This work has been published in the following papers:

∙ Garcia, K. D., Carvalho, T., Mendes-Moreira, J., Cardoso, J. M., & de Carvalho, A. C.
(2019, May). A Study on Hyperparameter Configuration for Human Activity Recognition.
In International Workshop on Soft Computing Models in Industrial and Environmental
Applications (pp. 47-56). Springer.

8.2 Future Research
In this section, we discuss some possible open problems that could be explored in future

work.

∙ New strategies to forget old concepts: in data streams, the act of learning also requires
that a learning algorithm must forget the outdated information. In this thesis, we only
focused on forgetting information when the buffer reaches a predefined size. Nevertheless,
it may be interesting also to eliminate data that has been in memory for a specific amount
of time. Depending on the application, old data can still be relevant, so, it should not
be eliminated. Thus, it could be investigated alternatives solutions to discard outdated
information.

∙ Automatic and dynamic adaptation of hyperparameters: hyperparameters defined in
the beginning of a data stream could be unsuitable in other periods because of unpre-
dictable changes in the data stream. Thus, a learning algorithm should have mechanisms to
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automatic adapt its hyperparameters, since this could improve its predictive performance
over time. The dynamic adaptation could be the exploration of possible hyperparameter
configurations to find the best configurations. During a certain period of time, it could also
estimate the hyperparameter according to the statistical distribution of that period. Among
these hyperparameters, the dynamic window size could be energy-efficient and improve
predictive performance; thus, it is an interesting aspect which should be investigated
further.

∙ Develop methods of meta-learning for data streams In Chapter 5, we saw that an
appropriate model at a certain period may rapidly become obsolete in other periods,
requiring updating the model or its replacement. As there are several learning algorithms
available, an interesting future investigation could be how to select the learning algorithm
with the most suitable bias for a period of the stream.

∙ Study on different architecture configuration to train the auto-encoders: As we pre-
sented in Chapter 6, a set of auto-encoders can be used as a robust ensemble model for
human activity recognition. However, there are still possibilities for improvements, espe-
cially in the combination of auto-encoders with different architectures. Another interesting
aspect that could be investigated further is the possibility of each EAE using different
types of layers, such as Recurrent or Convolutional neural networks. Besides, it should be
investigated the efficiency of EAE when new classes appear in the stream. Likewise, how
the method could forget unused auto-encoders from the ensemble. Another possibility is
to explore how to use transfer learning to adapt the ensemble to different domains.
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