• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2018.tde-24042018-155451
Document
Auteur
Nom complet
Adriana de Cassia Favoretti
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1995
Directeur
Jury
Achcar, Jorge Alberto (Président)
Diniz, Carlos Alberto Ribeiro
Paula, Gilberto Alvarenga
Titre en portugais
MODELOS NÂO-LINEARES: UM ENFOQUE BAYESIANO.
Mots-clés en portugais
Não disponível
Resumé en portugais
Dada uma função holomorfa f : Cn+1 → C com f(0) = 0 e, O é uma singularidade isolada, a hipersuperfície de nível f-1 (0) na vizinhança de O, Dε ∩ f-1 (0) é homeomorfo ao cone com base K = Sε ∩ f-1 (0). Logo o estudo de K é essencial para o entendimento de hipersuperfície de nível na vizinhança de zero, sob um ponto de vista topológica. A aplicação Φ = f / &Iota ; f Ι : Sε - K → S1, é a projeção de um fibrado localmente trivial denominado de Fibração de Milnor e a sua fibra F0= Φ-1 (1) tem o tipo de homotopia de um bouquet de esferas SnvSnv...vSn . Para um difeomorfismo específico h : F0 → F0, o polinômio característico Δ (t) de h* : Hn (F0) → Hn (F0 é um invariante de K, e se n ≠ 2 então K é homeomorfo a esfera de dimensão 2n -1 se, e somente se Δ (1) = ±1. Nesta dissertação, estudaremos K nos casos em que n=1 e nos casos em que f é da forma f(z1, z2,...,zn+1) = za11 + za22 + ...+ zan+1n+1 onde ai ' s são inteiros maiores que 1 (polinômio de Brieskorn). Também analizaremos Δ (t) e Δ (1) para o caso em que f seja polinômio de Brieskorn ou um polinômio f para a qual existam racionais positivos {w1, w2, ..., wn+1} tal que f(ec/w1z1, ec/w2,... ec/wn+1 zn+1) = ec/f(z1, z2,..., zn+1), para todo c ∈ C (polinômio quase-homogêneo).
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
Given a holomorphic function f : Cn+1 → C, such that f(0) = 0 and 0 is an isolated singularity, the level hypersurface f-1 (O) near 0, Dε ∩ f-1 (0) is homeomorphic to the cone over K = Sε ∩ f-1(0). Thus, the study of K is essential to understand the level hypersurface near zero, from a topological point of view. The mapping Φ = f/ΙfΙ : Sε - K → S1 is the projection of a locally trivial bundle known as Milnor fibration and the fibre F0 = Φ -1(1) has the homotopy type of a wedge of spheres SnvSnv...vSn.For a specific diffeomorphism h : F0 → F0, the characteristic polynomial Δ(t) of h* : Hn(F0) is an invariant of K and if n ≠ 2 then K is homeomorphic to the (2n- 1) - sphere if, and only Δ(1) = ±1. Here we study K when n=l and when f is of the form f (z1, z2, ..., zn+1)= za11 + za22 + ... zan+1n+1, where the ai's are integers greater than 1 (Brieskorn polynomial). Also we analyse Δ(t) and Δ(1) when f is a Brieskorn polynomial or a polynomial f for which there are positive rational numbers {w1,w2,..., wn+1} such that f(ec/w1z1, ec/w2z2,...,ec/wn+1) = ecf(z1, z2,..., zn+1), for all c ∈ C (quasi-homogeneous polynomial).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-04-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.