
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

Lina: a fast design optimisation tool for
software-based FPGA programming

André Bannwart Perina
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

André Bannwart Perina

Lina: a fast design optimisation tool for
software-based FPGA programming

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Vanderlei Bonato

USP – São Carlos
August 2022



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

P445l
Perina, André Bannwart
   Lina: a fast design optimisation tool for
software-based FPGA programming / André Bannwart
Perina; orientador Vanderlei Bonato. -- São Carlos,
2022.
   189 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2022.

   1. FPGA. 2. High-level synthesis. 3. Design
space exploration. 4. Synthesis-less design
exploration. I. Bonato, Vanderlei, orient. II.
Título. 



André Bannwart Perina

Lina: uma ferramenta de otimização de projeto para
programação de FPGAs baseada em software

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Vanderlei Bonato

USP – São Carlos
Agosto de 2022





ACKNOWLEDGEMENTS

The path that resulted in this thesis includes several contributions in various forms.
Here is the acknowledgment for those.

First, I would like to thank Prof. Vanderlei Bonato for the significant insight,
suggestions and guidelines given through these years. A great thank you also goes to
Prof. Jürgen Becker for the great advisorship given through the last years. Also Prof.
Eduardo Marques, Prof. Alexandre Delbem, Prof. João Cardoso and Prof. Pedro Diniz
for all the research lessons that I gathered in my academic years.

I also appreciate all the support, both research and emotional, of all the people I’ve
met in the research community. A special thank you to the Laboratório de Computação
Reconfigurável (LCR), including Carlos, Leandro, Erinaldo, Marcilyanne. Also my great
appreciation for the Institute for Information Processing Technologies of the Karlsruhe
Institute of Technology (ITIV-KIT), that provided significant support for this work (thank
you Arthur, Augusto, Birgitta, Fabian, Florian, Jens, Kevin, Steffen, and all of ITIV).

I also leave my deep thank you to all family and friends who have been involved
in this journey. To my family in São Vicente / Santos and Indaiatuba, and specially to
my brother, my mother and my father for always being around when needed. Thank you
to the friends in São Carlos for all the experience (thank you Gaperia for all friendship!),
to the friends in Indaiatuba, São Vicente / Santos, Karlsruhe. You all have been vital
through this journey. A special thank you to my friends Carol, Filipe and Maria for all
the patience, friendship and support.

In addition, I would like to thank all the infrastructural and financial support
given for this research:

• To the institutes and universities ICMC-USP and ITIV-KIT;

• To the “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP) for
the significant support given through processes no. 2016/18937-7 and 2018/22289-6;

• To the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil”
(CAPES), which partially financed this project through finance code 001;

• To the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq)
that financed the early steps of my graduate program;



• To the “Paderborn Center for Parallel Computing” and “Intel Labs Academic Com-
pute Environment”, for providing access to the Intel Hardware Accelerator Research
Program (HARP) resources.

At last, I thank the examination board for the insights and suggestions provided
during defence.



“All for freedom and for pleasure
Nothing ever lasts forever

Everybody wants to rule the world”
(Tears for Fears)





RESUMO

PERINA, A. B. Lina: uma ferramenta de otimização de projeto para programa-
ção de FPGAs baseada em software. 2022. 189 p. Tese (Doutorado em Ciências –
Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemá-
ticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

A contínua jornada da indústria de semicondutores levou ao desenvolvimento de diver-
sas arquiteturas alternativas para uma computação eficiente. “Field-Programmable Gate
Arrays” (FPGAs) e “Graphics Processing Units” (GPUs) são exemplos de dispositivos
utilizados para acelerar aplicações. FPGAs são capazes de oferecer um paralelismo mas-
sivo para tarefas adequadas quando apropriadamente programados. No entanto, projetar
para FPGA não é trivial e requer um conhecimento específico que foge do desenvolvimento
usual em software. Como uma alternativa buscando aumentar a programabilidade, fer-
ramentas de Síntese de Alto Nível (do inglês “High-Level Synthesis”, ou HLS) permitem
o uso de linguagens de alto-nível como C/C++/OpenCL para programar FPGAs. No
entanto, experimentos preliminares e outros estudos na literatura demonstram que ainda
são necessárias diversas modificações no código de alto nível para que os resultados sejam
minimamente aceitáveis. Tal aspecto mitiga a democratização e simplificação propostas
pelas ferramentas HLS. A contribuição principal desta tese considera C/C++ como lin-
guagem de entrada HLS, e é composta por uma ferramenta de exploração de espaço de
projeto acoplada à um estimador denominado Lina. Baseado no estimador Lin-analyzer,
Lina usa a execução instrumentada de um código em alto-nível para aproximar o método
de compilação do Vivado HLS, um compilador HLS C/C++ para FPGAs da Xilinx. Para
um dado kernel C/C++, Lina calcula uma rápida estimativa para métricas de tempo de
execução e recursos de FPGA ocupados. Junto com diretivas de otimização usadas pelo
compilador HLS que o Lina também suporta, a metodologia aqui proposta permite a
otimização não apenas do tempo de execução, mas também de recursos lógicos de FPGA.
Considerando 16 kernels C/C++ do benchmark PolyBench, as soluções estimadas como
ótimas pelo Lina estiveram dentro de 1% das melhores opções consideradas. Uma mé-
dia de 14−16× de speedup de performance foi atingida, o que representa 70% do valor
máximo alcançável considerando os espaços de projeto explorados. Adicionalmente, Lina
suporta a exploração de transações com memórias off-chip em busca de otimizações como
coalescência, empacotamento de dados, ou até informar sobre potenciais limitações do
compilador HLS que possam degradar a performance.

Palavras-chave: FPGA, Síntese de alto nível, Exploração de espaço de projeto, Explo-
ração sem síntese de projeto.





ABSTRACT

PERINA, A. B. Lina: a fast design optimisation tool for software-based FPGA
programming. 2022. 189 p. Tese (Doutorado em Ciências – Ciências de Computação
e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2022.

The continuous technology push on the semiconductor industry has led to the develop-
ment of several alternate architectures for efficient computing. Field-Programmable Gate
Arrays (FPGAs) and Graphics Processing Units (GPUs) are examples of devices used to
accelerate applications. FPGAs are able to provide massive parallelism for suitable tasks
when properly programmed. However, designing for FPGA is non-trivial and requires
specific knowledge that deviates from the usual software programming. As an alternative
towards increasing programmability, High-Level Synthesis (HLS) tools allow high-level
languages such as C/C++/OpenCL to be used as input for FPGA design. However,
early experiments and other studies in the literature demonstrate that significant code
modification is still necessary so that the results are minimally acceptable. This aspect
mitigates the democratisation and simplification that HLS tools seek to achieve. The
major contribution of this thesis works on the C/C++ level, composed of a design space
exploration tool that uses an estimator named Lina. Based on Lin-analyzer, Lina uses
a traced execution of a software code to approximate the compilation behaviour of Vi-
vado HLS, a C/C++ HLS compiler for Xilinx FPGAs. For a given C/C++ kernel, Lina
provides a fast approximation of metrics such as execution time and FPGA resources
occupied. Along with HLS compiler optimisation directives that Lina supports in its esti-
mation, our exploration method allows the optimisation of not only execution time, but
also FPGA resource usage. We then used Lina to optimise 16 C/C++ kernels from the
PolyBench benchmark, and the estimated optimal solutions were among the 1% best op-
tions. An average of 14−16× performance speedup was achieved, accounting for 70% of
the reachable speedup when considering the traversed design spaces. Additionally, Lina
allows the exploration of off-chip memory transactions in search of optimisations such
as coalescing, data packing, or to inform about potential HLS compiler limitations that
could degrade performance.

Keywords: FPGA, High-level synthesis, Design space exploration, Synthesis-less design
exploration.





LIST OF FIGURES

Figure 1 – Transistor count of several integrated circuits over the last decades. . . 33
Figure 2 – Power density evolution over different transistor sizes. ITRS estima-

tions are from 2013 (Semiconductor Industry Association, 2013) and
conservative estimations are from Borkar (2010). . . . . . . . . . . . . 35

Figure 3 – Simple depiction of a vector add example on CPU and FPGA. . . . . . 36
Figure 4 – Basic depiction of the hardware generated by an HLS compiler. Con-

tinuous lines represent data lanes, and dotted lines represent control
lanes. Three FUs are shown in this example: two adders and one divider. 38

Figure 5 – Comparison between manual optimisation approach (left) and the auto-
matic optimisation approach using the proposed DSE framework (right). 39

Figure 6 – Example of a simple function and its dependency graph. The dashed
region of the nodes represent the schedule window and the edges rep-
resent the data dependencies. . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 7 – Example of loop unroll with factor 3. . . . . . . . . . . . . . . . . . . . 50
Figure 8 – Example of loop scheduling without and with pipeline directive (new

iteration starting every 2 cycles). . . . . . . . . . . . . . . . . . . . . . 50
Figure 9 – Example of different partitioning configurations for an array. The ar-

rows represent the available read/write ports per BRAM block. . . . . 51
Figure 10 – Example of DDDG generated from the LLVM IR of a vector add. . . . 52
Figure 11 – Example of a DDDG scheduling and its latency calculation. In this

example, the two load nodes are for different arrays and thus allowed
to occur in parallel. Nodes with no relation to hardware generation
(e.g. the getelementptr instructions) are removed prior to scheduling). 52

Figure 12 – Lina flow: the trace is generated once for a given software code, then
successive combinations of HLS pragmas are provided by the job dis-
patcher to estimate each design’s latency and resource count. NPLA
and TCS stand for Non-Perfect Loop Analyser and Timing-Constrained
Scheduler, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 13 – Depiction of two configurations for one FU, with latencies of 4 (top)
and 2 (bottom) cycles, respectively. Smaller latencies lead to greater
work per cycle, which in turn constrains the frequency. . . . . . . . . . 57

Figure 14 – Two fadd configurations considered at a target clock frequency of
300MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Figure 15 – Attempts of operation chaining. . . . . . . . . . . . . . . . . . . . . . . 61

Figure 16 – Example of dependent nodes, their critical path delays tcp and largest
delays up to each node (d(·)). . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 17 – Examples of non-perfect loop nests. Shaded regions represent the group
of statements that are placed before, inside, and after each loop level.
A separate DDDG g is generated for each region. The notation used
to identify the DDDGs generated according to each region is shown in
parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 18 – Abstract example of a non-perfect loop nest (K = 4 loop levels) and
how the cl values are calculated. At left, there is no pipeline enabled
and thus the calculation starts from the innermost level (L = K = 4).
At right, pipeline is enabled for the loop level P = 2 and thus the
calculation starts from L = P = 2. . . . . . . . . . . . . . . . . . . . . . 65

Figure 19 – Two examples of FU calculation based on the RCLS allocation results
FUcq of each DDDG (each + denotes one FU allocated). The first
calculation considers these adders as floating-point (complex) and the
other considers as integer (simple). . . . . . . . . . . . . . . . . . . . . 67

Figure 20 – Two cases of off-chip transactions, one without coalescing (top) and
with coalescing (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 21 – Examples of DDDGs for a simple loop. Please note that although
there is no DDDG dependency between the three transactions when
intra-burst is disabled, they might be constrained during the RCLS
phase and overlapping is dependent on certain conditions (please see
subsubsection 3.2.4.2 for more details). . . . . . . . . . . . . . . . . . . 74

Figure 22 – Examples of DDDGs for a simple loop. DDDGs representing multiple
iterations are presented to exemplify the relation to the setup and
commit steps, though only one iteration is scheduled. Similar to last
figure, the RCLS phase might constrain multiple transactions to not
overlap even if their DDDGs are independent. . . . . . . . . . . . . . . 75

Figure 23 – Examples of DDDGs for a simple loop. The off-chip memory nodes are
annotated with the number of cycles required to solve each one. In the
last (right) case, the data packing analysis of Lina identifies that both
writes can be packed together as a single vectorised value. Lina allows
both nodes to be scheduled in the same clock cycle by assigning 0 to
the latency of the second write (highlighted in red). . . . . . . . . . . . 76

Figure 24 – Example of memory space division between three arrays when bank-
ing is disabled (top) and enabled (bottom), respectively. The arrows
indicate available read/write interfaces. . . . . . . . . . . . . . . . . . . 77



Figure 25 – Example of a code snippet with two independent read-add-write se-
quence of instructions. In the first case (above) the transactions are
not allowed to overlap and more clock cycles are required, whereas in
the second case (below), the transactions are allowed to overlap. . . . . 78

Figure 26 – Example of a “read-after-write” code pattern: The B array is accessed
for read right after a write transaction to the same array (both trans-
actions indicated in red). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 27 – Two schedule attempts with II = 2. Instructions are represented by
small boxes (L and S stand for load and store, respectively). At left,
the pipeline is not possible at this II due to requiring more read ports
than available. At right, one of the load instructions is moved within
the schedule, which in turn lifts the port restriction. . . . . . . . . . . . 82

Figure 28 – Pipeline schedule with the presence of load/stores that cannot be easily
moved. In this case, Vivado HLS reached an II of 6. Although this
pipeline has 3 concurrent loads, they are not for the same array and
thus there is no violation. . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 29 – Example of a schedule with multiple dependent loads and the respective
∆rm calculation. Assume that all loads are for the same dual-ported
interface. There are two independent read dependency paths for this
interface, each indicated with a red dotted box. . . . . . . . . . . . . . 85

Figure 30 – Two pipeline schedules for the same computation. At top, II is set to
∆rm = 4 which triggers a read interface violation (indicated in red). At
bottom, the II value is relaxed to ∆rm +Crm = 4+2 = 6. In this case,
there is no port violation. . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 31 – Snippets of a memory report generated by Lina. . . . . . . . . . . . . . 86

Figure 32 – Two examples of dynamic trace traversal for the generation of DDDG
←−g 1. At left, there is a cache miss, and the trace must be traversed
instruction-wise until the first instruction from ←−g 1. At right, there is
a cache hit and Lina can proceed directly to the cached cursor t. . . . . 87



Figure 33 – Example of a two-objective design space, where the true Pareto points
are indicated as square points, the estimated Pareto point as x, and the
error metrics as e f1 and e f2 . The coloured regions represent the points
z ∈ D−Pviv that compose Qx,y. In this example, e f2(x,y) is negative.
At left, Qx,y is constructed according to Equation 3.32. At right, the
predicate that defines Qx,y does not use the max operator. Many other
points z are better approximations to y than x when considering both
objectives, even though x has a smaller f2 objective than y. One
example of such point z is shown in the figure. The left case better
reflects this scenario by including more z points in Qx,y, leading to a
larger NOD value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 34 – Xilinx Zynq UltraScale+ ZCU104 development kit. . . . . . . . . . . . 91

Figure 35 – Lina/Lin-analyzer estimation errors relative to the cycle counts re-
ported by Vivado HLS. The x-axis represent different pragma configu-
rations, and partitioning is disabled. . . . . . . . . . . . . . . . . . . . 100

Figure 36 – Lina/Lin-analyzer estimation errors relative to the cycle counts re-
ported by Vivado HLS. The x-axis represent different pragma configu-
rations, and partitioning is enabled. . . . . . . . . . . . . . . . . . . . . 101

Figure 37 – Results for gemm with higher frequency for IDs 8-14 and 24-30. . . . . . 101

Figure 38 – Cycle count reported by Lina and Vivado HLS for bicg and conv2d
in different frequencies (all optimisations disabled). The dashed line
represents the design execution times considering frequency and cycle
count. Both plots are scaled to the same intervals. . . . . . . . . . . . . 102

Figure 39 – Relative errors for a variant of gemm with different loop bounds. . . . . 102

Figure 40 – Cycle count comparison between COMBA, Lina and Vivado HLS for
the bicg kernel at different frequencies (all optimisations disabled),
using a preliminary hardware profile library. . . . . . . . . . . . . . . . 103

Figure 41 – Values of ADRSrel, ADRSpar, NOD, |Plin| and |Pviv| for each kernel in
experiments hls (above) and fullsyn (below). . . . . . . . . . . . . . 104

Figure 42 – Objective values for an approximation with low ADRS values (above)
and high ADRS values (bottom) for the fullsyn experiment. The
top plots represent KeyExp, and the bottom plots represent bicg. The
blue dashed line represents the true Pareto points, and the continuous
orange line represents the closest estimated Pareto points to each true
solution. The y-axes represent the true objective value for each point
(design execution time given in ns for KeyExp and 10−2s for bicg). . . . 105



Figure 43 – Objective values for an approximation with low ADRS values (above)
and high ADRS values (bottom) for the hls experiment. The top
plots represent KeyExp2, and the bottom plots represent mvt. The
blue dashed line represents the true Pareto points, and the continuous
orange line represents the closest estimated Pareto points to each true
solution. The y-axes represent the true objective value for each point
(design execution time given in ns for KeyExp2 and 10−2s for mvt). . . . 105

Figure 44 – Design execution time values and estimates for each design point in the
space (padmemory). The plot presented at bottom is a zoomed interval
of the top plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 45 – Design execution time values and estimates for each design point in the
space (padlogic). The plot presented at bottom is a zoomed interval
of the top plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 46 – Part of an FSM generated by vivado-fsmgen. . . . . . . . . . . . . . . 131
Figure 47 – Part of a scheduled pipeline as presented by pipelook. . . . . . . . . . 132
Figure 48 – Abstract representation of our proposed model. First, a reference set of

OpenCL kernels is optimised, executed and profiled. A code analyser is
then used to derive other representations (e.g. DFG) and/or numerical
metrics from each kernel. These, along with the profiled output metrics,
are used to train the estimation model (dashed orange arrow). During
the use phase (solid green arrow), a test OpenCL kernel (KUT) is
analysed and fed to the the estimation model. The model outputs an
early estimation for the output metrics, considering the optimisation
phases for each platform. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 49 – DAMICORE flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 50 – Visual representation of a DAMICORE output. Each labelled node is

a kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 51 – Overview of mdamicore2 using average NCD matrix calculation. . . . . 139
Figure 52 – Generated phylogenetic tree for best case in experiment 5. . . . . . . . 148
Figure 53 – Example of control-flow graph and its longest path in thicker edges.

The weight of a node describes the amount of contained instructions.
As an example, it is assumed a loop trip count of 50. . . . . . . . . . . 150

Figure 54 – Comparison between the task and NDRange models for a simple vector
add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 55 – Venn diagram of the kernels collected separated in three classes. Each
class represents a different level of FPGA optimisation effort and exe-
cution model. Kernel variants (e.g. nw(1), nw(2)) are grouped. . . . . 157

Figure 56 – Relative analysis for experiment A comparing each FPGA against both
GPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



Figure 57 – Relative analysis for experiment B comparing each FPGA against both
GPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 58 – Flowchart of the resource and timing-constrained scheduling performed
by Lina. The urgency of a ready node is defined by the ALAP schedul-
ing results (lower values are more urgent). . . . . . . . . . . . . . . . . 174

Figure 59 – Overview of the experimental framework. . . . . . . . . . . . . . . . . . 176
Figure 60 – FPGA experimental setup. The power sensing system is highlighted.

An Arduino module reads the PSU current sensor and communicates
with the regulators using the PMBus interface. The raw information
is collected and sent to the host machine, which calculates consumed
energy using a tool named zynprof. . . . . . . . . . . . . . . . . . . . 177

Figure 61 – GPU experimental setup. Our framework coordinates the application
and extracts the power measurements from NVIDIA’s NVML using
our in-house tool (NVPMon). . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure 62 – Total execution time (top) and consumed energy (bottom) of each ker-
nel on both platforms. Each is represented by 8 Lina explorations (left-
most bars, from “a” to “h”) and 2 GPU execution scenarios (rightmost
bars, “i“ and “j “). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Figure 63 – Extrapolated execution time and energy values for the kernels in FPGA,
compared to the real values in GPU. These estimations consider that
the speedup achieved by the whole FPGA application is the same as
the speedup achieved by the computation loop alone. . . . . . . . . . . 188



LIST OF CHARTS

Chart 1 – Differences between Lin-analyzer and Lina. . . . . . . . . . . . . . . . . 55
Chart 2 – Instructions executed by SDSoC/Vivado-generated designs for off-chip

access, their relation to the abstract transaction steps, and the cycle
count of each instruction in the ZCU104 platform. . . . . . . . . . . . . 73

Chart 3 – The effect of scheduling policies on the memory model. . . . . . . . . . 79
Chart 4 – Kernels used in the first validation. . . . . . . . . . . . . . . . . . . . . 92
Chart 5 – Parameters used in the exploration. . . . . . . . . . . . . . . . . . . . . 92
Chart 6 – Validation kernel set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Chart 7 – Optimisation knobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chart 8 – ZFNet CNN layer configuration used. . . . . . . . . . . . . . . . . . . . 96
Chart 9 – Optimisation knobs for the CNN kernels. . . . . . . . . . . . . . . . . . 97
Chart 10 – Convolution experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Chart 11 – Related work comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 113
Chart 12 – Tools used by our first approach, related to the abstract model previ-

ously presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Chart 13 – Execution results for the initial kernel set. . . . . . . . . . . . . . . . . 144
Chart 14 – Tools used by our second approach, related to the abstract model pre-

viously presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Chart 15 – Extracted code features using OpCount. . . . . . . . . . . . . . . . . . 149
Chart 16 – Neural networks setup parameters. . . . . . . . . . . . . . . . . . . . . . 151
Chart 17 – FPGA-unoptimised NDRange kernels. . . . . . . . . . . . . . . . . . . . 159
Chart 18 – FPGA-optimised NDRange kernels. . . . . . . . . . . . . . . . . . . . . 160
Chart 19 – FPGA-optimised task kernels. . . . . . . . . . . . . . . . . . . . . . . . 160
Chart 20 – Class mapping for each experiment. . . . . . . . . . . . . . . . . . . . . 161
Chart 21 – Platforms used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Chart 22 – Last experiment kernel set. . . . . . . . . . . . . . . . . . . . . . . . . . 179
Chart 23 – DSE knobs for the Parboil kernels. . . . . . . . . . . . . . . . . . . . . . 180
Chart 24 – Modifications performed in each Parboil kernel. . . . . . . . . . . . . . 184





LIST OF ALGORITHMS

Algorithm 1 – The recursive exploration algorithm . . . . . . . . . . . . . . . . . 59
Algorithm 2 – The FU characterisation algorithm . . . . . . . . . . . . . . . . . 60
Algorithm 3 – Former approach to verify if in-clock cycle scheduling is possible . 62





LIST OF SOURCE CODES

Source code 1 – Example of simple function used to characterise FUs . . . . . . . 58
Source code 2 – Rolled and unrolled (factor of 2) examples of a simple loop nest,

both arrays are off-chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Source code 3 – Manually unrolled (factor of 2) variant of the simple loop nest . . 81
Source code 4 – Basic loop nest of a CNN kernel . . . . . . . . . . . . . . . . . . . 96
Source code 5 – The padlogic CNN kernel . . . . . . . . . . . . . . . . . . . . . . 97
Source code 6 – Explicitly unrolled padmemory kernel, with all reads placed before

writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Source code 7 – OpenCL kernel template for histo . . . . . . . . . . . . . . . . . 183





LIST OF TABLES

Table 1 – Lina DSE execution times (hls experiment, in s). . . . . . . . . . . . . 106
Table 2 – Speedup results from COMBA and our DSE. . . . . . . . . . . . . . . . 108
Table 3 – Design space sizes and exploration execution times (including per-point

times) for COMBA and our DSE. All times are in s. . . . . . . . . . . . 109
Table 4 – Performance results for each CNN exploration. . . . . . . . . . . . . . . 110
Table 5 – Configuration for the best design point for each kernel. . . . . . . . . . . 111
Table 6 – Experimental setup for the mdamicore2 approach. . . . . . . . . . . . . 145
Table 7 – Best and worst execution cases for each experiment. . . . . . . . . . . . 146
Table 8 – Average values for each experiment. . . . . . . . . . . . . . . . . . . . . 147
Table 9 – Performance results for all networks. . . . . . . . . . . . . . . . . . . . . 153
Table 10 – Compilation and execution success results. . . . . . . . . . . . . . . . . 163
Table 11 – Experiment A: absolute analysis. . . . . . . . . . . . . . . . . . . . . . . 164
Table 12 – Experiment A: relative analysis. . . . . . . . . . . . . . . . . . . . . . . 165
Table 13 – Experiment B: absolute analysis. . . . . . . . . . . . . . . . . . . . . . . 166
Table 14 – Experiment B: relative analysis. . . . . . . . . . . . . . . . . . . . . . . 168
Table 15 – Experiment C: absolute analysis. . . . . . . . . . . . . . . . . . . . . . . 168
Table 16 – Experiment C: relative analysis. . . . . . . . . . . . . . . . . . . . . . . 168
Table 17 – Average execution time ratios all vs. allab. . . . . . . . . . . . . . . . . 169
Table 18 – Average energy consumption ratios all vs. all. . . . . . . . . . . . . . . . 169
Table 19 – Overall speedups achieved by our optimised kernels compared to the

baseline versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 20 – Overall energy efficiency gains achieved by our optimised kernels com-

pared to the baseline versions. . . . . . . . . . . . . . . . . . . . . . . . 186
Table 21 – Overall speedups achieved by our optimised kernels compared to the

baseline versions (computation loops only, data transfers between on
and off-chip are not considered). . . . . . . . . . . . . . . . . . . . . . . 187





LIST OF ABBREVIATIONS AND ACRONYMS

ADRS Average Distance from Reference Set
ALAP As-Late-As-Possible
ANN Artificial Neural Network
AOCL Altera (Intel FPGA) SDK for OpenCL
ASAP As-Soon-As-Possible
BRAM Block RAM
CNN Convolutional Neural Network
CPU Central Processing Unit
DDDG Dynamic Data Dependency Graph
DFG Data-Flow Graph
DSP Digital Signal Processor
DVFS Dynamic Voltage Frequency Scaling
FF Flip-Flop
FN Fast Newman
FPGA Field-Programmable Gate Array
FU Functional Unit
GPU Graphics Processing Unit
HBM High-Bandwidth Memory
HLS High-Level Synthesis
II Initiation Interval
IR Intermediate Representation
ITRS International Technology Roadmap for Semiconductors
KUT Kernel Under Test
LUT LookUp Table
LVQ Learning Vector Quantisation
MLP Multi-Layer Perceptron
NCD Normalised Compression Distance
NJ Neighbour Joining
NOD Near-Optimal Density
NVML NVIDIA Management Library
RBF Radial Basis Function



RCLS Resource-Constrained List Scheduling
RTL Register-Transfer Level
SDC System of Difference Constraints
SIMD Single-Instruction, Multiple Data
SoC System-on-Chip
TDP Thermal Design Power



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.1 Field-Programmable Gate Arrays and High-Level Synthesis . . . . . 35
1.1.1 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1 High-Level Synthesis Compilers . . . . . . . . . . . . . . . . . . . . . 41
2.2 High-Level Synthesis Applications and Comparison Studies . . . . . 42
2.3 High-Level Synthesis Assist Tools . . . . . . . . . . . . . . . . . . . . 43
2.3.1 High-Level Synthesis Estimators . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 High-Level Synthesis Optimisation Frameworks . . . . . . . . . . . . 44
2.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 FAST DESIGN SPACE OPTIMISATION FOR C/C++ HLS USING
LINA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Overview of High-Level Synthesis and Estimation . . . . . . . . . . . 48
3.1.1 Lin-analyzer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 DSE Methodology with Lina . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Timing-Constrained Scheduler . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1.1 Hardware Profile Library and FU Characterisation . . . . . . . . . . . . . . 57
3.2.1.2 Initial Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.1.3 Operation Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Non-Perfect Loop Analyser . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Resource Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3.1 Functional Unit Resource Estimation . . . . . . . . . . . . . . . . . . . . . 66
3.2.3.2 Array-related Resource Estimation . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3.2.1 Scenario I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3.2.2 Scenario II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3.2.3 Scenario III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3.2.4 Total Array Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3.3 Complete Resource Estimation . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Off-chip Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . 72



3.2.4.1 Memory Model Features and Behaviour . . . . . . . . . . . . . . . . . . . 74
3.2.4.1.1 Intra-iteration bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.4.1.2 Inter-iteration bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.4.1.3 Data packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4.1.4 Memory banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.4.1.5 Port management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.4.2 Interaction Between Multiple Transactions and Memory Model Policies . . . 77
3.2.4.3 Interaction Between Off-chip Transactions and Pragmas . . . . . . . . . . 80
3.2.4.3.1 Loop unroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.4.3.2 Loop pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.4.4 Memory Analysis Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.5 DSE Temporal Locality Caching . . . . . . . . . . . . . . . . . . . . . 87
3.2.6 Exploration Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Platforms and Software Used . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.2 First Validation: Comparison Against Lin-Analyzer . . . . . . . . . . 91
3.3.3 Second Validation: Resource and Timing-aware Exploration . . . . . 93
3.3.3.1 Additional Experiments on Non-perfect Kernels with Larger Loop Bounds . 94
3.3.3.2 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.4 Third Validation: Off-chip Experiments in the CNN Context . . . . 95
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.1 First Validation: Comparison Against Lin-Analyzer . . . . . . . . . . 99
3.4.2 Second Validation: Resource and Timing-aware Exploration . . . . . 103
3.4.2.1 Impact of Lina Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.2.2 DSE Exploration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.2.3 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.3 Third Validation: Off-chip Experiments in the CNN Context . . . . 109
3.5 Final Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.5.1 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . 113
3.5.2 Framework Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX A PUBLISHED MATERIAL AND DEVELOPED TOOLS 129
A.1 Published Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2 Developed Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



APPENDIX B EARLY APPROACHES USING MACHINE LEARN-
ING MODELS . . . . . . . . . . . . . . . . . . . . . . 135

B.1 DAMICORE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.1.1 The mdamicore2 Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.1.2 Reference Set Generation . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.1.3 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.1.4 Quality Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.1.5 Initial Kernel Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
B.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.1.6.1 Execution Results for the Initial Kernel Set . . . . . . . . . . . . . . . . . 143
B.1.6.2 Evaluation of Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . 143
B.2 Neural Network Approach . . . . . . . . . . . . . . . . . . . . . . . . 148
B.2.1 Formulation and Methodology . . . . . . . . . . . . . . . . . . . . . . 149
B.2.1.1 ANN Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.2.1.2 ANN Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.2.2 Neural Network Experimental Setup . . . . . . . . . . . . . . . . . . 150
B.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

APPENDIX C COMPARATIVE ANALYSIS OF OPENCL KERNELS
IN FPGA AND GPU . . . . . . . . . . . . . . . . . . . 155

C.1 OpenCL Execution Models . . . . . . . . . . . . . . . . . . . . . . . . 155
C.2 Kernel Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.2.1 Class I: FPGA-unoptimised NDRange Kernels . . . . . . . . . . . . . 158
C.2.2 Class II: FPGA-optimised NDRange Kernels . . . . . . . . . . . . . . 158
C.2.3 Class III: FPGA-optimised Task Kernels . . . . . . . . . . . . . . . . 158
C.3 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.3.2 Suitability Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.3.3 Accelerator Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.4.1 Experiment A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.4.2 Experiment B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
C.4.3 Experiment C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
C.4.4 Final Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
C.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

APPENDIX D LINA DSE: RESOURCE AND TIMING-CONSTRAINED
SCHEDULER FLOWCHART . . . . . . . . . . . . . . 173



APPENDIX E OPTIMISED FPGA-GPU COMPARATIVE ANALYSIS175
E.1 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . 175
E.1.1 FPGA Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
E.1.2 GPU Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
E.1.3 Kernel Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
E.1.3.1 Project Structuring and Modifications Applied . . . . . . . . . . . . . . . . 181
E.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
E.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



33

CHAPTER

1
INTRODUCTION

Digital electronic devices are omnipresent in most of modern human society. From
staircase light timers to military-grade equipment, the capability and complexity of these
devices greatly evolved during the last decades. This evolution is intimately related to the
basic building block of every digital circuit: the transistor. Improvements in the fabrication
process allowed smaller transistors to be produced, which in turn allowed the production
of more complex and faster circuits. Figure 1 shows how the transistor count evolved
during the years for common processing units of computers, phones, etc. The transistor
count increased from few thousands in the 1970s to billions in late 2010s: a 7× order of
magnitude increase in the span of 50 years.

Figure 1 – Transistor count of several integrated circuits over the last decades.

1970 1980 1990 2000 2010 2020
Year

103

104

105

106

107

108

109

1010

1011

Tr
an

sis
to

r c
ou

nt

Intel 8080

Intel 80386

Pentium
AMD K5

Cell
Pentium 4 Cedar Mill

AMD Ryzen 7 5800H

Apple M1 Max

Voodoo 3

GF110 Fermi

GA104 Ampere
Virtex-7 2000T

Stratix 10 GX 10M

Versal VP1802

Source: Adapted from Roser and Ritchie (2013), Wikipedia (2022).



34 Chapter 1. Introduction

Still in the 1970s, two “laws” were stated by famous researchers that provided a
good insight on what was about to happen in the following years. The first one is the
well-known Moore’s law, which states that the number of transistors in a dense integrated
circuit would double at roughly every two years (MOORE, 1965). The second law is the
Dennard (or MOSFET) scaling, which roughly states that as transistors get smaller, their
power density stays constant (DENNARD et al., 1974). This has a twofold effect:

• The reduction of the transistor’s size causes a reduction on the circuit’s delay (since
the paths are shorter), which in turn allows higher operating frequencies for the
circuit. The reduced size also contributes to a reduced capacitance;

• The reduction of operating voltage, coupled with the reduced capacitance, con-
tributes to lower energy consumption.

For roughly 30 years, the industry constantly reduced transistor sizes, increased
transistor count on a microchip and increased the operating frequency. This allowed a
constant evolution on processing capability while the energy consumption was still man-
ageable. As the transistor sizes started to reach a few dozen nanometres, issues started to
appear and reduce this downscaling trend. The leakage current of the transistors started
to become more pronounced and coupled with the high operating frequencies, the energy
efficiency of new devices started to worsen. This trend can be clearly seen in Figure 2,
where the power density over different technology sizes is presented (KANDURI et al.,
2017). It is quite visible that the power density — as monitored by the International
Technology Roadmap for Semiconductors (ITRS) — was not kept constant as proposed
by the Dennard scaling. This increase caused issues not only on supplying proper power
the whole circuit, but also issues on heat dissipation.

Therefore, the industry started to take different paths in order to circumvent the
power density increase. Industry and academic efforts were directed towards finding tech-
nologies that could also improve the energy efficiency of the computations performed.
Mainstream computer processors — the Central Processing Unit (CPU) — started to in-
clude features such as multi-core processing, Dynamic Voltage Frequency Scaling (DVFS)
among other technologies that allowed to improve the energy efficiency.

Interest on other architectures also grew. Graphics Processing Units (GPU), for ex-
ample, became increasingly ubiquituous for parallel computing applications. The GPU’s
architecture is highly suitable for matrix/vector operations due to its Single-Instruction,
Multiple-Data (SIMD) nature. Before the 2000s, GPUs were solely used for graphical
purposes of showing user interfaces, or as graphics accelerators for games and visual com-
putation. Larsen and McAllister (2001) presented the first attempt to use a GPU as a
computation platform. In this early experiment, a matrix-matrix multiply was performed



1.1. Field-Programmable Gate Arrays and High-Level Synthesis 35

Figure 2 – Power density evolution over different transistor sizes. ITRS estimations are from
2013 (Semiconductor Industry Association, 2013) and conservative estimations are
from Borkar (2010).

10 15 20 25 30 35 40 45
Technology Node (nm)

1

2

3

4

5

6

7
Po

we
r D

en
sit

y
Dennardian
Conservative
ITRS

Source: Adapted from Kanduri et al. (2017).

using a GPU. Since the GPU up to this point was solely used for graphical purposes,
several workarounds were done in order to adapt the inputs and outputs (for example,
the input matrices must first be converted to image-like data structures that are read-
able by the GPU’s graphical pipeline). Nonetheless, performance speedup is expected
as compared to a matrix multiply performed in a CPU. During the following years, the
GPU hardware evolved and programming languages were developed in order to provide
a friendlier interface to the GPU as a matrix calculator. Examples of these languages
include CUDA and OpenCL.

1.1 Field-Programmable Gate Arrays and High-Level Syn-
thesis

The Field-Programmable Gate Array (FPGA) is a device able to implement logic
circuits and can be used in several applications ranging from arithmetic computations, glue
logic, network-on-chips, etc. The FPGA is composed of an array of small components such
as LookUp Tables (LUT), Flip-Flops (FF), Digital Signal Processors (DSP), and Block
RAMs (BRAM). Additionally, a complex on-chip network system is provided to allow the
routing between these components.

The FPGA technology is not recent, however it received more attention in the
last years due to its natural low-power aspect. FPGAs operate in a frequency range that



36 Chapter 1. Introduction

peaks around 500 MHz (HUTTON, 2015), and therefore the heat dissipation that is
generated proportional to the frequency is greatly reduced, as compared to CPUs and
GPUs that operate in the GHz level. FPGAs use the same transistor techonology as from
CPUs/GPUs and therefore they also suffer from static power leakage, which has been
increasing over the last years (SEIFOORI et al., 2018).

FPGAs differ significantly from CPUs in terms of programming. While on a CPU
the developer writes a program containing a sequence of instructions to perform a given
task, in the FPGA the developer must define computation units, the wiring between them,
storage logic (registers, BRAMs) and the input/output interface. Considering a vector-
add example for arrays with size N, Figure 3 shows the implementation approach on CPU
and FPGA. For the FPGA, one must define add units, insert intermediate registers (if
applicable), define the inputs/outputs, and connect all components.

Figure 3 – Simple depiction of a vector add example on CPU and FPGA.

(a) Example on CPU: the vector add is described
as a sequential list of instructions that operates
an Arithmetic Logic Unit (ALU).

(b) Example on FPGA: the vector add is per-
formed in parallel, N adders are instantiated.

Source: Elaborated by the author.

Modern CPUs are equipped with optimisations that do allow some parallelism
and/or acceleration from sequential software (e.g. multiple cores, out-of-order execution).
On the other hand, FPGAs enable true parallelism with an extended degree of freedom,
as long as the device’s resource and routing budget allows. For the example presented in
the last figure, the FPGA design performs all adds in parallel.

FPGA designs are usually described using Register-Transfer Level (RTL) lan-
guages. These languages allow the developer to define the computation units, wires, reg-
isters, multiplexers, etc. RTL programming differs significantly from software. The devel-
oper must be aware of several constraints that are not common in the software world (e.g.
timing constraints, synchronisation between different parallel parts of the design, etc.).



1.1. Field-Programmable Gate Arrays and High-Level Synthesis 37

Furthermore, debugging is tedious and time-consuming due to the significant time spent
on compilation1.

The input/output interfacing is also not trivial. The designs programmed on an
FPGA have direct access to input/output pins of the chip, which must then be interfaced
accordingly (e.g. connected to a system bus, or even to simple push switches and LEDs).
This also adds another layer of complexity for debugging, since internal values are usually
not accessible without probes. However, there are modern FPGAs coupled with standard
interfaces that provide a more intuitive usage. For example the Xilinx Zynq UltraScale+
family of System-on-Chips (SoC) includes an ARM processor and an FPGA. Using vendor-
specific drivers, it is possible to execute a Linux operating system on this platform, and
use Linux-based APIs from Xilinx to interface with the FPGA.

1.1.1 High-Level Synthesis

FPGAs have been for a long time a niche architecture, used mostly by hardware
design experts. Due to their non-trivial programming using RTL, they are still rather
unpopular among high-level developers. As an alternative, High-Level Synthesis (HLS)
tools provide means of transforming high-level input codes into FPGA hardware designs.
Many HLS tools have been released over the last decades. Examples of popular HLS tools
include Intel FPGA SDK for OpenCL, Xilinx Vivado HLS2, and LegUp.

Given a high-level source code, the HLS compiler applies several analyses to iden-
tify data dependencies between operations. Then, non-dependent operations are scheduled
to occur in parallel and are allocated to synthesisable computation units known as Func-
tional Units (FU). The customisable aspect of FPGAs allows the HLS compiler to freely
decide the amount and type of FUs while balancing resource usage, routing complexity
and timing constraints. Figure 4 presents a simplified view of a design generated by HLS
compilers. A Finite State Machine (FSM) created by the compiler coordinates which data
should be retrieved, computed, and stored at each clock cycle.

The output of the HLS compiler is an automatically generated hardware descrip-
tion (usually as an RTL code). Then, the automatically-generated RTL code is fed to the
usual FPGA design synthesis that maps all RTL components to physical FPGA resources.
Although HLS is usually not as time consuming as the whole FPGA synthesis and place-
route process, it can still take significant time depending on the complexity of the input
code (ZHONG et al., 2016).

Performance is highly dependent on how well the HLS compiler extracts paral-
lelism from the code and how well it adapts to the FPGA constraints. Software codes
1 Being a resource allocation and routing problem, FPGA synthesis may take from few minutes

to several hours, and might even fail due to failed constraints.
2 Recently renamed to Xilinx Vitis HLS.



38 Chapter 1. Introduction

Figure 4 – Basic depiction of the hardware generated by an HLS compiler. Continuous lines
represent data lanes, and dotted lines represent control lanes. Three FUs are shown
in this example: two adders and one divider.

Source: Perina et al. (2021).

frequently contain structures and patterns that are dynamically defined (e.g. a dynamic
data dependency, dynamic memory allocation). In these cases, the HLS compiler will
either fail or take conservative paths that may severely impact the final performance.
Hardware-orientated optimisations — either through manual code rewrite or through the
use of compiler directives — are essential to achieve reasonable performance (ZOHOURI
et al., 2016; MUSLIM et al., 2017; WELLER et al., 2017).

1.2 Motivation and Objective
Multiple studies (ZOHOURI et al., 2016; MUSLIM et al., 2017; WELLER et al.,

2017) have shown that code optimisations for hardware generation are essential to achieve
reasonable results when using HLS. Early experiments for this thesis - as presented in
Appendix C - further corroborate to this statement. This clearly puts a barrier on the
FPGA democratisation that HLS tools seek to achieve. FPGA accessibility is increased
by generating hardware from software code, but decreased by requiring hardware-specific
optimisations that are exotic to the software world.

This thesis seeks the goal of further reducing the hardware burden on the software
developer during HLS design. The main objective is to provide a fast optimisation
approach to automatically improve the quality of FPGA designs generated
from HLS tools.

To achieve this goal, a Design Space Exploration (DSE) framework using an esti-
mator named Lina was developed (PERINA et al., 2021). Lina is a fast estimator forked
from Lin-analyzer (ZHONG et al., 2016) with several improvements. Lina is considered
fast since it does not require design synthesis or HLS compilation for its estimations, which
in turn allows the exploration of large design spaces in feasible time. Our DSE framework
targets Xilinx Vivado HLS, a popular HLS compiler that supports C/C++/OpenCL as



1.2. Motivation and Objective 39

input. The design space consists of toggling compiler directives such as loop pipeline, cir-
cuit operating frequency, etc. These directives are unnatural to the software developer,
and our approach reduces this burden by automatically performing a benefit analysis for
each combination of directives.

Figure 5 presents a comparison between the normal development flow with HLS
and the proposed approach using Lina. In the normal development flow, the developer
must manually apply the compiler directives and evaluate the outcome. Since the com-
bination of compiler directives can easily grow in size, the developer must perform this
step repeatedly until a suitable combination is found. When using the proposed approach,
this exploration is performed automatically and the best combination is supplied at end,
with no need of manual iterative search. Additionally, it can traverse large design spaces
orders of magnitude faster than the manual exploration, since Lina does not rely on design
synthesis to evaluate each combination.

Figure 5 – Comparison between manual optimisation approach (left) and the automatic optimi-
sation approach using the proposed DSE framework (right).

Source: Elaborated by the author.



40 Chapter 1. Introduction

1.3 Thesis Structure
In Chapter 2, we present the literature review for this thesis, including the HLS

compilers that we studied for our approach and optimisation frameworks on the HLS
level. Our initial approach was to use a machine learning framework for an OpenCL
HLS compiler. However, we noticed that performance in FPGA was severely limited and
significant code optimisation would be required. Our findings were further confirmed by a
performance study on several OpenCL kernels found in the literature. This first machine
learning framework is presented in Appendix B, and the performance study is presented
in Appendix C.

The performance study has shown that existing OpenCL kernels that do not orig-
inally target FPGA might require significant optimisations in order to have reasonable
performance. Our approach then shifted towards considering C/C++ kernels (or func-
tions) as input and a different HLS compiler. This resulted in the DSE framework with
Lina, and it is presented in Chapter 3. Finally, we perform a final discussion and conclude
the thesis in Chapter 4.

Appendix A presents the published contributions and a list of all tools developed.
Appendix D presents supplemental material to the Lina content. In Appendix E, we
compare the performance of applications optimised for FPGA using our approach against
the same applications optimised for GPU.



41

CHAPTER

2
LITERATURE REVIEW

In this chapter, we present relevant work related to this thesis. First we present a
selection of modern HLS compilers. Then, we present benchmarks and applications tested
on HLS. Finally, we present tools to assist the development and optimise HLS designs.

2.1 High-Level Synthesis Compilers

Development of high-level synthesis tools span for almost three decades. Early
HLS compilers include Celoxica’s Handel-C and Impulse C. Most of these tools are either
defunct or currently not maintained (NANE et al., 2015).

The Xilinx Vitis HLS (also known by its former name Xilinx Vivado HLS) is
one of the most popular commercial HLS frameworks still active. Its base software was
acquired by Xilinx from AutoESL in 2011, when the tool was still named Autopilot (Xilinx,
Inc., 2011). Vivado HLS accepts C/C++ as input, and is integrated to several larger
frameworks from Xilinx such as SDx and Versal. This contributes to its popularity, since
an out-of-box integration is provided with Xilinx FPGAs.

Alternatively, OpenCL is supported as language input for Xilinx SDx and Intel
FPGA (former Altera) SDK for OpenCL (AOCL). This enables an automatic support to
a plethora of existing OpenCL kernels, mostly developed for GPU architectures. Further-
more, the OpenCL API provides an integrated solution for compiling and programming
FPGAs using OpenCL. For example, the FPGA board can be connected via PCI Express
to a host machine. This host machine is responsible for executing a software code that
manages and dispatches OpenCL kernels to the FPGA board. The AOCL API performs
these tasks seamlessly, requiring little effort from the user for defining the communication
interface from/to the FPGA.

LegUp (CANIS et al., 2011) is an example of academic C/C++ HLS tool that



42 Chapter 2. Literature Review

gained popularity in the previous decade. Its open-source nature allowed for third-party
researches and improvements (ROSA; BOUGANIS; BONATO, 2018; RAMANATHAN;
CONSTANTINIDES; WICKERSON, 2018). However, LegUp closed its source in 2017 (CHOI,
2017) and was acquired by Microchip in 2020.

2.2 High-Level Synthesis Applications and Comparison
Studies

Several studies demonstrate the applicability of HLS in modern applications, for
example k-nearest neighbour (PU et al., 2015), stereo correspondence matching (TAT-
SUMI et al., 2015), sparse matrix multiplication (GIEFERS et al., 2016), and tsunami
simulation (KONO et al., 2018). These studies all include two common flavours: manual
HLS-orientated optimisations; and that FPGA may lose in performance against other
accelerators, but may win in energy efficiency.

High-level synthesis based on OpenCL has the advantage of enabling an automatic
support to a variety of OpenCL kernels already available, mostly for GPU platforms.
Examples of OpenCL benchmarks include Rodinia (CHE et al., 2009) and the Scalable
Heterogeneous Computing Benchmark Suite (SHOC) (DANALIS et al., 2010). Rodinia
is composed of 23 applications with implementations in OpenMP, CUDA and OpenCL.
SHOC is a wider benchmark that may scale to more than one accelerator using MPI and
also includes stability tests.

Similarly, benchmarks such as PolyBench (POUCHET, 2012) or Parboil (STRAT-
TON et al., 2012) can be used with C/C++ HLS compilers. The PolyBench is a C/C++
floating-point application suite from various domains (linear algebra, image processing,
etc.) with static control flows and affine loop bounds. The Parboil benchmark is a suite of
applications that are presented with different variants targetting different architectures.
Parboil may be used to compare accelerators by executing the right version for each (e.g.
CUDA for NVIDIA GPUs or OpenMP for multi-core CPUs), and it also includes the
baseline sequential C/C++ versions.

Although HLS allows the portability of high-level codes to FPGAs, the perfor-
mance is not automatically portable. The Rodinia and SHOC kernels, for example, are
designed in a SIMD fashion that greatly favours GPUs. Zohouri (2018) ported six of the
Rodinia applications to FPGA by applying aggressive code transformations. Results show
that for five applications, peak FPGA performance was only achieved through complete
code redesign. Similarly, Muslim et al. (2017) compared test cases from three application
classes on FPGA and GPU, using the optimised code for each. Weller et al. (2017) used a
partial differential equation solver as comparison study between CPU, GPU and FPGA.
Two different HLS compilers and FPGAs were used, with their findings showing that HLS



2.3. High-Level Synthesis Assist Tools 43

performance is not even portable among different vendors. The authors point that if the
FPGAs had DDR4 or faster memories, they would be more competitive against modern
GPUs that include very fast memories.

2.3 High-Level Synthesis Assist Tools
From the work presented in the previous section and considering our findings

that we present in Appendix C, it is clear that optimisation efforts — either manual or
automatic — are essential to achieve reasonable results with HLS. In this section, we
present related work that is part of the HLS optimisation field. First, we present HLS
estimators that can be used to approximate useful metrics such as execution time or
consumed energy. Second, we present HLS optimisation frameworks.

2.3.1 High-Level Synthesis Estimators
Estimators are of great interest for the HLS community. They apply simpler, faster

models than the ones used by HLS compilers, while still approximating useful metrics with
reasonable accuracy. The estimations can be used for early design insights, potentially
reducing project design iterations and time-to-market. Additionally, they can be used to
guide DSE processes.

We separate the work here in two classes: static and dynamic approaches. Static
approaches use only the information provided in the source code. Dynamic approaches
use traced software executions to guide the estimation.

Considering static approaches, Enzler et al. (2000) present a model to predict sev-
eral hardware metrics from Data-Flow Graphs (DFG). Quantitative features are extracted
from the DFG and fed to a set of equations that provide a rough estimation for area, la-
tency and achievable frequency. Similarly, Kulkarni et al. (2006) present a compile-time
area estimation for an HLS framework named Cameron. The DFG is generated as a part
of the compilation process, which is then evaluated using regression models in order to
provide a LUT estimation. Bilavarn et al. (2006) present an estimator for area/delay
tradeoffs that uses a hierarchical control-data dependency graph, which is generated by
performing a depth-first search on a C code.

Related to the dynamic approaches, Bjureus, Millberg and Jantsch (2002) present
a framework to schedule trace-based DFGs from Matlab specifications. Their model is
similar to Enzler et al. (2000) as both do not consider memory resources and control logic
overheads. Shao et al. (2014) present Aladdin, an estimator that uses C traces to predict
area, performance and power on the electronic design level. Lin-Analyzer (ZHONG et al.,
2016) is similar to Aladdin, however it targets FPGAs instead of chip design level, and it
includes optimisation directives that are FPGA-orientated.



44 Chapter 2. Literature Review

2.3.2 High-Level Synthesis Optimisation Frameworks

Estimator results are useful during HLS development, however they still require in-
terpretation possibly tied to hardware expertise. Alternatively, estimators can be attached
to optimisation frameworks that automatically control the estimator inputs and/or digest
the results. In turn, these frameworks are able to provide a clearer optimisation path to
the developer. In this section we present tools that perform optimisations on HLS appli-
cations. Most of the work presented perform optimisation via DSE, that is, these tools
traverse a design space composed of HLS optimisation knobs in search for an optimal
combination. Estimators (or even the early HLS compiling reports) are used to evaluate
different design points and to take decisions.

A DSE specific to Convolutional Neural Networks (CNN) is presented by Zhang
et al. (2015). It uses a static approach coupled with the roofline model to explore loop
ordering, tiling size, on-chip buffering, loop unroll and pipeline. Their optimised solution
for the AlexNet CNN has a throughput of 61.62 Giga-Operations per Second (GOPS),
outperforming previous FPGA implementations while having 4.8× speedup and 24.6×
less energy consumption than its software counterpart.

MPSeeker (ZHONG et al., 2017) is presented as a multi-level parallelism explorer.
It uses Lin-analyzer as its performance and DSP/BRAM estimator and a machine learn-
ing approach to estimate FFs/LUTs. Synthesis is not used during the DSE phase (though
required for training the model once), enabling an exploration of 280 design points under
few minutes for some kernels tested. MPSeeker explores designs composed of several pro-
cessing elements and uses resource estimation to keep the solutions under feasible levels.

A lattice-traversing approach is proposed by Ferretti, Ansaloni and Pozzi (2018),
with the key difference of not being coupled to any accelerator or specific HLS tool. The
design space is mapped to a lattice representation and a traversal methodology is pre-
sented, on which sample points of the design space are characterised in order to orientate
the navigation. Experimental results with 5 C kernels from the CHStone benchmark show
that their results are close to the true optimal in terms of execution time and LUT usage.
At least 50 design points were synthesised for each kernel.

Choi and Cong (2018) present a DSE with support for variable loop bounds. They
use Vivado HLS’s software simulation flow to profile and extract loop information, such
as runtime trip count. Then selected points of the design space are compiled with HLS,
which are used through analytical models to characterise the whole design space. They
also propose source-to-source transformations based on predefined code patterns to further
improve performance. For five PolyBench kernels, an average speedup of 75× was achieved
compared to the baseline HLS version. The exploration time ranged from 5 to 20 minutes,
with design spaces containing around 100 points (and one kernel with up to 1000 points).



2.4. Final Remarks 45

COMBA (ZHAO et al., 2019) is an analytical design space explorer targetting Vi-
vado HLS that supports a variety of compiler pragmas. Their DSE methodology is metric-
guided, discarding design points that are marked as uninteresting. No synthesis is required,
which makes COMBA explore hundreds of points in just a few seconds. COMBA’s opti-
misation problem focuses on minimising the design’s latency, while considering the total
LUT, DSP and BRAM count of a target platform as constraints. According to experimen-
tal results, COMBA reaches speedups above 100× for several PolyBench kernels.

FlexCL (LIANG; WANG; ZHANG, 2018) is presented as an analytical perfor-
mance and power model for OpenCL HLS. Their exploration is focused on the computa-
tion grid by changing parameters including work-group size, work-item and work-group
pipeline, compute unit parallelism, etc. Evaluated using the Rodinia benchmark, their
model present an average percentage error of 9.5% and 12.6% for performance and power,
respectively, and can explore design of spaces of 128 points within 3 and 6 minutes.

Oppermann et al. (2019) present SkyCastle, a resource-aware multi-loop HLS
scheduler. SkyCastle tackles loop pipelining using an Integer Linear Programming method
to pipeline multiple loop nests. Their findings show that SkyCastle is able to generate
comparable results to the Vivado HLS standard scheduler, however using less resources.
Furthermore, SkyCastle is able to pipeline complex loop nests that Vivado HLS is not
able to schedule due to resource constraints violation.

Boyi (JIANG et al., 2020) is an OpenCL HLS optimiser that explores and searches
for predefined computation patterns. Boyi then decides the most suitable OpenCL execu-
tion model for this kernel between SIMD and single work-item, while also attempting to
utilise FPGA-specific optimisations (such as channels) to improve performance.

2.4 Final Remarks
Since AOCL provides an almost automatic support to existing OpenCL kernels in

FPGA, our first approach was to provide a framework able to perform an early decision
of which accelerator would fit best for a given OpenCL kernel. However, as shown in
the previous sections, OpenCL kernels without any specific optimisation tend to perform
poorly on FPGAs. Our intention then was to develop and attach an optimisation model
to the AOCL framework, and our early decision framework would take such optimisa-
tion in consideration. However, our findings in Appendix C have shown that significant
manipulations are required to transform existing OpenCL kernels — often modelled for
GPUs — to a format more suitable for FPGAs. We decided to take a better approach
and use a high-level language that better fits HLS, such as sequential C/C++. This led
to the development of a design space exploration framework using our estimator Lina, as
presented in Chapter 3.





47

CHAPTER

3
FAST DESIGN SPACE OPTIMISATION FOR

C/C++ HLS USING LINA

As presented in the previous chapter, high-level source codes targetting FPGAs
via HLS require a significant amount of hardware-orientated optimisations to achieve
reasonable results. An automatic optimisation model is desirable in this case to improve
the quality of HLS-generated designs. In this chapter, we present our DSE approach
that considers C/C++ as HLS language input. The design space is created by varying
compiler directives (loop unroll, loop pipeline, array partition) and the circuit’s target
operating frequency. The core of our approach is Lina, an estimator that allows exploring
the design space orders of magnitude faster than synthesising and evaluating each design
point (combination of directives). This approach of avoiding C/C++ synthesis during
DSE has a great potential towards reducing the current time gap between software and
hardware development. Our timing model supports different clock frequencies, and the
resource model supports both floating-point and integer datapaths. Additionally, Lina is
able to evaluate off-chip memory accesses, estimate coalescing optimisations and provide
reports with warnings about failed memory optimisations.

Lina is based on Lin-analyzer (ZHONG et al., 2016): it inherits the trace-based
scheduling while adding features such as support to non-perfect loop nests, different op-
erating frequencies and a lightweight model for resource estimation of the most common
elements of modern FPGAs: LUTs, FFs, DSPs and BRAMs. The memory model leverages
the information generated through trace to evaluate potential memory optimisations or
bottlenecks. In addition, common data structures between design point estimations are
reused to further reduce the exploration time.

We evaluate the Lina framework through three studies. In the first study (PERINA;
BECKER; BONATO, 2019a), we perform a small design space exploration (i.e. 48 points)
to test the timing and non-perfect loop models, in comparison to the original Lin-analyzer



48 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

that does not include these features. In the second study, we focus on the usage of Lina
for design space exploration (PERINA et al., 2021) considering hundreds of design points.
We extend the optimisation objectives to reduce not only the design execution time1, but
also the resource footprint. In both previous studies, it is considered that all input/output
arrays are located in on-chip FPGA memory blocks. As a final study, we consider off-
chip memory accesses and use Lina to explore potential coalescing and data packing
optimisations.

The next sections are structured as follows: section 3.1 presents a brief background
of the HLS functionality and how Lin-analyzer approximates the HLS behaviour. Then,
section 3.2 describes Lina and the proposed DSE method, section 3.3 presents the experi-
mental setup, followed by the validation results in section 3.4. Finally, section 3.5 presents
our final considerations, including a comparison of our approach against related work.

3.1 Overview of High-Level Synthesis and Estimation
The HLS compilation process can be roughly divided in two steps: scheduling

and binding. During scheduling, the compiler identifies the instructions in a software
code; finds dependencies between them; and generates a draft schedule for the identified
instructions. Figure 6 presents a schedule example for one arithmetic statement. The
instructions are laid down forming the execution timeline that the HLS compiler generates.
Some of the instructions have a “schedule window”, that is, they can be executed at a
sooner or later point without interfering with their dependencies.

Figure 6 – Example of a simple function and its dependency graph. The dashed region of the
nodes represent the schedule window and the edges represent the data dependencies.

Source: Elaborated by the author.

1 To avoid confusion, we refer to “design execution time” as being the execution time of the
generated HLS designs, and “exploration execution time” to the time spent by our DSE to
explore the design space.



3.1. Overview of High-Level Synthesis and Estimation 49

Instruction scheduling is performed using similar tactics as for task scheduling
problems. One approach is to use As-Soon-As-Possible (ASAP) and As-Late-As-Possible
(ALAP) algorithms. These allow to find the soonest and the latest point that every in-
struction can execute while still respecting the dependencies. Therefore, ASAP/ALAP
outputs the schedule window for every instruction. Another approach is to use System of
Difference Constraints (SDC). In this case, the scheduling constraints are mapped to a
series of inequalities xi− x j ≤ bi j (xi,x j are free parameters and bi j is a constraint), and a
solver is used to find a feasible solution.

Up to this point, the scheduling only takes into account the data and control
dependencies extracted from the code. In the binding step of HLS, the physical constraints
of FPGAs are taken into account. For example, FPGA BRAM modules are usually dual-
ported, meaning that no more than two separate accesses are allowed in a same clock
cycle. The unconstrained scheduling from the previous step must then be adjusted to the
FPGA constraints. One approach is to use Resource-Constrained List Scheduling (RCLS),
where an unconstrained scheduling is iteratively traversed, and instructions that violates
FPGA constraints are delayed until the restrictions are lifted. If using SDC, additional
inequations related to the physical FPGA constraints can be added to the system.

Moreover, the binding step is responsible for mapping each instruction to a physi-
cal Functional Unit (FU) which executes that instruction on FPGA. FUs are often reused
by different instructions to reduce resource idling and routing complexity. For each in-
struction in the schedule, the HLS compiler checks whether there is a free FU to execute
that instruction or not. If yes, then the instruction is mapped to that FU. If not, the HLS
compiler evaluates whether it is better to instantiate a new FU, or to delay the execution
of that instruction until another busy FU becomes available.

In addition to optimising an application for HLS through code rewrite, the HLS
compilers usually provide a set of compiler directives — or pragmas2 — that can be used
to automatically boost the parallelism extraction. The three most common are loop unroll,
loop pipeline and array partition.

By default, the HLS compiler generates the compute module for a single iteration
of a loop and repeatedly executes it for all iterations. When a loop is unrolled, the loop
body is replicated by a factor n. The HLS compiler then attempts to schedule and bind n

iterations at once, which can improve performance at the cost of increased resource usage.
Figure 7 presents an example of loop unroll with factor 3.

In a non-pipelined loop, the i-th iteration only starts when the i− 1-th iteration
finishes. With loop pipelining, the HLS compiler attempts to generate a schedule that
overlaps the execution of successive loop iterations. The pipeline’s efficiency is dictated

2 The expressions “compiler directive” and “pragma” are interchangeably used in this thesis.



50 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 7 – Example of loop unroll with factor 3.

Source: Elaborated by the author.

by the number of clock cycles required to start a new iteration, also known as Initiation
Interval (II). An ideal pipeline design has an II of 1, i.e. a new loop iteration is started at
every clock cycle. Figure 8 exemplifies the concept of loop pipeline.

Figure 8 – Example of loop scheduling without and with pipeline directive (new iteration start-
ing every 2 cycles).

Source: Elaborated by the author.

Although unroll and pipeline directives can increase performance, they can be
bottlenecked if there is data contention (that is, if the design is not able to deliver the
inputs at the required rate, and/or write the results as soon as they’re computed). As
previously mentioned, BRAM memory modules have a physical limited amount of read-
/write ports. By using array partition, additional BRAM modules can be used to hold one
array, increasing the amount of ports available per clock cycle. Depending on the memory
access pattern, the increased amount of ports can alleviate memory contention. Figure 9
presents an example of how an array can be partitioned to different configurations. Which
configuration suits best depends on how the data is accessed by the code.

The design space formed by exploring the aforementioned compiler directives is



3.1. Overview of High-Level Synthesis and Estimation 51

Figure 9 – Example of different partitioning configurations for an array. The arrows represent
the available read/write ports per BRAM block.

Source: Elaborated by the author.

well-suited for design space exploration, since the space can easily explode in size. This
would incur in unfeasible exploration times if every design point were to be evaluated
using HLS synthesis, thus motivating the use of design space exploration heuristics and
fast HLS estimators. In the following section, we provide a brief overview of the Lin-
analyzer estimator and how it approximates its behaviour to the actual HLS compilation
process of Vivado HLS.

3.1.1 Lin-analyzer Overview

High-Level Synthesis compilation requires complex steps for generating function-
ally correct designs. However, simpler models can skip these steps while still approximat-
ing metrics with reasonable accuracy. Some may use dependency graphs for estimation,
which can be generated either from static code analysis (ENZLER et al., 2000; KULKA-
RNI et al., 2006; BILAVARN et al., 2006) or from software traces (BJUREUS; MILL-
BERG; JANTSCH, 2002; SHAO et al., 2014; ZHONG et al., 2016). One advantage of
the latter is that global code motion optimisation is inherently enabled, as all control
and false data dependencies are implicitly resolved by the execution that generates the
software trace. The resultant graph (henceforth called Dynamic Data Dependency Graph,
or DDDG) provides an optimistic notion of the parallelism capabilities of the code, which
can then be constrained to reflect realistic parallel architectures (AUSTIN; SOHI, 1992).

Lin-analyzer (ZHONG et al., 2016) is a trace-based estimator that approximates
the latency of HLS-generated designs from C codes. First, an input C/C++ function is
converted to the LLVM’s Intermediate Representation (IR) language using the LLVM’s
CLANG frontend compiler. Then, Lin-analyzer injects trace functions in the IR code,
executes it, and generates a dynamic trace that contains all executed instructions and the
data they accessed. Lin-analyzer then uses the dynamic trace to infer data dependencies
and generate a DDDG, where each node represents an executed LLVM IR instruction.



52 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

For example, Figure 10 shows a DDDG generated from a vector add.

Figure 10 – Example of DDDG generated from the LLVM IR of a vector add.

(a) DDDG for one loop iter-
ation. The weights repre-
sent the latency of FUs.

; for(int i = 0; i < 1024; i++)
; c[i] = a[i] + b[i];
body:

%ai = getelementptr float, float* %a, i64 %i
%av = load float, float* %ai, align 4
%bi = getelementptr float, float* %b, i64 %i
%bv = load float, float* %bi, align 4
%cv = fadd float %av, %bv
%ci = getelementptr float, float* %c, i64 %i
store float %cv, float* %ci, align 4
br i1 %footer

(b) C/C++ snippet of the vector add (first two
lines) and the respective LLVM IR code for
the loop body (below).

Source: Perina et al. (2021).

Then, Lin-analyzer optimises the DDDG by removing redundant loads/stores and
nodes that have no relation to hardware generation (e.g. software debug nodes). The re-
maining nodes are annotated with the latency required to solve each instruction according
to a target platform. The latencies used by Lin-analyzer are based on the FUs used by
Xilinx Vivado HLS at an operating frequency of 100MHz. Then, Lin-analyzer applies the
ASAP, ALAP and RCLS scheduling algorithms to constrain the DDDG according to the
constraints of the target platform. Finally, the latency can be derived from the constrained
DDDG graph, which approximates the cycle count of the actual design that Vivado HLS
would generate for the same input code. Figure 11 presents a simplified example of a
DDDG being scheduled and the latency calculation.

Figure 11 – Example of a DDDG scheduling and its latency calculation. In this example, the
two load nodes are for different arrays and thus allowed to occur in parallel. Nodes
with no relation to hardware generation (e.g. the getelementptr instructions) are
removed prior to scheduling).

getelemptr

load

getelemptr

load

faddgetelemptr

store

0 0

2 2

40

1

load

load fadd store

2 4 1

2
2 + 4 + 1 =
7 cycles

DDDG Generation Scheduling Latency estimation

Source: Elaborated by the author.



3.1. Overview of High-Level Synthesis and Estimation 53

The key aspect of Lin-analyzer is that it also supports the compiler directives
previously mentioned. They are implemented as follows:

• Loop unroll: by default, Lin-analyzer only generates the DDDG for a single iter-
ation of the innermost loop body. This is similar to the scheduling performed by
Vivado HLS when no unroll is enabled. If unroll is enabled by a factor of n, Lin-
analyzer reads n iterations from the dynamic trace and generate a single DDDG
schedule for them. The resultant scheduling is similar to the one performed by Vi-
vado HLS when an unroll of n is enabled.

• Loop pipeline: after DDDG scheduling, Lin-analyzer calculates the pipelined total
latency ltotal as follows:

ltotal = II ∗ (TC−1)+ liter (3.1)

where II is the initiation interval, TC is the loop’s trip count and liter is the latency
estimated from the DDDG for a single loop iteration.

The value of II can be found by effectively performing the pipeline scheduling of the
DDDG. However this is a complex task, and it can be avoided by approximating II

to a best-case scenario minimum initiation interval MII. Lin-analyzer calculates MII

based on two factors that often limit the reachable minimum value of II: recurrence
and resource constraints.

The recurrence-constrained MII (RecMII) considers the case where a dependency
across loop iterations limits the MII value (i.e. if a loop iteration depends on data
from previous iterations, it cannot start before these values are calculated). Lin-
analyzer calculates RecMII by generating an additional DDDG scheduling that in-
cludes the double of iterations than the original DDDG. Then, RecMII is calculated
by subtracting the scheduled latency of both DDDGs. If there is no dependency
between iterations, both DDDGs should have similar cycle count due to indepen-
dent parallelism, and RecMII tends to zero. Conversely, a large latency difference
between the DDDGs is an indication that there could be dependency between loop
iterations and thus RecMII is adjusted accordingly. Both DDDGs here considered
are unconstrained (i.e. before RCLS).

The second value that influences MII is the resource-constrained MII (ResMII). This
constraint is based on physical resource limitations on the FPGAs: memory ports
(ResMIImem) and FU budget (ResMII f u). When pipeline is enabled, execution of
multiple loop iterations overlap, which in turn increases resource occupancy. As an
example, consider that a DDDG has 4 different reads for a same array, and that the
array is stored in a BRAM module that allows up to two simultaneous reads per
clock cycle. It is impossible to schedule a pipeline with II lower than 2, since when



54 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

the pipeline is completely filled, a scheduling with II = 1 would require four BRAM
simultaneous reads. The same logic applies for FU occupancy.

Finally, MII is calculated by considering the worst-case constraint from the ones
mentioned above, as follows (ZHONG et al., 2016; LI et al., 2015; RAU, 1994):

MII = max{RecMII,ResMII} (3.2a)
ResMII = max{ResMIImem,ResMII f u} (3.2b)

ResMIImem = max
m

{⌈
Nrm

Prm

⌉
,

⌈
Nwm

Pwm

⌉}
(3.2c)

ResMII f u = max
q

{⌈
FUuq

FUcq

⌉}
(3.2d)

where: Nrm and Prm are the number of reads and number of read ports for array
m; Nwm and Pwm are the respective counterparts for write transactions; FUuq (FU
unlimited) is the largest amount of simultaneous instructions of type q in the DDDG
(calculated through ASAP scheduling); and FUcq (FU constrained) is the actual
amount of FUs of type q instantiated (according to RCLS scheduling).

• Array partition: the partitioning of an array affects the port availability depending
on which values are accessed. A complete partitioning, for example, maps every array
element to separate registers. Since the memory accesses are explicitly resolved in
the dynamic trace, Lin-analyzer easily identifies which partition is being accessed
for an array based on its resolved address, and maintains a separate port budget for
every partition.

These pragmas only affect the DDDG scheduling, which means that the same
dynamic trace can be reused to estimate the latency of different combinations. Since
trace generation is the most time-consuming step and is executed only once, Lin-analyzer
is able to quickly traverse through large design spaces composed by the combinations of
optimisation pragmas.

3.2 DSE Methodology with Lina
Lina inherits Lin-analyzer’s dynamic trace execution and DDDG optimisation/schedul-

ing logic, while new features are implemented to provide further explorations possibilities.
The main differences between Lina and Lin-analyzer are presented in Chart 1.

Our DSE workflow is presented in Figure 12. Given a C kernel as input, Lina
first generates the trace file through profiled execution. Then for every combination of



3.2. DSE Methodology with Lina 55

Chart 1 – Differences between Lin-analyzer and Lina.

Lin-analyzer Lina
It is assumed that the circuit will operate The timing-constrained scheduler accepts
at 100MHz a continuous range of clock frequencies

and supports operation chaining
DDDG is generated only for the The non-perfect loop analyser constructs
innermost loop body the DDDGs for all code segments in a

loop nest
Resource estimation considers The resource awareness considers
floating-point FUs and on-chip arrays integer FUs, floating-point FUs,
(only BRAM) auxiliary logic and additional resources

related to on-chip arrays
All arrays are considered to be on-chip Off-chip arrays are supported, and the

memory model evaluates the accesses
to off-chip memory, identifying potential
bottlenecks and optimisation
opportunities

Source: Adapted from Perina et al. (2021).

pragmas supplied by a job dispatcher, Lina uses the trace to generate and schedule a set
of DDDGs. These are used to derive resource count and latency estimates.

The design space is generated by toggling a series of predefined knobs: which
loops should be pipelined and unrolled (up to a certain factor); which arrays should be
partitioned (up to a certain factor and type of partition); and the operating frequency
range. The job dispatcher exhaustively traverses this field of exploration by generating
the combination of pragmas supplied to Lina. Since the estimation of each design point
is independent, the job dispatcher performs a parallel exploration through p separate
threads.

Cases with mutual pragma invalidation are discarded and not explored, those
being:

• If pipeline is active for a certain loop level, all its subloops are automatically unrolled.
Thus all design points that apply unroll pragmas to automatically unrolled loops
are considered redundant and excluded;

• When a loop level l is fully unrolled, its logic is replicated for every iteration and the
loop structure itself ceases to exist. Therefore, we discard the points where pipeline
is active for a fully unrolled level, since there will be no actual loop to implement
pipeline in this case.



56 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 12 – Lina flow: the trace is generated once for a given software code, then successive
combinations of HLS pragmas are provided by the job dispatcher to estimate each
design’s latency and resource count. NPLA and TCS stand for Non-Perfect Loop
Analyser and Timing-Constrained Scheduler, respectively.

Source: Adapted from Perina et al. (2021).

After all the valid design points are estimated, we define a Pareto set considering
five objectives to minimise: design execution time, LUTs, FFs, DSPs and BRAMs.

In the following sections, we detail the key components of Lina: the timing-constrained
scheduler, the non-perfect loop analyser, how the resource awareness model works, the
off-chip memory model, and the cache mechanism implemented to reduce the DSE explo-
ration time.

3.2.1 Timing-Constrained Scheduler

A higher clock frequency does not directly imply better performance, since the
HLS compiler adapts the scheduling to comply with tighter constraints. The timing-aware
model of Lina attempts to mimic this behaviour, which allows a more realistic evaluation
under different timing constraints.

Timing-wise, a functional unit is defined by latency l and critical path delay tcp.
Latency defines the amount of clock cycles needed for the FU to generate a valid result
from a given input, while tcp defines how much time inside a clock cycle the FU takes to
perform all required intermediate calculations. If this FU is operated with an operational
frequency of fop (and its respective period top = f−1

op ) so that tcp > top, the FU is not
able to finish all its internal operations before the start of the next clock cycle. The
unfinished intermediate values are then propagated through the circuit, which causes



3.2. DSE Methodology with Lina 57

undefined behaviour.

Thus, the HLS compiler must guarantee that every FU is configured to perform
its work within the timing budget of the target clock period (i.e. tcp < top). Several HLS
tools (including Vivado HLS) provide a set of configurations for each type of FU with
different configurations of l and tcp. A low value of l means that more work must be done
per clock cycle (i.e. higher tcp) and vice-versa. Figure 13 presents a graphical depiction
on how l and tcp interact when adjusted.

Figure 13 – Depiction of two configurations for one FU, with latencies of 4 (top) and 2 (bottom)
cycles, respectively. Smaller latencies lead to greater work per cycle, which in turn
constrains the frequency.

Source: Elaborated by the author.

The following subsections present the key aspects of the Timing-Constrained Sched-
uler, namely the hardware profile library, initial timing analysis and operation chaining.

3.2.1.1 Hardware Profile Library and FU Characterisation

Lina contains a hardware profile library that supports a continuous interval of fre-
quencies ranging from 16.66MHz to 500MHz. For each FU supported by Lina, the library
contains a set of latency-delay pairs {(l, tcp)} that define the available configurations for
the supported frequency interval.

To identify these configurations, we implement a method that iterates over different
values of target frequencies and collects the timing information from the Vivado HLS
reports. This is performed for every FU that Lina supports, and must be performed only
when a new platform support is added. For example, Source code 1 presents a simple C



58 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

function used to instantiate an FU of type fdiv. This code is used for microbenchmarking,
on which the Vivado report is parsed.

Source code 1 – Example of simple function used to characterise FUs

1: #define OP /
2: #define TYPE_T float
3:
4: void foo(TYPE_T A[1024], TYPE_T B[1024], TYPE_T C[1024]) {
5: for(int i = 0; i < 1024; i++)
6: C[i] = A[i] OP B[i];
7: }
8:

Vivado HLS emits a detailed report after the high-level synthesis compilation. This
report includes the latencies and critical path delays of all FUs used in the code. These
delays are not final, since they might still vary after design synthesis, place/route, and
timing analysis. However these are the values considered by Vivado HLS to perform its
scheduling and binding, which is what Lina actually approximates.

Our method performs a binary search in order to avoid an excessive amount of HLS
runs, while still providing a complete characterisation. Algorithm 1 presents the recursive
procedure used, where FU is the functional unit being analysed (e.g. add, sub), (lmin, tmin)

is the FU configuration at the lower bound of the recursive search, (lmax, tmax) is the
higher bound configuration, and C is the final set containing all identified configurations.
The HLSRUN(FU, t) function represents a call to Vivado HLS considering an operating
frequency of t−1.

The algorithm works as follows. First, the FU is characterised on the bounds of
the supported interval of Lina (i.e. tlmin = 500MHz = 2ns and tlmax = 16.66MHz = 60ns)3.
This provides the initial search bounds (lmin, tmin) = (llmin,2) and (lmax, tmax) = (llmax,60),
where llmin and llmax are the latencies found through Vivado HLS at the bound periods.
The recursive algorithm then executes Vivado HLS for the interval’s midpoint tmid =

tmin+
tmax−tmin

2 . Depending on the configuration retrieved, the algorithm proceeds the search
on two new intervals [tmin, tmid[ and ]tmid, tmax]. Every new configuration found is appended
to C during the search. Each recursion branch ceases itself if one of the conditions are
met:

• If the interval being searched falls under a break condition size (i.e. tmax− tmin < ε ,
3 Note that we consider a period interval for the recursive search, not frequency. This means

that the higher bound of the interval is actually the lower frequency, whereas the lower bound
is the higher frequency.



3.2. DSE Methodology with Lina 59

line 4);

• If the midpoint configuration was previously included in C (line 10);

• If the midpoint latency found is one unit lower than lmin or one unit higher than
lmax (i.e. if lmid = lmin−1 or lmid = lmax +1, lines 16 and 21)4.

Algorithm 1 – The recursive exploration algorithm
1: procedure explore(FU , (lmin, tmin), (lmax, tmax), C)
2: tsub← tmax− tmin
3: if tsub < ε then
4: return ▷ If interval is lower than ε , stop recursion
5: end if
6:
7: tmid ← tmin +

tsub
2 ▷ Calculate midpoint

8: (l, tcp)← hlsrun(FU , tmid) ▷ Get HLS report for midpoint
9: if (l, tcp) ∈C then

10: return ▷ Repeated, no need to explore further
11: else
12: append(C, (l, tcp)) ▷ Append new configuration found
13: end if
14:
15: if lmin = l +1 then
16: return ▷ No need to explore between two consecutive integers
17: else
18: explore(FU , (lmin, tmin), (l, tcp), C) ▷ Continue recursion (lower)
19: end if
20: if lmax = l−1 then
21: return ▷ No need to explore between two consecutive integers
22: else
23: explore(FU , (l, tcp), (lmax, tmax), C) ▷ Continue recursion (upper)
24: end if
25: end procedure

Algorithm 2 presents the complete FU characterisation algorithm, including the
first HLS runs and the first recursion call.

3.2.1.2 Initial Timing Analysis

Prior to any DDDG manipulation, the initial timing analysis adjusts each FU on
the hardware profile library to have the lowest latency configuration where tcp still fits
the timing budget. The DDDG is then annotated with the latencies of the selected config-
urations, and ASAP/ALAP scheduling is used to define the preferred schedule window of
each node. Figure 14 presents an example of FU configuration to avoid timing violation.
4 lmin or lmax do not refer to the minimum and maximum latencies, respectively, but to the

latencies at the minimum and maximum periods.



60 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Algorithm 2 – The FU characterisation algorithm
1: ε ← 0.001 ▷ Value used as recursive break
2:
3: FU ← fadd ▷ Select the FU to explore
4: (llmin, tlmin)← hlsrun(FU , 2.0) ▷ 2ns period, 500MHz
5: (llmax, tlmax)← hlsrun(FU , 60.0) ▷ 60ns period, 16.66MHz
6:
7: if llmin = llmax then
8: return {(llmin, tlmin)} ▷ Same latency at bounds, no need to explore in between
9: else

10: C←{(llmin,2.0),(llmax,60.0)}
11: explore(FU , (llmin,2.0), (llmax,60.0), C) ▷ Start recursion
12: return C
13: end if

Figure 14 – Two fadd configurations considered at a target clock frequency of 300MHz.

(a) This configuration (l = 8) causes a tim-
ing violation since its critical path de-
lay tcp exceeds top.

(b) Consequently, a configuration with l =
10 must be used with a smaller tcp in-
stead, at the cost of taking more clock
cycles to complete the operation.

Source: Adapted from Perina et al. (2021).

3.2.1.3 Operation Chaining

The operation chaining is performed during the resource-constrained scheduling.
The scheduler performs three steps to allocate the operations at each clock cycle: it sorts
the nodes that are ready for execution using the ASAP/ALAP results as a priority crite-
rion; then it attempts to allocate all ready nodes to the physical resources (e.g. FUs or
memory ports); and whenever a node finishes execution, it deallocates the resource that
was being used and it marks all the children nodes as ready. With operation chaining, the



3.2. DSE Methodology with Lina 61

steps described above are repeated more than once for every clock cycle scheduling. For
example, suppose two operations a and b are directly dependent (e.g. a multiply followed
by the store of its result). In this case, they can be scheduled to the same clock cycle if the
accumulated critical path delay of both operations ta

cp and tb
cp does not exceed the timing

budget (ta
cp + tb

cp ≤ top). Figure 15 presents examples of operation chaining attempts. A
more detailed flowchart of the resource and timing-constrained scheduling is presented in
Appendix D.

Figure 15 – Attempts of operation chaining.

(a) In this first case, an fmul and its subsequent
store cannot be scheduled to a single clock
cycle as they together exceed the timing bud-
get.

(b) In this case, chaining is possible
since both fadd and its respective
store fit in the same clock cycle.

Source: Adapted from Perina et al. (2021).

In order to perform the timing budget analysis required for operation chaining,
the accumulated critical path delays of all dependent operations scheduled to a single
clock cycle must be known. Our first approach to calculate these accumulated delays
consisted of maintaining a set of dependency paths P that contained all the scheduled
operations within a clock cycle and the dependencies between them. Lina then used P

to evaluate whether a candidate instruction could be scheduled in the same clock cycle
without violating timing budget.

Algorithm 3 presents this former function, where n is the candidate node for being
scheduled, P is the set of all active paths within a clock cycle, and top is the operating
clock period5. The areConnected(p, q) function returns true if node q depends on p,
and APPENDNEWPATH(P, p) appends a new path p to the set of paths P.

This first approach, however, does not scale well with kernels that have many in-
dependent paths within a clock cycle. For these cases, P might reach very large sizes and
the time spent by Lina to perform the timing budget analysis becomes non-negligible.
Some of the AES kernels used in this thesis to validate Lina fall on this category. Since
5 Relating to Figure 58, the node “Does any path violate the timing budget?” would be repre-

sented by lines 5−17 from the algorithm.



62 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Algorithm 3 – Former approach to verify if in-clock cycle scheduling is possible
1: procedure validateTimingScheduling(P, top, n)
2: P′← P
3: pathFound ← false
4:
5: for all p ∈ P do ▷ For all paths in the path set
6: for i← 1, |p| do ▷ Iterate through all nodes in the path
7: if areConnected(pi, n) then
8: pathFound← true
9: p′←{p0, p1, ..., pi,n}

10: appendNewPath(P′, p′)
11:
12: if (tp0 + tp1 + ...+ tn)> top then
13: return false ▷ Timing violation
14: end if
15: end if
16: end for
17: end for
18:
19: if ¬ pathFound then
20: appendNewPath(P′, {n}) ▷ No deps. found. Create new path with only n
21: end if
22:
23: P← P′ ▷ Commit the new paths
24: return true ▷ No violations found
25: end procedure

the scheduling model of Lina does not perform any type of backtrack (i.e. operations that
are already scheduled cannot be un-scheduled), the critical path delay of scheduled depen-
dency paths becomes invariant, discarding the need to maintain P. Thus, the accumulated
critical path delay d(·) up to a candidate node ni is found simply by adding its delay tni

to the largest accumulated delay of all its k direct scheduled predecessors nk
i−1:

d(ni) = tni +max{d(n1
i−1),d(n

2
i−1), ...,d(n

k
i−1)} (3.3)

For nodes n0 that either have no predecessors or all were scheduled in previous
cycles, its largest delay is composed only by its own critical path delay:

d(n0) = tn0 (3.4)

Figure 16 exemplifies a set of dependent nodes within a clock cycle along their
tcp and d(·) values. Compared to maintaining and calculating the paths in P, this lat-
ter approach only requires a max operation and one addition per evaluation, which is
significantly faster.



3.2. DSE Methodology with Lina 63

Figure 16 – Example of dependent nodes, their critical path delays tcp and largest delays up to
each node (d(·)).

Source: Elaborated by the author.

3.2.2 Non-Perfect Loop Analyser

The Non-Perfect Loop Analyser implements the DDDG generation and scheduling
process as previously explained for multiple code segments inside a loop nest. Such feature
allows a broader range of code patterns to be supported by Lina with increased accuracy.

A loop nest is considered non-perfect if there are operations located outside of
the innermost loop body, but still within the nest. Figure 17 presents two examples of
non-perfect loops. The highlighted regions are composed of statements that are placed
before, inside, and after loop levels.

Lina considers four different types of DDDGs for its non-perfect loop model:

• normal (or inner): innermost loop body (also used for perfect loop nests);

• before: region located right before the start of a subloop;

• after: region located right after the end of a subloop;

• between: region generated by the merge of before and after DDDGs in unrolled
loops.

The between type is a particular case present in unrolled loop codes. For example,
Figure 17b is the code of Figure 17a with the mid-loop level unrolled by a factor of 2. The
before DDDG of the replicated body is placed right after the after DDDG of the first
body (both are underlined on the figure). These two regions can be scheduled together,
and thus Lina generates a single between DDDG that merges both regions.

For clarity in the equations, we represent each type of DDDG through a notation
as indicated in Figure 17. Using an arbitrary metric g as an example, the variables ←−gi ,
−→gi and ←→gi represent g for the before, after and between DDDGs at the i-th loop level,



64 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 17 – Examples of non-perfect loop nests. Shaded regions represent the group of state-
ments that are placed before, inside, and after each loop level. A separate DDDG
g is generated for each region. The notation used to identify the DDDGs generated
according to each region is shown in parentheses.

for(...) {
<before_1> (←−g1)

for(...) {
<before_2> (←−g2)

for(...) {
<inner> (g)

}
<after_2> (−→g2)

}
<after_1> (−→g1)

}
(a) Non-perfect example with no unroll applied.

for(...) {
<before_1> (←−g1)

for(...) {
<before_2> (←−g2)

for(...) {
<inner> (g)

}
<after_2>
<before_2>

(←→g2 )

for(...) {
<inner> (g)

}
<after_2> (−→g2)

}
<after_1> (−→g1)

}
(b) Non-perfect example, the mid-level loop is un-

rolled with a factor of 2.

Source: Adapted from Perina et al. (2021).

respectively. For normal DDDGs, we omit the loop level (i.e. g) as they always represent
the innermost loop body.

Although the operations inside each region are scheduled for parallelism as ex-
plained in the previous sections, we assume that the regions themselves are serially ex-
ecuted following the normal software flow, as performed by Vivado HLS. For example
in Figure 17b, one iteration of the mid-level loop executes in the following order: ←−g2 , g

(multiplied by the inner loop trip count), ←→g2 , g (multiplied by the inner loop trip count),
and −→g2 .

The total cycle count c of a loop nest is calculated recursively. Given a loop nest
with K levels, the recursion starts at loop level L and traverses outwards until the out-
ermost loop is reached. The loop level L used as starting point varies according to the
presence of loop pipeline, as follows:

• If no pipeline is enabled in any loop level, the starting point is the innermost loop
level (L = K). The starting cycle count cL is given by:

cL = cK = g ·bK ·u−1
K +σ (3.5)



3.2. DSE Methodology with Lina 65

where g is the scheduled cycle count of the innermost DDDG, bK and uK are the
bound and unroll factor of the innermost loop, respectively, and σ is a constant
that represents the cycles spent on testing the enter and exit conditions of a loop;

• If pipeline is enabled for loop level P (P∈ {1, . . . ,K}), the recursion starts from level
P instead (L = P). In this case, the starting cycle count cL is given by an equation
derived from Equation 3.1:

cL = cP = MII · (bP ·u−1
P −1)+g+σ (3.6)

where MII is the value given by Equation 3.2. When pipeline is enabled for a certain
loop level, all its subloops are automatically fully unrolled by Vivado HLS. As a
consequence, the loop nest is virtually pruned to P levels due to flattening caused
by the unrolls. Lina replicates this behaviour by including all operations from loop
levels between P and K in a single DDDG. In this case, g includes the scheduling of
all automatically unrolled subloops.

With cL calculated, the cycle count cl of the remaining loop levels l (l < L) considers
the accumulated cycle count of its subloop cl+1 along with the cycle count of non-perfect
segments for the current loop level (←−gl , −→gl and ←→gl ):

cl = (←−gl +
−→gl +(←→gl · (ul−1))+(cl+1 ·ul)) ·bl ·u−1

l +σ (3.7)

where bl and ul are the bound and unroll factor of loop level l, respectively. As exemplified
in Figure 17, between DDDGs are only calculated when unroll is enabled.

Finally, the total cycle count c is obtained when the topmost level is reached (l = 1).
Figure 18 presents a graphical example of this calculation.

Figure 18 – Abstract example of a non-perfect loop nest (K = 4 loop levels) and how the cl
values are calculated. At left, there is no pipeline enabled and thus the calculation
starts from the innermost level (L = K = 4). At right, pipeline is enabled for the loop
level P = 2 and thus the calculation starts from L = P = 2.

Source: Elaborated by the author.



66 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

3.2.3 Resource Awareness
The following subsections present the resource model implemented by Lina, which

considers floating-point and integer datapaths, memory-related resources (e.g. distributed
RAM arrays, completely partitioned arrays, load/store registers), intermediate registers
(e.g. buffers, pipeline registers) and extra resources used by auxiliary computations (e.g.
loop/array indexing).

3.2.3.1 Functional Unit Resource Estimation

Modern HLS compilers often balance the amount of FUs to be synthesised based
not only on the scheduling, but also on the routing logic generated to supply and re-
trieve the different inputs and outputs. An extensively reused FU might require an overly
complex multiplexing logic that can use more resources than the FU itself.

During the RCLS step, Lina calculates the amount of FUs required to execute
each DDDG separately. Two different approaches based on FU’s complexity are used to
calculate the total amount considering all DDDGs.

The first approach considers that simple FUs (e.g. with a small resource footprint)
are less likely to be reused. In this case, we accumulate the resources of the DDDGs in
the loop nest. We use this approach for integer and logic operations:

FUq = FUcq +∑
l

max{←−−FUcl
q +
−−→
FUcl

q,
←−→
FUcl

q} (3.8)

where q is the type of FU (e.g. add, mul), l is the loop level, and FUcq is the constrained
amount of FUs of type q estimated by RCLS. The between DDDG is equivalent to the
logic of before and after together. Therefore, we consider the largest number of FUs from
the options {before + after, between} for every loop level (hence the max operation).

The second approach considers that resource-hungry FUs are more likely to be
reused. In this case, the HLS compiler prefers to extensively reuse them before replicating.
We assume that these FUs are always shared, and the total amount is given by the DDDG
with the largest usage. This approach is used for floating-point operations, as follows:

FUq = max
l
{FUcq,

←−−
FUcl

q,
−−→
FUcl

q,
←−→
FUcl

q} (3.9)

An example for both calculations is presented on Figure 19.



3.2. DSE Methodology with Lina 67

Figure 19 – Two examples of FU calculation based on the RCLS allocation results FUcq of each
DDDG (each + denotes one FU allocated). The first calculation considers these
adders as floating-point (complex) and the other considers as integer (simple).

Source: Elaborated by the author.

We consider the execution of a single iteration when calculating FUcq. Since multi-
ple iterations are allowed to overlap when pipeline is enabled, FUcq might underestimate
the amount of resources required. In this case, we use a different approach based on Zhao
et al. (2019), Gao, Wickerson and Constantinides (2016), where the the FUcq used in
Equation 3.8 and Equation 3.9 is calculated as follows:

FUcq =

⌈
Nq

MII

⌉
(3.10)

where Nq is the number of nodes of type q in the normal DDDG and MII is the value given
by Equation 3.2. The rationale behind this approach is that the number of overlapped
iterations increases with the decrease of the initiation interval, which in turn increases
the demand for resources required to execute multiple iterations at once. For example, if
the initiation interval is 1, all nodes of the DDDG will be active for different iterations at
every clock cycle when the pipeline is filled. Therefore Nq FUs are required so that each
node of type q can be simultaneously active.

The total number of resources is calculated by accumulating the products between
the resources required to instantiate a single FU of type q (i.e. LUTq( fop), FFq( fop), and
DSPq( fop)) and the number of instantiated FUs from that type (FUq), as presented in
Equation 3.11:

LUTf u = ∑
q
{FUq ·LUTq( fop)} (3.11a)

FFf u = ∑
q
{FUq ·FFq( fop)} (3.11b)

DSPf u = ∑
q
{FUq ·DSPq( fop)} (3.11c)



68 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

The amount used by a single FU (e.g. LUTq( fop)) is dependent on the target
frequency fop, as explained in subsection 3.2.1. No BRAM is used by any type of FU that
we consider.

3.2.3.2 Array-related Resource Estimation

Arrays can be either located in on-chip or off-chip memory. Lina estimates the
resource only for arrays located in on-chip memory, as presented in this subsection. This
does not affect estimation, however, since our resource-aware objective is contained to
on-chip FPGA resources.

For each array m in the code, we calculate the LUTs, FFs and BRAMs required
(LUTm, FFm and BRAMm, respectively) according to three different scenarios as explained
below. No DSPs are needed by array-related modules.

3.2.3.2.1 Scenario I

An array is stored using LUTs as SRAM memories when its size is smaller than
a specific threshold and no complete partitioning is performed. Thus LUTs are used for
storage, FFs for input/output buffers, and no BRAM modules are used, as follows:

LUTm = pm ·
⌈ psm

64

⌉
(3.12a)

FFm = pm · (⌈log2{pnm}⌉+wsm ·λm) (3.12b)
BRAMm = 0 (3.12c)

psm = pnm ·wsm (3.12d)

where pm is the partition factor, psm is the total size of a partition in bits, pnm is the
number of words within a partition, wsm is the word size in bits and λm is 1 when m is a
read-only array, 2 otherwise.

The constant values were inferred from the analysis of several Vivado HLS early
resource reports.

3.2.3.2.2 Scenario II

An array is stored using BRAM modules if it exceeds the threshold used in scenario
I and if no complete partitioning is performed. No LUTs are used, and FFs are used for
input/output buffers. We calculate the number of BRAMs required for each array partition
as being the smallest power of 2 that can still fit the partition size, similar to Zhong et
al. (2016) and Makni et al. (2018):



3.2. DSE Methodology with Lina 69

LUTm = 0 (3.13a)
FFm = pm · ⌈log2{pnm}⌉ (3.13b)

BRAMm = pm ·min
i∈N0
{2i : 2i ≥ psm

β
} (3.13c)

where β is the total size of a BRAM module in bits, which depends on the target FPGA.
Lina considers a size of 18 kbits for the platforms supported.

3.2.3.2.3 Scenario III

In the last scenario, a fully-partitioned array stores all its elements in FFs instead
of BRAM modules for full parallel access. In this case, we use the following equations:

LUTm = 0 (3.14a)
FFm = tsm (3.14b)

BRAMm = 0 (3.14c)

where tsm = pm · psm is the total size of array m in bits.

No LUTs and BRAM modules are used in this case.

3.2.3.2.4 Total Array Resource Usage

With LUTm, FFm and BRAMm calculated for each array m according to the scenarios
above, we can calculate the total LUT, FF and BRAM usage of array-related resources
as follows:

LUTmem = ∑
m
{LUTm} (3.15a)

FFmem = ∑
m
{FFm} (3.15b)

BRAMmem = ∑
m
{BRAMm} (3.15c)

3.2.3.3 Complete Resource Estimation

Finally, we integrate the LUT and FF calculations from Makni et al. (2018) in
order to provide a more comprehensive estimation. The total LUT, FF, DSP and BRAM
usage is given by the equations below:



70 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

LUTtotal = LUTf u +LUTmem +LUTmux +LUTex (3.16a)
FFtotal = FFf u +FFmem +FFreg (3.16b)

DSPtotal = DSPf u (3.16c)
BRAMtotal = BRAMmem (3.16d)

where LUTf u, FFf u, DSPf u, LUTmem, FFmem and BRAMmem are the FU and array related re-
sources as previously explained; LUTmux and LUTex are the LUT usage of multiplexers and
auxiliary computations (e.g. loop/array indexing), respectively; and FFreg is the number
of FFs allocated to the intermediate registers.

The following items describe the calculations from Makni et al. (2018) that we
use to calculate LUTmux, LUTex, and FFreg, and the rationales behind each of them. For a
single loop nest with K levels, consider the following:

• B is the product of all loop level bounds:

B = ∏
l
{bl}, l ∈ {1,2, . . . ,K} (3.17)

• U is the product between the unroll factors of all loop levels in the nest, and Ui is
the product of unroll factors between loop level i and top-level (i.e. U =UK):

Ui = ∏
l
{ul}, l ∈ {1, . . . , i}, i≤ K (3.18)

• e is an exponential constant derived from B:

e = min
i∈N0
{2i : 2i ≥ B} (3.19)

Rationale: Makni et al. (2018) assume that there is a relation between the loop
bound B and a simple exponential parameter e in the form of B ∈ O(2e). Thus, we
select the smallest integer value of e so that 2e ≥ B;

• V1 = e+1, V2 = 2 ·e and V3 = e+2 are three exponential parameters derived from e;

• Nload and Nstore are the total number of load/store operations in a loop nest com-
pensated by unroll:

N j = n j ·UK−1 +∑
l
{(←−n l

j +
−→n l

j +(←→n l
j · (ul−1))) ·Ul−1} (3.20)

where j ∈ {load,store} and the n j values represent the number of loads/stores
present in the DDDGs (l ∈ {1, . . . ,K−1}).



3.2. DSE Methodology with Lina 71

Rationale: Makni et al. (2018) consider that Nload and Nstore represent the number
of loads and stores identified in the single DDDG graph used in their model. We
consider that unroll replicates the number of loads and stores. Therefore we multiply
n j by the accumulated unroll factors down to the loop level where each DDDG is
located. For the normal DDDG, UK−1 instead of UK is used since n j already considers
the innermost loop unroll (see Zhong et al. (2016)). For the remaining DDDGs,
Ul−1 is used as a multiplying factor to consider the number of times that they are
repeated due to nested unroll. Additionally, the between DDDG is multiplied by
(ul− 1) because each time its loop level is unrolled, there are ul− 1 regions in the
replicated code represented by this DDDG.

• C is the accumulation of the iteration latencies of each DDDG:

C = cK ·UK−1 +∑
l
{(←−c l +

−→c l +(←→c l · (ul−1))) ·Ul−1} (3.21)

Rationale: Makni et al. (2018) consider that IL represents the number of cycles
needed to perform a single iteration of the loop. Using a similar rationale as Nload

or Nstore, the IL (here named C) is adapted to consider non-perfect loop nests.

• Nop is the total number of FUs allocated of all types:

Nop = ∑
q
{FUq} (3.22)

Using the parameters above, the estimated LUT amounts for multiplexers LUTmux

and auxiliary computations LUTex are given by:

LUTmux = 32 · (Nstore +Nop)+K ·V1 +14 ·Nload (3.23a)
LUTex = K · (V1 +V2 +V3)+(U−1) ·V1 (3.23b)

The estimated amount of FFs related to intermediate registers FFreg is given by:

FFreg = 32 · (Nload +Nstore +Nop)+C+K ·V1 · γ (3.24a)

γ =

1 if K = 1

2 otherwise
(3.24b)

Parts of the equations from Makni et al. (2018) that consider more than one loop
were simplified since only a single loop nest is currently considered here. The γ value, for
example, is a simplification of the Sl and LK values from Makni et al. (2018, eq. (8)).



72 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

3.2.4 Off-chip Memory Model
The FPGA accesses the input/output data from two memory spaces: on-chip and

off-chip. On-chip memory spaces are constructed using internal FPGA resources as shown
in the previous section. Off-chip memory spaces are usually composed of SDRAM/SRAM
memory modules located outside of the FPGA die. By default, Lina considers that all
arrays are stored in on-chip memory components.

Although on-chip memory modules provide low-latency access (1 to 2 cycles), they
are usually limited in size, as compared to large arrays that often compose large-scale
applications. In this case, the on-chip resources should either be used as small buffers, or
the data should be directly accessed from the off-chip space.

The off-chip memory modules have larger read/write latencies than compared to
BRAM modules and their performance is intimately linked to the data access pattern.
To this end, Lina leverages the generated dynamic trace to infer the memory accesses.
Then, it uses an off-chip memory model that analyses the memory patterns, attempting
to identify memory optimisation opportunities and reports potential bottlenecks.

To activate the off-chip memory model, the user must indicate to Lina which
arrays should be considered off-chip. Then, for each of those arrays, Lina transforms the
original DDDGs and swaps the load/store nodes from the DDDG with the respective
off-chip counterparts. Several analyses are then performed in search for potential off-chip
optimisations, such as coalescing. Finally, the DDDGs are scheduled and constrained as
usual, however the memory model is consulted before any off-chip transaction scheduling
(for example to delay overlapping memory instructions).

For the memory model here presented, we consider that off-chip memory transac-
tions are shaped around three steps: setup, action and commit. The setup step includes
operations that are required to prepare the off-chip memory system for read/write. Then,
the action step is where an actual read or write is performed. This step can be repeated
multiple times depending on the memory pattern, like coalescing. Then, some additional
final time might be required to finish the memory transaction, which is the commit step.
Not every transaction requires setup and commit simultaneously, some interfaces might
require only one of these steps. The number of clock cycles cmem

total required to perform an
off-chip memory transaction can be modelled as:

cmem
total = cmem

setup +(n× cmem
action)+ cmem

commit (3.25)

where cmem
setup, cmem

action and cmem
commit are the number of clock cycles required to perform the

setup, action and commit stages, respectively, and n is the number of coalesced read-
/writes included in this single transaction. In general, the setup and/or commit steps are
time consuming as compared to the action steps. Therefore increasing n — and thus



3.2. DSE Methodology with Lina 73

performing coalesced transactions — is crucial for efficient off-chip memory use. As an
example, Figure 20 presents two cases of off-chip read/write transactions, without and
with coalescing, respectively.

Figure 20 – Two cases of off-chip transactions, one without coalescing (top) and with coalescing
(bottom).

commitsetup write commitsetup write

setup write write commit

no coalesce

w/ coalesce

Source: Elaborated by the author.

The FPGA platform and HLS compiler toolchain that we use in this chapter
— Xilinx Zynq UltraScale+ and Xilinx SDSoC toolchain, respectively — maps off-chip
memory accesses in a similar fashion as presented above. Chart 2 presents the instructions
that compose read and write transactions from C/C++/OpenCL kernels when using this
toolchain and how they relate to the transaction steps previously described. We also
present the number of clock cycles required to execute each instruction considering the
platform that we use (ZCU104) as an example. Note that there is no commit phase for
read transactions.

Chart 2 – Instructions executed by SDSoC/Vivado-generated designs for off-chip access, their
relation to the abstract transaction steps, and the cycle count of each instruction in
the ZCU104 platform.

Instruction name Transaction step # cycles ZCU104
Read transaction

Read request (ReadReq) setup 134
Read (Read) action 1

Write transaction
Write request (WriteReq) setup 1
Write (Write) action 1
Write response (WriteResp) commit 132

Source: Elaborated by the author.

In the next sections, we explain the features supported by our memory model, in-
cluding HLS limitations and how they affect performance. We then present how unroll and
pipeline affects the memory scheduling. Finally, we present the memory report generated
by Lina that includes optimisation suggestions and warnings about potential bottlenecks.



74 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

3.2.4.1 Memory Model Features and Behaviour

The model implements four optimisation features, presented below:

3.2.4.1.1 Intra-iteration bursts

If there are multiple reads or writes within a DDDG and they are all sequentially
addressed, Lina allows them to be merged into a single memory transaction. This means
that the setup and commit steps are shared among all of these merged read/write accesses.
Figure 21 presents an example code and how enabling or disabling intra-iteration burst
affects the DDDG transformation.

Figure 21 – Examples of DDDGs for a simple loop. Please note that although there is no DDDG
dependency between the three transactions when intra-burst is disabled, they might
be constrained during the RCLS phase and overlapping is dependent on certain
conditions (please see subsubsection 3.2.4.2 for more details).

Source: Elaborated by the author.

3.2.4.1.2 Inter-iteration bursts

The intra-iteration burst feature as just explained may reduce the overall latency
of the design, since less setup and commit steps are performed, and existing ones are
reused by multiple read/writes. However, these steps are still contained within a loop
iteration, meaning that they execute at every iteration.

The inter-iteration burst feature performs the coalescing analysis as previously
explained, but across multiple sequential iterations of a loop. If such pattern is found, a
single setup and a single commit steps are performed before and after the loop where
the read/writes are located, respectively. This effectively removes these time-consuming



3.2. DSE Methodology with Lina 75

steps from inner loops, drastically reducing the overall design latency in some cases. Fig-
ure 22 presents an example code and how toggling inter-iteration burst affects the DDDG
transformation.

Figure 22 – Examples of DDDGs for a simple loop. DDDGs representing multiple iterations are
presented to exemplify the relation to the setup and commit steps, though only
one iteration is scheduled. Similar to last figure, the RCLS phase might constrain
multiple transactions to not overlap even if their DDDGs are independent.

Source: Elaborated by the author.

3.2.4.1.3 Data packing

Some off-chip technologies are coupled with wide data buses that allow more than
one array element to be accessed in a single transaction. GDDR5 devices, for example,
have a 256-bit wide data bus (Micron Technology, Inc., 2014). Vector data types can be
used to utilise these wide buses by accessing multiple elements at once. In OpenCL, for
example, a float4 is a data type containing 4 floating point variables in a single word
(128-bit wide).

Lina performs data packing by detecting if the read/write transactions within
a DDDG can be modelled as groups of contiguous and equally-sized transactions. For
example, if a DDDG contains four contiguous float reads, they can be packed in two
float2 or a single float4. However, these data types must be defined at compile-time and
are not interchangeable during execution. This means that if Lina decides that float4
is a possible data pack size for one DDDG, this size must also be valid for all other
DDDGs that also use this array. Lina performs the data pack analysis for all DDDGs and
then reports which is the largest size compatible with all DDDGs. Figure 23 presents an
example code and how data packing affects a DDDG.



76 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 23 – Examples of DDDGs for a simple loop. The off-chip memory nodes are annotated
with the number of cycles required to solve each one. In the last (right) case, the
data packing analysis of Lina identifies that both writes can be packed together as
a single vectorised value. Lina allows both nodes to be scheduled in the same clock
cycle by assigning 0 to the latency of the second write (highlighted in red).

Source: Elaborated by the author.

3.2.4.1.4 Memory banking

When assigned to on-chip memory, each array is mapped to a separate BRAM
module. Each array has its own ports and are treated separately during resource con-
straining. On the contrary, off-chip arrays usually share a same bus that communicates
to the external modules. In this case, all arrays are treated to be in the same memory
space, and constraints like recurrence or port limitations affect the whole memory space.

Some memory controllers provide multiple communication channels that can com-
municate to separate banks of the off-chip memory module. These can be used in parallel
for better memory performance. Lina implements the memory banking feature, on which
when enabled, all off-chip arrays are mapped to separate memory banks. In this case, all
off-chip arrays are treated to have separate memory spaces, and constraints analyses are
restricted to each array similar to the on-chip constraining logic. Figure 24 presents an
example of memory banking.

For the following sections, consider that all off-chip arrays share the same memory
space if banking is disabled, and that each off-chip array has their own memory space if
banking is enabled. Other combinations (e.g. shared memory space only by some arrays)
are not considered in this thesis.



3.2. DSE Methodology with Lina 77

Figure 24 – Example of memory space division between three arrays when banking is disabled
(top) and enabled (bottom), respectively. The arrows indicate available read/write
interfaces.

Array A

banking disabled

banking enabled

Array B

Array C

Array A

Array B

Array C

bank 1

bank 2

bank 3

Source: Elaborated by the author.

3.2.4.1.5 Port management

Initially, the memory model transforms the DDDGs as explained above and pre-
pares auxiliary data structures. Then, the memory model is consulted before any off-chip
DDDG node scheduling during RCLS. In this part, the memory model uses the generated
auxiliary information to decide whether the scheduling of the candidate off-chip node vi-
olates any other ongoing memory transaction or not (e.g. two concurrent writes for same
memory space). Nodes that cannot be scheduled in the current clock cycle are delayed
until the constraints are lifted.

3.2.4.2 Interaction Between Multiple Transactions and Memory Model Policies

When multiple off-chip transactions are to be scheduled, the memory model must
evaluate whether they can be overlapped or not. This depends on several aspects, such
as if their memory spaces overlap. Figure 25 presents an example where two transactions
may or may not overlap, and how this affects the overall schedule.

The decision making related to multiple transactions is also dependent on the
analyses performed by each HLS compiler. In our case, we define these decision making
policies based in our target HLS tool, i.e. the Xilinx SDSoC toolchain.

We noticed that certain code patterns affect how Vivado schedules off-chip trans-
actions in a global manner. By testing several different code patterns, we detected two
different scheduling policies: conservative and permissive. The first one is more conserva-
tive in regard to overlapping multiple transactions, whereas the latter has more relaxed
constraints for overlapping. Chart 3 presents both policies and how they affect several
aspects of the off-chip scheduler.



78 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 25 – Example of a code snippet with two independent read-add-write sequence of instruc-
tions. In the first case (above) the transactions are not allowed to overlap and more
clock cycles are required, whereas in the second case (below), the transactions are
allowed to overlap.

Source: Elaborated by the author.



3.2. DSE Methodology with Lina 79

Chart 3 – The effect of scheduling policies on the memory model.

Policy
Aspect Permissive Conservative
Inter-iteration Allowed if there are no other Allowed if there are no other
bursts (read) reads and writes for the same reads for the same memory space

array in the same or a deeper and no writes for the same array
loop level on the same or a deeper

loop level
Inter-iteration Allowed if there are no other Allowed if there are no other
bursts (write) reads and writes for the same writes for the same memory space

array in the same or a deeper and no reads for the same array
loop level on the same or a deeper

loop level
Setup of Allowed when active reads and Allowed when active reads are
a read writes in the same memory not burst and writes in the same
transaction space are for non-overlapping memory space are for different
(ReadReq) regions regions
Setup of Allowed when active reads and Allowed when there is no other
a write writes in the same memory active write in the same memory
transaction space are for non-overlapping space
(WriteReq) regions
Commit of Always allowed. Allowed when active reads in
a write the same memory space are for
transaction different regions
(WriteResp)
Scheduling All can execute simultaneously For read: all can
of promoted if all active transactions in the execute simultaneously if all
nodes† same memory space are active transactions in the same

non-overlapping memory space are non-overlapping;
For write: cannot
execute simultaneously with any
other transaction in the same
memory space

† Promoted nodes are the setup and commit nodes that were promoted from inner loop levels
due to inter-iteration burst optimisation.

Source: Elaborated by the author.

Although we could not draw a full conclusion on what triggers one policy or another
during the Vivado HLS compilation, we detected at least one code pattern that always
switches Vivado HLS to the conservative policy. Considering a loop level, if there is an
off-chip read transaction located after an off-chip write transaction to the same memory
space, Vivado automatically uses the conservative policy, severely degrading performance.
Lina detects if such code pattern happens and alerts the user for the potential performance



80 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

degradation. We henceforth call this code pattern “read-after-write”. Figure 26 presents
an example of such pattern.

Figure 26 – Example of a “read-after-write” code pattern: The B array is accessed for read right
after a write transaction to the same array (both transactions indicated in red).

B[i]= A[i] * 5;
+ 2;C[i] = B[i]

...

...
Source: Elaborated by the author.

3.2.4.3 Interaction Between Off-chip Transactions and Pragmas

The presence of off-chip transactions affects certain directives, such as loop unroll
and pipeline. This section presents how Lina handles these effects.

3.2.4.3.1 Loop unroll

In general, loop unroll increases performance by allowing more loop iterations to
be scheduled together, at the cost of increased resource usage. We noticed that when
using SDSoC, unrolling loops with off-chip transactions often lead to severe performance
degradation. As an example, Source code 2 presents a simple loop nest without and
with unroll (arrays A and B are off-chip). In the version without unroll, SDSoC/Vivado
successfully detects inter-iteration bursts for both read and write transactions and the
total cycle count for N = 256 is 1802. When an unroll of 2 is enabled, the cycle count
increases to 69761 (38.7× slowdown) due to the inter-iteration bursts not being detected
anymore. Although there is still the possibility for such burst optimisations since all reads
and writes are still coalesced through the whole loop, we believe that the code is being
unrolled prior to the off-chip memory scheduling within Vivado/SDSoC. The read from
A[i + 1] is located after the write to B[i] in the unrolled code, which triggers a “read-
after-write” code pattern that blocks the bursts.



3.2. DSE Methodology with Lina 81

Source code 2 – Rolled and unrolled (factor of 2) examples of a simple loop nest, both
arrays are off-chip

1: // Before unroll
2: for(int i = 0; i < N; i++) {
3: B[i] = A[i] * 2;
4: }
5:
6: // After unroll of factor 2
7: for(int i = 0; i < N; i += 2) {
8: B[i] = A[i] * 2;
9: B[i + 1] = A[i + 1] * 2;

10: }

Source code 3 presents a manually-unrolled version of the previous code, on which
all off-chip reads were placed before all off-chip writes. In this case, the HLS scheduling
was more permissive and a cycle count of 35073 was reached, which is still slower than
the baseline version with no unroll. Although explicitly removing the “read-after-write”
pattern brought improvements, Vivado detects that there are two reads for the same array
A and two writes for the same array B in the unrolled code, which disables inter-iteration
burst as described in Chart 3. Although all transactions are coalesced, we believe that
this information is not being properly handled by Vivado’s internal analyses.

Source code 3 – Manually unrolled (factor of 2) variant of the simple loop nest

1: for(int i = 0; i < N; i += 2) {
2: float lA = A[i], lAp = A[i + 1];
3:
4: B[i] = lA * 2;
5: B[i + 1] = lAp * 2;
6: }

3.2.4.3.2 Loop pipeline

The calculations performed in Equation 3.2 are optimistic, as they consider that
instructions within a scheduled loop iteration can be moved to earlier or later stages in
order to relax pipelining constraints. Memory constraints are not easily solvable without
moving instructions or increasing the pipeline’s II, since there is no possibility on gener-
ating more memory ports for increased concurrency than the existing ones in the BRAM
modules. For example, Figure 27 presents two schedules for the same computation. Con-
sidering that the arrays have 2 concurrent read ports per cycle, a pipelining with II = 2



82 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

is not possible due to requiring 3 reads in a single cycle. However, by simply moving one
of the load instructions one schedule slot back, it is possible to schedule using II = 2.

Figure 27 – Two schedule attempts with II = 2. Instructions are represented by small boxes (L
and S stand for load and store, respectively). At left, the pipeline is not possible at
this II due to requiring more read ports than available. At right, one of the load
instructions is moved within the schedule, which in turn lifts the port restriction.

Source: Elaborated by the author.

Load and store nodes are often starting/terminal nodes of a schedule. In this
case, they can be easily moved to the beginning or the end of a schedule window. This
reduces the likeliness of exceeding port limitations and effectively approximates II to the
lower-bound value ResMIImem. If one or more load/store nodes are not leaf nodes (i.e. the
load/store node is tied by dependencies), the HLS compiler might use larger II values in
order to relax the constraints generated by the lack of instruction movement. Figure 28
presents an example where a load is dependent on a store. This happens when the HLS
compiler is not able to statically infer the load address, and therefore it considers that the
value being requested could be the value that has just been stored. These intermediate
load and store instructions cannot be easily moved, and the HLS compiler might attempt
more relaxed II values.

In fact, Lin-analyzer approximates this behaviour from Vivado HLS by using an
adjustment factor Issm. This value is calculated by finding the schedule distance (in terms
of clock cycles) between two consecutive stores for array m. This value is then used to
multiply the factor Nwm

Pwm
when calculating ResMIImem

6.

6 There is no Issm counterpart for consecutive loads, since Lin-analyzer considers that loaded
values are buffered in registers, which naturally allow large fan-outs.



3.2. DSE Methodology with Lina 83

Figure 28 – Pipeline schedule with the presence of load/stores that cannot be easily moved. In
this case, Vivado HLS reached an II of 6. Although this pipeline has 3 concurrent
loads, they are not for the same array and thus there is no violation.

Source: Elaborated by the author.

We improve this calculation and generalise it to consider both on and off-chip
memory transactions. We performed several experimental tests to better understand the
Vivado HLS behaviour when scheduling reads and writes that are dependent on other
memory transactions. Lina inherits the II approximation using MII from Lin-analyzer,
however we provide a new calculation for ResMIImem as follows:

ResMIImem = max{ResMIIport
mem,ResMIIrec

mem} (3.26a)

ResMIIport
mem = max

m

{⌈
Nrm

Prm

⌉
,

⌈
Nwm

Pwm

⌉}
(3.26b)

ResMIIrec
mem = max

m
{(∆rm +Crm),(∆wm +Cwm)} (3.26c)

where ResMIIport
mem is the MII value constrained by memory port, ResMIIrec

mem is the MII

counterpart constrained by dependent memory accesses, ∆rm is the largest schedule dis-
tance between dependent read transactions for memory interface m (∆wm the counterpart
for write transactions), and Crm is the number of connected read dependency paths for
memory interface m (Cwm is the counterpart for write transactions). The ResMIIport

mem is
equivalent to the ResMIImem calculation from Equation 3.2 and therefore Nrm, Prm, Nwm

and Pwm are also similar.

In Equation 3.2 the ResMIImem is calculated by finding the worst II constraint
among all on-chip arrays m. In our updated equations, m has a more abstract meaning
and it refers to memory interfaces. The exact meaning of a memory interface depends on
whether the array is on or off-chip:



84 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

• Each on-chip array has their own memory interface, since each array is mapped to
separate BRAM modules with dedicated read/write ports;

• For off-chip arrays, it is dependent on banking:

– If banking is disabled, all off-chip arrays share the same read/write port and
thus they share the same memory interface m;

– If banking is enabled, each off-chip array has its own read/write interface m.

When calculating the Nrm and Nwm for off-chip interfaces, data packing must be
taken into consideration. For example, consider that there are 100 sequential reads from
interface m within a loop iteration (i.e. Nrm = 100). If data packing of 4 values is possible,
this value reduces to Nrm = 100

4 = 25. Lina performs this calculation by counting the
effective reads and writes for each interface, while ignoring DDDG nodes that have been
optimised away due to data packing or redundancy.

To calculate ∆rm, Lina propagates a dependency list when scheduling each node in
the ASAP step. Every time a load node is scheduled, this node is added to the dependency
list and propagated to children nodes. During scheduling of a new load node, if a load node
is found inside the dependency list for the same memory interface m, it means that this
new load is dependent on the previously scheduled load. Lina uses these lists to construct
all dependency paths between reads from interface m. Then, the schedule distance between
the earliest and latest nodes from each connected path is calculated, and the largest value
is used as ∆rm. Similar rationale is used to calculate the write counterpart ∆wm. Figure 29
presents an example of calculating the delta values.

However, using only the delta values might still lead to invalid pipeline configura-
tions. Considering the schedule from Figure 29, a read port conflict happens if the II is
set to ∆rm = 4. The II must be relaxed to overcome this issue, and Lina approximates this
behaviour by increasing the II according to the number of connected read dependency
paths for the same interface (Crm). In Figure 29 there are two separate read dependency
paths for the same interface and therefore Crm = 2. Figure 30 presents the two pipeline
attempts using II = ∆rm and II = ∆rm +Crm.

Similar to Lin-analyzer, we assume that the memory recurrence constraint does
not affect on-chip read transactions. Therefore for on-chip arrays, the ResMIIrec

mem can be
simplified to:

ResMIIrec
mem = max

m
{(∆wm +Cwm)} (3.27)



3.2. DSE Methodology with Lina 85

Figure 29 – Example of a schedule with multiple dependent loads and the respective ∆rm cal-
culation. Assume that all loads are for the same dual-ported interface. There are
two independent read dependency paths for this interface, each indicated with a red
dotted box.

Source: Elaborated by the author.

3.2.4.4 Memory Analysis Report

Rewriting parts of the input kernel might be required in order to satisfy the off-
chip optimisations found by Lina. Currently these must be performed manually or at
most semi-automatic (for example the explicit unrolling tools used in subsection 3.3.4
and section E.1). In order to reduce the burden on the high-level developer, Lina provides
a memory analsysis report that indicates the optimisations found or the ones that were
blocked due to constraints.

Figure 31 presents snippets of a memory report generated by Lina. The following
items are reportable:

• Informatives: successful attempts of intra-iteration bursts, inter-iteration bursts,
or data packing;

• Warnings: failed attempts of intra-iteration bursts, inter-iteration bursts, or data
packing. Also code patterns that severely degrade performance with Vivado HLS
are reported (e.g. “read-after-write” cases).



86 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 30 – Two pipeline schedules for the same computation. At top, II is set to ∆rm = 4 which
triggers a read interface violation (indicated in red). At bottom, the II value is
relaxed to ∆rm +Crm = 4+2 = 6. In this case, there is no port violation.

Source: Elaborated by the author.

Figure 31 – Snippets of a memory report generated by Lina.

[WARN] Burst possibility between loop iterations failed
for array A
at loop level 1
at region before the loop nest
Reason: detected reads for the same array

at loop level 2
within the loop nest

...

[WARN] Vectorisation attempt failed
for array B
with 4 elements vectorised
Reason: cannot align write with pack size

due to 3 unused element(s) after
at loop level 1
at region before the loop nest

...

[INFO] Vectorisation attempt successful
for array C
with 4 elements vectorised

Source: Elaborated by the author.



3.2. DSE Methodology with Lina 87

3.2.5 DSE Temporal Locality Caching

The dynamic traces generated from profiling can reach large sizes, even for loop
nests with moderate dimensions. Since the trace is linearly parsed instruction by instruc-
tion, it can take a significant time to locate and parse the instructions to generate multiple
DDDGs if they are not close to each other in the trace.

During the generation of a DDDG, consider that the trace cursor (i.e. the current
file position of the trace) is t0. We noticed that starting from t0, Lina always traverses to
the same trace cursor t when generating a specific type of DDDG g, regardless of which
optimisations are enabled or disabled for the current design point. This indicates that
there is a temporal locality between the evaluation of different design points.

We implement a trace cursor cache in order to avoid traversing the trace file if
the position to generate a certain type of DDDG is known from previous design points.
For example, consider that the generation of a before DDDG at loop level 1 (←−g 1) is
requested and that the current trace cursor is t0. If the cache is empty, Lina performs the
trace traverse as usual until position t is reached, where the first instruction that should
be part of←−g 1 is found. Then, t is stored in the cache using (t0,←−g 1) as a key. If during the
evaluation of another design point the same condition is met (i.e. ←−g 1 must be generated
and the current trace cursor is t0), Lina avoids the traversal and sets the trace cursor to
t as informed by the cache. This example is depicted in Figure 32.

Figure 32 – Two examples of dynamic trace traversal for the generation of DDDG ←−g 1. At left,
there is a cache miss, and the trace must be traversed instruction-wise until the first
instruction from ←−g 1. At right, there is a cache hit and Lina can proceed directly to
the cached cursor t.

Source: Elaborated by the author.

Each of the p threads in our parallel job dispatcher uses its own cache file since
we do not define any race condition logic.



88 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

3.2.6 Exploration Quality Metrics

After the exploration, we define a Pareto frontier Plin by minimising resource usage
and execution time based on the previously obtained estimations. We compare Plin to the
golden Pareto frontier Pviv generated by running Vivado for all design points.

Consider that D is the set of all enumerated design points x for exploration, O is the
set of objectives i (e.g. execution time, LUTs, FFs) and fi(x) is the true value of objective
i associated with design point x. We compare Plin against Pviv using the Average Distance
from Reference Set (ADRS) (CZYŻAK; JASZKIEWICZ, 1998). The ADRS calculation
couples each true Pareto point y ∈ Pviv to the closest estimated point x ∈ Plin using an
error metric between the objectives fi(y) and fi(x) as proximity criteria. Then, the worst
objective deviation of each pair (y,x) is accumulated and averaged. Low ADRS values
indicate that each y has a close estimated design point x and the value itself indicates
the average worst objective deviation. The ADRS is defined as:

ADRS =
1
|Pviv|

· ∑
y∈Pviv

{min
x∈Plin
{c(x,y)}} (3.28a)

c(x,y) = max
i∈O
{0,ei(x,y)} (3.28b)

where c(x,y) is an achievement-scalarising function that calculates the worst objective
deviation ei between design points x and y.

This metric is in the form of:

ei(x,y) =
fi(x)− fi(y)

∆i
(3.29)

where ∆i is a normalisation factor that adjusts all objectives to be on a similar scale. This
is needed since different objectives are quantitatively compared by the ADRS calculation.

We use two options for ei(·). First, we consider the distance relative to the true
objective value (PALERMO; SILVANO; ZACCARIA, 2009; ZHONG et al., 2014):

ei(x,y) =
fi(x)− fi(y)

fi(y)
(3.30)

The other formulation for ei that we consider uses the distance relative to the
Pareto range (CZYŻAK; JASZKIEWICZ, 1998):

ei(x,y) =
fi(x)− fi(y)

fi(ymax)− fi(ymin)
(3.31)



3.3. Experimental Setup 89

where ymax and ymin are the design points that provide the maximum and minimum values
for the objective i in Pviv. We refer to the ADRS using Equation 3.30 as ADRSrel and the
one using Equation 3.31 as ADRSpar.

We calculate both values in our validation since they indicate different characteris-
tics. The ADRSrel is useful for quantifying how much worse our estimations are compared
to the true optimal points. However, small values of ∆i = fi(y) may excessively accentuate
the error even if both fi(x) and fi(y) are small in comparison to the total budget available
of objective i. On the other hand, ADRSpar considers the Pareto interval. In this case, the
differences between fi(x) and fi(y) are significantly highlighted when the interval is small.

However, there is no guarantee that every design point in D will evenly represent
the intervals of each objective. Thus, a high value of ADRS does not necessarily imply
that many other points could result in better approximations than the ones given by Lina.

Let Ppair be the set of pairs (y,x), where each true Pareto point y∈Pviv is associated
with its closest estimated Pareto point x∈ Plin. Let Qx,y be the set of all non-Pareto points
z that are better than the estimated Pareto point x in respect to y, as follows:

Qx,y = {z ∈ D−Pviv|max{0,ei(z,y)} ≤max{0,ei(x,y)},∀i ∈ O} (3.32)

We propose a complementary metric named Near-Optimal Density (NOD) that
provides an insight of the proportion of design points that could be better than those
selected by the DSE with Lina. NOD is defined as:

NOD =
1
|Pviv|

· ∑
(y,x)∈Ppair

{
|Qx,y|
|D|

}
(3.33)

Note that we use a max operator in Equation 3.32 to replace negative ei values by 0,
similar to the ADRS calculation. Without this approach, a Pareto estimation containing
points that are very optimised for few — but not all — objectives could unfairly reduce
the NOD value by excluding other points that are closer to the true Pareto points. An
example of this scenario is shown in Figure 33.

3.3 Experimental Setup
This section presents the evaluation setup created to both validate our DSE ap-

proach and to compare it against related work, the platforms used, and the CNN experi-
ments that we performed to evaluate the off-chip memory model.

We perform three validations. First, we compare Lina against Lin-analyzer by
performing a small exploration without optimisation of resources, as better described in
subsection 3.3.2. Then, we perform a larger exploration aiming the optimisation of design



90 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 33 – Example of a two-objective design space, where the true Pareto points are indicated
as square points, the estimated Pareto point as x, and the error metrics as e f1 and
e f2 . The coloured regions represent the points z∈D−Pviv that compose Qx,y. In this
example, e f2(x,y) is negative. At left, Qx,y is constructed according to Equation 3.32.
At right, the predicate that defines Qx,y does not use the max operator. Many other
points z are better approximations to y than x when considering both objectives,
even though x has a smaller f2 objective than y. One example of such point z is
shown in the figure. The left case better reflects this scenario by including more z
points in Qx,y, leading to a larger NOD value.

Source: Perina et al. (2021).

latency and resources, as described in subsection 3.3.3. Finally, we perform a validation
considering off-chip memory accesses using a convolutional kernel, as shown in subsec-
tion 3.3.4.

3.3.1 Platforms and Software Used

Our target FPGA platform is the Xilinx Zynq UltraScale+, depicted in Figure 34.
The Zynq UltraScale+ is a SoC that contains an ARM processor and an FPGA. By using
the SDSoC toolchain supplied by Xilinx, one is able to execute a host C/C++ code on
the ARM side, while deploying certain functions to be executed on the FPGA side using
HLS. We use the version 2018.2 of the toolchain in this thesis. The syntheses of all design
points were performed in a system with an AMD EPYC 7702P CPU, and the DSE with
Lina was performed in a system with an Intel i7-5500U CPU.

For the first validation (subsection 3.3.2), the ZCU102 model of the FPGA plat-
form was used. For the remaining validations, we used a ZCU104 platform. Both models
are from the same family and thus the FU characterisation is the same for both. The only
difference is related to the amount of resources available. In order to provide a fair com-
parison against Lin-analyzer in the first experiment, we adapted Lin-analyzer to support
the ZCU102 platform as well.

Kernels targetting SDSoC can be written either in C/C++ or OpenCL. For the
experiments that do not involve off-chip memory accesses, we use C/C+ as primary



3.3. Experimental Setup 91

Figure 34 – Xilinx Zynq UltraScale+ ZCU104 development kit.

Source: Elaborated by the author.

input and almost no effort is required on converting the pure software codes to SD-
SoC C/C++ projects. For the convolution experiments that involve off-chip transactions,
we use OpenCL instead due to two reasons. First, OpenCL provides by specification a
memory hierarchy that involves off-chip memories, therefore off-chip memory access with
OpenCL is possible simply by accessing arrays marked with the __global keyword. Sec-
ond, OpenCL supports vector sizes of common data types (e.g. float4 for 4 packed floats
in a single word), which is very suitable for the data packing analysis performed by Lina.
Note that we do not convert the input C/C++ functions to the OpenCL’s SIMD (i.e.
NDRange) model, therefore migrating from one language to another does not require
much effort. It can be as simple as changing the function header from C to OpenCL
standard and adding OpenCL API calls to the host code. Apart to some minor keyword
adaptations, the function body is left practically intact.

3.3.2 First Validation: Comparison Against Lin-Analyzer

In this first validation, our intention is to assess the improvements brought by
the timing-constrained scheduler and non-perfect loop analyzer when compared to Lin-
analyzer. We used the same kernels as supplied in the Lin-analyzer’s repository, as pre-
sented in Chart 4.

We performed a small parameters exploration (less than 100 points) with loop
unroll, pipelining, array partitioning and clock frequency, as shown in Chart 5. Each
configuration is identified by an ID, which is formed by concatenating the values from the



92 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Chart 4 – Kernels used in the first validation.

Kernel Description Dimensions
atax Matrix transpose and vector mult. 128,128
bicg Biconjugate gradients 256,256

conv2d 2D convolution 126,126
conv3d 3D convolution 30,30,30
gemm Matrix multiply 128,128,128

gesummv Scalar, vector and matrix multiply 128
mvt Matrix vector product and transpose 256

syr2k Symmetric rank-2k operations 128,128
syrk Symmetric rank-k operations 128,128

Source: Elaborated by the author.

table in a bitwise manner. For example, a configuration with partitioning factor 4 (option
10), 114.29MHz7 (option 1), no pipelining (option 0) and unroll at the two innermost
loops (option 11) has a binary ID of 101011 or decimal ID 43. For each configuration, we
measured the relative percentage error from Lina and Lin-analyzer estimations against
the values reported by Vivado HLS.

Chart 5 – Parameters used in the exploration.

Description Possible values
Array partitioning 00: No partitioning

01: Some arrays complete, some with factor of 2
10: Some arrays complete, some with factor of 4
11: Some arrays complete, some with factor of 8

Effective freq. 0: 136.98MHz (10ns period, 27% uncertainty)
1: 114.29MHz (10ns period, 12.5% uncertainty)

Loop pipelining 0: No pipeline
1: Pipeline at innermost level

Loop unroll 00: No unroll
01: Unroll at innermost level
10: Unroll at 2nd-innermost level
11: Unroll at innermost and 2nd-innermost level

Source: Elaborated by the author.

In addition to comparing against Lin-analyzer, we also compare our results against
COMBA8 for two kernels: bicg and gemm. COMBA performs the DSE in a single execution,
7 These frequency values seems counter-intuitively picked, however they are resultant from

different uncertainties being applied to an 100MHz frequency. With 27% uncertainty, the
frequency considered by Vivado HLS raises to 136.98MHz. With 12.5%, the value raises to
114.29MHz.

8 Code available at <https://github.com/zjru/COMBA>.

https://github.com/zjru/COMBA


3.3. Experimental Setup 93

and the fastest design point is given at the end.

3.3.3 Second Validation: Resource and Timing-aware Exploration

The second validation set is composed of 11 floating-point kernels, and 5 kernels
with integer and bitwise operations. The floating-point kernels are from the PolyBench
benchmark, and the non-floating-point kernels are from an AES security module for FP-
GAs that provides data and design confidentiality (SILITONGA et al., 2018). The AES
module is part of a support system that does not compose the main application to be
mapped on the FPGA. Therefore, it is a suitable use case for our exploration since both
performance and resource footprint are important objectives to be optimised. Additionally,
our exploration is suitable for the AES kernels since Lina supports optimising resources
on kernels that do not have any floating-point calculation.

In order to obtain Pviv, each design point must be synthesised. For design spaces
with thousands of design points, the total evaluation of all combinations becomes im-
practical. Therefore we define two different experiments — hls and fullsyn — that use
reports from different stages of the Vivado synthesis. The hls uses the early resource
estimation reports from Vivado HLS, allowing to explore from hundreds to few thousands
of design points. The fullsyn uses the final resource usage reports from SDSoC, which
are produced only after the time demanding hardware synthesis process is completed. As
a result, the design spaces are reduced to less than 150 design points. Chart 6 presents the
16 kernels that compose our validation set along with a brief description, the data dimen-
sions for the PolyBench kernels, and the number of valid design points in the experiments.
The dimensions were used to define the array sizes and loop bounds.

Some of the kernels present in this validation are the same as ones used in the
previous validation (i.e. Chart 4). We removed the ones that were not part of the official
PolyBench repository (e.g. the conv2d and conv3d kernels) and also ones that had a
similar computation pattern to other kernels already present (e.g. atax). In this validation,
we use more aggressive compilation pragmas than the ones in the previous validation (e.g.
larger unroll factors, or pipeline directives in other loops than the innermost). For this
reason, some kernels had their dimensions adjusted to avoid cases that are too complex
to fit in the platforms used.

While preserving functional behaviour, some kernels were modified to make them
compatible with Lina limitations (see section 3.5 for more information about the limita-
tions). A more detailed description of these modifications — including the kernels itself

— can be found in the project repository.

For each kernel, we selected loop unroll factors that divide the respective loop
bounds with no remainder. The same is applied for array partition factors and respective



94 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Chart 6 – Validation kernel set.

PolyBench (floating-point)
# Points

Name Description Dim. hls fullsyn
bicg Biconjugate gradients 390, 410 2304 64
floyd Floyd-Warshall 60 2430 96
gemm Matrix multiply 60, 70, 80 5832 128
gesummv Scalar-vec.-matrix mul. 250 1536 96
heat3d 3D heat equation 50 3240 72
jacobi1d 1D Jacobi stencil 5000 540 96
jacobi2d 2D Jacobi stencil 302 1536 96
mvt Matrix vec. prod. transp. 400 3456 96
seidel2d 2D Seidel stencil 122 480 72
syr2k Symmetric rank-2k 60, 80 1728 128
syrk Symmetric rank-k 60, 80 972 96

AES (int/byte ops)
# Points

Name Description hls fullsyn
KeyExp Key schedule 320 96
KeyExp2 Key sched. (SBOX is partitioned) 1280 128
MixCols Column mix 10176 80
SubBytes Byte substitution 1008 96
SubShfMix Byte substitution, shift and mix 320 144

Source: Perina et al. (2021).

array sizes. Then, we limited the number of combinations for each optimisation knob in
order to have feasible design space sizes. Chart 7 presents the optimisation knobs used
in both experiments. We use different clock frequencies with fullsyn, since SDSoC only
allows the selection of a limited amount of frequencies.

3.3.3.1 Additional Experiments on Non-perfect Kernels with Larger Loop Bounds

To assess the impact of the non-perfect loop analysis, we considered the three ker-
nels from PolyBench that contain non-perfect loop nests: gemm, syr2k and syrk. However,
their non-perfect segments are not significantly larger than the innermost loop. Therefore,
to better emphasise the impacts of our analysis, we modified some constants to increase
the execution fraction of the non-perfect segments:

• gemm: constant NJ increased from 70 to 700;

• syr2k: constant N increased from 80 to 320;



3.3. Experimental Setup 95

Chart 7 – Optimisation knobs.

Type hls fullsyn

Period (ns) 5, 7.5, 10, 15, 17.5, and 20 5, 6.66, 10, and 13.33
Loop unroll Applicable to all Applicable mostly to

loop levels the inner loop levels
Loop pipeline Applicable mostly to Applicable to the

the inner loop levels innermost loop level
(or at most its parent)

Array partition Cyclic and block Same as hls,
possible, complete but fewer options
only for small arrays

Source: Perina et al. (2021).

• syrk: constant N increased from 80 to 320.

These constants are used to define the array sizes and loop bounds. No modifica-
tions were made to the exploration knobs.

3.3.3.2 Comparison with Related Work

Similar to the previous validation, we use COMBA for comparison against our
DSE approach. COMBA’s resource estimation is only used to check the feasibility of each
point given a constrained budget of BRAMs and DSPs9. Moreover, the clock frequency is
fixed for each exploration and must be defined at compile-time. Using our validation set,
we create four comparison experiments with different frequencies and resource budgets:
rtot, r50, r10 (all at 100MHz), and rtot200 (at 200MHz). The whole DSP and BRAM
resource budget of COMBA’s target FPGA (Xilinx Virtex-7) is available in experiments
rtot and rtot200, whereas in r50 and r10 we restrict to 50% and 10% of the budget,
respectively.

For these experiments, we synthesise the design points given by our DSE for the
Virtex-7 platform, the same used by COMBA. Even though our exploration is fine-tuned
for the ZCU104 platform, we believe that the comparison is still valid since both FPGAs
are from the same vendor and use the same HLS tool for the compilation process.

3.3.4 Third Validation: Off-chip Experiments in the CNN Context

Convolutional neural networks are particular applications that have a code struc-
ture suitable to parallelism, and also a large memory footprint for its inputs and outputs.
9 The COMBA code openly available calculates LUTs, but does not constrain them.



96 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

There are several studies focused on using smaller on-chip buffers and loop reordering/til-
ing (STOUTCHININ; CONTI; BENINI, 2019; ZHANG et al., 2015; PEEMEN et al.,
2013). Their primary focus is to optimise the access to off-chip memory while maximising
the usage of on-chip resources.

Source code 4 presents the basic loop nest of a CNN kernel. Its code pattern is suit-
able for memory optimisation, and therefore we validate our memory model using Lina to
explore a single CNN layer. These experiments are focused on performance, and therefore
we do not perform any resource-aware or Pareto analysis. We use the configuration of
ZFNet’s 6th layer as in Stoutchinin, Conti and Benini (2019), presented in Chart 8.

Source code 4 – Basic loop nest of a CNN kernel

1: LOF: for(auto m = 0; m < M; m++)
2: LIF: for(auto c = 0; c < C; c++)
3: LSY: for(auto y = 0; y < E; y++)
4: LSX: for(auto x = 0; x < E; x++)
5: LFY: for(auto k = 0; k < E; k++)
6: LFX: for(auto l = 0; l < E; l++) {
7: auto p = I[c][y * S + k][x * S + l];
8: auto w = W[m][c][k][l];
9: O[m][y][x] += p * w;

10: }

Chart 8 – ZFNet CNN layer configuration used.

Name Description Value
C # input feature maps 256
M # output feature maps 256
H Input feature map size (H × H) 6
R Convolution kernel size (R × R) 3
S Convolution kernel stride 1
E Output feature map size (E × E) 6

Source: Elaborated by the author.

We explore two small variations of a CNN layer that differs on how the read/write
border cases are handled. The first version, named padmemory, has the padding elements
embedded on the input and output arrays. This means that the kernel code is similar
to the Source code 4, with no special treatment for border cases. In the second version,
named padlogic, the arrays have no embedded padding and additional if-else blocks
are required to control the read/write indexes and avoid out-of-bounds memory accesses.
Source code 5 presents the padlogic kernel.



3.3. Experimental Setup 97

Source code 5 – The padlogic CNN kernel

1: LOF: for(auto m = 0; m < M; m++)
2: LIF: for(auto c = 0; c < C; c++)
3: LSY: for(auto y = 0; y < E; y++)
4: LSX: for(auto x = 0; x < E; x++)
5: LFY: for(auto k = 0; k < E; k++)
6: LFX: for(auto l = 0; l < E; l++) {
7: auto h1 = y * S + k, h2 = x * S + l;
8: auto p = (h1 < 0 || h1 >= H || h2 < 0 || h2 >= H)? 0 :
9: I[c][y * S + k][x * S + l];

10: auto w = W[m][c][k][l];
11: O[m][y][x] += p * w;
12: }

The input arrays I and W are left off-chip, while the output array O is buffered
on-chip during execution. The results from O must be transferred back to the off-chip
memory after the CNN layer completes. We leave memory banking always enabled, as
there is no counter indication for not using it. Chart 9 presents the design space knobs
that we used to explore both padmemory and padlogic variants. Both design spaces have
680 valid points.

Chart 9 – Optimisation knobs for the CNN kernels.

Loop knobs
Name Loop depth Unroll factors Pipeline
LOF 1 Off Off
LIF 2 Off Off
LSY 3 Off, 2 Off, on
LSX 4 Off, 2 Off, on
LFY 5 Off, 3 Off, on
LFX 6 Off, 3 Off, on

Array knobs
Name I/O Partitioning

I Input No partitioning (off-chip access)
W Input No partitioning (off-chip access)
O Output Off; Block: 4, 8; Cyclic: 4, 8

Frequencies
Values (MHz) 75, 100, 150, 200

Source: Elaborated by the author.

As explained in paragraph 3.2.4.3.1, using SDSoC unroll pragmas may generate



98 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

“read-after-write” patterns that block the permissive policy. Thus, we created an auto-
mated tool to explicitly unroll the CNN layer and place all read values before writes when
generating the HLS code. Source code 6 presents an example of CNN layer code generated
by this tool, with the inner loop unrolled with a factor of 4.

Source code 6 – Explicitly unrolled padmemory kernel, with all reads placed before
writes

1: LOF: for(auto m = 0; m < M; m++)
2: LIF: for(auto c = 0; c < C; c++)
3: LSY: for(auto y = 0; y < E; y++)
4: LSX: for(auto x = 0; x < E; x++)
5: LFY: for(auto k = 0; k < E; k++)
6: LFX: for(auto l = 0; l < E; l += 4) {
7: auto __p_0 = I[c][y * S + k][x * S + l];
8: auto __w_0 = W[m][c][k][l];
9: auto __p_1 = I[c][y * S + k][x * S + l + 1];

10: auto __w_1 = W[m][c][k][l + 1];
11: auto __p_2 = I[c][y * S + k][x * S + l + 2];
12: auto __w_2 = W[m][c][k][l + 2];
13: auto __p_3 = I[c][y * S + k][x * S + l + 3];
14: auto __w_3 = W[m][c][k][l + 3];
15:
16: O[m][y][x] += __p_0 * __w_0;
17: O[m][y][x] += __p_1 * __w_1;
18: O[m][y][x] += __p_2 * __w_2;
19: O[m][y][x] += __p_3 * __w_3;
20: }

For each kernel, we perform four experiments by toggling the memory policies and
the data packing directive. Each toggle is represented by a pair of keywords novec/vec,
cons/perm and unrviv/unrexp. Chart 10 describes these keywords and how they relate
to each experiment.

3.4 Results

In the following subsections, we present the results for the experiments described
in the previous section, namely the comparison against Lin-analyzer, the resource and
timing-aware exploration — both with no off-chip accesses — and finally the off-chip
explorations with the CNN kernels.



3.4. Results 99

Chart 10 – Convolution experiments.

Exp. Aspects
# Name Description

novec Lina DSE is performed without data packing analysis
1 cons Lina DSE is performed using the conservative memory policy

unrviv The HLS code is unrolled using SDSoC directives
vec Lina DSE is performed with data packing analysis

2 cons Lina DSE is performed using the conservative memory policy
unrviv The HLS code is unrolled using SDSoC directives
novec Lina DSE is performed without data packing analysis

3 perm Lina DSE is performed using the permissive memory policy
unrexp The HLS code is explicitly unrolled using the tool described above

vec Lina DSE is performed with data packing analysis
4 perm Lina DSE is performed using the permissive memory policy

unrexp The HLS code is explicitly unrolled using the tool described above
Source: Elaborated by the author.

3.4.1 First Validation: Comparison Against Lin-Analyzer

Figure 35 and Figure 36 present Lina and Lin-analyzer’s estimation error relative
to the actual values from Vivado HLS, without and with array partitioning respectively.
To avoid polluted plots, we show only partitioning factor of 2 (IDs 16-30). The complete
spreadsheets can be found in Lina’s repository.

Both estimators presented little or no error without partitioning and pipelining
(ID < 4) and Lina had an improved accuracy on conv2d and conv3d. With pipelining
(IDs 4 and 6) both had comparable results, with some configurations with error of ∼ 20%.
Until this point both estimators were configured to the same target frequency (100MHz
with 27% uncertainty). For the IDs 8-14, a different frequency was used and Lina gave
in many cases the exact cycle count, while Lin-analyzer deviated from 10% to 30%. One
source for the mentioned errors is due to internal optimisations performed by Vivado that
both estimators do not reproduce.

With array partitioning enabled (ID ≥ 16), Lina presented improved overall accu-
racy, but for some configurations both had notable deviations, with a peak value of ∼ 65%.
One of the reasons is that Vivado conservatively assumes loop-carried dependencies that
Lina and Lin-analyzer do not. In some cases, Lin-analyzer performed better than Lina.
This is due to some internal differences between both estimators, for example in the σ
value used on Equation 3.6. Lina considers σ = 2, whereas Lin-analyzer considers a σ
of three10. If both Lina and Lin-analyzer overestimate the value for a design point, Lin-

10 We adjusted the σ value of Lina from 3 to 2 after some experimentation with Vivado HLS.



100 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 35 – Lina/Lin-analyzer estimation errors relative to the cycle counts reported by Vivado
HLS. The x-axis represent different pragma configurations, and partitioning is dis-
abled.

0 2 4 6 8 10 12 14

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

atax

0 2 4 6 8 10 12 14

0

20

40

60

80

bicg

0 2 4 6 8 10 12 14

0

20

40

60

80

convolution2d

0 2 4 6 8 10 12 14

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

convolution3d

0 2 4 6 8 10 12 14

0

20

40

60

80

gemm

0 2 4 6 8 10 12 14

0

20

40

60

80

gesummv

0 2 4 6 8 10 12 14

Configuration ID

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

mvt

0 2 4 6 8 10 12 14

Configuration ID

0

20

40

60

80

syr2k

Lin-Analyzer Lina (TCS + NPLA)

0 2 4 6 8 10 12 14

Configuration ID

0

20

40

60

80

syrk

Source: Research data.

analyzer might provide a better result because of the reduced σ value, which inadvertedly
reduces the estimation and in turn reduces the error.

In average for all kernels and tested configurations, the estimations from Lin-
analyzer had a relative error of 16.45%, while Lina 13.01%. Excluding array partitioning,
the error for Lin-analyzer dropped to 8.85% and Lina to 3.02%. Thus, in average, Lina
presented better accuracy than Lin-analyzer.

Figure 37 presents the relative errors for gemm with a larger frequency for IDs
8-14 and 24-30. As expected, the increased frequency disparity from the fixed 100MHz of
Lin-analyzer yielded larger error for these configurations, since it does not perform any
timing analysis.



3.4. Results 101

Figure 36 – Lina/Lin-analyzer estimation errors relative to the cycle counts reported by Vivado
HLS. The x-axis represent different pragma configurations, and partitioning is en-
abled.

16 18 20 22 24 26 28 30

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

atax

16 18 20 22 24 26 28 30

0

20

40

60

80

bicg

16 18 20 22 24 26 28 30

0

20

40

60

80

convolution2d

16 18 20 22 24 26 28 30

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

convolution3d

16 18 20 22 24 26 28 30

0

20

40

60

80

gemm

16 18 20 22 24 26 28 30

0

20

40

60

80

gesummv

16 18 20 22 24 26 28 30

Configuration ID

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

mvt

16 18 20 22 24 26 28 30

Configuration ID

0

20

40

60

80

syr2k

Lin-Analyzer Lina (TCS + NPLA)

16 18 20 22 24 26 28 30

Configuration ID

0

20

40

60

80

syrk

Source: Research data.

Figure 37 – Results for gemm with higher frequency for IDs 8-14 and 24-30.

0 2 4 6 8 10 12 14

Configuration ID

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

16 18 20 22 24 26 28 30

Configuration ID

0

20

40

60

80

Lin-Analyzer Lina (TCS)

Source: Perina, Becker and Bonato (2019a).



102 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 38 presents the cycle count for bicg and conv2d under different frequen-
cies with optimisations disabled. It can be noted that Lina accurately reacted to the
different timing constraints. Furthermore, the peak performance was not at the highest
frequency nor the lowest cycle count: the optimal frequency was estimated at 285.71MHz
and 153.85MHz for bicg and conv2d respectively.

Figure 38 – Cycle count reported by Lina and Vivado HLS for bicg and conv2d in different
frequencies (all optimisations disabled). The dashed line represents the design ex-
ecution times considering frequency and cycle count. Both plots are scaled to the
same intervals.

150 200 250 300

Frequency (MHz)

0.6

0.8

1.0

1.2

1.4

1.6

C
y
cl

e
 c

o
u
n
t 

(M
cy

cl
e
s)

bicg

150 200 250 300

Frequency (MHz)

convolution2d

Vivado HLS Lina (TCS + NPLA) Exec. time

3.6

3.8

4.0

4.2

4.4

4.6

E
x
e
c.

 t
im

e
 (

u
s)

Source: Perina, Becker and Bonato (2019a).

Figure 39 presents a variation of gemm where different loop bounds were used
in a way that the proportion of executed operations between the outer loops and the
innermost loop increased. As expected, the error difference between Lina and Lin-analyzer
was more noticeable, since Lin-analyzer ignores the instructions between loop nests. For
three configurations Lina had worse accuracy, which was caused by a similar effect as the
one previously explained involving the σ value.

Figure 39 – Relative errors for a variant of gemm with different loop bounds.

0 2 4 6 8 10 12 14

Configuration ID

0

20

40

60

80

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

16 18 20 22 24 26 28 30

Configuration ID

0

20

40

60

80

Lin-Analyzer Lina (TCS + NPLA)

Source: Perina, Becker and Bonato (2019a).

Regarding Lina’s execution time, the trace part was the most significant portion of
the total time, accounting for 95% and 93% of the time of Lin-analyzer and Lina respec-
tively. Since it has to be performed only once, its impact decreases with the design space



3.4. Results 103

size. For the experiments here performed, the total exploration time was 7.50 minutes
with Lin-analyzer and 7.67 with Lina, while Vivado HLS took 397.91 minutes.

In comparison to COMBA, we executed both estimators for bicg and gemm kernels
with large and small loop bounds. For bicg, COMBA explored 1758 and 514 points for
large and small variants respectively, leading to a per-point estimation time of 0.40s and
0.46s against Lina’s 0.12s and 0.05s including trace. For the gemm kernel, 1444 and 604
points were explored by COMBA for the large and small variants, leading to per-point
0.35s and 0.38s while Lina took 1.75s and 0.07s. The increased time for gemm large bounds
with Lina is due to the dominating trace time. which better dissolves with larger design
spaces (as shown in the next subsection).

Even though COMBA also performs timing analysis and cycle merging, it has only
5 options of frequencies. We created a preliminary hardware profile for the board used in
their paper and compared the cycle count from bicg against the actual values of Vivado
for different frequencies as shown in Figure 40. It can be noted that COMBA presents
deviation from 150MHz onwards, while Lina keeps its accuracy.

Figure 40 – Cycle count comparison between COMBA, Lina and Vivado HLS for the bicg kernel
at different frequencies (all optimisations disabled), using a preliminary hardware
profile library.

100 125 150 175 200 225 250

Frequency (MHz)

700

800

900

1000

1100

1200

C
y
cl

e
 c

o
u
n
t 

(k
cy

cl
e
s)

COMBA Vivado HLS Lina

Source: Perina, Becker and Bonato (2019a).

3.4.2 Second Validation: Resource and Timing-aware Exploration

Figure 41 presents ADRS, NOD and Pareto set sizes for both hls and fullsyn
experiments. Considering the hls experiment, the ADRSrel and ADRSpar values respectively
indicate that our approximations are on average 23.57% worse than the optimal and within
4.68% of the objective intervals in the Pareto sets. The average NOD value is 0.23% (all
below 1%), indicating that few other design points could provide better solutions than
ours. For the fullsyn experiment, the average ADRSrel, ADRSpar and NOD values are
27.03%, 9.16% and 2.1%, respectively.



104 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 41 – Values of ADRSrel, ADRSpar, NOD, |Plin| and |Pviv| for each kernel in experiments hls
(above) and fullsyn (below).

bicg floyd gemm
gesummv heat3d

jacobi1d
jacobi2d mvt

seidel2d syr2k syrk KeyExp
KeyExp2 MixCols

SubBytes
SubShfMix

A
D

R
S

 (
%

)

45
.8

5

70
.4

8

11
.8

1

48
.3

7

4.
47

18
.3

5

16
.0

3

80
.6

3

7.
21

1.
02 5.

37 6.
79

6.
64

1.
92

40
.1

4

11
.9

7

5.
90

4.
82

3.
04

3.
84

0.
84

1.
01

18
.3

4

7.
63 10

.0
3

0.
87 4.
28

2.
46

1.
58

0.
62 5.

31

4.
36

ADRSrel

ADRSpar

0.12
10
38

0.79
21
33

0.18
14
21

0.17
10
27

0.03
13
24

0.44
8

18

0.33
18
24

0.13
8

23

0.14
4
6

0.06
11
14

0.25
11
24

0.19
22
25

0.09
36
54

0.01
50
27

0.40
7

21

0.42
25
21

NOD (%)
|Plin|
|Pviv|

bicg floyd gemm
gesummv heat3d

jacobi1d
jacobi2d mvt

seidel2d syr2k syrk KeyExp
KeyExp2 MixCols

SubBytes
SubShfMix

A
D

R
S
 (

%
)

14
8.

81

3.
49

4.
77

13
2.

57

6.
59

1.
31 9.

06

10
9.

46

4.
87

1.
20

1.
61

1.
10

0.
11 5.
16

2.
21

0.
1011

.1
1

20
.3

0

14
.8

1

5.
06

6.
61

3.
45 10

.7
6

12
.0

3

14
.2

5

5.
85 9.
92

0.
94

0.
14 19

.7
2

3.
10 8.
44

ADRSrel

ADRSpar

3.80
5

23

2.16
7

14

0.50
5

14

2.63
6

19

6.34
6

30

0.52
5

10

1.54
17
42

2.92
6

20

1.64
4

11

0.64
6

11

0.82
6

14

1.35
26
27

0.33
36
33

1.25
7
4

2.43
6

18

4.66
18
7

NOD (%)
|Plin|
|Pviv|

Source: Perina et al. (2021).

In general, the kernels in fullsyn present smaller ADRSrel, larger ADRSpar and
larger NOD values when compared to hls. Considering that fullsyn is composed of
smaller design spaces with less complex optimisations, the Pareto sets have shorter objec-
tive ranges. In this case, the inaccuracies of Lina are more impactful.

In most cases, our estimated Pareto sets Plin are smaller than the true sets Pviv. We
believe that this is due to: subtle resource optimisations performed by Vivado that our
model does not implement (e.g. BRAM replication to alleviate port pressure); and cycle
estimation issues (e.g. when partitioning is enabled, as described in (PERINA; BECKER;
BONATO, 2019a)). Nonetheless, the low values of ADRS and NOD for many kernels
indicate that the true Pareto points have a reasonably close approximation.

There are some kernels in both experiments with significant values of ADRSrel, with
bicg having the worst value. The lower plots in Figure 42 present the objective values
of each point in the Pareto set for this kernel. In this case, one of the most significant
contributions to ADRSrel comes from the execution time objective, where the leftmost
point shown in the plot adds eexectime ≈ 600% to the calculation. It is also possible to note
that our estimated Pareto points do not fully reflect the true Pareto set, however most of
our solutions are still located in the lower region of the objective values. The other kernels
with significant values of ADRSrel (e.g. gesummv and mvt) are similarly affected.

As a counter-example, the top plots in Figure 43 present the objectives for the
KeyExp2 kernel. While there are some deviations, our approximations are close, if not



3.4. Results 105

Figure 42 – Objective values for an approximation with low ADRS values (above) and high
ADRS values (bottom) for the fullsyn experiment. The top plots represent KeyExp,
and the bottom plots represent bicg. The blue dashed line represents the true Pareto
points, and the continuous orange line represents the closest estimated Pareto points
to each true solution. The y-axes represent the true objective value for each point
(design execution time given in ns for KeyExp and 10−2s for bicg).

Execution Time

250

500

750

1000

1250

BRAMs

4

5

6

7
DSPs

0.04

0.02

0.00

0.02

0.04

FFs

4000

6000

8000

LUTs

2000

3000

4000

Execution Time

0

1

2

3
BRAMs

299

300

301

302

303
DSPs

6

8

10

FFs

6800
7000
7200
7400
7600
7800

LUTs

4000

4200

4400

4600

Source: Research data.

equal, to most of the true Pareto points.

Figure 43 – Objective values for an approximation with low ADRS values (above) and high
ADRS values (bottom) for the hls experiment. The top plots represent KeyExp2,
and the bottom plots represent mvt. The blue dashed line represents the true Pareto
points, and the continuous orange line represents the closest estimated Pareto points
to each true solution. The y-axes represent the true objective value for each point
(design execution time given in ns for KeyExp2 and 10−2s for mvt).

Execution Time

0

200

400

600
BRAMs

0

10

20

30
DSPs

0.04

0.02

0.00

0.02

0.04

FFs

0

2000

4000

6000

8000

10000
LUTs

0

20000

40000

60000

Execution Time

0.0

0.5

1.0

1.5

2.0

BRAMs

520

521

522

523

524
DSPs

5

10

15

FFs

2000

4000

6000

8000

LUTs

1000

2000

3000

4000

Source: Research data.

Considering all objectives, the average Mean Absolute Percentage Error (MAPE)
is 49.47% for hls and 48.15% for fullsyn. Because the relative difference between the
design points is more significant than the absolute values themselves for the DSE, we do
not consider these error values to be an issue.



106 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

3.4.2.1 Impact of Lina Features

Considering the fastest point from the true Pareto sets, five kernels from the hls
experiment operated at lower frequencies than the maximum explored: gemm (50MHz),
seidel2d (57.14MHz), syr2k (57.14MHz), syrk (57.14MHz) and KeyExp2 (50MHz). Lina
correctly identified the first four kernels’ operating frequencies, emphasising the timing
constrained scheduler’s importance. Without the timing awareness, the cycle count of
Lina estimations would be invariant of frequency, and thus the fastest design point would
always be pointed as the one with the highest frequency.

Considering the additional experiment as explained in subsubsection 3.3.3.1, the
non-perfect model caused an average reduction of 3.10% and 0.87% in the ADRSrel and
ADRSpar values, respectively. However, the biggest benefit was noticed in the number of
design points that Lina estimated as having the same shortest execution time: the number
of repeated points was reduced by 66%, reflecting on a more accurate estimation of the
true optimal points.

3.4.2.2 DSE Exploration Time

Table 1 shows the elapsed time to generate the trace files and estimate all design
points for hls. We show the results without and with the use of trace cache, each with 1
or 4 concurrent executions (p = 1 and p = 4, respectively).

Table 1 – Lina DSE execution times (hls experiment, in s).

Trace w/o cache w/ cache
Kernel gen. p = 1 p = 4 p = 1 p = 4

bicg 11.0 186.6 102.1 136.9 66.2
floyd 8.2 696.1 431.6 328.2 160.9
gemm 16.7 2501.4 1570.0 1032.1 495.4
gesummv 4.2 165.0 86.1 138.1 66.5
heat3d 20.8 1733.3 1073.3 747.7 359.0
jacobi1d 0.4 22.6 10.7 22.7 10.8
jacobi2d 11.9 225.3 121.2 174.0 83.3
mvt 12.4 296.7 166.3 208.8 102.0
seidel2d 132.0 1615.8 986.1 633.5 291.6
syr2k 29.5 890.8 550.0 377.4 179.6
syrk 18.3 345.0 213.0 148.3 69.8
KeyExp 0.4 23.5 11.8 23.5 11.8
KeyExp2 0.4 94.0 48.1 94.1 48.1
MixCols 0.3 735.1 394.8 665.4 342.4
SubBytes 0.1 38.9 18.5 39.1 18.5
SubShfMix 0.2 15.7 7.5 15.7 7.5

Source: Perina et al. (2021).



3.4. Results 107

Using p = 4, the exploration time is on average ≈ 2× shorter than p = 1, which is
consistent with the number of physical cores available in the i7-5500U system. With no
cache and p= 1, gemm has the longest exploration time with ≈ 42 minutes. It is nonetheless
faster than exploring with Vivado HLS (≈ 2 days with p = 1 and ≈ 12 hours with p = 4).

With cache enabled and p = 4, exploration time is reduced by an average of 3.31×
when compared to without cache and p = 1. The cache is very effective, with a hit rate
of at least 98% for every kernel. The improvements are more significant in kernels with
deep loop nests, where the traces can reach substantial sizes.

Considering all kernels, generating all Vivado HLS reports for the hls experiment
took 17.81 days with p = 1 and 4.75 days with p = 4. For fullsyn, the total exploration
took 37.39 days with p = 1 and 9.4 days with p = 4.

3.4.2.3 Comparison Analysis

We compare the speedups11 provided by COMBA against two different results
from our explorations: F(Plin) and F(S), where S is the set of all design points that Lina
estimated as having the same shortest design execution time, and F is a function that
returns the actual fastest point from these sets. We use Vivado HLS to generate the early
cycle-accurate reports and calculate F .

Table 2 presents a comparison of the speedups achieved by COMBA and Lina. We
omit the results of rtot and r50 as they are similar to r10, apart from jacobi1d and mvt
that did not synthesise on the first two experiments. For the PolyBench kernel, almost
all solutions pointed by COMBA were not synthesisable. In these cases, Vivado either
hung indefinitely (i.e. no response after 24 hours) or failed early due to excessive loop
unroll or array partitioning. Since the resource budget of COMBA is only constrained
by DSPs and BRAMs, it does not disallow the generation of circuits that overuse other
resources (e.g. LUTs for multiplexers, FFs for completely partitioned arrays). COMBA
estimated feasible points for all AES kernels due to their reduced loop and array sizes.
For the experiments at 100MHz, the speedup was the same regardless of resource budget.
For rtot200, the kernels are 2x faster simply due to the increased frequency.

Our approach was able to find better speedups for nearly every kernel, with the
only exception being r10’s jacobi1d. It is valid to note that our design space D for this
kernel did not include optimisations of the same complexity as the ones used by COMBA
for this kernel. This is confirmed by the maximum achievable speedup of D: 82.81×.

However, the design points indicated by COMBA tend to be more resource-hungry.
For jacobi1d, our solution uses only 5%, 24%, 30%, and 33% of the LUTs, FFs, DSPs,

11 Considering as baseline the design point with no optimisations and with target frequency of
100MHz.



108 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Table 2 – Speedup results from COMBA and our DSE.

COMBA Our DSE
Kernel r10 rtot200 F(Plin) F(S) |S|

bicg —b —a 2.6 5.7 64
floyd —b —b 7.0 23.5 3
gemm —a —a 5.5 5.5 81
gesummv —a —a 3.5 4.6 32
heat3d —a —b 29.0 29.0 6
jacobi1d 109.0 —a 48.5 48.5 1
jacobi2d —a —b 29.3 29.3 1
mvt 3.2 —a 3.3 6.7 144
seidel2d —a —b 1.4 1.4 10
syr2k —b —b 4.4 4.4 16
syrk —b —b 3.5 3.5 9
KeyExp 1.3 2.6 7.9 7.9 4
KeyExp2 2.8 5.6 18.9 18.9 24
MixCols 248.3 496.7 ∞c ∞c 3
SubBytes 4.9 9.8 16.3 16.3 18
SubShfMix 4.2 8.5 34.0 6.8 2

a Failed due to excessive partition factor.
b Failed due to excessive unroll factor.
c Speedup of ∞ means that a combinational design was achieved.
Source: Perina et al. (2021).

and BRAMs used by COMBA’s result, respectively. For mvt, we can achieve an equivalent
speedup while using 5%, 3%, 67% and 21% of the same resources.

On the contrary, KeyExp and KeyExp2 solutions given by F(Plin) have a larger
resource usage than COMBA’s. The most significant increase is in the KeyExp2 kernel
compared to the rtot200 variant, with a LUT increase of 28×. Such increase is expected,
since our solutions are faster and we are comparing points focused on performance opti-
misation. In Figure 43, it is possible to note a large FF/LUT variation in the KeyExp2’s
Pareto points.

Table 3 presents the size and exploration times of the design spaces explored. The
proposed approach presents a better per-point exploration time for nearly every kernel,
except for few cases in rtot200 where COMBA’s per-point exploration is faster. However,
our exploration traverses several frequencies at once, whereas COMBA only allows one
frequency to be explored at a time.

The speedup results in Table 2 are for the Virtex-7 platform. If we compile Lina’s
results on the ZCU104, there is a slight speedup increase in nearly every kernel. In syr2k,
syrk, KeyExp and KeyExp2, the speedup is more noticeable: 8.47×, 6.69×, 11.07× and
35.14×, respectively. Considering all kernels (except for MixCols with infinite speedup),



3.4. Results 109

Table 3 – Design space sizes and exploration execution times (including per-point times) for
COMBA and our DSE. All times are in s.

COMBA Our DSE
# points DSE time Point time Point time

Kernel r10 rtot200 r10 rtot200 r10 rtot200 p=1 p=4

bicg 1623 1880 918 271 0.57 0.14 0.06 0.03
floyd 158 158 60 23 0.38 0.15 0.14 0.07
gemm 804 1015 379 162 0.47 0.16 0.18 0.09
gesummv 1472 831 572 127 0.39 0.15 0.09 0.05
heat3d 334 344 729 219 2.18 0.64 0.24 0.12
jacobi1d 378 348 302 119 0.80 0.34 0.04 0.02
jacobi2d 455 459 201 89 0.44 0.19 0.12 0.06
mvt 1208 1123 753 222 0.62 0.20 0.06 0.03
seidel2d 210 246 352 111 1.68 0.45 1.59 0.88
syr2k 1037 734 632 129 0.61 0.18 0.24 0.12
syrk 805 436 348 52 0.43 0.12 0.17 0.09
KeyExp 103 103 42 11 0.41 0.11 0.07 0.04
KeyExp2 251 247 92 22 0.37 0.09 0.07 0.04
MixCols 117 126 25 8 0.21 0.06 0.07 0.03
SubBytes 164 164 4 2 0.02 0.01 0.04 0.02
SubShfMix 72 74 17 3 0.23 0.04 0.05 0.02

Source: Perina et al. (2021).

the average speedup is 14× and 16× for the Virtex-7 and ZCU104 platforms, respectively.

Since the Vivado HLS reports were generated for all design points in our experi-
ments, the highest speedup achievable considering the traversed design spaces D is known.
The proposed DSE was able to reach 70% of the maximum reachable speedup. It is also
possible to note that the kernels with high ADRSrel are the ones that our exploration could
not effectively reach the maximum speedup: bicg (24% of the maximum speedup), floyd
(28%), gesummv (15%), mvt (12%) and SubBytes (16%).

3.4.3 Third Validation: Off-chip Experiments in the CNN Context

Table 4 presents the speedups achieved, where baseline represents the codes
without optimisation directives12, vivbest represents the true best design point in the
considered design space13 and linbest represents the best design point as estimated
by Lina’s DSE. Each experiment is identified by the keywords as presented in Chart 10.
Although we toggle data packing between the experiments, we do not perform any manual
vectorisation on the HLS code. However, we noticed that SDSoC automatically performs

12 Apart from DDR banking, which is enabled for all design points.
13 Acquired through running Vivado HLS for every design point.



110 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

vectorisation when DDR banking is enabled14.

Table 4 – Performance results for each CNN exploration.

padmemory

novec vec novec vec
cons cons perm perm

unrviv unrviv unrexp unrexp

baseline† 1.0× 1.0× 1.0× 1.0×
vivbest† 241.36× 241.36× 1013.59× 1013.59×
linbest 241.36× 241.36× 563.14× 724.02×

padlogic

novec vec novec vec
cons cons perm perm

unrviv unrviv unrexp unrexp

baseline† 1.0× 1.0× 1.0× 1.0×
vivbest† 879.88× 879.88× 796.65× 796.65×
linbest 796.65× 879.88× 796.65× 710.27×

† In these cases, speedup is the same regardless of the
novec/vec knob, since Vivado/SDSoC always
performed automatic vectorisation. This knob only
affects Lina exploration.

Source: Research data.

In the padmemory kernel, using the unrexp tool to explicitly unroll the loops
brings a significant improvement: a speedup of 1013.59× was achieved considering the
true best design point. Conversely, using normal HLS unroll directives lead to a maxi-
mum of 241.36×. Lina also encountered improved results when the permissive policy is
used, since the explicitly unrolled codes are better reflected by this mode. Enabling data
packing during Lina exploration also contributed for a better speedup. The best speedup
found by Lina peaked at 724.02×, which is 71.4% of the maximum achievable speedup
considering this design space (i.e. vivbest). When considering the conservative policy
and no explicit unroll, both Lina explorations found the maximum achievable speedup of
241.36×.

The padlogic kernel has a slightly different scenario. The explicitly unrolled code
actualy presents a worse speedup than using the SDSoC attributes. A peak of 879.88×
speedup is achieved using the original HLS code. Lina is able to match this speedup when
considering the conservative policy. For this kernel, the speedups found by Lina varied
from 89.2% to 100.0% of the maximum achievable speedup given by vivbest.
14 The terms “vectorisation” and “data packing” have a similar meaning in this thesis. We

refer to the analysis performed by Lina as “data packing”, and we refer to the optimisation
performed by Vivado/SDSoC as “automatic vectorisation”.



3.4. Results 111

Table 5 presents the best design point configuration among the four experiments for
each kernel, including their rank in the design space. Lina explorations correctly inferred
the best frequency, the best loop unroll configuration and best loop pipeline configuration.
It only deviated when selecting the array partition configuration. In all explorations, the
best design points given by Lina was always one of the top-10 best points in the design
space.

Table 5 – Configuration for the best design point for each kernel.

Freq. Loop Loop Partitioning of
Rank (MHz) unroll pipeline array O

padmemory

baseline 527 100.0 Off Off Off
vivbest 1 200.0 Loop level 3 factor of 2 Loop level 3 Cyclic, factor 4
linbest 4 200.0 Loop level 3 factor of 2 Loop level 3 Cyclic, factor 8

padlogic

baseline 546 100.0 Off Off Off
vivbest 1 200.0 Loop level 3 factor of 2 Loop level 3 Off
linbest 3 200.0 Loop level 3 factor of 2 Loop level 3 Cyclic, factor 8

Source: Research data.

Figure 44 presents a plot considering the whole design space of the padmemory
kernel. Four design execution time subplots are shown for each design point: the values
estimated by Lina using both policies and the cycle counts given by SDSoC with and with-
out explicit unroll (unrexp). Banking and data packing is enabled in all cases. Although
there are visible deviations between the estimated and true values, Lina characterised the
lower regions of the plot — where the optimised design points are located — with good
accuracy. Figure 45 presents a similar plot but for the padlogic kernel, which presents a
similar trend as the previous one.

As an extra experiment, we took the best design point given by Lina for padmemory
and we manually implemented the data vectorisation. This required a significant amount
of code manipulation, since all off-chip reads and writes must be written in terms of packed
data structures, while the coalescing among loop iterations must be maintained in order
to allow the burst optimisations. However, only a marginal improvement was found when
compared to the same design point that has no manual vectorisation: each loop iteration
had its latency reduced from 162 to 157 cycles. This resulted in a 0.01% reduction of
total execution time, indicating that manual vectorisation had little improvement over
the automatic one performed by SDSoC for this kernel.



112 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Figure 44 – Design execution time values and estimates for each design point in the space
(padmemory). The plot presented at bottom is a zoomed interval of the top plot.

Source: Research data.

Figure 45 – Design execution time values and estimates for each design point in the space
(padlogic). The plot presented at bottom is a zoomed interval of the top plot.

Source: Research data.



3.5. Final Discussion 113

3.5 Final Discussion
This section presents final considerations about the presented DSE framework.

First, we compare it against related work presented in Chapter 2. Then, we discuss the
limitations of Lina including portability to other HLS tools. Then, a final remark is
presented to close the chapter.

3.5.1 Comparison with Related Work

Our work distinguishes from the ones previously presented in the following aspects:
no synthesis is required to evaluate each design point of the exploration; design frequency
is supported as an exploration knob; and the resource estimation is used not only to check
feasibility of each point, but also to assist on finding resource-efficient and performant
designs. Chart 11 compares our DSE to those from related work.

Chart 11 – Related work comparison.

DSE
General requires Frequency Optimisation

Work purpose synthesis exploration objectives
Zhang et al. (2015) No Yesa No Exec. time
Choi and Cong (2018) Yes Yesa No Exec. time
Ferretti, Ansaloni and Pozzi (2018) Yes Yes Yes LUT, exec. time
Zhong et al. (2017) Yes Nob No Exec. time
Zhao et al. (2019) Yes No Noc Exec. time
This work Yes No Yes LUT, FF, DSP,

BRAM and
exec. time

a HLS results only.
b Synthesis required for training resource models once.
c COMBA supports multiple frequencies, however only one per exploration.
Source: Perina et al. (2021)

We chose COMBA to be the comparison tool against our approach due to: source
code being publicly available; it also performs a synthesis-less DSE; it supports multiple
frequencies; and it includes integer operations in the resource count. COMBA uses analyt-
ical equations to calculate the cycle count and resource footprint, and therefore it does not
have a profiling overhead as our approach. Our work also differs by optimising resource
footprint, whereas COMBA focuses solely on maximising performance using as many re-
sources as needed. The clock frequency exploration of COMBA is also somewhat limited:
only a single frequency is allowed per exploration execution, while Lina supports multi-
ple frequencies per exploration. Moreover, a limited amount of frequencies are supported,
whereas our DSE allows the selection of frequencies in a continuous range.



114 Chapter 3. Fast Design Space Optimisation for C/C++ HLS Using Lina

Some of the related work also provide off-chip memory analyses, however they
consider different purposes and/or scenarios. Zhang et al. (2015) consider off-chip memory
transactions in their model, however in a domain specific scenario. Zhong et al. (2017)
provide a simple linear model for off-chip memory transactions, however they consider
that all input data is transferred to on-chip memory prior to computation, and all data is
retrieved afterwards. On the other hand, Lina provides a model capable of analysing the
off-chip memory accesses inside the computation loop.

3.5.2 Framework Limitations

Our current implementation has some limitations. For example, there is no support
to more than one loop nest per loop level, arbitrary-precision data types or variable
loop bounds. Overcoming the first two limitations would require the modification of Lina
internal data structures. Enabling support to variable loop bounds is also feasible, however
since the DDDG generation step only uses part of the dynamic trace to perform its
estimation, it could be inaccurate for kernels with irregular control flow. The DDDG
generation step can be improved by sampling relevant portions of the dynamic trace in
order to increase the coverage of control flow variations.

Estimating the metrics for tools other than Vivado HLS is currently not possible,
although many aspects of our model are also valid for other HLS tools. Lina’s scheduling
outcome is sufficiently similar to the ones used by other modern HLS compilers (e.g.
system of difference constraint models). For example, the initiation interval calculation
used by Lina is a close approximation to the true achievable value (RAU, 1994). The
variable frequency FU library is also a common aspect of many HLS compilers and can
be easily disabled if a target compiler does not support it. The DSE job dispatcher is also
portable since it does not use any platform-specific information to orientate the traversal.
The policy of sharing FUs is also a common feature, though Lina’s model is a simplistic
generalisation that does not directly calculate the routing tradeoffs. At last, the array-
related models and especially the equations from Makni et al. (2018) are quite fine-tuned
for Vivado, requiring a more profound analysis on how these equations could be adapted
for other tools.

The off-chip memory model is also quite specific to the Vivado HLS and SDSoC
toolchains, with the greatest example being the scheduling policies. Nonetheless, most
other features are common aspects of off-chip memory accesses in general. For example, it
is a common practice to use coalescing and data packing to improve memory’s performance.
Moreover, most off-chip transactions are composed of setup and commit steps required to
use the memories. We believe that most of the DDDG scheduling and optimisation parts
related to the off-chip model can be reused for different compilers, whereas a more in-depth
attention must be given while designing the new memory policies (or lack thereof).



3.5. Final Discussion 115

3.5.3 Final Remarks
This chapter presented a design space exploration framework that estimates each

design point using Lina, a fast performance and resource estimator for the Vivado HLS
compiler. Large design spaces are explored in a matter of minutes, and the timing/re-
source awareness of the approach allows the optimisation of not only performance but
also resource usage, while the clock frequency domain is also explored. The results over
16 kernels show that the estimated optimal solutions are among the 1% best solutions. An
average of 14− 16× performance speedup is achieved, accounting for 70% of the reach-
able speedup considering the traversed design spaces. In comparison to another estimator
(COMBA), Lina provided better speedups for nearly every kernel. Although COMBA
points to more aggressive optimisations that could provide better results than ours, most
of the solutions indicated were not synthesisable due to overly complex circuits.

Considering a small design space (under 100 combinations of optimisations) over 9
kernels, Lina presented smaller average relative errors when compared to its predecessor
Lin-analyzer: from 16.45% to 13.01% when array partitioning is considered, and from
8.85% to 3.02% without.

We also presented the Lina’s off-chip memory model that allows an exploration of
memory optimisations. Aspects such as burst analysis, memory banking, data packing and
HLS compiler limitations are modelled on Lina. We assessed the quality of our explorations
considering off-chip accesses using a simple convolution kernel, on which speedups of at
least 720× were reached.

Fast and accurate synthesis-less DSE is a challenging problem, however it has the
potential to provide promising efficient solutions significantly faster than approaches that
rely on HLS synthesis. Such exploration can be used to optimise codes in cloud-based
accelerators as a service, for example.





117

CHAPTER

4
CONCLUSION

This thesis presented a cycle and resource estimator for C/C++ codes targetting
the Vivado HLS compiler and an accompanying design space exploration methodology.
This DSE using Lina reduces the programmability complexity for a developer when us-
ing high-level synthesis, since it assists on choosing a combination of compiler directives
towards better compilation outcomes (e.g. better performance).

Based on Lin-analyzer, Lina uses a dynamic trace generated from software ex-
ecution to approximate the scheduling behaviour performed by the HLS compiler. Its
estimation is faster than HLS compilation, and several compiler optimisation knobs are
supported, allowing a fast traversal through large design spaces. For 16 C/C++ kernels
explored with Lina, the estimated optimal solutions are among the 1% best options. An
average of 14− 16× performance speedup is achieved, accounting for 70% of the reach-
able speedup considering the traversed design spaces. Lina also supports the exploration
of off-chip memory optimisations. For a simple convolution kernel with off-chip memory
accesses, Lina correctly inferred the best frequency, the best loop unroll configuration and
the best loop pipeline configuration, deviating only when selecting the array partition con-
figuration. The best points given by Lina were always one of the top-10 best points in the
design space, reaching speedups of at least 720×.

The first approaches on this thesis targetted a model capable of estimating the
most suitable platform between FPGA and GPU for a given OpenCL kernel. Two ma-
chine learning models were implemented to this end. The first approach used a data
mining clusterisation tool and was able to reach an average hit rate of 70% to 88% when
estimating the most suitable platform for a kernel. The second approach was modelled
around neural networks, and was able to reach nearly 85% of hit rate. We noticed, how-
ever, that every kernel used for training and validation were extremely suited for the
platform they were initially designed for. Considering that most OpenCL kernels avail-
able are designed using the SIMD execution model targetting GPUs, we then gathered



118 Chapter 4. Conclusion

several OpenCL kernels using this model, and we evaluated their performance on FPGA
and GPU considering different optimisation efforts. Results have shown that a significant
amount of optimisation is necessary to bring FPGA closer to a competitive level for ex-
isting OpenCL kernels, often leading to complete code rewrite. This led to our decision
on shifting to C/C++ and implementing Lina instead.

At last, we present another FPGA-GPU comparative analysis. In the FPGA side,
we optimise the applications using Lina. On the GPU side, we use CUDA variants for the
same applications. Results have shown that our approach loses in both performance and
energy consumption when compared against GPUs. We also noticed that in the FPGA
side, the speedup of the computation kernels isolated were greater than the total speedup
achieved when considering the whole application execution. Since Lina only optimises the
computation loop, there is still a significant overhead on the data transfers from/to the
FPGA device. As a final analysis, we present an extrapolation considering a hypothetical
situation where these overheads were to be mitigated, i.e. the total speedup achieved
is the same as the speedup achieved by the computation part alone. In this case, the
solutions given by Lina would be better than the GPU counterparts for two kernels.
While the FPGA is on the disadvantage in overall, it must be noted that we are comparing
applications that were automatically optimised by Lina against codes that were manually
tailored for GPUs using CUDA.

Although our approach is quite fine-tuned in several aspects to Vivado HLS and
SDSoC, our methodology has further shown the benefits of using dynamic traces for
decision making when performing DSE. For example, the memory accesses are already
resolved by the trace, not requiring any static complex inferring that could incur in larger
estimation times. Our results have shown that such approach is able to deliver optimised
solutions considering several scenarios.

We believe that our approach using Lina fulfills the main objective, of providing
a fast optimisation approach that automatically improves the quality of FPGA
designs generated from HLS tools. The main contributions derived from this thesis
are:

• The timing-aware model of Lina, that allows several frequencies to be explored
and a more precise in-cycle scheduling;

• The non-perfect loop analyser, that improves Lina’s accuracy when estimating
loop nests that are not perfect;

• The resource-aware model, that allows Lina to estimate the resource usage of
the design points. This model can be used to find points that are optimised not only
in design execution time, but also in resource usage;



119

• The off-chip memory model, which allows the estimation of kernels accessing
off-chip memory. This model includes optimisations such as burst analysis, memory
banking, data packing and scheduling policies.

Other contributions include several tools that were developed during this thesis,
such as the vivado-fsmgem, ProfCounter, zynprof, among others as presented in Ap-
pendix A. These are not directly related to the main contributions of Lina, however they
were of great support and could be further useful in future circumstances.

There are several potential improvements for this thesis. Possible future work in-
clude:

• Addition of more features in Lina, such as support to variable loops, more complex
data structures, etc.;

• Several aspects of the Lina code require refactor and optimisation, which could
further reduce its estimation and exploration time;

• Migration to newer versions of Vivado/Vitis HLS;

• Lina currently considers that each array is completely located on or off-chip. Support
to buffering optimisations such as tiling, caching, etc. could bring further exploration
possibilities;

• Our last FPGA-GPU comparison results have shown that there is still a significant
overhead on data transfers from/to the FPGA device. Future experiments could
include the optimisation of the whole application, for example by interleaving data
transfers and kernel execution;

• At last, the whole DSE framework here presented is in a prototypal stage. Several
modifications are still required on the input applications in order to make them com-
patible, for example by adapting Makefiles or creating the OpenCL kernel templates.
Most of these modifications could be automatically performed, for example by an
LLVM transformation pass. Thus, a more seamless experience for the exploration
approach is desirable.

In conclusion, while our model assists on reducing the hardware burden when
programming FPGAs via HLS, it is still far from the software-based experience when
working with high-level platforms. We encountered several issues with the HLS compiler
that hindered our results. For example, the unrexp tool that we created to explicitly unroll
loops when the automatic HLS unroll disabled off-chip coalescing optimisations. While this
tool allowed the HLS compiler to correctly infer some of the missed optimisations, it also
significantly increased the HLS compilation complexity due to the lengthy unrolled source



120 Chapter 4. Conclusion

codes, which often lead to compilation failure. All these aspects altogether expose the gap
that still exists in the high-level compilation field for FPGAs. For efficient optimised
FPGA designs, programming with RTL languages is still the best approach despite the
extensive hardware expertise and man-hours required. Nonetheless, we acknowledge the
importance of High-Level Synthesis compilers as they broaden the accessibility of FPGAs
to communities that would never dive in RTL programming. As presented in this thesis
and other related work, the research community is actively in search of a better high-level
environment for FPGAs.



121

BIBLIOGRAPHY

AGARWAL, A.; NG, M. C. et al. A Comparative Evaluation of High-Level Hardware
Synthesis Using Reed–Solomon Decoder. IEEE Embedded Systems Letters, IEEE,
v. 2, n. 3, p. 72–76, 2010. Citations on pages 142 and 158.

AUSTIN, T. M.; SOHI, G. S. Dynamic Dependency Analysis of Ordinary Programs. In:
Proceedings of the 19th annual international symposium on Computer archi-
tecture. [S.l.: s.n.], 1992. p. 342–351. Citation on page 51.

BILAVARN, S.; GOGNIAT, G.; PHILIPPE, J.-L.; BOSSUET, L. Design Space Pruning
Through Early Estimations of Area/Delay Tradeoffs for FPGA Implementations. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, v. 25, n. 10, p. 1950–1968, 2006. Citations on pages 43 and 51.

BJUREUS, P.; MILLBERG, M.; JANTSCH, A. FPGA Resource and Timing Estimation
from Matlab Execution Traces. In: IEEE. Proceedings of the Tenth International
Symposium on Hardware/Software Codesign. CODES 2002 (IEEE Cat. No.
02TH8627). [S.l.], 2002. p. 31–36. Citations on pages 43 and 51.

BORKAR, S. The Exascale Challenge. In: IEEE. Proceedings of 2010 International
Symposium on VLSI Design, Automation and Test. [S.l.], 2010. p. 2–3. Citations
on pages 13 and 35.

CANIS, A.; CHOI, J.; ALDHAM, M.; ZHANG, V.; KAMMOONA, A.; ANDERSON,
J. H.; BROWN, S.; CZAJKOWSKI, T. LegUp: High-Level Synthesis for FPGA-Based
Processor/Accelerator Systems. In: Proceedings of the 19th ACM/SIGDA interna-
tional symposium on Field programmable gate arrays. [S.l.: s.n.], 2011. p. 33–36.
Citation on page 41.

CHE, S.; BOYER, M.; MENG, J.; TARJAN, D.; SHEAFFER, J. W.; LEE, S.-H.;
SKADRON, K. Rodinia: A Benchmark Suite for Heterogeneous Computing. In: IEEE.
Workload Characterization, 2009. IISWC 2009. IEEE International Sympo-
sium on. [S.l.], 2009. p. 44–54. Citation on page 42.

CHOI, J. LegUp 5.1 is released! 2017. Available at <https://www.legupcomputing.
com/blog/index.php/2017/07/06/legup-5-1-is-released/>, accessed 7th feb. 2022. Cita-
tion on page 42.

CHOI, Y.-k.; CONG, J. HLS-Based Optimization and Design Space Exploration for Ap-
plications with Variable Loop Bounds. In: IEEE. 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.], 2018. p. 1–8. Citations
on pages 44 and 113.

CZYŻAK, P.; JASZKIEWICZ, A. Pareto Simulated Annealing — A Metaheuristic Tech-
nique for Multiple-Objective Combinatorial Optimization. Journal of Multi-Criteria
Decision Analysis, Wiley Online Library, v. 7, n. 1, p. 34–47, 1998. Citation on page
88.

https://www.legupcomputing.com/blog/index.php/2017/07/06/legup-5-1-is-released/
https://www.legupcomputing.com/blog/index.php/2017/07/06/legup-5-1-is-released/


122 Bibliography

DANALIS, A.; MARIN, G.; MCCURDY, C.; MEREDITH, J. S.; ROTH, P. C.; SPAF-
FORD, K.; TIPPARAJU, V.; VETTER, J. S. The Scalable Heterogeneous Computing
(SHOC) Benchmark Suite. In: ACM. Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units. [S.l.], 2010. p. 63–74. Cita-
tion on page 42.

DENNARD, R. H.; GAENSSLEN, F. H.; YU, H.-N.; RIDEOUT, V. L.; BASSOUS, E.;
LEBLANC, A. R. Design of Ion-Implanted MOSFET’s with Very Small Physical Di-
mensions. IEEE Journal of solid-state circuits, IEEE, v. 9, n. 5, p. 256–268, 1974.
Citation on page 34.

ENZLER, R.; JEGER, T.; COTTET, D.; TRÖSTER, G. High-Level Area and Perfor-
mance Estimation of Hardware Building Blocks on FPGAs. In: SPRINGER. Interna-
tional Workshop on Field Programmable Logic and Applications. [S.l.], 2000. p.
525–534. Citations on pages 43 and 51.

FERRETTI, L.; ANSALONI, G.; POZZI, L. Lattice-Traversing Design Space Exploration
for High Level Synthesis. In: IEEE. 2018 IEEE 36th International Conference on
Computer Design (ICCD). [S.l.], 2018. p. 210–217. Citations on pages 44 and 113.

GAO, X.; WICKERSON, J.; CONSTANTINIDES, G. A. Automatically Optimizing the
Latency, Area, and Accuracy of C Programs for High-Level Synthesis. In: Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. [S.l.: s.n.], 2016. p. 234–243. Citation on page 67.

Geeks3D. Graphics Cards Thermal Design Power (TDP)
Database. 2015. Available at <https://www.geeks3d.com/20090618/
graphics-cards-thermal-design-power-tdp-database/>, accessed 7th feb. 2022. Ci-
tation on page 162.

GIEFERS, H.; STAAR, P.; BEKAS, C.; HAGLEITNER, C. Analyzing the Energy-
Efficiency of Sparse Matrix Multiplication on Heterogeneous Systems: A Comparative
Study of GPU, Xeon Phi and FPGA. In: IEEE. 2016 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). [S.l.], 2016.
p. 46–56. Citation on page 42.

HUTTON, M. Understanding How the New Intel(r) HyperFlex(tm) Architecture Enables
Next-Generation High-Performance Systems. Altera White Paper, 2015. Citation on
page 36.

Intel Corporation. Arria 10 Power Reference Design. 2018. Available at <https:
//www.intel.com/content/www/us/en/programmable/products/reference-designs/
all-reference-designs/power/arria-10-power-ref-design.html>, accessed 7th feb. 2022.
Citation on page 162.

. Hardware Accelerator Research Program. 2018. Available at <https:
//software.intel.com/en-us/hardware-accelerator-research-program>, accessed 6th nov.
2018. Citation on page 163.

JIANG, J.; WANG, Z.; LIU, X.; GÓMEZ-LUNA, J.; GUAN, N.; DENG, Q.; ZHANG,
W.; MUTLU, O. Boyi: A Systematic Framework for Automatically Deciding the Right
Execution Model of OpenCL Applications on FPGAs. In: Proceedings of the 2020

https://www.geeks3d.com/20090618/graphics-cards-thermal-design-power-tdp-database/
https://www.geeks3d.com/20090618/graphics-cards-thermal-design-power-tdp-database/
https://www.intel.com/content/www/us/en/programmable/products/reference-designs/all-reference-designs/power/arria-10-power-ref-design.html
https://www.intel.com/content/www/us/en/programmable/products/reference-designs/all-reference-designs/power/arria-10-power-ref-design.html
https://www.intel.com/content/www/us/en/programmable/products/reference-designs/all-reference-designs/power/arria-10-power-ref-design.html
https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program


Bibliography 123

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
[S.l.: s.n.], 2020. p. 299–309. Citation on page 45.

KANDURI, A.; RAHMANI, A. M.; LILJEBERG, P.; HEMANI, A.; JANTSCH, A.; TEN-
HUNEN, H. A Perspective on Dark Silicon. In: The Dark Side of Silicon. [S.l.]: Springer,
2017. p. 3–20. Citations on pages 34 and 35.

KONO, F.; NAKASATO, N.; HAYASHI, K.; VAZHENIN, A.; SEDUKHIN, S. Evaluations
of OpenCL-written tsunami simulation on FPGA and comparison with GPU implemen-
tation. The Journal of Supercomputing, Springer, v. 74, n. 6, p. 2747–2775, 2018.
Citation on page 42.

KULKARNI, D.; NAJJAR, W. A.; RINKER, R.; KURDAHI, F. J. Compile-Time Area
Estimation for LUT-Based FPGAs. ACM Transactions on Design Automation of
Electronic Systems (TODAES), ACM New York, NY, USA, v. 11, n. 1, p. 104–122,
2006. Citations on pages 43 and 51.

LARSEN, E. S.; MCALLISTER, D. Fast Matrix Multiplies using Graphics Hardware. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing. [S.l.: s.n.],
2001. p. 55–55. Citation on page 34.

LI, P.; ZHANG, P.; POUCHET, L.-N.; CONG, J. Resource-Aware Throughput Opti-
mization for High-Level Synthesis. In: Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. [S.l.: s.n.], 2015. p.
200–209. Citation on page 54.

LIANG, Y.; WANG, S.; ZHANG, W. FlexCL: A Model of Performance and Power for
OpenCL Workloads on FPGAs. IEEE Transactions on Computers, IEEE, v. 67, n. 12,
p. 1750–1764, 2018. Citation on page 45.

MAKNI, M.; NIAR, S.; BAKLOUTI, M.; ABID, M. HAPE: A high-level area-power esti-
mation framework for FPGA-based accelerators. Microprocessors and Microsystems,
Elsevier, v. 63, p. 11–27, 2018. Citations on pages 68, 69, 70, 71, and 114.

MARTINS, L. G. A. Exploration of optimization sequences of the compiler based
on hybrid techniques of complex data mining. Phd Thesis (PhD Thesis) — Uni-
versity of São Paulo, 2015. Citation on page 140.

Micron Technology, Inc. GDDR5 SGRAM Introduction. 2014. Available at
<https://www.micron.com/-/media/client/global/documents/products/technical-note/
dram/tned01_gddr5_sgram_introduction.pdf>, accessed 7th feb. 2022. Citation on
page 75.

MOORE, G. E. Cramming more components onto integrated circuits. [S.l.]:
McGraw-Hill New York, 1965. Citation on page 34.

MUSLIM, F. B.; MA, L.; ROOZMEH, M.; LAVAGNO, L. Efficient FPGA Implementation
of OpenCL High-Performance Computing Applications via High-Level Synthesis. IEEE
Access, IEEE, v. 5, p. 2747–2762, 2017. Citations on pages 38, 42, 157, 158, 160, and 164.

Nallatech. Nallatech 385 – with Stratix V A7 FPGA. 2018. Available at <https://
www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/385-a7/>,
accessed 6th nov. 2018. Citation on page 162.

https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tned01_gddr5_sgram_introduction.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tned01_gddr5_sgram_introduction.pdf
https://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/385-a7/
https://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/385-a7/


124 Bibliography

. Nallatech 385A FPGA Accelerator Card. 2018. Available at
<https://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/
nallatech-385a-arria10-1150-fpga/>, accessed 6th nov. 2018. Citation on page 162.

NANE, R.; SIMA, V.-M.; PILATO, C.; CHOI, J.; FORT, B.; CANIS, A.; CHEN, Y. T.;
HSIAO, H.; BROWN, S.; FERRANDI, F. et al. A Survey and Evaluation of FPGA
High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, IEEE, v. 35, n. 10, p. 1591–1604, 2015. Citation
on page 41.

NDU, G.; NAVARIDAS, J.; LUJÁN, M. CHO: Towards a Benchmark Suite for OpenCL
FPGA Accelerators. In: Proceedings of the 3rd International Workshop on
OpenCL. [S.l.: s.n.], 2015. p. 1–10. Citation on page 142.

NVIDIA Corporation. NVIDIA Quadro K620. 2018. Available at <https://nvidiastore.
com.br/nvidia-quadro-k620>, accessed 7th feb. 2022. Citation on page 162.

OPPERMANN, J.; SOMMER, L.; WEBER, L.; REUTER-OPPERMANN, M.; KOCH,
A.; SINNEN, O. SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Syn-
thesis. In: IEEE. 2019 International Conference on Field-Programmable Tech-
nology (ICFPT). [S.l.], 2019. p. 36–44. Citation on page 45.

PALERMO, G.; SILVANO, C.; ZACCARIA, V. ReSPIR: A Response Surface-Based
Pareto Iterative Refinement for Application-Specific Design Space Exploration. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, v. 28, n. 12, p. 1816–1829, 2009. Citation on page 88.

PEEMEN, M.; SETIO, A. A.; MESMAN, B.; CORPORAAL, H. Memory-Centric Accel-
erator Design for Convolutional Neural Networks. In: IEEE. 2013 IEEE 31st Interna-
tional Conference on Computer Design (ICCD). [S.l.], 2013. p. 13–19. Citation
on page 96.

PERINA, A. B.; BECKER, J.; BONATO, V. Lina: Timing-Constrained High-Level Syn-
thesis Performance Estimator for Fast DSE. In: IEEE. 2019 International Conference
on Field-Programmable Technology (ICFPT). [S.l.], 2019. p. 343–346. Citations
on pages 47, 101, 102, 103, 104, and 131.

. Profcounter: Line-Level Cycle Counter for Xilinx OpenCL High-Level Synthesis.
In: IEEE. 2019 26th IEEE International Conference on Electronics, Circuits
and Systems (ICECS). [S.l.], 2019. p. 618–621. Citation on page 130.

PERINA, A. B.; BONATO, V. Mapping Estimator for OpenCL Heterogeneous Accelera-
tors. In: IEEE. 2018 International Conference on Field-Programmable Technol-
ogy (FPT). [S.l.], 2018. p. 294–297. Citations on pages 130, 149, 150, 151, and 153.

PERINA, A. B.; SILITONGA, A.; BECKER, J.; BONATO, V. Fast Resource and Timing
Aware Design Optimisation for High-Level Synthesis. IEEE Transactions on Comput-
ers, IEEE, v. 70, n. 12, p. 2070–2082, 2021. Citations on pages 38, 48, 52, 55, 56, 60, 61,
64, 90, 94, 95, 104, 106, 108, 109, 113, 132, and 174.

POUCHET, L.-N. PolyBench: the Polyhedral Benchmark Suite. 2012. Available
at <http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/>, accessed 7th feb.
2022. Citation on page 42.

https://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/nallatech-385a-arria10-1150-fpga/
https://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/nallatech-385a-arria10-1150-fpga/
https://nvidiastore.com.br/nvidia-quadro-k620
https://nvidiastore.com.br/nvidia-quadro-k620
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/


Bibliography 125

PU, Y.; PENG, J.; HUANG, L.; CHEN, J. An efficient KNN algorithm implemented on
FPGA based heterogeneous computing system using OpenCL. In: IEEE. 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Com-
puting Machines. [S.l.], 2015. p. 167–170. Citation on page 42.

RAMANATHAN, N.; CONSTANTINIDES, G. A.; WICKERSON, J. Concurrency-Aware
Thread Scheduling for High-Level Synthesis. In: IEEE. 2018 IEEE 26th Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines
(FCCM). [S.l.], 2018. p. 101–108. Citation on page 42.

RAU, B. R. Iterative Modulo Scheduling: An Algorithm For Software Pipelining Loops. In:
Proceedings of the 27th annual international symposium on Microarchitecture.
[S.l.: s.n.], 1994. p. 63–74. Citations on pages 54 and 114.

ROSA, L. S.; BOUGANIS, C.-S.; BONATO, V. Scaling Up Modulo Scheduling for High-
Level Synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, v. 38, n. 5, p. 912–925, 2018. Citation on page 42.

ROSER, M.; RITCHIE, H. Technological Progress. Our World in Data, 2013.
Https://ourworldindata.org/technological-progress. Citation on page 33.

SANCHES, A.; CARDOSO, J. M.; DELBEM, A. C. Identifying Merge-Beneficial Software
Kernels for Hardware Implementation. In: IEEE. 2011 International Conference on
Reconfigurable Computing and FPGAs. [S.l.], 2011. p. 74–79. Citation on page
138.

SEIFOORI, Z.; EBRAHIMI, Z.; KHALEGHI, B.; ASADI, H. Introduction to Emerging
SRAM-Based FPGA Architectures in Dark Silicon Era. In: Advances in Computers.
[S.l.]: Elsevier, 2018. v. 110, p. 259–294. Citation on page 36.

Semiconductor Industry Association. International Technology Roadmap for Semi-
conductors - 2013 Edition. 2013. Available at <https://www.semiconductors.org/
resources/2013-international-technology-roadmap-for-semiconductors-itrs/>, accessed
7th feb. 2022. Citations on pages 13 and 35.

SHAO, Y. S.; REAGEN, B.; WEI, G.-Y.; BROOKS, D. Aladdin: A Pre-RTL, Power-
Performance Accelerator Simulator Enabling Large Design Space Exploration of Cus-
tomized Architectures. In: IEEE. 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA). [S.l.], 2014. p. 97–108. Citations on pages 43
and 51.

SILITONGA, A.; SCHADE, F.; JIANG, G.; BECKER, J. HLS-based Performance and
Resource Optimization of Cryptographic Modules. In: IEEE. 2018 IEEE Intl Conf
on Parallel & Distributed Processing with Applications, Ubiquitous Comput-
ing & Communications, Big Data & Cloud Computing, Social Computing
& Networking, Sustainable Computing & Communications (ISPA/IUCC/B-
DCloud/SocialCom/SustainCom). [S.l.], 2018. p. 1009–1016. Citation on page 93.

STOUTCHININ, A.; CONTI, F.; BENINI, L. Optimally Scheduling CNN Convolutions
for Efficient Memory Access. arXiv preprint arXiv:1902.01492, 2019. Citation on
page 96.

https://www.semiconductors.org/resources/2013-international-technology-roadmap-for-semiconductors-itrs/
https://www.semiconductors.org/resources/2013-international-technology-roadmap-for-semiconductors-itrs/


126 Bibliography

STRATTON, J. A.; RODRIGUES, C.; SUNG, I.-J.; OBEID, N.; CHANG, L.-W.;
ANSSARI, N.; LIU, G. D.; HWU, W.-m. W. Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing. Center for Reliable and High-
Performance Computing, v. 127, p. 29, 2012. Citation on page 42.

SUMOYAMA, A. S. Classifier of kernels for hybrid computing platform mapping
composed by FPGA and GPP. Master’s Thesis (Master’s Thesis) — University of
São Paulo, 2016. Citations on pages 138 and 141.

TATSUMI, S.; HARIYAMA, M.; MIURA, M.; ITO, K.; AOKI, T. OpenCL-Based Design
of an FPGA Accelerator for Phase-Based Correspondence Matching. In: THE STEER-
ING COMMITTEE OF THE WORLD CONGRESS IN COMPUTER SCIENCE, COM-
PUTER …. Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA). [S.l.], 2015. p. 90.
Citation on page 42.

WELLER, D.; OBORIL, F.; LUKARSKI, D.; BECKER, J.; TAHOORI, M. Energy Ef-
ficient Scientific Computing on FPGAs using OpenCL. In: ACM. Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. [S.l.], 2017. p. 247–256. Citations on pages 38, 42, 157, 158, 160, and 164.

Wikipedia. Transistor Count. 2022. Available at <https://en.wikipedia.org/wiki/
Transistor_count>, accessed 7th feb. 2022. Citation on page 33.

WILLIAMS, S.; WATERMAN, A.; PATTERSON, D. Roofline: An Insightful Visual Per-
formance Model for Multicore Architectures. Communications of the ACM, ACM,
v. 52, n. 4, p. 65–76, 2009. Citation on page 149.

Xilinx, Inc. Xilinx Acquires AutoESL to Enable Designer Produc-
tivity and Innovation With FPGAs and Extensible Processing
Platform. 2011. Available at <https://www.prnewswire.com/news-releases/
xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-\
extensible-processing-platform-114922409.html>, accessed 7th feb. 2022. Citation on
page 41.

. ZCU104 Evaluation Board - User Guide. 2018. Available at
<https://www.xilinx.com/support/documentation/boards_and_kits/zcu104/
ug1267-zcu104-eval-bd.pdf>, accessed 7th feb. 2022. Citation on page 176.

ZHANG, C.; LI, P.; SUN, G.; GUAN, Y.; XIAO, B.; CONG, J. Optimizing FPGA-based
Accelerator Design for Deep Convolutional Neural Networks. In: Proceedings of the
2015 ACM/SIGDA international symposium on field-programmable gate ar-
rays. [S.l.: s.n.], 2015. p. 161–170. Citations on pages 44, 96, 113, and 114.

ZHAO, J.; FENG, L.; SINHA, S.; ZHANG, W.; LIANG, Y.; HE, B. Performance Modeling
and Directives Optimization for High Level Synthesis on FPGA. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, IEEE, 2019.
Citations on pages 45, 67, and 113.

ZHONG, G.; PRAKASH, A.; LIANG, Y.; MITRA, T.; NIAR, S. Lin-analyzer: a High-
level Performance Analysis Tool for FPGA-based Accelerators. In: IEEE. 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.], 2016. p. 1–6.
Citations on pages 37, 38, 43, 47, 51, 54, 68, and 71.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
https://www.prnewswire.com/news-releases/xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-\ extensible-processing-platform-114922409.html
https://www.prnewswire.com/news-releases/xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-\ extensible-processing-platform-114922409.html
https://www.prnewswire.com/news-releases/xilinx-acquires-autoesl-to-enable-designer-productivity-and-innovation-with-fpgas-and-\ extensible-processing-platform-114922409.html
https://www.xilinx.com/support/documentation/boards_and_kits/zcu104/ug1267-zcu104-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu104/ug1267-zcu104-eval-bd.pdf


Bibliography 127

ZHONG, G.; PRAKASH, A.; WANG, S.; LIANG, Y.; MITRA, T.; NIAR, S. Design Space
Exploration of FPGA-based Accelerators with Multi-level Parallelism. In: IEEE. Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017. [S.l.],
2017. p. 1141–1146. Citations on pages 44, 113, and 114.

ZHONG, G.; VENKATARAMANI, V.; LIANG, Y.; MITRA, T.; NIAR, S. Design Space
Exploration of Multiple Loops on FPGAs using High Level Synthesis. In: IEEE. 2014
IEEE 32nd international conference on computer design (ICCD). [S.l.], 2014. p.
456–463. Citation on page 88.

ZOHOURI, H. R. High Performance Computing with FPGAs and OpenCL. Phd
Thesis (PhD Thesis) — Tokyo Institute of Technology, 2018. Citations on pages 42, 157,
158, 160, 161, 163, 164, and 170.

ZOHOURI, H. R.; MARUYAMA, N.; SMITH, A.; MATSUDA, M.; MATSUOKA, S.
Evaluating and optimizing OpenCL kernels for high performance computing with FP-
GAs. In: IEEE PRESS. Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. [S.l.], 2016. p. 35.
Citations on pages 38 and 158.





129

APPENDIX

A
PUBLISHED MATERIAL AND DEVELOPED

TOOLS

A.1 Published Material

The following publications were derived from this thesis:

• Journal paper:

– PERINA, André B. et al. Fast Resource and Timing Aware Design Optimisa-
tion for High-Level Synthesis. IEEE Transactions on Computers, v. 70, n.
12, p. 2070-2082, 2021.

• In conference proceedings:

– PERINA, André Bannwart; BONATO, Vanderlei. Mapping Estimator for OpenCL
Heterogeneous Accelerators. In: 2018 International Conference on Field-
Programmable Technology (FPT). IEEE, 2018. p. 294-297.

– PERINA, André Bannwart; BECKER, Jürgen; BONATO, Vanderlei. Prof-
counter: Line-level cycle counter for xilinx opencl high-level synthesis. In: 2019
26th IEEE International Conference on Electronics, Circuits and Sys-
tems (ICECS). IEEE, 2019. p. 618-621.

– PERINA, André Bannwart; BECKER, Jürgen; BONATO, Vanderlei. Lina:
Timing-constrained high-level synthesis performance estimator for fast DSE.
In: 2019 International Conference on Field-Programmable Technol-
ogy (ICFPT). IEEE, 2019. p. 343-346.



130 APPENDIX A. Published Material and Developed Tools

A.2 Developed Tools
The following tools and repositories were developed as part of this research (pre-

sented in chronological order):

• hostcodegen: OpenCL Host Code Generator

– This script generates template OpenCL host codes for kernel testbenching;

– The kernel is described using an XML file containing details about inputs,
outputs, preprocessing, postprocessing, etc.;

– The host codes from Appendix C were generated using this tool;

– Repository: <https://github.com/comododragon/hostcodegen>;

• mdamicore2: DAMICORE Expanded Version for Multiple Representa-
tions Version 2

– This tool invokes DAMICORE for several representations and manages them
accordingly;

– Main data mining tool used in section B.1;

– Uses a Python-based implementation of DAMICORE (<https://gitlab.com/
comododragon/damicorepy>). This is a fork of an outdated Python 2 version
(<https://gitlab.com/adaptsys/damicorepy>).

• OpCount LLVM Pass (PERINA; BONATO, 2018)

– This is an LLVM pass that can be used to count several static metrics from
an OpenCL kernel;

– OpCount was used to generate the dataset presented in section B.2;

– Repository: <https://github.com/comododragon/opcount>;

• opencl-4all

– Repository containing all explored kernels and all analysis spreadsheets related
to Appendix C;

– Repository: <https://github.com/comododragon/opencl-4all>;

• SDx OpenCL ProfCounter (PERINA; BECKER; BONATO, 2019b)

– Active cycle counter for OpenCL kernels using Xilinx SDx (either SDSoC or
SDAccel);

– Composed of an additional OpenCL kernel that can be added to a project;

https://github.com/comododragon/hostcodegen
https://gitlab.com/comododragon/damicorepy
https://gitlab.com/comododragon/damicorepy
https://gitlab.com/adaptsys/damicorepy
https://github.com/comododragon/opcount
https://github.com/comododragon/opencl-4all


A.2. Developed Tools 131

– This kernel contains a live cycle counter, and records timestamps based on
commands sent by the main kernel;

– ProfCounter was used as an analysis tool for early FU characterisation;

– Repository: <https://github.com/comododragon/sdx-ocl-profcounter>;

• Lina (first version) (PERINA; BECKER; BONATO, 2019a)

– This is the version of Lina used in the first validation experiment (subsec-
tion 3.3.2);

– This version does not include the cache mechanism, resource awareness, or the
off-chip memory model;

– Repository: <https://github.com/comododragon/
lina/tree/d85c4a49019027a41970b5e11aa14558951efe35>1;

• vivado-fsmgen: Vivado/Vitis HLS FSM Diagram Generator

– This is a script that parses a Vivado HLS report and generates the respective
finite state machine diagram for it. Figure 46 shows part of an example FSM
generated by this tool;

Figure 46 – Part of an FSM generated by vivado-fsmgen.

Source: Elaborated by the author.

– LLVM IR instructions can be filtered out, so that only the ones of interest are
shown;

– This tool has been extensively used to study the timing analysis of Vivado. It
has also been used to study how the off-chip transactions were allocated;

1 This version is now deprecated.

https://github.com/comododragon/sdx-ocl-profcounter


132 APPENDIX A. Published Material and Developed Tools

– Repository: <https://github.com/comododragon/vivado-fsmgen>;

• pipelook: Pipeline Diagram Generator for Vivado/Vitis HLS Designs

– This is a script that generates the pipeline schedule from a Vivado HLS report.
Figure 47 shows part of a diagram generated by this tool;

Figure 47 – Part of a scheduled pipeline as presented by pipelook.

Source: Elaborated by the author.

– The II value can be adjusted in order to evaluate invalid or bottlenecking
configurations;

– This tool was extensively used to understand how II was calculated when
multiple off-chip transactions are considered (see paragraph 3.2.4.3.2);

– Repository: bundled with vivado-fsmgen;

• Lina (resource-aware version) (PERINA et al., 2021)

– This is an updated version of Lina that includes resource awareness, cache
mechanism and other quality improvements;

– Does not include the off-chip memory model;

– Repository: <https://github.com/comododragon/lina>;

• Lina (resource-aware + off-chip version)

– This version has the off-chip memory model attached;

– Repository: <https://github.com/comododragon/linaii>;

• nvpm: NVIDIA Power Monitor

– This small C application uses the NVIDIA’s Management Library (NVML) to
acquire power sensors information periodically;

https://github.com/comododragon/vivado-fsmgen
https://github.com/comododragon/lina
https://github.com/comododragon/linaii


A.2. Developed Tools 133

– Then, nvpm synchronises the sensed values with the period that the kernel was
executed;

– The consumed energy during kernel execution is then calculated;

– Used to sense the NVIDIA GPU on Appendix E;

• zynprof: Zynq Profiler

– Small suite used to calculate the consumed energy when running kernels on a
Xilinx Zynq UltraScale+ board;

– It is composed of a Python script and a C program. The C program is executed
on an Arduino Nano microcontroller, which communicates with the power
sensors;

– The Python script peridocally polls the microcontroller and acquires the power
information;

– Similarly to nvpm, zynprof synchronises the sensed values with the period that
the kernel was executed;

– The consumed energy during kernel execution is then calculated;

– Used to sense the ZCU104 FPGA on Appendix E.





135

APPENDIX

B
EARLY APPROACHES USING MACHINE

LEARNING MODELS

This appendix presents our early attempts of a mapping estimator for OpenCL
kernels using machine learning. The intent was to provide a fast estimation on where a
given OpenCL kernel would run best: FPGA or GPU. This rapid insight could be useful
in heterogeneous cloud systems for a fast and efficient deployment of OpenCL services.

We also proposed the inclusion of a kernel optimiser that would explore and opti-
mise the kernels for FPGA (and if possible for GPUs). Our early machine learning model
would then take this optimiser in consideration when estimating the best platform for an
input kernel. Figure 48 presents the concept of our early proposed model. From now on,
we will refer to an input kernel that is being tested by our model as a Kernel Under Test
(KUT).

Two approaches were developed. The first one uses a data mining tool named
DAMICORE and is presented in section B.1. The second approach uses neural networks
and is presented in section B.2.



136 APPENDIX B. Early Approaches Using Machine Learning Models

Figure 48 – Abstract representation of our proposed model. First, a reference set of OpenCL ker-
nels is optimised, executed and profiled. A code analyser is then used to derive other
representations (e.g. DFG) and/or numerical metrics from each kernel. These, along
with the profiled output metrics, are used to train the estimation model (dashed or-
ange arrow). During the use phase (solid green arrow), a test OpenCL kernel (KUT)
is analysed and fed to the the estimation model. The model outputs an early estima-
tion for the output metrics, considering the optimisation phases for each platform.

Source: Elaborated by the author.

B.1 DAMICORE Approach

Chart 12 presents the tools used by our first approach, and how they relate to the
model presented in Figure 48. A clusterisation tool named DAMICORE is used to find
a relation between the KUT and kernels that make part of a reference set. Depending
on how the KUT kernel is clustered among the reference kernels, a decision is taken on
whether the KUT is FPGA or GPU suitable. Our tool mdamicore2 expands DAMICORE
by allowing multiple representations to be considered at once, such as data-flow graph,
source code, etc. We use LLVM to generate these different representations.



B.1. DAMICORE Approach 137

Chart 12 – Tools used by our first approach, related to the abstract model previously presented.

From Figure 48 First approach
Estimation model mdamicore2
Code analyser LLVM standard passes
FPGA code optimiser None
FPGA synthesis & execution Altera SDK for OpenCL
GPU code optimiser None
GPU compilation & execution NVIDIA OpenCL SDK

Source: Elaborated by the author.

This approach can be summarised in the following steps:

• Training phase

1. Considering k kernels available from an initial reference set, prepare the r

different representations for each;

2. Execute mdamicore2 considering all kernels and representations;

3. Analyse the generated clusterisation, and using a suitability ranking based
on energy efficiency, remove the kernels that less contribute to each formed
cluster (e.g. a kernel marked as GPU-suitable that was included in a heavily
FPGA-suitable cluster);

4. Repeat from step 2 until a minimum number of kernels is reached.

• Use phase

1. Prepare the r representations for the KUT;

2. Create an input set for mdamicore2 containing the representations from the
KUT, and also from the reference set generated in the training phase;

3. Execute mdamicore2;

4. Analyse where the KUT was positioned (i.e. on which cluster and/or close to
which reference kernels), and use a selection criterion to decide if the KUT is
FPGA-suitable or not.

The next section presents the mdamicore2 tool used for data mining. Then, sub-
section B.1.2 presents the reference set generation, subsection B.1.3 presents the decision
making criterion used, subsection B.1.4 presents the quality metrics used to evaluate our
estimation, subsection B.1.5 presents the initial kernel set, and subsection B.1.6 presents
early results.



138 APPENDIX B. Early Approaches Using Machine Learning Models

B.1.1 The mdamicore2 Tool
The Data Mining of Code Repositories (DAMICORE) (SANCHES; CARDOSO;

DELBEM, 2011) is a clustering algorithm based on finding similarities by compression.
The use of compression for similarity analysis implies that any representation of data may
be used, from source codes to features extracted from them, in text or binary form.

This methodology combines three techniques: Normalised Compression Distance
(NCD), Neighbour Joining (NJ) and Fast Newman (FN), as shown in Figure 49. In short
terms, DAMICORE receives as input a set of data of the same type, creates a matrix with
NCD values from all pair-wise combinations, uses this matrix to generate a phylogenetic
tree using Neighbour Joining and finally detects clusters using Fast Newman. Figure 50
presents a typical DAMICORE output in visual format.

Figure 49 – DAMICORE flow.

Source: Elaborated by the author.

Figure 50 – Visual representation of a DAMICORE output. Each labelled node is a kernel.

Source: Elaborated by the author.

Sumoyama (2016) developed a similar approach as ours, however a different HLS
compiler was considered and GPUs were not targetted. Additionally, the kernel source
code was used as sole input representation for DAMICORE in his approach. This has
some drawbacks, for example code styling might heavily affect the results.

Our developed tool, mdamicore2, supports multiple representations as input si-
multaneously. This has the advantage of aggregating information about the kernel from



B.1. DAMICORE Approach 139

different perspectives. Consider an input data set of k kernels (e1,e2, ...,ek), each hav-
ing r different representations of its information (e1

i ,e
2
i , ...,e

r
i ). For each representation r,

mdamicore2 executes the compression and NCD matrix generation. An NCD matrix for
each type of representation is generated, and mdamicore2 merges them by calculating the
average matrix NCDavg:

NCDavg =
∑r

1 NCDi

r
(B.1)

The resultant NCDavg matrix is then delivered to the next steps of DAMICORE
(NJ and FN). Figure 51 presents such approach:

Figure 51 – Overview of mdamicore2 using average NCD matrix calculation.

Source: Elaborated by the author.

B.1.2 Reference Set Generation

A reference set with a good coverage on diverse code patterns and platform suit-
abilities is essential for quality estimations. Considering an initial kernel set (e.g. kernels
from Rodinia, SHOC), all applications are first compiled and executed on both platforms.
Then, the energy efficiency of each architecture is used as criterion for keeping or removing
kernels, until a set with enough coverage is reached.

Consider e = p× t as the consumed energy in terms of average power p and execu-
tion time t. We propose the anti-suitability values si (i ∈ {GPU,FPGA}), as the metric to



140 APPENDIX B. Early Approaches Using Machine Learning Models

be used during reference set generation. The anti-suitability for platform i is calculated
as follows:

si =
ei

max(eGPU,eFPGA)
(B.2)

The anti-suitability value ranges from 0 to 1. A value of si = 1 indicates that
architecture i is less suitable than the counterpart for the associated kernel.

Our reference set generation method is derived from the “Best Per-Group Coverage”
approach as presented by Martins (2015), which attempts to maximise the reference set
quality on a cluster basis instead of a global optimisation. In our case, a reference set
with ideal coverage would be composed of clusters that define different patterns of kernels
sharing common anti-suitability values. For the following method explanation, let S be
the list of candidate kernels to be removed from reference set; and let p and p̄ be a
notation to represent both platforms here considered, where p̄ is the counterpart of p (e.g.
if p = FPGA then p̄ = GPU, or if p = GPU then p̄ = FPGA). Our method is then defined
as:

1. The initial kernel set is clusterised using mdamicore2;

2. Then for every cluster:

a) Calculate sk
p and sk

p̄ for all kernels k within a cluster and decide the most
suitable platform (if sk

p < sk
p̄, k is suitable for p or vice-versa);

b) Label cluster as p-dominant if there are more kernels suitable for p than p̄ or
vice-versa. If the number of dominant kernels is the same, find weak dominancy:

• If ∑k sk
p < ∑k sk

p̄, cluster is p-(weak)-dominant or vice-versa;

c) If cluster is p-dominant (or weak), append to S the kernel with the smallest sp̄.
If more than one kernel fits this criteria, append to S the one containing the
largest sp value;

3. Check if there are kernels in S that are p-suitable but clusterised in a p̄-dominant
cluster;

a) If positive, remove the one with the smallest sp;

b) If negative, remove the kernel with the biggest sp̄;

4. Repeat all above steps until a minimum number of kernels is reached.



B.1. DAMICORE Approach 141

B.1.3 Decision Making
The generated reference set may then be used along with a KUT kernel to estimate

anti-suitability values and to decide which platform is best. Consider ŝi as being our
estimated value for si, C as the set containing all kernels of the cluster where the KUT
was included, and d j as the NCD value between the KUT and j kernel (i.e. the similarity
distance between both kernels). Adapted from Sumoyama (2016), we implement three
methods for estimating the anti-suitability values based on the KUT’s positioning:

• Cluster (c): average value from all kernels within the cluster:

ŝi =

∑
k∈C

sk
i

|C|
(B.3)

• Relative (r): the si values from the closest relative are used:

ŝi = sk
i |k ∈C,dk = min

m∈C
(dm) (B.4)

• Cluster + Relatives (cr): weighted average value from all kernels within the
cluster. The NCD values are used to weight the average:

d′k = max
m∈C

(dm)−dk (B.5a)

ŝi =

∑
k∈C

d′k · sk
i

∑
k∈C

d′k
(B.5b)

where d′k is a complement value of dk considering the maximum d value among
all kernels in the cluster. We use this value as weight instead of dk, since greater
distance implies in less influence. Thus, such value should weight less on the average
value.

B.1.4 Quality Metric
We evaluate the quality of a generated reference set by using another set of kernels

as KUT inputs. The values estimated by our model for these kernels are then compared
with their actual values. Considering K as the set of validation KUT kernels, two metrics
are defined:

• Let qa be the quality metric for a given decision making approach a (a ∈ {c, r,cr}):

qa =
|Ha|
|K|

(B.6)

where Ha is the set of kernels h (h ∈ K) on which approach a correctly inferred the
most suitable platform;



142 APPENDIX B. Early Approaches Using Machine Learning Models

• Let erri be the average anti-suitability error for platform i, defined as:

erri =

∑
k∈K
|sk

i − ŝk
i |

|K|
(B.7)

where sk
i is the true anti-suitability value derived from execution results for platform

i and kernel k, and ŝk
i is the inferred value by our model.

B.1.5 Initial Kernel Set
Our initial kernel set used to generate the reference and validation sets is composed

of 50 kernels, where 45 of them were collected from three benchmarks: SHOC1, Rodinia2

and CHO3 (NDU; NAVARIDAS; LUJÁN, 2015). The 5 remaining kernels are from an
in-house adaptation of a Reed-Solomon Decoder4.

We attempted to run all kernels on the following platforms:

• FPGA: BittWare S5PH-Q (Intel FPGA Stratix V);

• GPU: NVIDIA Quadro K620.

The following representations were generated for each kernel:

• src: kernel source code;

• xml-full: kernel XML description file. This file is used by hostcodegen to generate
the OpenCL host code (see Appendix A for more information);

• xml-norm: normalised kernel XML description (kernel and variable names are
omitted);

• ir: kernel intermediate representation generated by the LLVM compiler;

• cfg-full-(bmp|ps|plain): control-flow graph generated by the LLVM compiler in
BMP, PostScript or pure-text formats;

• cfg-norm-(bmp|ps|plain): normalised control-flow graph generated by the LLVM
compiler (only the graph structure is maintained) in BMP, PostScript or pure-text
formats.

1 SHOC kernels: bfs, fft, gemm, md, md5hash, reduction, spmv, stencil2d, scan.
2 Rodinia kernels: hotspot, kmeans, lavamd, nn, nw1, nw2, pathfinder, srad, backprop1, back-

prop2, lud1, lud2, lud3, particlefilter1, particlefilter2, leukocyte1, leukocyte2, hotspot3d, hy-
bridsort1, hybridsort2, hybridsort3, streamcluster, cfg, bptree.

3 CHO kernels: aes_enc, aes_dec, gsm, jpeg, sha, dfsin, dfmul, dfdiv, adpcm, motion, blowfish,
mips.

4 Reed-Solomon kernels: rsd1, rsd2, rsd3, rsd4, rsdfull. These are also based on the implemen-
tation of Agarwal, Ng et al. (2010) as the ones used in Appendix C. However, the ones here
used implement the task execution model instead.



B.1. DAMICORE Approach 143

B.1.6 Results

This section presents an early validation study for the proposed model. First, we
present the execution results for the initial kernel set (which kernels executed, which did
not, etc.). Then we use the kernels that successfully ran on both platforms to evaluate
our model.

B.1.6.1 Execution Results for the Initial Kernel Set

Not every kernel from the initial set compiled or executed on both platforms.
Reasons include:

• Some did not compile for the FPGA due to internal compiler errors, such as seg-
mentation fault or HLS compiler error;

• Some did not fit on the FPGA due to excessive resource usage;

• Some did not execute in GPU due to unsupported data types (e.g. long long) or
due to NDRange errors.

Chart 13 presents the compile and execution success for each kernel. For the ones
that executed on both platforms, we calculated the anti-suitability values and selected
the most suitable platform. We calculate the energy values by considering each platform’s
TDP5 (i.e. e = p× t, where p is the TDP and t the execution time). From all 50 kernels,
20 did not execute on FPGA or GPU (or both). From the 30 remaining, only 10 are
FPGA-suitable.

B.1.6.2 Evaluation of Proposed Model

For this section, consider that O is the set containing all kernels that executed on
both platforms, K is the set of KUTs used to evaluate our method, I is the initial set of
kernels used for reference set generation and F is the final reference set achieved6. We
then conducted six experiments, each with a variation on the set sizes and the number of
input representations considered. Table 6 presents the experiments and the parameters
considered for each.

Considering all experiments, 300 reference sets were generated. These were divided
as follows:

• For each experiment, five sub-experiments are generated;
5 Thermal’s Design Power, or TDP. The TDP can be seen as a worst-case power drain for a

platform.
6 K,I,F⊂O; F⊂ I; and K∩ I= /0.



144 APPENDIX B. Early Approaches Using Machine Learning Models

Chart 13 – Execution results for the initial kernel set.

Exec. success Exec. success
Kernel FPGA GPU Best platform Kernel FPGA GPU Best platform

SHOC CHO
bfs ✓ — aes_enc ✓ ✓ FPGA
fft ✓ — aes_dec ✓ ✓ FPGA
gemm ✓ — gsm ✓ ✓ FPGA
md ✓ ✓ GPU jpeg ✓ —
md5hash ✓ ✓ GPU sha ✓ —
reduction ✓ ✓ GPU dfsin ✓ —
spmv ✓ — dfmul ✓ —
stencil2d — dfdiv ✓ —
scan ✓ — adpcm ✓ ✓ FPGA

Rodinia motion —
hotspot ✓ — blowfish ✓ —
kmeans ✓ ✓ GPU mips ✓ ✓ FPGA
lavamd ✓ — Personal
nn ✓ ✓ GPU rsd1 ✓ ✓ FPGA
nw1 ✓ ✓ GPU rsd2 ✓ ✓ FPGA
nw2 ✓ ✓ GPU rsd3 ✓ ✓ FPGA
pathfinder — rsd4 ✓ ✓ FPGA
srad ✓ ✓ GPU rsdfull ✓ ✓ FPGA
backprop1 ✓ ✓ GPU
backprop2 ✓ ✓ GPU
lud1 ✓ ✓ GPU
lud2 ✓ ✓ GPU
lud3 ✓ —
particlefilter1 ✓ —
particlefilter2 ✓ —
leukocyte1 ✓ ✓ GPU
leukocyte2 ✓ ✓ GPU
hotspot3D ✓ ✓ GPU
hybridsort1 ✓ ✓ GPU
hybridsort2 ✓ ✓ GPU
hybridsort3 ✓ ✓ GPU
streamcluster ✓ ✓ GPU
cfd ✓ ✓ GPU
bptree ✓ —

Source: Research data.



B.1. DAMICORE Approach 145

Table 6 – Experimental setup for the mdamicore2 approach.

Experiment # |K| |I| |F| # of representations
1 10 20 14 2
2 12 18 12 2
3 14 16 12 2
4 10 20 14 3
5 12 18 12 3
6 14 16 12 3

Source: Research data.

• For each sub-experiment, the kernels in O are randomly split between K and I
according to the set sizes defined by the experiment. The available input represen-
tation types are also randomly sampled according to the amount defined by the
experiment;

• Then, for each sub-experiment. Ten reference sets F are generated and validated
using the kernels in K.

Table 7 and Table 8 present the best, worst and average quality metrics in each
experiment. In some cases the KUT was placed on an isolated cluster. When this occurred,
our model was not able to take a decision using cluster-based approaches (i.e. c and cr)
and thus they are not considered in the experiments. The r approach, however, does not
have this issue.

From the best and worst cases results, first experiment has the smallest accumu-
lated error using only 2 representations (xml-full and cfg-norm-ps). Experiment 5,
however, has almost the same accumulated error and 100% of hit rate. Experiment 1 has
also the least worst cases among all. In average, all experiments are similar, with a still
noticeable average error ranging from 0.150 to 0.350. However, qualities range in average
from 70% to 88% hit rates, an improved rate when compared to simple random pick of
platform.

Figure 52 presents the tree generated for the best case of experiment 5. In this
case, all FPGA kernels were clusterised together.

The representations most frequently present in best and worst cases were:

• Most frequent representation in best cases: xml-norm;

• Most frequent representation combination in best cases:

– 2 representations: xml-full, xml-norm;

– 3 representations: xml-norm, ir, cfg-full-bmp;



146 APPENDIX B. Early Approaches Using Machine Learning Models

Table 7 – Best and worst execution cases for each experiment.

Best
Experiment Qualities errFPGA errGPU

# qc qr qcr c r cr c r cr

1 1.000 0.900 1.000 0.085 0.179 0.085 0.011 0.093 0.010
2 1.000 1.000 1.000 0.122 0.115 0.122 0.105 0.107 0.104
3 0.929 1.000 0.929 0.158 0.076 0.152 0.123 0.085 0.120
4 1.000 1.000 1.000 0.119 0.131 0.119 0.051 0.046 0.051
5 1.000 1.000 1.000 0.087 0.172 0.089 0.045 0.046 0.045
6 0.929 1.000 0.929 0.076 0.128 0.076 0.106 0.077 0.108

Worst
Experiment Qualities errFPGA errGPU

# qc qr qcr c r cr c r cr

1 0.600 0.600 0.600 0.374 0.362 0.390 0.310 0.303 0.310
2 0.583 0.583 0.583 0.501 0.536 0.501 0.328 0.328 0.328
3 0.500 0.500 0.500 0.470 0.574 0.470 0.346 0.346 0.346
4 0.600 0.500 0.600 0.374 0.494 0.390 0.343 0.486 0.367
5 0.500 0.500 0.500 0.533 0.581 0.562 0.363 0.363 0.363
6 0.500 0.500 0.500 0.487 0.569 0.486 0.398 0.398 0.398

Source: Research data.

• Most frequent representation in worst cases: cfg-full-bmp;

• Most frequent representation combination in worst cases:

– 2 representations: cfg-full-bmp, cfg-full-ps;

– 3 representations: cfg-norm-bmp, cfg-norm-ps, cfg-full-bmp.

The XML description files were frequently present in the best cases, indicating its
potential importance as data mining input. The LLVM IR code and control-flow graph
(preferrably in image format) were also frequently present. It is possible to note that
the worst cases frequently included representations that describe the same information,
but on a different format (e.g. control-flow graph in text and image format both being
considered at the same time). This indicates the importance of having a diverse set of
input representations.



B.1. DAMICORE Approach 147

Table 8 – Average values for each experiment.

Average
Experiment Qualities errFPGA errGPU

# qc qr qcr c r cr c r cr

1 0.812 0.801 0.828 0.253 0.286 0.255 0.160 0.169 0.156
2 0.723 0.734 0.728 0.311 0.353 0.319 0.274 0.240 0.266
3 0.810 0.809 0.818 0.244 0.251 0.241 0.201 0.205 0.193
4 0.828 0.844 0.830 0.226 0.241 0.225 0.182 0.160 0.180
5 0.803 0.796 0.817 0.240 0.279 0.236 0.219 0.214 0.214
6 0.780 0.809 0.794 0.251 0.249 0.250 0.222 0.210 0.219

Average w/o first quartile
Experiment Qualities errFPGA errGPU

# qc qr qcr c r cr c r cr

1 0.864 0.837 0.878 0.219 0.257 0.220 0.133 0.158 0.130
2 0.782 0.773 0.787 0.270 0.317 0.269 0.245 0.224 0.237
3 0.871 0.847 0.871 0.203 0.219 0.199 0.161 0.195 0.156
4 0.874 0.891 0.874 0.200 0.211 0.200 0.149 0.129 0.148
5 0.864 0.846 0.879 0.195 0.243 0.191 0.192 0.187 0.186
6 0.824 0.858 0.839 0.223 0.221 0.221 0.195 0.182 0.193

Source: Research data.



148 APPENDIX B. Early Approaches Using Machine Learning Models

Figure 52 – Generated phylogenetic tree for best case in experiment 5.

Source: Research data.

B.2 Neural Network Approach
In the second approach, we used Artificial Neural Network (ANN) models to es-

timate the output metrics. Chart 14 presents the tools used and how they relate to the
model presented in Figure 48. Given a KUT kernel, numerical features are extracted using
our code analyser named OpCount. These features are fed to the neural network model,
which estimates the energy consumption for the KUT.

Chart 14 – Tools used by our second approach, related to the abstract model previously pre-
sented.

From Figure 48 Second approach
Estimation model Artificial neural network
Code analyser OpCount (LLVM-based)
FPGA code optimiser None
FPGA synthesis & execution Altera SDK for OpenCL
GPU code optimiser None
GPU compilation & execution NVIDIA OpenCL SDK

Source: Elaborated by the author.

The next section formulates the inputs and expected outputs of the model, sub-
section B.2.2 describes the neural network setups used, and subsection B.2.3 presents the



B.2. Neural Network Approach 149

experimental validation results.

B.2.1 Formulation and Methodology

The ANN models perform numerical transformations, i.e. both inputs and outputs
are numbers. Thus it is still necessary to formulate how the OpenCL kernels are converted
from source code to ANN input variables and which output metrics we are expecting for
the ANN to estimate.

B.2.1.1 ANN Inputs

We formulate the ANN inputs as being code features statically extractable from
an OpenCL kernel. First we use LLVM to compile from OpenCL to LLVM IR. Then a
custom LLVM pass named OpCount extracts the code features as presented in Chart 15.

Chart 15 – Extracted code features using OpCount.

Feature code Feature name Longest path criterion
lp Longest path # of instructions

noi Naive operational intensity # of instructions
nmi Naive memory intensity # of bytes transferred

fpops Floating-point operations # of FPOps
bars Number of barriers # of barriers

tc Maximum trip count —
ldep Deepest loop depth —

Source: Perina and Bonato (2018).

Feature lp counts the number of IR instructions along the longest path of the
control-flow graph (CFG) for the OpenCL code. Due to presence of loop back-edges in
the CFG making them directed cyclic graphs, finding the longest path is NP-hard. To
overcome this issue, we remove all loop back-edges and we compensate by multiplying the
affected CFG nodes with their respective loop’s trip count. Figure 53 presents an example
of a CFG and its longest path. This metric can be interpreted as the worst possible case
of execution, where loops are fully executed and the longest blocks are always taken from
conditionals.

Both noi and nmi metrics are composed by counting the number of bytes trans-
ferred by loads and stores instructions and dividing by the longest path of the CFG. In
the first metric, bytes are counted in the same path as the lp metric while the latter
considers the longest path where the most amount of bytes has been transferred. Both
metrics are based on the operational intensity concept as presented by Williams, Water-
man and Patterson (2009) in their Roofline model. The naive characteristic comes from
the fact that no input data is used to infer the code’s execution path.



150 APPENDIX B. Early Approaches Using Machine Learning Models

Figure 53 – Example of control-flow graph and its longest path in thicker edges. The weight of a
node describes the amount of contained instructions. As an example, it is assumed
a loop trip count of 50.

1

3

5

24 4

3

Longest path:
4 + 50 * (1 + 5 + 2) + 3 + 4

50x

Source: Perina and Bonato (2018).

The fpops metric counts the number of instructions where at least one operand
is of floating-point type, while the bars metric counts the number of OpenCL barriers.
Both counts consider worst-case scenario (e.g. for bars, the path with the most amount
of barriers).

Finally, tc exposes the maximum trip count within a CFG, while ldep exposes
the maximum loop depth in this graph.

B.2.1.2 ANN Outputs

Our models estimate the following outputs:

• Energy Consumption: the amount of energy consumed by a kernel. Currently
this value is acquired by multiplying the execution time by the architecture’s TDP;

• Class: after calculating energy consumption, the kernel can be assigned to a class
(i.e. FPGA or GPU) by considering the smallest consumption.

B.2.2 Neural Network Experimental Setup

Using MathWorks MATLAB R2015a, the following neural networks were used:
learning vector quantisation (lvq), multi-layer perceptron (mlp) and radial basis function
(rbf). In each network, several parameters were varied in order to explore different topolo-
gies and their performances. A single combination of such parameters is henceforth called
setup. Chart 16 presents the explored setup parameters for all networks.

Since lvq has a faster training than the other networks, we first explored using
lvq with a broad set of feature combinations. Then, the best combinations were selected
to be used with the other networks.

The cross-validation method with random subset sampling was used on all net-
works, where 100 trainings were performed for each possible setup. Each training/valida-



B.2. Neural Network Approach 151

Chart 16 – Neural networks setup parameters.

LVQ
Parameter Possible values

No. of neurons 2, 4 and 8
Input variables sets All features, (lp), (lp, noi), (lp, nmi), (lp, fpops, bars),

(lp, noi, nmi, fpops, bars),
(lp, noi, nmi, fpops, bars, ldep),
(noi, nmi, fpops, bars, ldep), (fpops, bars)

Output metric Class assignment
MLP

Parameter Possible values
Number of hidden layers 1, 2 and 3

Hidden layers topology (5), (10), (50), (5, 5), (5, 10), (5, 50), (10, 10), (10, 50),
(50, 50), (5, 5, 5), (5, 5, 10), (5, 5, 50), (5, 10, 10),
(5, 10, 50), (5, 50, 50), (10, 10, 10), (10, 10, 50),
(10, 50, 50), (50, 50, 50)

Input variables sets All features and also the most accurate combinations
from LVQ

Output metric Energy consumption and class assignment
RBF

Parameter Possible values
Spread 0.02, 0.03, 0.04, 0.05, 0.06 and 0.07

Input variables sets All features and also the most accurate combinations
from LVQ

Output metric Energy consumption and class assignment
Source: Perina and Bonato (2018).

tion phase produces results that are analysed by a performance metric. For the continuous
energy consumption, Root-Mean-Squared Error (RMSE) was used:

RMSE =

√√√√ ∑
k∈K

(ŷk− yk)2

|K|
(B.8)

where K is the set of kernels used for validation, ŷk is the estimated value by our model and
yk is the actual value. For the discrete class assignment metric (i.e. ŷk,yk ∈ {FPGA,GPU}),
hit rate was used:



152 APPENDIX B. Early Approaches Using Machine Learning Models

HIT =
|H|
|K|

(B.9a)

H = {k ∈ K | ŷk = yk} (B.9b)

where H is the set containing all kernels where the correct platform was inferred. For
example, a network with a 0.9 hit rate implies that it was able to correctly infer the most
suitable accelerator for 90% of the validation subset.

After all 100 trainings, the best, worst and average performance metrics were
calculated for each possible setup. All input variables and output metrics were normalised
prior to training and validation.

The same kernel set from the previous approach was used. Please refer to subsec-
tion B.1.5 for detailed information about the kernels and platforms.

B.2.3 Experimental Results

Table 9 presents performance results for all networks. In lvq, results for all ex-
tracted features and two other setups with the best average performance are presented,
while for mlp and rbf only the best setup is presented.

For lvq, the best average performance was for the setup (lp, nmi) with 4 neurons,
reaching almost 85%. For mlp, the estimation error for energy is significant as pointed by
the RMSE: the best setup has an average error of 16563.9 and 5362.9 for GPU and FPGA
respectively for an unnormalised interval of [2.0;62507.4] for GPU and [1.7;20239.1] for
FPGA, all in kilojoules (kJ). For rbf, interestingly the best performance was found when
using all input variables, though several other setups for this network had almost the same
performance. Considering energy consumption, not only did rbf perform slightly better
(average error of 14376.2kJ and 4654.6kJ for GPU and FPGA respectively) but the worst
RMSE was also smaller.

For both lvq and mlp, the input variables combination (lp, nmi) was present in
almost all best results. For class assignment in mlp and rbf, the combination (lp, noi,
nmi, fpops, bars) performed better.

A likely cause for the significant energy estimation error is the size of training and
cross-validation subsets, not having sufficient coverage for an ideal estimation. However,
the lvq network was able to correctly infer the most suitable platform for an average of
almost 85%, outperforming all other approaches. Such result could be further improved
by increasing the number of samples for training and validation.



B.3. Final Remarks 153

Table 9 – Performance results for all networks.

LVQ
HIT

Output Input variables Neurons Worst Best Avg.
Class All 4 0.400 1.000 0.764

(lp, nmi) 4 0.400 1.000 0.849
(lp, noi, nmi, fpops, bars) 8 0.400 1.000 0.826

MLP
RMSE / HIT

Output Input variables Neurons Worst Best Avg.
Energy (lp, nmi) (5, 5) 0.664 0.063 0.265
Class (lp, noi, nmi, fpops, bars) (5) 0.200 1.000 0.798

RBF
RMSE / HIT

Output Input variables Spread Worst Best Avg.
Energy All 0.03 0.385 0.032 0.230
Class (lp, noi, nmi, fpops, bars) 0.07 0.400 1.000 0.716

Source: Perina and Bonato (2018).

B.3 Final Remarks
This appendix presented the early approaches in regard to estimation of metrics

involving OpenCL kernels on FPGA and GPU. Two approaches were presented to estimate
the best platform and the energy consumption of a given test kernel. The first approach
used a data mining clusterisation tool and was able to reach an average hit rate of 70% to
88% when estimating the most suitable platform for a kernel. The second approach was
modelled around neural networks, and was able to reach nearly 85% of hit rate.

Both models, however, have significant errors when estimating the energy con-
sumption values. One of the reasons is the initial kernel set size used for generating the
reference sets and training, which was still small. Furthermore, the kernels designed for
GPUs (Rodinia and SHOC) had poor performance on FPGAs, and conversely the kernels
from CHO performed bad on GPUs. We then proceeded on finding more kernels and also
to study the proposed code optimiser as depicted in Figure 48. The findings of this pos-
terior phase is presented on Appendix C, which indicated that a code optimiser on the
OpenCL level would be too complex.





155

APPENDIX

C
COMPARATIVE ANALYSIS OF OPENCL

KERNELS IN FPGA AND GPU

In this appendix, we present a comparison analysis of OpenCL performance porta-
bility. We executed a set of OpenCL kernels with varying degree of HLS optimisation
efforts, and we assessed the FPGA performance standpoint of these kernels in compari-
son to GPU. This analysis was motivated after our results using machine learning models,
as presented in Appendix B. When gathering a set of OpenCL kernels that would com-
pose our machine learning training and validation sets, we noticed that the kernels were
performing really bad on the platforms they were not designed for.

All kernels and analyses can be found in our project repository1. In the following
section, we present the two OpenCL execution models and how they relate to FPGAs and
GPUs.

C.1 OpenCL Execution Models
An OpenCL application is divided in two parts: the device and the host codes. The

device code is the OpenCL kernel, a function written using C-alike semantics that executes
on the accelerator. The host code is a C/C++ application that uses the OpenCL API and
is responsible for: allocating resources to access the device; managing the communication
from/to the device; dispatching kernels for execution; etc. Usually, the OpenCL host is
a system running Linux/Windows and the OpenCL device is an accelerator attached to
the host using a high-speed communication bus (e.g. PCI Express).

Two execution models are available when designing OpenCL kernels: task and
NDRange. When using the task model, the kernel executes on the accelerator using a
single compute core, similar to a sequential software execution in a single CPU core.
1 https://github.com/comododragon/opencl-4all



156 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

When using the NDRange model, the OpenCL framework instantiates several work-items
to be executed in a SIMD fashion, each processing a different set of input/output data.
Then, these work-items are scheduled for execution in one or more compute units within
an accelerator. Figure 54 compares the execution mapping of a simple vector add when
using task or NDRange models.

Figure 54 – Comparison between the task and NDRange models for a simple vector add.

Source: Elaborated by the author.

GPUs are naturally suited for the NDRange model and therefore most — if not
all — GPU kernels available are designed in this format. FPGAs support both task and
NDRange, however the suitability of each execution model is dependent on the application.
The task model implemented on AOCL allows the exploration of deep pipeline parallelism,
which is very suitable for FPGAs. However, in the case where the compiler is not able
to implement an efficient pipeline when using the task model, the NDRange might still
be benefitial for FPGAs. The reason is that NDRange employs dynamic pipelining (at



C.2. Kernel Set 157

work-item level) that can achieve better results than the statically pipelined case of task
model (ZOHOURI, 2018).

C.2 Kernel Set
The performance results of the kernels used in our machine learning models have

shown that all OpenCL kernels designed for one architecture performed poorly on the one
that they were not designed for. This is expected, as pointed by Zohouri (2018), Muslim et
al. (2017) and Weller et al. (2017). As a consequence, our intention was to attach a model
to our framework that would optimise NDRange kernels when targetting FPGAs. But,
prior to developing such model, we decided to evaluate the performance standpoint of
FPGAs when considering NDRange kernels, and also how much code optimisation would
be necessary to achieve competitive performance against GPUs.

To this end, we gathered 56 kernels from varied sources and compared the perfor-
mance and estimated energy consumption between FPGAs and GPUs. We divide these
kernels in three classes, each considering a different level of optimisation effort towards
HLS. There are similar kernels across classes, and these can be used to quantify the im-
provements proportional to the amount of HLS optimisations applied. Figure 55 presents
a Venn diagram of the applications included in our kernel set, and how they spread across
classes.
Figure 55 – Venn diagram of the kernels collected separated in three classes. Each class rep-

resents a different level of FPGA optimisation effort and execution model. Kernel
variants (e.g. nw(1), nw(2)) are grouped.

Source: Elaborated by the author.

Some kernels were slightly modified to facilitate integration with our testbench and



158 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

with the FPGA vendor that we used. Similarly, the optimisations not supported by our
vendor were removed. Please refer to the provided repository for a complete description
of our modifications and the optimisations implemented in each kernel.

C.2.1 Class I: FPGA-unoptimised NDRange Kernels

The first class includes kernels that are of type NDRange, without any optimisation
towards FPGA. There are 38 kernels in total: 24 from Rodinia, 9 from SHOC, and 5
kernels from a Reed-Solomon application. The Reed-Solomon kernels are based on an
implementation of Agarwal, Ng et al. (2010), which we converted to OpenCL and manually
mapped to the NDRange model.

Chart 17 presents the kernels for this class. Since all are NDRange with no FPGA
optimisations, this class exemplifies the case where one simply tries to execute a kernel
created for GPU in an FPGA.

C.2.2 Class II: FPGA-optimised NDRange Kernels

The second class includes NDRange kernels that were analysed and optimised for
FPGA, and it is composed of 9 kernels from Zohouri (2018), 2 from Weller et al. (2017)
and 3 from Muslim et al. (2017). The kernels added from Zohouri (2018) are optimised
variants of some Rodinia kernels present in the first class.

Chart 18 presents the 14 kernels gathered. This class exemplifies the cases where
one tried to optimise NDRange kernels for FPGA without changing its execution model.

C.2.3 Class III: FPGA-optimised Task Kernels

According to Zohouri et al. (2016), the task execution model is more suitable for
FPGAs, although for some applications the NDRange model might still suit better. The
task model usually reflects in deeper pipelines, which is adequate for FPGAs.

In this class, we include kernels specifically written for FPGA execution using the
task model. These kernels are heavily optimised variants of Rodinia applications present
in the previous classes. The codes went through a significant rewrite, since the whole
execution model was swapped.

Chart 19 presents the 4 kernels included. This class exemplifies the cases where
one heavily optimised an OpenCL kernel for FPGA, including the swap from NDRange
to task model.



C.2. Kernel Set 159

Chart 17 – FPGA-unoptimised NDRange kernels.

Kernel Data size Source
Hotspot 500×500 data points Rodinia
K-means 30000 points, 34 features Rodinia
LavaMD 10 boxes1d, 128 threads/block, 1000 blocks Rodinia

NN 42764 records Rodinia
NW(1) 2048×2048 data points Rodinia
NW(2) 2048×2048 data points Rodinia

Pathfinder 100 rows, 10000 cols Rodinia
SRAD 502×458 image, 100 iter., 0.5 lambda Rodinia

Backprop(1) 65536 nodes Rodinia
Backprop(2) 65536 nodes Rodinia

LUD(1) 1024×1024 matrix Rodinia
LUD(2) 1024×1024 matrix Rodinia
LUD(3) 1024×1024 matrix Rodinia

Leukocyte(1) 175×596 data points Rodinia
Leukocyte(2) 219×640 data points Rodinia
Hybridsort(1) 1000000 elements Rodinia
Hybridsort(2) 1000000 elements Rodinia
Hybridsort(3) 1000000 elements Rodinia

Hotspot3D 512×512×8 data points, 3 iterations Rodinia
CFD 485760 variables, 97152 areas and Rodinia

step factors
BPTree 7874 nodes, 1000000 records Rodinia

Particlefilter(1) 128×128 image, 10 frames, 40000 particles Rodinia
Particlefilter(2) 128×128 image, 10 frames, 40000 particles Rodinia
Streamcluster 65536 points, 64 dimensions Rodinia

BFS 1000 nodes, max. degree 3 SHOC
FFT 65536 points SHOC

GEMM 128×128 matrices SHOC
MD 12288 atoms SHOC

MD5Hash 10000000 keyspace size, size of byte 7, SHOC
10 values per byte

Reduction 131072 elements SHOC
SpMV Sparse matrix with 1024 rows SHOC

Stencil2D 271392 data points SHOC
Scan 262144 data points SHOC

NDRSD(1) 255 blocks of 255 bytes, Personal
where 32 are check symbols

NDRSD(2) 255 blocks of 255 bytes, Personal
where 32 are check symbols

NDRSD(3) 255 blocks of 255 bytes, Personal
where 32 are check symbols

NDRSD(4) 255 blocks of 255 bytes, Personal
where 32 are check symbols

NDRSDFull 255 blocks of 255 bytes, Personal
where 32 are check symbols

Source: Elaborated by the author.



160 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

Chart 18 – FPGA-optimised NDRange kernels.

Kernel Data size Source
Hotspot 500×500 data points Rodinia, Zohouri (2018)
NW(1) 2048×2048 data points Rodinia, Zohouri (2018)
NW(2) 2048×2048 data points Rodinia, Zohouri (2018)

Pathfinder 100 rows, 10000 cols Rodinia, Zohouri (2018)
SRAD 502×458 image, 100 iter., 0.5 lambda Rodinia, Zohouri (2018)

LUD(1) 1024×1024 matrix Rodinia, Zohouri (2018)
LUD(2) 1024×1024 matrix Rodinia, Zohouri (2018)
LUD(3) 1024×1024 matrix Rodinia, Zohouri (2018)

Hotspot3D 512×512×8 data points, 3 iterations Rodinia, Zohouri (2018)
Poisson(1) 2 float16 vectors with 65536 elements Weller et al. (2017)
Poisson(2) 2 float16 vectors with 65536 elements Weller et al. (2017)
Bitonic(1) 4096 elements Muslim et al. (2017)
Bitonic(2) 4096 elements, stride of 2048 Muslim et al. (2017)
Bitonic(3) 4096 elements, stride of 32 Muslim et al. (2017)

Source: Elaborated by the author.

Chart 19 – FPGA-optimised task kernels.

Kernel Data size Source
Hotspot 500×500 data points Rodinia, Zohouri (2018)

NW 2048×2048 data points Rodinia, Zohouri (2018)
Pathfinder 100 rows, 10000 cols Rodinia, Zohouri (2018)
Hotspot3D 512×512×8 data points, 3 iterations Rodinia, Zohouri (2018)

Source: Elaborated by the author.

C.3 Evaluation Setup
In this section, we define the evaluation setup used, including how we split the

kernel in different experiments, the suitability metrics and the platforms used.

C.3.1 Experimental Setup

We use the classes specified above to define three experiments — A, B and C —,
each providing a different level of optimisation effort for HLS. For FPGA, experiments A,
B and C include kernels from classes I, II and III, respectively. For GPUs, we use the most
adequate kernel versions available in the classes. For example, it is not suitable to use the
kernels of class III on a GPU, since all kernels use just a single compute core, wasting all
the SIMD potential of this architecture. For the Rodinia and SHOC kernels, we always
use the kernels from class I on GPU. For the remaining kernels, we use the NDRange
versions from class II. Although these were optimised for FPGA, they still adopt the
correct execution model for GPUs. Chart 20 presents how the classes are related to the



C.3. Evaluation Setup 161

proposed experiments.

Chart 20 – Class mapping for each experiment.

Experiment FPGA GPU
A Class I Class I
B Class II Class IIa and Class Ib

C Class III Class I
a Poisson(1), Poisson(2), Bitonic(1), Bitonic(2) and Bitonic(3) only.
b For all remaining kernels in experiment B.
Source: Elaborated by the author.

Some of the applications here considered are split into multiple kernels. These
kernels are identified numerically between parentheses (e.g. NW(1)). While in classes I
and II the NW application is composed of two kernels, Zohouri (2018) merged it into a
single one for the task-optimised version. In this case, we compare the performance of
NW from experiment C against the performance of NW(1) and NW(2) together. Since
the host logic is minimal between the kernel calls for NW(1) and NW(2), we believe that
such comparison is fair.

Our intention is to compare the sole compute capability of each platform, therefore
we only measure the execution time of the kernel, ignoring host and data transfer times.

C.3.2 Suitability Metrics

For the evaluation, we use two metrics: execution time t and estimated consumed
energy e. We estimate consumed energy by multiplying t and p:

e = p× t (C.1)

where p is the platform’s Thermal Design Power (TDP).

A straightforward evaluation is to compare t or e from each platform, then assess
which is the most suitable platform by considering the smallest value. This, however, does
not quantify how much “better” or “worse” one platform is in relation to another for a
given kernel. Thus we propose an additional evaluation where the “relative distance” of
each metric is considered. Considering two platforms of comparison x and y, and a metric
mi to be compared (i ∈ {x,y}, m ∈ {t,e}), we define the relative distances dx and dy as
being:



162 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

dx =
my

mx +my
(C.2a)

dy =
mx

mx +my
(C.2b)

1 = dx +dy (C.2c)

If both platforms have similar results for a metric, dx and dy will tend to 0.5,
i.e. they have similar performance. If mx < my dx will tend to 1 while dy will tend to
0. Therefore, dx and dy quantitatively express the suitability (in terms of m) of each
platform for a given kernel. We will henceforth call these distances as “suitability”, and
we call the analysis performed using these values as “relative analysis”. Conversely, we
call the straightforward comparison of simply selecting the smallest value as “absolute
analysis”.

As an example, consider that a kernel had an execution time of 0.9s on platform x

and 0.8s on platfom y. The absolute analysis is the simple case of concluding that y is more
suitable than x, since 0.8 < 0.9. The suitability values are dx = 0.8× (0.8+0.9)−1 = 0.47
and dy = 0.9×(0.8+0.9)−1 = 0.53. Since both values are close to 0.5, it is possible to assess
that both x and y platforms have near-comparable performance results, even though y is
faster than x for this kernel.

C.3.3 Accelerator Platforms
We execute our experiments in two FPGAs and two GPUs, as presented in Chart 21.

To reduce verbosity, we will refer to each platform by their aliases as defined in the table.

Chart 21 – Platforms used.

Type Platform Chipset TDP Fab. Alias
FPGA BittWare S5PH-Q Intel FPGA Stratix V 5sgxa7 25Wa 28nm sv

FPGA HARP Intel FPGA Arria 10 30Wb 20nm a10

GPU NVIDIA Quadro NVIDIA Quadro K620 41Wc 28nm qdr

GPU EVGA ACX 2.0 NVIDIA GTX980 165Wd 28nm gtx
a (Nallatech, 2018a)
b (Nallatech, 2018b; Intel Corporation, 2018a)
c (NVIDIA Corporation, 2018)
d (Geeks3D, 2015)
Source: Elaborated by the author.

These two GPUs were selected as being representative of both low and high power
platforms. The gtx is considered as a high-power, high-performance GPU, whereas qdr
has lower power.



C.4. Results 163

Table 10 – Compilation and execution success results.

sv a10 qdr gtx

Exp. Total Synth. Exec. Synth. Exec. Compil. Exec. Compil. Exec.
A 38 34 34 34 20 38 36 38 36
B 14 13 13 14 13 14 13 14 13
C 4 4 4 3 3 3 3 3 3

Source: Research data.

The a10 FPGA is available as part of the Intel Hardware Accelerator Research
Program (HARP) (Intel Corporation, 2018b). For some of the kernels optimised by Zo-
houri (2018), a version specifically tailored for the Arria 10 FPGA is provided. Therefore
we use these versions when targetting the a10 FPGA.

We could not find the typical TDP for the exact FPGA platforms we used, therefore
we used TDP from different platforms that share the same chipset (references in Chart 21).
For the GPUs, we used NVIDIA OpenCL SDK 384.81. For the FPGAs, we used Intel
FPGA SDK for OpenCL versions “16.1” and “16.0 Pro” for sv and a10, respectively.

C.4 Results

Not all kernels did synthesise or run on both platforms due to various reasons,
such as lack of enough FPGA resources or compiler failures (e.g. compiler segmentation
fault)2. In the following sections, we analyse the results for each experiment through 2
comparison scenarios: sv vs. the GPUs and a10 vs. the GPUs. Therefore, we only consider
the kernels that successfully ran on all platforms for each scenario (e.g. when analysing
sv vs. the GPUs, we consider the kernels that executed on sv, qdr and gtx). Table 10
presents the number of kernels that successfully executed in each platform.

C.4.1 Experiment A

Considering the 38 kernels from the first experiment, 32 successfully executed on
sv, qdr and gtx, and 20 successfully executed on a10, qdr and gtx. Table 11 presents the
absolute analysis (as explained in subsection C.3.2) for both proposed scenarios. None of
the FPGAs performed better in terms of execution time for any kernel, however the figure
slightly changes when analysing the energy consumption. For some kernels, the FPGAs
were more energy-efficient than the high-power gtx GPU. However, the low-power qdr
still beats all FPGAs in both metrics. Although the GPUs clearly performed better, the

2 Please refer to the project repository for more detailed information regarding the failures.



164 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

Table 11 – Experiment A: absolute analysis.

Suitability Criterion Execution time Energy consumption

Comparison sv
×

qd
r

sv
×

gt
x

a1
0×

qd
r

a1
0×

gt
x

sv
×

qd
r

sv
×

gt
x

a1
0×

qd
r

a1
0×

gt
x

# of FPGA-suitable kernels 0 0 0 0 0 6 0 2
# of GPU-suitable kernels 32 32 20 20 32 26 20 18

Source: Research data.

few kernels where FPGA had some advantage may show that the NDRange model is still
viable for FPGAs.

Table 12 presents the results for relative analysis using the proposed suitability
metric. Kernels that did not execute on each FPGA and both GPUs are filled with “—”.
Since d f pga is complementary to dgpu, we only present the d f pga values (i.e. the higher
the values, the more FPGA-suitable a kernel is). The average suitability shows that both
FPGAs were considered less efficient when compared to the low-power qdr (0.17 and
0.11 for sv and gtx) than when compared to the gtx (0.27 and 0.19 for sv and a10,
respectively). Figure 56 presents a graphical representation for the comparison, where it
can be seen that the FPGA suitability tends to be reduced when compared to the low-
power GPU. Further analysis is required using actual energy measurements to draw any
conclusions in this end.

Comparing both FPGAs, sv presented better results than a10 for nearly every
kernel. However, the a10 is able to house more complex hardware (e.g. GEMM).

C.4.2 Experiment B

From the 14 FPGA-optimised NDRange kernels, 12 succesfully executed on sv,
qdr and gtx, and also 12 successfully executed on a10, qdr and gtx. Table 13 presents
the absolute analysis for both proposed scenarios. The Poisson kernels is more efficient
on the sv FPGA than on the gtx GPU. This result is divergent from the original work
(WELLER et al., 2017), since in their case the FPGA loses in both performance and energy
consumption against a high-power GPU. However, they used CUDA for the GPU version,
which may provide better results than using OpenCL on GPU. All the Bitonic kernels
performed worse in FPGA, which is also contrary to the original results from Muslim et
al. (2017). However, we removed optimisations that were incompatible to the vendor we
used (Altera). This likely led to performance degradation and further indicates the need
of platform and vendor-specific optimisations. The Hotspot kernel from this experiment is
actually the most optimised version from Zohouri (2018) and therefore it presents better



C.4. Results 165

Table 12 – Experiment A: relative analysis.

Kernel sv×qdr sv×gtx a10×qdr a10×gtx

Hotspot 0.15 0.15 0.10 0.10
K-Means 0.03 0.06 0.01 0.03
LavaMD 0.07 0.05 0.05 0.03

NN 0.24 0.54 — —
NW(1) 0.18 0.37 — —
NW(2) 0.19 0.38 — —

Pathfinder — — — —
SRAD 0.29 0.29 0.04 0.04

Backprop(1) 0.04 0.03 — —
Backprop(2) 0.21 0.28 0.09 0.12

LUD(1) 0.47 0.77 — —
LUD(2) 0.14 0.25 — —
LUD(3) 0.01 0.01 — —

Leukocyte(1) 0.05 0.05 0.00 0.00
Leukocyte(2) 0.03 0.02 0.00 0.00
Hybridsort(1) 0.15 0.14 — —
Hybridsort(2) 0.10 0.21 0.05 0.11
Hybridsort(3) 0.26 0.26 0.05 0.05

Hotspot3D 0.02 0.01 0.02 0.01
CFD 0.27 0.40 0.24 0.36

BPTree 0.20 0.14 0.08 0.05
Particlefilter(1) — — — —
Particlefilter(2) — — — —
Streamcluster 0.03 0.02 — —

BFS — — — —
FFT 0.24 0.47 0.21 0.43

GEMM — — 0.19 0.48
MD 0.14 0.11 — —

MD5Hash 0.30 0.21 0.24 0.16
Reduction 0.11 0.29 — —

SpMV 0.05 0.06 0.04 0.05
Stencil2D 0.12 0.21 — —

Scan 0.05 0.10 — —
NDRSD(1) 0.38 0.70 — —
NDRSD(2) 0.35 0.68 0.04 0.13
NDRSD(3) 0.45 0.77 0.34 0.67
NDRSD(4) 0.24 0.56 0.08 0.25
NDRSDFull — — 0.33 0.65

Average 0.17 0.27 0.11 0.19
Source: Research data.



166 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

Figure 56 – Relative analysis for experiment A comparing each FPGA against both GPUs.

Hotspot
K-Means
LavaMD

NN
NW(1)
NW(2)
SRAD

Backprop(1)
Backprop(2)

LUD(1)
LUD(2)
LUD(3)

Leukocyte(1)
Leukocyte(2)
Hybridsort(1)
Hybridsort(2)
Hybridsort(3)

Hotspot3D
CFD

BPTree
Streamcluster

FFT
MD

MD5Hash
Reduction

SpMV
Stencil2D

Scan
NDRSD(1)
NDRSD(2)
NDRSD(3)
NDRSD(4)

0 0.2 0.4 0.6 0.8 1
Relative distance

sv x qdr

sv x gtx

(a) sv×GPU

Hotspot

K-Means

LavaMD

SRAD

Backprop(2)

Leukocyte(1)

Leukocyte(2)

Hybridsort(2)

Hybridsort(3)

Hotspot3D

CFD

BPTree

FFT

GEMM

MD5Hash

SpMV

NDRSD(2)

NDRSD(3)

NDRSD(4)

NDRSDFull
0 0.2 0.4 0.6 0.8 1

Relative distance

a10 x qdr

a10 x gtx

(b) a10×GPU

Source: Research data.

Table 13 – Experiment B: absolute analysis.

Suitability Criterion Execution time Energy consumption

Comparison sv
×

qd
r

sv
×

gt
x

a1
0×

qd
r

a1
0×

gt
x

sv
×

qd
r

sv
×

gt
x

a1
0×

qd
r

a1
0×

gt
x

# of FPGA-suitable kernels 0 0 0 0 2 5 1 1
# of GPU-suitable kernels 12 12 12 12 10 7 11 11

Source: Research data.

energy efficiency than the GPUs for the sv FPGA. Similarly to the previous experiment,
the a10 FPGA performed worse than the sv for nearly every kernel.

Table 14 presents the results for relative analysis. The outcome is quite similar from
the first experiment: the FPGAs are in a slightly better position against the gtx than the
qdr GPU. However, the FPGAs still lose in performance for every kernel against GPUs.
Nonetheless, the average suitability from both FPGAs increased when compared to the
previous experiments, which corroborates with the need of FPGA-specific optimisations.
Figure 57 presents the graphical representation of the relative analysis.



C.4. Results 167

Figure 57 – Relative analysis for experiment B comparing each FPGA against both GPUs.

Poisson(1)

Poisson(2)

Bitonic(1)

Bitonic(2)

Bitonic(3)

NW(1)

NW(2)

Hotspot

Hotspot3D

SRAD

LUD(1)

LUD(2)
0 0.2 0.4 0.6 0.8 1

Relative distance

sv x qdr
sv x gtx

(a) sv×GPU

Poisson(1)

Poisson(2)

Bitonic(1)

Bitonic(2)

Bitonic(3)

NW(1)

NW(2)

Hotspot

SRAD

LUD(1)

LUD(2)

LUD(3)
0 0.2 0.4 0.6 0.8 1

Relative distance

a10 x qdr
a10 x gtx

(b) a10×GPU

Source: Research data.

C.4.3 Experiment C

Finally, the 4 task-optimised kernels were executed on FPGA. A total of 3 kernels
succesfully executed on sv, qdr and gtx, and only 2 successfully executed on a10, qdr
and gtx. Table 15 presents the absolute analysis for both proposed scenarios. The NW
kernel did not fit on the a10, requiring further optimisation study. For the first time in the
experiments, one kernel had better performance on the sv FPGA. As mentioned in the
previous experiment, the NDRange version of Hotspot is more optimised than the task
version even for FPGA, therefore it presents worse performance in this experiment than
the previous one. The optimisation applied to Hotspot3D greatly improved its standpoint,
however still not enough to beat the GPUs.

Table 16 presents the results for relative analysis. The sv presents an improved
average suitability compared to the other experiments, whereas not much changed for the
a10. By analysing the compilation reports, we found that the optimisations applied in
these kernels are enough for generating efficient pipelines in both FPGAs, but a10 designs
had slower operating frequencies.



168 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

Table 14 – Experiment B: relative analysis.

Kernel sv×qdr sv×gtx a10×qdr a10×gtx

Poisson(1) 0.50 0.52 0.53 0.55
Poisson(2) 0.54 0.53 0.41 0.41
Bitonic(1) 0.05 0.12 0.03 0.08
Bitonic(2) 0.08 0.21 0.06 0.17
Bitonic(3) 0.08 0.19 0.03 0.09

NW(1) 0.32 0.57 0.12 0.28
NW(2) 0.33 0.57 0.13 0.28
Hotspot 0.53 0.53 0.43 0.43

Hotspot3D 0.07 0.05 — —
Pathfinder — — — —

SRAD 0.26 0.26 0.06 0.06
LUD(1) 0.09 0.28 0.07 0.23
LUD(2) 0.10 0.19 0.04 0.09
LUD(3) — — 0.26 0.25
Average 0.25 0.34 0.18 0.24

Source: Research data.

Table 15 – Experiment C: absolute analysis.

Suitability criterion Execution time Energy consumption

Comparison sv
×

qd
r

sv
×

gt
x

a1
0×

qd
r

a1
0×

gt
x

sv
×

qd
r

sv
×

gt
x

a1
0×

qd
r

a1
0×

gt
x

# of FPGA-suitable kernels 1 1 0 0 1 1 0 0
# of GPU-suitable kernels 2 2 2 2 2 2 2 2

Source: Research data.

Table 16 – Experiment C: relative analysis.

Kernel sv×qdr sv×gtx a10×qdr a10×gtx

NW 0.83 0.93 — —
Hotspot 0.20 0.19 0.14 0.14

Hotspot3D 0.32 0.25 0.26 0.20
Pathfinder — — — —

Average 0.45 0.46 0.20 0.17
Source: Research data.



C.4. Results 169

Table 17 – Average execution time ratios all vs. allab.

sv a10 qdr gtx sv-B a10-B sv-C a10-C

sv 1.82 — — — — — —
a10 — — — — — — —
qdr 20.66 116.36 — 3.80 4.84 — 5.43
gtx 82.44 575.16 2.87 9.56 14.35 1.47 27.41
sv-B 60.54 6.83 — — 1.37 — —
a10-B 107.55 4.32 — — — — 2.62
sv-C 135.60 13.79 1.12 — 4.23 9.60 1.11
a10-C 179.85 11.90 — — 2.12 — —

a The number at row i and column j means how faster or more efficient i is
against j.
This matrix is symmetrical, thus the values where j is better than i are
ommitted.

b The naming style x-Z is used in the rows and columns to refer to the
kernels from experiment Z on the platform x (e.g. a10-B are the kernels
from experiment B when executed on the a10).

Source: Research data.

Table 18 – Average energy consumption ratios all vs. all.

sv a10 qdr gtx sv-B a10-B sv-C a10-C

sv 2.18 — — — — — —
a10 — — — — — — —
qdr 12.60 85.14 1.40 2.32 3.54 — 3.97
gtx 12.49 104.57 — 1.45 2.61 — 4.98
sv-B 60.54 8.20 — — 1.65 — —
a10-B 89.62 4.32 — — — — 2.62
sv-C 135.60 16.54 1.83 4.50 4.23 11.52 1.33
a10-C 149.88 11.90 — — 1.77 — —

Source: Research data.

C.4.4 Final Comparison

Table 17 and Table 18 present the average execution time and power ratios between
the accelerators. For each possible pair of accelerators (x,y)3, we selected the kernels that
executed on both, calculated the execution time and energy consumption ratio for every
kernel and extracted the average.

For both execution time and energy consumption, the sv only has a ratio greater
than 1 against GPUs when considering the aggressively-optimised experiment C (sv-C).
In all other cases, the sv only beats the other FPGA a10.

3 Where x,y ∈ {sv,a10,qdr,gtx},x ̸= y.



170 APPENDIX C. Comparative Analysis of OpenCL Kernels in FPGA and GPU

In every experiment, the older sv did perform better for almost every kernel when
compared to a10. We noticed that in average the operating frequency of kernels using
a10 was 13%, 14% and 1% smaller than sv for experiments A, B and C, respectively.
We benchmarked sequential reads and writes to global memory from within the kernel
programmable space4, which peaked at 17.48 GB/s for sv and 15.08 GB/s for a10. Even
though a10 uses newer DDR4 memory than sv DDR3, the reduced frequency and memory
bandwidth of a10 have a negative impact on memory-bound kernels. However, a10 was
able to house more resource-hungry kernels which did not fit in sv.

Although we do not consider host-device communication latency in our study as
we are comparing compute power, it is a significant overhead for many applications. The
a10 FPGA used in this work is part of the Intel HARP featuring a Xeon CPU tightly-
coupled to an Arria 10 FPGA, host-device data exchange latency is greatly reduced as
no communication via peripheral bus is needed, differently from our sv FPGA that uses
PCI-Express.

C.4.5 Discussion

All findings pointed to a similar trend from the related work: hardware-specific
optimisation are crucial to improve the FPGA’s energy efficiency when using HLS. Even
more effort is required if better performance is also desirable. In the case of OpenCL,
GPUs have been longer supported than FPGAs. Most existing kernels are NDRange, since
they originally target GPUs. Which execution model suits best for FPGA is application-
dependent, depending on memory access, computation pattern and how well the HLS
compiler can extract hardware parallelism from the software code. As pointed by Zohouri
(2018), some Rodinia kernels would not benefit from great speedups by using the NDRange
kernel, therefore a complete rewrite using the task model was performed by the authors.

Although the goal of HLS compilers is to minimise the hardware design burden
when programming to FPGAs, the type of aggressive optimisations applied in the ker-
nels presented still requires a great amount of hardware design knowledge. Additionally,
in several kernels FPGA performance is bottlenecked by the global memory, usually
DDR3. Faster memories is highly desirable, since modern GPUs use high-speed mem-
ories with wide buses. This is being addressed by the industry through the inclusion of
High-Bandwidth Memory (HBM) modules on FPGAs, however they are still limited to
the top grade families (Intel FPGA Stratix 10, Xilinx Virtex UltraScale+ HBM);

Even with these drawbacks, we still believe that FPGAs have the potential to in-
crease its role as an application accelerator in the ever-increasing dark silicon era. FPGAs
excel in deep customised pipelines, and highly-optimised FPGA circuits (most developed

4 Sequential 64 bytes read and writes using transfer sizes of 1, 8, 16 and 64 MB.



C.5. Final Remarks 171

in RTL languages) are still very competitive in both performance and energy efficiency
when compared to other traditional accelerators.

C.5 Final Remarks
This chapter presented a wide comparison study performed between FPGA and

GPU as accelerators using OpenCL. A set of 56 OpenCL kernels was gathered from var-
ious sources in the literature, with varying optimisation efforts towards FPGA. Results
show that aggressive optimisations are essential for performance and energy improve-
ments in FPGAs when compared to GPUs. The OpenCL HLS model for FPGAs still
requires several improvements in order to bring the FPGA as a fair competitor in the
high-performance computing scenario. Skilled hardware expertise was required to effi-
ciently model the kernel codes that we gathered.

Our former intention was to provide a data mining model capable of evaluating
the suitability of an existing OpenCL kernel when targetting FPGAs. This model would
consider that the kernels would be optimised using an automated framework. However,
the amount and complexity of the optimisations herein presented have shown that the
automated framework would require significant and possibly unviable implementation
effort.

Most OpenCL kernels available were designed with a platform in mind, such as
GPU. These codes are often unsuitable for HLS compilation, requiring significant optimi-
sation effort as previously shown. Therefore we believe that the sequential algorithm of
the problem is a better input for HLS compilation, since it provides a clearer structure of
potential deep pipeline possibilities. To this reason, we decided to step back from OpenCL
and use C/C++ as the input language.

The results here presented also show a trend that FPGAs appear to be more
competitive against high-power GPUs than low-power. For example, the FPGAs used
were in a better performance or energy standpoint when compared against the high-power
gtx than when compared to the low-power qdr. Most related work only compares against
high-power GPUs, which could indicate a general biased trend. However, further analysis
is required in order to draw any conclusions. For example, energy should be measured
instead of using the TDPs as approximation. Nonetheless, the results here presented were
already enough to model the next steps towards HLS optimisation, and we decided not
to proceed on energy measurement up to this point.





173

APPENDIX

D
LINA DSE: RESOURCE AND

TIMING-CONSTRAINED SCHEDULER
FLOWCHART

Figure 58 presents the resource and timing-constrained scheduling flowchart (next
page due to size).



174 APPENDIX D. Lina DSE: Resource and Timing-constrained Scheduler Flowchart

Figure 58 – Flowchart of the resource and timing-constrained scheduling performed by Lina. The
urgency of a ready node is defined by the ALAP scheduling results (lower values
are more urgent).

Source: Perina et al. (2021).



175

APPENDIX

E
OPTIMISED FPGA-GPU COMPARATIVE

ANALYSIS

In this appendix, we perform a FPGA vs. GPU comparison similar to the one pre-
sented in Appendix C, however now on a different scenario and approach. Both platforms
will execute the same application, but using appropriate optimisations and high-level lan-
guages for each. On the FPGA side, we use Lina to perform DSE on the C/C++ version of
these applications. On the GPU side, we execute the CUDA version. At last, we compare
considering both design execution time and consumed energy.

In section E.1 we present the experimental framework used for comparison, includ-
ing tools, platforms, and the benchmark used. Then, section E.2 presents the comparison
results and related discussion. Finally, section E.3 closes the appendix.

E.1 Experimental Framework
Figure 59 presents an overview of the framework used in this chapter. It is a

single frontend used to coordinate both accelerators. Each application tested using this
framework is composed of two projects, one for FPGA and another for GPU. On the
FPGA side, a C/C++ baseline project is used by Lina for exploration. Then, a skeleton
OpenCL project is annotated with the optimal configuration estimated by Lina. This
skeleton project is based on the C/C++ baseline project, and the computation kernel
is wrapped as an OpenCL kernel. The GPU side is a CUDA variant of the baseline
implementation. The host code and CUDA kernels are manually coded and optimised.

In order to avoid the “read-after-write” code pattern during unroll, we adapted the
explicit unroll logic used for the CNN kernels and created a tool named unrexp. However,
the OpenCL skeleton project must be specifically adapted for this tool through annotation
and code rewrite. If the skeleton project is not supplied in this format, the unrexp tool is



176 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

Figure 59 – Overview of the experimental framework.

Source: Elaborated by the author.

simply bypassed and normal HLS unroll directives are used (i.e. unrviv).

In order to provide more accuracy than estimating the consumed energy using the
TDP value as in Appendix C, we now perform actual power measurement for the energy
consumption analysis. In the following sections, we present the platforms used for the
experiment and the components used for power profiling.

E.1.1 FPGA Platform

We use the same Xilinx Zynq UltraScale+ ZCU104 board from previous chapters,
since our framework already supports this platform. Our framework is responsible for
preparing the project as a bootable SD card system, interact with the Linux-based system
on the board, execute, retrieve the results after execution, and collect the power profiling
metrics.

The ZCU104 board has 8 power regulators, however only two have accessible PM-
Bus1 interfaces (Xilinx, Inc., 2018). With a special external module, it is possible to read
1 Power Management Bus (PMBus) is a standardised communication protocol used to interact



E.1. Experimental Framework 177

the PMBus interfaces and collect energy information, however the other 6 regulators re-
main unmetered. In order to acquire the complete energy consumption of the board, we
attached a current sensor between the board and its power supply. Our framework is re-
sponsible for coordinating when to enable/disable power sensing, and to synchronise the
profiled values with the kernel execution on board. Figure 60 presents the FPGA platform,
including the additional modules used for power sensing.

Figure 60 – FPGA experimental setup. The power sensing system is highlighted. An Arduino
module reads the PSU current sensor and communicates with the regulators using
the PMBus interface. The raw information is collected and sent to the host machine,
which calculates consumed energy using a tool named zynprof.

Source: Elaborated by the author.

The current sensor between the board and the power supply does not measure
voltage. Since knowing the voltage is required for calculating the energy consumption, we
acquire the input voltage of all accessible regulators at runtime. Then, we average this
value and use it as total input voltage. Alternatively, a constant value of 12V could be
used (i.e. the power supply’s rated output voltage), however the use of a constant value
disregards the voltage fluctuations over the execution time.

E.1.2 GPU Platform

On the GPU side, we use the GeForce GTX980 board connected to a host system
running Ubuntu 20.04 on an Intel Xeon E5-1603 CPU. Power sensing is performed by using
NVIDIA’s Management Library (NVML) API. Similarly to the FPGA, our framework is
responsible for coordinating the power sensing and synchronise the values with the kernel
execution. Figure 61 presents the GPU system.

with power devices.



178 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

Figure 61 – GPU experimental setup. Our framework coordinates the application and extracts
the power measurements from NVIDIA’s NVML using our in-house tool (NVPMon).

Source: Elaborated by the author.

E.1.3 Kernel Set

For this experiment, it is desirable to have proper C/C++ and CUDA variants for
each test application. The Parboil benchmark is composed of several applications with
multiple implementations, such as: a baseline C/C++ implementation; CPU-optimised
versions using OpenMP; and GPU variants on CUDA or OpenCL. We use the baseline
C/C++ implementations as input for Lina and the HLS process, whereas we use the
CUDA versions for GPU (if more than one CUDA version is available, we use the most
optimised). Five kernels were selected that are compatible with Lina, considering the limi-
tations presented in section 3.5. Chart 22 describes the kernels included in our experiments
and their dimensions2.

Chart 23 presents the design space of each. Since unrexp currently only supports
unrolling the innermost loop, the kernel versions adapted for the tool may have different
knobs.

We map all arrays that have read or write accesses (but not both) to the off-chip
memory, whereas we leave arrays with both read and write accesses in the on-chip memory.
This reduces the chances of read-after-write code patterns from occurring. The arrays
accessed on-chip by the computation kernel must first be transferred from off-chip to

2 Kernel dimensions are constant values used to define arrays and loop sizes.



E.1. Experimental Framework 179

Chart 22 – Last experiment kernel set.

Kernel name Description Dimensions
histo Histogramming operation Image size: 996×1040

Histogram size: 256×4096
Number of iterations: 200

lbm Lattice-Boltzman Method simulation SIZE_X: 120
SIZE_Y: 120
SIZE_Z: 30

mri-q MRI non-cartesian Q matrix K: 256
calculation X: 32768

sad Sum of Absolute Differences Macroblock size: 11×9
Search range: 16
Max. search positions: 1089

sgemm Single precision general matrix M: 256
multiply N: 304

K: 192
Source: Elaborated by the author.

on-chip memory, and then retrieved after execution. Our framework automatically adds
loops before and after the computation kernel in order to perform such data movement.

For each kernel, we provide two FPGA versions. The first version uses the code
based on the original baseline code, whereas the second version is modified to support the
unrexp manipulation. For each of these FPGA versions, we provide four Lina explorations
by toggling data packing and the conservative/permissive policies3. We leave banking
enabled in all cases.

We perform two experiments when running the kernels on GPU, named “cold run”
and “hot run”. When the applications are executed, the GPU switches from a low-profile
to a higher energy profile in order to provide more compute capability. This in turn
increases the energy consumption. We get the “cold” values by executing the kernels with
a cooldown interval, and the “hot” values by executing the kernels repeatedly with no
cooldown intervals.

For each application, we added configuration files needed by our framework to
characterise the design spaces and to configure other Lina settings. The baseline C/C++
projects were also adapted for HLS compilation (e.g. wrapping the computation kernel as
an OpenCL kernel). The following subsection presents how each project is structured and
the modifications performed to each kernel.

3 Please note that even if Lina’s data packing exploration is disabled, Vivado might still auto-
matically vectorise the kernels.



180 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

Chart 23 – DSE knobs for the Parboil kernels.

Kernel Knobs
histo Frequencies (MHz): 75, 100, 150, 200

Unroll factors (single loop level): none, 2, 4, 8, 16, 20, 40,
80, 160, 320

Pipelining (single loop level): allowed
Partitioning (array hist): block (4, 8, 16),

cyclic (4, 8, 16, 32)
histo (unrexp) Same as normal version

lbm Frequencies (MHz): 75, 100, 150, 200
Unroll factors (single loop level): none, 3, 9, 18, 27, 36
Pipelining (single loop level): allowed

lbm (unrexp) Frequencies (MHz): 75, 100, 150, 200
Unroll factors (single loop level): none, 3
Pipelining (single loop level): allowed

mri_q Frequencies (MHz): 75, 100, 150, 200
Unroll factors (loop level 1): none, 2, 4, 8
Unroll factors (innermost): none, 4, 8, 32
Pipelining (innermost): allowed
Partitioning (array Qr): block (2, 8), cyclic (2, 8)
Partitioning (array Qi): block (2, 8), cyclic (2, 8)

mri_q (unrexp) Frequencies (MHz): 75, 100, 150, 200
Unroll factors (innermost): none, 4, 8, 32
Pipelining (innermost): allowed
Partitioning (array Qr): block (2, 8), cyclic (2, 8)
Partitioning (array Qi): block (2, 8), cyclic (2, 8)

sad Frequencies (MHz): 75, 100, 150, 200
Unroll factors (loop level 7): none, 2, 4
Pipelining (loop level 7): allowed
Unroll factors (innermost): none, 2, 4
Pipelining (innermost): allowed

sad (unrexp) Frequencies (MHz): 75, 100, 150, 200
Pipelining (loop level 7): allowed
Unroll factors (innermost): none, 2, 4
Pipelining (innermost): allowed

sgemm Frequencies (MHz): 75, 100, 150, 200
Unroll factors (loop level 2): none, 2
Unroll factors (innermost): none, 4, 8, 16, 32, 64
Pipelining (innermost): allowed
Partitioning (array C): block (2, 8), cyclic (2, 8)

sgemm (unrexp) Frequencies (MHz): 75, 100, 150, 200
Unroll factors (innermost): none, 4, 8, 16, 32, 64
Pipelining (innermost): allowed
Partitioning (array C): block (2, 8), cyclic (2, 8)

Source: Elaborated by the author.



E.1. Experimental Framework 181

E.1.3.1 Project Structuring and Modifications Applied

Based on the multiple variants provided by Parboil for each kernel, the following
projects were created and included in our framework:

• Lina project: this project is used by Lina for the design space exploration. Minimal
modifications were performed, for example:

– All dynamic loops were converted to have static bounds. Lina partially sup-
ports variable loop bounds (e.g. when they are easily identifiable from input
data sizes). However, due to Lina’s cache system not currently supporting
dynamic bound inferring, we maintain all static;

– Some applications have the kernel code inlined in the host code. We split these
projects to always have a host and a kernel code. This is done simply by
wrapping the computation loops in a C function;

– Makefiles were adapted to properly communicate with our framework when
compiling, running, profiling, etc.;

– Configuration files were added to guide Lina’s DSE. These files include design
space knobs, which objectives should Lina optimise (only design execution time
in this case), etc.;

• Vivado OpenCL template: in this project, the C kernel function from the Lina
project is converted to an OpenCL kernel and annotations are added. Source code 7
presents the template histogram kernel (annotation tags are formatted as <...>).
The following modifications were performed:

– The C function header is swapped by an OpenCL kernel header;

– The beginning and end of kernel function body are annotated with simple tags
(e.g. <HEADER>). Our framework inserts data transfer loops in these tags when
applicable;

– Each loop level is annotated with a tag identifying its depth. These are replaced
by unroll and pipeline directives;

– All read/write accesses to kernel arguments are replaced by tags containing
the array name. Our framework later replaces them with the proper memory
space that the computation loops should access (e.g. direct access to off-chip
memory or to an on-chip buffer);

– All loop bounds were also made static. This is not related to Lina’s limitation,
but to the fact that we were not able to extract Vivado HLS’s latency reports
without static bounds. Although Vivado supplies directives that can be used
to hint the compiler about expected loop bounds, they had no effect;



182 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

– All 2D or 3D arrays were flattened;

– Lina does not support array of structs. Instead, we split each struct element
to a separate array;

– Makefiles and Vivado HLS scripts were created to coordinate the synthesis pro-
cess. They were also implemented so that our framework can properly interact
with them;

– OpenCL API calls were added to the host code to manage the off-chip buffers,
transfer data to the FPGA, execute the kernel and retrieve the results;

• Vivado OpenCL template for unrexp: this project is based on the previous
OpenCL one, however the kernel is manipulated so that all reads are placed before
writes. Auxiliary variables must be created. Additional annotations are also needed,
so that our unrexp tool is able to properly replicate the code when unrolling, while
maintaining all reads before writes;

• CUDA project: Used for the GPU side, the CUDA variants of each Parboil were
added with little or no modification on the code itself. Makefiles were adapted so
that our framework can properly execute and profile.



E.2. Results 183

Source code 7 – OpenCL kernel template for histo

1: #define IMG_W 996
2: #define IMG_H 1040
3: #define HISTO_W 256
4: #define HISTO_H 4096
5: #define NUM_ITER 200
6:
7: __attribute__((reqd_work_group_size(1,1,1)))
8: __kernel void histo(
9: __global uint * restrict img,

10: __global uchar * restrict hist
11: ) {
12: <HEADER>
13:
14: for(uint iter = 0; iter < NUM_ITERS; iter++) {
15: <LOOP_0_1> for(uint i = 0; i < (IMG_W * IMG_H); i++) {
16: const uint value = <ARR_img >[i];
17: if(<ARR_hist >[value] < 255)
18: ++<ARR_hist >[value];
19: }
20: }
21:
22: <FOOTER>
23: }
24:

Chart 24 presents the additional modifications performed in each kernel specifically.
Note that modifications related to data sets are also reflected on the GPU kernels.

E.2 Results

Figure 62 presents the average measured execution times and energy consumptions
for each kernel in both platforms. For each, we present all FPGA variants (without/with
unrexp, toggling memory policies and data packing) and the “cold”-“hot” runs on GPU.
We use the same nomenclature as in Chart 10 to identify each exploration. The average
value considers five executions for each kernel.

The histo kernel failed to synthesise when data packing was enabled. Lina DSE
suggested the highest frequency in this case, which caused Vivado to fail during late
timing analysis. The mri_q kernel failed to synthesise when data packing and unrexp



184 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

Chart 24 – Modifications performed in each Parboil kernel.

Kernel Modifications
histo - Number of iterations reduced to 200

- The main iteration loop (former present on host code) was transferred
to the OpenCL kernel in order to reduce kernel calls

lbm - SIZE_Z reduced from 150 to 30
- Number of iterations reduced to 1

mri_q - Number of iterations reduced to 256
- This kernel uses the trigonometric sin() and cos() functions. These

are currently not supported by Lina. Therefore, we replace these
functions by on-chip lookup tables with pre-calculated sin/cos values

- Invariant reads from the innermost loop were transferred to upper
loop levels

- The error tolerance accepted by the output validation tool was
increased from 0.01% to 0.1%. This difference is due to the use of
look-up tables

sad - Minor changes when converting from unsigned to signed variables or
vice-versa when the words have different sizes. C and OpenCL have
slightly different handlings for these cases

sgemm - Statically enforcing lda = m, ldb = n and ldc = m
- Changed alpha to 1.2 and beta to 1.3

Source: Elaborated by the author.

were enabled. The optimisations suggested by Lina, coupled with the explicit unroll of
unrexp resulted in an overly complex design that Vivado could not synthesise.

The unrexp tool had little or even negative effect on the kernels. Considering the
sad kernel for example, enabling unrexp degraded overall performance. Apart from the
variant explored without data packing and using the permissive policy, the execution
crashed for all other cases. The version of Vivado/SDSoC used in this thesis has a known
bug on which the embedded Linux may kernel panic during long-running kernels4. In
other words, enabling unrexp for the sad kernel degraded overall performance up to a
level that reaches the crashing point of the embedded Linux system. This also happens
with all baseline versions of this same kernel.

4 See <https://support.xilinx.com/s/question/0D52E00006hpkjESAQ/
out-of-memory-when-running-opencl-application-on-zcu102?language=en_US>

https://support.xilinx.com/s/question/0D52E00006hpkjESAQ/out-of-memory-when-running-opencl-application-on-zcu102?language=en_US
https://support.xilinx.com/s/question/0D52E00006hpkjESAQ/out-of-memory-when-running-opencl-application-on-zcu102?language=en_US


E.2. Results 185

Figure 62 – Total execution time (top) and consumed energy (bottom) of each kernel on both
platforms. Each is represented by 8 Lina explorations (leftmost bars, from “a” to
“h”) and 2 GPU execution scenarios (rightmost bars, “i“ and “j “).

Source: Research data.



186 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

The GPU performed better in every kernel considering execution time, and nearly
in every kernel when considering energy consumption. The sole exception is kernel sgemm
that had a better energy efficiency on FPGA, but only when compared against the GPU
hot run.

Table 19 and Table 20 present the speedups and energy efficiency gains achieved by
Lina solutions compared to the baseline versions5. For all kernels tested, the energy con-
sumption ratio between the baseline and Lina solutions followed similar trends, differing
at most by 0.7 point between the speedup and energy efficiency gain.

Table 19 – Overall speedups achieved by our optimised kernels compared to the baseline versions.

auto expl

novec vec novec vec

Kernel cons perm cons perm cons perm cons perm

histo 1.1× 1.1× — — 1.1× 1.1× — —
lbm_small 0.9× 1.4× 1.4× 1.4× 1.4× 1.4× 1.4× 1.4×
mri_q 2.3× 2.4× 2.3× 2.3× 2.3× 2.4× — —
sad† > 3.4× > 2.5× > 3.17× > 3.4× — > 2.5× — —
sgemm 3.2× 3.2× 3.2× 3.2× 3.2× 3.2× 3.2× 3.2×

† The baseline version of sad crashes during execution as previously explained. However, we
noted that the execution works properly until the crash. We therefore consider that the
execution time of the baseline versions is of at least x seconds, where x is the time elapsed
until the crash. We then calculate the minimum speedup value that our optimised version
achieves when considering the lower bound baseline execution time x.

Source: Research data.

Table 20 – Overall energy efficiency gains achieved by our optimised kernels compared to the
baseline versions.

auto expl

novec vec novec vec

Kernel cons perm cons perm cons perm cons perm

histo 1.2× 1.4× — — 1.2× 1.1× — —
lbm_small 0.6× 1.0× 1.1× 1.1× 1.1× 1.1× 1.1× 1.4×
mri_q 1.8× 1.7× 1.9× 1.7× 1.9× 1.8× — —
sad — — — — — — — —
sgemm 2.9× 2.9× 2.5× 2.8× 3.3× 3.5× 3.4× 3.4×
Source: Research data.

It is possible to note that for most cases, the speedups have been similar regardless
of how data packing, memory policy or unrexp are set. The sole exceptions are lbm_small
5 Kernel frequency set to 100MHz. No pragmas are enabled, although Vivado might still per-

form automatic vectorisation. Banking is always enabled.



E.2. Results 187

and sad that have cases with lower speedups or even a slowdown. For the sad kernel, we
present the speedups as a lower bound, since the baseline kernel crashes after 13 seconds
of execution. We use this value as a minimum execution time to calculate these lower
bound speedups.

Table 21 presents the speedups achieved by Lina when the data transferring loops
are not considered (i.e. only the computation loops are included). These values are cal-
culated by considering the cycle count as informed by the HLS compilation, prior to full
design synthesis. Although some of the kernels did not execute or fully synthesise, all
kernels were at least successfully generated by the HLS step.

Table 21 – Overall speedups achieved by our optimised kernels compared to the baseline versions
(computation loops only, data transfers between on and off-chip are not considered).

auto expl

novec vec novec vec

Kernel cons perm cons perm cons perm cons perm

histo 1.1× 1.1× 2.2×† 2.2×† 1.1× 1.1× 2.2×† 2.2×†

lbm_small 0.9× 2.4× 2.4× 2.4× 2.4× 2.4× 2.4× 2.4×
mri_q 24.2× 24.2× 18.5× 18.5× 24.2× 24.2× 85.1×† 85.1×†

sad 17.2× 11.5× 17.2× 17.2× 2.5× 11.5× 2.5× 2.5×
sgemm 10.3× 10.3× 10.3× 10.3× 10.3× 10.3× 10.3× 10.3×

† HLS compilation was successful for these points, but full synthesis failed.
Source: Research data.

In general, the speedup values considering only the computation loop are greater
than the overall speedups achieved. This is a strong indicator that the loops responsible
for moving the data from/to off-chip memories are occupying a significant amount of the
total execution time. The mri_q kernel, for example, presents noticeably larger speedups
for the computation part than the overall, with a peak of 85.1× when unrexp was en-
abled. This was the only case where using unrexp brought any significant improvements,
however Vivado failed to fully synthesise this point. It is also possible to note the speedup
degradation that occurred when unrexp was enabled for the sad kernel.

As a final analysis, we consider the speedups from Table 21 as if they were the
speedups achieved by the whole application, including data movement. This extrapolation
considers a best case scenario where data movement is optimised towards little to none
overhead. To calculate these values, we divide the baseline execution times from each
kernel by the speedups from Table 21. Since we do not know how much energy the
computation part consumes in isolation, we use the same performance speedup values
from Table 21 as energy efficiency gains when considering energy consumption (i.e. we
divide the consumed energy by the computation speedup). Since the speedups and energy
efficiency gains both follow a similar trend on Table 19 and Table 20, such calculation



188 APPENDIX E. Optimised FPGA-GPU Comparative Analysis

can be roughly performed. Figure 63 presents these estimated values for both execution
time and energy consumption. We do not extrapolate for sad, since the baseline versions
crashed and we could not acquire the exact execution time values. It is possible to note
that the FPGA kernels still lose in both metrics for histo but by a lower margin. For
lbm_small, energy consumption would be comparable. For mri_q and sgemm, the FPGA
would marginally perform better, and would present an improved energy efficiency when
compared to both cold and hot runs of the GPU.

Figure 63 – Extrapolated execution time and energy values for the kernels in FPGA, compared
to the real values in GPU. These estimations consider that the speedup achieved by
the whole FPGA application is the same as the speedup achieved by the computation
loop alone.

Source: Research data.

E.3 Final Remarks

This chapter presented our framework for testing applications on FPGA and GPU.
On the FPGA side, we used C/C++ kernels that were optimised by Lina. On the GPU
side, we used CUDA versions of each application.



E.3. Final Remarks 189

We executed and profiled five kernels from the Parboil benchmark. The GPU
performs better both in execution time and energy for all kernels. The sole exception
comes from the sgemm kernel, where FPGA had a slight better energy efficiency against
the GPU but only when running in high-power mode.

Considering only the FPGA side, our optimisation approach with Lina successfully
reduced both execution time and energy consumption of the applications, when compared
against the baseline FPGA versions. If considering only the computation loops while
ignoring the host application and data transfers, the speedup and energy improvements
were even greater. This indicates that the host application and the data transfers take a
significant portion of the total execution time. By considering these speedup values, we
extrapolated our analysis to consider a hypothetical case where the total speedup of each
application would be equal to the speedup achieved by the isolated computation parts.
A similar extrapolation is performed for energy consumption. Comparing against GPU,
two kernels optimised by our approach would perform better and consume less energy on
FPGA.

It is also important to note that some applications consume a significant time
on preparing the input data and processing the outputs. The sgemm kernel, for example,
consumes only a small fraction of the execution time on the computation itself. Since these
overheads affect both the GPU and FPGA codes, it does not affect our results presented.
Nonetheless, optimising this overhead is desirable and left as future work.

It is important to note that we are comparing applications that were automatically
explored for FPGA by our tool Lina, against CUDA applications that were manually
coded for GPUs. In addition, CUDA is a language specifically tailored for GPUs, whereas
C/C++ is an exotic input for FPGAs that requires a compiler with significant analysis
and optimisation mechanisms.



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of charts
	List of algorithms
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Field-Programmable Gate Arrays and High-Level Synthesis
	High-Level Synthesis

	Motivation and Objective
	Thesis Structure

	Literature Review
	High-Level Synthesis Compilers
	High-Level Synthesis Applications and Comparison Studies
	High-Level Synthesis Assist Tools
	High-Level Synthesis Estimators
	High-Level Synthesis Optimisation Frameworks

	Final Remarks

	Fast Design Space Optimisation for C/C++ HLS Using Lina
	Overview of High-Level Synthesis and Estimation
	Lin-analyzer Overview

	DSE Methodology with Lina
	Timing-Constrained Scheduler
	Hardware Profile Library and FU Characterisation
	Initial Timing Analysis
	Operation Chaining

	Non-Perfect Loop Analyser
	Resource Awareness
	Functional Unit Resource Estimation
	Array-related Resource Estimation
	Scenario I
	Scenario II
	Scenario III
	Total Array Resource Usage

	Complete Resource Estimation

	Off-chip Memory Model
	Memory Model Features and Behaviour
	Intra-iteration bursts
	Inter-iteration bursts
	Data packing
	Memory banking
	Port management

	Interaction Between Multiple Transactions and Memory Model Policies
	Interaction Between Off-chip Transactions and Pragmas
	Loop unroll
	Loop pipeline

	Memory Analysis Report

	DSE Temporal Locality Caching
	Exploration Quality Metrics

	Experimental Setup
	Platforms and Software Used
	First Validation: Comparison Against Lin-Analyzer
	Second Validation: Resource and Timing-aware Exploration
	Additional Experiments on Non-perfect Kernels with Larger Loop Bounds
	Comparison with Related Work

	Third Validation: Off-chip Experiments in the CNN Context

	Results
	First Validation: Comparison Against Lin-Analyzer
	Second Validation: Resource and Timing-aware Exploration
	Impact of Lina Features
	DSE Exploration Time
	Comparison Analysis

	Third Validation: Off-chip Experiments in the CNN Context

	Final Discussion
	Comparison with Related Work
	Framework Limitations
	Final Remarks


	Conclusion
	Bibliography
	Published Material and Developed Tools
	Published Material
	Developed Tools

	Early Approaches Using Machine Learning Models
	DAMICORE Approach
	The mdamicore2 Tool
	Reference Set Generation
	Decision Making
	Quality Metric
	Initial Kernel Set
	Results
	Execution Results for the Initial Kernel Set
	Evaluation of Proposed Model


	Neural Network Approach
	Formulation and Methodology
	ANN Inputs
	ANN Outputs

	Neural Network Experimental Setup
	Experimental Results

	Final Remarks

	Comparative Analysis of OpenCL Kernels in FPGA and GPU
	OpenCL Execution Models
	Kernel Set
	Class I: FPGA-unoptimised NDRange Kernels
	Class II: FPGA-optimised NDRange Kernels
	Class III: FPGA-optimised Task Kernels

	Evaluation Setup
	Experimental Setup
	Suitability Metrics
	Accelerator Platforms

	Results
	Experiment A
	Experiment B
	Experiment C
	Final Comparison
	Discussion

	Final Remarks

	Lina DSE: Resource and Timing-constrained Scheduler Flowchart
	Optimised FPGA-GPU Comparative Analysis
	Experimental Framework
	FPGA Platform
	GPU Platform
	Kernel Set
	Project Structuring and Modifications Applied


	Results
	Final Remarks


