Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.2019.tde-23082019-154324
Document
Auteur
Nom complet
Carlos Alberto de Magalhães Massera Filho
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2019
Directeur
Jury
Wolf, Denis Fernando (Président)
Bueno, Samuel Siqueira
Ferreira, Janito Vaqueiro
Siqueira, Adriano Almeida Gonçalves
Titre en anglais
Guaranteed cost model predictive control approaches for linear systems subject to multiplicative uncertainties with applications to autonomous vehicles
Mots-clés en anglais
Autonomous vehicles
Linear matrix inequalities
Model predictive control
Optimal control
Robust control
Resumé en anglais
The Linear Quadratic Regulator (LQR) is an optimal control approach which aims to drive states of a linear system to its origin through the minimization of a quadratic cost functional. Such an approach has been widely successful for both theoretical and practical applications. However, when such controllers are subject to uncertainties, optimal closed-loop performance cannot be obtained since robustness properties are no longer guaranteed. Guaranteed Cost Controllers (GCC) presents robust asymptotic stability and provides a guaranteed upper bound to a quadratic cost function. Such method addresses the lack of performance guarantees of the LQR. Meanwhile, Model Predictive Control (MPC) is a class of optimization-based control algorithms that use an explicit model of the controlled system to predict its future states. The MPC can be as a generalization of the LQR for constrained linear systems. Therefore, it equally suffers from a lack of robustness guarantees when the system is subject to uncertainties. Robust MPC (RMPC) approaches were proposed to address MPCs poor closed-loop performance subject to uncertainties. Its objective is to obtain a control input sequence that simultaneously minimizes a cost function and guarantees the feasibility of system states and control inputs, for a system subject to the worst-case disturbance within an uncertainty set. Autonomous vehicles have gained increasing interest from both the industry and research communities in recent years. An essential aspect in the design of automotive control systems is to ensure the controller is stable and has acceptable performance within the entire operational envelope which it is designed to operate. In the case of autonomous vehicles, where there is no human driver as a fallback, it is of utmost importance to ensure the safe operations of the control system and its capability to avoid saturating the handling limits of the vehicle. In this thesis, we propose Guaranteed Cost Controller approaches for both unconstrained and constrained linear systems subject to multiplicative structured norm-bounded uncertainties and present the application of such a controller to the lateral control problem of autonomous vehicles up to the tire saturation limits.
Titre en portugais
Abordagens de controle de custo garantido preditivo por modelo para sistemas lineares sujeitos a incertezas multiplicadas com aplicações a veículos autônomos
Mots-clés en portugais
Controle ótimo
Controle preditivo de modelo
Controle robusto
Desigualdade matricial linear
Veículos autônomos
Resumé en portugais
O Regulador Quadrático Linear (Linear Quadratic Regulator, LQR) é uma abordagem de controle ótimo que visa conduzir estados de um sistema linear à sua origem através da minimização de um custo funcional quadrático. Tal abordagem tem sido amplamente bem sucedida para aplicações teóricas e práticas. No entanto, não é possível obter o desempenho ótimo de malha fechada quando esses controladores são sujeitos a incertezas no sistema em decorrência de suas propriedades de robustez não serem garantidas. Controladores de Custo Garantido (Guaranteed Cost Control, GCC) visam abordar a falta de garantia de desempenho do LQR, neste caso. Esses controladores apresentam estabilidade assintótica robusta e fornecem um custo garantido de pior caso para uma função de custo quadrático. O Controle Preditivo de Modelo (Model Predictive Control, MPC) é uma classe de algoritmos de controle baseados em otimização que usa um modelo explícito do sistema controlado para prever seus estados futuros. Uma possível interpretação do MPC é uma generalização do LQR para sistemas lineares com restrições de estado e entrada de controle. Portanto, essa abordagem sofre igualmente da falta de garantias de robustez quando o sistema é sujeito a incertezas. As abordagens de MPC Robustas (Robust MPC, RMPC) foram propostas para abordar o desempenho de malha fechada do MPC sujeito a incertezas no sistema. Seu objetivo é obter uma sequência de entrada de controle que minimize simultaneamente uma função de custo e garanta que os estados do sistema e as entradas de controle estão contidos dentro das restrições para um sistema sujeito à pior das perturbações dentro de um conjunto admissível de incertezas. Pesquisas voltadas para veículos autônomos ganharam crescente interesse nos últimos anos, tanto da indústria automobilística quanto da comunidade acadêmica. Um aspecto essencial no projeto de sistemas de controle automotivo é a garantia de estabilidade e desempenho do controlador dentro de todo o envelope operacional ao qual ele foi projetado para operar. No caso de veículos autônomos, onde não há motoristas humanos para lidar com casos de falha do sistema, é de suma importância assegurar as operações seguras do sistema de controle e sua capacidade de evitar a saturação dos limites de manuseio do veículo. Nesta tese, propomos abordagens GCC para sistemas lineares restritos e irrestritos, sujeitos a incertezas estruturadas contidas por norma e apresentamos a aplicação de tais controladores ao problema de controle lateral de veículos autônomos até os limites de saturação dos pneus.
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-08-23
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées
cliquant ici.