
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Exploiting Inter-session Dynamics for Long Intra-Session
Sequences of Interactions with Deep Reinforcement Learning

for Session-Aware Recommendation

Gustavo Junior Escobedo Ticona
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Gustavo Junior Escobedo Ticona

Exploiting Inter-session Dynamics for Long Intra-Session
Sequences of Interactions with Deep Reinforcement

Learning for Session-Aware Recommendation

Dissertation submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Master in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Marcelo Garcia Manzato

USP – São Carlos
May 2021

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

E74e
Escobedo Ticona, Gustavo Junior
 Exploiting Inter-session Dynamics for Long Intra-
Session Sequences of Interactions with Deep
Reinforcement Learning for Session-Aware
Recommendation / Gustavo Junior Escobedo Ticona;
orientador Marcelo Garcia Manzato. -- São Carlos,
2021.
 86 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2021.

 1. Sesssion-Aware Recommendation. 2. Deep
Reinforcement Learning. 3. Hierarchical Recurrent
Neural Networks. 4. Recommender Systems. I.
Manzato, Marcelo Garcia, orient. II. Título.

Gustavo Junior Escobedo Ticona

Explorando dinâmicas entre sessões para sequências
longas de interações de sessão com Aprendizado por

Reforço Profundo para Recomendação Ciente de Sessão

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Marcelo Garcia Manzato

USP – São Carlos
Maio de 2021

To my beloved parents
for their unconditional support and love.

ACKNOWLEDGEMENTS

There are many groups of people that helped me through my formation that I
would like to acknowledge.

To the University of São Paulo and the Institute of Mathematics and Computer
Science(ICMC) who had given me the opportunity to complete my Masters studies offering
high quality courses and an optimal environment for developing research.

I also would like to thank to all the members of the Intermídia Laboratory for
their openness and kindness, specially to my supervisor Prof. Phd. Marcelo Manzato for
having guided me through the development of this research. Also, to the RecSys team
for sharing their points of view and suggestions.

To my parents for showing me that without hard work nothing can be accom-
plished.

To my friends and rest of family who always showed their appreciation and support.

“The true delight is in the finding out rather than in the knowing”
(Isaac Asimov)

RESUMO

ESCOBEDO T. G. J. Explorando dinâmicas entre sessões para sequências longas
de interações de sessão com Aprendizado por Reforço Profundo para Recomen-
dação Ciente de Sessão . 2021. 86 p. Dissertação (Mestrado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Sistemas de recomendação são ferramentas cujo objetivo é filtrar o conteúdo relevante para
os usuários de acordo com suas preferências. Recentemente, devido às novas demandas
de negócios eletrônicos em que a maioria dos usuários não estão autenticados, surgiram os
sistemas de recomendação baseados em sessão. Esta abordagem modela dados da sessão
(por exemplo, sequências de interações, metadados de itens) para predizer quais itens
serão relevantes para o usuário durante a sessão atual. As abordagens cientes de sessão
incluem representações de sessões anteriores de usuários para melhorar o desempenho em
novas sessões. No entanto, eles usam apenas essas representações no início da sessão,
sendo que em uma longa sequência de interações não aproveita as possíveis mudanças de
interesse durante a propria sessão. Os modelos atuais pressupõem que essas mudanças
ocorrem apenas no início de uma nova sessão, conseqüentemente neste trabalho de pes-
quisa exploramos a possibilidade de usar essas representações entre sessões para beneficiar
o desempenho das recomendações durante sessões longas. Propusemos uma adaptação do
algoritmo Deep Deterministic Policy Gradient em um modelo de recomendação ciente de
sessão para treinar uma política que lida com a interação entre o estado intra-sessão atual
e as representações inter-sessão. Realizamos experimentos em dois conjuntos de dados
de diferentes domínios, encontrando os principais fatores que afetam o desempenho dos
modelos cientes de sessão. No entanto, não pudemos encontrar evidências fortes para
afirmar que as dinâmicas entre as sessões podem melhorar o desempenho durante longas
sequências de interações entre as sessões.

Palavras-chave: Recomendação Ciente de Sessão, Aprendizado por Reforço Profundo,
Redes Neurais Recorrentes Hierarquicas, Sistemas de Recomendação.

ABSTRACT

ESCOBEDO T. G. J. Exploiting Inter-session Dynamics for Long Intra-Session
Sequences of Interactions with Deep Reinforcement Learning for Session-Aware
Recommendation. 2021. 86 p. Dissertação (Mestrado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Compu-
tação, Universidade de São Paulo, São Carlos – SP, 2021.

Recommender systems are tools whose objective is to filter relevant content to users ac-
cording to their preferences. Recently, due to the new demands of electronic business
where most of users are not authenticated, Session-based recommender systems emerged.
This approach models session data (e.g. sequences of interactions, item metadata) to
predict which items will be relevant for the user during the current session. Session-aware
approaches include representations from users’ past sessions to improve performance on
fresh new sessions. However, current approaches only exploit these representations at the
beginning of the session which in a long sequence of interactions does not take advantage
of possible changes of interest during the same session. Consequently, in this research
work, we explore the possibility of exploiting inter-session representations to improve rec-
ommendation performance. We proposed an adaptation of the Deep Deterministic Policy
Gradient algorithm on a session-aware recommender model to train a policy that handles
the interaction between the current intra-session state and inter-session representations.
We performed several experiments on two datasets from different domains finding key
factors that affect session-aware models’ performance. However, we could not find strong
evidence to claim that inter-session dynamics can improve performance during long se-
quences of intra-session interactions.

Keywords: Session-Aware Recommendation, Deep Reinforcement Learning, Hierarchical
Recurrent Neural Networks, Recommender Systems.

LIST OF FIGURES

Figure 1 – Session-based recommendation scenario 37
Figure 2 – Session-aware recommendation scenario 38
Figure 3 – Long-short term memory architecture 40
Figure 4 – Gated Recurrent Unit architecture . 41
Figure 5 – Session-Parallel Mini batches example 42
Figure 6 – User Session-Parallel Mini batches example 43
Figure 7 – The RL problem setting . 43
Figure 8 – Joint model dataflow for the Reinforced HGRU4REC 57
Figure 9 – Internal structure of the DDPG Agent 57
Figure 10 – Actor architecture . 59
Figure 11 – Actor architecture . 60
Figure 12 – Global results for the 30M dataset . 69
Figure 13 – Global results for the Tianchi dataset 70
Figure 14 – Impact on recommendation according to session length for the Tianchi

dataset . 72
Figure 15 – Impact on recommendation according to session length for the 30M

dataset . 73
Figure 16 – Average session length for the 30M dataset 73
Figure 17 – Average session length for the Tianchi dataset(lentgh=10) 74
Figure 18 – Average session length for the 30M dataset(lentgh=5) 75
Figure 19 – Average session length for the Tianchi(lentgh=5) 75
Figure 20 – Impact on recommendation according the total user history length for

the 30M dataset . 76
Figure 21 – Impact on recommendation according the total user history length for

the Tianchi dataset . 76

LIST OF ALGORITHMS

Algorithm 1 – Deep Deterministic Policy Gradient (LILLICRAP et al., 2015) . . 48
Algorithm 2 – Reinforced HGRU4REC . 61
Algorithm 3 – Build State Function . 62
Algorithm 4 – Generate Valid Mask Function . 62
Algorithm 5 – Handle Action function . 62

LIST OF TABLES

Table 1 – Datasets’ statistics . 66
Table 2 – Environment training parameters . 68
Table 3 – Agent training parameters . 68
Table 4 – Overall Performance for all models . 70
Table 5 – Impact of each architectural component for DRL strategies 71

LIST OF ABBREVIATIONS AND ACRONYMS

CBF Content Based Filtering
CF Collaborative Filtering
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DRL Deep Reinforcement Learning
FN False Negative
GRU Gated Recurrent Unit
IR Information Retrieval
LSTM Long-short Term Memory
MRR Mean Reciprocal Rank
NB Neighborhood Based
NLP Natural Language Processing
NNs Neural Networks
R Recall
RL Reinforcement Learning
RL Reinforcement Learning
RNNs Recurrent Neural Networks
RS Recommender Systems
SARS Sequence-Aware Recommender Systems
SBRS Session Based Recommender Systems
TP True Positive

CONTENTS

1 INTRODUCTION . 27
1.1 Motivation . 27
1.2 Justification . 29
1.3 Hypothesis . 30
1.4 Objective . 30
1.5 Document Organization . 31

2 THEORETICAL BACKGROUND 33
2.1 Classical Recommendation Techniques 33
2.1.1 Collaborative Filtering . 33
2.1.1.1 Memory-based CF . 34
2.1.1.2 Model-based CF . 34
2.1.2 Content-based Filtering . 35
2.2 Evaluation of Recommender Systems 35
2.2.1 Offline evaluation . 35
2.2.2 Protocols for Evaluation . 36
2.3 Session-Based Recommender Systems 37
2.4 Neural Recommendation . 38
2.4.1 Recurrent Neural Networks . 38
2.4.2 Long-short Term Memory . 39
2.4.3 Gated Recurrent Unit . 40
2.4.4 Training Session-Based Recommender Systems 41
2.4.4.1 Split Protocols . 41
2.4.4.2 Training RNN-based SBRS . 42
2.5 Reinforcement Learning . 42
2.5.1 The RL Problem Setting . 43
2.5.1.1 Action Spaces . 44
2.5.1.2 States and Observations . 44
2.5.1.3 Trajectories . 44
2.5.1.4 Reward and Return . 44
2.5.1.5 Policies . 45
2.5.2 Taxonomy of RL Algorithms . 46
2.5.2.1 Model-based vs Model-Free RL . 46

2.5.2.2 Value-based vs Policy-based . 46
2.5.3 Deep Deterministic Policy Gradient 47
2.6 Final Remarks . 48

3 RELATED WORKS . 51
3.1 Session-based recommender systems 51
3.2 Session-aware recommender systems 52
3.3 Deep Reinforcement Learning . 53
3.4 Final Remarks . 53

4 PROPOSAL . 55
4.1 Reinforced HGRU4REC . 55
4.1.1 Deep Deterministic Policy Gradient Adaptations 56
4.2 Strategies . 58
4.3 Architecture . 59
4.3.1 Actor . 59
4.3.2 Critic . 60
4.4 Training method . 60
4.4.1 Intra-session valid events selection 61
4.5 Final Remarks . 63

5 EXPERIMENTS . 65
5.1 Experiment Design . 65
5.1.1 Datasets . 65
5.1.1.1 Tianchi Repeat Buyers Challenge . 65
5.1.1.2 30Music listening and playlists dataset . 66
5.1.2 Baselines . 67
5.1.3 Hyperparameter selection . 67
5.1.4 Evaluations methods . 68
5.1.5 Implementation details . 69
5.2 Results . 69
5.2.1 Overall Performance . 69
5.2.1.1 Analysis of architectural components . 71
5.2.2 Influence of session length . 71
5.2.2.1 Global session performance . 71
5.2.2.2 Recurrent user session length . 72
5.2.3 Influence of user history length . 74
5.3 Final Remarks . 77

6 CONCLUSIONS AND FUTURE WORK 79
6.1 Summary . 79

6.2 Contributions . 80
6.3 Conclusions . 80
6.4 Future Work . 81

BIBLIOGRAPHY . 83

27

CHAPTER

1
INTRODUCTION

1.1 Motivation

In the last two decades, the outstanding success of the World Wide Web has set
out several challenges to the Information Retrieval (IR) area (BAEZA-YATES; RIBEIRO-
NETO, 2008). The huge volume of data generated every day pose the main challenges
such as managing, representing, retrieving and filtering. In order to tackle these problems,
efficient methods were introduced. An example of these methods is called Recommender
Systems (RS) whose main objective is to deliver relevant personalized content to the user.
These tools have been widely applied in Web applications from many domains such as
electronic businesses and media consuming applications making them more profitable. To
fulfill their objective, these systems rely on modeling techniques and data from many
sources (i.e. users’ profiles, content structure). All these data are computationally repre-
sented, processed and filtered to be delivered to users (AGGARWAL, 2016).

In order to provide relevant recommendations, many approaches have been pro-
posed, ranging from nearest neighbors methods, one of the earliest approaches, to latent
factor models that are considered state-of-art techniques. Traditional approaches only deal
with two types of entities, users and items, without including contextual information such
as time or place. Moreover, including contextual information to the model may help refin-
ing recommendations under certain circumstances (ADOMAVICIUS; TUZHILIN, 2011).
Consequently, Context-aware recommender systems were introduced to improve perfor-
mance of traditional models. Also with this addition, new challenges for modeling and
interpreting context were set out.

Most of the RS traditional techniques rely on matrix based structures which are
designed to represent static users’ preferences, which by nature are dynamic. In an effort
to model dynamic aspects, works like (KOREN, 2010) adapted the traditional methods

28 Chapter 1. Introduction

to include temporal information as contextual signal, in which long-term and short-term
user interests were analyzed obtaining new significant improvements. With these new
findings, modeling evolving users’ interests for recommender systems gained a lot of at-
tention, which originated a new group of techniques that model the sequential nature of
user interactions through time, called Sequence-Aware Recommender Systems (SARS).
These new techniques adopt sequential pattern mining techniques on time-ordered users’
interactions logs to find common patterns of user behavior (QUADRANA; CREMONESI;
JANNACH, 2018).

Recently, Deep Learning (DL) techniques had great success in many areas of Com-
puter Science such as Image Processing, Speech Recognition, Handwritten Text Genera-
tion and Sequence Pattern Mining. These new advances influenced the RS community to
focus research efforts into the usage of DL techniques to leverage their main advantages
to improve performance (HIDASI et al., 2017). This and the necessity of modeling user
temporal dynamics, motivated the usage of Recurrent Neural Networks for modeling se-
quential user interactions due to their proven capacity at mapping sequential patterns
mostly for Natural Language Processing (NLP).

Many efforts have been developed in the last few years to introduce deep learning
sequence modeling techniques into recommendation tasks. One solid example of applica-
tion is session-based recommendations, where the main objective is to predict which is the
next item to be consumed by the user, based on current session data. Unlike traditional
RS techniques session-based approaches have a clear advantage when there is no previous
user data available. Under this category of techniques, session-aware approaches emerged
with the aim of using users’ past sessions information to improve predictions on fresh
new sessions of returning users (QUADRANA et al., 2017). These approaches are mainly
composed of an inter-session component that models session-to-session dynamics(long-
term) and an intra-session component(short-term) that models item-to-item dynamics.
In several works, these two components are modeled with Hierarchical Recurrent Neural
Networks, which consists in two networks, the inter-session network models the transi-
tions between the resulting states of the intra-session network when a session ends and
the intra-session network models transitions between interactions within the same session
(QUADRANA et al., 2017)(VASSØY et al., 2019)(RUOCCO; SKREDE; LANGSETH,
2017). These approaches use the resulting internal state of the inter-session component
to initialize the internal state of the intra-session component when a fresh new session
starts to introduce users’ past sessions information. Moreover, the training is performed
using time-ordered sequences of interactions grouped in time-ordered sessions.

Other learning paradigms were also introduced to the RS domain such as Rein-
forcement Learning (RL). These techniques consist on the interaction between an agent,
that holds a policy, and an environment. The learning objective is to optimize the pol-

1.2. Justification 29

icy, held by the agent, that decides which is the optimal sequence of actions, based on a
reward value, to take according to the current state of the environment to fulfill a given
goal. Most of recent advances in this area owe their popularity for their success in complex
tasks such as Robotic Control or computer programs that can defeat humans in board
games such as AlphaGo1. Furthermore, the advances of DL techniques and their appli-
cation to this area originated a sub-area called Deep Reinforcement Learning (DRL), in
which Deep Neural Networks are adopted as main modeling techniques. Some key features
of these approaches are their long-term goal orientation and ability to learn policies on
very complex environments based the interaction of the agent and environment through
time. There are two main groups of techniques for model-free environments 2, policy-based
and value-based, which combination gave origin to a powerful group of techniques called
Actor-Critic methods which have two main components, an Actor that predicts the next
action to be taken based on the current state of the environment(policy optimization)
and a Critic that will evaluate the goodness of the action taken(value optimization). The
main advantages of this approach is that it can learn policies without knowing about the
mechanics of the environment. Additionally, with the critic network it is possible to have
a robust estimator of the goodness of the current state.

In the RS field and especially for the e-commerce domain, several approaches based
on Actor-Critic methods were explored for sequential recommendation obtaining competi-
tive and better results than previous sequential RS techniques(ZHAO et al., 2018b)(ZOU
et al., 2019). However, these new approaches pose several new challenges for the RS do-
main such as high variance and constantly changing data distribution.

1.2 Justification
Most session-aware approaches use representations of past sessions to initialize

fresh new sessions towards improving their predictions, however, the longer the sessions
the less useful this initialization becomes because users tend to change their short-term
interests during a long sequence of interactions. This is the case for instance when a user
is browsing for an item of a certain category and finds it, if the session continues, he is
very likely to search for other items that a re not related to his first intent. The same
can be applied to other domains like music when a user is listening to a certain genre
or artist and then shifts to a different one due to a ”mood change” during the same
listening session. Previous works do not address the detection of these changes within
the same session (QUADRANA et al., 2017; VASSØY et al., 2019; RUOCCO; SKREDE;
LANGSETH, 2017; HIDASI et al., 2015), which could be beneficial in a long sequence of
interactions scenario (LUDEWIG; JANNACH, 2018). Detecting these changes does not
1 <https://deepmind.com/research/case-studies/alphago-the-story-so-far>
2 see Section 2.5.2

https://deepmind.com/research/case-studies/alphago-the-story-so-far

30 Chapter 1. Introduction

have a trivial solution due to the chaotic nature of user behavior during sessions. Therefore,
there is no method split a session based on user interest changes. However, these changes
are more likely to happen from session to session(inter-session dynamics). Additionally,
in recent session-aware approaches the inter-session and intra-session components are
represented by dense vectors(internal states of networks) in latent space, which makes
detecting changes even a harder problem.

Given the problematics previously exposed, in this research work, instead of detect-
ing changes during long sequences of interactions, we explore the possibility of exploiting
inter-session dynamics between contiguous sub-sessions to introduce the topic-changing
nature of different sessions by combining both inter and intra session states to adjust
the current intra-session. To accomplish this, we need a method to select which features
of the inter-session state to combine with the intra-session state, which is unsupervised
data problem. Therefore, we apply Deep RL techniques to find a policy that can analyze
the current states of both levels to select which inter-session state features should be
combined with the current intra-session state based on resulting performance.

1.3 Hypothesis

The main hypothesis of this research is that exploiting inter-session dynamics
according to the current context of a session can improve performance for long sequences
of interactions within the same session in a hierarchical recurrent neural network for
session-aware recommendation. Consequently we defined the following research questions:

• What strategies should our proposed agent adopt to perform its actions?

• How should we build the observations that we use to train our agent?

• How well does our proposal performs only for the long sessions scenario?

• How well does our proposal performs in the overall recommendation scenario?

1.4 Objective

In this research work we have as main objective to use deep reinforcement learning
techniques to train a policy that exploits inter-session dynamics information to improve
the current state of intra-session predictions for long sequences of interactions within the
same session in a hierarchical recurrent neural network for session-aware recommendation.
Additionally to our main objective we defined the following specific objectives:

1.5. Document Organization 31

• Adapt the Deep Deterministic Policy Gradient algorithm for the session-aware rec-
ommendation scenario to train a policy that can deal with the interaction of inter-
intra session representations

• Develop a method to train our policy with sufficient data

• Explore how well our proposal performs for the global and long sessions recommen-
dation scenario

• Explore how well our proposal performs alongside its baselines according to different
factors such as history length, session average length, and average recurrent session
length

1.5 Document Organization
This text is organized as follows: In Chapter 2, basic concepts of recommender sys-

tems are described. Following, in Chapter 3 there is a review of recent works relevant to
this research. Further, in Chapter 4, a detailed description of the proposal, methodological
aspects and needed tools, are discussed. Moreover, in Chapter 5 we describe our exper-
iments’ design and results. Finally in Chapter 6 we present a summary of this research
work, main contributions, conclusions and future works.

33

CHAPTER

2
THEORETICAL BACKGROUND

In this Chapter, all the relevant related concepts within this research will be ad-
dressed. This Chapter is organized as follows: Section 2.1 describes the basic concepts and
paradigms of Classical Recommender Systems. Next, in Section 2.3 we review the elements
of Session-Based Recommender Systems. Following in Section 2.4 we make a brief review
of Neural Recommendation techniques. Then, in Section 2.5 we review the fundamentals
of Reinforcement Learning. Finally, in Section 2.6 we present our final remarks for this
Chapter.

2.1 Classical Recommendation Techniques

Recommender Systems (RS) are tools designed for filtering relevant information
from overwhelming amounts of data. These tools have gained great importance over the
last decades, due to their widely application on several domains such as e-commerce
and media services applications making them more profitable. To accomplish such ob-
jectives, several sources of information are used, for instance users’ preferences records,
content features, demographic information, spatio-temporal information, etc., along with
many modeling techniques. In the following sections, we will review the main approaches
for recommenders including Collaborative Filtering, Content Based Filtering, Knowledge
Based Filtering and the widely used Context-Aware Recommender Systems.

2.1.1 Collaborative Filtering

Being one of the most popular approaches in literature, collaborative filtering is
defined as the set of techniques that uses users’ ratings to estimate the relevance of unseen
items for other users in the community. It is based on the idea that ratings are highly
correlated among users, being its main challenge the underlying sparsity of ratings matri-

34 Chapter 2. Theoretical Background

ces (AGGARWAL, 2016). Collaborative Filtering (CF) approaches can be subdivided in
memory-based and model-based approaches, as described next.

2.1.1.1 Memory-based CF

This approach is also called Neighborhood Based (NB), so information filtering is
made according to their proximal elements (users or items). It uses the user×item matrix
and then, using a similarity function (e.g. Euclidean, Jaccard, Cosine), it determines the
similarities between rows or columns. For example, if the users A and B had rated almost
the same movies with similar values then we can say that A and B are similar, and
depending on how similar they are we can obtain a ranking of similar users. There is a
similar scenario for items but we use columns instead of rows (AGGARWAL, 2016).

The main advantage of this approach is its simplicity of implementation and the
generation of explainable recommendations. However, it does not perform very well when
dealing with sparse matrices, for instance when there are not sufficiently similar users to
calculate rating for a given user, which causes lack of full coverage of ratings predictions.
Also, it requires a lot of resources (time and space) during its offline preprocessing stage
when dealing with large volumes of data (AGGARWAL, 2016).

2.1.1.2 Model-based CF

The main feature of this approach is the usage of models brought from other
areas of science in order to predict ratings based on many sources of information. These
models are capable to manage with the complexity, sparsity and constant information
drift. Most of the techniques used for this kind of RS come from vastly studied machine
learning algorithms, because the matrix completion process is a special case of traditional
classification and regression problems. Some clear advantages over memory-based methods
are listed below (AGGARWAL, 2016):

• Space efficiency: Typically, trained models are smaller representations of original
rating matrices.

• Training speed and prediction speed: These models are often faster in the data
preprocessing stage. And despite their compact and summarized representations,
predictions are efficiently calculated, in most cases.

• Overfitting Avoidance: Overfitting is a serious problem in machine learning tech-
niques, in which prediction are overly influenced by random artifacts in the data.
In model-based approaches regularization techniques can be used to alleviate this
problem.

2.2. Evaluation of Recommender Systems 35

2.1.2 Content-based Filtering

For Content Based Filtering (CBF), the intrinsic structure of items is analyzed to
find better similarity between items. In the field of recommendations the common schema
is to gather item metadata to generate better representations. These data range from
tags, reviews, item textual description to audio spectrum, video features, etc. This kind
of recommender depends on two sources of data:the user profile and description of items.
For this approach, we have three basic components (AGGARWAL, 2016):

• Preprocessing and feature extraction: In this stage, the intrinsic content features
are processed to create vector representations that are domain specific, for instance,
keyword-based vector-space for news representation. The selection of features to
represent items is a key process, which affects the performance in any content-based
recommender.

• Content based learning of user profiles: The objective of this stage is to create a user
specific representation based on historical data, in order to predict user interest in
items. For this purpose, explicit and implicit feedback are combined with attributes
of items to create the training data. The resultant user profile relates user interests
to item attributes.

• Filtering and recommendation: In this stage, predictions for specific users are per-
formed.

This approach has good performance when the item is new and there are few
ratings for that item. Also, it produces explainable recommendations, which not always
can be accomplished with CF approaches. Content-based methods can use Off-the-shelf
text classifiers with relatively little engineering effort. On the other hand, this approach
can not deal with new users because of its dependency on user profiles. Additionally, it
tends to fall into the overspecialization problem showing just similar items to the ones
that the user has already seen.

2.2 Evaluation of Recommender Systems
Evaluating RS is not a trivial task but follows common guidelines. In this section,

we will review the evaluation protocols for RS adopted in this work.

2.2.1 Offline evaluation

Offline evaluation is the most common schema in RS because standardized eval-
uation frameworks have been developed for such cases. The main disadvantage of this

36 Chapter 2. Theoretical Background

evaluation method is that it does not measure the actual propensity of the user to react
to the recommender system in the future. However, the quantifications that this method
provides are statistically robust and easily understandable (AGGARWAL, 2016). In fol-
lowing paragraphs we describe the metrics used throughout this research work.

Recall (R) is an accuracy based metric and is defined as the fraction of relevant
documents that are retrieved (Equation 2.1). We also can consider it as the fraction of
True Positive (TP) samples and the sum of the TP and False Negative (FN) samples
(Equation 2.2) (MANNING; RAGHAVAN; SCHüTZE, 2008).

Recall =
relevant items retrieved

relevant items
(2.1)

R =
T P

T P+FN
(2.2)

Mean Reciprocal Rank (MRR) is ranking based metrics and is useful for evalu-
ating how early in the list the first relevant recommended item appears. Reciprocal Rank
is the inverse of the position of the first relevant item (BAEZA-YATES; RIBEIRO-NETO,
2008). Let rank be the predicted rank position of an item i and K the threshold for ranking
position,

RR@K(i) =


1

ranki
, i f ranki ≤ K

0 , otherwise
(2.3)

The mean reciprocal rank is given by the mean of RR for all the predicted items I:

MRR@K(I) =
I

∑
i

RR(ranki) (2.4)

2.2.2 Protocols for Evaluation

In order to measure the performance of our trained models on unseen data, there
are several protocols. These protocols follow common guidelines brought from machine
learning evaluation methods as (AGGARWAL, 2016):

• Holdout: The dataset is divided in two groups training and test, and the performance
of the algorithm is measured on the predicted values for the test partition after
having trained the model with the training partition.

• K-fold cross-validation: This method divides the dataset in k partitions to then
perform training with k− 1 partitions (folds) and testing with the remaining one.
This process is repeated k times, one for each fold.

2.3. Session-Based Recommender Systems 37

Current Session Prediction

s0Anonymous User
Figure 1 – Session-based recommendation scenario

2.3 Session-Based Recommender Systems

Unlike traditional recommendation techniques, Session Based Recommender Sys-
tems (SBRS) do not rely on user’s long-term historical data to make their predictions.
Instead, they gather data generated from interactions performed within the current ses-
sion with the main goal of adapting predictions to match the user’s short-term interest
(QUADRANA; CREMONESI; JANNACH, 2018).

In order to perform training, this type of RS requires to split long user’s activity
logs into sessions. A session can be defined as a set of interactions performed by the user
during a period of time that is heuristically limited and domain dependent, for example,
we could establish the end of a session and the start of a new one whenever we have an
idle time of 30 minutes between two interactions (LUDEWIG; JANNACH, 2018).

In recent years most approaches treat this problem a sequence pattern mining task
with the objective of predicting the next action that the user will perform. This group
of techniques is known as sequence-aware RS which implies several challenges such as
context-adaptation and trend-detection. According to the interaction between long-term
and short-term user’s interests, session based recommendation has two main scenarios
(QUADRANA; CREMONESI; JANNACH, 2018):

• Session Based Recommender Systems As we defined before it bases its predic-
tions on user’s short-term interests (Figure 1).

• Session-aware Recommender Systems This kind of recommender makes a com-
bination of long-term and short-term interests to improve accuracy. Therefore, these
RSs use past sessions’ information alongside the current session (QUADRANA;
CREMONESI; JANNACH, 2018) (Figure 2).

In this work, our focus is on session-aware recommender systems for which we introduce
a method to exploit user long-term interests representations to address long sequences of
session interactions where short-term interest might change.

38 Chapter 2. Theoretical Background

Past sessions

s0 s1 s2

Current Session Prediction

s3Known User
Figure 2 – Session-aware recommendation scenario

2.4 Neural Recommendation

Neural recommendation is a sub-area of RS in which modeling and representation
techniques are inspired by Neural Networks (NNs). Common neural inspired techniques
for sequential modeling are depicted in the following sections.

2.4.1 Recurrent Neural Networks

Modeling sequences for the recommendation task has gained importance because
matrix based approaches aren’t specifically designed to support the constant changes in
preferences of users and content. There have been many efforts to exploit patterns from
series of continuous interactions of users and web applications. Consequently, with the
rise of Deep Learning techniques, Recurrent Neural Networks (RNNs), which is a family
of neural networks for processing sequences of data, were introduced to Recommender
Systems to address the dynamic nature of users and items (WU et al., 2017). They are
based in one of the earliest machine learning concepts, parameter sharing across different
parts of the network (GOODFELLOW; BENGIO; COURVILLE, 2016), which allows the
model to generalize across inputs of different forms (variable length). A brief description
of the RNN internals is presented below.

Recurrent neural networks represent the position of values in sequences with the
index t and consider the hidden state ht as the current system status, which is updated
by feeding the model with data representational vectors xt and a non-linear function f

from time to time.

ht = f (ht−1,xt) (2.5)

Usually, this function f is a linear transformation plus a non-linear activation function
for instance in:

ht = tanh(W [ht−1,xt]+b) (2.6)

2.4. Neural Recommendation 39

where the parameters related to ht−1 and xt are combined into the matrix W , and b is a
bias term. Also, the activation function, for this case tanh, is applied to every element of
its input. The task of an RNN is to learn the parameters W and the bias term b (ZHOU
et al., 2016).

There is a specialized type of architecture that uses several internal mechanisms
(gates) for controlling signals called gated RNN. The most well known ones are Long-
Short Term Memory and Gated Recurrent Unit, that in practical situations have similar
behavior (DONKERS; LOEPP; ZIEGLER, 2017). They are reviewed below.

2.4.2 Long-short Term Memory

Long-short Term Memory (LSTM) is one of the most successful architectures of
gated RNNs, it consists in adding several control gates inside each cell and self-loop paths
where the gradients can flow for longer durations (HOCHREITER; SCHMIDHUBER,
1997). The addition of these control gates solves the vanishing/exploding gradient problem
of regular RNNs. The formal definitions of these control gates are given by the following
equations:

it = σ(Wi[ht−1,xt]+bi)

ft = σ(Wf [ht−1,xt]+b f)

ot = σ(Wo[ht−1,xt]+bo)

c̃t = tanh(Wc[ht−1,xt]+bc)

ct = ft⊙ ct−1 + it⊙ c̃t

ht = ot⊙ tanh(ct)

(2.7)

where it , ft , ot are equations for the input, forget and output gates, respectively, ⊙ is
the component-wise product between two vectors and σ represents the logistic sigmoid
function (applied to every component of the input) and is defined by the equation:

σ(x) =
1

1+ e−x (2.8)

All these inner components and their interactions are depicted in Figure 3 that shows the
architecture of LSTM.

The model above is described as follows (ZHOU et al., 2016):

• There is one additional hidden state ct that, in addition to ht , helps maintaining
long-term memories.

• The forget gate ft determines the portion of ct−1 to be remembered, calculated by
the parameters Wf and b f .

40 Chapter 2. Theoretical Background

Source – (ZHOU et al., 2016)

Figure 3 – Long-short term memory architecture

• The input gate it determines which portion of time t’s new information is to be
added to ct with parameter Wi and bi.

• The inputs are transformed as the update c̃t with parameters Wc and bc. Then c̃t

(weighted by it) and ct−1 (weighted by ft) form the new cell state ct .

• The output gate ot is determined by parameters Wo and bo, and controls which part
of ct is to be output as the hidden state ht .

2.4.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is another architecture that simplifies the LSTM-
like units. The main difference is that a single gating unit simultaneously controls the
forgetting factor and the decision to update the state unit. Each GRU contains an update
gate z, whose role is similar to the LSTM forget gate, and a reset gate r, which mimics
the role of the LSTM input gate. It is represented by the following equations:

rt = σ(Wr[ht−1,xt]+br)

zt = σ(Wz[ht−1,xt]+bz)

h̃t = tanh(Wh[rt⊙ht−1,xt]+bh)

ht = (1− zt)⊙ht−1 + zt⊙ h̃t

(2.9)

To illustrate the data flow, the architecture of the GRU is shown in Figure 4. It can be
seen in the Figure 4 that the LSTM output gate was removed as well as the additional
hidden state gate c, which means that GRU units have less computational complexity.
Furthermore, GRU units have slightly better performance (CHUNG et al., 2014).

In this section we have reviewed RNNs’ internals and common RNN cell architec-
tures pointing out their main capabilities. In this research, we will leverage the sequence
modeling capabilities of RNNs to tackle session-aware recommendation.

2.4. Neural Recommendation 41

Source – (ZHOU et al., 2016)

Figure 4 – Gated Recurrent Unit architecture

2.4.4 Training Session-Based Recommender Systems

In this Section we are going to review some of the most common practices adopted
for training session-based recommender systems including data split protocols and session
creation.

2.4.4.1 Split Protocols

There are several dataset splitting protocols to try to emulate a real scenario of
session-based recommendation that may vary according to the objective of the system.
Additionally, to build sessions out from a user’s interactions logs most systems adopted a
heuristic methodology based on the idle time of the user (i.e. 30 minutes), others adopted
for example one day of interactions (LUDEWIG; JANNACH, 2018). After building ses-
sions we can split the data to perform training.

• Temporal-Holdout: when the dataset is split according to a defined timestamp or
period (e.g. last day, last week, last month of interactions).

• Session-Holdout: when the dataset is split with defined proportion considering one
session as an example.

• Last-n-sessions-out: when the last n user sessions are separated for holdout.

• User-Holdout: when a defined subset of users is separated for testing according to a
defined proportion.

We adopted the last-n-sessions-out for n=1 or last-session-out as in (QUADRANA et al.,
2017).

42 Chapter 2. Theoretical Background

Interactions(ik, j)
Se

ss
ion

s(
S k

)

S1→ i1,1 i1,2 i1,3 i1,4 i1,5

S2→ i2,1 i2,2 i2,3

S3→ i3,1 i1,2 i3,3 i3,4

S4→ i4,1 i4,2 i4,3

S5→ i5,1 i5,2 i5,3 i5,4

S6→ i6,1 i6,2 i6,3 i6,4 i6,5

Minibatches Bm, |Bm|= 3

B1 B2 B3 B4 B5 B6 . . .

In
pu

t 1 i1,1 i1,2 i1,3 i1,4 i6,1 i6,2 . . .

2 i2,1 i2,2 i4,1 i4,2

3 i3,1 i1,2 i3,3 i5,1 i5,2 i5,3 . . .

Ou
tp

ut 1 i1,2 i1,3 i1,4 i1,5 i6,2 i6,3 . . .

2 i2,2 i2,3 i4,2 i4,3

3 i3,2 i1,3 i3,4 i5,2 i5,3 i5,4 . . .

Figure 5 – Session-Parallel Mini batches adapted from (HIDASI et al., 2015). As we can see for
the batch size |Bm|= 3 as soon as the last interaction i2,2 of the session S2 is processed
in B2, the first interaction i4,1 of the session S4 is inserted in the position 2 of the
batch B3.

2.4.4.2 Training RNN-based SBRS

To train RNN based SBRS in (HIDASI et al., 2015) the authors introduced Session-
Parallel Minibatches, a novel method to train over anonymous sessions that consists in
creating a batch that includes in each position a pair of sequential interactions ik, ik+1

where the input ik is mapped to the output ik+1 until the session finishes, to then fill in
that position in the batch with the next session’s first pair of interactions. Under this
setting we consider the session as being independent from each other, we can see an
example in Figure 5.

In (QUADRANA et al., 2017) the authors made an adaptation for the case of non-
anonymous sessions or user sessions called user session-parallel minibatches that consist
in chronologically ordering a sequence of user sessions to then use each position of the
batch to process all the sessions of the same user. After we finished processing one user’s
sessions, we replace that position in the batch with the next user’s interactions, an example
is depicted in Figure 6. Throughout this research we use the user session parallel mini
batches with some adaptations to train our models.

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a set of computational techniques that facilitate
the understanding and automating of the learning process and decision making for a
given task. This approach main feature is that the learning of the agent is carried out by
interacting with its environment without the need for supervised data. The representation
of these techniques follows the Markov Decision process framework due to its awareness

2.5. Reinforcement Learning 43

Interactions(iuk, j)
Us

er
u

Se
ss

ion
s(

Su k) S1
1→ i11,1 i11,2 i11,3 i11,4 i11,5

S1
2→ i12,1 i12,2 i12,3

S2
1→ i21,1 i21,2 i23,3 i23,4

S2
2→ i22,1 i22,2 i22,3

S3
1→ i31,1 i31,2 i31,3 i31,4

S3
2→ i32,1 i32,2 i32,3 i32,4 i32,5

Minibatches Bm, |Bm|= 3

B1 B2 B3 B4 B5 B6 . . .

In
pu

t 1 i11,1 i11,2 i11,3 i11,4 i12,1 i12,2 . . .

2 i21,1 i21,2 i23,3 i22,1 i22,2

3 i31,1 i31,2 i31,3 i32,1 i32,2 i32,3 . . .

Ou
tp

ut 1 i11,2 i11,3 i11,4 i11,5 i12,2 i12,3 . . .

2 i21,2 i21,3 i23,4 i22,2 i22,3

3 i31,2 i31,3 i31,4 i32,2 i32,3 i32,4 . . .

Figure 6 – User Session-Parallel Mini batches adapted from (QUADRANA et al., 2017). As we
can see for the batch size |Bm|= 3 as soon as the last interaction i21,3 of the user session
S2

1 is processed in B2, the first interaction i22,1 of the same user’s following session S2
2

is inserted in the position 2 of the batch B3

of cause-effect, non-determinism, and goal orientation (SUTTON; BARTO, 2018).

2.5.1 The RL Problem Setting

The basic setup of a RL scenario has two main components the agent and the
environment that interact in a loop of constant feedback. On every step of this loop,
the agent relies on a policy (π) to generate an optimal action At for the current state St

and reward signal Rt , this action is performed on the environment which will return a
new state St+1 and reward signal Rt+1 completing the loop (DING et al., 2020) as shown
in Figure 7. In following Sections we will describe the formulation of an RL problem.

Agent
Policy

State St

Reward Rt

Action At

Environment

Rt+1

St+1

Figure 7 – The RL problem setting

44 Chapter 2. Theoretical Background

2.5.1.1 Action Spaces

RL has diverse applications therefore environments might be different from one
problem to another and actions. An action-space is defined as the set of valid actions
that can be performed by the agent. In some cases we can have a discrete space of
actions that is the case for a game like Chess, or continuous for tasks like deciding the
next rotation of a robotic arm (DING et al., 2020).

2.5.1.2 States and Observations

The state contains all the environment’s information at a given moment, from
which we gather observations o. An environment is considered fully observable or par-
tially observable depending on whether the observations contain complete or partial
state’s information (DING et al., 2020).

2.5.1.3 Trajectories

We can call a trajectory τ to the sequence of states (St) , actions (At) and rewards
(Rt) that the interaction of the environment and the agent generates over time (DING et
al., 2020).

τ = (S0,A0,R0,S1,A1,R1 . . .) (2.10)

2.5.1.4 Reward and Return

The reward signal Rt (Equation 2.11) serves as an indicator of the immediate
performance of the agent on a single step. However, the objective of our agent is to find
the optimal policy π∗ that maximizes the future accumulated reward. Therefore we define
return R(τ) (Equation 2.12) as the accumulated reward for a given trajectory τ (DING
et al., 2020).

Rt = R(St) (2.11)

R(τ) =
T

∑
t=0

Rt (2.12)

In a trajectory the closer the events the greater the impact on its accumulated reward,
for this reason, a return discount factor γ ∈ [0,1] is included . Therefore we define the
discounted return (Equation 2.13) as a weighted sum of the reward of each step in the
trajectory.

R(τ) =
T

∑
t=0

γ tRt (2.13)

An agent has to estimate the expected return from a state s ∈ S to decide which following
state of the trajectory will have greater value, to this we use a value function V (s)

2.5. Reinforcement Learning 45

(Equation 2.14).
V (s) = E [Rt |St = s] (2.14)

2.5.1.5 Policies

An agent uses a policy π (Equation 2.15) to handle the state s ∈ S, gathered from
the environment, and chooses the optimal action a∈ A from the probability distribution of
transitions p that will maximize the expected return J(π) (Equation 2.16). In order to do
that, we optimize to maximize this policy to choose the best policy π∗ for all trajectories
τ , we can denote the optimal policy as in Equation 2.17 (DING et al., 2020).

π(a|s) = p(At = a|St = s) (2.15)

J(π) =
∫

τ
p(τ|π)R(τ) = Eτ∼π [R(τ)] (2.16)

π∗ = argmax
π

J(π) (2.17)

Given the optimal policy π∗, the value-function V π (Equation 2.18) is the expected
return for the state s .

V π(s) = Eτ∼π

[
R(τ)|S0 = s

]
= EAt∼π(.|St)

[
∞

∑
t=0

γ tR(St ,At)|S0 = s

]
(2.18)

An on-policy value function is the value function that depends on a policy π that we
denote as V π(s) (Equation 2.19), that is optimal when it depends on π∗ and is denoted
as V ∗(s) (Equation 2.20), known as optimal value function.

V π(s) = Eτ∼π [R(τ)|S0 = s] (2.19)

V ∗(s) = max
π

Eτ∼π [R(τ)|S0 = s] (2.20)

To estimate the expected return starting from a state s, an arbitrary action a and the
current policy π, we use an action-value function Qπ(s,a) (Equation 2.21) which once
we have the optimal policy π∗ we call optimal action-value function Q∗(s,a) (Equation
2.22).

Qπ(s,a) = Eτ∼π

[
R(τ)|S0 = s,A0 = a

]
= EAt∼π(.|St)

[
∞

∑
t=0

γ tR(St ,At)|S0 = s,A0 = a

]
(2.21)

Q∗(s,a) = max
π

Eτ∼π

[
R(τ)|S0 = s,A0 = a

]
(2.22)

46 Chapter 2. Theoretical Background

2.5.2 Taxonomy of RL Algorithms

It is really hard to establish an adequate classification for each RL algorithm be-
cause of their diverse foundations, in this Section we will introduce the most relevant crite-
ria that can help us to identify the basic features for each group of algorithms. Nonetheless,
this classification might not be the completely accurate but reasonably useful (ACHIAM,
2018).

2.5.2.1 Model-based vs Model-Free RL

We can divide RL algorithms in two big groups: model-based and model-free based
on whether they have access to the model of the environment or they have to learn it
(ACHIAM, 2018).

For model-based approaches, a model can be defined as set of predefined rules
that allows the agent to plan ahead, so it chooses among a set of possible trajectories. To
learn its policy we can use supervised learning techniques on the observations (s,a,s′,r)

collected by performing actions on the environment. This approach main advantage is
that we can have better results easily, however, the models are not always available.

In a model-free approach we try to find a policy by directly optimizing the reward
without focusing on the model of the environment. This approach relies on experience
which over iterations improves the performance of the policy, being its main drawback
the cost of exploration in the real-environment.

In this work we are going to focus on model-free algorithms and in the following
Sections we will review policy optimization approaches.

2.5.2.2 Value-based vs Policy-based

Policy optimization approaches can be classified according the function that they
try to optimize (ACHIAM, 2018). A value-based approach’s objective often is to optimize
its action-value function Qπ∗(s,a). This approach’s main advantage is its high efficiency
due to its small variance of value function estimation. Additionally, this approach is hard
to fall into a local optimum. However, it is often limited to discrete action spaces.

A policy-based algorithm optimizes the policy directly by maximizing the accu-
mulated reward. This approach is suitable for continuous high dimensional action spaces.
Additionally, this approach has better convergence and a simpler process for parameter
definition than value-based methods.

We have divided policy optimization methods into policy-based and value-based
however the most popular methods for this purpose is a combination of these two, also
known as actor-critic (SUTTON; BARTO, 2018) methods. In this approach we learn an

2.5. Reinforcement Learning 47

action-value function to reduce the variance of the policy search space, which is suitable
for discrete and continuous actions spaces.

2.5.3 Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) is an off-policy RL algorithm
proposed by (LILLICRAP et al., 2015), whose main feature is its ability to learn tasks in
environments with continuous action spaces. This is an algorithm that works under the
standard RL setup and has a close relation with Q-learning (WATKINS; DAYAN, 1992).

The expected reward for every possible state of the policy π is defined by an
action-value function Q∗(s,a), defined by Bellman’s equation (Equation 2.23) (SUTTON;
BARTO, 2018) where P is a set for all possible states, r(s,a) is the reward for the current
state and a discount factor γ for the next state action-value.

Q∗(s,a) = E
s′∼P

[
r(s,a)+ γ max

a′
Q∗(s′,a′)

]
(2.23)

The policy π chooses the optimal action a∗ for the current state s in order to
obtain the best possible reward as depicted in Equation 2.24:

a∗(s) = argmax
a

Q∗(s,a) (2.24)

As we can see in Equation 2.24, to choose the best action we calculate the best
value over all possible states. This works well for a finite number of actions, but when
working in continuous action spaces this calculation becomes expensive if done for every
state. DDPG (LILLICRAP et al., 2015) approximates the optimal value function with a
differentiable policy µ(s), that takes advantage of the continuity of the action space, then
argmaxa Q∗(s,a)≈ Q(s,µ(s)).

Let Qϕ (s,a) with parameters ϕ be our approximator for the optimal policy µ(s) =
argmaxa Q(s,a) which is optimized by minimizing the loss function in Equation 2.25, where
D is a set of transitions (s,a,r,s′,d) that include flags for terminal states d, the action
value function yt is then calculated by the Bellman’s equation (Equation 2.26):

L(ϕ ,D) = E
(s,a,r,s′,d)∼D

(Qϕ (s,a)− yt

)2
 (2.25)

yt = r(s,a)+ γ(1−d)max
a′

Qϕ (s′,a′) (2.26)

In the Algorithm 1 we can see the whole process of policy optimization, which mainly
consists in the optimization of the policy by learning the θ and ϕ parameters in two well

48 Chapter 2. Theoretical Background

known stages soft-update in line 15 where we optimize the target parameters and hard-
update in line 16 where we assign the current policy and Q-function parameters with a
penalizing factor gamma.

Algorithm 1 – Deep Deterministic Policy Gradient (LILLICRAP et al., 2015)
1: Input initial policy πθ parameters θ , Q-function Qϕ (s,a) parameters ϕ and an empty

replay buffer D
2: Initialize target parameters equal to main parameters θtarget ← θ ,ϕtarget ← ϕ
3: repeat
4: Gather state s and select action a = clip(µθ (s)+ ε,aLow), where ε ∼N
5: Perform action a in the environment
6: Gather next state s′, reward r, and done signal d that represents whether s′ occurs

to be a terminal state
7: Insert the tuple (s,a,r,s′,d) into replay buffer D
8: if s′is terminal then Reset environment state
9: end if

10: if update condition is fulfilled then
11: for many updates do
12: Randomly sample a a batch of transitions, B = {(s,a,r,s′,d)} from D
13: Compute targets

y(r,s′,d) = r+ γ(1−d)Qϕtarget (s
′,µθtarget (s

′))

14: Update Q-function by executing one step of gradient descent

∆ϕ
1
|B| ∑

(s,a,r,s′,d)∈B
(Qϕ (s,a)− y(r,s′,d))2

15: Update policy by executing one step of gradient ascend

∆ϕ
1
|B| ∑

(s)∈B
Qϕ (s,µθ (s))

16: Update target network parameters

ϕtarget ← ρϕtarget +(1−ρ)ϕ

θtarget ← ρθtarget +(1−ρ)θ

17: end for
18: end if
19: until convergence

2.6 Final Remarks
This chapter presented many concepts related to Recommender Systems including

traditional approaches, recent techniques, common evaluation methods and other topics

2.6. Final Remarks 49

relevant to this research. Moreover, we presented key features and drawbacks of each
approach, featuring traditional and recent challenges. Also, we briefly reviewed the funda-
mentals of Reinforcement Learning techniques that have an important role in this research
work.

Further, in Chapter 3, there is a review of recent works about the usage of Re-
current Neural Networks for Recommender Systems, describing how they are applied. In
addition next chapter also presents some of the research challenges related to the area of
session-based recommender systems.

51

CHAPTER

3
RELATED WORKS

After having reviewed several theoretical concepts about Recommender Systems
and Reinforcement Learning techniques, in this Chapter we gathered several works that
are closely related with this research.

In the realm of session-based recommendation we have several approaches rang-
ing from k-nearest neighbors (JANNACH; LUDEWIG, 2017) to Deep Learning tech-
niques such as the early introduced GRU4REC (HIDASI et al., 2015)(HIDASI; KARAT-
ZOGLOU, 2017)(TAN; XU; LIU, 2016). Furthermore, the literature also reports ap-
proaches that include past sessions’ information (QUADRANA et al., 2017) (VASSØY et
al., 2019)(RUOCCO; SKREDE; LANGSETH, 2017) and attention based models (LI et
al., 2017). Deep RL techniques for recommendation have been applied to session-based
scenarios mostly in the e-commerce domain for pairwise ranking (ZHAO et al., 2018b),
long-term user engagement (ZOU et al., 2019), page-wise optimization (ZHAO et al.,
2018a) (LEI; LI, 2019). We divided this chapter in three sections session-based RS (Sec-
tion 3.1), session-aware RS (Section 3.2) and Deep RL techniques (Section 3.3).

3.1 Session-based recommender systems
Session information plays an important role in many domains such as e-commerce

where most of the transactions are preformed by non-logged users. Given this scenario,
modeling user’s sequential interactions has great influence into recommendation tasks.
One of the earliest works to introduce RNNs in an attempt to solve this problematic
was (HIDASI et al., 2015)’s GRU4REC that adopted the next item to be clicked task for
anonymous sessions using pairwise objective functions that were based on classical ranking
techniques. In a subsequent work called GRU4RECv2 (HIDASI; KARATZOGLOU, 2017),
the authors improved several aspects such as negative sampling and the introduction of
better ranking based objective functions resulting in significant improvements. Other ap-

52 Chapter 3. Related works

proaches have used additional techniques such as data augmentation, a common practice
when training deep learning models (TAN; XU; LIU, 2016), multimodal information (HI-
DASI et al., 2016), attention mechanisms (LI et al., 2017) where the authors introduced
an encoder-decoder architecture to model global and local user intent for sessions pointing
out the great impact of the sequential encoding of interactions on recommendation per-
formance, contextual signals (i.e. device type, dwell time) (SMIRNOVA; VASILE, 2017)
where the authors found out that modeling contextual information can bring benefits
when predicting for long sessions. And, matrix factorization based embeddings for sessions
(TWARDOWSKI, 2016) in which the authors combined sequential encoding of item’s con-
textual information with item factorized representations concluding that the difference in
availability of contextual information in datasets affects the final performance. Despite
the remarkable results of RNN-based models, in a study (JANNACH; LUDEWIG, 2017)
the authors showed that nearest neighbors based methods could have similar or even
better results with less computational power.

Most of these approaches solely rely on item-to-item co-occurrence which carries
several limitations and it’s not suitable for the wide range of existing application domains.
These limitations range from the heterogeneity of data attributes to the constant changes
of user preferences which affect performance over time (WANG; CAO; WANG, 2019).
Additionally, these approaches do not address other problems like users’ changes of interest
or real time user feedback (e.g. positive/negative interactions such as click, remove-from-
cart) explicitly during sessions having all their prediction power supported by sequence
modeling (LUDEWIG; JANNACH, 2018).

3.2 Session-aware recommender systems
These approaches main objective is to build representations of past sessions and

use them to improve performance of fresh new ones. In some domains where user past
information is available, it might be useful to model past interactions within the current
session. This motivated (QUADRANA et al., 2017) to introduce HGRU4REC, a hierar-
chical RNN model based on GRU4REC (HIDASI et al., 2015) which can deal with past
users’ sessions information in session-based scenarios also called session-aware approaches.
This architecture consists in two separated GRU networks to model sequences at two lev-
els, user and session, so they can model inter and intra session dynamics by generating
the initial state of the the next session using the user network. Being a similar architec-
ture in (RUOCCO; SKREDE; LANGSETH, 2017) the authors dealt with the dynamics
of user short-term interests and cold-start scenarios by modeling certain number of pre-
vious sessions to then initialize further users’ sessions and concluded that modeling the
time-difference between sessions may bring improvements. Later in (VASSØY et al., 2019)
based on (RUOCCO; SKREDE; LANGSETH, 2017), the authors added a Point Process

3.3. Deep Reinforcement Learning 53

model to predict the returning time of the user in a future session.

In addition to the limitations presented in Section 3.1, in these techniques, real time
interactions of inter-session and intra-session representations are yet to be explored which
could be beneficial in a long sequence of interactions scenario (LUDEWIG; JANNACH,
2018). Detecting these changes does not have a trivial solution due to the chaotic nature
of user behavior during sessions.

3.3 Deep Reinforcement Learning

Recently, due to their long-term goal orientation, Deep Reinforcement Learning
techniques have been explored in the field of recommendations mostly in the e-commerce
domain (ZHAO et al., 2019) and specially for the next item prediction task (ZHAO et
al., 2018b)(ZOU et al., 2019) and proved that they can outperform previous approaches.
However, these new techniques require several adaptations for the recommendation prob-
lem and have several other new challenges such as high variance of resultant models and
constantly changing preferences of users. especially to the sequential prediction task, due
to their goal orientation and long-term optimization. For instance, in (ZHAO et al., 2018b)
the authors pointed out the potential of dealing with the imbalanced proportion between
positive and negative feedback and introduced a novel framework for pairwise ranking that
combines them in a Deep Q-Network model. In (ZHAO et al., 2018a) the authors proposed
a framework for generating and re-ranking 2-D pages of items using real-time user feed-
back. Furthermore, in (ZOU et al., 2019) the authors introduced a framework that uses
several kinds of user feedback signals to model instant and long-term user engagement. In
(CHEN et al., 2018) the authors presented strategies to deal with the dynamic nature of
real-world online recommendation for training RL models. Most of these previous works
have used RNN to encode interactions.

3.4 Final Remarks

In this chapter we have reviewed several recent works in RS pointing out several
limitations and different approaches for session-based recommendation. We have seen that
session-based RS techniques prediction power mostly rely on sequence modeling tasks.
Also, these techniques do not exploit other sources of information which entail several
limitations. Deep RL techniques were used for the session-based scenario due to their long
term optimization objective and showed that can outperform several baselines despite of
the new challenges and adaptations that have to be made for this area. Additionally,
they DRL approaches do not treat internal aspects of a session such as users’ changes of
interests, which could be beneficial.

54 Chapter 3. Related works

Session-aware approaches only use past sessions representations to initialize a new
session to improve their predictions, however, the longer the sessions the less useful this
initialization becomes because users tend to change their short-term interests. We believe
that we can exploit inter-session information during long sessions by adjusting the current
session state every certain number of interactions towards better results. For this end, in
this work we apply Deep RL techniques to find a policy that can suit the adjustment of
the current state of the session including inter-session dynamics. In the following chapter,
we will present our solution proposal in detail.

55

CHAPTER

4
PROPOSAL

In previous chapters we reviewed theoretical concepts about traditional and session-
based recommender systems. Additionally, we described the main contributions of several
works that have strong relevance to our proposal. In this chapter we will present our
proposal describing its components and all the stages of design.

The main objective of our proposal is to explore ways to improve recommendation
during users’ long sessions by adjusting the current state of the intra-session network by
introducing inter-session dynamics information. In order to deal with this problem we
established the following research questions: 1) what strategies should our proposed agent
adopt to perform its actions?, 2) how should we build the observations that we use to train
our agent?, 3) How well does our proposal performs only for the long sessions scenario?
and finally 4) How well does our proposal performs in the overall recommendation scenario
.

This Chapter is organized as follows: in Section 4.1 we describe our proposal in
detail, including the list of adaptations made to fit the settings of the Reinforcement Learn-
ing Problem. Further, in Section 4.2 we cover all the strategies that we use to introduce
signals generated by our model. Furthermore, in Section 4.3 we describe the architec-
tural aspects of each component of our proposal. Moreover, in Section 4.4 we present our
training method. Finally, in Section 4.5 we present this Chapter’s final remarks.

4.1 Reinforced HGRU4REC

Our proposal consists of an external agent that is fed with the current internal
states of a pre-trained instance of our baseline model HGRU4REC (QUADRANA et
al., 2017), that we chose to take advantage of the Parallel Minibatches training method
and include the improvements presented in (HIDASI; KARATZOGLOU, 2017) in order

56 Chapter 4. Proposal

to improve recommendation. Due to the complexity of the action search space and the
continuous nature of the hidden states of the networks of the environment, our agent is
trained under the Actor-Critic schema and specifically we chose the Deep Deterministic
Policy Gradient (LILLICRAP et al., 2015) algorithm due to its ability to work in a
continuous space of actions.

The main idea is to take observations from the environment to introduce inter-
session dynamics information to the current session state towards dealing with concept
drifts during long sessions. In the Figure 8 we show a simplified version of the compo-
nents of our proposal and the interactions between them that we will review in detail in
Section 4.1.1. The environment component (b) is composed of two GRU cells, GRUuser

and GRU sess, which respectively output the hidden states Huser
t and Hsess

t . These states
are concatenated in (c), in order to generate the observation vector Ot or state St , which
is fed to the Agent (e) that generates an action At+1. This action is performed on the
environment in (f) according to the strategies described in Section 4.2 which updates the
internal state of GRUsess. With this new state we calculate the next item yt which is eval-
uated in (d) and the reward Rt+1 that is used to perform training. All the observations
are gathered every k session steps. Additionally, in the Figure 9, we depict the internal
structure of our agent Actor an Critic components, the signals R and S coming from the
environment to output the next action. Furthermore, we can see the estimation of the
value of the state or Q−value that will be used to perform the optimization of the Actor,
which acts as our policy.

4.1.1 Deep Deterministic Policy Gradient Adaptations

In order to fit our purpose we made several adaptations of the original DDPG
algorithm defining several entities to train our agent as we can see in the list below.

• Environment: A pre-trained instance of an HGRU4REC model E that uses the
first 80% of each user’s sessions. From this model, we gather the internal states,
Huser

t and Hsess
t , to train our agent.

• State (St): This is the set of observations of our environment that we gather every
k intra-session steps are the concatenations of current hidden states:

– Initial session hidden state(Hsess
init) or the state with which each new user session

is initialized.

– Current session hidden state (Hsess) or the resulting internal state of the session
network after a forward pass through the intra-session component.

– Current user predicted state (Huser
pred) or resulting state generated after a forward

pass of the last hidden session state through the inter-session component.

4.1. Reinforced HGRU4REC 57

yt

Huser
t

Environment

Evaluate

C
on

ca
t

O
bs

er
va

tio
n

O
t

(S
ta

te
S t

)

ac
tio

n
A t

+
1

Agent

DDPG

D
at

a

re
wa

rd
R t

+
1

xt

GRUuser

Hsess
tGRU session

(c)(a)
(b)

(d)

(e)

(f)

Figure 8 – Joint model dataflow for the Reinforced HGRU4REC

Observation Ot (State St)

reward Rt+1

DDPG Agent

Policy

action At+1

Actor

Critic

Q

Figure 9 – Internal structure of the DDPG Agent

58 Chapter 4. Proposal

– Session step number(step_number) indicates how many steps have been per-
formed during the current session.

These observations are gathered from the environment every stepssess
min .

• Action(At): The agent outputs an action vector a which will be introduced to the
current hidden state of Hsess with few strategies that we review in further Sections.

• Reward(Rt): Because we are trying to increase accuracy, we use the ratio between
the number of correctly predicted instances instances and the maximum length of
the sequence after performing the action during a session.

• Done condition: This is necessary to train our critic network by filtering out valid
trajectories. We define it as whether the session has finished during the processing
of intra session steps between observations.

4.2 Strategies

In our session-aware setting performing an action is not a trivial task, so to explore
how we can perform the action generated by our agent we designed two strategies that
we named gate and noise. Both of them are intended to introduce perturbations to
the current hidden state of the intra-session network Hsess

t . Additionally, we introduce
perturbations only for selected events according to the Equation 5.

• Noise: This strategy generates a noise vector that represents by applying the acti-
vation function tanh to the output of our agent. The result of this operation is added
directly to the current hidden state of the session-level network Hsess

new to generate
Hsess

new as in Equation 4.1.

Hsess
new = Hsess +action (4.1)

• Gate: This strategy generates a vector with values in the interval [0 : 1] by applying
the activation function sigmoid to the output of our agent in order to filter out
features of the current hidden state of the session-level network Hsess. Then the
new state of the session-level network Hsess

new will be the product of the gatemask and
current state Hsess plus the product of the predicted state coming from the user-level
network and the complement to 1 of gatemask as in Equation 4.2.

Hsess
new = Hsess ∗action+Huser

pred ∗ (1.0−action) (4.2)

4.3. Architecture 59

Hsess
init Huser

pred Hsess s

gateinit H̃user
pred gatesess

action

Figure 10 – Actor architecture

4.3 Architecture

According to the DDPG algorithm we need two sub-networks: an actor that gener-
ates the actions that are performed on the environment and a critic that will predict the
estimated reward of the current state. Both networks are described in following sections.

4.3.1 Actor

We designed the actor following the intuition of filtering information from the
current state of the network by means of predicting an action that exploits the inter-
session dynamics of every user during the current session. For this end, we used several
gating mechanisms for each part of our observation vectors presented in Equations 4.3
that filters out information from the current state os the session-level network, 4.4 encodes
and filters out information from the initialization hidden state of the current session and
4.5 encodes and filters out information from the result of propagating the current hidden
state of the session-level network through the user-level network.

gatesess = σ(Wsess ∗ [Hsess,s]+bsess) (4.3)
gateinit = σ(Winit ∗ [Hsess

init ,s]+binit) (4.4)

H̃user
pred = tanh(Wpred ∗

[
Huser

pred,s
]
+bpred) (4.5)

out =
[
gatesess ∗ H̃user

pred,gateinit ∗ H̃user
pred

]
(4.6)

Actionnoise = tanh(Wout ∗out +bout) (4.7)
Actionmask = σ(Wout ∗out +bout) (4.8)

Additionally, we present the final activation functions in the Equations 4.7 and 4.8 ac-
cording to each of the strategies previously described in Section 4.2. In the Figure 10, we
can see how the observation vector is forward propagated through our actor to generate
the action based on the equations presented above.

60 Chapter 4. Proposal

Hsess
init Huser

pred Hsess s R

Q̃value

Figure 11 – Actor architecture

4.3.2 Critic

We used a multilayer perceptron applying the ReLU activation on each layer as in
the Equation 4.9 for the input, Equation 4.10 for the hidden layer and Equation 4.11 for
the output layer. This network outputs the predicted reward for the resulting state after
performing the action. In Figure 11 we can see the organization of layers for this network.

input = RelU(Win ∗ [state,reward]+bin) (4.9)
inner = RelU(Winner ∗ input +binner) (4.10)

Q̃value = σ(Wvalue ∗ inner+bvalue) (4.11)

4.4 Training method
To train our agent we first generate the final hidden representation of each user

sessions for their first 80% of session by forwarding the data through the environment.
Then with these final states we start to train our agent on unseen data for the environment
which corresponds to the remaining 20% of the sessions of each user following our intra-
session events’ selection criteria defined in Section 4.4.1.

The training process consists on taking observations every stepsess
min session steps

to generate and perform an action. Then, we calculate the accumulated reward for each
session sequence for the remaining stepsess

min −1 session steps. We collect the accumulated
reward value, state and next-state to generate transitions that are stored in a replay buffer.
Then, we perform the optimization of our policy based on stored transitions.

The full training method of the agent is done by the Algorithm 2 where we can
see all the adaptations over the original DDPG algorithm. To perform our training we
use three auxiliary functions build_state (Algorithm 3) to generate the current state of
the environment, generate_valid_mask (Algorithm 4) to select valid session interactions,
handle_action(5) to perform the action generated by the policy and evaluate_reward to
calculate the reward values.

4.4. Training method 61

Algorithm 2 – Reinforced HGRU4REC
Require: Trained instance of HGRU4REC with parameters γ set as environment E , User

Parallel Minibatches P
1: Initialize empty Replay buffer D
2: Initialize randomized parameters θ for the policy πθ and ϕ for Q-network Qϕ

3: Initialize Hsess,Huser,Hsess
init with zeros

4: stepnum← 1
5: countsess← 1
6: i← 0
7: R← 0
8: while i≤ |P| do
9: Build state from observation of the environment

10: state← build_state(E ,Hsess,Huser,Hsess
init ,stepnum)

11: Feed the current policy πθ with state to generate the action:
12: action← πθ (state)
13: Add noise generated from the random process N to the action for exploration
14: action← action+N a

15: Generate mask for valid intra-session interactions :
16: maskvalid ← generate_valid_mask(stepnum,countsess)
17: Perform the action a according to the current strategy for the valid interactions:
18: Hsess

new ← handle_action(E ,Hsess,action,maskvalid,strategy)
19: Eout ,Hsess,Huser,Hsess

init ← E (P [i] ,Hsess
new ,H

user)
20: stepnum← stepnum +1
21: R←R+ calculate_reward(Eout ,stepsnum,maskvalid)
22: Calculate accumulated rewards for the next stepmin steps.
23: for k← 1 to stepssess

min −1 do
24: Eout ,Hsess,Huser,Hsess

init ,stepnum← E (P [k+ i] ,Hsess
new ,H

user)
25: stepnum← stepnum +1
26: R←R+ calculate_reward(Eout ,stepsnum,maskvalid)
27: i← i+1
28: end for
29: Push valid transitions into the D
30: if D ’s size ≥ policy_batch_size then
31: Sample a batch B of transitions from D
32: Perform update of policy πθ and Q-network Qϕ feeding the batch B
33: end if
34: end while

4.4.1 Intra-session valid events selection

According to our objective of treating long sessions we only feed our agent with
intra session events. However, it is very hard to know when to take observations from
the environment because of the chaotic nature of user interactions. For this end, we
heuristically defined two additional parameters stepsess

min and countsess
min that represent the

minimum number of steps performed during the current session and the minimum number
of user sessions respectively. To include these conditions, we created a mask as shown in
Equation 4.12. With these conditions we intend to have enough cross session information

62 Chapter 4. Proposal

and treat later events during sessions. We introduced this mask following the intuition of
methods presented in Section 2.4.4.2, so we create a mask for every user-parallel minibatch
in which each row represents a session. We included this mask in the training method of
the agent by applying the Algorithm 5.

maskvalid = (stepsess ≥ stepsess
min)∧ (countsess ≥ countsess

min) (4.12)

After selecting valid interactions we store them in a replay buffer D which we use to train
our agent.

Algorithm 3 – Build State Function
1: procedure build_state(E ,Hsess,Huser,Hsess

init ,stepnum)
2: Huser

pred ← GRUuser
E (Hsess)

3: state← [Hsess
init ,H

user
pred,H

sess,stepnum] ▷ Concatenation of internal states
4: return state
5: end procedure

Algorithm 4 – Generate Valid Mask Function
1: procedure generate_valid_mask(stepsess,countsess,stepmin

sess,countmin
sess)

2: maskvalid ← (stepsess ≥ stepsess
min)∧ (countsess ≥ countsess

min
3: return maskvalid

4: end procedure

Algorithm 5 – Handle Action function
1: procedure handle_action(E ,Hsess,action,maskvalid,strategy)
2: if strategy = ”gate” then
3: Huser

pred ← GRUuser
E (Hsess)

4: Hsess
new ← Hsess ∗action∗maskvalid +Huser

pred ∗ (1.0−action)∗maskvalid

5: end if
6: if strategy = ”noise” then
7: Hsess

new ← Hsess +(action∗maskvalid)
8: end if
9: return Hsess

new
10: end procedure

4.5. Final Remarks 63

4.5 Final Remarks
In this Chapter we described in detail our proposal Reinforced-HRGU4REC, includ-

ing its main architectural components, a list of adaptations of the original HGRU4REC
for the RL problem setup, strategies for performing actions on the environment and train-
ing method. In following chapters we will describe our experiments, show our results and
discuss our findings.

65

CHAPTER

5
EXPERIMENTS

In previous chapters we reviewed several concepts that are relevant to this research,
such as recommender systems, machine learning and reinforcement learning. Also, we
presented a detailed description of our approach. In this chapter we describe the adopted
methodology to evaluate our approach, the datasets and more importantly our results
and discussion.

This chapter is organized as follows in Section 5.1 we present our experiments’
design including a description of the datasets and selection of hyper-parameters. In Sec-
tion 5.2 we review an analysis of the components of our approach, reward function and
our results quantitatively. Finally, in Section 5.3 we close this chapter with our final
considerations.

5.1 Experiment Design

This section presents in detail the design of experiments including our databases,
baselines, selection of hyper-parameters and the evaluation methods used in this work.

5.1.1 Datasets

In order to perform our experiments we gathered two publicly available datasets
that are suitable for session-based recommendations. In this section we present a detailed
review of the data and preprocessing stage.

5.1.1.1 Tianchi Repeat Buyers Challenge

On e-commerce platforms merchants offer deals in order to attract new buyers but
this strategy does not have a long term impact on sales because some buyers are one-time

66 Chapter 5. Experiments

Table 1 – Datasets’ statistics

Dataset Tianchi 30Music
Users 19992 37667
Items 49682 232265
Sessions 238555 1213248
Events 2293121 15259198
Events per item ⋆ 46.16/28.00/116.60 65.70/30.00/148.80
Events per session ⋆ 9.61/6.00/16.72 12.58/8.00/17.71
Sessions per user ⋆ 11.93/9.00/9.08 32.21/22.00/29.61
Training events 1482164 12120840
Training sessions 218050 1175616
RL-Training sessions 30998 212265
RL-Training events 366167 2667615
Test events 441933 470743
Test sessions 20398 37667
⋆ mean/median/std

deal hunters. This dataset was released1 with the objective of identifying which buyers
might buy from the same merchant in the next six months. All the data were collected
from the website Tmall.com containing behavior logs of anonymized users.

5.1.1.2 30Music listening and playlists dataset

This is a dataset for music recommendation that was released2 to cope with task
such as user modeling and playlist generation. It contains historical user listening events
gathered from Internet radio stations by using the Last.fm API. The listening events are
organized into user listening sessions in a chronological order. This dataset also contains
several additional data such as tracks’ tags, album’s info and users’ explicit feedback
records(“love” events). Roughly, it is composed of 31M listening events, 45K users, and
5.6M tracks.

For our experiments and both datasets, we considered users with ≥ 5 sessions that
have ≥ 3 interactions per session and items with support ≥ 20 to avoid cold start issues,
we chose to leave repeated events because we wanted to simulate an online setup. To
perform the training of our agent we split the data following the protocol last-session-out
defined in Section 2.4.4.2, then we split the resultant training partition again under the
80/20 ratio for the total amount of sessions of each user. So, we used the 80% of user
sessions to train the environment and trained the agent with the remaining 20%. In Table
1 we present statistical information about our datasets after having processed them.

1 <https://tianchi.aliyun.com/competition/entrance/231576/information>
2 <http://recsys.deib.polimi.it/datasets/>

https://www.tmall.com
https://tianchi.aliyun.com/competition/entrance/231576/information
http://recsys.deib.polimi.it/datasets/

5.1. Experiment Design 67

5.1.2 Baselines

We selected relevant session based models and session aware the following models
to compare against our results:

• GRU4RECv2: This is the second version of the original GRU4REC (HIDASI et
al., 2015) with the improvements presented in (HIDASI; KARATZOGLOU, 2017).

• HGRU4REC: This the original Theano3 implementation of (QUADRANA et al.,
2017) trained with the new TOP1Max loss function presented in (HIDASI; KARAT-
ZOGLOU, 2017).

• pyHGRU4REC: This is our implementation of HGRU4REC using the Pytorch
framework. This implementation for simplicity does not include momentum in its
optimizer unlike the original implementation of (QUADRANA et al., 2017).

• Environment: This is an instance of HGRU4REC that we used to perform the
training of our policy. This model is trained only on the first 80% of each user’s
sessions. This will serve as point of reference for the improvements that our policy
could bring.

It is also important to mention that previous RL recommendation approaches are
not suitable for comparison with our methods because they do not treat the users’ changes
of interests during a session.

5.1.3 Hyperparameter selection

For our experiments we defined a delimited range of values for each hyper-parameter,
we divided them in two groups as follows:

• Environment Hyperparameters: We performed training with learning rates
from the set [0.05,0.10,0.15,0.2] with dropout probabilities for both levels of the
network in the range [0.0,0.1,0.2,0.3] we tried batch sizes of length [100]. To carry
on the process of optimization we used the TOP1Max loss function from (HIDASI;
KARATZOGLOU, 2017) with an Adagrad optimizer. After performing 20 trials of
Bayesian Optimization(AKIBA et al., 2019) of parameters we found the following
configurations in Table 2. We performed training only for small networks with 100
layers of stacked RNNs that correspond to the 100 positions of the batch, in which
each position represents a single user.

3 <http://deeplearning.net/software/theano/>

 http://deeplearning.net/software/theano/

68 Chapter 5. Experiments

Env. Param. Tianchi 30Music
drop_prob_init 0.1 0.0
drop_prob_session 0.1 0.1
drop_prob_user 0.1 0.3
learning_rate 0.1 0.05
Table 2 – Environment training parameters

Agent Param. Tianchi 30Music
gamma 0.95 0.9
soft tau 10−2 10−3

batch size 100 100
policy-net lr. 10−3 10−7

value-net lr. 10−4 10−6

Table 3 – Agent training parameters

• DDPG Agent Hyperparameters: For both networks actor and critic we used
learning rates from the set

[
10−7,10−6,10−5,10−4], batch sizes [100,200] with an

Adam optimizer and mean Squared Error Loss. Also, a discount factor γ from the set
[0.9,0.95,0.99], soft update coefficient τ from the values

[
5×10−4,10−3]. After hav-

ing performed 5 trials of Bayesian Optimization(AKIBA et al., 2019) of parameters
we obtained the final configurations shown in Table 3.

The decaying factor gamma(γ) has great importance into the value estimation for
the state, so we made previous test with smaller values [0.1,0.3,0.5] as in other
previous works, but found no difference in the results.

• Observation constraints: In order to only treat observations according to the
rules defined in Section 4.1 we chose stepsess

min = 5 to have enough valid transitions
for each iteration over our training dataset and countsess

min = 3 to ensure that the user
has enough inter-session information. After having finished every iteration over the
training data we performed a maximum of 30 iterations over the whole replay buffer.
On every following iteration over the training data we emptied the replay buffer.

5.1.4 Evaluations methods

To evaluate our agent we chose two metrics Recallk and Mean Reciprocal Rankk
for the top-k predicted items where we chose k = 5 as in (QUADRANA et al., 2017).
Additionally, we carried out statistical significance tests for our models using Wilcoxon
signed rank method as in (QUADRANA et al., 2017).

5.2. Results 69

5.1.5 Implementation details

To run our experiments we used a computer with a processor Intel Core i7-
6800k@3.4GHz×12 with 16GB RAM and GPU Nvidia Titan Xp with 12GB VRAM.
Our models were developed using the Pytorch4 framework and all the implementation
source code was publicly released on github5.

5.2 Results
In this section we will present the results of our experiments with a detailed discus-

sion of our Findings. We divided this section according to the objectives of this research
works. Consequently, we fist look into the global behavior of our models then a fine grained
analysis for each of our research objectives.

5.2.1 Overall Performance

In Table 4 we present a summary of global results for our proposed strategies
alongside our baselines. We performed 10 training epochs for every model additionally
we used five different values of weight initialization seeds which had not a considerable
impact on the final result. All the values presented in Table 4 are the averages of the
results for different seeds and are plot in Figures 12 and 13 for the 30M and Tianchi
datasets respectively.

Add-noise Gate Env. pyHGRU4REC HGRU4REC GRU4REC
0.0

0.1

0.2

0.3

0.4
30M-MRR@5
30M-R@5

Figure 12 – Global results for the 30M dataset

For the 30M dataset our best performing models are pyHGRU4REC with a sub-
stantial improvement that almost doubles for both metrics MRR5 and R5 over the orig-
inal implementation of HGRU4REC and GRU4REC. Surprisingly, for the MRR%5 the
4 <https://www.pytorch.com>
5 <https://github.com/gescobedo/ddpg-hgru4rec>

https://www.pytorch.com
https://github.com/gescobedo/ddpg-hgru4rec

70 Chapter 5. Experiments

Tianchi 30Music
Model MRR@5 R@5 MRR@5 R@5
Add-noise 0.131658 0.152801 0.312971 0.430907
Gate 0.134775 0.155493 0.312539 0.430617
Environment 0.136757 0.156822 0.320875 0.430959
pyHGRU4REC 0.165956 0.198200 0.313227 0.433953
HGRU4REC 0.178551 0.205724 0.148119 0.223193
GRU4REC 0.136350 0.184860 0.152142 0.241810

Table 4 – Overall Performance for all models. The values in bold are the best performing
models, the underlined values represent the best performing DRL strategy

Environment model outperforms all models with statistical difference for p < 0.05 over
pyHGRU4REC even though it was trained with less data. Both DRL strategies have com-
petitive global performance with a drop drop of 1% with no statistical difference between
them for p < 0.05 against pyHGRU4REC.

Add-noise Gate Env. pyHGRU4REC HGRU4REC GRU4REC
0.00

0.05

0.10

0.15

0.20 Tianchi-MRR@5
Tianchi-R@5

Figure 13 – Global results for the Tianchi dataset

For the Tianchi dataset our best performing model is the HGRU4REC which
outperforms our implementation pyHGRU4REC in MRR@5 and R@5 in approximately
7%. Our DRL strategies showed a significant performance drop of approximately 23%,
even lower thant GRU4REC.

For both datasets we have seen different performance for our strategies and imple-
mentations that might be attributed to the difference between their information domains.
Furthermore, the proportions between the amount of interactions for training and test
for our agent show an important difference which might affect the final results. Also,
the proportion of data used to trained the environment, which could smaller than 80%
which will give more data to the agent to learn from. Additionally, the Tianchi dataset
could be biased by seasonality because it was gathered in previous days to the ”11.11”,
a day when users are hunting for price deals, and are just browsing to figure out what

5.2. Results 71

30M Tianchi
Strategy MRR@5 R@5 MRR@5 R@5

Hsess
init add-noise 0.312663 0.430560 0.136399 0.156359

gate 0.312580 0.430621 0.136636 0.156496
Hsess add-noise 0.312533 0.430333 0.136154 0.156150

gate 0.312567 0.430628 0.136622 0.156459
stepsess

num add-noise 0.312747 0.430672 0.136574 0.156570
gate 0.312579 0.430597 0.136608 0.156430

Table 5 – Impact of each architectural component for DRL strategies

items could actually are good deals during this seasonal phenomena. This portraits one of
the common problems when analyzing not independently and identically distributed data
(WANG; CAO; WANG, 2019). Additionally, this shows that the last-session-out splitting
protocol has some limitations for evaluating global performance.

5.2.1.1 Analysis of architectural components

Our proposal uses the internal components of the original model as stated in
Section 4.1, so we need to analyze how each of these components impact on the final
result. In this section we present a detailed revision and analysis of each component. To
perform this component analysis we turned off each of the components by setting the
internal gates generated of our Actor sub-network, so we grouped the results according to
the component that we are taking out from the prediction of the actor. In Table 5 we can
see that for these extra components that we are including into the Actor sub-network do
not have a great impact into performance which implies that the H̃user

cand component carries
the most information for the generation of the actions.

5.2.2 Influence of session length

In order to analyze the degree of impact of our model on long sessions, we split
the dataset in several slices according to defined intervals. We chose an interval length of
20 to have a fine grained vision of the data.

5.2.2.1 Global session performance

In the Figure 15, we can see that for the 30Music dataset our proposed strategies
get similar results to pyHGRU4REC for each of the slices despite of having trained our
environment models with only 80% percent of the data. However, it performs slightly worse
than the Environment model For the Tianchi dataset in Figure 14, we can see a significant
drop in performance which could be due to the different user intent of the session in a

72 Chapter 5. Experiments

0.0 0.1 0.2 0.3 0.4 0.5 0.6

100-3960
(320)

80-100
(215)

60-80
(509)

40-60
(1263)

20-40
(4030)

0-20
(13565)

full
(421396)

0.4384

0.0972

0.0766

0.0733

0.0828

0.1439

0.1565

0.5011

0.1214

0.1049

0.1035

0.1157

0.1939

0.198

0.4382

0.097

0.0766

0.0726

0.0822

0.143

0.1559

0.4385

0.0981

0.0773

0.0735

0.0832

0.1443

0.1568

Tianchi-gate-init-R@5
Tianchi-pyhgru4rec-R@5
Tianchi-add-noise-init-R@5
Tianchi-env-R@5

0.0 0.1 0.2 0.3 0.4 0.5

0.4216

0.0824

0.0622

0.0564

0.0644

0.1172

0.1366

0.4643

0.1009

0.0816

0.0787

0.0874

0.1572

0.1671

0.4212

0.0814

0.0617

0.0557

0.0636

0.1161

0.1358

0.4218

0.0834

0.0624

0.0565

0.0644

0.1173

0.1368

Tianchi-gate-init-MRR@5
Tianchi-pyhgru4rec-MRR@5
Tianchi-add-noise-init-MRR@5
Tianchi-env-MRR@5

Figure 14 – The Y axis represents groups of users with average session length in the interval
low-high(frequency of users), the X axis represents the value of the metric for each
group of users

different domain (i.e. diversity of consumed items) and the unbalanced proportion of
interactions generated by the applied data splitting protocol.

5.2.2.2 Recurrent user session length

Additionally, we grouped users according to the average length of their sessions to
see the impact on users that tend to have regular session lengths and how they can benefit
from inter-session dynamics information. We split the dataset in groups of interactions
of length 10 for our intervals. In Figure 16 we show the results for each slice of the 30M
dataset. We can observe our strategies gate and noise outperform our baselines for users
with session average length in the interval [20,30] and [30,40] with improvements of 2-10%
in R@5 and 1-5% in MRR@5. However, it slightly outperforms the Environment model
for the interval with average session length in the interval [20,30]. On the other hand, for
the Tianchi dataset we got a steady proportion between the baseline and our strategies
with a drop of 18-30% for the most significant portion of users shown in Figure 17.

We also wanted to see whether or not for coarser intervals we might have different
results so we sliced the datasets again this time with intervals of length 5 for the average
session length of users. In the Figures 18 and 19 we show the results for top 6 smallest slices
of our datasets. For the 30M dataset we can see that there is a significant improvement
for users with recurrent short-length sessions. This means that for this group of users the

5.2. Results 73

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

100-440
(234)

80-100
(126)

60-80
(330)

40-60
(875)

20-40
(3352)

0-20
(32617)

full
(430985)

0.5733

0.4197

0.4719

0.4211

0.4254

0.4086

0.4306

0.5872

0.4344

0.4752

0.4251

0.4295

0.4124

0.4356

0.573

0.4213

0.4732

0.4211

0.4255

0.4085

0.4307

0.5729

0.4226

0.4733

0.4218

0.4257

0.4087

0.431

30M-gate-init-R@5
30M-pyhgru4rec-R@5
30M-add-noise-init-R@5
30M-env-R@5

0.0 0.1 0.2 0.3 0.4

0.3882

0.2953

0.3279

0.2932

0.309

0.3051

0.3125

0.4004

0.3011

0.3298

0.2943

0.3106

0.3071

0.3153

0.3896

0.2961

0.3286

0.2935

0.3091

0.3051

0.3128

0.389

0.2987

0.3292

0.2937

0.3093

0.3051

0.3129

30M-gate-init-MRR@5
30M-pyhgru4rec-MRR@5
30M-add-noise-init-MRR@5
30M-env-MRR@5

Figure 15 – Impact on recommendation according to session length for the 30M dataset. the Y
axis represents groups of sessions with length in the interval low-high(frequency of
sessions), the X axis represents the value of the metric for each group of users

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

40-50
(204)

30-40
(657)

20-30
(2708)

10-20
(16774)

0-10
(17057)

full
(430985)

0.2366

0.5294

0.6984

0.5201

0.3967

0.4306

0.2672

0.4706

0.6944

0.5294

0.4054

0.4356

0.2595

0.5294

0.7063

0.5172

0.3983

0.4307

0.2519

0.5294

0.7024

0.5194

0.3983

0.431

30M-gate-init-R@5
30M-pyhgru4rec-R@5
30M-add-noise-init-R@5
30M-env-R@5

0.0 0.1 0.2 0.3 0.4 0.5

0.1402

0.3402

0.4399

0.396

0.2736

0.3125

0.135

0.3549

0.4227

0.3978

0.2733

0.3153

0.1394

0.3402

0.4438

0.3927

0.2749

0.3128

0.1433

0.3402

0.4427

0.3937

0.274

0.3129

30M-gate-init-MRR@5
30M-pyhgru4rec-MRR@5
30M-add-noise-init-MRR@5
30M-env-MRR@5

Figure 16 – Impact on recommendation according to average session length for the 30M dataset
with equally sized intervals of length 10. On the Y axis we have the size of slice
”low-high(frequency of users)” on the X axis we have the value for the metric

74 Chapter 5. Experiments

0.00 0.05 0.10 0.15 0.20

100-800
(6)

30-40
(79)

20-30
(418)

10-20
(5204)

0-10
(14222)

full
(421396)

0.0526

0.125

0.1257

0.1294

0.1543

0.1565

0.1053

0.125

0.1623

0.1736

0.1934

0.198

0.0

0.125

0.1257

0.129

0.1532

0.1559

0.1053

0.125

0.1257

0.1313

0.1552

0.1568

Tianchi-gate-init-R@5
Tianchi-pyhgru4rec-R@5
Tianchi-add-noise-init-R@5
Tianchi-env-R@5

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.0263

0.1125

0.0935

0.1078

0.1356

0.1366

0.0632

0.125

0.125

0.1389

0.1604

0.1671

0.0

0.1125

0.0902

0.1073

0.1343

0.1358

0.0632

0.1125

0.0944

0.1083

0.1363

0.1368

Tianchi-gate-init-MRR@5
Tianchi-pyhgru4rec-MRR@5
Tianchi-add-noise-init-MRR@5
Tianchi-env-MRR@5

Figure 17 – Impact on recommendation according to average session length for the Tianchi
dataset with equally sized intervals of length 10. On the Y axis we have the size of
slice ”low-high(frequency of users)” on the X axis we have the value for the metric

introduction of inter-session information acts as regularizer, so the resultant state at the
end of each session carries a better representation than our baselines which improves the
initialization of future sessions. However, these improvements only affect a minor portion
of the users, as we can see a similar behavior for the Tianchi dataset in Figure 18 on the
slice [20,30] with only 100 users.

5.2.3 Influence of user history length

One important part of our analysis is the degree of personalization on the long
term, so we also divided our dataset into slices according to user interaction history length.
To perform this analysis we used slices of length 2000 and 1000 for the 30M and Tianchi
datasets respectively to see how our models behave through time. For the 30M dataset
we see no significant difference between our strategies and the baselines. Furthermore, for
the Tianchi dataset we can see that the majority of the users that have less than 1000
interactions, which has a great impact to global performance for all the models.

From the Figures 20 and 21 we can see a clear difference of distributions being the
biggest groups of users the ones with total of interactions in the [0,2000] range for the
30M dataset and [0,1000] for the Tianchi dataset. For the 30M dataset all our models
show steadily similar performance for all the slices that have a considerable number of
users. Also we can see a growing tendency in performance in groups with larger size of
history length which indicates the importance of long history of interactions.

5.2. Results 75

0.0 0.2 0.4 0.6 0.8

25-30
(907)

20-25
(1801)

15-20
(4479)

10-15
(12295)

5-10
(15999)

0-5
(1058)

0.4762

0.7429

0.6148

0.4847

0.3916

0.5333

0.5238

0.7286

0.6253

0.4936

0.4023

0.4889

0.4762

0.7524

0.6148

0.4808

0.3933

0.5333

0.4762

0.7476

0.6148

0.4837

0.3933

0.5333

30M-gate-init-R@5
30M-pyhgru4rec-R@5
30M-add-noise-init-R@5
30M-env-R@5

0.0 0.1 0.2 0.3 0.4 0.5

0.3591

0.4561

0.4591

0.3725

0.2706

0.3544

0.3714

0.4329

0.4568

0.3757

0.2711

0.3322

0.3571

0.4612

0.4586

0.3681

0.2719

0.3581

0.3571

0.4598

0.4586

0.3695

0.271

0.3544

30M-gate-init-MRR@5
30M-pyhgru4rec-MRR@5
30M-add-noise-init-MRR@5
30M-env-MRR@5

Figure 18 – Impact on recommendation according to average session length for the 30M dataset
with equally sized intervals of length 5. On the Y axis we have the size of slice
”low-high(frequency of users)” on the X axis we have the value for the metric

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

25-30
(103)

20-25
(315)

15-20
(1038)

10-15
(4166)

5-10
(12278)

0-5
(1944)

0.3333

0.0958

0.1907

0.1098

0.1658

0.0937

0.2917

0.1437

0.2344

0.1541

0.2043

0.1363

0.375

0.0898

0.1921

0.109

0.1645

0.0944

0.3333

0.0958

0.1921

0.1119

0.1667

0.095

Tianchi-gate-init-R@5
Tianchi-pyhgru4rec-R@5
Tianchi-add-noise-init-R@5
Tianchi-env-R@5

0.00 0.05 0.10 0.15 0.20

0.1889

0.0798

0.1684

0.0884

0.1475

0.0734

0.191

0.1155

0.2061

0.1174

0.1723

0.098

0.1972

0.0749

0.1693

0.0875

0.146

0.0731

0.1889

0.0808

0.1691

0.0889

0.1481

0.0745

Tianchi-gate-init-MRR@5
Tianchi-pyhgru4rec-MRR@5
Tianchi-add-noise-init-MRR@5
Tianchi-env-MRR@5

Figure 19 – Impact on recommendation according to average session length for the Tianchi
dataset with equally sized intervals of length 5. On the Y axis we have the size of
slice ”low-high(frequency of users)” on the X axis we have the value for the metric

76 Chapter 5. Experiments

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10000-1956000
(10)

8000-10000
(5)

6000-8000
(13)

4000-6000
(52)

2000-4000
(502)

0-2000
(37050)

full
(430985)

0.608

0.507

0.7057

0.4908

0.5359

0.4263

0.4306

0.6611

0.5543

0.6934

0.5031

0.5392

0.4312

0.4356

0.6047

0.507

0.7057

0.4894

0.5329

0.4264

0.4307

0.6047

0.5097

0.7057

0.4904

0.5333

0.4267

0.431

30M-gate-init-R@5
30M-pyhgru4rec-R@5
30M-add-noise-init-R@5
30M-env-R@5

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.5646

0.3533

0.4757

0.3604

0.391

0.3093

0.3125

0.5751

0.3916

0.491

0.3684

0.3951

0.3119

0.3153

0.5654

0.3538

0.4766

0.3582

0.3903

0.3095

0.3128

0.5654

0.3565

0.4763

0.359

0.3909

0.3096

0.3129

30M-gate-init-MRR@5
30M-pyhgru4rec-MRR@5
30M-add-noise-init-MRR@5
30M-env-MRR@5

Figure 20 – Impact on recommendation according the total user history length for the 30M
dataset. Y axis represent groups of users with a history length in the interval low-
high(frequency of users), the X axis represents the value of the metric.

0.0 0.2 0.4 0.6 0.8 1.0

3000-4000
(2)

2000-3000
(3)

1000-2000
(51)

0-1000
(19932)

full
(421396)

0.9713

0.0132

0.5714

0.1364

0.1565

0.9718

0.2281

0.5998

0.1786

0.198

0.9708

0.0132

0.5714

0.1359

0.1559

0.9711

0.0175

0.5714

0.1368

0.1568

Tianchi-gate-init-R@5
Tianchi-pyhgru4rec-R@5
Tianchi-add-noise-init-R@5
Tianchi-env-R@5

0.0 0.2 0.4 0.6 0.8 1.0

0.9682

0.0132

0.5559

0.1163

0.1366

0.969

0.1127

0.5784

0.1473

0.1671

0.968

0.0132

0.5575

0.1154

0.1358

0.9681

0.014

0.5571

0.1164

0.1368

Tianchi-gate-init-MRR@5
Tianchi-pyhgru4rec-MRR@5
Tianchi-add-noise-init-MRR@5
Tianchi-env-MRR@5

Figure 21 – Impact on recommendation according the total user history length for the Tianchi
dataset. The Y axis represent groups of users with a history length in the interval
low-high(frequency of users), the X axis represents the value of the metric.

5.3. Final Remarks 77

5.3 Final Remarks
In this chapter we described all the methodological aspects of our experiments and

analyzed our results in detail according to our objectives.

In the first part we briefly described the datasets used and how we processed them
to perform training showing some statistical information. Furthermore, we presented a list
of our baselines that we compared against our models. To perform training, we presented
a detailed list of how we chose hyper-parameters to train all our models and their final
configurations.

In the second part of this Chapter we presented our results that showed that
our strategies Add-noise and Gate in general have similar performance to the baseline
models and that show better results for some users that have a certain average length of
sessions. Additionally, we observed that our strategies outperform the baseline for users
with session average of ≤5, which means that through time we enrich the generated inter-
session state for users’ new sessions. However, these improvements cannot indicate general
improvements because they only affect a small portions of users. All the tests performed
provided a wide vision of the behavior of a session-aware recommender and the importance
of sufficient historical user data.

Finally, in the following Chapter we will present a summary of this research work,
establish our conclusions and indicate possible lines of improvement.

79

CHAPTER

6
CONCLUSIONS AND FUTURE WORK

In this Chapter we present a brief summary of this research work in Section 6.1, a
list our main contributions in Section 6.2 and conclusions in Section 6.3. Finally, we will
describe possible lines of improvements for this research in Section 6.4.

6.1 Summary
In this research work we applied Deep RL techniques to address the changes of

short-term interests in long sequences of session interactions for session-aware recommen-
dation by exploiting inter-session dynamics information based on the current states of
a Hierarchical RNN. We presented several adaptations to the DDPG algorithm to train
a policy for the session-aware recommendation setting and dealt with how to gather ob-
servations from the environment without being an exhaustive task and the strategies to
perform the actions generated by our policy. Additionally, we analyzed how our policy
could improve overall performance and specifically for long sequences of session interac-
tions.

In our proposal we presented the algorithm Reinforced-HGRU4REC to train our
policy based on observations from the original HGRU4REC (QUADRANA et al., 2017).
Our algorithm consists of a custom method to gather observations and two main strategies
Gate and Add-noise that we used to perform the action on the environment. Additionally
we presented the architecture of the customized Actor and Critic sub-networks to train
under the DDPG algorithm. We performed several experiments over two datasets from
different domains and compared with a set of strong baselines. Then we evaluated all our
models following several data slicing criteria to analyze the impact of performance in long
sequences of interactions. We obtained competitive results for both our strategies against
our baseline models that were trained over full datasets despite of our environment models
were trained using only 80% of the data, this could be attributed to the data splitting

80 Chapter 6. Conclusions and Future Work

protocol adopted. Through an extensive testing we analyzed in depth our models an also
found out situations in which session-aware models struggle and observed the importance
of the users’ history length. Furthermore, we faced the issues of adopting the RL setting
to the recommendation task, which is not a straight forward process.

6.2 Contributions

As a result of this research work we provided the main contributions:

• We provided an adaptation of the DDPG algorithm over the HGRU4REC model
including a method for gathering observations and performing action with two dif-
ferent strategies. This adaptation includes a training method and strategy to gather
enough data

• We provided an extensive analysis of the behavior of session-aware recommenders
under different settings alongside our proposal

6.3 Conclusions

In this research work we extensively explored the possibility of exploiting inter-
session dynamics information to improve intra-session predictions for long sequences of
interactions by applying Deep Reinforcement Learning techniques. We presented an adap-
tation of the Deep Deterministic Policy Gradient algorithm to train a policy that can
enrich the current state of the session network with inter-session dynamics information.

We proposed two different strategies for introducing the actions into session state
being the noise-based one the best performing. We obtained competitive results only
using a portion of the training data compared to the baselines that were trained with
full datasets. Furthermore, we performed several analysis toward having a wide vision of
the models’ behavior. During our test we could see that the proposed strategies can have
competitive results but they require a lot of tweaking in their training process.

We conclude that there is not strong evidence to claim that inter-session dynamics
information can improve the performance for the global recommendation task even when
the agent performs on unseen data. However, through an extensive analysis of results,
we showed that the length of historical user data has a great impact in session-aware
approaches.

6.4. Future Work 81

6.4 Future Work
For our future works we can consider several other non-RNN based session-aware

recommenders to test if our module can learn from those architectures such as (TANG;
WANG, 2018).

One possible line of improvement is to try other architectures to better encode the
current session context. Additionally attention mechanisms can be added to encode the
sequences of observation, as applied in (LI et al., 2017), that we are using to train our
policy .

Side information could play an important role when gathering observations from
the environment as in traditional RS bringing a better understanding of the current
session context without having to exhaustively processing all its interactions(SMIRNOVA;
VASILE, 2017)(TWARDOWSKI, 2016), improving the heuristics for event selection for
the agent.

To some extend there is a huge variety of Deep Reinforcement Learning algorithms
that have not been explored for the recommendation task. Especially, for learning models
towards to qualitative aspects of recommendations such as long-term engagement (ZOU
et al., 2019).

83

BIBLIOGRAPHY

ACHIAM, J. Kinds of Algorithms. 2018. Accessed on: 22/10/2020. Available: <https:
//spinningup.openai.com/en/latest/spinningup/rl_intro2.html>. Citation on page 46.

ADOMAVICIUS, G.; TUZHILIN, A. Context-aware recommender systems. In: Recom-
mender Systems Handbook. Boston, MA: Springer US, 2011. p. 217–253. ISBN 978-
0-387-85820-3. Available: <https://doi.org/10.1007/978-0-387-85820-3_7>. Citation on
page 27.

AGGARWAL, C. C. Recommender Systems: The Textbook. 1st. ed. New York City,
USA: Springer Publishing Company, Incorporated, 2016. ISBN 3319296574. Citations
on pages 27, 34, 35, and 36.

AKIBA, T.; SANO, S.; YANASE, T.; OHTA, T.; KOYAMA, M. Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.
New York, NY, USA: Association for Computing Machinery, 2019. (KDD ’19), p. 2623–
2631. ISBN 9781450362016. Available: <https://doi.org/10.1145/3292500.3330701>. Ci-
tations on pages 67 and 68.

BAEZA-YATES, R.; RIBEIRO-NETO, B. Modern Information Retrieval: The Con-
cepts and Technology Behind Search. 2nd. ed. USA: Addison-Wesley Publishing
Company, 2008. ISBN 9780321416919. Citations on pages 27 and 36.

CHEN, S.-Y.; YU, Y.; DA, Q.; TAN, J.; HUANG, H.-K.; TANG, H.-H. Stabilizing re-
inforcement learning in dynamic environment with application to online recommenda-
tion. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. New York, NY, USA: Association for
Computing Machinery, 2018. (KDD ’18), p. 1187–1196. ISBN 9781450355520. Available:
<https://doi.org/10.1145/3219819.3220122>. Citation on page 53.

CHUNG, J.; GÜLÇEHRE, Ç.; CHO, K.; BENGIO, Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. Available:
<http://arxiv.org/abs/1412.3555>. Citation on page 40.

DING, Z.; HUANG, Y.; YUAN, H.; DONG, H. Introduction to reinforcement learning. In:
DONG ZIHAN DING, S. Z. H. (Ed.). Deep Reinforcement Learning: Fundamentals,
Research, and Applications. [S.l.]: Springer Nature, 2020. chap. 2, p. 47–124. <http:
//www.deepreinforcementlearningbook.org>. Citations on pages 43, 44, and 45.

DONKERS, T.; LOEPP, B.; ZIEGLER, J. Sequential user-based recurrent neural network
recommendations. In: Proceedings of the Eleventh ACM Conference on Recom-
mender Systems. New York, NY, USA: ACM, 2017. (RecSys ’17), p. 152–160. ISBN
978-1-4503-4652-8. Available: <http://doi.acm.org/10.1145/3109859.3109877>. Citation
on page 39.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3219819.3220122
http://arxiv.org/abs/1412.3555
http://www.deepreinforcementlearningbook.org
http://www.deepreinforcementlearningbook.org
http://doi.acm.org/10.1145/3109859.3109877

84 Bibliography

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge, MA:
The MIT Press, 2016. ISBN 0262035618. Citation on page 38.

HIDASI, B.; KARATZOGLOU, A. Recurrent neural networks with top-k gains for session-
based recommendations. arXiv preprint arXiv:1706.03847, 2017. Citations on pages
51, 55, and 67.

HIDASI, B.; KARATZOGLOU, A.; BALTRUNAS, L.; TIKK, D. Session-based recom-
mendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.
Citations on pages 29, 42, 51, 52, and 67.

HIDASI, B.; KARATZOGLOU, A.; SAR-SHALOM, O.; DIELEMAN, S.; SHAPIRA, B.;
TIKK, D. Dlrs 2017: Second workshop on deep learning for recommender systems. In:
Proceedings of the Eleventh ACM Conference on Recommender Systems. New
York, NY, USA: ACM, 2017. (RecSys ’17), p. 370–371. ISBN 978-1-4503-4652-8. Available:
<http://doi.acm.org/10.1145/3109859.3109953>. Citation on page 28.

HIDASI, B.; QUADRANA, M.; KARATZOGLOU, A.; TIKK, D. Parallel recurrent neural
network architectures for feature-rich session-based recommendations. In: Proceedings
of the 10th ACM Conference on Recommender Systems. New York, NY, USA:
ACM, 2016. (RecSys ’16), p. 241–248. ISBN 978-1-4503-4035-9. Available: <http://doi.
acm.org/10.1145/2959100.2959167>. Citation on page 52.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Comput.,
MIT Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735–1780, Nov. 1997. ISSN 0899-7667.
Available: <http://dx.doi.org/10.1162/neco.1997.9.8.1735>. Citation on page 39.

JANNACH, D.; LUDEWIG, M. When recurrent neural networks meet the neighbor-
hood for session-based recommendation. In: Proceedings of the Eleventh ACM
Conference on Recommender Systems. New York, NY, USA: Association for Com-
puting Machinery, 2017. (RecSys ’17), p. 306–310. ISBN 9781450346528. Available:
<https://doi.org/10.1145/3109859.3109872>. Citations on pages 51 and 52.

KOREN, Y. Collaborative filtering with temporal dynamics. Commun. ACM, ACM,
New York, NY, USA, v. 53, n. 4, p. 89–97, Apr. 2010. ISSN 0001-0782. Available: <http:
//doi.acm.org/10.1145/1721654.1721677>. Citation on page 27.

LEI, Y.; LI, W. Interactive recommendation with user-specific deep reinforcement learning.
ACM Trans. Knowl. Discov. Data, Association for Computing Machinery, New York,
NY, USA, v. 13, n. 6, Oct. 2019. ISSN 1556-4681. Available: <https://doi.org/10.1145/
3359554>. Citation on page 51.

LI, J.; REN, P.; CHEN, Z.; REN, Z.; LIAN, T.; MA, J. Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management. New York, NY, USA: ACM, 2017. (CIKM ’17),
p. 1419–1428. ISBN 978-1-4503-4918-5. Available: <http://doi.acm.org/10.1145/3132847.
3132926>. Citations on pages 51, 52, and 81.

LILLICRAP, T. P.; HUNT, J. J.; PRITZEL, A.; HEESS, N.; EREZ, T.; TASSA, Y.; SIL-
VER, D.; WIERSTRA, D. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. Citations on pages 17, 47, 48, and 56.

http://doi.acm.org/10.1145/3109859.3109953
http://doi.acm.org/10.1145/2959100.2959167
http://doi.acm.org/10.1145/2959100.2959167
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3109859.3109872
http://doi.acm.org/10.1145/1721654.1721677
http://doi.acm.org/10.1145/1721654.1721677
https://doi.org/10.1145/3359554
https://doi.org/10.1145/3359554
http://doi.acm.org/10.1145/3132847.3132926
http://doi.acm.org/10.1145/3132847.3132926

Bibliography 85

LUDEWIG, M.; JANNACH, D. Evaluation of session-based recommendation algorithms.
User Modeling and User-Adapted Interaction, Springer, v. 28, n. 4-5, p. 331–390,
2018. Citations on pages 29, 37, 41, 52, and 53.

MANNING, C. D.; RAGHAVAN, P.; SCHüTZE, H. Introduction to Information Re-
trieval. USA: Cambridge University Press, 2008. ISBN 0521865719. Citation on page
36.

QUADRANA, M.; CREMONESI, P.; JANNACH, D. Sequence-aware recommender sys-
tems. ACM Comput. Surv., Association for Computing Machinery, New York, NY,
USA, v. 51, n. 4, Jul. 2018. ISSN 0360-0300. Available: <https://doi.org/10.1145/
3190616>. Citations on pages 28 and 37.

QUADRANA, M.; KARATZOGLOU, A.; HIDASI, B.; CREMONESI, P. Personalizing
session-based recommendations with hierarchical recurrent neural networks. In: Proceed-
ings of the Eleventh ACM Conference on Recommender Systems. New York,
NY, USA: ACM, 2017. (RecSys ’17), p. 130–137. ISBN 978-1-4503-4652-8. Available:
<http://doi.acm.org/10.1145/3109859.3109896>. Citations on pages 28, 29, 41, 42, 43,
51, 52, 55, 67, 68, and 79.

RUOCCO, M.; SKREDE, O. S. L.; LANGSETH, H. Inter-session modeling for session-
based recommendation. In: Proceedings of the 2Nd Workshop on Deep Learning
for Recommender Systems. New York, NY, USA: ACM, 2017. (DLRS 2017), p. 24–
31. ISBN 978-1-4503-5353-3. Available: <http://doi.acm.org/10.1145/3125486.3125491>.
Citations on pages 28, 29, 51, and 52.

SMIRNOVA, E.; VASILE, F. Contextual sequence modeling for recommendation with
recurrent neural networks. In: Proceedings of the 2Nd Workshop on Deep Learning
for Recommender Systems. New York, NY, USA: ACM, 2017. (DLRS 2017), p. 2–
9. ISBN 978-1-4503-5353-3. Available: <http://doi.acm.org/10.1145/3125486.3125488>.
Citations on pages 52 and 81.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book, 2018. ISBN 0262039249. Citations on pages 43, 46,
and 47.

TAN, Y. K.; XU, X.; LIU, Y. Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems. New York, NY, USA: Association for Computing Machinery,
2016. (DLRS 2016), p. 17–22. ISBN 9781450347952. Available: <https://doi.org/10.1145/
2988450.2988452>. Citations on pages 51 and 52.

TANG, J.; WANG, K. Personalized top-n sequential recommendation via convolutional
sequence embedding. In: Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining. New York, NY, USA: Association for
Computing Machinery, 2018. (WSDM ’18), p. 565–573. ISBN 9781450355810. Available:
<https://doi.org/10.1145/3159652.3159656>. Citation on page 81.

TWARDOWSKI, B. Modelling contextual information in session-aware recommender sys-
tems with neural networks. In: Proceedings of the 10th ACM Conference on Rec-
ommender Systems. New York, NY, USA: ACM, 2016. (RecSys ’16), p. 273–276. ISBN
978-1-4503-4035-9. Available: <http://doi.acm.org/10.1145/2959100.2959162>. Cita-
tions on pages 52 and 81.

https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616
http://doi.acm.org/10.1145/3109859.3109896
http://doi.acm.org/10.1145/3125486.3125491
http://doi.acm.org/10.1145/3125486.3125488
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/3159652.3159656
http://doi.acm.org/10.1145/2959100.2959162

86 Bibliography

VASSØY, B.; RUOCCO, M.; SILVA, E. de Souza da; AUNE, E. Time is of the essence:
A joint hierarchical rnn and point process model for time and item predictions. In:
Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. New York, NY, USA: Association for Computing Machinery, 2019.
(WSDM ’19), p. 591–599. ISBN 9781450359405. Available: <https://doi.org/10.1145/
3289600.3290987>. Citations on pages 28, 29, 51, and 52.

WANG, S.; CAO, L.; WANG, Y. A survey on session-based recommender systems. CoRR,
abs/1902.04864, 2019. Available: <http://arxiv.org/abs/1902.04864>. Citations on
pages 52 and 71.

WATKINS, C. J.; DAYAN, P. Q-learning. Machine learning, Springer, v. 8, n. 3-4, p.
279–292, 1992. Citation on page 47.

WU, C.-Y.; AHMED, A.; BEUTEL, A.; SMOLA, A. J.; JING, H. Recurrent recom-
mender networks. In: Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining. New York, NY, USA: ACM, 2017. (WSDM ’17),
p. 495–503. ISBN 978-1-4503-4675-7. Available: <http://doi.acm.org/10.1145/3018661.
3018689>. Citation on page 38.

ZHAO, X.; XIA, L.; TANG, J.; YIN, D. ”deep reinforcement learning for search, recom-
mendation, and online advertising: A survey” by xiangyu zhao, long xia, jiliang tang, and
dawei yin with martin vesely as coordinator. SIGWEB Newsl., Association for Com-
puting Machinery, New York, NY, USA, n. Spring, Jul. 2019. ISSN 1931-1745. Available:
<https://doi.org/10.1145/3320496.3320500>. Citation on page 53.

ZHAO, X.; XIA, L.; ZHANG, L.; DING, Z.; YIN, D.; TANG, J. Deep reinforcement
learning for page-wise recommendations. In: Proceedings of the 12th ACM Con-
ference on Recommender Systems. New York, NY, USA: Association for Comput-
ing Machinery, 2018. (RecSys ’18), p. 95–103. ISBN 9781450359016. Available: <https:
//doi.org/10.1145/3240323.3240374>. Citations on pages 51 and 53.

ZHAO, X.; ZHANG, L.; DING, Z.; XIA, L.; TANG, J.; YIN, D. Recommendations
with negative feedback via pairwise deep reinforcement learning. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery
Data Mining. New York, NY, USA: Association for Computing Machinery, 2018. (KDD
’18), p. 1040–1048. ISBN 9781450355520. Available: <https://doi.org/10.1145/3219819.
3219886>. Citations on pages 29, 51, and 53.

ZHOU, G.-B.; WU, J.; ZHANG, C.-L.; ZHOU, Z.-H. Minimal gated unit for recur-
rent neural networks. International Journal of Automation and Computing,
v. 13, n. 3, p. 226–234, Jun 2016. ISSN 1751-8520. Available: <https://doi.org/10.1007/
s11633-016-1006-2>. Citations on pages 39, 40, and 41.

ZOU, L.; XIA, L.; DING, Z.; SONG, J.; LIU, W.; YIN, D. Reinforcement learning to
optimize long-term user engagement in recommender systems. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. New York, NY, USA: Association for Computing Machinery, 2019. (KDD
’19), p. 2810–2818. ISBN 9781450362016. Available: <https://doi.org/10.1145/3292500.
3330668>. Citations on pages 29, 51, 53, and 81.

https://doi.org/10.1145/3289600.3290987
https://doi.org/10.1145/3289600.3290987
http://arxiv.org/abs/1902.04864
http://doi.acm.org/10.1145/3018661.3018689
http://doi.acm.org/10.1145/3018661.3018689
https://doi.org/10.1145/3320496.3320500
https://doi.org/10.1145/3240323.3240374
https://doi.org/10.1145/3240323.3240374
https://doi.org/10.1145/3219819.3219886
https://doi.org/10.1145/3219819.3219886
https://doi.org/10.1007/s11633-016-1006-2
https://doi.org/10.1007/s11633-016-1006-2
https://doi.org/10.1145/3292500.3330668
https://doi.org/10.1145/3292500.3330668

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Justification
	Hypothesis
	Objective
	Document Organization

	Theoretical Background
	Classical Recommendation Techniques
	Collaborative Filtering
	Memory-based CF
	Model-based CF

	Content-based Filtering

	Evaluation of Recommender Systems
	Offline evaluation
	Protocols for Evaluation

	Session-Based Recommender Systems
	Neural Recommendation
	Recurrent Neural Networks
	Long-short Term Memory
	Gated Recurrent Unit
	Training Session-Based Recommender Systems
	Split Protocols
	Training RNN-based SBRS

	Reinforcement Learning
	The RL Problem Setting
	Action Spaces
	States and Observations
	Trajectories
	Reward and Return
	Policies

	Taxonomy of RL Algorithms
	Model-based vs Model-Free RL
	Value-based vs Policy-based

	Deep Deterministic Policy Gradient

	Final Remarks

	Related works
	Session-based recommender systems
	Session-aware recommender systems
	Deep Reinforcement Learning
	Final Remarks

	Proposal
	Reinforced HGRU4REC
	Deep Deterministic Policy Gradient Adaptations

	Strategies
	Architecture
	Actor
	Critic

	Training method
	Intra-session valid events selection

	Final Remarks

	Experiments
	Experiment Design
	Datasets
	Tianchi Repeat Buyers Challenge
	30Music listening and playlists dataset

	Baselines
	Hyperparameter selection
	Evaluations methods
	Implementation details

	Results
	Overall Performance
	Analysis of architectural components

	Influence of session length
	Global session performance
	Recurrent user session length

	Influence of user history length

	Final Remarks

	Conclusions and Future Work
	Summary
	Contributions
	Conclusions
	Future Work

	Bibliography

