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RESUMO

GÔLO, M. P. S. Variational Autoencoder Multimodal para Representação de Textos na Clas-
sificação baseada em Uma Única Classe. 2022. 119 p. Dissertação (Mestrado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2022.

A classificação automática de textos tem se tornado cada vez mais relevante tanto para fins aca-
dêmicos quanto empresariais. Tradicionalmente, essa classificação é realizada pelo aprendizado
de máquina multi-classe, o qual necessita de rotulação prévia dos textos de todas as classes do
problema. Essa abordagem pode falhar quando não se tem um conhecimento bem definido das
classes do problema, além de exigir um grande esforço na rotulação de exemplos de treinamento
para cada classe. Uma abordagem conhecida como One-Class Learning (OCL) pode sanar
essas limitações, uma vez que seu treinamento é realizado somente com exemplos rotulados
de uma classe de interesse, diminuindo assim o esforço de rotulação do usuário e tornando a
classificação mais apropriada para aplicações envolvendo domínio aberto. O OCL é mais desafi-
ador devido à falta de contra-exemplos para o treinamento do modelo. Portanto, OCL requer
representações textuais mais robustas. Por outro lado, a maioria dos estudos usa representações
unimodais, mesmo que diferentes domínios contenham outros tipos de informações que podem
ser interpretados como modalidades distintas para dados textuais. Nesse sentido, foi proposto o
Multimodal Variational Autoencoder (MVAE). O MVAE é um método multimodal que aprende
uma nova representação a partir da fusão das modalidades distintas, capturando de forma mais
adequada às características da classe de interesse. O MVAE foi explorado com as modalidades
de representações semânticas e sintáticas, informações de densidade, linguísticas e espaciais.
Além disso, o MVAE é baseado em um Variational Autoencoder que é considerado um dos
estados-da-arte para aprendizado de representações. Por fim, as principais contribuições desta
dissertação são: (i) um método multimodal para representar textos no cenário de OCL; (ii) detec-
ção de notícias falsas por meio de representações geradas pelo MVAE; (iii) aplicação do MVAE
para representar revisões de app no filtro de revisões de app relevantes; e (iv) sensoriamento de
eventos representados pelo MVAE.

Palavras-chave: Classificação de textos, Aprendizado de máquina baseado em uma única classe,
Variational autoencoders multimodais.





ABSTRACT

GÔLO, M. P. S. Text Representation through Multimodal Variational Autoencoder for One-
Class Learning. 2022. 119 p. Dissertação (Mestrado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2022.

Automatic text classification has become increasingly relevant for several applications, both
for academic and business purposes. Traditionally, multi-class learning methods perform text
classification, which requires prior labeling of textual datasets for all classes. These methods
fail when there is no well-defined information about the texts’ classes and require a great effort
to label the training set. One-Class Learning (OCL) can mitigate these limitations since the
model training is performed only with labeled examples of an interest class, reducing the user’s
labeling effort and turning the classification more appropriate for open-domain applications.
However, OCL is more challenging due to the lack of counterexamples for model training.
Thus, OCL requires more robust text representations. On the other hand, most studies use
unimodal representations, even though different domains contain other types of information
that can be interpreted as distinct modalities for textual data. In this sense, the Multimodal
Variational Autoencoder (MVAE) was proposed. MVAE is a multimodal method that learns a
new representation from the fusion of different modalities, capturing the characteristics of the
interest class in a more adequate way. MVAE explores semantic and syntactic representations,
density, linguistic and spatial information as modalities. Furthermore, MVAE is based on a
Variational Autoencoder, considered one of the state-of-the-art for learning representations.
Finally, the main contributions of this dissertation are: (i) a multimodal method to represent texts
in the OCL scenario; (ii) detection of fake news through representations generated by MVAE;
(iii) applying MVAE to represent app reviews in the filtering of relevant app reviews; and (iv)
sensing events represented by the MVAE.

Keywords: Text classification, One class learning, Multimodal variational autoencoder.
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CHAPTER

1
INTRODUCTION

1.1 Contextualization

The International Data Corporation (IDC)1 estimated that the volume of data generated by
the world will increase from 45 zettabytes in 2019 to 175 zettabytes in 2025 (JANEV et al., 2020).
Much of this data is in text format since texts are one of the simplest and most traditional ways
to exchange information (HASSANI et al., 2020). For instance, articles, reviews, publications
on social networks, medical, scientific and business reports, news, and e-mails contain textual
content. Furthermore, texts are present in various areas such as finance, macroeconomics, media
economics, industrial organization, and marketing (GENTZKOW; KELLY; TADDY, 2019).

In many real-world applications, manually retrieving valuable information from large
textual datasets is infeasible. Therefore, computational methods for knowledge extraction from
textual datasets are emerging and becoming essential in society. One of the ways to perform
the automatic extraction of information from the texts is through automatic text classification
(AGGARWAL, 2018a; WEISS; INDURKHYA; ZHANG, 2015).

Automatic text classification assigns a previously defined label in unlabeled textual
documents (AGGARWAL, 2018a). Supervised Multi-Class Learning (MCL) is a popular strategy
for automatic text classification (TAN; STEINBACH; KUMAR, 2013). In MCL, the user must
know all classes of the problem and label documents for all those classes in the training step
of the classification model. Therefore, the user must label documents of classes even if he/she
is not interested in them (KRAWCZYK; WOŹNIAK; HERRERA, 2015). This characteristic
implies two limitations. First, when the user does not label examples for all domain classes,
and second when a new domain class comes up. Thus, MLC may not be viable for scenarios in
which there is not a well-defined knowledge of all classes of the problem. Also, it is important

1 <https://www.idc.com/>

https://www.idc.com/
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to consider that supervised multi-class learning requires a greater effort to label a significant
amount of examples for each possible class.

Approaches that mitigate the limitations presented by the MLC have gained emphasis in
the last years (ALAM et al., 2020). One approach is the One-Class Learning (OCL) (ALAM
et al., 2020; KHAN; MADDEN, 2009; TAX, 2001). OCL uses only labeled examples from
one class (user’s interest class) to perform learning, i.e., the learning is in the absence of
counterexamples (PERERA; PATEL, 2019; RUFF et al., 2018; KHAN; MADDEN, 2014b;
TAX, 2001; MANEVITZ; YOUSEF, 2001). Thus, OCL reduces the labeling effort and is more
appropriate for open-domain applications (in which we do not know all the classes in advance)
or applications in which the user is interested in one class of the problem. After training with
only examples of interest, OCL will be able to identify whether a new example belongs to the
interest class or not. OCL can be useful for news filters, recommendation systems, information
retrieval systems, web sensing, and fake news detection (ALAM et al., 2020; MARCACINI et

al., 2017; PAN et al., 2008; GÔLO et al., 2021; GÔLO; ROSSI; MARCACINI, 2021).

The learning process is more challenging for the OCL due to the lack of counterexam-
ple for model training. Thus, OCL requires more robustness representations. Generally, most
existing methods use the traditional Bag-of-Words (BoW) technique for text representations
(MANEVITZ; YOUSEF, 2001; ZHUANG; DAI, 2006; MANEVITZ; YOUSEF, 2007; JUNIOR;
ROSSI, 2017; GÔLO; MARCACINI; ROSSI, 2019). This technique represents textual docu-
ments through a set of words and their frequencies. However, BoW representation has limitations,
such as high dimensionality and sparsity and inefficiency in the presence of synonyms and ambi-
guity (AGGARWAL, 2018a). Other studies explore dimensionality reduction techniques which
are able to represent texts in a non-sparse and low-dimensional way, however, do not effectively
improve the automatic text classification (KUMAR; RAVI, 2017b; KUMAR; RAVI, 2017a;
GÔLO; MARCACINI; ROSSI, 2019). More recently, several studies have investigated the use
of language models based on neural networks, such as Word2Vec (MIKOLOV et al., 2013) and
Bidirectional Encoder Representations from Transformers (BERT) (DEVLIN et al., 2019), that
generates more semantic representations through word embeddings (low-dimensional vectors)
Ruff et al. (2019), Cichosz (2020), Mayaluru (2020).

We highlight that those representation models generate a representation focused mainly
on the words or sentences of textual documents. However, several domains can contain other
types of information that can be useful to perform learning. Different representations can be
interpreted as distinct textual data modalities, such as keywords, named entities, topics, sentiment,
temporal, geographic, and semantic information (ZHOU et al., 2020; GUO; WANG; WANG,
2019; BLIKSTEIN, 2013). Multimodal representation learning methods explore these different
types of information to learn a more robust representation since the different modalities can be
supplementary or complementary (LI; YANG; ZHANG, 2018; GUO; WANG; WANG, 2019).
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1.2 Research Challenges
Despite the benefits of representations generated through multimodal learning, using

multimodal methods to represent texts in the OCL scenario is a gap in the literature. Two research
challenges related to multimodal learning for OCL are summarized below.

1. Multimodal text representations for OCL: OCL is challenging as we only have the
labeled examples of the interest class. Thus, a textual representation suitable for OCL
must model an m-dimensional space in which documents of the interest class are closer
to each other, while they are far from examples that do not belong to the interest class.
Although combining multiple modalities allows for more robust representations according
to the classification task (LI; YANG; ZHANG, 2018; GUO; WANG; WANG, 2019),
the vast majority of automatic text classification through OCL literature explores only
unimodal methods for text representation (JUNIOR; ROSSI, 2017; KUMAR; RAVI,
2017b; KUMAR; RAVI, 2017a; GÔLO; MARCACINI; ROSSI, 2019; RUFF et al., 2019;
CICHOSZ, 2020; MAYALURU, 2020).

2. Unsatisfactory classification performances using a few labeled examples of the in-
terest class: even though OCL decreases the user’s labeling effort because he/she only
labels examples of one class, the fewer the number of labeled examples, the lesser the
user’s effort. The reduction of training examples can harm the classification performance
in various application domains. A research challenge involves investigating appropriate
representations to reduce dependence on large training sets of the interest class while
preserving OCL performance (JASKIE; SPANIAS, 2019; SOUZA et al., 2021b).

1.3 Research Goals
This dissertation presents multimodal representation learning for OCL in textual data. In

particular, we explored Multimodal Variational Autoencoders (MVAEs). MVAEs are represen-
tation learning methods that learn a representation from multiple modalities through a neural
network. MVAE makes use of a Variational Autoencoder (VAE). VAEs are generative models
and are considered one of the state-of-the-art for text representation learning (XU; DURRETT,
2018; XU; TAN, 2019; WANG et al., 2019; LI et al., 2020; CHE; YANG; WANG, 2020; FELHI;
ROUX; SEDDAH, 2021).

Our proposal aims to meet the challenges discussed above, i.e., the proposed MVAE
neural architectures must obtain a more suitable m-dimensional space for OCL tasks, as well as
deal with scenarios considering a few labeled documents. Moreover, another research goal is
to analyze the proposal in real-world applications involving textual data, such as detecting fake
news, filtering relevant reviews, and web sensing. Thus, we can verify the generalizability of our
MVAE architectures considering different domains and tasks.
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1.4 Main Contributions and Results

The main contributions of this dissertation are:

∙ Multimodal Variational Autoencoders for OCL: we have introduced an MVAE archi-
tecture which generates more suitable textual representations for OCL tasks. In particular,
our MVAE explores as modalities: (i) pre-trained embeddings from the BERT multilingual
model to incorporate more semantic knowledge; (ii) topic information from the high-
density regions of the original vector space of the textual data; (iii) features with the
linguistic structure of the texts, such as pronouns, prepositions, conjunctions, negations
and emotions; and (iv) geolocation data (latitude and longitude). In addition, our MVAE
also proved to be robust for scenarios with few labeled examples in three different domains,
further reducing the labeling effort.

∙ Detecting fake news through MVAE representations (GÔLO et al., 2021): fake news
can rapidly spread through internet users. Fake news texts constantly evolve in writing
and falsehood, requiring more robust methods to represent the news. On the other hand, a
textual-based unimodal representation is generally used, such as bag-of-words or repre-
sentations based on linguistic categories. Thus, we use our proposed MVAE to represent
the news in detecting fake news through OCL. The MVAE learns a new representation
from the combination of two promising modalities for fake news detection: text embed-
dings and topic/density information since fake news has high-density regions representing
well-defined topics such as politics, society, celebrities, science, religion, economics, and
pandemic. Results show that the MVAE with 3% of labeled fake news outperforms other
representation methods with 10% of labeled reviews in most scenarios. MVAE proved to
be promising to represent the texts in the OCL scenario to detect fake news.

∙ Textual representations for mobile app reviews to support software evolution (GÔLO
et al., 2022; ARAUJO et al., 2020): mobile app reviews are rich information for software
evolution and maintenance. To handle the smaller number of labeled relevant reviews with-
out harming classification performance, we use our MVAE to improve feature extraction
and reviews representation. Our MVAE learns representations which explore both textual
data, i.e., text embeddings, and visual information based on the high-density regions of
the app reviews since these have different topics or subtopics, such as bugs, features, user
experience, security, and performance. Our method achieved competitive results even
using only 3% of labeled reviews compared to models that used the entire training set in
most scenarios.

∙ Web sensing through MVAE representations (GÔLO; ROSSI; MARCACINI, 2021):
events are phenomena that occur at a specific time and place. Event detection is a multi-
modal task since these events have the textual, topic, geographical, and temporal compo-
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nents. Most multimodal research in the literature uses the concatenation of the components
to represent the events. On the other hand, we explore our MVAE to represent the events
in Web sensing. MVAE learns a unified representation from textual (text embeddings),
spatial (geolocation), and density (topics from the event of interest) modalities. MVAE
proved to be promising to represent the events in the one-class event detection scenario.

∙ Source code and datasets: All the source codes of the proposed MVAEs are available to
the community: Fake News2, Relevant App Reviews3, and Events4. Moreover, previous
studies on automatic text classification through OCL perform an experimental evaluation
using multi-class text collections. These collections may not reflect the real scenario of
automatic text classification through OCL. Therefore, in this dissertation, 183 textual
datasets for Web Sensing tasks using OCL were collected and made available (GÔLO;
ROSSI; MARCACINI, 2021).

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2 presents the Theoretical Foundations of textual representation and automatic
text classification processes. Thus, this chapter presents the representation process, the concepts
of BoW, neural language models, neural networks such as autoencoders and variational autoen-
coders, and multimodal learning. In addition, this chapter presents the concepts of multi-class
and one-class learning regarding the classification process.

Chapter 3 is a version of the paper "Learning Textual Representations from Multiple

Modalities to Detect Fake News Through One-Class Learning". This paper is about the applica-
tion of the proposed MVAE in the detection of fake news and was published in the 2021 Brazilian
Symposium on Multimedia and the Web (GÔLO et al., 2021). In addition, an extension of this
paper was submitted to the Decision Support Systems journal.

Chapter 4 is an extended version of the paper "Detecting Relevant App Reviews for

Software Evolution and Maintenance through Multimodal One-Class Learning". This paper
is about the application of the MVAE in detecting relevant app reviews and was submitted to
Information and Software Technology journal.

Chapter 5 is an extended version of the paper "Triple-VAE: A Triple Variational Autoen-

coder to Represent Events in One-Class Event Detection". This paper is about the application of
MVAE in detecting events of interest and has been accepted for publication at the 2021 National
Meeting on Artificial and Computational Intelligence (GÔLO; ROSSI; MARCACINI, 2021).

2 <https://github.com/GoloMarcos/MVAE-FakeNews_Webmedia2021>.
3 <https://github.com/GoloMarcos/MVAE-RelevantReviews>.
4 <https://github.com/GoloMarcos/TripleVAE-Events>.

https://github.com/GoloMarcos/MVAE-FakeNews_Webmedia2021
https://github.com/GoloMarcos/MVAE-RelevantReviews
https://github.com/GoloMarcos/TripleVAE-Events
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It is important to emphasize that this work won the best paper on the conference’s main track
award.

Chapter 6 presents the final remarks of this dissertation, highlights the main contributions,
innovations, and limitations, and points out the future work.
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CHAPTER

2
THEORETICAL FOUNDATION

This chapter presents the theoretical foundations of text representation, autoencoders,
multimodal learning, classification through machine learning. Section 2.1 presents the vec-
tor space model considering the bag-of-words technique and representations based on neural
language models. We also discuss concepts about autoencoders in Section 2.2 and variational
autoencoders in Section 2.3. In addition, Section 2.4 presents concepts about multimodal learning.
Finally, Section 2.5 presents Multi-Class, One-Class learning, and the details of the OCSVM
algorithm are presented in Section 2.5.2.

It is important to emphasize that the information presented in this chapter is also presented
in the articles contained in the following chapters. However, the theoretical foundations are more
didactic and detailed in this chapter. Therefore, if the reader knows the theoretical foundations
of text representation and classification through machine learning, he/she can go straight to the
following chapters.

2.1 Text Representation

Machine learning algorithms need structured data to perform learning. However, textual
data is naturally unstructured. Therefore, pre-processing and textual representation techniques
must be used for the automatic classification of texts to be applied. One of the most traditional
ways to represent texts in machine learning is through the vector space model (AGGARWAL,
2018a; SHALEV-SHWARTZ; BEN-DAVID, 2014). In this model, a vector represents each
textual document, and each vector dimension represents a characteristic.

Table 1 presents an example of the representation generated from the vector space model
with m documents and n attributes. D = {ddd1,ddd2, . . . ,dddm} denotes the set of text documents, and
T = {ttt1, ttt2, . . . , tttn} denotes the set of attributes. Thus, a textual collection with m documents
and n attributes would result in a matrix with m rows and n columns. The cells wdi,t j contain
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values that associate the dddi document with the ttt j attribute. In multi-class classification, there is a
column to represent the class of the respective document. However, in the One-Class Learning,
this column is not required.

Table 1 – Representation generated by the vector space model for m documents and n attributes.

t1 t2 t3 t4 t5 t6 t7 · · · tn

d1 wd1,t1 wd1,t2 wd1,t3 wd1,t4 wd1,t5 wd1,t6 wd1,t7 · · · wd1,tn
d2 wd2,t1 wd2,t2 wd2,t3 wd2,t4 wd2,t5 wd2,t6 wd2,t7 · · · wd2,tn
d3 wd3,t1 wd3,t2 wd3,t3 wd3,t4 wd3,t5 wd3,t6 wd3,t7 · · · wd3,tn
d4 wd4,t1 wd4,t2 wd4,t3 wd4,t4 wd4,t5 wd4,t6 wd4,t7 · · · wd4,tn
...

...
...

...
...

...
...

... . . . ...
dm wdm,t1 wdm,t2 wdm,t3 wdm,t4 wdm,t5 wdm,t6 wdm,t7 · · · wdm,tn

The vector space model is the basis for different text representation techniques. One of
them is Bag-of-Words, which is presented below.

2.1.1 Bag-of-Words

The bag-of-words (BoW) technique considers each attribute a simple term, i.e., a word
from the text document (AGGARWAL, 2018a). Thus, in BoW, the values of cells wdi,t j are called
term weights. The term weights often used are (ROSSI, 2016):

∙ Term Frequency (TF): defines the frequency of occurrence of a term in a document;

∙ Term Frequency - Inverse Document Frequency (TF-IDF): weights the TF with the
frequency of documents with that term (Equation 2.1).

∙ Binary: indicates whether or not the term occurs in the document.

wdi,t j = T F - IDFdi,t j = T Fdi,t j · log
(
|D|
d ft j

)
(2.1)

in which, T Fdi,t j corresponds to the frequency of the term t j in the di document, |D| to the number
of documents, and d ft j to the number of documents that contain the term t j.

Usually, studies apply some techniques before structuring the texts considering the
BoW to improve the representation quality and, consequently, improve the results obtained
by machine learning algorithms (AGGARWAL, 2018a; ROSSI, 2016). The techniques aim to
reduce the number of terms and increase the quality of representation. Generally, the studies
apply the following techniques (MANEVITZ; YOUSEF, 2007; JUNIOR; ROSSI, 2017; GÔLO;
MARCACINI; ROSSI, 2019):
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∙ Standardize the texts: standardize the same uppercase and lowercase words so that they
become the same word, for instance, "Metric" and "metric";

∙ Remove irrelevant characters: remove irrelevant characters such as punctuation or non-
alphanumeric characters. Also, depending on the classification problem, other types
of characters can be removed, for instance, numeric characters if they are considered
irrelevant;

∙ Remove irrelevant words: remove stopwords that do not help to discriminate the docu-
ment category (e.g., prepositions, articles, and conjunctions);

∙ Simplify words: One way to perform this technique is from stemming (CONRADO,
2014). Stemming turns each word into its stem.

Even though the BoW is a simple and fast technique to represent texts and these tech-
niques mentioned above improve the representation generated by BoW, it still has limitations.
One of them is the high dimensionality since the vocabulary of a real-world textual collection can
be huge. Another limitation is the high sparsity since documents contain a small portion of the
words from the vocabulary. These limitations can degrade the performance of machine learning
algorithms, although BoW can get satisfactory results in some text classification applications
(ROSSI, 2016).

Another limitation present in the representations generated by the BoW technique is
the ineffectiveness of synonyms and ambiguity since each different word is represented by a
different feature in BoW, and words with the same spelling are represented by the same attribute.
For instance, to represent the following sets of textual documents with the BoW:

1. “These results have the same average” and “The products get equal means”;

2. “The Company X bought the company Y” and “The Company Y bought the company
from X”.

Tables 2 and 3 show the representations of texts generated by the BoW considering the pairs of
sentences presented above with the data cleaning process and the term weight TF. In the first pair
of texts, the texts have the same meaning. However, no occurrences of the same terms generate
different representations. In the second pair of texts, the texts have opposite meanings, however
equal representations.

Given the limitations of BoW, studies propose other textual representation models.
Among them, the neural language models are considered one of the states-of-the-art for textual
representation. In the next section, we present the details of neural language models.
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Table 2 – BoW representation with TF term weight of the first pair of texts. BoW generated different
representations for texts with the same meaning.

result ha same average product get equal mean

ddd1 1 1 1 1 0 0 0 0
ddd2 0 0 0 0 1 1 1 1

Table 3 – BoW representation with TF term weight of the second pair of texts. BoW generated equal
representations for texts with the opposite meaning.

compan X Y bought

ddd1 2 1 1 1
ddd2 2 1 1 1

2.1.2 Neural Language Models

A recent method for textual data representation is the language models1, which explore
the idea of distributed representations. In this case, numeric vectors (usually with a lower dimen-
sion than BoW) are generated to represent words, sentences, or entire documents (AMORIM;
HENNIG, 2015; MIKOLOV et al., 2013). In addition, the vectors generated by language models
can capture syntactic and semantic relations, thus providing better representation for several
natural language processing tasks (OTTER; MEDINA; KALITA, 2020).

Mikolov et al. (2013) proposes one of the pioneering language models known as
word2vec. The authors propose neural language models such as Continuous Bag-of-Words
and Skip-Gram. These models are Context-Free Language Models (CFLMs). The CFLMs gen-
erate static embeddings for each word in the text, i.e., each word has a vector independent of
the surrounding words. This fact can generate some limitations. For instance, the word “mean”,
which has different meanings, such as “average” or “meaning”. However, word2vec will only
generate one vector in the embedding space for this word. Thus, when processing new texts, the
same vector will be used in the embedding space, regardless of the context in which the word ap-
pears in the new texts. One of the ways to solve this limitation is through the Context-Dependent
Language Models (CDLMs) (DEVLIN et al., 2019).

CDLMs generate a feature vector for the words considering the sentence in which they
occur (DEVLIN et al., 2019), i.e., the CDLMs dynamically generate the vectors in the embedding
space. Thus, two sentences with the word “mean” in the two contexts presented above will have
vectors of different characteristics. Furthermore, different natural language processing tasks
such as named entity recognition and text classification get better results using CDLM than
context-free language models (OTTER; MEDINA; KALITA, 2020).

1 Language model is a broader concept. However, in this work, we use the term language model to
represent language models based on neural networks, such as Word2Vec and BERT.
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CDLMs can be unidirectional or bidirectional. Unidirectional models analyze the text in a
single direction, such as the direction of reading. Bidirectional models analyze text both from left
to right and from right to left. Bidirectional language models provide better performance in tasks
such as next sentence prediction and imputing missing words. Consequently, they perform better
in natural language processing tasks, such as detecting named entities and text classification
(DEVLIN et al., 2019; LIU; YIN; DU, 2019; SANH et al., 2019).

One of the first bidirectional CDLM was the Embeddings from Language Models (ELMo)
(PETERS et al., 2018). ELMo uses recurrent neural networks of the type Long-Short Term
Memory (LSTM) and, to be bidirectional, it uses two LSTM networks: (i) one to analyze the text
from left to right; and (ii) one to analyze text from right to left. In addition to using LSTM, CDLM
can use transformers. The transformers have the advantage of being parallelizable, whereas
LSTM are difficult to parallelize. By using two LSTMs, ELMo becomes computationally more
expensive than a single bidirectional model (DEVLIN et al., 2019). In this sense, Devlin et al.

(2019) proposed a CDLM based on bidirectional transformers, turning the model computationally
less expensive. This advantage of reducing the computational cost made the training of models
in a large textual corpus possible. Examples of transformer-based bidirectional models are:
Bidirectional Encoder Representations from Transformers (BERT) (DEVLIN et al., 2019),
Robustly optimized BERT pretraining approach (RoBERTa) (LIU et al., 2019), Distilled version
of BERT (DistilBERT) (SANH et al., 2019), DistilBERT Multilingual (REIMERS; GUREVYCH,
2020), A Lite BERT (AlBERT) (LAN et al., 2019). These models are considered state-of-the-art
for different natural language processing tasks (OTTER; MEDINA; KALITA, 2020).

The BERT model was trained in a very large textual corpus, and the model represents
sentences based on their context. In the training step, the BERT executes two tasks, and the
first is complete sentences with words masked. Formally, given the word sequence of a textual
document di = {xi,1,xi,2, · · · ,xi,v}, the BERT model generates a corrupted version of di, d̂i, in
which words are selected randomly (e.g., 15%) and replaced by the [MASK] symbol. Also, let
d̄i be the masked tokes of di. Then, the BERT’s training consists of reconstructing the masked
words d̄i from d̂i Yang et al. (2019):

max
Θ

log pΘ(d̄i|d̂i)≈ ∑
x j∈di

cx j log
exp(Hθ (d̂i)

T
x j

eee(x j))

exp(∑
x′

Hθ (d̂i)
T
x j

eee(x′))
, (2.2)

in which cx j = 1 indicates that x j is masked, eee(x j) indicates the embedding of the word x j, x′ is
di without x j, Hθ (di) = {hθ (di)1,hθ (di)2, . . . ,hθ (di)v} is a sequence of hidden vectors mapped
by a Transformer.

The second task is to predict if a sentence sssi is the next of another sentence sss j based on
the representation generated by BERT. In training, half the time, sssi is the next sentence of sss j,
and the other half sssi is not, i.e., it is a random sentence. In the 50% of training where sssi follows
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sss j, the sentence sssi is labeled IsNext, and the random sentences are labeled NotNext. BERT uses
sentence embeddings as input to the next sentence classification task. Thus, BERT separates
sentences and tries to predict whether one follows the other (DEVLIN et al., 2019). This task
helps the model learn relationships between sentences that may not be learned with the first task
alone. Furthermore, it is noteworthy that this task directly influences natural language inference
and the objectives of learning representations (DEVLIN et al., 2019). The article Devlin et al.

(2019) compares pre-trained neural language models with this task and without this task. This
comparison shows that models without the next sentence prediction tasks obtain worse results
than models that use it (DEVLIN et al., 2019).

We represent the phrases used in Section 2.1.1 to highlight the limitations of the BoW in
comparison with the BERT model. We calculate the similarities between the phrases2. A cosine
similarity measure was used (TAN; STEINBACH; KUMAR, 2013).

For the phrases represented in Table 2, the result was a cosine similarity of 0.65. On
the other hand, the two sentences represented in Table 3 obtained a cosine similarity of 0.98.
The similarity of the two examples was high (1 is the maximum). The similarity obtained via
embeddings is better than BoW that obtained a 0 (minimum) similarity for the pair in Table 2. In
the second pair, even though the similarity between sentences with different contexts was high, it
is better than BoW that obtained the similarity of 1 (maximum). Furthermore, considering the
sentences of Table 3 represented by the BERT model, this high similarity (0.98) makes sense
since the sentences deal with the same action (buy) and the same objects of purchase (company).

In addition to representing texts using more robust models such as BERT, other neural
networks architecture can be used to learn representation, including those that allow combining
data from multiple modalities. We highlight the use of autoencoders in this scenario (WANG et

al., 2019), which will be explained in the following section.

2.2 Autoencoders

Autoencoders (AEs) are a specific type of neural network in which the input has the
same dimension as the output (LIU et al., 2017). An autoencoder is a neural network with 3
components: encoder, bottleneck, and decoder (Figure 1). These three components form the
neural network’s hidden layers. The encoder compresses the input and generates the bottleneck,
while the decoder reconstructs the input from that bottleneck. Typically, the hidden layers of the
autoencoder consist of fewer neurons than the input. Thus, reconstructions are only possible if the
weights of the hidden layer neurons capture the most representative characteristics of the input

2 Pre-trained neural language model code to generate the representation of the
phrases and to compute the cosine similarity: <https://colab.research.google.com/drive/
1mambBdV8G94FA1LO0GvxpE3maKovGFlK?usp=sharing>.

https://colab.research.google.com /drive/1mambBdV8G94FA1LO0GvxpE3maKovGFlK?usp=sharing
https://colab.research.google.com /drive/1mambBdV8G94FA1LO0GvxpE3maKovGFlK?usp=sharing
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data (KIEU et al., 2019). Then, AEs are appropriate for learning representations (MANEVITZ;
YOUSEF, 2007).

Autoencoders act as a bottleneck to carry out the neural network extract significant
features from a given dataset (LIU et al., 2017). Thus, there is a dimensionality reduction
(GOODFELLOW; BENGIO; COURVILLE, 2016), which reduces the computational cost of the
algorithms. According to Leyli-Abadi, Labiod and Nadif (2017), the representation learned by
autoencoders usually presents superior quality for various tasks compared to other traditional
approaches, such as Principal Component Analysis, Isometric Feature Mapping, Locally Linear
Embedding, or Stochastic Neighbor Embedding.

Even though the autoencoder is composed of three components, according to Zhai et al.

(2018), it is divided into two stages (Figure 1):

∙ Encoding: part of the neural network that compresses the input into a latent space repre-
sentation (bottleneck). It can be represented by a function f (dddi) that maps the input dddi of
the autoencoder to a low-dimensional space zzzi (bottleneck);

∙ Decoding: part tries to reconstruct the input from the latent space representation zzzi. It can
be represented by a function g(zzzi) that reconstructs dddi by mapping zzzi to the original space,
generating the output rrri.

Figure 1 – Illustration of a basic structure of an autoencoder with dddi input and rrri output. zzzi represents the
bottleneck.

Encoder Decoder

bottleneck

zidi ri

Source: own authorship.

Given a training set with m documents D = {dddi|dddi ∈ Rn}, in which 1 ≤ i ≤ m, n is the
number of dimensions in the original space, and assuming that the functions of encoding and
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decoding are implemented by a neural network, the steps of an autoencoder can be formally
defined by:

autoencoder =

{
zzzi = f (Φ ;dddi)

rrri = g(Θ ;zzzi)
, (2.3)

in which Φ are the weights and bias of neurons in the encoding neural network, and Θ are
the weights and bias of neurons in the decoding neural network. Autoencoders learn these
parameters from a backpropagation procedure, in which the neural network parameters are
learned to minimize the loss function, for instance, the mean squared error between dddi and rrri

defined in Equation 2.4 (ZHAI et al., 2018).

J(Φ ;Θ) =
1
m

m

∑
i=1

‖dddi − rrri‖2 (2.4)

With the advance of neural networks, other types of layers have been used in autoencoders,
such as convolution, pooling, and recurrent layers. The literature shows that those three types of
layers are commonly used for textual data (WANG et al., 2019; XU; DURRETT, 2018; ZHANG
et al., 2017; LEYLI-ABADI; LABIOD; NADIF, 2017; BOWMAN et al., 2016; LI; LUONG;
JURAFSKY, 2015). We present the Variational Autoencoders (the focus of this work) in the next
Section.

2.3 Variational Autoencoders

The main characteristic of the Variational Autoencoders (VAEs) is to bias learning
through an informed prior distribution model (BOWMAN et al., 2016; XU; DURRETT, 2018).
Instead of sending the bottleneck straight to the decoder, the VAE encoder generates the bottle-
neck through sampling based on the previous informed probability distribution model. Therefore,
VAE applies sampling considering the previously informed probability distribution model pa-
rameters (CHE; YANG; WANG, 2020; FELHI; ROUX; SEDDAH, 2021). For instance, if the
model informed is Gaussian with mean 0 and standard deviation 1, the VAE will learn two
representations (mean and standard deviation). The bottleneck will result from sampling the
mean and standard deviation representations following the previously informed model distribu-
tion. The sampling step causes the VAE to generate a bottleneck that, when decoded, generates
new data (generative model) similar to the training data since the mean and standard deviation
representations were learned through these data (BOWMAN et al., 2016). Still, the VAEs have
another function to infer whether a given data belongs to the distribution model or not, i.e., the
encoder of VAE works as a recognition model. Figure 2 shows an illustration of a VAE.
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Figure 2 – Illustration of a basic structure of an variational autoencoder with dddi input and rrri output. zzzi

represents the bottleneck, µµµ i represent the mean learned and the σσσ i represent the standard
deviation learned.
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zi
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Source: own authorship.

Formally, the VAE assumes a variable zzzi that generates the data dddi, by using the probabil-
ity function:

p(zzzi|dddi) =
p(dddi|zzzi)p(zzzi)

p(dddi)
, (2.5)

in which

p(dddi) =
∫

p(dddi|zzzi)p(zzzi)dz (2.6)

Integrals are computationally intractable. Thus, VAE uses variational inference, an
approximation technique, to solve the limitation. First, VAE must approximate p(zzzi|dddi) to
another distribution q(zzzi|dddi) that will be treatable. Then, the q(zzzi|dddi) parameters can be set to
be similar to p(zzzi|dddi). To measure the difference between these distributions, VAE uses the
divergence of Kullback-Leibler (KL). Finally, to optimize the marginal probability (p(dddi)), we
can use the log of the marginal probability, and q(zzzi|dddi) is approximated by p(zzzi|dddi) by KL.
According to Xu and Durrett (2018), the log of the marginal probability can be described by:

log pΘ (dddi) = KL(qΦ(zzzi|dddi)||pΘ (zzzi|dddi))+L (Θ ,Φ ;dddi), (2.7)

in which

L (Θ ,Φ ;dddi) = EqΦ (zzzi|dddi) log pΘ (dddi|zzzi)−KL(qΦ(zzzi|dddi)||pΘ (zzzi)). (2.8)

The first term of Equation 2.8 consists of the neural network reconstruction error. In
the second term, we want to minimize the difference between the learned distribution qΦ(zzzi|λλλ i)

and pΘ (zzzi) (prior knowledge). We replace the term pΘ (zzzi) by N (zzzi;0,1), i.e., by a multivariate
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Gaussian distribution with average 0 and standard deviation 1. Thus, we want to maximize
Equation 2.8.

VAEs use backpropagation to learn neurons’ weights when they are implemented by a
neural network, such as the autoencoders. However, given the sampling process performed to
generate the bottleneck, zzzi becomes a random representation which makes the backpropagation
process difficult since the weights of the encoder layers must be updated depending on the zzzi

weights. Therefore, a reparametrization trick must be applied to carry out the backpropagation.
The procedure randomly samples a new representation ζ of a Gaussian unit and shift and scale ζ

by the parameters learned in the distribution. For instance, if the parameters learned from the
distribution model are the mean (µ) and the standard deviation (σ ), the procedure is to shift ζ by
µ and scale ζ by σ . Figure 3 illustrates the reparametrization trick.

Figure 3 – Illustration of the reparametrization trick used by VAE to apply the backpropagation and learn
the weights of the neurons.
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Source: own authorship.

We highlight that traditionally VAE is applied to learning representation from unimodal
data, i.e., data from a single type (XU; DURRETT, 2018; XU; TAN, 2019; CHE; YANG; WANG,
2020; FELHI; ROUX; SEDDAH, 2021). However, VAE can also be used as a multimodal
representation learning (GUO; WANG; WANG, 2019), as presented in the next section.

2.4 Multimodal Learning

Even though most One-Class Learning studies for textual data consider only unimodal
representations (MANEVITZ; YOUSEF, 2001; ZHUANG; DAI, 2006; MANEVITZ; YOUSEF,
2007; JUNIOR; ROSSI, 2017; KUMAR; RAVI, 2017b; KUMAR; RAVI, 2017a; GÔLO; MAR-
CACINI; ROSSI, 2019; RUFF et al., 2019; CICHOSZ, 2020; MAYALURU, 2020), this is not
the only information to represent the texts since textual data is naturally heterogeneous and can
be represented by other different types of information (BLIKSTEIN, 2013).

The information present in textual data can be named entities, X-grams, text sentiment,
topics, and other representations (BLIKSTEIN, 2013). In addition, there is a scenario in which
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texts have external information that also characterizes textual documents, such as the latitude and
longitude of events. Multimodal learning methods explore these different types of information to
learn a more robust model than models generated from unimodal representations (GUO; WANG;
WANG, 2019; LI; YANG; ZHANG, 2018). We present an illustration of multimodal learning in
the textual data scenario in Figure 4.

Figure 4 – Multimodality scenario for textual data. named entities, topics, n-grams and sentiment are
modalities of textual documents. Multimodal representation represents the combination of
modalities of each textual document.

Named Entities Textual Documents Topics

Multimodal Representation

USP

UFMS

Trump

n-grams

Artificial_Intelligence

Machine_Learning

Federal_University

Sentiment

Source: own authorship.

The heterogeneity of texts is one of the main motivations for using multimodal represen-
tation learning (PENG; QI, 2019). Furthermore, the different modalities can be supplementary
or complementary. Thus, a multimodal representation contains more information than unimodal
representations (GUO; WANG; WANG, 2019), improving the machine learning process (LI;
YANG; ZHANG, 2018).

To combine the modalities, we need to fuse them. In multimodal learning, the most
common types of fusion are early and late fusion (KATSAGGELOS; BAHAADINI; MOLINA,
2015). The early fusion can be represented by methods that combine modalities before the
machine learning process. For instance, early fusion can be done using simple operators like
concatenation, addition, subtraction, multiplication, and averaging. Formally, considering the
set of modalities {ψψψ1,ψψψ2,ψψψ3 · · · ,ψψψa}, ω as the operator, and a as the number of modalities, ΩΩΩi

represents the representation fused by early fusion, according to Equation 2.9 (LIU et al., 2018).

ΩΩΩi = ω(ψψψ1,ψψψ2,ψψψ3 · · · ,ψψψa) (2.9)

An advantage of early fusion is using only one representation of the data in the learning process.
On the other hand, early fusion has some challenges, such as dealing with different dimensions,
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scales, and levels of importance of each modality. However, to deal with these challenges, it
is also possible to use more complex strategies than the simple operator, such as based on
multimodal representation learning from neural networks (GAO et al., 2020).

In late fusion, a machine learning algorithm is used in each modality. Then, the outputs of
these algorithms are integrated to obtain a Final Decision, i.e., if the document will belong to the
interest class or not. Formally, considering an ∆ method of late fusion to obtain the final decision,
and that an algorithm Γb is used in each modality b, in which {b = 1, · · · ,a}), according to Liu
et al. (2018), Equation 2.10 presents the late fusion:

Final Decision = ∆(Γ1(ψψψ1),Γ2(ψψψ2),Γ3(ψψψ3) · · · ,Γa(ψψψa)). (2.10)

A disadvantage of this fusion is the challenge of combining the outputs of different models and
defining levels of importance for each model in the final decision. Therefore, this work focuses
on early fusion using multimodal representation learning through neural networks. In this way,
we can explore the advantages of early fusion without the challenge of fuse representations
with different dimensions since we use neural networks to fuse and learn a representation. After
learning a robust representation for the texts through multimodal representation learning, the
next step is to apply the One-Class Learning explained in the next Section 2.5.2.

2.5 Machine Learning

In the context of automatic text classification, most algorithms learn a surface capable
of separating documents that belong to distinct classes, i.e., learn a decision surface. This
surface is how the algorithm will assign a document to one of the pre-established classes, i.e., a
classification model (ROSSI, 2016; TAN; STEINBACH; KUMAR, 2013; SEBASTIANI, 2002).
This model is capable of classifying unlabeled texts, being able to perform the automatic text
classification. It is noteworthy that the algorithm uses labeled documents to learn the decision
surface during the training stage. One of the most used types of machine learning in literature and
real applications is Multi-Class Learning (WEISS; INDURKHYA; ZHANG, 2015; WITTEN;
FRANK; HALL, 2011; SEBASTIANI, 2002) which is explained in the next Section.

2.5.1 Multi-Class Learning

In Multi-Class Learning, the algorithm can learn two or more classes from labeled textual
documents. In this way, classifiers assign one of the learned classes to new documents (WEISS;
INDURKHYA; ZHANG, 2015; WITTEN; FRANK; HALL, 2011; SEBASTIANI, 2002).

Formally, we define a Multi-Class Learning text classifier as a function f : D → C

that maps a textual document dddi ∈ D to a set of k classes C = {c1, ...,ck}, in which c ∈ C

indicates classes of a given domain. Moreover, the text collection D ∈ Rn is represented in an n-
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dimensional feature space. Thus, the text classification through supervised Multi-Class Learning
aims to learn a function f * from a training set H = { (dddi,ci) | dddi ∈ Rn, ci ∈ {c1, ...,ck}}, in
which dddi indicates the i-th document and ci indicates one of the classes, in which f * approximates
the true (and unknown) mapping function f .

Despite being a widely used technique, Multi-Class Learning has some limitations that
can impair the automatic classification’s practical application or performance. Two limitations
regard the labeling of examples: (i) when the user does not label examples for all domain classes;
and (ii) when a new domain class comes up. Then, the classification model may wrongly label a
new example of the class that came up or that the user does not know, as it will assign one of the
learned classes to the new example. The second limitation concerns the labeling of a significant
number of examples of each class to perform learning.

Another problem in Multi-Class Learning is class imbalance. This problem happens
when there are many documents from one or a few classes and a few from the other classes. The
classifier can bias the classification to the majority(ies) class(es) in this scenario. Furthermore,
there are situations in which the user is only interested in one class. In this case, when using
multi-class learning, the user will have to provide examples of all the other classes even he/she
has no interest in them. One of the types of learning that can mitigate the Multi-class learning
problems is One-Class Learning (ALAM et al., 2020; RUFF et al., 2018; KEMMLER et al.,
2013; KHAN; MADDEN, 2009; TAX, 2001), which will be explained in the next section.

2.5.2 One-Class Learning

In One-Class Learning (OCL), the user defines an interest class, and the OCL algorithm
learns a classification model considering only documents of the interest class. Thus, the algorithm
classifies a new document belonging to the interest class or not. Therefore, OCL is more
challenging than Multi-Class Learning since there are no counterexamples or documents from
different classes are provided to learn a decision surface. Recent studies indicate that OCL is a
competitive classification strategy, with the advantage of reducing the user labeling effort (ALAM
et al., 2020; RUFF et al., 2018; FERNÁNDEZ et al., 2018; THEISSLER, 2017; HEMPSTALK;
FRANK, 2008; ZHUANG; DAI, 2006).

Generally, OCL algorithms generate a value indicating how prone the document belongs
to the interest class, and this value is compared against a threshold. The threshold can be
generated by a decision function of the interest class or manually set (KEMMLER et al., 2013).
If the value is greater than or equal to the threshold, the document will be defined as belonging to
the interest class, or it will be defined as not belonging to the interest class, otherwise (Equation
2.11). An example of a decision function is shown in Figure 5. All white points are used in the
train. Red and green points will be classified, and the red line represents the decision function.
Thus, all points within the yellow area have values greater than or equal to the threshold generated
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by the decision function and are classified as belonging to the interest class and the other points
not.

Figure 5 – Illustration of a decision function for OCL. White points are used to train. Green points are
new examples of the interest class and red points are new examples of the non-interest class.
Points within the yellow area will be assigned to the interest class. Points outside the yellow
area will not be assigned to the interest class.

decision function
train interest examples
new interest examples
new not interest examples

Source: Adapted from (PRONOBIS, 2021).

Formally, we define an OCL text classifier as a function g : D → Y that maps a textual
document dddi ∈ D , with D ∈ Rn, for a value yi ∈ Y , indicating how close document dddi is to
belong to the interest class. Thus, the text classification through OCL aims to learn a function g*

from a training set H = {ddd1,ddd2, · · · ,dddn} which approximates the unknown mapping function g.
Then, the classification through OCL is done according to Equation 2.11.

Class of dddi =

{
yi ≥ threshold → Interest
yi < threshold → Not Interest

(2.11)

There are several OCL algorithms, such as similarity-based, probabilistic, and statistics
(GÔLO; MARCACINI; ROSSI, 2019; KHAN; MADDEN, 2009). Similarity-based algorithms
consider the similarity of a new document to the documents in the training set to generate the
value that indicates how prone this document is to belong to the interest class. This category
includes algorithms based on nearest neighbors and clustering algorithms (TAN; STEINBACH;
KUMAR, 2013). On the other hand, probabilistic algorithms aim to generate a probability
distribution model for the examples of the interest class and subsequently verify the probability
of a new document belonging to the interest class. Probabilistic algorithms used for OCL
are Naive Bayes (AGGARWAL, 2018a), Multinomial Naive Bayes, and Gaussian Mixture
Models (GÔLO; MARCACINI; ROSSI, 2019). Regarding statistical algorithms, the One-Class
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Support Vector Machine (OCSVM) algorithm (SHIN; EOM; KIM, 2005; TAX; DUIN, 2004;
MANEVITZ; YOUSEF, 2001) is generally used.

This dissertation focus on learning a representation for any one-class algorithm. However,
as it focuses on representations, we chose only a one-class algorithm. Therefore, we chose the
OCSVM (SHIN; EOM; KIM, 2005; TAX; DUIN, 2004; MANEVITZ; YOUSEF, 2001), one of
the state-of-the-art algorithms for classification through OCL (SHIN; EOM; KIM, 2005; TAX;
DUIN, 2004; MANEVITZ; YOUSEF, 2001). We present the OCSVM in the next section.

2.5.3 One Class Support Vector Machine

The OCSVM is based on the Support Vector Machine (SVM) (TAN; STEINBACH;
KUMAR, 2013). The SVM for Multi-Class Learning aims to generate a hyperplane of maximum
separation margin between pairs of classes. The most traditional adaptation of the SVM to the
OCL consists of generating fictitious examples close to the origin that correspond to counterex-
amples of the interest class (Figure 6) to apply a maximum separation hyperplane (SCHÖLKOPF
et al., 2001).

Figure 6 – Illustration of the fictitious examples generated close to the origin of the plane so that the
maximum separation hyperplane is generated in the OCSVM proposed by (SCHÖLKOPF et
al., 2001). +1 means the interest class and −1 the opposite.

The Origin

+1

-1

Adapted from (ALASHWAL; DERIS; OTHMAN, 2006).

According to Schölkopf et al. (2001), OCSVM will separate the data from the origin with
a maximum margin. Formally, OCSVM uses Equation 2.12 to create the maximum separation
hyperplane between the interest class and the origin examples.

min
z,ε,ρ

1
2
‖ z ‖2 +

1
ν · |D | ∑

di∈D

εdi −ρ, (2.12)
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subject to:

(z ·ϕ(dddi))≥ ρ − εdi,εdi ≥ 0, (2.13)

in which z are the coefficients of the separation hyperplane, ν ∈ [0,1) is an upper bound on the
fraction of training errors and a lower bound of the fraction of support vectors (i.e., if ν = 0.2,
at most 20% of the training samples are allowed to beyond the separation hyperplane, and also
at least 20% of the training example will be used as support vectors), εdi is the distance from a
document dddi to the separation hyperplane, ρ is the classification error threshold, and ϕ(dddi) is a
kernel function to map the documents into a linearly separable space.

After creating the hyperplane, given a document dddi, the function f (dddi) indicates whether
or not dddi belongs to the interest class. If f (dddi) returns +1, this means that the example is on
the side of the hyperplane where the documents of the interest class are located, i.e., dddi will be
classified as being of the interest class. On the other hand, the return -1 means that the example
is on the side of the hyperplane where the fictitious examples are and will be classified as not
belonging to the interest class. The function f (dddi) is given by Equation 2.14.

f (dddi) = sgn(z ·ϕ(dddi)−ρ), (2.14)

in which sgn() is a signal function that returns −1 when z ·ϕ(dddi)−ρ is negative and returns +1
when greater than or equal to 0.

There are other OCSVM approaches, such as Tax and Duin (2004), in which the OCSVM
aims to generate the smallest hypersphere (given a radius and center) that involves the examples
of the interest class. Examples allocated to the edge of the hypersphere are the support vectors.
According to Tax and Duin (2004), the objective of OCSVM is to find a decision function capable
of involving the textual documents of the interest class. Thus, the OCSVM wants to find the
minimum volume hypersphere involving the training set documents according to Equation 2.15.

µµµ(c) = argmin
µµµ∈U

max
1≤i≤m

‖ϕ(dddi)−µµµ‖2, (2.15)

in which µµµ ∈U is a possible center in the feature space U associated with the function kernel ϕ ,
ϕ(dddi) maps dddi into another feature space defined according to the kernel chosen, and µµµ(c) is the
center of the hypersphere in which the highest distance between ϕ(dddi) to µµµ(c) is minimal.

OCSVM classifies a document as belonging to the interest class if its distance from
the center is less than the radius r of the hypersphere (Considering Equation 2.11, yi =

dist(ϕ(dddi),µµµ(c)), and threshold = r). In general, we hope that the hypersphere is not too large so
that the false positive rate does not increase. Therefore, we add a regularizer ν to accept a certain
level of violation of the hypersphere decision function. Thus, we desire to minimize the square
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of the hypersphere radius and the number of violations. Formally, the minimization function
is given by Equations 2.16 and 2.17, in which εdi is the external distance between ϕ(di) and
the surface of the hypersphere, and ν ∈ (0,1] defines the smoothness level of the hypersphere
volume.

min
µ,ϕ,r

r2 +
1
m

m

∑
i=1

εdddi

ν
, (2.16)

‖ϕ(dddi)−µµµ(c)‖2 ≤ r2 + εdddi

∀i = 1, ...,m.
(2.17)

The OCSVM proposed in Tax and Duin (2004) has the advantage of do not need to
generate fictitious examples. Moreover, there is no guarantee that the examples close to the origin
truly characterize the counterexamples. Therefore, this dissertation uses the OCSVM version of
Tax and Duin (2004). It is noteworthy that this method is sensitive to noise, and it is important to
use strategies to learn a feature space that adequately represents the interest class.

2.6 Concluding Remarks
This chapter presented the main theoretical foundations of text representation and the

limitations of more traditional representations, such as bag-of-words. Alternatives to mitigate
the high dimensionality and lack of semantics in bag-of-words were also presented, such as the
context-dependent language models based on neural networks.

The concepts about autoencoder and variational autoencoder, which is the basis for the
representation learning techniques proposed in this dissertation, were detailed. Ways to generate
representations considering multiple modalities that can be extracted from text collections were
also presented. It can be highlighted that the use of multimodal representations is also the core
of the proposed approaches for representation learning.

By the end, the representations learned by the proposed approaches will feed One-Class
Learning algorithms. In order to explain this type of learning, we first present the traditional
Multi-Class Learning and its limitation. Then, One-Class Learning was characterized, and the
details of the algorithm adopted in this dissertation, OCSVM, were also presented.

The papers containing the results obtained by the proposed multimodal representation
learning methods applied into One-Class Learning tasks for different application domains are
presented in the next chapters.
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CHAPTER

3
LEARNING TEXTUAL REPRESENTATIONS

FROM MULTIPLE MODALITIES TO DETECT
FAKE NEWS THROUGH ONE-CLASS

LEARNING

3.1 Introduction

Fake news intentionally disseminated as real news to spread disinformation has become
part of everyday life (CAMISANI-CALZOLARI, 2018; LYONS; MEROLA; REIFLER, 2020).
Fake news constantly evolves in writing style and presentation, intending to deceive a target
audience (CHOUDHARY; ARORA, 2021; CONROY; RUBIN; CHEN, 2015). Even for humans,
determining the news veracity is a challenging task (GREIFENEDER et al., 2021; SHU et

al., 2017; FRANK et al., 2004). This happens mainly because fake news strongly appeals
to our emotions and ideological postures (KUMARI et al., 2021). As accepted, fake news
become challenging to be corrected and tend to continue acting on the opinion of social groups
(CAMISANI-CALZOLARI, 2018; GREIFENEDER et al., 2021). Thus, the automatic detection
of fake news is essential for society (GREIFENEDER et al., 2021; SHU et al., 2017)

Different news classification methods to discriminate between real and fake content have
been proposed to minimize the effects of disinformation (ZHANG; GHORBANI, 2020). The
most common way to deal with this problem is to characterize the fake news detection as a binary
or multiclass classification problem (CHOUDHARY; ARORA, 2021), which usually requires a
significant set of previously labeled news. However, covering the broad spectrum of news topics,
sources, and levels of falsehood is a challenge (BONDIELLI; MARCELLONI, 2019; MEEL;
VISHWAKARMA, 2019). Furthermore, labeling a large volume of news requires a high human
cost for fact-checking.
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One-Class Learning

One-Class Learning (OCL) has recently been investigated as a promising approach to
detect fake news in order to decrease the labeling effort (WANG; BAH; HAMMAD, 2019;
KHAN; MADDEN, 2014a; FAUSTINI; COVÕES, 2019). OCL algorithms use only labeled
examples of the interest class (e.g., fake news) as input to the learning algorithm, contributing to
scenarios where it is difficult to label a large number of examples. Also, OCL algorithms are
more robust to class imbalance, which is the case of fake news since there is significantly more
real news than fake news available on news sources (ALAM et al., 2020; FERNÁNDEZ et al.,
2018).

OCL algorithms are sensitive to the representation of textual data (BEKKER; DAVIS,
2020). Traditional document classification methods generally represent news using the Bag-
of-Words (BoW) model (SILVA et al., 2020). Due to the absence of semantics and assuming
independence among words (AGGARWAL, 2018a), BoW has often been criticized for news
classification (ZHANG; GHORBANI, 2020). Alternatively, Linguistic Inquiry and Word Count
(LIWC) (SINGH; GHOSH; SONAGARA, 2021) generates representations that capture syntactic
characteristics of news to the detriment of semantic features. Another alternative to represent
news texts is the language model methods based on word embeddings, such as Bidirectional
Encoder Representations from Transformers (BERT) (DEVLIN et al., 2019) and its derivatives.
These approaches consider the syntactic and semantic relations between words to generate the
news representations (OTTER; MEDINA; KALITA, 2020). In addition to the text representations,
it is essential to note that fake news is more frequent in some well-defined subjects such as
politics, pandemics, society, celebrities, science, religion, and economics (SILVA et al., 2020).
Thus, considering this topic information in the text representation can be promising to detect fake
news (SHARMA; SOMAYAJI; JAPKOWICZ, 2018; KRAWCZYK; WOŹNIAK; CYGANEK,
2014).

We investigated the representation learning from multiple modalities for fake news
detection in OCL scenarios. The main goal is to learn a representation model that considers the
news’s syntactic, semantic, and topic information. In order to do so, we proposed a multimodal
representation learning method based on Variational Autoencoders (VAEs). VAEs are generative
models that aim to obtain a new latent space (e.g., embeddings) that preserves the main properties
of the original textual data (BOWMAN et al., 2016; XU; DURRETT, 2018). Traditionally, VAEs
have explored a single modality during representation learning. Thus, we propose and develop the
Multimodal Variational Autoencoder for fake news detection (MVAE-FakeNews), which learns
a representation from language and visual modalities. The language modality is the syntactic
and semantic information from word embeddings obtained through a derivation of BERT called
DistilBERT Multilingual (DBERTML) language model. We build the visual modality based on
the density information that can be interpreted as the topics about fake news. Finally, we use the
MVAE-FakeNews representations to train an OCL algorithm One-Class Support Vector Machine
considering the fake news as interest class.
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We carried out an experimental evaluation using three news collections to compare
our MVAE-FakeNews with nine other textual representation models. MVAE-FakeNews got
the best F1-Scores for the interest class in most classification scenarios. Statistical analysis
among all methods reveals a significant difference in the performance of MVAE-FakeNews about
representations based on a single modality, such as BoW, word embeddings, topics, and syntactic
characteristics (LIWC). Also, another statistical analysis between pairs of methods reveals a
significant difference from the performance of the MVAE-FakeNews compared to all other
methods. With only 3% of fake news labeled, MVAE-FakeNews achieves results comparable or
higher to other methods when considering 10% of fake news labeled. Thus, MVAE-FakeNews
proved to be a competitive alternative to the state-of-the-art and promising to practical scenarios
because it requires less effort from domain experts.

The rest of this chapter is divided as follows. Section 3.2 presents related work. Section
3.3 presents the concepts and details of the proposed method and OCL. Section 3.4 presents the
experimental settings used, results, and discussions. Lastly, Section 3.5 presents the conclusions
and future work directions.

The proposed method and experimental results presented in this chapter were published
in a paper titled "Learning Textual Representations from Multiple Modalities to Detect Fake News

Through One-Class Learning" (GÔLO et al., 2021) in the Brazilian Symposium on Multimedia
and the Web (Webmedia 2021)1.

3.2 Related Work

Approaches proposed in the literature for the news representation analyze lexical, syn-
tactic, and semantic aspects of the publication’s content to detect falsehood (CHOUDHARY;
ARORA, 2021). Among the syntactic characteristics, there are the counting of grammatical
classes (subjects, verbs, adjectives), presence and frequency of patterns, or specific expressions of
the language and legibility analysis of the text (SILVA et al., 2020). Lexical approaches analyze
words used in the textual content that indicate humor, abbreviations, or temporal expressions that
are informative to determine the veracity of the information (RASHKIN et al., 2017). Semantic
characteristics are related to analyzing the news’s language patterns, structure, and meanings
(ZHANG; GHORBANI, 2020).

Literature studies that carry out fake news detection, in general, represent news in a
structured way using traditional models such as BoW and n-grams. However, such models are not
powerful enough to extract semantic information from the news (ZHANG; GHORBANI, 2020).
Moreover, other methods such as LIWC explore emotional, cognitive, and structural components
present in the news written verbal language. Rashkin et al. (2017) analyzes news with the LIWC
tool. The study suggests that people who write fake news use first and second-person pronouns

1 <https://dl.acm.org/doi/abs/10.1145/3470482.3479634>.

https://dl.acm.org/doi/abs/10.1145/3470482.3479634
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and exaggerated and vague words in misleading news. In addition, reliable news writers tend to
be impartial, using assertive words and numeric data more often.

Some studies in literature also propose the use of textual and contextual characteristics
of news to enrich traditional representation models. Silva et al. (2020) proposed representation
models, combining BoW and linguistic features for supervised scenarios involving more than
two-thirds of previously labeled news. Choudhary and Arora (2021) proposes a deep learning
model based on linguistic characteristics to detect fake news. Syntactic, grammatical, legibility,
and sentiment expressed in the text are extracted and combined, being used as main parameters
to train a sequential neural network model in supervised classification scenarios.

Singh, Ghosh and Sonagara (2021) and Khattar et al. (2019) propose multimodal rep-
resentation models that combine text information and images associated with the news. Singh,
Ghosh and Sonagara (2021) divided the characteristics into four categories: content, organization,
emotiveness, and manipulation. They extract 124 textual features for each news, 81 of them with
LIWC, along with 43 image characteristics. The authors use 90% of news previously labeled.
Khattar et al. (2019) proposes a variational autoencoder considering multiple modalities for
binary classification problems. The goal is to learn a unified representation model, coding the
text and image modalities of the news. Khattar et al. (2019) proposed this method for supervised
scenarios.

Faustini and Covões (2019) proposes the DCDistanceOCC, an OCL algorithm to identify
fake content to minimize real news labeling efforts. For each news, linguistic characteristics
are extracted, such as the proportion of capital letters, number of words per sentence, and and
message sentiment. The authors create a vector from the sum of the characteristic vectors of all
objects (class vector). The algorithm calculates the distance between the object and the class
vector and classifies the object as being of interest or not according to a threshold. The authors
executed the algorithm using cross-validation, with 90% fake news to train the model. The
approach reaches 67% of F1 −Score for the Fake.Br dataset (SILVA et al., 2020).

In the literature, we observe that most methods explore a single textual modality (SINGH;
GHOSH; SONAGARA, 2021; HORNE; ADALI, 2017) or still need to label fake news and
a wide spectrum of real news to build a classification model (BONDIELLI; MARCELLONI,
2019; MEEL; VISHWAKARMA, 2019). Studies that use multimodality, for example, require
images associated with the news, which are not always present in all sources. Existing initiatives
involving OCL generally use bag-of-words representations or representations based on linguistic
categories. Thus, a lack of studies that used other concepts to represent news, such as seman-
tics, was not noticed. Also, the representations are usually unimodal, and those that consider
multimodality consider types of data that cannot be present in any news, e.g., images. Thus,
we proposed a multimodal representation learning approach to consider different modalities
presented in any new collection. The details of the proposed approach are presented in the next
section.
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3.3 Multimodal Variational Autoencoder for Fake News

Textual data, such as fake news, are naturally multimodal (PENG; QI, 2019) and can be
represented in different ways. Moreover, the information embedded in the textual data can come
from several methods, such as named entities, n-grams, text sentiment, topics, and linguistic
categories (BLIKSTEIN, 2013; PENNEBAKER et al., 2015).

Multimodal learning aims to learn models based on multiple representations, which
can be complementary or supplementary, generally being more robust than unimodal models
(GUO; WANG; WANG, 2019). Multimodal learning contributes to machine learning algorithms’
performance and allows us to combine the data in different forms (LI; YANG; ZHANG, 2018).

Our proposal uses embeddings from a DBERTML language model and the density
information extracted from these embeddings as modalities. We choose DBERTML embeddings
because they allow the capture of syntactic and semantic characteristics, unlike other traditional
models like BoW. Moreover, considering the news scenario with high-density regions represent-
ing well-defined topics such as politics, society, celebrities, science, religion, economics, and
pandemic, we chose the density information as a visual modality since it is able to capture this
spatial distribution of topics. While studies in literature frequently use BERT embeddings on text
representation (KALIYAR; GOSWAMI; NARANG, 2021), the density information extracted
from these embeddings is still underexplored. In the next sections, we present details about
the extraction of the density modality, our multimodal variational autoencoder, and its use in
one-class learning tasks to detect fake news.

3.3.1 Density Information Representation

One way to obtain the density information of fake news documents is to apply a clustering
algorithm and use a statistical technique that calculates the cluster quality structure (SHARMA;
SOMAYAJI; JAPKOWICZ, 2018; KRAWCZYK; WOŹNIAK; CYGANEK, 2014).

Consider a clustering with k clusters, i.e., D =C1∪C2,∪·· ·∪Ck, in which C j is a cluster
of documents, and 2 ≤ k < m. Then, we apply the silhouette coefficient (ROUSSEEUW, 1987)
in order to measure if a news belongs to a single topic or contains mixed topics. The silhouette
for a news dddi represented by the embeddings of DBERTML λλλ i assigned to a cluster C j is given
by:

s(λλλ i,k) =
β (λλλ i)−α(λλλ i)

max(α(λλλ i),β (λλλ i))
, (3.1)
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in which α(λλλ i) is the average distance of λλλ i to all documents of cluster C j, and β (λλλ i) defines
the average distance of the document λλλ i to all documents of the closest cluster Co, o ̸= j. α(λλλ i)

and β (λλλ i) are given by Equations 3.2 and 3.3 respectively.

α(λλλ i) =
1

|C j|−1 ∑
λλλ l∈C j,λλλ i ̸=λλλ l

dist(λλλ i,λλλ l) (3.2)

β (λλλ i) = min
o̸= j

1
Co

∑
λλλ n∈Co

dist(λλλ i,λλλ n) (3.3)

The silhouette values range from -1 to +1. A high value indicates that a news is well
matched to its cluster and weakly matched to neighboring clusters, i.e., a news tends to belong to
a single topic. We represent fake news density information by concatenating silhouette coefficient
values considering each document in different clustering settings. For instance, given u different
clustering settings, i.e., the clustering settings have different values of k, we perform the density
modality by:

δδδ i = {s(λλλ i,k1),s(λλλ i,k2), . . . ,s(λλλ i,ku)} (3.4)

in which s(λλλ i,k j) is the silhouette of λλλ i in cluster setting with k j clusters. Figure 7 presents an
illustration of how we generate the density information representation.

sil1Density Information 
Representation

sil2 sil3 sil4

Cluster Setting

Legend
Fake News
New NewsCluster

Silhouette Value

k=2 k=3 k=4 k=5

Figure 7 – Illustration of a Density Information Representation.

3.3.2 Variational Autoencoder

Variational Autoencoders are a specific type of autoencoder (AE) (LIU et al., 2017;
WANG; BAH; HAMMAD, 2019). AE are neural networks that we can use to learn representa-
tions. In this paper, we refer to an AE as a dense AE, i.e., a fully connected feed-forward neural
network with o layers, o ≥ 2, in which the i-th and (o− i)-th layers have the same number of
neurons (LIU et al., 2017). We can divide the AE into the encoding and decoding steps, in which
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the first half of the layers encode, and the other half of the layers decode the input (ZHAI et al.,
2018). First, the encoding compresses the input λλλ i into a representation of latent space zzzi, and
the function f (·) represents this step. Next, decoding attempts to reconstruct the input using zzzi in
the λλλ

′
i output, and the function g(·) represents this step.

Considering that a neural network implements the functions f (·) and g(·), and that λλλ i is
a representation of the document dddi. An autoencoder can be defined by:

autoencoder =

{
zzzi = f (Φ ;λλλ i)

λλλ
′
i = g(Θ ;zzzi)

(3.5)

in which Φ are the weights and bias of neurons in the encoding neural network, Θ are the
weights and bias of neurons in the decoding neural network. The AE learns these parameters to
minimize the error of reconstruction of the neural network, for instance, the mean squared error
between λλλ i and λλλ

′
i.

There are variations of AEs, which aim to force the learned representations to assume
useful properties for the application scenario (WANG et al., 2019). One variant is the Variational
Autoencoders (VAEs). The learning in a VAE is regularised in order to obtain parameters of
a distribution (e.g., normal). Thus, VAEs are able to generate new data similar to the train set
(BOWMAN et al., 2016; XU; DURRETT, 2018). Thus, after the training step, when we send
the data to the VAE, it has new data as an output. Figure 8 presents a VAE.

Encoder Decoder

latent vector

sampling
zi

μi

σi

𝝺i’

Dense Layers Input Vector

𝝺i

Figure 8 – Illustration of a Variational Autoencoder.

Formally, the VAE assumes a variable zzzi that generates the data λλλ i, by using the proba-
bility function:

p(zzzi|λλλ i) =
p(λλλ i|zzzi)p(zzzi)

p(λλλ i)
, (3.6)
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in which

p(λλλ i) =
∫

p(λλλ i|zzzi)p(zzzi)dz (3.7)

VAE approximates p(zzzi|λλλ i) to another treatable distribution q(zzzi|λλλ i) using the Kullback-Leibler
(KL) divergence to measure the divergence between distributions. To optimize the marginal
likelihood (p(λλλ i)), you can use the log of the marginal likelihood (XU; DURRETT, 2018):

log pΘ (λλλ i) = KL(qΦ(zzzi|λλλ i)||pΘ (zzzi|λλλ i))+L (Θ ,Φ ;λλλ i), (3.8)

in which

L (Θ ,Φ ;λλλ i) = EqΦ (zzzi|λλλ i) log pΘ (λλλ i|zzzi)−KL(qΦ(zzzi|λλλ i)||pΘ (zzzi)). (3.9)

The first term of Equation 2.8 consists of the neural network reconstruction error. In
the second term, we want to minimize the difference between the learned distribution qΦ(zzzi|λλλ i)

and pΘ (zzzi) (prior knowledge). We replace the term pΘ (zzzi) by N (zzzi;0,1), i.e., by a multivariate
Gaussian distribution with average 0 and standard deviation 1. Thus, we want to maximize
Equation 2.8.

The MVAE-FakeNews extends VAEs to two modalities. Figure 9 presents an illustration
of the Multimodal VAE neural architecture. MVAE-FakeNews is based on multimodal learning
and a Variational Autoencoder and is analogous to VAE. However, it will also calculate the
error of reconstructing the density information. Therefore, MVAE-FakeNews aims to maximize
Equation 3.10. The first term calculates two reconstruction errors: embedding (λλλ i) and density
information (δδδ i). The second term wants to approximate the learned distribution qΦ(zzzi|λλλ i,δδδ i)

from pΘ (zzzi), as in VAE.

L (Θ ,Φ ,λλλ i,δδδ i) = EqΦ (zzzi|λλλ i,δδδ i) log pΘ (λλλ i,δδδ i|zzzi)−KL(qΦ(zzzi|λλλ i,δδδ i)||pΘ (zzzi)), (3.10)

After MVAE-FakeNews represents the fake news, we can apply the One-Class Learning
algorithms focusing on fake news. The details of One-Class Learning are presented in the next
section.

3.3.3 One-Class Learning

In the One-Class Learning (OCL), the training of the algorithms is only with examples
of the interest class (fake news represented), i.e., in the absence of counterexamples, aiming at
less effort from the user concerning the data labeling (ALAM et al., 2020; RUFF et al., 2018;
KEMMLER et al., 2013; KHAN; MADDEN, 2009; TAX, 2001).
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Figure 9 – Illustration of the proposed representation method MVAE-FakeNews For Fake News with the
inputs λλλ i and δδδ i, and outputs λλλ

′
i and δδδ

′
i.

We formally define the OCL for fake news as a function f : D → Y that maps a news
dddi ∈ D to an yi ∈ Y value, indicating how close the news dddi belongs to the interest class, i.e.,
fake news. The detection of fake news using OCL aims to learn a function f * from a training set
containing only fake news that comes close to the unknown mapping function f . The algorithm
generates the yi value and compares it to a threshold that determines whether the news is fake or
real (Equation 3.11).

Class of dddi =

{
yi ≤ threshold → Fake

yi > threshold → Real
(3.11)

Among the OCL algorithms in the literature (GÔLO; MARCACINI; ROSSI, 2019),
we chose the One-Class Support Vector Machines (OCSVM) (TAX; DUIN, 2004) since it
is successful when the examples are represented appropriately and are considered one of the
state-of-the-art in the area of OCL (ALAM et al., 2020). The OCSVM (TAX; DUIN, 2004) has
the objective function of finding the hypersphere of minimum volume that involves the data of
the interest class (fake news). Formally, Equation 3.12 defines the center of the hypersphere
(TAX; DUIN, 2004),

µµµ(c) = argmin
µ∈U

max
1≤i≤m

‖ϕ(dddi)−µµµ‖2, (3.12)

in which µµµ ∈U , is a possible center in the feature space U associated with the function kernel ϕ ,
ϕ(dddi) maps dddi into another feature space defined according to the kernel chosen, and µµµ(c) is the
center of the hypersphere in which the highest distance between ϕ(dddi) to µµµ(c) is minimal.

We will consider a news as fake if its distance from the center is less than the radius r

of the hypersphere, i.e., yi = dist(ϕ(dddi),µµµ(c)) and threshold = r. In general, we hope that the
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hypersphere is not too large so that the false positive rate does not increase. Therefore, we add a
regularizer ν to accept a certain level of violation of the hypersphere decision function. Thus,
we desire to minimize the square of the hypersphere radius and the number of violations. The
minimization function is formalized by Equations 3.13, in which εdddi is the external distance
between ϕ(dddi) and the surface of the hypersphere, and ν ∈ (0,1] defines the smoothness level of
the hypersphere volume.

min
µµµ,ϕ,r

r2 +
1
m

m

∑
i=1

εdddi

ν
(3.13)

subject to:

‖ϕ(dddi)−µµµ(c)‖2 ≤ r2 + εdddi ∀i = 1, ...,m. (3.14)

3.4 Experimental Evaluation
In the experimental evaluation, we propose to compare the MVAE-FakeNews with nine

other unimodal and multimodal representation methods. We used the OCSVM algorithm to
compare the fake news representation methods. Our goal is to demonstrate that the representations
generated by MVAE-FakeNews outperform others commonly used in the literature for news
classification. The next sections present the news collections used in the experimental evaluation,
experimental settings, results, and discussion. For reproducibility reasons, all source codes and
fake news collections used in the experimental evaluation are available2.

3.4.1 Fake News Text Collections

This paper used three news collections, one in English and two in Portuguese. We got the
first collection from FakeNewsNet (FNN) repository3 (SHU et al., 2020), which contains news
from famous people fact-checked by the GossipCop4 website. The dataset had a total of 16,095
real news and 4,937 fake news. After an initial analysis, we found that the news presented
a significant imbalance in the number of tokens (words present in the news after removing
unnecessary characters and stopwords) caused by collection errors. News ranging from 200 to
600 tokens were selected, remaining 5,298 real news and 1,705 fake news. FNN is the collection
with the greatest unbalances in the distribution of classes. The remaining collections presented a
balanced number of real and fake news.

The second collection, Fake.Br5, is the first reference corpus in Portuguese for fake news
detection. The news was manually collected and labeled. The corpus consists of 7,200 news
2 https://github.com/GoloMarcos/MVAE-FakeNews_Webmedia2021.git
3 https://github.com/KaiDMML/FakeNewsNet
4 https://www.gossipcop.com/
5 https://github.com/roneysco/Fake.br-Corpus
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items, distributed in 6 categories: politics (58%), TV and celebrities (21.4%), society and daily
life (17.7%), science and technology (1.5%), economy (0.7%) and religion (0.7%). This corpus
contains 3,600 fake news and 3,600 real news (SILVA et al., 2020).

The third news collection6, also in Portuguese, resulted from the collection of Fact
Checking News (FCN) fact-checking news, in the following portals: AosFatos7, Agência Lupa8,
Fato ou Fake9, UOL Confere10 and G1-Politica11. The collection contains 2,168 news items, in
which 1,124 are real and 1,044 are fake.

3.4.2 Experimental Settings

We used ten representation methods for the news, in which eight are unimodal, and
two are multimodal. Three unimodal came from the traditional BoW technique (AGGARWAL,
2018a). The BoW represents each textual document in a vector, in which each dimension
represents a term, that is, a word from the textual collection. The cell values of the vectors
may vary according to the chosen weight scheme. We inferred BoW considering three different
weight schemes:

∙ Term Frequency (TF): defines the frequency of occurrence of a term in a document;

∙ Term Frequency - Inverse Document Frequency (TFIDF): weights the TF with the
frequency of documents with that term (Equation 3.15).

∙ Binary: indicates whether or not the term occurs in the document.

T F - IDFdi,t j = T Fdi,t j · log
(
|D|
d ft j

)
(3.15)

in which, T Fdi,t j corresponds to the frequency of the term t j in the di document, |D| to the number
of documents, and d ft j to the number of documents that contain the term t j.

One of the unimodal methods was representations generated by the Linguistic Inquiry
and Word Count (LIWC) tool (PENNEBAKER et al., 2015). LIWC is a textual analysis tool,
which assigns words from a text to different linguistic categories, providing a wide array of char-
acteristics as an output. The categories involve linguistic dimensions, such as counting personal
pronouns, prepositions, conjunctions, verbs, nouns, adjectives, interrogative and quantitative
words, and psychological processes such as affective words, positive and negative emotions,
anxiety, and sadness.
6 https://github.com/GoloMarcos/FKTC
7 https://aosfatos.org/noticias/
8 https://piaui.folha.uol.com.br/lupa/
9 https://g1.globo.com/fato-ou-fake/
10 https://noticias.uol.com.br/confere/
11 https://g1.globo.com/politica/
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Another unimodal method that learns efficient representations is the DBERTML model
(REIMERS; GUREVYCH, 2020), which is a neural language model based on Transformers (see
Section 2.1.2 for more details). Context-dependent language models based on word embeddings
like DBERTML explore the idea of distributed representations, in which numeric vectors repre-
sent sentences (DEVLIN et al., 2019). DBERTML base these numeric vectors on dynamic word
embeddings constructed based on the context of the sentence. In this way, DBERTML can apply
correlation techniques, compare the vectors, and extract semantic and syntactic characteristics.
(OTTER; MEDINA; KALITA, 2020).

Other methods used are density information, an AE with only dense layers, and a VAE.
Such methods have as input the embedding from DBERTML. As for the two multimodal methods
proposed in this work, we used the Multimodal Variational Autoencoders (MVAEs). The first
is the MVAE-LIWC, which includes DBERTML embeddings and the attributes collected by
LIWC. The second is the MVAE-FakeNews which includes the embeddings of the DBERTML
and density information. The parameters of the representation techniques and OCSVM were:

∙ BoW: stopwords removal, stemming and cut-off = 1;

∙ LIWC and DBERTML: without parameters.

∙ MVAE-FakeNews and Density Information: clustering algorithm = k-Means and cluster
quantity sets = {{2,4,6,8,10},{3,5,7,9} and {2,3,4,5,6,7,8,9,10}};

∙ MVAEs, VAE and AE: epoch = {5,10,50}, dimension of the dense layers = {(512,384,
256,384,512),(512,256,512) and (512,384,128,384,512)}, learning rate = 0,001, opti-
mization algorithm = {Adam}, activation function = {linear} and number of iterations per
epoch = m

batch_size , in which m is the number of training examples and batch_size = 32;

∙ MVAEs: fusion operators = {addition, subtraction, concatenation, mean and multiplica-
tion};

∙ OCSVM: kernel = {RBF}, ν = {0.001,0.01} and 0.05 * ν ,ν ∈ [1..19], e γ = 1
(n·a) , in

which n is the dimension of the input data and a is the variance of the representations.

In order to evaluate the approach, this work proposes an adaptation of the procedure k-
Fold Cross-Validation (TAN; STEINBACH; KUMAR, 2013), considering the OCL classification
scenario. This adaptation consists of applying the procedure only to the interest class (fake news).
First, we divided the fake news set into 10 folds. To simulate a more realistic scenario of fake
news, we use 1 fold for training and 9 folds for testing in this work. Then, we included the real
news in the test set. In addition, we extracted only a percentage of training document from the
training fold. The percentages were 30%, 50%, 70% and 100%, equivalent to 3%, 5%, 7% and
10% of all fake news documents in the collection. Thus, we alternate the folds so that they are
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in the training set and the test set. We use the F1-Score as an evaluation measure, which is a
harmonic average between precision (P) and recall (R).

F1 =
2 ·P ·R
P+R

(3.16) P =
T P

T P+FP
(3.17) R =

T P
T P+FN

(3.18)

In which True Positives (TP) is the number of fake news that the algorithm has correctly classified;
False Positive (FP) is the number of real news that have been classified as fake news; and False
Negatives (FN) is the number of fake news classified as real news.

3.4.3 Results and Discussion

Table 4 presents the results obtained for the three textual collections considering each
percentage of fake news used in training. The results compare the ten representation models of
fake news. The proposed MVAE-FakeNews obtained the highest F1-Score in ten of the twelve
evaluated scenarios. In the remaining two scenarios, the density information got the highest
F1-Score. BoW with the TFIDF term weight obtained the lowest F1-Score in all scenarios.

Table 4 – Higher values of F1-Scores of each representation technique considering the training percentage
scenarios. The amount of fake news equivalent to a percentage appears next to the %.

% TFIDF TF Binary DistilBERT Density LIWC AE VAE MVAE-LIWC MVAE-FakeNews

Fa
ke
Br

3% (108) 0.029±0.01 0.600±0.01 0.617±0.00 0.574±0.01 0.621±0.03 0.597±0.01 0.622±0.01 0.632±0.01 0.637±0.00 0.642±0.00
5% (180) 0.102±0.01 0.603±0.01 0.619±0.00 0.602±0.01 0.633±0.02 0.607±0.01 0.635±0.00 0.637±0.00 0.636±0.01 0.644±0.00
7% (252) 0.182±0.01 0.607±0.00 0.620±0.00 0.618±0.01 0.647±0.02 0.614±0.00 0.638±0.00 0.637±0.00 0.637±0.00 0.645±0.00

10% (360) 0.263±0.01 0.610±0.00 0.621±0.00 0.628±0.01 0.650±0.01 0.620±0.00 0.640±0.00 0.638±0.00 0.639±0.00 0.646±0.00

F
C
N

3% (31) 0.001±0.00 0,556±0.02 0,591±0.02 0.426±0.06 0.487±0.07 0.557±0.03 0.375±0.07 0.741±0.04 0.726±0.03 0.805±0.02
5% (52) 0.010±0.01 0,582±0.01 0,605±0.01 0.568±0.05 0.575±0.08 0.587±0.02 0.631±0.04 0.796±0.03 0.736±0.02 0.813±0.03
7% (73) 0.037±0.01 0,591±0.01 0,610±0.01 0.640±0.03 0.584±0.06 0.600±0.02 0.697±0.01 0.801±0.01 0.749±0.03 0.811±0.02

10% (104) 0.110±0.02 0,596±0.01 0,614±0.00 0.706±0.02 0.625±0.03 0.613±0.01 0.722±0.03 0.804±0.02 0.753±0.03 0.808±0.02

F
N
N

3% (51) 0.001±0.01 0,327±0.01 0,355±0.01 0.321±0.01 0.325±0.02 0.379±0.01 0.337±0.01 0.365±0.01 0.386±0.01 0.395±0.03
5% (85) 0.026±0.01 0,344±0.01 0,360±0.01 0.345±0.01 0.345±0.04 0.382±0.00 0.353±0.01 0.367±0.01 0.388±0.01 0.403±0.03
7% (120) 0.081±0.01 0,349±0.00 0,361±0.00 0.353±0.01 0.353±0.01 0.384±0.00 0.358±0.00 0.367±0.00 0.390±0.00 0.397±0.01

10% (170) 0.169±0.01 0,353±0.00 0,362±0.00 0.363±0.01 0.357±0.02 0.386±0.00 0.362±0.00 0.367±0.00 0.393±0.00 0.393±0.01

We performed Friedman’s statistical test with Nemenyi’s post-test and Wilcoxon sta-
tistical test (TRAWINSKI et al., 2012) to compare the representation methods considering all
training percentage scenarios and datasets, i.e., we use each row of the table as a sample for
the test. Figure 10 presents the result of the Friedman test with Nemenyi’s post-test through
the critical difference diagram12. The diagram presents the average rankings of the methods.
Methods connected by a line do not present statistically significant differences between them.
The Wilcoxon test is a non-parametric hypothesis test used when it is desired to compare pairs
of methods to assess whether there is a statistically significant difference between them (TRAW-
INSKI et al., 2012). The MVAE-FakeNews has a statistical difference compared to each of the
methods with a confidence level of 95%.

12 The test parameters were the default parameters of the KEEL tool (<https://sci2s.ugr.es/keel/index.
php>).

https://sci2s.ugr.es/keel/index.php
https://sci2s.ugr.es/keel/index.php
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Figure 10 – Critical difference diagram of Friedman’s statistical test with Nemenyi post-test.

MVAE-FakeNews obtain the best results. Multimodal methods were the ones that got
the highest F1-Scores since their average rankings are the best. It is worth mentioning that the
multimodal methods did not obtain a statistically significant difference from the VAE and the
AE13. This shows that representations from embeddings proved to generate better classification
results. In addition to obtaining the best average ranking, MVAE-FakeNews got statistical
differences from unimodal representations, such as all representations generated by BoW, density
information, LIWC, and DBERTML.

For FakeNewsNet and Fact Checked News collections, the MVAE-FakeNews, when
trained with only 3% of labeled fake news, got better F1-Scores than the other nine methods,
when these consider 10% of labeled fake news. MVAE-FakeNews outperforms all other methods,
obtaining better results even with few labeled fake news. It is worth mentioning that, without
considering the representation of density information, that got the best results considering 7%
and 10% in the Fake.Br collection, we can observe the same behavior.

Even without presenting good average rankings, we can see that the density information
obtain a higher F1-Score in two scenarios for the Fake.Br collection. This indicates that news
from different subjects can be located in different high-density regions. Based on the results, only
density information is not enough to represent fake news. However, it is an important modality.
The same behavior occurs with embeddings that capture syntactic and semantic information.
However, when a model is learned from embeddings that capture syntactic, semantic, and
Density information, as MVAE-FakeNews, all the information in the representation contributes
to generating a more discriminative representation.

Figure 11 presents two-dimensional projections of the best representation model obtained
by each method considering the Fact Checked News collection. We generated the representations
using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm (MAATEN; HINTON,
2008) with the default parameters from the sklearn library. Although there was a lot of information
loss, we can infer that representations generated by BoW-TF, BoW-Binary, and LIWC were
the representations with the greatest overlap among the classes of fake and real news. The
representations of density information and BoW-TFIDF were able to represent the data from

13 We highlight that the lack of statistically significant difference can occur due to the high number of
methods, which implies a high critical difference.
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Figure 11 – Two-dimensional projection (t-SNE) of each fake news representation method. The colors
indicate fake news and real news. Representation methods that show less overlap between
classes are more promising for detecting fake news.

different classes into different regions. The representations of DBERTML and the methods
that use this representation as input, such as AE, VAE, MVAE-LIWC, and MVAE-FakeNews,
generated more discriminative representations, i.e., with less class overlap, which can provide
better classification models.

The fake news Fact Checked News collection is composed of the news that authors
collected from August 2018 to May 2019. At this time, Brazil witnessed a political competition
between the Partido dos Trabalhadores political party, of the former president of Brazil, Luiz
Inácio Lula da Silva, and the current president of Brazil, Jair Messias Bolsonaro. A large portion
of the news in this dataset addresses information about presidential elections, and another portion
does not. MVAE-FakeNews was the only method that performed the separation of real and fake
news in two different hubs. Our intuition is that MVAE-FakeNews divided the news in the latent
space by subject, which may have helped the classification process.

3.5 Concluding Remarks

Fake news is increasingly present in society, impacting sectors like politics and the
economy. This impact requires methods to detect fake news. Generally, literature studies detect
fake news with machine learning algorithms. One-Class Learning is an appropriate method to
detect fake news since it learns only with examples from the interest class. Also, it is more suitable
for unbalanced scenarios and scenarios that are difficult to label, in addition to the advantage of
having less labeling effort. However, naturally unstructured texts must be structured considering
a representation model to apply machine learning algorithms. Different characteristics can be
used to generate more discriminative representations of fake news, such as syntactic and semantic
relations between words, topics, and sentiment, in order to improve classification performance.

This work proposed the Multimodal Variational Autoencoder (MVAE) that has as modal-
ities the embeddings generated by the model DBERTML and density information. MVAE-
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FakeNews obtained better results than nine other text representation techniques and got better
F1-Scores in ten out of twelve scenarios. The proposed method also presented a statistically
significant difference concerning other techniques. When we use the MVAE-FakeNews with the
One-Class Learning, its results with only 3% fake news labeled do not significantly differ from its
results with a higher number of labeled data. Also, the results obtained by MVAE-FakeNews with
3% of fake news labeled are comparable or higher than other methods when considering 10% of
fake news labeled and generated more discriminative representations. Thus, MVAE-FakeNews
proved to be promising to represent news using One-Class Learning to detect fake news.

As future work, we will explore more modalities for MVAE-FakeNews, mainly in features
that consider features of location, time, as well as names of people and organizations extracted
from the news. We also intend to use semi-supervised OCL algorithms (Positive and Unlabeled
Learning (BEKKER; DAVIS, 2020)) with representations generated by the MVAE-FakeNews.
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CHAPTER

4
DETECTING RELEVANT APP REVIEWS FOR

SOFTWARE EVOLUTION AND
MAINTENANCE THROUGH MULTIMODAL

ONE-CLASS LEARNING

4.1 Introduction

The popularization of smartphones and social media has transformed the relationship
between developers of mobile applications (apps) and users (Maalej et al., 2016). As a result,
popular apps receive hundreds of thousands or even millions of reviews written in natural
language (Maalej et al., 2016). These reviews present user feedback on various aspects, such
as functionality, usability, performance, bug report, and provide app developers a new and
valuable channel to extract knowledge for software evolution and maintenance (CHEN et al.,
2014; GUZMAN; EL-HALIBY; BRUEGGE, 2015). However, manual analysis of this large
volume of information becomes an impractical task (STANIK; HAERING; MAALEJ, 2019). In
this context, several studies have proposed machine learning-based methods for automatically
detecting relevant app reviews to support the monitoring of users’ opinions about the app
(ARAUJO et al., 2020; CHEN et al., 2014; STANIK; HAERING; MAALEJ, 2019).

Panichella et al. (PANICHELLA et al., 2015) introduced a pioneering study on review
classification to help developers in accomplishing software maintenance and evolution. The
study showed that natural language processing and machine learning are useful to detect reviews
describing problem discovery and feature requests, distinguishing them from other irrelevant
reviews. Further studies showed the impact of relevant reviews on the software development
lifecycle, such as release planning (VILLARROEL et al., 2016), recommending software changes
(SORBO et al., 2016), improving automated testing tools (GRANO et al., 2018), identifying
security issues (TAO; GUO; HUANG, 2020), and requirements engineering tasks (ARAÚJO;
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MARCACINI, 2021; PANICHELLA; RUIZ, 2020). Although promising results have been
reported, most previous studies require many labeled reviews to train a classifier. In practical
terms, it requires a great human effort and a costly process for labeling reviews. This fact can
even make review-based software evolution unfeasible for scenarios with a high rate of software
changes since labeled reviews would quickly become outdated. Thus, we raise the question: how
do domain experts detect relevant reviews to support software evolution and maintenance with
less labeling effort?

This paper presents an approach for detecting relevant reviews through multimodal
one-class learning (OCL). In OCL, we only need to label reviews of the interest class (e.g.,
relevant app reviews) for classifier training. Moreover, OCL can be promising in relation to
traditional multi-class learning considering unbalanced datasets, such as the app reviews scenario
(FERNÁNDEZ et al., 2018). We also present methods to improve feature extraction and reviews
representation to handle the smaller amount of labeled reviews during model training without
harming classification performance. In special, we propose multimodal representations which
explore both textual data and visual information based on the density of the reviews dataset.
Density information can be interpreted as a summary of the main topics extracted from the
reviews.

In short, our multimodal one-class methods train a review classifier from two modalities:
(i) textual embeddings generated by the Bidirectional Encoder from Transformers (BERT), which
outperforms other text representation methods in different natural language processing tasks
(ARAUJO et al., 2020; DEVLIN et al., 2019); and (ii) high-density regions of the app reviews
representing different topics or subtopics, such as bugs, feature, user experience, security, and
performance. We propose a deep neural network based on a multimodal autoencoder to merge
the two modalities into a single latent representation, called embedding space. Finally, we use the
Support Vector Data Description (SVDD) classifier to train a model to detect relevant reviews
from the learned embedding space.

We carried out an experimental evaluation with tree app reviews collections to compare
our multimodal OCL methods to the other eight text representation methods used in the literature.
Our proposal performed best in most classification scenarios for detecting relevant app reviews.
Moreover, one of our multimodal methods statistically outperforms other methods in different
scenarios. We observed that our method achieved competitive results even using only 3% and 5%
of labeled reviews compared to models that used the entire training set (90% of labeled reviews).
Thus, our multimodal methods proved to be a competitive alternative to the state-of-the-art and
promising to practical scenarios, requiring less effort from domain experts.

The methods and results presented in this chapter are part of a preliminary study called
"From Bag-of-Words to Pre-trained Neural Language Models: Improving Automatic Classifi-

cation of App Reviews for Requirements Engineering" (ARAUJO et al., 2020), with a focus
on evaluating textual representation for app reviews. In addition, this preliminary study was



4.2. Related Work 67

extended to incorporate the multimodal representation learning task in the One-Class Learning
scenario (GÔLO et al., 2022).

The remainder of this chapter is organized as follows. First, we present the related work
in Section 4.2, the concepts and details of the proposed method and OCL in Section 4.3, and the
experimental settings, results, and discussions in Section 4.4. Finally, we present the conclusions
and future work directions in Section 4.6.

4.2 Related Work

App developers need to understand user feedback to make strategic decisions about
software evolution (Maalej et al., 2016). App reviews contain useful information to improve,
evolve or maintain software (PANICHELLA; RUIZ, 2020). The volume and unstructured nature
of textual reviews, combined with the high volume of irrelevant reviews, makes identifying
relevant reviews essential in this process (GUZMAN; EL-HALIBY; BRUEGGE, 2015).

Tao, Guo and Huang (2020), Kifetew et al. (2021), Zhang, Wang and Xie (2019) use
rule-based learning approaches, in which a set of app reviews are previously analyzed in search
of linguistic patterns (Dependency Tree (D. Tree)), common to the passages they describe
the information of interest, such as a software requirement. However, the literature points out
limitations for the rule-based approaches (AGGARWAL, 2018a):

∙ Efficiency: a textual expression can be represented by a large number of corresponding
rules or by rules with high complexity;

∙ Accuracy: a large volume of rules can generate a lot of conflicts, or a small number of
rules may not be representative enough to extract the desired information;

∙ Generalization: rules extracted by analyzing data from a specific domain generally do
not meet the context of other domains;

∙ Dependency: requires the use of external dictionaries to extract context information. For
example, they identify whether a token belongs to a specific type, such as titles, places,
organizations, etc.

In addition to the rule-based strategy, the supervised multi-class classification strategy is
widely used in the literature to identify relevant reviews (ARAUJO et al., 2020). Al Kilani, Tailakh
and Hanani (2019), Messaoud et al. (2019) use the multi-class strategy without the irrelevant
review category. This reduces annotation volume but significantly increases the classifier’s
chances of incorrectly assigning one of the classes to an irrelevant review. For instance, if an
irrelevant app review comes up to be classified, it will be assigned to one of the learned classes,
which can prejudice the automatic app review classification. Al Kilani, Tailakh and Hanani
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(2019), Araujo et al. (2020), Maalej et al. (2016), Messaoud et al. (2019), Stanik, Haering and
Maalej (2019), Wang et al. (2018), Rungta et al. (2020), Panichella et al. (2016) use multi-class
learning to detect relevant app reviews by labeling irrelevant reviews. However, multi-class
learning has different gaps, such as the great user effort to label all the classes, including the
irrelevant app reviews. Furthermore, the scope of irrelevant reviews is too broad (CHEN et al.,
2014), culminating in the challenge to label irrelevant reviews. Binary classification methods,
such as Guzman, El-Haliby and Bruegge (2015), Maalej et al. (2016), Wu et al. (2021), Tao,
Guo and Huang (2020), decrease the labeling effort, but users should still label irrelevant app
reviews. Furthermore, such a strategy often leads to unbalanced datasets, harming the classifier’s
performance (FERNÁNDEZ et al., 2018).

In addition to the classification model for reviews, existing methods also investigate
different approaches to obtain a structured representation. Al Kilani, Tailakh and Hanani (2019),
Araujo et al. (2020), Guzman, El-Haliby and Bruegge (2015), Messaoud et al. (2019), Maalej et

al. (2016), Wang et al. (2018), Zhang, Wang and Xie (2019), Kifetew et al. (2021), Tao, Guo and
Huang (2020), Wu et al. (2021) use unimodal methods to structure the app reviews. Al Kilani,
Tailakh and Hanani (2019), Guzman, El-Haliby and Bruegge (2015), Messaoud et al. (2019),
Maalej et al. (2016), Panichella et al. (2016) use the Bag-of-Words (BoW), which generates
sparse representations with high dimensionality, and without any semantic information. Stanik,
Haering and Maalej (2019), Rungta et al. (2020), Wang et al. (2018) use context-free language
models (CFLM), which does not have the limitations of BoW. However, CFLM represents
the words regardless of their context. Finally, Araujo et al. (2020), Wu et al. (2021) use the
context-dependent language model (CDLM) that outperforms CFLM or BoW in different natural
language tasks.

We did not find studies in the literature that explore multimodality and OCL to detect
relevant reviews. However, we found studies that explore multimodality and multi-class learning.
Stanik, Haering and Maalej (2019), Panichella et al. (2016) explore multimodality concatenating
textual modalities such as the BoW representation, the text sentiment, keywords, etc. On the other
hand, Rungta et al. (2020) proposed a multimodal approach that learns a representation from
information available in application packages (APKs) to categorize apps. The main characteristics
of this approach are:

∙ use of multi-class learning;

∙ learn a representation using a neural network;

∙ use the concatenation operator in the modality fusion;

∙ the use of CFLM and BoW to represent textual modalities.

Table 5 shows a comparison between our proposal and related work considering the learn-
ing type, multimodality, the use of irrelevant reviews, and the text representation type. Previous
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studies use multi-class or binary classification and generally explore unimodal representations.
However, some studies explore multimodality. Our proposal differs from these studies in:

∙ we use one-class learning to reduce the effort in labeling app reviews;

∙ we use a Context-Dependent Language Model (CDLM) for text embeddings;

∙ we propose a visual topic-based modality extracted from relevant app reviews.

Table 5 – Comparison between our proposal and related works considering the learning type, the use of
multimodality, the use of irrelevant reviews, and the text representation.

Learning type Multi
modal

Irrelevant
Reviews

Text Representation
Multi Binary One D. Tree BoW CFLM CDLM

(Al Kilani; Tailakh; Hanani, 2019) X X

(ARAUJO et al., 2020) X X X X

(GUZMAN; EL-HALIBY; BRUEGGE, 2015) X X X

(Maalej et al., 2016) X X X X

(MESSAOUD et al., 2019) X X

(RUNGTA et al., 2020) X X X X X

(STANIK; HAERING; MAALEJ, 2019) X X X X X

(WANG et al., 2018) X X X X

(PANICHELLA et al., 2016) X X X X

(WU et al., 2021) X X X

(TAO; GUO; HUANG, 2020) X X X

(KIFETEW et al., 2021) X X

(ZHANG; WANG; XIE, 2019) X X

Our X X X X

4.3 Multimodal Representations to Detect Relevant App
Reviews

Textual data, such as relevant app reviews, are naturally multimodal and can be rep-
resented in different ways. Multimodal representation learning aims to learn a new unified
representation based on multiple representations, which can be complementary or supplementary
(GUO; WANG; WANG, 2019; LI; YANG; ZHANG, 2018).

Our proposal consists of a pipeline with six steps to detect relevant app reviews through
one-class learning via multimodal representations. Figure 12 shows the pipeline:

∙ First Step: consists of creating a dataset with only relevant reviews;

∙ Second Step: we represent the relevant app reviews texts through a CDLM. We choose a
CDLM because they allow the capture of syntactic and semantic characteristics, unlike
other traditional text representation models (DEVLIN et al., 2019; OTTER; MEDINA;
KALITA, 2020). We present this step background on Section 4.3.1;
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∙ Third Step: we create a second modality based on density information called Relevant
App Reviews Topic Representation (RARTR). In this modality, high-density regions
represent well-defined topics such as bugs, features, user experience, security, and perfor-
mance (Al Kilani; Tailakh; Hanani, 2019; ARAUJO et al., 2020; GUZMAN; EL-HALIBY;
BRUEGGE, 2015; Maalej et al., 2016; STANIK; HAERING; MAALEJ, 2019). Further-
more, while previous studies frequently use modalities such as BERT and BERT variants
embeddings (ARAUJO et al., 2020), word embeddings (STANIK; HAERING; MAALEJ,
2019), bag-of-words (Al Kilani; Tailakh; Hanani, 2019), or information available in appli-
cation packages (APKs) (RUNGTA et al., 2020), the use of topic information as a modality
for app reviews is still unexplored. We present this step background on Section 4.3.2;

∙ Fourth Step: an autoencoder learns a multimodal representation through the two modali-
ties (Steps 2 and 3). Thus, the text embeddings are language information. The RARTR is
visual information with the spatial distribution of the relevant app reviews. We present this
step background on Section 4.3.3;

∙ Fifth Step: we use the OCL to learn a decision function to identify relevant app reviews
(interest class). We present this step background on Section 4.3.4;

∙ Sixth Step: the classifier obtained in the previous step is used in new app review datasets
to identify relevant information for developers (filtering irrelevant reviews). We present
this step background on Section 4.3.4;

Figure 12 – Pipeline with six steps representing our proposal to represent app reviews and detect relevant
app reviews.
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4.3.1 Text Embedding Representation

To represent the texts from app reviews, we use the text embeddings generated by the
multilingual version of the Bidirectional Encoder from Transformers (BERT) model (DEVLIN
et al., 2019). The BERT model was trained in a very large textual corpus that represents
sentences based on their context. In the training step, the BERT executes two tasks, mask
language model and next sentence prediction. Given the word sequence of a textual document
di = {wi,1,wi,2, · · · ,wi,v}, the BERT model generates a corrupted version of di, d̂i, in which
words are selected randomly (e.g., 15%) and replaced by a [MASK] symbol. Also, let the d̄i be
the masked tokens of di. Then, the BERT’s training consists of reconstructing the masked words
d̄i from d̂i (YANG et al., 2019):

max
Θ

log pΘ(d̄i|d̂i)≈ ∑
wi∈di

cwt log
exp(Hθ (d̂i)

T
wt

eee(wt))

exp(∑
w′

Hθ (d̂i)
T
wt

eee(w′))
, (4.1)

in which cwt = 1 indicates that wt is masked, eee(wt) indicates the embedding of the word wt , w′ is
di without wt , Hθ (di) = {hθ (di)1,hθ (di)2, . . . ,hθ (di)v} is a sequence of hidden vectors mapped
by a Transformer.

The second task is to predict if a sentence is the next of another sentence based on the
representation generated by BERT. This second task helps BERT to learn relationships between
sentences that may not be learned with the first task alone. We use a Multilingual Distilled
version of BERT (DBERTML) pre-trained model to represent texts. Given a new document
di, the DBERTML uses a number of words to create an embedding λλλ i with 512 real values
representing document di. Given the number of words that the model will consider, e.g., 128, if
the document has more than 128 words, DBERTML uses only the 128 first words, 128 words
from the middle, or the final 128 words. Therefore, we use the 128 first words from the reviews.

4.3.2 RARTR: Relevant App Reviews Topic Representation

As a second modality, we present a representation based on topic information, which as-
sumes that different high-density regions group the documents of the interest class (KRAWCZYK;
WOŹNIAK; CYGANEK, 2014; SHARMA; SOMAYAJI; JAPKOWICZ, 2018). Figure 13 shows
an example of different cluster settings comparing the behavior of a relevant app review belong-
ing to one of the relevant topics (one of the high-density regions) and an irrelevant review. The
relevant review is always closer to a topic (cluster centroid) than the irrelevant review, i.e., it
is better allocated regardless of the cluster setting. One way to obtain the topic information of
relevant app reviews documents is to apply a clustering algorithm and use a statistical technique
to calculate the merit of the obtained cluster structure.

Consider a clustering with k clusters, i.e., D = C1 ∪C2,∪·· · ∪Ck, in which D =

{ddd1,ddd2, . . . ,dddm} is the collection of app reviews documents, C j is a cluster of documents,
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Figure 13 – Different cluster settings comparing the behavior of a relevant app review belonging to one of
the relevant reviews topics.
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and 2 ≤ k < m. Then, we apply the silhouette coefficient (ROUSSEEUW, 1987) in order to
measure if a document belongs to a single topic or contains mixed topics. The silhouette for a
document dddi assigned to a cluster C j is defined in Equation:

s(dddi,k) =
β (dddi)−α(dddi)

max(α(dddi),β (dddi))
, (4.2)

in which α(dddi) is the average distance of dddi to all documents of cluster C j, and β (dddi) defines the
average distance of a document dddi to all documents of the closest cluster Co, o ̸= j. α(dddi) and
β (dddi) are given by Equations 4.3 and 4.4 respectively.

α(dddi) =
1

|C j|−1 ∑
dddl∈C j,dddi ̸=dddl

dist(dddi,dddl) (4.3)

β (dddi) = min
o̸= j

1
Co

∑
dddn∈Co

dist(dddi,dddn) (4.4)

The silhouette values range from -1 to +1. A high value indicates that a review is well
allocated to its cluster and is far from the neighboring clusters, i.e., a review tends to belong
to a single topic. We generate the representation of relevant app reviews topic information by
concatenating silhouette coefficient values considering each document in different clustering
settings. For instance, given u different clustering settings (i.e., the clustering settings have
different values of k), we generate the RARTR modality by:

δδδ i = {s(dddi,k1),s(dddi,k2), . . . ,s(dddi,ku)} (4.5)

in which s(dddi,k j) is the silhouette of dddi in cluster setting with k j clusters.

4.3.3 Multimodal Representation Learning

Our method uses Autoencoders (AE) to learn a joint representation for the two proposed
modalities. An AE has two steps: encoding and decoding (AGGARWAL, 2018b). The first half
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of the layers corresponds to the encoding, in which the input dddi is compressed to a latent space
zzzdddi . The last half of the layers corresponds to the decoding step, which attempts to reconstruct
the input encoded in zzzdddi in the output rrrdddi . zzzdddi and rrrdi are computed according to Equation 4.6.
We present an illustration of an AE in Figure 14.

Figure 14 – Illustration of an Autoencoder.
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{
zdddi = f (Φ ;di)

rdddi = g(Θ ;zdddi)
(4.6)

in which Φ is respectively the weights and biases of neurons in the encoding neural network,
Θ is the weights and biases of neurons in the decoding neural network. The AE learns these
parameters to minimize the reconstruction error of the neural network, e.g., the mean squared
error (Equation 4.7).

J(Φ ;Θ) =
1
|D | ∑

dddi∈D

‖dddi − rrrdddi‖
2 (4.7)

There are variations of the AE, which aim to force the learned representations to assume
useful properties for the application scenario (AGGARWAL, 2018b). One variant is the Varia-
tional Autoencoder (VAE). A VAE imposes a specific probabilistic structure on the hidden units.
One of the simplest constraints is that the activation in the hidden units should be drawn from
the standard Gaussian distribution (i.e., zero mean and unit variance) (AGGARWAL, 2018b).

Another characteristic is that we can feed the decoder with samples from the standard
normal distribution in order to generate samples of the training data, i.e., the VAE performs
sampling in the encoding step to generate new data (XU; DURRETT, 2018).

Formally, the VAE assumes a variable zzzdddi that generates the data dddi, by using the
probability function:

p(zzzdddi|dddi) =
p(dddi|zzzdddi)p(zzzdddi)

p(dddi)
, (4.8)
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in which

p(dddi) =
∫

p(dddi|zzzdddi)p(zzzdddi)dzzzdddi. (4.9)

VAE approximates p(zzzdddi|dddi) to another treatable distribution q(zzzdddi|dddi) using the Kullback-
Leibler (KL) divergence that is responsible for measuring the divergence between distributions.
To optimize the marginal likelihood (p(dddi)), you can use the log of the marginal likelihood (XU;
DURRETT, 2018):

log pΘ (di) = KL(qΦ(zdddi|di)||pΘ (zdddi|di))+L (Θ ,Φ ;di), (4.10)

in which

L (Θ ,Φ ,di) = EqΦ (zdddi |di) log pΘ (di|zdddi)−KL(qΦ(zdddi|di)||pΘ (zdddi)). (4.11)

When a neural network implements a VAE, it learns the encoder’s Φ parameters and
the decoder’s Θ parameters through the weights of the neurons of the neural network layers.
The first term of Equation 4.11 is related to the neural network reconstruction error. In the
second term, we want to minimize the difference between the learned distribution qΦ(zdddi|di) and
pΘ (zdddi) (prior knowledge). It is worth mentioning that literature studies replace the term pΘ (zdddi)

by N (zdddi;0,1), that is, by a multivariate Gaussian distribution with average 0 and standard
deviation 1. Thus, we want to maximize Equation 4.11. We present an illustration of a VAE in
Figure 15.

Figure 15 – Illustration of a Variational Autoencoder.
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We propose a Multimodal Autoencoder (MAE) and a Multimodal Variatinal autoencoder
(MVAE). MAE and MVAE extend AE and VAE to multiple modalities, respectively. Therefore,
the proposals have two inputs, two outputs, and the fusion of the modalities in its encoder steps.
We use early fusion to combine the modalities through two dense layers with the same number of
neurons. Thus, we can use different early fusion operators, such as average, addition, or subtract,
to combine the modalities.
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AE and VAE calculate the error of reconstructing only one of the modalities. MAE and
MVAE will calculate the error of reconstructing from both λλλ i (embedding from DistilBERT)
and δδδ i (RARTR). Thus, we define MAE as:

MAE =

{
zi = f (Φ ;λλλ i,δδδ i)

λλλ
′
i,δδδ

′
i = g(Θ ;zi)

(4.12)

MAE learns Φ and Θ to minimize the mean squared error between λλλ i and λλλ
′
i, and δδδ i and δδδ

′
i.

We present an illustration of our MAE in Figure 16.

Figure 16 – Illustration of our MAE to represent the app reviews.
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Our MVAE aims to maximize Equation 4.13. The first term calculates two reconstruction
errors (embedding and RARTR). The second term wants to approximate the learned distribution
qΦ(zi|λλλ i,δδδ i) from pΘ (zi). We present an illustration of our MVAE in Figure 17.

L (Θ ,Φ ,λλλ i,δδδ i) = EqΦ (zi|λλλ i,δδδ i) log pΘ (λλλ i,δδδ i|zi)−KL(qΦ(zi|λλλ i,δδδ i)||pΘ (zi)), (4.13)

4.3.4 Relevant App Reviews Detection through One-Class Learning

Given a set of app review documents, we formally define the OCL as a function f : D →
Y that maps an app review dddi ∈ D to a yi ∈ Y value, indicating how close the review ddd belongs
to the interest class, i.e., to be a relevant app review. The detection of relevant app reviews using
OCL aims to learn a function f * from a training set containing only relevant app reviews close to
the unknown mapping function f . After learning the function f *, the classifier is able to generate
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Figure 17 – Illustration of our MVAE to represent the app reviews.
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a yi value to a new review dddi and compares it to a threshold in order to define whether the app
review is relevant or irrelevant (Equation 4.14).

Class of dddi =

{
yi ≤ threshold → Relevant
yi > threshold → Irrelevant

(4.14)

Among the OCL algorithms (GÔLO; MARCACINI; ROSSI, 2019), we chose the Support
Vector Data Description (SVDD) (TAX; DUIN, 2004) since it is successful when the examples
are represented appropriately (ALAM et al., 2020). The SVDD objective function aims to obtain
the hypersphere of minimum volume that involves the data of the relevant app reviews. Formally,
Equation 4.15 defines the center of the hypersphere (TAX; DUIN, 2004),

µ(c) = argmin
µµµ∈U

max
1≤i≤m

‖ϕ(dddi)−µµµ‖2, (4.15)

in which m is the number of relevant app reviews, µµµ ∈ U , is a possible center in the feature
space U associated with the function kernel ϕ , ϕ(dddi) maps dddi into another feature space defined
according to the kernel chosen, and µµµ(c) is the center of the hypersphere in which the highest
distance between ϕ(dddi) to µµµ(c) is minimal.

We will consider an app review as relevant if its distance from the center is less than the
radius r of the hypersphere, i.e., yi = dist(ϕ(dddi),µ(c)) and threshold = r. In general, we hope
that the hypersphere is not too large so that the false positive rate does not increase. Therefore,
we add a regularizer ν to accept a certain level of violation of the hypersphere decision function.
Thus, we desire to minimize the square of the hypersphere radius and the number of violations.
The formalization of the minimization function is given by Equations 4.16 and 4.17, in which εdi

is the external distance between ϕ(di) and the surface of the hypersphere, and ν ∈ (0,1] defines
the smoothness level of the hypersphere volume.
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min
µ,ϕ,r

r2 +
1
m

m

∑
i=1

εdddi

ν
, (4.16) ‖ϕ(dddi)−µ(c)‖2 ≤ r2 + εdddi

∀i = 1, ...,m.
(4.17)

4.4 Experimental Evaluation

In the experimental evaluation, we propose to compare two proposed multimodal rep-
resentation methods with eight other representation methods from the literature. We want to
demonstrate that the representations generated by our two multimodal methods outperform
others usually used in the literature for relevant app review classification. The following sections
present the app reviews collections that we use in the experimental evaluation, experimental
settings, results, and discussion. All source codes are available for reproducibility purposes1.

4.4.1 App Review Collections

We used the datasets created by Stanik, Haering and Maalej (2019) in the experimental
evaluation. These datasets contain software product reviews collected from Twitter and the
App Store. According to the authors, the annotation process followed a previously elaborated
and validated guide. At least two people took the data labeling (three in case of disagreement).
Table 6 summarizes the labeled data. The Relevant review class represents the combination of
the ”Problem report” and ”Inquiry” classes from the original datasets (STANIK; HAERING;
MAALEJ, 2019). There are 6,406 app reviews and 26,166 tweets. Of these, 16,770 with texts in
English and 15,802 in Italian. The reviews are into two classes, “Relevant review” with 12,883
and “Irrelevant review” with 19,689.

Table 6 – Number of relevant and irrelevant reviews of the datasets used in the experimental evaluation.

App Reviews Tweets
English (ARE) English (TEN) Italian (TIT)

Relevant review 2,537 4,338 6.008
Irrelevant review 3,869 6,026 9,794

Total 6,406 10,364 15,802

4.4.2 Experimental Settings

We used ten representation methods for the relevant app reviews, of which seven are
unimodal, and three are multimodal. Three unimodal representations came from the traditional
bag-of-words (BoW) technique (AGGARWAL, 2018a). We generated BoW representations

1 <https://github.com/GoloMarcos/MVAE-RelevantReviews.git>.

https://github.com/GoloMarcos/MVAE-RelevantReviews.git
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considering three different term weight schemes (AGGARWAL, 2018a): binary that indicates
only whether or not the term occurs in the document; Term Frequency (tf) that defines the
frequency of occurrence of a term in a document; and Term Frequency - Inverse Document
Frequency (tf-idf) that weighs tf by the inverse of the number of documents in the collection
in which the term occurs, according to the following equation: t f − id f = t fd,t · log

(
|D|
d ft

)
, in

which t fd,t is the frequency of the term t in the document d, |D| is to the number of documents,
and d ft is the number of documents with the term t.

We also used the representation proposed in (STANIK; HAERING; MAALEJ, 2019)
(the same study where we collected the datasets). We refer to this representation by Maalej.
Maalej representation concatenates the modalities: the review sentiment, a keyword vector, a
Part-of-speech (POS) tags vector, a verb tense vector, a tfidf vector, and a vector generated
by the FastText Model. Also, in order to show the gains provided by the two approaches of
multimodal representation learning proposed in this paper, MAE and MVAE, we considered
unimodal representations generated by DBERTML model (4.3.1), the relevant app reviews topic
representation (RARTR) (4.3.2), an AE with only dense layers, and a VAE. Both AE and VAE
use as input the embedding generated through DBERTML. The parameters of the representation
techniques and SVDD were:

∙ BoW: stopwords removal and stemming;

∙ DBERTML and Maalej: parameter-free;

∙ MVAE, MAE and RARTR: we used the k-Means with the sets of k = {3,6,7,8},
{{2,3,4,5,6,7,8,9,10} and {2,3,8,9}};

∙ MVAE, MAE, VAE and AE: learning rate = 0,001, optimization algorithm = {Adam},
linear activation function, dimensions of the dense layers = {(512,384,128,384,512),
(512,256,512) and (512,256,128,256,512)}, maximum number of epochs = {5,10,50}
and batch_size = 32;

∙ MVAE and MAE: fusion operators = {addition, subtraction, concatenation, average and
multiplication};

∙ SVDD: kernels = {RBF,Linear,Sigmoid,Polynomial}, degree ={2,3,4}, ν = {0.001,
0.01 and 0.05*ν ,ν ∈ [1..18]}, e γ = 1

(n·a) , in which n is the dimension of the input data
and a is the variance of the representations.

We use two adaptations of the procedure 10-Fold Cross-Validation (TAN; STEINBACH;
KUMAR, 2013) considering the OCL classification scenario. The adaptations consist of applying
the procedure only to the interest class (relevant app reviews). We divided the relevant app
reviews set into 10 folds. Also, in order to simulate a more realistic scenario of relevant app
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reviews labeling, we considered different percentages of documents from the training folds. Thus,
the adaptations consist in:

∙ More Labeling: We use 9 folds to train and the remaining 1 fold to test. Also, we use the
following percentage of training documents: 25%, 50%, 75%, and 100%, equivalent to
22.5%, 45%, 67.5%, and 90% of all relevant review documents in the collection;

∙ Less Labeling: We use 1 fold to train and 9 folds to test iteratively. Also, we use the
following percentage of training documents: 30%, 50%, 70%, and 100%, equivalent to
3%, 5%, 7%, and 10% of all relevant review documents in the collection.

We use the F1-Score and Area Under Curve Receiver Operating Characteristic (AUC-
ROC) as evaluation measures. F1-Score (Equation 4.22) is a harmonic average between precision
(Equation 4.18) and recall (Equation 4.19). AUC-ROC computes the area under curve ROC. A
ROC curve presents the relation between the TPR (equivalent to Recall) and false positive rate
(FPR) (Equation 4.20) at different threshold settings. To generate the ROC curve, we use the real
classes from the app reviews and the score generated by SVDD for each app review (FAWCETT,
2006). After obtaining the ROC curve, we calculate the AUC-ROC from Equation 4.21.

Precision =
T P

T P+FP
, (4.18) Recall =

T P
T P+FN

, (4.19) FPR =
FP

FP+T N
, (4.20)

AUC-ROC =
∫ −∞

∞

T PR(t)FPR′(t)dt (4.21) F1 =
2 ·Precision ·Recall
Precision+Recall

, (4.22)

in which True Positives (TP) is the number of relevant app reviews that the algorithm has correctly
classified; True Negatives (TN) is the number of irrelevant app reviews that the algorithm has
correctly classified; False Positives (FP) is the number of irrelevant app reviews that have been
classified as relevant; False Negatives (FN) is the number of relevant app reviews classified as
irrelevant; and t is a classification threshold.

4.4.3 Results and Discussion

In Tables 7, 8, 9, 10, 11, and 12 we present the highest values of F1-Score and AUC-ROC
obtained by ten app review representation techniques considering each percentage of training
documents on three app review collections. We obtain the results through the SVDD algorithm.
Bold values indicate that the method obtained the highest value in a percentage of training
documents (column).

In relation to the ARE dataset (Tables 7 and 8), MVAE obtained better results since it
obtained the highest F1 and AUC-ROC scores than the other methods. Considering MAE, the
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MVAE was better in the scenario with less labeling. Moreover, MVAE with only 76(3%) relevant
reviews obtained the highest F1 and AUC-ROC scores than Maalej and all unimodal methods
with 2,283(90%) relevant reviews. Also, with only 127(5%) relevant reviews, MVAE obtained
competitive results related to MAE with 1,142(45%) relevant reviews considering the F1-Score.
Furthermore, MVAE, with only 76(3%) relevant reviews, obtained the highest AUC-ROC in
relation to MAE with 2,283(90%) relevant reviews.

Table 7 – Highest FFF111-Scores from SVDD for each representation technique on the ARE dataset. We
present the values considering eight different train relevant app review percentages. We also
present the number of documents equivalent to the percentage considered.

3%
#76

5%
#127

7%
#178

10%
#254

22.5%
#570

45%
#1,142

67.5%
#1,712

90%
#2,283

Tfidf 0.55±0.02 0.57±0.02 0.58±0.01 0.60±0.01 0.60±0.03 0.63±0.01 0.64±0.02 0.65±0.02
Tf 0.54±0.00 0.54±0.00 0.54±0.00 0.54±0.00 0.57±0.00 0.57±0.00 0.57±0.00 0.57±0.00
Binary 0.54±0.00 0.54±0.00 0.54±0.00 0.54±0.00 0.57±0.00 0.57±0.00 0.57±0.00 0.57±0.00
Maalej 0.66±0.02 0.67±0.01 0.67±0.01 0.67±0.01 0.63±0.01 0.64±0.01 0.64±0.01 0.64±0.00
DBERTML 0.67±0.02 0.68±0.02 0.68±0.01 0.67±0.01 0.68±0.01 0.68±0.01 0.68±0.00 0.68±0.00
RARTR 0.66±0.03 0.66±0.02 0.65±0.02 0.64±0.02 0.65±0.02 0.64±0.01 0.64±0.01 0.64±0.02
AE 0.64±0.02 0.64±0.01 0.64±0.02 0.65±0.02 0.66±0.01 0.65±0.01 0.65±0.01 0.65±0.01
VAE 0.68±0.01 0.69±0.02 0.69±0.01 0.67±0.01 0.67±0.01 0.66±0.02 0.66±0.02 0.66±0.01
MAE 0.70±0.01 0.71±0.01 0.72±0.02 0.72±0.01 0.73±0.02 0.75±0.02 0.77±0.01 0.78±0.01
MVAE 0.72±0.03 0.75±0.02 0.74±0.03 0.74±0.01 0.74±0.01 0.73±0.01 0.73±0.02 0.72±0.02

Table 8 – Highest AUC-ROC from SVDD for each representation technique on the ARE dataset. We
present the values considering eight different train relevant app review percentages. We also
present the number of documents equivalent to the percentage considered.

3%
#76

5%
#127

7%
#178

10%
#254

22.5%
#570

45%
#1,142

67.5%
#1,712

90%
#2,283

Tfidf 0.69±0.04 0.70±0.02 0.70±0.01 0.71±0.02 0.71±0.01 0.73±0.02 0.73±0.02 0.73±0.02
Tf 0.28±0.04 0.28±0.05 0.31±0.06 0.30±0.04 0.30±0.03 0.31±0.02 0.32±0.02 0.32±0.02
Binary 0.21±0.03 0.23±0.02 0.22±0.02 0.21±0.01 0.23±0.00 0.24±0.01 0.24±0.01 0.24±0.01
Maalej 0.79±0.01 0.80±0.00 0.80±0.00 0.80±0.00 0.76±0.01 0.77±0.01 0.77±0.01 0.77±0.01
DBERTML 0.80±0.01 0.80±0.02 0.80±0.02 0.80±0.01 0.78±0.01 0.78±0.01 0.78±0.01 0.78±0.01
RARTR 0.78±0.04 0.76±0.03 0.76±0.02 0.72±0.03 0.72±0.04 0.70±0.03 0.69±0.02 0.67±0.03
AE 0.77±0.02 0.77±0.02 0.77±0.01 0.77±0.01 0.76±0.02 0.76±0.01 0.75±0.02 0.74±0.02
VAE 0.82±0.01 0.83±0.01 0.82±0.01 0.81±0.01 0.77±0.02 0.76±0.01 0.77±0.02 0.75±0.02
MAE 0.87±0.01 0.87±0.02 0.87±0.01 0.86±0.01 0.84±0.02 0.85±0.01 0.87±0.01 0.87±0.00
MVAE 0.88±0.01 0.89±0.02 0.88±0.01 0.87±0.02 0.86±0.01 0.86±0.01 0.85±0.01 0.84±0.01

In relation to the TEN dataset (Tables 9 and 10),MAE obtained better results since
it obtained the highest F1 and AUC-ROC scores than the other methods considering more
labeling. With less labeling, Maalej obtained the highest AUC-ROCs, and RARTR obtained
better F1-Scores. Maalej, with 304(7%) relevant reviews, obtained the highest AUC-ROC. MAE,
with 976(22.5%) relevant reviews, obtained the highest F1-Score. On the other hand, RARTR,
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with 130(3%) relevant reviews, obtained a highest AUC-ROC than all other methods with
3,904(90%) relevant reviews.

Table 9 – Highest FFF111-Scores from SVDD for each representation technique on the TEN dataset. We
present the values considering eight different train relevant app review percentages. We also
present the number of documents equivalent to the percentage considered.

3%
#130

5%
#216

7%
#304

10%
#433

22.5%
#976

45%
#1,952

67.5%
#2,928

90%
#3,904

Tfidf 0.51±0.01 0.52±0.01 0.53±0.01 0.54±0.01 0.55±0.01 0.56±0.02 0.57±0.02 0.57±0.01
Tf 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00 0.59±0.00 0.59±0.00 0.59±0.00 0.59±0.00
Binary 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00 0.59±0.00 0.59±0.00 0.59±0.00 0.59±0.00
Maalej 0.60±0.01 0.60±0.00 0.61±0.00 0.61±0.00 0.62±0.01 0.62±0.01 0.62±0.01 0.62±0.01
DBERTML 0.57±0.01 0.56±0.01 0.57±0.00 0.57±0.00 0.59±0.00 0.59±0.00 0.59±0.00 0.59±0.00
RARTR 0.63±0.01 0.62±0.01 0.63±0.02 0.62±0.01 0.63±0.02 0.63±0.00 0.63±0.00 0.62±0.00
AE 0.57±0.01 0.57±0.00 0.57±0.01 0.57±0.01 0.59±0.00 0.59±0.00 0.59±0.00 0.59±0.00
VAE 0.57±0.01 0.57±0.01 0.57±0.01 0.57±0.00 0.59±0.00 0.60±0.01 0.59±0.00 0.59±0.00
MAE 0.62±0.01 0.62±0.01 0.62±0.02 0.62±0.00 0.64±0.01 0.64±0.01 0.64±0.01 0.64±0.01
MVAE 0.60±0.01 0.60±0.01 0.61±0.01 0.61±0.01 0.62±0.01 0.62±0.00 0.62±0.01 0.62±0.00

Table 10 – Highest AUC-ROC from SVDD for each representation technique on the TEN dataset. We
present the values considering eight different train relevant app review percentages. We also
present the number of documents equivalent to the percentage considered.

3%
#130

5%
#216

7%
#304

10%
#433

22.5%
#976

45%
#1,952

67.5%
#2,928

90%
#3,904

Tfidf 0.57±0.01 0.58±0.01 0.58±0.01 0.58±0.01 0.60±0.02 0.61±0.02 0.61±0.02 0.61±0.02
Tf 0.33±0.01 0.33±0.01 0.33±0.01 0.33±0.01 0.34±0.01 0.35±0.01 0.35±0.01 0.35±0.01
Binary 0.33±0.01 0.33±0.01 0.33±0.01 0.32±0.01 0.35±0.01 0.35±0.01 0.35±0.01 0.35±0.01
Maalej 0.68±0.01 0.68±0.00 0.69±0.00 0.69±0.00 0.65±0.01 0.66±0.01 0.66±0.01 0.66±0.01
DBERTML 0.61±0.01 0.60±0.01 0.61±0.01 0.61±0.00 0.60±0.01 0.60±0.01 0.60±0.01 0.60±0.01
RARTR 0.68±0.03 0.66±0.01 0.68±0.04 0.66±0.03 0.64±0.03 0.62±0.02 0.63±0.03 0.62±0.02
AE 0.63±0.01 0.62±0.01 0.62±0.01 0.62±0.01 0.58±0.02 0.58±0.00 0.58±0.00 0.57±0.00
VAE 0.62±0.02 0.62±0.01 0.63±0.01 0.62±0.01 0.61±0.02 0.61±0.02 0.61±0.01 0.61±0.01
MAE 0.67±0.02 0.66±0.01 0.68±0.02 0.66±0.02 0.66±0.03 0.65±0.01 0.67±0.02 0.67±0.02
MVAE 0.65±0.01 0.65±0.01 0.66±0.01 0.66±0.01 0.64±0.02 0.63±0.01 0.63±0.02 0.62±0.02

In relation to the TIT dataset (Tables 11 and 12), RARTR obtained better results consid-
ering less labeling. However, with more labeling, MAE obtained the highest AUC-ROCs and
F1-Scores in relation to all other methods and all other percentages of relevant reviews labeling.

Considering the results from Tables 7, 8, 9, 10, 11, and 12, our proposal obtained a
higher F1-Score and AUC-ROC in thirty-one of the forty-eight evaluated scenarios (64.6%).
RARTR obtained a higher F1-Score and AUC-ROC in thirteen of the forty-eight evaluated
scenarios (27.1%). Finally, Maalej obtained a higher F1-Score and AUC-ROC in four of the
forty-eight evaluated scenarios (8.3%). In general, BoW got the lowest F1-Score and AUC-ROC
in most scenarios. AE, VAE, and DBERTML outperform the BoW representations. However,
they do not obtain higher F1-Scores and AUC-ROC considering the RARTR, Maalej, or our
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Table 11 – Highest FFF111-Scores from SVDD for each representation technique on the TIT dataset. We
present the values considering eight different train relevant app review percentages. We also
present the number of documents equivalent to the percentage considered.

3%
#180

5%
#300

7%
#420

10%
#608

22.5%
#1,351

45%
#2,703

67.5%
#4,055

90%
#5,407

Tfidf 0.53±0.01 0.54±0.01 0.55±0.01 0.56±0.01 0.55±0.02 0.58±0.01 0.58±0.02 0.57±0.01
Tf 0.52±0.00 0.52±0.00 0.52±0.00 0.52±0.00 0.55±0.00 0.55±0.00 0.55±0.00 0.55±0.00
Binary 0.52±0.00 0.52±0.00 0.52±0.00 0.52±0.00 0.55±0.00 0.55±0.00 0.55±0.00 0.55±0.00
Maalej 0.58±0.01 0.58±0.01 0.58±0.01 0.58±0.01 0.60±0.00 0.60±0.00 0.60±0.00 0.60±0.00
DBERTML 0.54±0.01 0.54±0.01 0.54±0.01 0.54±0.00 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00
RARTR 0.61±0.03 0.64±0.02 0.63±0.02 0.64±0.02 0.65±0.02 0.66±0.02 0.67±0.02 0.67±0.02
AE 0.55±0.01 0.55±0.01 0.55±0.01 0.55±0.01 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00
VAE 0.55±0.01 0.56±0.01 0.55±0.01 0.55±0.02 0.57±0.01 0.57±0.01 0.57±0.00 0.56±0.01
MAE 0.59±0.02 0.61±0.03 0.61±0.01 0.62±0.01 0.65±0.01 0.67±0.02 0.68±0.02 0.68±0.01
MVAE 0.57±0.02 0.58±0.01 0.58±0.01 0.58±0.01 0.60±0.01 0.61±0.02 0.61±0.02 0.61±0.01

Table 12 – Highest AUC-ROC from SVDD for each representation technique on the TIT dataset. We
present the values considering eight different train relevant app review percentages. We also
present the number of documents equivalent to the percentage considered.

3%
#180

5%
#300

7%
#420

10%
#608

22.5%
#1,351

45%
#2,703

67.5%
#4,055

90%
#5,407

Tfidf 0.65±0.01 0.65±0.01 0.65±0.01 0.65±0.01 0.65±0.01 0.66±0.02 0.66±0.02 0.68±0.02
Tf 0.33±0.02 0.34±0.02 0.33±0.02 0.34±0.03 0.30±0.01 0.30±0.01 0.30±0.01 0.31±0.01
Binary 0.31±0.03 0.31±0.01 0.30±0.01 0.30±0.03 0.27±0.01 0.28±0.01 0.28±0.01 0.28±0.01
Maalej 0.70±0.00 0.70±0.00 0.70±0.00 0.70±0.00 0.70±0.01 0.70±0.01 0.70±0.01 0.70±0.01
DBERTML 0.63±0.02 0.63±0.02 0.63±0.02 0.63±0.01 0.64±0.01 0.64±0.01 0.64±0.01 0.64±0.01
RARTR 0.73±0.04 0.77±0.03 0.75±0.02 0.76±0.03 0.75±0.02 0.75±0.02 0.76±0.02 0.78±0.02
AE 0.64±0.02 0.64±0.01 0.64±0.01 0.64±0.03 0.63±0.02 0.62±0.01 0.62±0.02 0.62±0.01
VAE 0.66±0.02 0.66±0.02 0.64±0.02 0.66±0.02 0.66±0.03 0.66±0.02 0.65±0.02 0.66±0.01
MAE 0.68±0.03 0.72±0.03 0.71±0.02 0.73±0.02 0.76±0.03 0.78±0.03 0.79±0.02 0.80±0.02
MVAE 0.68±0.04 0.69±0.03 0.69±0.03 0.70±0.02 0.69±0.01 0.70±0.01 0.70±0.04 0.69±0.02

proposal. Therefore, our proposals obtained the best results. It is worth mentioning the other best
results were obtained by a unimodal modality proposed by this work (RARTR) and by another
multimodal method (Maalej). Thus, in general, the multimodality was better than unimodality
and the unimodal modality proposed was better than other unimodal techniques.

We performed Friedman’s statistical test with Nemenyi’s post-test (TRAWINSKI et al.,
2012) to compare the representation techniques in all training percentage scenarios for each
dataset and metric2. In Figure 18, we present the results of the Friedman test with Nemenyi’s
post-test through the critical difference diagram. The diagram presents the methods’ average
rankings, and the methods connected by a line do not present statistically significant differences
between them.

2 The test parameters were the default parameters of the KEEL tool (<https://sci2s.ugr.es/keel/index.
php>).

https://sci2s.ugr.es/keel/index.php
https://sci2s.ugr.es/keel/index.php
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Figure 18 – Critical difference diagrams with the average rankings of the Friedman test with Nemenyi’s
post-test considering F1-Score and AUC-ROC on all train scenarios and datasets.

In general, Bag-of-words models have the worst average rankings. MVAE, MAE,
RARTR, and Maalej have the best average rankings. VAE and AE have the best average rankings
than BoW models and worst average rankings than MVAE, MAE, RARTR, and Maalej. In the
ARE dataset considering F1-Score and AUC-ROC, MVAE has the best average ranking and
presents difference statically significant considering RARTR and BoW models.

In the TEN dataset considering the F1-Score, MAE has the best average ranking, has
difference statically significant considering DBERTML and BoW models. On the other hand,
considering the AUC-ROC, Maalej has the best average ranking with a statically significant
difference considering AE, DBERTML, and BoW models and do not have a statically significant
difference considering the other methods.

In the TIT dataset considering the F1-Score, MAE and RARTR have the best average
rankings, have difference statically significant considering DBERTML and BoW models, and do
not have difference statically significant considering the other methods. Considering the AUC-
ROC, RARTR has the best average ranking with difference statically significant considering AE,
DBERTML, BoW-TF and BoW-Binary.

The experimental results show that DBERTML and RARTR are promising modalities that
together in our proposal obtained the best average rankings. Furthermore, the best performance
of the multimodal methods in different languages, app review sources, metrics, and train reviews
percentages shows that learning a representation from more than one modality generates more
robust representations than unimodal representations.
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4.5 Threats to work validity

Threats to the internal validity of our study relate to experimenter bias. In the relevant
review detection, we use data labeled by third parties. However, the work used some annotation
protocols, which reduced the risk of labeling bias. Furthermore, we built our relevant class by
joining two relevant classes (bug and feature). We adopted this strategy so that the work was
as generic as possible, i.e., to be used in any scenario of relevant reviews, and not only with
a relevant review type, for instance, detection of bug reviews or detection of feature reviews
(LEDEL; HERBOLD, 2021).

Threats to external validity relate to the generalizability of our findings. We based our
conclusions on the experimental evaluation of a subset of app reviews in this work. On the other
hand, we use reviews of different types of apps from various domains such as google play, apple
store, and Twitter to mitigate this limitation.

Finally, threats to the construct validity of our study refer to the suitability of our
evaluation measures and experimental protocol. In one adaptation of the 10-fold cross-validation,
we chose to keep the test set equal to the test set of (STANIK; HAERING; MAALEJ, 2019)
in order to compare the results and show that it is possible to obtain satisfactory results with
even less labeling of reviews. On the other hand, we use one more adaptation of the 10-fold
cross-validation with less labeling and all the irrelevant reviews to mitigate this limitation. We
use only an OCL algorithm (SVDD) to detect relevant reviews. However, this work focuses on
representing app reviews to the relevant review detection scenario through OCL since OCL is
more suitable for this scenario. Furthermore, we present the results based on the F1 measure
and AUC-ROC. F1 is the harmonic average of two other metrics (precision and recall), and
AUC-ROC presents a relation between two other metrics (fpr and recall) in different thresholds.

4.6 Concluding Remarks

Relevant reviews can help developers with software evolution and maintenance. How-
ever, the detection of relevant reviews manually is impracticable since there are a lot of reviews.
Recently, there has been a significant increase in machine learning methods to detect relevant
reviews. Multi-Class learning is often explored in this context, even with well-known limitations,
such as the great effort to label the reviews. Another known limitation is in the review repre-
sentation models, where text-based unimodal representations are usually explored. However,
multimodal representations can represent app reviews to consider different aspects of relevant
reviews.

This paper proposes one-class learning to detect relevant reviews through multimodal
representations. We use as modalities the embedding from a context-depend language model and
a representation that captures density information from these embeddings. In most scenarios, our



4.6. Concluding Remarks 85

two multimodal methods obtained higher F1-Scores and AUC-ROC than four state-of-the-art
methods and four other text representation techniques, even with less labeled reviews. This favors
the scenario that most closely matches review-based software evolution and decreases the user’s
effort. Thus our methods proved to be promising to represent relevant review in the one-class
relevant review classification.

Directions for future work involve extending our method to a multi-domain scenario. In
this case, we plan to develop a pre-trained one-class model from cross-domain learning, which
explores reviews from multiple apps so that detection of relevant reviews can be generalized to
new apps without further training. Thus, review-based software evolution and maintenance tasks
can be a practical alternative to help developers in their own apps or analyze competing apps’
strengths and weaknesses.
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CHAPTER

5
TRIPLE-VAE: A TRIPLE VARIATIONAL

AUTOENCODER TO REPRESENT EVENTS
IN ONE-CLASS EVENT DETECTION

5.1 Introduction

Nowadays, social networks and news portals share and publish different events that affect
our daily lives (CHEN; LI, 2020). Social protests, pandemic effects, natural disasters, political
and economic actions are examples of events that occur in a specific time and place (DENG;
RANGWALA; NING, 2020). Event analysis is the field that investigates how to organize and
extract knowledge from large event databases (RADINSKY; HORVITZ, 2013; ZHAO, 2021).
Such knowledge is useful for exploratory analysis tasks, building decision-making indicators, and
improving machine learning models by providing new (extra) features on the world’s external
factors. A crucial step in event analysis is filtering which events are interesting for a given
application, as thousands of events are published daily. Event classification methods usually
carried out this step considering the textual information of an event, as well as its geographic
information and other metadata (SETTY; HOSE, 2018; ZHAO, 2021).

Recent event classification methods have some limitations (ZHOU et al., 2020; CHEN;
LI, 2020; ZHAO, 2021). The first limitation is to propose event classification considering a
multi-class scenario, a decision that makes the practical use of the model unfeasible. In this case,
the event dataset’s volume, diversity, and frequent update rate surpass the human capacity to
label and maintain a training set. Some studies model the event classification as a binary problem
(ZHOU et al., 2020), in which the positive class identifies events of interest and the negative
class defines non-relevant events. However, both classes require significant labeling of training
examples. In this sense, the one-class learning paradigm is a promising alternative as it requires
labeling only of events of interest (ALAM et al., 2020).
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A second limitation is the event representation model (ZHOU et al., 2020). Events are
composed of textual information, geographic location, names of people, organizations, and
other metadata. Traditional methods usually concatenate these different features into a single
representation that is used to train a model. More recent methods explore representation learning,
such as deep autoencoders, to extract a new latent space (embeddings) from the concatenated
representation of features (BLANDFORT et al., 2019). Although both strategies obtain compet-
itive results, few studies evaluate the performance of these representation strategies for event
analysis. We argue that different information from events represents different data modalities
misused through concatenation strategies. Thus, our focus is to explore event representation as a
multimodal representation learning task.

This paper presents an approach to learning multimodal representation for one-class
event classification. Our approach is called Triple-VAE and explores three main event modalities:
textual information, geographic location, and topic metadata. First, we propose a multimodal
variational autoencoder capable of learning a single representation from triple modalities. Unlike
concatenation-based methods, our approach merges modalities more naturally, automatically
learning the importance of modalities in the final representation. Second, we also argue that our
approach is more appropriate for one-class classification since it learns a representation space
that approximates events of interest in high-density regions — which significantly improves the
event classification step. In short, our proposed approach has the following contributions:

∙ We naturally incorporate latitude and longitude data into the embedding space, along with
textual and topic information. However, previous studies use geographic location only as
extra features in the concatenated representation.

∙ We leverage pre-trained neural language models to represent events. In particular, we use
the DistilBERT Multilingual model, which is trained in a large textual corpus and has some
general-purpose knowledge. In practice, this is a strategy to carry out transfer learning
from the pre-trained model for our multimodal representation learning.

∙ We explore event topic information as a visual modality, in which each topic represents
high-density information in a given dimensional space. In fact, density information fa-
cilitates visual exploration of the spatial distribution of events, thus providing useful
information about related events.

We carried out an experimental evaluation involving ten real-world event datasets. We
compared our proposed approach with the other seven multimodal and three unimodal strategies.
Our proposal outperforms existing methods considering F1-Score and accuracy in the most
explored scenarios, especially the more realistic scenario considering less labeling.

The proposed methods and experimental results presented in this chapter were published
in a paper titled "Triple-VAE: A Triple Variational Autoencoder to Represent Events in One-Class
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Event Detection" (GÔLO; ROSSI; MARCACINI, 2021), which was selected as the best paper in
XVIII National Meeting on Artificial and Computational Intelligence (ENIAC 2021).

5.2 Related Work

The proposal presented in Zeppelzauer and Schopfhauser (2016) uses texts and images
as modalities to perform event detection. Both modalities are unstructured and therefore need
preprocessing. The authors preprocessed the text using the Bag-of-Words (BoW) and the dimen-
sionality reduction technique Latent Dirichlet Allocation. The study uses the bag-of-visual-words
for representation in the image modality. After representing the text and image, the authors
explored both modalities through early and late fusions. Early fusion is made through the con-
catenation of the representations, while late fusion is made through additive and hierarchical late
fusion. The approach uses a binary classifier to ignore non-relevant events, and then multi-class
learning is applied to built classification models. The experimental evaluation shows that using
two modalities improves the event classification task. It is worth pointing out that early fusion
outperforms late fusion.

In Kang and Kang (2017), the authors use multi-class learning to predict crime events
defined by visual (neighborhood appearance), spatial and temporal information. First, the study
uses a Convolutional Neural Network (CNN) to represent the images, and the spatial and
temporal data are already structured. Then, a Deep Neural Network (DNN) is used to predict if
the event is a crime. In the DNN, the authors use the early fusion with the concatenation operator
and a softmax activation function in the output layer. Results show that the DNN outperforms
the Kernel Density Estimation and Support Vector Machines (SVM) algorithms with a simple
concatenation of modalities.

Blandfort et al. (2019) explores the detection of gang violence events through Twitter. The
authors use text and image modalities to represent the events. The study uses Linguistic features,
word embeddings, and a CNN to learn text representations. Furthermore, the authors use the
Faster R-CNN and global image features generated by the deep convolutional model Inception-
v3 to represent the images. The study uses the early fusion considering the concatenation
operator, and the late fusion is performed considering an ensemble of algorithms trained on each
modality. The authors use the multi-class SVM learning algorithm. Results show that multimodal
representations outperform unimodal ones. Early fusion presents high results than late fusion.

Zhou et al. (2020) is a survey of multimodal event detection. The authors compare
studies that make event detection through multi-class or binary learning, clustering, and other
tasks considering unimodal and multimodal representations. The study shows that multimodality
can be promising with representation learning through artificial neural networks. Furthermore,
the work concludes that concatenate the modalities can result in a representation with a high
dimension which can negatively affect event detection. The survey also points that future work
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should involve information enrichment, i.e., news modalities to enrich the representation learned
and the use of different state-of-the-art neural network architectures in representation learning.

We observed that existing multimodal studies for event detection (i) use multi-class
learning, which generates more user’s effort on labeling, and if a new class arises, the classifier
will make wrong predictions since it was not trained on that event class; (ii) use binary learning,
which generates less user’s effort on labeling, and the chance of the user not labeling events
of one of the classes is smaller in comparison with the multi-class learning. However, labeling
uninteresting events requires knowing a wide range of classes so that the user cannot label
enough examples; (iii) do not explore other early fusion operators such as addition, subtraction,
multiplication, and average; (iv) use the event image as a modality and, consequently, its models
only work on events with images (note that many events do not have associated images); and (v)
shows that early fusion outperforms late fusion.

Given all these facts and gaps mentioned in this section and the future work presented in
the survey Zhou et al. (2020), we propose an event detection approach considering one-class
learning (OCL) over a multimodal representation. OCL avoids multi-class and binary learning
limitations since the user labels only one class and classifies a new example as belonging to the
interest class or not. Also, we propose the generative model variational autoencoder (VAE) to
learn a representation from a set of three modalities: the event text, geolocation, and density
information. We considered a VAE because it is a powerful method to learn representations since
it is one of the state-of-the-art in representation learning. Furthermore, we propose to use early
fusion with different fusion operators. We present the details of the proposed approach in the
next section.

5.3 Proposal: One-Class Multimodal Event Detection

According to Zhou et al. (2020), an event is: “A story related to some news topic

comprising of patterns that occurred at some specific time and space". Based on this definition,
we define an event (eee) as its text representation (γγγ), its density information (λλλ ), its geolocation
(ιιι), and its date (τ). Therefore, we formally define an event eeei by the quadruple:

eeeiii = {γγγ i,λλλ i, ιιι i,τi} (5.1)

In this multimodal scenario, we propose a pipeline to detect events through OCL via
multimodal representation (Figure 19). The pipeline has six steps. The first step consists of
collecting events with description, geolocation, and date. In the second step, we represent the
event’s text through a neural language model. In the third step, we use a modality based on density
information generated from the text’s representation. In the fourth step, a variational autoencoder
learns a multimodal representation from the three modalities (γγγ,λλλ and ιιι), considering events that
occurred prior to date τ . We use events that occur after date τ to evaluate the event classification
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model. The fifth step consists in using OCL to learn a decision function. Finally, in the sixth step,
we make the detection of the events of interest.

1.2.  Event Text 2. Text Embeddings

BERT

3. Density Information1.1.  Event
Latitude | Longitude

6. Detection of Event of Interest

4. Multimodal Representation Learning

Encoder Decoder

5. One-Class Learning

Events of 
Interest

learned 
decision function

News 
Events Steps 2, 3 

and 4

Interest

Not Interest

OCSVM

Figure 19 – The Pipeline of multimodal representation Learning to detect events of interest through
one-class learning.

5.3.1 Event Geolocation

We obtain the event geolocation through the Latitude and Longitude coordinates. Latitude
and Longitude refer to a place’s position or geographic coordinates on Earth. Latitude ranges
from −90 to 90, in which −90 represents the south pole, 90 represents the north pole, and 0
represents the Earth’s equator. Longitude ranges from −180 to 180, in which values ∈ [−180,0)
represent places in the west, values ∈ (0,180] represent places in the east, and 0 represents the
Greenwich meridian. Therefore, modality ιιι is a vector with two dimensions in which the first is
the Latitude and the second is the Longitude.

5.3.2 Text Embeddings

One of the states-of-the-art to represent text is the context-dependent neural language
model Bidirectional Encoder from Transformers (BERT) (DEVLIN et al., 2019). It is noteworthy
that this model obtains better results in natural language processing tasks than other models, such
as based on word embeddings models or traditional models (e.g., BoW) (OTTER; MEDINA;
KALITA, 2020). Therefore, we use the Distilled version of BERT in its multilingual version
(DBERTML) (REIMERS; GUREVYCH, 2020) to represent the event’s text. First, we use the
sentence-transformers library1 to use the model DBERTML. Then, we make the preprocessing,
1 https://www.sbert.net/



92
Chapter 5. Triple-VAE: A Triple Variational Autoencoder to Represent Events in One-Class Event

Detection

providing the text to the pre-trained DBERTML model, and it returns an embedding γγγ i with 512
real values. Details of the model DBERTML and its training parameters to obtain the embeddings
are available in (REIMERS; GUREVYCH, 2020).

5.3.3 Density Information

We explore a modality based on density information. This modality is based on an OCL
assumption, which assumes that high-density regions contain examples of the interest class
(KRAWCZYK; WOŹNIAK; CYGANEK, 2014; SHARMA; SOMAYAJI; JAPKOWICZ, 2018).
To obtain the events density information, we apply a clustering algorithm and use a statistical
technique that calculates the consistency within data clusters.

We use the silhouette coefficient (ROUSSEEUW, 1987) to generate the density in-
formation (λλλ ). In this modality, the density representation λλλ i of an event eeei is given by the
concatenation of silhouette values computed considering a different number of clusters. Thus,
given u different clustering settings, λλλ i = {si,1,si,2, . . . ,si,u}, in which si, j is the silhouette of γγγ i

in j-th setting, and s(γγγ i,k) is given by:

s(γγγ i,k) =
β (γγγ i)−α(γγγ i)

max(α(γγγ i),β (γγγ i))
(5.2)

in which k is the number of clusters, 2 ≤ k < m and m is the number of events, α(γγγ i) is the
average distance of γγγ i to the centroid of its cluster, and β (γγγ i) defines the average distance of γγγ i

to all γγγ of the closest cluster.

The event scenario has high-density regions representing well-defined topics of the
events (BIDE; DHAGE, 2021). Furthermore, density information can be explored as a visual
modality to analyze the spatial distribution of events. However, we highlight that the use of
density information as a modality for events is still unexplored in literature.

5.3.4 Multimodal Representation Learning

After we have ιιι , γγγ and λλλ represented, we use a variational autoencoder with multimodal
representation learning to learn a joint representation. An autoencoder (AE) is a neural network
that learns data representations using two steps: encoding and decoding (AGGARWAL, 2018a).
First, the encoder ( f ()) compresses eeei to a latent space zzzei . Then, the decoder (g()) reconstructs
eeei from zzzei in the output rrrei . Thus, the training of AE consists of making rrrei ≈ eeei. The encoder
and decoder, and the AE optimization function are respectively given by:

autoencoder =

{
zei = f (Φ ;ei)

rei = g(Θ ;zei)
(5.3) J(Φ ;Θ) =

1
m ∑

ei

‖ei − rei‖2 (5.4)
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in which Φ is the weights and biases of neurons in the encoder, Θ is the weights and biases of
neurons in the decoder. Thus, the AE is adequate in scenarios with examples belonging to one
class because it trains in an unsupervised way.

There are variations of the AE that impose constraints on the hidden units (AGGARWAL,
2018a). For instance, the Variational Autoencoder (VAE) constraint that the activation in the
hidden units should be drawn from the standard Gaussian with zero mean and unit variance
(XU; DURRETT, 2018). This constraint also allows generating samples of the training data
just feeding the decoder with samples generated from a normal distribution. Formally, the VAE
assumes that a variable zei generates the data ei (Equation 5.5).

p(zei |ei) =
p(ei|zei)p(zei)

p(ei)
(5.5) p(ei) =

∫
p(ei|zei)p(zei)dzei (5.6)

VAE approximates p(zei|ei) to another treatable distribution q(zei|ei) using the Kullback-
Leibler (KL) divergence, which is responsible for measuring the divergence between two distribu-
tions. To optimize the marginal likelihood (p(ei)), you can use the log of the marginal likelihood
(XU; DURRETT, 2018):

log pΘ (ei) = KL(qΦ(zei|ei)||pΘ (zei|ei))+L (Θ ,Φ ;ei) (5.7)

in which

L (Θ ,Φ ,ei) = EqΦ (zei |ei) log pΘ (ei|zei)−KL(qΦ(zei|ei)||pΘ (zei)) (5.8)

We implement a VAE using a neural network. Thus, it learns the encoder’s Φ parameters
and the decoder’s Θ parameters through the weights of the neurons of the neural network layers.
The first term of Equation 5.8 is related to the neural network reconstruction error. In the second
term, we want to minimize the difference between the learned distribution qΦ(zei|ei) and pΘ (zei)

(prior knowledge). It is worth mentioning that literature studies replace the term pΘ (zei) by a
multivariate Gaussian distribution N (zei;0,1).

In this paper, we propose a Triple-VAE: a VAE that learns from three modalities. There-
fore, the Triple-VAE has three inputs and three outputs. To learn a representation from three
modalities, Triple-VAE combines them through early fusion. We opt to use the early fusion
because of the advantage of using only one representation for the events in the classification step.
Furthermore, to deal with the challenge of combine modalities with different dimensions, we use
three dense layers with the same number of neurons that receive the inputs of Triple-VAE (Figure
19). The proposed architecture allows us to combine the modalities with different literature
fusion operators.

Our proposed Triple-VAE aims to maximize Equation 5.9. Given an event eeei, the first
term calculates the reconstruction errors of γγγei

,λλλ ei, ιιιei . The second term wants to approximate
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the learned distribution qΦ(zzzei|γγγei
,λλλ ei, ιιιei) from pΘ (zzzei).

L (Θ ,Φ ,γγγei
,λλλ ei, ιιιei) = EqΦ (zzzei ||γγγei

,λλλ ei ,ιιιei)
log pΘ (|γγγei

,λλλ ei, ιιιei|zzzei)

−KL(qΦ(zzzei|γγγei
,λλλ ei, ιιιei)||pΘ (zzzei))

(5.9)

5.3.5 One-Class Learning to Detect Events of Interest

After we have a multimodal representation for events, we are able to classify them. We
use one-class learning (OCL) (TAX, 2001) to detect events of interest. In the OCL, the algorithms
train using only examples of the interest class. Thus, we do not suffer from new event categories
or not knowing a non-relevant event category. Moreover, even if the user is interested in a single
event category, the OCL is most appropriate since OCL does not label examples of classes that
are not the interest class (ALAM et al., 2020). Another advantage of OCL over multi-class or
binary learning is (i) the user has less effort in data labeling; and (ii) it is more appropriate in
unbalanced scenarios (FERNÁNDEZ et al., 2018).

Let the domain of events be E , and the domain of labels be Y , in which yi = {+1,−1}
for yi ∈ Y and +1 represents the label of the interest class, while -1 represents the label of the
non-interest class. Then, given a set of m training events {(e j,y j)}m

j=1, in which y j =+1, the
goal of OCL is to learn a function f : E → Y given only labeled events from the interest class.
After learning the function f , the classifier is able to predict yi for a new event ei comparing
f (ei) with a threshold as presented in Equation 5.10.

yi =

{
+1 (Interest) if f (ei)≤ threshold

−1 (Non Interest) otherwise
(5.10)

Among the OCL algorithms (GÔLO; MARCACINI; ROSSI, 2019), we chose the One-
Class Support Vector Machine (OCSVM) (TAX; DUIN, 2004) since it is considered state-of-the-
art in OCL (ALAM et al., 2020). The training of OCSVM consists of finding and hypersphere of
minimum volume that involves the training events. The center of the hypersphere is defined in
Equation 5.11 (TAX; DUIN, 2004):

µ(c) = argmin
µ∈U

max
1≤i≤m

‖ϕ(eeei)−µ‖2 (5.11)

in which m is the number of events of interest, U is the feature space associated with the function
kernel ϕ , µ(c) is the center of the hypersphere. Since the goal is to obtain the hypersphere with
minimum volume, we minimize the radius (r), i.e., r2. Slack variables (εi ≥ 0) can also allow a
trade-off between hypersphere volume and coverage of the training events. Then, the constraint
that almost all training events are within the sphere is given by Equation 5.12. OCSVM aims to
minimize Equation 5.13 subject to Equation 5.12.
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‖ϕ(eeei)−µ(c)‖2 ≤ r2 + εeeei ,

∀i = 1, ...,m, εeeei ≥ 0
(5.12) min

µ,ϕ,r
r2 +

1
m

m

∑
i=1

εeeei

ν
(5.13)

In which ν ∈ (0,1] is a parameter to control the trade-off between the radius and the errors so
that the hypersphere is not too large and the false positive rate increases. We will consider an
event as belonging to the interest class if its distance from the center is less than the radius r of
the hypersphere, i.e., f (eeei) = dist(ϕ(eeei),µ(c)) and threshold = r.

5.4 Experimental Evaluation

In the experimental evaluation, we compared our proposed Triple-VAE with the other
seven multimodal and three unimodal literature representation methods. We want to demonstrate
that the representations generated by Triple-VAE outperform others usually explored in the liter-
ature for event detection. We use the OCSVM algorithm to compare all the events representation
methods. The next subsections present the event collections, experimental settings, results, and
discussion. All source codes that we use in the experimental evaluation are available online2.

5.4.1 Event Collections and Experimental Settings

We obtain the event collections from the GDELT project, which monitors real-time
events worldwide. We collect ten datasets in which each dataset represents a theme and contains
6000 events. We populate the datasets by using the google cloud big query. We use the same
process of collection described in Gôlo, Rossi and Marcacini (2021), however, collecting the
geolocation from the events.

We compare our Triple-VAE with three unimodal strategies in which each of one is the
inputs of the Triple-VAE, i.e., DBERMTL, Latitude and Longitude (Lat-Long), and Density
Information. Also, we compare our Triple-VAE with seven multimodal strategies. Four are
Bimodal strategies considering the DBERTML and Lat-Long as modalities. In this context, we
explore the Concatenation (Concat) of the modalities, an AE applied in the Concat representation,
a VAE applied in the Concat representation, and a Bi-VAE that learns a representation in the
same way as our proposal but only considering two modalities. Moreover, we evaluate trimodal
strategies considering the DBERTML, Lat-Long, and Density as modalities. The parameters
from the seven multimodal strategies, three unimodal strategies, our proposal (Triple-VAE), and
the OCSVM algorithm are:

∙ DBERTML, Lat-Long and Concat (Bi-Modal): parameters free;

2 <https://github.com/GoloMarcos/TripleVAE-Events>.

https://github.com/GoloMarcos/TripleVAE-Events
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∙ Density and Trimodals: we used the k-Means with the sets of k = {{3,6,9,12},
{2,4,6,8,10},{3,5,7,9,11},{2,3,4,5,6,7,8,9,10,11}};

∙ Triple-VAE, Bi-VAE, VAE and AE: learning rate = 0.001, seed = 1, optimization algo-
rithm = {Adam}, maximum number of epochs = {5,8,10,50}, linear activation function,
dense layers dimensions= {(512,128,512),(512,384,128,384,512),(512,384,512), and
(512,384,266,128,266,384,512)}, and batch_size = 32;

∙ Triple-VAE and Bi-VAE: fusion operators = {addition, subtraction, concatenation, aver-
age and multiplication};

∙ OCSVM: kernels = {rb f , linear,sigmoid, polynomial}, the kernel coefficients degree

={2,3,4} and gamma = {1/(na),1/n}, in which n is the dimension of the input data and
a is the variance of the representations, and ν = {0.0001,0.0005,0.001,0.005,0.01,0.05,
0.1*h,h ∈ [1..9]}.

We chose some specific experimental setups to simulate a more suitable scenario closer
to the real-world applications. First, we use event dates to separate training and testing. Events
with older dates are from the training set. Second, we explored the use of a few labeled examples
in the training set. Thus, we explored the use of 60, 120, 180, and 2000 events in training set.
In the test, we use 4000 events. Also, we randomly selected 4000 events from different event
datasets and added them to the test set in order to have counter-examples of the interest class
during the evaluation process.

We analyze the classification performances using F1-Score (Equation 5.14), accuracy
(Equation 5.19), and Area Under Curve Receiver Operating Characteristic (AUC-ROC). F1-Score
is a harmonic average between precision (Equation 5.15) and recall (Equation 5.16). AUC-ROC
(Equation 5.18) computes the area under curve ROC. A ROC curve presents the relation between
the tpr (equivalent to recall) and false positive rate (fpr) (Equation 5.17) at different threshold
settings.

f 1 =
2 · p · r
p+ r

(5.14) p =
t p

t p+ f p
(5.15) r =

t p
t p+ f n

(5.16) f pr =
f p

f p+ tn
(5.17)

auc-roc =
∫ −∞

∞

t pr(t) f pr′(t)dt (5.18) acc =
t p+ tn

t p+ tn+ f p+ f n
(5.19)

In the equations presented above, t p (true positives) is the number of events of interest that the
algorithm has correctly classified; tn (true negatives) is the number of non-interest events that the
algorithm has correctly classified; f p (false positives) is the number of non-interest events that
have been classified as interest; f n (false negatives) is the number of events of interest classified
as non-interest; and t is a classification threshold.
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5.4.2 Results and Discussion

Tables 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24 present the experimental results
(F1-Score, accuracy, and AUC-ROC) in the ten event datasets. The results consist in the F1-Score,
accuracy, and AUC-ROC, among all representations method parameters and OCSVM parameters.
Bold values indicate that the method obtained the highest value considering each metric.

Considering the AUC-ROC in all scenarios (Tables 14, 17, 20, 23) and the F1-Score and
accuracy with 2000 events for training (Tables 22, 24), DBERTML obtain the highest values. In
all other scenarios (Tables 13, 15, 16, 18, 19 and 21), i.e., F1-Score and accuracy with 60, 120,
and 180 events for training, the Triple-VAE obtain the highest values. Therefore, DBERTML was
the best method for event detection in the scenario with more labeled events. On the other hand,
considering the scenario with fewer labeled events closer to real-world applications, Triple-VAE
was the best method for event detection as it achieved the best F1-Score and accuracy values.

Table 13 – Results in ten event datasets considering the FFF111-Score of the algorithm OCSVM applied in
the eleven representations methods with 60 (1%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,663 0,672 0,730 0,675 0,678 0,682 0,721 0,675 0,680 0,684 0,780
Tsunami 0,881 0,664 0,727 0,664 0,671 0,669 0,897 0,664 0,672 0,673 0,918
Covid 0,841 0,664 0,754 0,688 0,743 0,741 0,952 0,688 0,741 0,736 0,946
Corruption 0,728 0,692 0,681 0,694 0,654 0,640 0,939 0,694 0,641 0,652 0,958
Earthquake 0,866 0,668 0,676 0,668 0,680 0,687 0,896 0,668 0,681 0,684 0,916
Immigration 0,748 0,674 0,691 0,670 0,699 0,697 0,942 0,674 0,692 0,689 0,950
Racism 0,825 0,691 0,685 0,663 0,674 0,671 0,961 0,663 0,675 0,675 0,964
Inflation 0,809 0,670 0,664 0,670 0,685 0,667 0,930 0,671 0,672 0,679 0,953
Terrorism 0,768 0,669 0,709 0,671 0,667 0,670 0,908 0,672 0,668 0,668 0,937
Agriculture 0,757 0,666 0,689 0,667 0,666 0,662 0,970 0,667 0,665 0,665 0,979

Table 14 – Results in ten event datasets considering the auc-roc of the algorithm OCSVM applied in the
eleven representations methods with 60 (1%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,904 0,640 0,778 0,628 0,646 0,643 0,772 0,628 0,650 0,654 0,856
Tsunami 0,983 0,630 0,767 0,620 0,648 0,648 0,947 0,621 0,654 0,667 0,975
Covid 0,997 0,683 0,864 0,699 0,792 0,803 0,991 0,700 0,800 0,794 0,996
Corruption 0,995 0,656 0,676 0,659 0,652 0,646 0,983 0,659 0,654 0,652 0,989
Earthquake 0,965 0,636 0,754 0,655 0,653 0,653 0,958 0,655 0,653 0,668 0,972
Immigration 0,996 0,685 0,668 0,690 0,732 0,738 0,989 0,690 0,726 0,731 0,989
Racism 0,997 0,669 0,701 0,701 0,708 0,710 0,995 0,701 0,711 0,712 0,996
Inflation 0,999 0,606 0,591 0,610 0,624 0,622 0,981 0,610 0,621 0,611 0,991
Terrorism 0,994 0,648 0,725 0,651 0,618 0,618 0,984 0,651 0,621 0,621 0,986
Agriculture 0,996 0,589 0,705 0,584 0,632 0,623 0,992 0,584 0,631 0,606 0,995

We performed an analysis in relation to the Triple-VAE using 1% labeling (60 events)
compared to the other methods using 33% labeling (2000 events). This comparison is shown in
Tables 25 and 26. Triple-VAE achieved a higher F1-Score and Accuracy than all other methods in
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Table 15 – Results in ten event datasets considering the Accuracy of the algorithm OCSVM applied in
the eleven representations methods with 60 (1%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,730 0,605 0,719 0,603 0,619 0,633 0,703 0,605 0,634 0,630 0,779
Tsunami 0,892 0,593 0,768 0,591 0,605 0,615 0,897 0,591 0,613 0,610 0,917
Covid 0,849 0,642 0,764 0,702 0,735 0,727 0,952 0,679 0,732 0,737 0,949
Corruption 0,787 0,625 0,626 0,637 0,598 0,598 0,941 0,640 0,599 0,599 0,958
Earthquake 0,874 0,589 0,674 0,575 0,619 0,632 0,892 0,575 0,615 0,626 0,915
Immigration 0,800 0,626 0,607 0,622 0,707 0,690 0,945 0,622 0,680 0,682 0,952
Racism 0,851 0,654 0,644 0,649 0,664 0,663 0,961 0,648 0,665 0,665 0,965
Inflation 0,821 0,580 0,562 0,582 0,594 0,591 0,934 0,584 0,595 0,584 0,954
Terrorism 0,811 0,604 0,705 0,609 0,591 0,585 0,912 0,610 0,594 0,591 0,938
Agriculture 0,805 0,557 0,658 0,556 0,603 0,604 0,970 0,558 0,605 0,593 0,979

Table 16 – Results in ten event datasets considering the FFF111-Score of the algorithm OCSVM applied in
the eleven representations methods with 120 (2%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,813 0,672 0,688 0,673 0,679 0,682 0,771 0,673 0,680 0,681 0,778
Tsunami 0,909 0,673 0,674 0,664 0,666 0,662 0,875 0,664 0,667 0,670 0,902
Covid 0,674 0,673 0,740 0,698 0,770 0,771 0,935 0,688 0,776 0,772 0,935
Corruption 0,904 0,691 0,735 0,690 0,657 0,652 0,930 0,689 0,664 0,665 0,956
Earthquake 0,858 0,668 0,664 0,668 0,682 0,684 0,870 0,668 0,688 0,688 0,917
Immigration 0,914 0,674 0,678 0,671 0,677 0,677 0,950 0,673 0,677 0,677 0,956
Racism 0,880 0,689 0,720 0,665 0,684 0,683 0,969 0,665 0,689 0,689 0,976
Inflation 0,862 0,674 0,662 0,674 0,668 0,667 0,941 0,673 0,669 0,669 0,955
Terrorism 0,843 0,673 0,667 0,676 0,671 0,674 0,937 0,672 0,675 0,672 0,944
Agriculture 0,863 0,665 0,680 0,665 0,673 0,670 0,952 0,665 0,670 0,670 0,978

Table 17 – Results in ten event datasets considering the auc-roc of the algorithm OCSVM applied in the
eleven representations methods with 120 (2%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,916 0,635 0,712 0,631 0,664 0,662 0,815 0,631 0,666 0,665 0,812
Tsunami 0,984 0,638 0,707 0,625 0,636 0,641 0,943 0,625 0,664 0,641 0,967
Covid 0,997 0,728 0,788 0,758 0,854 0,858 0,992 0,760 0,861 0,860 0,994
Corruption 0,996 0,656 0,742 0,659 0,623 0,603 0,980 0,659 0,613 0,602 0,989
Earthquake 0,964 0,628 0,685 0,634 0,636 0,641 0,962 0,634 0,648 0,644 0,974
Immigration 0,996 0,679 0,617 0,685 0,696 0,697 0,992 0,685 0,697 0,696 0,993
Racism 0,997 0,677 0,784 0,699 0,717 0,716 0,996 0,700 0,720 0,718 0,997
Inflation 0,999 0,622 0,664 0,627 0,650 0,637 0,979 0,627 0,635 0,635 0,987
Terrorism 0,994 0,644 0,684 0,648 0,704 0,706 0,981 0,649 0,708 0,697 0,984
Agriculture 0,997 0,604 0,647 0,586 0,651 0,654 0,991 0,585 0,653 0,649 0,996

the Corruption, Earthquake, Immigration, Racism, Inflation, Terrorism, Agriculture collections
(7 of 10 datasets). Furthermore, in the War and Tsunami collections, Triple-VAE achieved a
higher F1-Score and Accuracy than all other methods except DBERTML.
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Table 18 – Results in ten event datasets considering the Accuracy of the algorithm OCSVM applied in
the eleven representations methods with 120 (2%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,824 0,609 0,649 0,603 0,625 0,623 0,741 0,609 0,625 0,627 0,757
Tsunami 0,914 0,602 0,674 0,601 0,609 0,605 0,873 0,601 0,618 0,609 0,902
Covid 0,743 0,646 0,747 0,733 0,758 0,761 0,938 0,724 0,763 0,765 0,939
Corruption 0,912 0,628 0,687 0,630 0,613 0,605 0,929 0,630 0,606 0,606 0,957
Earthquake 0,866 0,610 0,651 0,622 0,610 0,621 0,871 0,626 0,617 0,628 0,918
Immigration 0,921 0,624 0,583 0,624 0,626 0,625 0,951 0,624 0,635 0,648 0,957
Racism 0,894 0,641 0,723 0,647 0,671 0,674 0,970 0,647 0,671 0,673 0,977
Inflation 0,879 0,589 0,622 0,598 0,605 0,603 0,944 0,596 0,607 0,595 0,957
Terrorism 0,863 0,611 0,664 0,615 0,620 0,621 0,939 0,615 0,626 0,620 0,946
Agriculture 0,880 0,551 0,607 0,566 0,634 0,634 0,953 0,570 0,635 0,635 0,978

Table 19 – Results in ten event datasets considering the FFF111-Score of the algorithm OCSVM applied in
the eleven representations methods with 180 (3%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,841 0,675 0,694 0,671 0,669 0,671 0,777 0,671 0,674 0,669 0,774
Tsunami 0,915 0,683 0,677 0,663 0,672 0,664 0,866 0,663 0,678 0,669 0,914
Covid 0,864 0,679 0,765 0,698 0,794 0,789 0,936 0,708 0,796 0,799 0,952
Corruption 0,924 0,686 0,725 0,691 0,661 0,658 0,921 0,690 0,660 0,659 0,955
Earthquake 0,865 0,668 0,694 0,667 0,679 0,686 0,872 0,668 0,685 0,686 0,935
Immigration 0,933 0,674 0,679 0,671 0,695 0,698 0,939 0,676 0,695 0,696 0,945
Racism 0,886 0,689 0,713 0,665 0,678 0,677 0,962 0,666 0,682 0,684 0,967
Inflation 0,897 0,671 0,682 0,671 0,666 0,691 0,936 0,673 0,667 0,667 0,953
Terrorism 0,881 0,673 0,664 0,676 0,671 0,671 0,926 0,676 0,671 0,670 0,948
Agriculture 0,907 0,666 0,738 0,665 0,691 0,694 0,959 0,665 0,692 0,687 0,971

Table 20 – Results in ten event datasets considering the auc-roc of the algorithm OCSVM applied in the
eleven representations methods with 180 (3%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,916 0,626 0,715 0,632 0,668 0,667 0,828 0,632 0,669 0,668 0,831
Tsunami 0,986 0,657 0,698 0,609 0,646 0,637 0,939 0,613 0,653 0,643 0,971
Covid 0,997 0,729 0,849 0,745 0,863 0,861 0,996 0,745 0,869 0,864 0,996
Corruption 0,996 0,662 0,738 0,665 0,586 0,586 0,969 0,665 0,612 0,617 0,989
Earthquake 0,963 0,642 0,756 0,632 0,637 0,636 0,958 0,635 0,641 0,643 0,978
Immigration 0,996 0,678 0,643 0,683 0,700 0,700 0,990 0,683 0,702 0,701 0,990
Racism 0,997 0,679 0,774 0,705 0,711 0,711 0,994 0,706 0,713 0,712 0,994
Inflation 0,999 0,628 0,713 0,627 0,628 0,632 0,984 0,627 0,631 0,631 0,991
Terrorism 0,994 0,646 0,577 0,650 0,707 0,703 0,980 0,650 0,707 0,701 0,986
Agriculture 0,996 0,590 0,764 0,590 0,705 0,707 0,991 0,590 0,705 0,705 0,995

We performed Friedman’s statistical test with Nemenyi’s post-test to compare the ap-
proaches considering all metric scenarios and datasets (TRAWINSKI et al., 2012)3. Figure 20
presents a critical difference diagram generated through the results of the Friedman test with

3 The test parameters were the default parameters of the KEEL tool (<https://sci2s.ugr.es/keel/index.
php>).

https://sci2s.ugr.es/keel/index.php
https://sci2s.ugr.es/keel/index.php
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Table 21 – Results in ten event datasets considering the Accuracy of the algorithm OCSVM applied in
the eleven representations methods with 180 (3%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,844 0,608 0,662 0,608 0,594 0,593 0,761 0,611 0,604 0,615 0,751
Tsunami 0,920 0,611 0,646 0,611 0,619 0,621 0,865 0,611 0,618 0,617 0,912
Covid 0,868 0,639 0,775 0,684 0,799 0,797 0,937 0,692 0,800 0,804 0,952
Corruption 0,930 0,622 0,669 0,631 0,599 0,599 0,922 0,631 0,606 0,622 0,957
Earthquake 0,872 0,600 0,677 0,609 0,611 0,612 0,880 0,618 0,617 0,629 0,934
Immigration 0,937 0,626 0,591 0,624 0,654 0,649 0,941 0,631 0,663 0,648 0,946
Racism 0,898 0,641 0,724 0,647 0,672 0,670 0,963 0,649 0,673 0,674 0,967
Inflation 0,907 0,585 0,654 0,591 0,604 0,598 0,939 0,591 0,610 0,601 0,956
Terrorism 0,892 0,609 0,566 0,616 0,629 0,630 0,929 0,616 0,631 0,633 0,948
Agriculture 0,915 0,549 0,695 0,574 0,658 0,663 0,960 0,578 0,662 0,660 0,972

Table 22 – Results in ten event datasets considering the FFF111-Score of the algorithm OCSVM applied in
the eleven representations methods with 2000 (33%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,855 0,665 0,732 0,677 0,685 0,688 0,726 0,681 0,688 0,689 0,765
Tsunami 0,933 0,647 0,680 0,667 0,684 0,675 0,811 0,670 0,685 0,680 0,815
Covid 0,955 0,677 0,748 0,732 0,771 0,771 0,949 0,737 0,773 0,775 0,941
Corruption 0,931 0,676 0,665 0,692 0,691 0,684 0,868 0,692 0,692 0,691 0,870
Earthquake 0,912 0,660 0,693 0,666 0,667 0,675 0,816 0,671 0,667 0,679 0,825
Immigration 0,928 0,668 0,664 0,693 0,762 0,780 0,900 0,693 0,781 0,814 0,860
Racism 0,940 0,666 0,825 0,688 0,729 0,745 0,910 0,694 0,754 0,786 0,911
Inflation 0,950 0,666 0,796 0,681 0,660 0,658 0,862 0,681 0,659 0,662 0,861
Terrorism 0,925 0,676 0,690 0,679 0,681 0,682 0,895 0,683 0,681 0,682 0,893
Agriculture 0,914 0,657 0,677 0,668 0,730 0,728 0,866 0,670 0,728 0,728 0,859

Table 23 – Results in ten event datasets considering the auc-roc of the algorithm OCSVM applied in the
eleven representations methods with 2000 (33%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,927 0,633 0,829 0,625 0,683 0,685 0,746 0,625 0,691 0,678 0,764
Tsunami 0,985 0,674 0,738 0,643 0,668 0,688 0,846 0,644 0,670 0,690 0,835
Covid 0,997 0,779 0,850 0,805 0,847 0,848 0,977 0,805 0,850 0,847 0,976
Corruption 0,996 0,663 0,674 0,666 0,699 0,687 0,895 0,666 0,699 0,687 0,893
Earthquake 0,961 0,657 0,792 0,634 0,674 0,683 0,826 0,635 0,674 0,686 0,830
Immigration 0,996 0,685 0,610 0,692 0,767 0,798 0,947 0,692 0,792 0,815 0,924
Racism 0,997 0,696 0,921 0,705 0,705 0,711 0,953 0,706 0,704 0,737 0,955
Inflation 0,999 0,699 0,879 0,620 0,606 0,587 0,889 0,621 0,613 0,597 0,870
Terrorism 0,994 0,642 0,691 0,645 0,683 0,682 0,939 0,645 0,685 0,682 0,938
Agriculture 0,996 0,576 0,699 0,586 0,756 0,751 0,894 0,585 0,751 0,744 0,898

Nemenyi’s post-test. The diagram presents the methods’ average rankings, and the methods
connected by a line do not present statistically significant differences between them.

In addition to obtaining the highest results, DBERTML and our proposed Triple-VAE
presented better average rankings. Lat-Long and the concatenation of two or three modalities
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Table 24 – Results in ten event datasets considering the accuracy of the algorithm OCSVM applied in
the eleven representations methods with 2000 (33%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,846 0,608 0,705 0,609 0,623 0,623 0,686 0,609 0,627 0,630 0,742
Tsunami 0,933 0,618 0,684 0,672 0,650 0,616 0,820 0,674 0,649 0,624 0,813
Covid 0,956 0,681 0,769 0,754 0,754 0,770 0,950 0,758 0,756 0,775 0,942
Corruption 0,931 0,629 0,607 0,639 0,635 0,623 0,868 0,638 0,635 0,626 0,871
Earthquake 0,907 0,605 0,697 0,636 0,647 0,656 0,806 0,638 0,648 0,658 0,823
Immigration 0,926 0,615 0,598 0,650 0,713 0,755 0,900 0,652 0,742 0,795 0,857
Racism 0,939 0,634 0,823 0,648 0,676 0,682 0,910 0,653 0,701 0,746 0,911
Inflation 0,950 0,620 0,797 0,612 0,570 0,577 0,861 0,613 0,577 0,578 0,860
Terrorism 0,922 0,601 0,618 0,629 0,642 0,639 0,897 0,628 0,644 0,641 0,894
Agriculture 0,914 0,556 0,654 0,568 0,683 0,679 0,864 0,568 0,680 0,679 0,854

Table 25 – Results in ten event datasets considering the FFF111-Score of the algorithm OCSVM. Values of
TripleVAE are considering 60 events to train (1%) and the others representations methods
consider 2000 (33%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,855 0,665 0,732 0,677 0,685 0,688 0,726 0,681 0,688 0,689 0,780
Tsunami 0,933 0,647 0,680 0,667 0,684 0,675 0,811 0,670 0,685 0,680 0,918
Covid 0,955 0,677 0,748 0,732 0,771 0,771 0,949 0,737 0,773 0,775 0,946
Corruption 0,931 0,676 0,665 0,692 0,691 0,684 0,868 0,692 0,692 0,691 0,958
Earthquake 0,912 0,660 0,693 0,666 0,667 0,675 0,816 0,671 0,667 0,679 0,916
Immigration 0,928 0,668 0,664 0,693 0,762 0,780 0,900 0,693 0,781 0,814 0,950
Racism 0,940 0,666 0,825 0,688 0,729 0,745 0,910 0,694 0,754 0,786 0,964
Inflation 0,950 0,666 0,796 0,681 0,660 0,658 0,862 0,681 0,659 0,662 0,953
Terrorism 0,925 0,676 0,690 0,679 0,681 0,682 0,895 0,683 0,681 0,682 0,937
Agriculture 0,914 0,657 0,677 0,668 0,730 0,728 0,866 0,670 0,728 0,728 0,979

Table 26 – Results in ten event datasets considering the Accuracy of the algorithm OCSVM. Values of
TripleVAE are considering 60 events to train (1%) and the others representations methods
consider 2000 (33%) events in the training step.

Datasets Unimodal Bimodal (DBERTML | Lat-Long) Trimodal
DBERTML Lat-Long Density Concat AE VAE BiVAE Concat AE VAE TripleVAE

War 0,846 0,608 0,705 0,609 0,623 0,623 0,686 0,609 0,627 0,630 0,779
Tsunami 0,933 0,618 0,684 0,672 0,650 0,616 0,820 0,674 0,649 0,624 0,917
Covid 0,956 0,681 0,769 0,754 0,754 0,770 0,950 0,758 0,756 0,775 0,949
Corruption 0,931 0,629 0,607 0,639 0,635 0,623 0,868 0,638 0,635 0,626 0,958
Earthquake 0,907 0,605 0,697 0,636 0,647 0,656 0,806 0,638 0,648 0,658 0,915
Immigration 0,926 0,615 0,598 0,650 0,713 0,755 0,900 0,652 0,742 0,795 0,952
Racism 0,939 0,634 0,823 0,648 0,676 0,682 0,910 0,653 0,701 0,746 0,965
Inflation 0,950 0,620 0,797 0,612 0,570 0,577 0,861 0,613 0,577 0,578 0,954
Terrorism 0,922 0,601 0,618 0,629 0,642 0,639 0,897 0,628 0,644 0,641 0,938
Agriculture 0,914 0,556 0,654 0,568 0,683 0,679 0,864 0,568 0,680 0,679 0,979

obtain the worsts average rankings. In most scenarios, Triple-VAE has a statistically significant
difference compared to Lat-Long and the strategies bimodal and Trimodal of Concat, AE,
and VAE. BiVAE, DBERTML, and Density, in most scenarios, do not have a statistically
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Figure 20 – Critical difference diagrams with the average rankings of the Friedman test with Nemenyi’s
post-test. We present the diagrams considering each Table of result, i.e., four scenario of
labeled events (1%, 2%, 3% and 33%) and three metrics (F1-Score, AUC-ROC and Accuracy).

significant difference from Triple-VAE. In addition, Triple-VAE was able to learn highly non-
linear relationships, redundancies, and dependencies between modalities, structuring the events
in a dimensional space more suitable for OCL methods.

5.5 Concluding Remarks

Event detection can be used to sense, analyze and comprehend important events that
happen in our society. These social events have textual, geographical, and temporal components.
Thus, multimodal representations have been investigated to represent the events since these
components directly influence the detection of events.

This paper proposes a multimodal method (Triple-VAE) to learn a representation from
three modalities (text, density, and geolocation), with different early fusion operators (con-
catenate, add, subtract, and multiply), and using a variational autoencoder to learn a unified
representation from those modalities. We also applied the OCSVM in order to perform OCL
in the generated representations. The results obtained in our experimental evaluation show that
Triple-VAE, considering F1-Score and Accuracy using only 60 (1% of the dataset) events to
train, outperforms literature methods with 2000 events (33% of the dataset) to represent events
on the OCL scenario. Our proposal also presented better results with statistically significant
differences concerning other unimodal and multimodal techniques. It is noteworthy that the
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models built through OCL and considering the representations generated by Triple-VAE were
able to differentiate events of interest and non-interest satisfactorily.

We intend to extend our Triple-VAE to handle incomplete modalities in future work.
We note that some events may have incomplete or inaccurate information regarding geographic
information and other metadata. Thus, a multimodal representation learning method must be
robust to these scenarios. We also intend to use semi-supervised OCL algorithms (Positive and
Unlabeled Learning (BEKKER; DAVIS, 2020)) with the representations obtained by Triple-
VAE.
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CHAPTER

6
CONCLUSION AND FUTURE WORK

This chapter presents the conclusions of this dissertation. First, the contributions and
scientific innovations achieved during the development of this dissertation are presented, referring
to the scientific challenges and research goals defined in the introduction of this dissertation.
Second, we present the publications resulting from this dissertation. Finally, we present the
limitations and directions for future work.

6.1 Contributions and Scientific Innovations

This dissertation presents a multimodal method developed to represent textual data
considering the scenario of automatic text classification through OCL (OCL). The method (i)
allows the use of a different number of modalities as input; (ii) allows the use of modalities with
different dimensions; and (iii) is language and domain-independent. We apply the multimodal
method proposed in three real-world application domains: (i) fake news classification; (ii) relevant
app reviews detection; and (iii) web sensing from news events. It is noteworthy that we carried
out an extensive empirical evaluation considering: (i) several multimodal variational autoencoder
architectures; (ii) textual languages; and (iii) different sizes of training sets. We highlight the
following innovations and contributions obtained with the development of this dissertation:

∙ Multimodal method to represent the texts in automatic text classification through
OCL: we propose and develop a new multimodal method to represent textual data for
OCL. The method is called Multimodal Variational Autoencoder (MVAE) and explores
as modalities: (i) pre-trained embeddings from the DistilBERT multilingual; (ii) topic
information from the high-density regions of the interest class; (iii) linguistic features of
the texts; and (iv) geolocation (latitude and longitude). We explore the proposed method
using two or three modalities as input. On the other hand, the proposed method can be
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extended to use more than three modalities. As a result, the MVAE outperforms different
state-of-the-art text representations in the OCL scenario.

∙ Detecting fake news through proposed multimodal representations: we explore the
MVAE to represent textual data for fake news classification (Chapter 3). We explore two
MVAEs in this domain: (i) with the embeddings from the DistilBERT multilingual and
topic information as modalities; and (ii) with the embeddings from the DistilBERT multi-
lingual and linguistic features. Finally, it is worth highlighting the satisfactory performance
in classifying fake news, outperforming other state-of-the-art methods in most evaluation
scenarios.

∙ Filtering relevant app reviews through multimodal text representations from the
proposed MVAE: we explore the MVAE to represent the app reviews for irrelevant app
reviews filtering (Chapter 4). We explore our MVAE with the DistilBERT multilingual
and topic information as modalities. Experimental results showed that our proposal is
promising to support software engineers in analyzing app feedback from user reviews.

∙ Web sensing through event analysis: we use the MVAE to represent the news events and
perform the classification of events of interest (Chapter 5). We explore our MVAE with
the embeddings from the DistilBERT multilingual, topic information, and geolocation
(latitude and longitude) as modalities. Our proposal proved to be useful for web sensing
with a smaller set of labeled data, which is a relevant requirement in event analysis.

∙ Textual collection involving news events for web sensing tasks: In this dissertation, we
collect 183 textual datasets for the OCL scenario. Each textual dataset consists of 6000
texts from the event titles of the Global Data of Events, Language, and Tone (GDELT)
project. Collections can be used through a created library in an online public repository1

(GÔLO; ROSSI; MARCACINI, 2021).

∙ Source code of the proposed MVAEs for the different applications investigated in this
dissertation: all the source codes developed in this dissertation to pre-process collections,
generation of representations, and classification through the One-Class Support Vector
Machines (OCSVM) are available to the community in the repositories: Fake News2,
Relevant App Reviews3, and Events4.

1 <https://github.com/GoloMarcos/OCTCMG>.
2 <https://github.com/GoloMarcos/MVAE-FakeNews_Webmedia2021>.
3 <https://github.com/GoloMarcos/MVAE-RelevantReviews>.
4 <https://github.com/GoloMarcos/TripleVAE-Events>.

https://github.com/GoloMarcos/OCTCMG
https://github.com/GoloMarcos/MVAE-FakeNews_Webmedia2021
https://github.com/GoloMarcos/MVAE-RelevantReviews
https://github.com/GoloMarcos/TripleVAE-Events
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6.2 Publications

Publications in journals and conferences disseminated the contributions obtained with the
development of this dissertation. We present a list of these publications separated by publication
type:

∙ Journals

1. Gôlo, M. P. S.; Rossi, R. G.; Marcacini R. M. Learning to sense from events via

semantic variational autoencoder. In: PLoS One, 2021. (Qualis A1)

2. Araujo, A. F.; Gôlo, M. P. S.; Marcacini R. M. Opinion mining for app reviews: an

analysis of textual representation and predictive models. In: Automated Software

Engineering. Springer, 2021. (Qualis A2)

∙ Conferences

1. Gôlo, M. P. S.; Rossi, R. G.; Marcacini R. M. Triple-VAE: A Triple Variational

Autoencoder to Represent Events in One-Class Event Detection. In: National Meeting

of Artificial and Computational Intelligence, 20215. (Qualis B4)

2. Gôlo, M. P. S.; Souza C. M. ; ROSSI, R. G. ; REZENDE, S. O. ; NOGUEIRA, B. M.
; MARCACINI, R. M Learning Textual Representations from Multiple Modalities

to Detect Fake News Through One-Class Learning. In: Brazilian Symposium on
Multimedia and the Web (WebMedia ’21), 2021. (Qualis A4)

3. Araujo, A. F.; Gôlo, M. P. S.;Viana, B. M.; Sanches, F.; Romero, Roseli; Marcacini
R. M. From Bag-of-Words to Pre-trained Neural Language Models: Improving

Automatic Classification of App Reviews for Requirements Engineering. In: National

Meeting of Artificial and Computational Intelligence SBC, 2020. (Qualis B4)

∙ Submitted to Journals

1. Gôlo, M. P. S.; Souza C. M. ; ROSSI, R. G. ; REZENDE, S. O. ; NOGUEIRA, B.
M. ; MARCACINI, R. M One-Class Learning for Fake News Detection Through

Representations learned by Multimodal Variational Autoencoders. Submitted to:

ACM Transactions on Information Systems, 2022. (Qualis A1)

2. Gôlo, M. P. S.; Araujo, A. F.; Rossi, R. G.; Marcacini R. M. Detecting Relevant App

Reviews for Software Evolution and Maintenance through Multimodal One-Class

Learning. Submitted to: Information and Software Technology. (Qualis A1)

5 It is important to emphasize that this work won the award for best paper in the main track of the
conference.
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6.3 Limitations and Future Work
This dissertation explored the representations generated by the pre-trained context-

dependent neural language model DistilBERT Multilingual as a modality. However, this model
limits the number of words used to generate the structured representation. The DistilBERT
Multilingual used in this dissertation used only the 128 first words of the texts. Therefore, a
future direction is using context-dependent neural language models that consider all the words
in the text. The other modality explored was Density Information which uses a clustering
algorithm to generate its representations. This work used the k-Means algorithm to generate
the representation of the density information used as input to the MVAE, which learned good
representations results in satisfactory classification performances as presented in Chapters 3, 4,
and 5. However, other promising clustering algorithms from the literature can be used, such as
graph-based clustering algorithms (SANTOS; ROSSI, 2020).

Regarding the MVAE method, there was no variation in the learning rate and batch size
parameters. We do not carry out this variation to maintain smaller parameters in the MVAE
method and the other neural networks. Nevertheless, as shown in the experimental evaluations
of Chapters 3, 4, and 5, the MVAE presented a classification performance superior to different
traditional and states-of-the-art representation methods. Therefore, a future direction is to variate
the learning rate and batch size for the MVAE to generate more robust models.

Due to time constraints, we decide to use only the OCSVM algorithm since the project’s
main focus is on textual representation learning. However, one direction for future work is
using other OCL algorithms (GÔLO; MARCACINI; ROSSI, 2019; KHAN; MADDEN, 2014b;
KHAN; MADDEN, 2009).

For future work, we plan to investigate different semi-supervised learning scenarios for
OCL, known in the literature as Positive and Unlabeled Learning (PUL) (ELKAN; NOTO, 2008;
SOUZA et al., 2021b; SOUZA et al., 2021a). Algorithms will learn from the examples of the
interest class and the unlabeled ones. Therefore, it is possible to use the advantage of MVAE of
obtaining good representations with few labeled data and the advantage of PUL of learning from
unlabeled examples.

Finally, this work explored the automatic text classification through OCL using two steps:
(i) text representation; and (ii) text classification. Even been a natural division, this division
can generate limitations since the representations generated are non-customized and agnostic
to the text classification algorithm. Future work would be to carry out the classification and
representation of texts through OCL in an end-to-end framework, i.e., with a single learning
process.
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