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RESUMO

ROQUE SANTOS, E. Reconstrução de dinâmica de redes esparsas a partir de dados. 2024.
152 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

As dinâmicas de redes complexas são comuns em diversos sistemas naturais, abrangendo desde
a física até a neurociência. Essas redes apresentam estruturas de interação esparsas, onde apenas
uma fração de todas as conexões possíveis existe. Essa estrutura de interação fornece valiosas
perspectivas sobre a dinâmica das redes. Por exemplo, interrupções nas redes neuronais frequen-
temente resultam de problemas relacionados à conectividade. No entanto, em configurações
experimentais, geralmente temos acesso a dados de séries temporais multivariadas em vez da
própria rede. Nosso objetivo principal é desenvolver métodos para prever e antecipar possíveis
novos comportamentos dentro do sistema. Esta tese é dedicada à reconstrução de equações
de movimento que descrevem a dinâmica de redes esparsas a partir de dados. Combinamos
teoria de sistemas dinâmicos e teoria ergódica com métodos de recuperação esparsa para garantir
uma reconstrução exata e única. Para começar, introduzimos um método chamado Ergodic
Basis Pursuit (EBP). Este método minimiza os dados de medição necessários, garantindo uma
reconstrução precisa, enquanto identifica robustamente a estrutura de interação a partir de dados
experimentais, revelando assim a estrutura original da rede. Posteriormente, demonstramos a
aplicabilidade deste método redes com clusters. Aproveitando as informações de clusters da
rede, o EBP adota uma abordagem de reconstrução dividir-e-conquistar. A reconstrução da rede
é dividida em subproblemas, cada um restrito a um cluster específico e resolvido independente-
mente. As soluções são então combinadas para revelar a estrutura completa da rede. Por fim,
empregamos métodos de recuperação esparsa para reconstruir equações de movimento a partir
da dinâmica de redes com bursting.

Palavras-chave: Dinâmica de redes, redes esparsas, sistemas dinâmicos, teoria ergódica, méto-
dos de recuperação esparsa.





ABSTRACT

ROQUE SANTOS, E. Reconstruction of sparse network dynamics from data. 2024. 152
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

Complex network dynamics are prevalent in various natural systems, spanning from physics
to neuroscience. These networks feature sparse interaction structures, where only a fraction
of all possible connections exist. This interaction structure provides valuable insights into
network dynamics. For instance, disruptions in neuronal networks often arise from issues related
to connectivity. However, in experimental settings, we typically have access to multivariate
time series data rather than the network itself. Our primary goal is to develop methods for
predicting and anticipating potential new behaviors within the system. This thesis is dedicated
to reconstructing governing equations that describe the dynamics of sparse networks from data.
We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure
exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit
(EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction
while robustly identifying the interaction structure from experimental data, thereby revealing
the original network structure. Subsequently, we demonstrate the applicability of this method to
clustered networks. By leveraging cluster information within the network, EBP adopts a divide-
and-conquer reconstruction approach. The network reconstruction is divided into subproblems,
each restricted to a specific cluster and solved independently. The solutions are then combined to
reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct
governing equations from the dynamics of bursting networks.

Keywords: Network dynamics, sparse networks, dynamical systems, ergodic theory, sparse
recovery methods.
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CHAPTER

1
INTRODUCTION

Complex networks of coupled dynamical systems play a crucial role in various fields
of science, including biology (WINFREE, 2001), chemistry (KURAMOTO, 1984) to physics
(STANKOVSKI et al., 2017) and neuroscience (ZAMORA-LÓPEZ; ZHOU; KURTHS, 2011).
The network dynamics consists of two key components. The first component is the isolated
dynamics, which describe how individual units (nodes) evolve in time. For example, single
neurons can exhibit periodic or chaotic behavior (IZHIKEVICH, 2007). The second component
is the interaction among nodes within a complex network structure. This interaction results
in a high-dimensional and nonlinear dynamical system. Unlike a scenario with an ‘all-to-all’
interaction structure, these networks typically are sparse (GENIO; GROSS; BASSLER, 2011;
BROIDO; CLAUSET, 2019), i.e., only a small subset of all possible connections exists. For
instance, empirical observations consistently demonstrate the sparsity of neuronal networks
(MASON; NICOLL; STRATFORD, 1991; WATERS; HELMCHEN, 2006; HE; CHEN; EVANS,
2007; GUZMAN et al., 2016). As an example, the C.elegans, one of the few nervous systems
completely mapped at the cellular scale, exhibits a low connectivity density, approximately
around 10% (SCHRÖTER; PAULSEN; BULLMORE, 2017).

The presence of sparse network structure has a profound impact on the dynamics of
various systems (SPORNS; TONONI; KÖTTER, 2005; PEREIRA; STRIEN; TANZI, 2020;
SCHÄFER et al., 2018; MOLNAR; NISHIKAWA; MOTTER, 2021). Neurological disorders are
often linked to disruptions in network structure (BOHLAND et al., 2009), while the stability
of power grids depends on the coherent functioning of its units in the face of disturbances
(WITTHAUT et al., 2022; MOLNAR; NISHIKAWA; MOTTER, 2021). Consequently, com-
prehending sparse network dynamics opens the possibility of gaining insights into predicting
nonlinear phenomena across diverse systems.

The current state of technology only allows us to access a multivariate time series of
nodes’ states (PARK; FRISTON, 2013). Typically, due to time resolution or even the cost to
acquire the data, we only have access to a limited length of time series in comparison to the
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Figure 1 – Reconstruction of network dynamics from data. The unknown network dynamics ( f ,G,h)
is accessed through the multivariate time series of all nodes in the network {x(t)}n

t=0. The
length of the time series is n and the size of the network is N. The challenge is to reverse
engineering and to obtain ( f ,G,h) back in the regime of the limited amount of time series, i.e.,
n ≪ N. This opens the possibility to gain predictive capabilities.

system size (ERNST; BAR-JOSEPH, 2006; WANG et al., 2008; GERVEN et al., 2009; HEMPEL
et al., 2011). The challenge is to reverse engineer and extract the dynamics of large networks
from a limited amount of data. In other words, to obtain both the nodes’ evolution over time
when isolated, as well as their interactions with one another within the overall network structure.

Throughout this thesis, the main assumption is that we have access to the time series of
all nodes in the network, so we obtain {x(t)}t≥0, see Figure 1. This thesis is devoted to solving
such a reconstruction problem:

to obtain the governing equations of large and sparse network dynamics from a limited

amount of multivariate time series {x(t)}t≥0.

Achieving this allows for predicting the behavior of the system ahead of time, potentially
identifying critical transitions. This is challenging mostly due to the limited information. In fact,
extracting models of high-dimensional nonlinear systems from limited data is a non-trivial task
because there is not enough information from the phase space to rule out all possible models and
select one good model for the system.

Reconstruction state of the art: A great deal of effort to reconstruct dynamical systems from
multivariate data in the past years has generated different research lines. Despite their success,
they fail in the scenario we are interested in. In a nutshell, they can be divided into three different
approaches:

• Informational tools (BUTTE; KOHANE, ; FUENTE et al., 2004; NAWRATH et al., 2010;
BRESSLER; SETH, 2011; SUN; TAYLOR; BOLLT, 2015) focus to identity the presence,
strength, and direction of a connection between pair of nodes by measuring the statistical
dependence between their time series such as correlations, mutual information or causal
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relations. These methods alone do not describe the dynamics on top of the uncovered
directed network, which is necessary to predict critical transitions.

• Reservoir computers (PATHAK et al., 2018; LU; HUNT; OTT, 2018) (recurrent neural
networks, also called echo-state networks) are primarily focused on forecasting dynamical
systems, in particular chaotic systems that are inherently difficult to predict. Although
reservoirs are only trained through the readout weights and a few hyperparameters, the
required length of time series can be as large as the underlying system.

• Statistical methods for dynamical systems encompass methods such as dynamic mode
decomposition (DMD) and Bayesian inference that use statistical properties to describe
the evolution of the dynamical system. Dynamic mode decomposition (BUDIšIć; MOHR;
MEZIć, 2012; SLIPANTSCHUK; BANDTLOW; JUST, 2020; THIBEAULT et al., 2020)
is devoted to identifying a low-dimensional description of the linear but infinite-dimensional
evolution of measures. It identifies the current state of the system but fails to extrapo-
late potential transitions that may occur in the system. Dynamical Bayesian inference
(LUCHINSKY et al., 2008; STANKOVSKI et al., 2012) focuses on stochastic dynamical
systems that are pumped by noise with known distribution. Although the method can infer
low-dimensional systems, it fails to infer large network dynamics because it requires a
long length of time series.

Overall we must evoke suitable assumptions to extract the most meaningful model for
prediction purposes. Sparse recovery methods (WANG et al., 2011; HAN et al., 2015; WANG;
LAI; GREBOGI, 2016; BRUNTON; PROCTOR; KUTZ, 2016; SCHAEFFER; TRAN; WARD,
2018) have evolved as leaders to recover sparse network dynamics. These methods search
for sparse representations of the input data, imposing that the network has a low density of
connections into a penalized minimization problem, e.g. LASSO (HAN et al., 2015), SINDy
(BRUNTON; PROCTOR; KUTZ, 2016) and basis pursuit (NAPOLETANI; SAUER, 2008;
WANG et al., 2011). When the network is moderately large, the amount of data required for
successful reconstruction is too large, making the network reconstruction challenging. Indeed, in
general, the network reconstruction becomes ill-posed and unstable (NAPOLETANI; SAUER,
2008; NOVAES; Roque dos Santos; PEREIRA, 2021). The key idea is that sparsity may pro-
mote a decrease in the data length required for the reconstruction (TRAN; WARD, 2017a;
SCHAEFFER; TRAN; WARD, 2018).

Main contributions. Together with the sparsity assumption, we consider throughout this thesis
mostly chaotic (ergodic) dynamics that exhibit exponential decay of correlations (VIANA, 1997).
Evoking dynamical systems and ergodic theory together with sparse recovery methods, we
contribute to shifting the reconstruction paradigm. Our main contributions are:

(i) Minimum length of time series. Using the statistical properties of the chaotic dynamics,
we determine the minimum length of time series for successful reconstruction with high
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probability. This minimum length scales quadratically with the node degree (the number
of connections the node receives) being probed and logarithmically with the network size.

(ii) Ergodic Basis Pursuit. We develop the so-called Ergodic Basis Pursuit (EBP) that uses the
inherent ergodicity advantageously to reconstruct the sparse network dynamics from data.
In the absence of noise and once the minimum length of time series is attained, EBP exactly
recovers the network. We compare EBP against other methods, which it outperforms in
all tests. In the presence of measurement noise, EBP is robust, i.e., identifies correctly the
network structure, treating the noise level as a tuning parameter. To illustrate the power of
EBP, we test EBP in experimental data (HART et al., 2019).

(iii) Divide-and-conquer reconstruction of clustered networks. Here, we focus our attention on
when there is expert knowledge about the network structure. In particular, the presence of
clusters, groups of nodes that share many connections inside themselves but comparatively
only a few connections with different groups. Instead of attempting to identify connections
among all nodes in the network, the reconstruction is split into subproblems. Each sub-
problem consists of reconstructing clusters. First, subproblems are solved individually and
independently, then combined to yield the global solution, the entire network structure.
This approach defines a divide-and-conquer algorithm (LEVITIN, 2007), which is only
possible in our case due to the exact reconstruction via EBP. For large networks, using
the cluster information speeds up the reconstruction when compared to solving the entire
network reconstruction at once.

Reconstruction of sparse network dynamics ( f ,G,h). The dynamics of N nodes is given by:

xi(t +1) = Fi(x(t)),

Fi(x(t)) = fi(xi(t))+α

N

∑
j=1

Ai jhi j(xi(t),x j(t)), i = 1, . . . ,N,
(1.1)

where xi(t) represents the state of node i at a time t, x = (x1, . . . ,xN) ∈ MN is the state of the
network, fi : M → M corresponds to the isolated map, α is the coupling strength, Ai j corresponds
to the entry of the adjacency matrix, which encodes the network structure, and hi j : M×M → M

is the coupling function for the nodes i and j. This model is considered throughout this thesis,
and in the case a different model is used, it will be introduced appropriately when needed.

To reconstruct the model of the network dynamics, sparse recovery methods assume
that the dynamics F has a sparse representation in an a priori known set of basis functions, a
library L . More precisely, the isolated maps fi and the coupling functions hi j lie in the span of
L = {φ1, . . . ,φm} with φl : MN → M. Moreover, for each i ∈ [N]: Fi = ∑l(ci)lφl with ci ∈ Rm

is a sparse vector, i.e., a few entries are nonzero. These assumptions convert the reconstruction
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problem into solving a linear equation. Consider the library matrix

Φ(X) =


φ1(x(0)) · · · φm(x(0))
φ1(x(1)) · · · φm(x(1))

... . . . ...
φ1(x(n−1)) · · · φm(x(n−1))

 (1.2)

and arrange the trajectories into a matrix

X̄ =


x1(1) · · · xN(1)

... . . . ...
x1(n) · · · xN(n)

 . (1.3)

Hence, the reconstruction problem becomes in finding the m×N matrix of coefficients C, which
has column vectors given by {c1,c2, . . . ,cN} ⊂ Rm, such that

X̄ = Φ(X)C. (1.4)

The coefficients encode the network dynamics, in particular the graph structure.

When the amount of data is large in comparison to the network size, the library ma-
trix Φ(X) might be full column rank, and the unique solution can be found by least square
based-methods (LUENBERGER, 1997; BRUNTON; PROCTOR; KUTZ, 2016), i.e., solving
the minimization problem minU ∥X̄ −Φ(X)U∥2. However, for large networks Φ(X) has more
columns than rows, it is a fat matrix. Then, the linear system in Equation (1.4) is underdetermined,
see the left panel in Figure 2 for an illustration. So, there are an infinite number of solutions (if
there exists at least one) and the reconstruction problem is ill-posed.

For short time series and using the sparsity assumption, one approach is to solve for each
node i the basis pursuit (BP) problem

(BP) min
u∈Rm

∥u∥1 subject to Φ(X)u = x̄i, (1.5)

where x̄i is the i-th column of X̄ . This minimization problem searches for sparse solutions. In
fact, the right panel in Figure 2 illustrates how sparse vectors are optimal solutions.

Coupled logistic maps in a ring network. We will illustrate the reconstruction problem of
coupled logistic maps in different network structures. Our contribution (i) and (ii) are valid for
general directed networks, as illustrated in Figure 1, but here, we will present it for an undirected
ring network. In the end, we look at the special case of undirected networks that contain clusters,
which is the setting for our contribution (iii).

The isolated dynamics is given by

fi(xi) = axi(1− xi), i = 1, . . . ,N,
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Figure 2 – Underdetermined system but under sparsity assumptions. The left panel displays the
typical scenario in large networks. A short vector in the left-hand side of the equation, x̄i,
corresponds to the column of the matrix X̄ . On the right-hand side the fat library matrix Φ(X)
and the vector c. This system of equations has an infinite number of solutions. However, the
solutions are sparse. In fact, c is sparse because it lies in one of the axes in the plane. So, the
vector ci has only a few non-zero entries, which are illustrated by red dots. The right panel
displays the geometric illustration behind the minimization problem in Equation (1.5). The
line (or plane in the higher-dimensional scenario) represents the constraint, i.e., the observed
trajectory that should be reconstructed. The intersection yields the solution, which is attained
by the sparse vector c.

with a ∈ [3.9,4.0). The coupling function is

hi j(xi,x j) = xix j, i, j = 1, . . . ,N.

Let us assume the network structure depicted in Figure 3 a), a ring network. Since both fi and
hi j are polynomials, it suffices to consider a set of polynomials of two variables with degree at
most r = 2 to represent the network dynamics:

L ={1}∪{φ
p
i (xi) = xp

i }i,p ∪{φ
pq
i j (xi,x j) = xp

i xq
j}i, j,p,q, (1.6)

which contains 39 functions, see Section 2.6.1 for details. A node i is only connected to node
i−1 and i+1, so the node i dynamics is expressed as

xi(t +1) =−aφ
1
i (x(t))+aφ

2
i (x(t))+αφ

11
i−1,i(x(t))+αφ

11
i,i+1(x(t)).

The same could be done for all nodes in the small network. First, note that solving Equation (1.4)
opens the possibility of recovering the network dynamics. Also, the corresponding coefficient
vector ci is sparse since it has only four nonzero terms {−a,a,α,α} out of all possible 39 entries.
To search solutions of Equation (1.4) while imposing sparsity of the solution is a promising
option.
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Figure 3 – Ergodic Basis Pursuit performance requires only short time series. a) Illustration of a
ring graph with N = 10. b) False positive (FP) of the reconstructed ring network with respect
to the length of time series n for a network size N = 40. Both methods predict correctly the
true connections, for this reason, we only show the false positive proportion. c) The minimum
length of time series n0 for a successful reconstruction versus system size N. Basis pursuit (BP)
and ergodic basis pursuit (EBP) are shown in (purple) squares and (green) circles, respectively.
The network dynamics parameters are a = 3.990 and coupling strength α = 5× 10−4. The
shaded area corresponds to the standard deviation with respect to 10 distinct initial conditions
uniformly drawn in [0,1]N . The (black) dashed is the scaling lnN for reference. The Kernel
density estimation of ν is used with bandwidth χ = 0.05. The multivariate time series is
generated without noise.

BP in Equation (1.5) was used for networks of moderate size (WANG; LAI; GREBOGI,
2016; SCHAEFFER; TRAN; WARD, 2018; SCHAEFFER et al., 2020). However, for large net-
works, this may lead to spurious linear dependencies among the columns Φ(X) (NAPOLETANI;
SAUER, 2008; NOVAES; Roque dos Santos; PEREIRA, 2021), and (1.5) does not have a unique
sparse solution. To illustrate, see Figure 3 b) and c). Ensuring exact network reconstruction, even
in the presence of sparse interactions, remains a significant open problem.

Key step: basis adaptation to the dynamics. A priori, the library L , and consequently, the
associated library matrix Φ(X) does not have sufficiently good properties in such a way that
Equation (1.5) has unique solutions. Based on compressive sensing theory (CANDES; TAO,
2005; DONOHO; ELAD; TEMLYAKOV, 2006), if the library matrix satisfies certain good

properties, the corresponding basis pursuit has unique solutions. In an upshot, the good property
is: any subset of columns of the library matrix forms a set of nearly orthonormal set of vectors.
Hence, our strategy is to use the decay of correlations of the network, so we can introduce a new
set of basis functions L (ν) whose associated library Φν(X) satisfies such good property. The
decay of correlations implies that we can control how much time the system needs to evolve
such that any two columns of Φν(X) become nearly orthogonal to each other.

In practice, we proceed as follows: we estimate a probability distribution ν and orthonor-
malize the basis functions via the Gram-Schmidt process on the L , see Figure 4. The exponential
decay of correlations implies that for a large set of initial conditions, we can find the minimum
length of time series n0 such that Φν(X) satisfies the desired conditions. More precisely, as our
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Figure 4 – Ergodic Basis Pursuit uses dynamical and statistical information. The input data is gen-
erated from a network dynamics that preserves a measure is µ . Using its estimated measure
ν , which is a product measure, an orthonormal set of basis functions L(ν) is constructed,
representing the dynamics. Under the assumption that the network dynamics is sparse, the
input data and L(ν) are recast as a minimization problem, whose solution encodes the network.

contribution (i) we show that

n0 ≈ k2
i ln(N), (1.7)

where ki is the degree of the probed node. In our contribution (ii) we propose the Ergodic Basis
Pursuit (EBP) which consists of solving Equation (1.5) but replacing Φ(X) by Φν(X) for the
length of time series n ≥ n0, i.e,

(EBP) min
u∈Rm

∥u∥1 subject to Φν(X)u = x̄. (1.8)

See Theorem 2.7.1.1 for the precise statements.

Numerical experiment: coupled logistic maps. Going back to the coupled logistic maps
example, we compare the reconstruction performance of the EBP against the classical BP for
overall coupling strength α = 5× 10−4. Figure 3 a) illustrates the ring network with N = 10
nodes.

Figure 3 b) shows an evaluation of the reconstruction performance employing the basis
pursuit (BP) and the Ergodic Basis Pursuit (EBP) as we increase the length of time series n.
The convex minimization problem is solved by employing the CVXPY package (DIAMOND;
BOYD, 2016; AGRAWAL et al., 2018), in particular, ECOS solver (DOMAHIDI; CHU; BOYD,
2013). We also consider the polynomial library as in (1.6) but with the degree at most 3 and
allowing product terms xix j, so by construction, there exists a sparse representation of the
network dynamics in this library.

We observe that the false positive fraction, which calculates the presence of mistakenly
found edges regardless of their weights, for BP goes to zero when n0 ≈ 400, roughly tenfold
the system size. BP (in purple) requires a minimum length of time series n0 that scales with
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the system size to reconstruct a ring network in coupled logistic maps, although the network is
sparse. The BP method is inappropriate for large-scale networks.

On the other hand, EBP outperforms the basis pursuit method, reducing the necessary
length of time series to reconstruct the network. To evaluate the scaling with respect to the
system size, we calculate n0 as we increase N. In Figure 3 c), we confirm that n0 scales with the
system size for BP instead of lnN of the EBP method. In Section 2.3.4, we demonstrate that
our estimates of n0 predict the numerical observation when we vary the maximum degree of
different network structures.

Prior knowledge: clustered networks. To reconstruct the neighbors of a given node in the
system, we solve Equation (1.8), where Φν(X) is constructed using the time series of all nodes
in the network. Without any further knowledge about the structure, the reconstruction must be
performed assuming that each node is potentially coupled to any other node in the network, i.e.,
probing the entire network at once.

However, suppose the network has clusters, see Figure 5. Modular networks are typical
examples such as the cat connectivity structure. The cat network is a map of the connectivity of
the cat cortex (SCANNELL; YOUNG, 1993; SCANNELL; BLAKEMORE; YOUNG, 1995).
This network is a so-called rich-club structure, where communities (portions of the network more
connected inside than among themselves) interact via a massive community called an integrating
cluster.

In this scenario, we can incorporate this information to solve Equation (1.8). Our contri-
bution (iii) is that we can introduce an approach that divides the reconstruction into subproblems
that are solved independently. Then, the solutions are combined to yield the entire network
structure. The main finding is that for clustered networks such as the ones depicted in Figure 5,
this approach speeds up the reconstruction, see Section 4.6 for details.

1.1 Guide to this thesis

Given the importance of establishing a technique for the successful reconstruction of
network dynamics from data, this thesis evokes dynamical systems, ergodic theory, and sparse
recovery methods to develop an approach that extends the reconstruction to a new level. Our
contributions are divided into the following chapters.

Chapter 2 is devoted to detailing our contributions (i) and (ii). We introduce the Ergodic
Basis Pursuit (EBP) method that uses the network dynamics’ statistical properties to ensure
the exact reconstruction of sparse networks when a minimum length of time series is attained.
The minimum time series length scales quadratically with the node degree being probed and
logarithmically with the network size as in Equation (1.7). Our approach is robust against noise
and allows us to treat the noise level as a parameter. We show the reconstruction power of the
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Figure 5 – Random clustered networks. A random network model capturing the features of a modular
network such as the cat connectivity structure. We construct a network with κ clusters and p
nodes in each cluster. Each cluster consists of an Erdos-Renyi (ER) network with with mean
degree ⟨k⟩ (uniform for all clusters) and the bridge nodes (those nodes sharing inter-cluster
connections) forms an integrating cluster, as an ER network as well, with mean degree ⟨kI⟩.
The set of bridge nodes are chosen selecting arbitrarily one single node of each cluster. The
clusters are identified as block diagonals structures in the plot. The connections among bridge
nodes are displayed as dots off the diagonal. Left panel displays a network with κ = 5 clusters
and p = 5 node in each cluster. Right panel shows a network contains κ = 10 and p = 10. For
both networks the mean degree ⟨k⟩= 3 and mean degree in the integrating cluster ⟨kI⟩= 4.

EBP in experimental multivariate time series from optoelectronic networks. Chapter 2 is an
adaptation to the thesis of a recently submitted paper entitled Robust reconstruction of sparse

network dynamics (PEREIRA; SANTOS; STRIEN, 2023).

In Chapter 3 we consider chaotic dynamics in coupled phase oscillators. We reconstruct
the network from an initial guess which can include expert knowledge about the system such as
main motifs and hubs. When sparsity is taken into account the number of data points needed
is drastically reduced when compared to the least-squares recovery. We show that the sparse
solution is stable under basis extensions, that is, once the correct network topology is obtained,
the result does not change if further motifs are considered. Chapter 3 is adapted from an published
paper entitled Recovering sparse networks: Basis adaptation and stability under extensions

(NOVAES; Roque dos Santos; PEREIRA, 2021).

Chapter 4 details our contribution (iii), merging the above two contributions and pushing
forward the following research line. Although the network structure is unknown, there is still
a priori knowledge. Hence, we introduce an approach that incorporates expert knowledge of
the structure into the reconstruction method. Using this we can break the reconstruction into
subproblems and solve each subproblem locally and in parallel. Then, we combine information
gathered for each local solution, to form the global solution. That is, if we know which neighbors
two distinct nodes have, we can combine this information and obtain a larger uncovered structure.
This approach heavily relies on the reconstruction capability of the EBP method.

In Chapter 5 we specialize the reconstruction problem to bursting network dynamics. In
particular, we reconstruct governing equations of bursting dynamics, which contain a rational
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function, from data. Bursting dynamics are a crucial and common feature in neural networks.
Hence, extracting the governing equations can lead to important insights, particularly, control and
prediction capabilities. We use implicit-SINDy, which is a sparse recovery method that searches
for sparse rational representations of the input data, to reconstruct the dynamics of neurologically
relevant motifs. Our main result is that the minimum length of time series to implicit-SINDy
recovers the dynamics scales at least quadratically with network size. This bound is useful to
characterize the implicit SINDy performance for large network reconstruction.

Finally in Chapter 6 we conclude and list open questions. The appendices are devised to
support the associated chapters with further details methods and algorithms used throughout the
thesis.
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CHAPTER

2
ERGODIC BASIS PURSUIT INDUCES

NETWORK RECONSTRUCTION

This chapter is devoted to presenting our work entitled Robust reconstruction of sparse

network dynamics (PEREIRA; SANTOS; STRIEN, 2023).

Here, we put forward the Ergodic Basis Pursuit (EBP) method that reconstructs sparse
networks from a limited amount of data. Our method adapts the search for sparse solutions
to the statistical properties of the network. We formulate the EBP as a Basis Pursuit problem
adapted to the ergodicity of the network. When the network dynamics is ergodic and has decay
of correlations, we show that the reconstruction is exact once a minimal length of the time series
n0 is attained. We show that n0 scales quadratically with the node degree and log of the system
size. We also show that the reconstruction is robust against random perturbations. We illustrate
the applicability of our method in experimental optoelectronic networks. Our approach enables
us to treat the noise level as a tuning parameter to identify the network structure robustly.

2.1 Dynamics on complex networks

We consider dynamics as

xi(t +1) = fi(xi(t))+α

N

∑
j=1

Ai jhi j(xi(t),x j(t)), (2.1)

for each i ∈ [N] := {1, . . . ,N}, where xi represents the state of node i, fi : Mi → Mi corresponds
to the isolated map over a bounded set Mi ⊂ R, α is the coupling strength, Ai j equals 1 if node i

receives a connection from j and 0 otherwise, and hi j : Mi ×M j → Mi is the pairwise coupling
function. We denote the state of the full network as x = (x1, . . . ,xN) ∈ MN ≡ ∏i∈[N]Mi, and
x(t +1) = F(x(t)). This class of networks is common in applications such as laser dynamics
(HART et al., 2019) and can be generalized to higher dimensions.
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We consider four assumptions on the network dynamics in (2.1).

(i) Network library. The isolated maps fi and the coupling functions hi j lie in the span of
an ordered library L = {φ1,φ2, . . . ,φm} where φl : MN → R. We consider the polynomials of
two variables with degree at most r

L = {1}∪{xp
i }i,p ∪{xp

i xq
j}i, j,p,q, (2.2)

where i, j ∈ [N] with i ̸= j and we remove any redundancy, p ∈ [r],q ∈ [r− 1], and p+ q ≤ r.
The cardinality of L is given by m =

(N
2

)(r
2

)
+Nr+1. A directed edge from j to i is given by

the presence of a nonzero coefficient in xp
i xq

j . We discuss the ordering of L in Section 2.5.1.
We say that an ordered library L is a network library and the functions depend only on pairs
of coordinates. Thus, nonzero coefficients in the network representation in L can be identified
with links in the network structure.

(ii) Sparse network. We assume that the network structure is directed and sparse, that
is, for each node i, xi(t +1) = ∑

m
l=1 cl

iφl(x(t)) for all t ≥ 0, where ci = (c1
i , . . . ,c

m
i ) ∈ Rm is an

s-sparse vector, that is, at most s of its entries are nonzero, see definition 2.5.3. Notice that a
node i with degree ki will have a number of nonzero entries of ci growing linearly with ki.

(iii) Exponential mixing. We assume (F,µ) satisfies exponential mixing conditions
(HANG; STEINWART, 2017) for the physical measure µ: given a constant γ > 0 for all
ψ ∈ C 1(MN ;M) and µ-integrable function ϕ , there exists K(ψ,ϕ)> 0 such that for any t ≥ 0

∣∣∣∫ ψ · (ϕ ◦F t)dµ −
∫

ψdµ

∫
ϕdµ

∣∣∣≤ K(ψ,ϕ)e−γt . (2.3)

This assumption is typical for chaotic dynamical systems.

(iv) Near product structure. Since we are dealing with pairwise interactions, given a
small ζ > 0 we assume that the network physical measure µ is close to a product measure ν , i.e.,
d(µ,ν)< ζ , where d calculates the maximum difference between integrals with respect to µ and
ν over pair of functions in a suitable network library, see Section 2.5.4 for the formal definition.
In the weak coupling regime, this assumption is fulfilled (EROGLU et al., 2020). However, this
assumption also holds in other scenarios, as we will illustrate later in an experimental application.

First, we consider the network reconstruction problem for the noiseless case and establish
the minimum length of time series n0 so that the EBP exactly reconstructs the network structure.
Next, we show that the reconstruction is robust against additive measurement noise, which opens
the possibility to apply for the experimental setting.



2.2. Reconstruction problem 41

2.2 Reconstruction problem
To reconstruct the network structure A from the multivariate time series data {x(t)}n

t≥0

of (2.1), we consider the library matrix

Φ(X) =
1√
n


φ1(x(0)) · · · φm(x(0))
φ1(x(1)) · · · φm(x(1))

... . . . ...
φ1(x(n−1)) · · · φm(x(n−1))

 (2.4)

and arrange the trajectories into a matrix

X̄ =


x1(1) · · · xN(1)

... . . . ...
x1(n) · · · xN(n)

 . (2.5)

We aim to find the m×N matrix of coefficients C, which has column vectors given by {c1,c2, . . . ,cN}⊂
Rm, such that

X̄ = Φ(X)C. (2.6)

When the amount of data is large in comparison to the network size, the library matrix Φ(X)

might be full column rank, and (sparse) approximations can be found by least square based-
methods (BRUNTON; PROCTOR; KUTZ, 2016; MANGAN et al., 2016a; WANG et al., 2018).
For short time series, the matrix Φ(X) has more columns than rows, and one approach is to solve
for each node i the basis pursuit (BP) problem

(BP) min
u∈Rm

∥u∥1 subject to Φ(X)u = x̄i, (2.7)

where x̄i is the i-th column X̄ . This implementation was used for networks of moderate size
(WANG; LAI; GREBOGI, 2016; SCHAEFFER; TRAN; WARD, 2018; SCHAEFFER et al.,
2020). For large networks, this may lead to spurious linear dependencies among the columns
Φ(X) (NAPOLETANI; SAUER, 2008; NOVAES; Roque dos Santos; PEREIRA, 2021), and
(2.7) does not have a unique sparse solution. In Figure 3 b) and c), we show that the basis
pursuit (in purple) requires a minimum length of time series n0 that scales with the system size
to reconstruct a ring network in coupled logistic maps, although the network is sparse. The BP
method is inappropriate for large-scale networks.

2.3 Main results: informal statements
To establish conditions for the uniqueness of the reconstruction, successful approaches

show that any set of 2s columns of Φ(X) is nearly orthonormal, what is known as the restricted
isometry property (RIP) (CANDES; TAO, 2005). By noticing that the inner product of pair of
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columns of the original library matrix Φ(X) can be represented as a Birkhoff sum. We introduce
a new library Lν by a Gram-Schmidt process such that the new columns have vanishing Birkhoff
sum when the length of the times series diverges. Then, we use a concentration inequality to
estimate the minimal length of the time series such that any two distinct column vectors of
Φν(X) are nearly orthonormal to each other, and RIP for the desired sparsity.

This strategy is implemented with four main results: (I) the introduction of the new basis
Lν is a network library which keeps the appropriated sparsity of the original problem; (II) It is
possible to obtain a desired RIP constant for Φν(X) by exploring the ergodicity of the dynamics;
and (III) the reconstruction is unique. Finally, we show (IV) the robustness against measurement
noise.

2.3.1 Constructing the adapted network library

First, we notice that using the invariant measure µ directly to obtain a new basis and thus
an almost orthonormal structure in the columns of the corresponding Φ(X) leads to the loss of
sparsity in the representation. Indeed, the new orthonormal basis would contain functions that
depend on all coordinates, e.g., of the form ϕ(x1, . . . ,xN) because µ is not a product measure and
mixes all coordinates. Hence, we consider a product measure ν close to µ . More precisely, we
perform a Gram-Schmidt (GS) process in the span of L and obtain a basis L̂ = {ϕ̂1, . . . , ϕ̂m}.
We define ϕi = aiϕ̂i, where a2

i = 1/
∫

ϕ̂2
i dν , so the new basis Lν = {ϕi}m

i=1 is an orthonormal
system with respect to a product measure ν . We assume that each marginal of ν is absolutely
continuous with respect to Lebesgue, and the corresponding density is Lipschitz. For our network
library L we have that:

Theorem 2.6.1 (Network library is preserved). GS process maps an s-sparse represen-
tation of F in L to an ωr(s)-sparse representation in the orthonormal network library
Lν .

Here, ωr(s) =
(⌊ r

2

⌋(
r −
⌊ r

2

⌋)
+ r + 1

)
s, where ⌊β⌋ denotes the largest integer p satisfying

p ≤ β . We call Lν the adapted network library and denote the respective library matrix by
Φν(X) = Φ(Lν ,X). The proof uses that the GS process is a recursive method that involves
projections onto preceding functions. Since ν is a product, the projections of the GS are split into
products of integrals. Thus, Lν does not have functions that depend on more than two variables
and characterize a network library. Also, the representation remains sparse, see Section 2.6.2 for
details.

2.3.2 Ergodic basis pursuit

Notice that since library Lν is orthonormal, the set of columns vectors of Φν(X) form a
set of s nearly orthonormal column vectors. We quantify the orthonormality via the s-th restricted
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isometry constant δs = δs(Φν(X)) as the smallest δ ≥ 0 such that

(1−δ )∥u∥2
2 ≤ ∥Φν(X)u∥2

2 ≤ (1+δ )∥u∥2
2 (2.8)

for all s-sparse vectors u ∈ Rm. Next, we determine the minimum length of time series such that
Φν(X) is RIP with a desired small δs. Our second result is

Theorem 2.7.1.1 (Φν(X) satisfies RIP). Consider d(µ,ν) < ζ for sufficiently small ζ .
For large network sizes and large set of initial conditions if the length of time series n is at
least

n0 ≈ K1ωr(s)2 ln(Nr), (2.9)

for a positive constant K1, then Φν(X) satisfies (2.8) with δ2ωr(s) ≤
√

2−1.

The proof is presented in Section 2.7 and the key steps are as follows. First, we use the coherence
(DONOHO; HUO, 2001; DONOHO; ELAD; TEMLYAKOV, 2006) defined as

η(Φν) := max
i ̸= j

∣∣⟨vi,v j⟩
∣∣

over distinct pairs of normalized (Euclidean norm) columns of Φν(X). Since we know that
δs ≤ η(Φν)(s−1) for any s ≥ 2 (FOUCART; RAUHUT, 2013), it suffices to introduce a library
Φν(X) whose coherence is small enough to obtain the desired RIP constant.

Second, let vi be the i-th column of the matrix Φν(X) and notice that the inner product
between columns i and j is

⟨vi,v j⟩=
1
n

n−1

∑
t=0

(ϕi ·ϕ j)◦ (F t(x(0))).

Using that µ and ν are close, by triangular inequality and the Bernstein-type inequality, see
(HANG; STEINWART, 2017), we control the coherence η(Φν) by approximating it by

∫
ϕi ·

ϕ jdµ . Hence, we can determine a large set of initial conditions such that the RIP of Φν(X) is
less than

√
2−1, see Section 2.7.1.1. Since Φν(X) is RIP, we obtain

Theorem 2.7.1.2 (EBP has unique solution). The convex problem that we call Ergodic
Basis Pursuit

(EBP) min
u∈Rm

∥u∥1 subject to Φν(X)u = x̄, (2.10)

has a unique ωr(s)-sparse solution. That is, cν is the only solution of this minimization
problem when x̄ = Φν(X)cν .

The proof follows from Theorem 2.7.1.1. EBP can be applied as a network reconstruction method.
In terms of the coefficients {c1, . . . ,cN}, we create a weighted edge between node i and j using

Wi j = max
k∈S j

ck
i . (2.11)
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We reconstruct a weighted subgraph using the node i, its neighbors, and the entry’s
magnitude of ci as the edge weight; see details in the Appendix A.1.2.

Remark 2.3.1 (Minimum length of time series for networks). The degree distribution and
the condition in (2.9) can be used to estimate the amount of data that ensures the network
reconstruction.

• Erdős-Rényi (ER) networks. We can apply (2.9) in O(1) for known random networks.
First, note that ωr(s) is a linear function with the sparsity level s, and consequently, it
is a linear function of the degree ∝ ki of the node i. Also, ωr(s) < (r+1)2. The degree
distribution is given by a Poisson distribution, so by concentration inequality (CHUNG;
LU, 2006), most nodes have their degree close to the mean degree ⟨k⟩. Hence, to reconstruct
a typical node in ER networks requires (in O(1)) the minimum length of time series given
by

n0 = O
(
(r+1)4⟨k⟩2 ln(Nr)

)
. (2.12)

Note that ⟨k⟩ = pN, where p is the probability of including an edge in the graph. In
the phase where ER network becomes almost sure connected, p = K lnN/N with K ≥ 1
(CHUNG; LU, 2006). So,

n0 = O
(
(r+1)4 ln(N) ln(Nr)

)
.

• Scale-free networks. In scale-free networks, the same growth scaling (2.12) is valid
for low-degree nodes. However, hubs in Barabási-Albert networks have their degree
proportional to N

1
2 , so it requires

n0 = O
(
(r+1)4⟨k⟩2N ln(Nr)

)
.

• Regular networks. All nodes have the same degree. So, the same growth scaling (2.12) is
valid for any node in the network.

2.3.3 Robust reconstruction

We now extend the EBP to measurements corrupted by noise

y(t) = x(t)+ z(t), (2.13)

where (zn)n≥0 corresponds to independent and identically distributed [−ξ ,ξ ]N-valued noise
process, with probability measure ρξ . The probability measure of the process (yn)n≥0 is the
convolution µξ := µ ∗ ρξ (FOLLAND, 2013), which converges weakly to µ as ξ → 0. We
assume that µξ is estimated using a product measure ν . We use that µξ is close to ν to estimate
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a new bound for the minimum length of the time series ñ0 such that Φν(X) satisfies RIP with
constant δ2ωr(s) ≤

√
2−1.

Since we measure the corrupted data Y instead of X , we use the Mean Value theorem to
deduce that

Φν(Y ) = Φν(X)+Λ(X , Z̄), (2.14)

where ∥Λ(X , Z̄)∥∞ ≤ mNr2K1ξ and K1 depends on the density of the marginals of ν . The noisy
observation in (2.13) can be recast as a perturbed version of the orthonormal version of (2.6)
column-wise

ȳ = Φν(Y )cν + ū, (2.15)

where cν is the coefficient vector associated to the network library Lν and ū is ℓ2 bounded, see
Section 2.8. Thus, we can state our final result:

Theorem 2.8.2 (EBP is robust). If the length of time series n ≥ ñ0, then the family of
solutions {c⋆ν(ε)}ε>0 to the convex problem (which we call the Quadractically constrained
Ergodic Basis Pursuit)

(QEBP) min
ũ∈Rm

∥ũ∥1 subject to ∥Φν(Y )ũ− ȳ∥2 ≤ ε (2.16)

satisfies

∥c⋆ν(ε)− cν∥2 ≤ K2ε (2.17)

for some K2 > 0 as long as ε ≥√
nξ

(
1+mNr2K1∥cν∥∞

)
.

2.3.4 Numerical experiment: coupled logistic maps

To compare the reconstruction performance of the EBP against the classical BP, we
consider coupled logistic maps, f (xi) = axi(1− xi) with a = 3.990, via the pairwise coupling
function h(xi,x j) = xix j with overall coupling strength α = 5×10−4, see Introduction 1. Here,
we consider a different coupling function given by h(xi,x j) = x2

j and analyze for distinct network
structures, see Figure 6. We observe that the EBP method outperforms the basis pursuit on all
occasions. If we compare the profile of the curves, all curves look similar to each other. The
difference is that in b) and d), EBP requires more data to reconstruct the network structure. This
phenomenon was predicted by our estimate in the expression (2.9). Since the maximum degree
is larger, the sparsity level s of the target sparse vector is also larger, implying that n0 grows.
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Figure 6 – Comparison between BP and EBP under different network structures. a) Ring graph
with maximum degree ∆ = 2. b) The minimum length of time series n0 for a successful
reconstruction versus system size N, and similarly in d) and f). c) Lattice graph with maximum
degree ∆ = 6. e) Star graph where the maximum degree grows with the system size. Basis
pursuit (BP) and ergodic basis pursuit (EBP) are shown in (purple) squares and (green)
circles, respectively. The network dynamics parameters are a = 3.990 and coupling strength
α = 1×10−3/∆, so the coupling term in the network dynamics is normalized as we vary N. The
shaded area corresponds to the standard deviation with respect to 10 distinct initial conditions
uniformly drawn in [0,1]N . The Kernel density estimation of ν is used with bandwidth χ = 0.05.
The multivariate time series is generated without noise.
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Figure 7 – Network dynamics of experimental optoelectronic data. a) Original optoelectronic network
with two groups of nodes — dark gray node is marked for future reference. b) Return map
for all nodes in the network. c) Densities function ρi for each node i (in light color) estimated
using each node’s time series. Clustering density estimation displays two resulting densities
corresponding to two groups of nodes, in blue and red. The density estimation utilizes a
Gaussian kernel with bandwidth χ = 0.05.

2.4 Reconstruction of experimental optoelectronic net-
works

The data is generated from a network of optoelectronic units whose nonlinear component
is a Mach-Zehnder modulator (HART et al., 2019). The network is modeled as

x(t +1) = β Iθ (xi(t))−α

17

∑
j=1

Li jIθ (x j(t)) mod 2π, (2.18)

where the normalized intensity output of the Mach-Zehnder modulator is given by Iθ (x) =

sin2(x+ θ), x represents the normalized voltage applied to the modulator, β is the feedback
strength, θ is the operating point set to π

4 and L is the Laplacian matrix — Li j = δi jki −Ai j,
where δi j is the Kronecker delta and ki is the i-th node degree. The experiments were done by
varying the coupling strength between the nonlinear elements in an undirected network, depicted
in Figure 7 a). We will show results for coupling α = 0.171875.

Instead of having access to trajectories from (2.18), we have access to the noisy experi-
mental multivariate time series {y1(t), . . . ,y17(t)}264

t=1, whose return map is depicted in Figure 7
b). Thus, we are naturally in the setting of (2.16) the randomly perturbed version of the EBP.
Typically, for experimental data the noise level ξ is unknown. So, we use the constraint ε in
(2.16) as a parameter to tune and search for the correct incoming connections.

The key idea is as follows. For large values of ε we have that c⋆ν(ε) = 0 is a solution to
(2.16). Next, for moderate values of ε , the coefficients corresponding to the isolated dynamics
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appear in c⋆ν(ε). As we decrease ε , we start observing correct connections that are present over
multiple values of ε . We aim to identify those robust connections. This can be formulated as an
algorithm that we call relaxing path, which is described in Appendix A.1. The algorithm consists
in solving (2.16) for multiple values of ε while checking which entries of c⋆ν(ε) that correspond
to connections persist as ε varies.

To apply these ideas to the experimental data, we first perform a pre-processing. Most of
the data are concentrated in a portion of the phase space with scarce excursions to other parts.
Thus, we first restrict the data to a portion of the phase space mostly filled, see further details
in the Appendix A.2. After this procedure, we obtain a parabolic shape of the return map that
corresponds to the restriction of the original optoelectronic network dynamics F onto the interval
A = [3.4,4.5] over 264-time steps, which we denote F̃ = F |A . Hence, F̃ lies in the span of the
quadratic polynomials, and we use L = {φ

p
i (xi) = xp

i : p = 0,1,2}. To perform a Gram-Schmidt
process, we estimate the ν using all trajectories of a group of nodes through kernel density
estimator, improving the estimate accuracy. We assume dν = ρ1 ×ρ2dxdy is a product of two
densities. Nodes 1 to 5 have the density illustrated in blue, and the remaining nodes have the
density in red in the right panel of Figure 7.

The left panel of Figure 8 displays the relaxing path algorithm probing a node (the
marked dark gray node in Figure 7) for three distinct ε values. For each ε , we use (2.11) to
construct from c⋆ν(ε) the weighted subgraph corresponding to the probed node’s neighbors. As
we vary ε all edge weights decrease in magnitude (edge thickness), in particular false connections
(in orange) that are not robust against variation of ε . In fact, for the smallest ε (in the left) we
observe a few false connections whose edge weights are smaller than the true connections (in
gray). As we increase ε , a few false connections start to vanish. Further increasing ε only the
robust connections are present and the algorithm stops. Since the algorithm is node-dependent,
we quantify the overall reconstruction performance in the parameter interval via a weighted
false link proportion for each node, expressed in the Appendix A.2.3, and then average over all
17 nodes. The right panel of Figure 8 shows that the algorithm identifies the original network
structure successfully within an interval of the parameter ε .

2.5 Mathematical analysis and preliminaries

In the remainder of this paper we prove our main results Theorems 2.6.1, 2.7.1 and
2.8.2. To this end we briefly recall some definitions and established results from compressive
sensing (FOUCART; RAUHUT, 2013) and exponentially mixing dynamical systems (HANG;
STEINWART, 2017).

We introduce the notation [m] := {1,2, . . . ,m}. For a matrix Φ ∈ Rn×m and a subset
S ⊆ [m], ΦS indicates the column submatrix of Φ consisting of the columns indexed by S .
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Figure 8 – Reconstruction of the original network from experimental data. a) Relaxing path algorithm
is performed in the node (in dark gray) from the left panel. There are three different relaxing
parameter values, where the edges are colored accordingly: the true edges (in gray) and false
positives (in orange) while the thickness is the edge weight, see (2.11). b) False positive (FP) (in
orange) and false negative (FN) (in purple) of the reconstructed network versus the parameter
ε . We varied the ε parameter through 25 values equally spaced in the interval E = [0.20,0.33].
We employ ECOS convex optimization solver (DOMAHIDI; CHU; BOYD, 2013) to solve
(2.16).

We denote the transpose of Φ as ΦT . We denote the L2(µ) norm of a function ψ : MN → R as

∥ψ∥µ =
(∫

|ψ(x)|2dµ(x)
)1/2

,

and denote ∥ψ∥∞ := supx∈MN |ψ(x)|. Also, we denote ⌊β⌋ as is the largest number p ∈ N
satisfying p ≤ β .

Let {Mi}i∈[N] be a collection of subsets of R. For J ⊂ [N] denote the canonical projec-
tion by

πJ : MN → ∏
i∈J

Mi. (2.19)

2.5.1 Network library

Consider a network dynamics in (2.1). Suppose that for each i ∈ [N] there exists mi ∈ N
such that the isolated map fi is in the span of the set {φ

p
i : p ∈ [mi]} of functions φ

p
i : Mi → R,

i.e., fi = ∑
mi
p=1 cp

i φ
p
i . We denote the collection of all these functions as

I = {φ
p
i : i ∈ [N], p ∈ [mi]}.

Similarly, for each i, j ∈ [N] there exist mi,m j ∈ N such that the pairwise coupling function
hi j lies in the span of the set {φ

pq
i j : p ∈ [mi],q ∈ [m j]} of functions φ

pq
i j : Mi ×M j → R, i.e.,

hi j = ∑
m j
q=1 ∑

mi
p=1 cpq

i j φ
pq
i j . We denote the collection of all these functions as

P = {φ
pq
i j : i, j ∈ [N], p ∈ [mi],q ∈ [m j]}.

We remove any redundancy in the collections I and P . In particular, we make explicit the
constant function 1 to avoid a trivial redundancy. We define the network library:
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Definition 2.5.1 (Network Library). We call network library the collection of functions

L = {1}∪I ∪P (2.20)

that represent the network dynamics map Fα in (2.1).

The network library can capture the network structure because the basis functions
correspond to pairwise interactions. For the node i dynamics, a nonzero coefficient of φ

pq
i j ∈ L

are associated with an edge between node i and j in the network. More precisely, the node i of
the network is identified by the labeled coordinate on Mi. The following definition identifies the
edge:

Definition 2.5.2 (Edge via Network Library). Let i ∈ [N] and Fi has a representation in L .
Let Li ⊂ L be a subset that contains all necessary basis functions such that Fi ∈ span Li. If
φ

pq
i j ∈ Li for j ∈ [N], p ∈ [mi],q ∈ [m j], then there is an directed edge from j to i.

A priori, the network library has no natural ordering, so that we can introduce an
ordered network library. We choose the following ordering: it first disposes of the constant
function. Then, it is followed by the functions in I , which are ordered fixing the i ∈ [N] and
letting run the index p ∈ [mi]. Finally, the set P is ordered, fixing an element of the index set
{(i, j) ∈ [N]× [N]} (which is organized in lexicographic order) and running through the index set
{(p,q) ∈ [mi]× [m j]} (also organized in lexicographic order), i.e.,

L o = {1,φ 1
1 (x1), . . . ,φ

m1
1 (x1),φ

1
2 (x2), . . . ,φ

m2
2 (x2), . . . ,φ

1
N(xN), . . . ,φ

mN
N (xN),

φ
11
11 (x1,x1), . . . ,φ

mNmN
NN (xN ,xN)}.

(2.21)

We abuse notation and denote the ordered network library simply as L .

We also define an s-sparse representation of the network dynamics Fα in a network
library. Let us define an s-sparse vector.

Definition 2.5.3 (Sparse vector). A vector u ∈Rm is said to be s-sparse if it has at most s nonzero
entries, i.e.,

|{ j ∈ {1, . . . ,m} : u j ̸= 0}| ≤ s.

Each node in the network has its sparsity level in the library, but we consider an upper
bound in the sparsity level to depend only on one parameter s. To make notation easier in next
definition, let L = {φl : MN → R : l ∈ [m]} be the network library, where m is its cardinality.

Definition 2.5.4 (Sparse Network Dynamics Representation). Fα : MN → MN has an s-sparse
representation in L if there exists a set {c1, . . . ,cN} ⊂ Rm of s−sparse vectors such that the
coordinate i ∈ [N] is given by Fi = ∑

m
l=1 cl

iφl , where ci = (c1
i , . . . ,c

m
i ) ∈ Rm.
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2.5.2 Sparse recovery

Here we outline the results of sparse recovery employed in the paper. The next proposition
states an equivalent expression to the restricted isometry constant and restricted isometry property.

Proposition 2.5.4.1. The s−th restricted isometry constant δs is given by

δs = max
S⊂[m],card(S )≤s

∥Φ
T
S ΦS −1s∥2,

ΦS is the submatrix of Φ composed by the columns supported in S ⊂ [m].

Let the coherence of a matrix Φ be given by η(Φ) := maxi ̸= j
∣∣⟨vi,v j⟩

∣∣ defined over
distinct pairs of normalized (Euclidean norm) columns of the matrix Φ. The coherence upper
bounds the restricted isometry constant, and we use this fact in our proof:

Proposition 2.5.4.2 (Coherence bounds restricted isometry constant). If the matrix Φ ∈ Mn×m

has ℓ2-normalized columns {v1, . . . ,vm}, then

δ1 = 0, δ2 = η , δs ≤ η(s−1),s ≥ 2.

Proof. See proof in (FOUCART; RAUHUT, 2013).

The uniqueness of solutions of the ergodic basis pursuit is a consequence of the following
results.

Theorem 2.5.5 (Uniqueness of noiseless recovery (CANDÈS, 2008; FOUCART; RAUHUT,
2013)). Suppose y = Φc where c ∈ Rm is an s−sparse vector. Also, suppose that the 2s-th
restricted isometry constant of the matrix Φ ∈ Mn×m satisfies δ2s <

√
2−1. Then c is the unique

minimizer of

min
u∈Rm

∥u∥1 subject to Φu = y.

Proof. See proof in (CANDES; TAO, 2005; FOUCART; RAUHUT, 2013).

In case of measurement corrupted by noise, the following result holds:

Theorem 2.5.6 (Noisy recovery). Suppose y = Φc+ z with ∥z∥2 ≤ ε , and denote c⋆ the solution
to the convex minimization problem

min
ũ∈Rm

∥ũ∥1 subject to ∥y−Φũ∥2 ≤ ε. (2.22)

Assume that δ2s <
√

2−1. Then the solution to (2.22) obeys

∥c⋆− c∥2 ≤ K0s−1/2∥c− cs∥1 +K1ε,

for constants K0,K1 > 0 and cs denote the vector c with all but the s−largest entries set to zero.

Proof. See proof in (CANDÈS, 2008; FOUCART; RAUHUT, 2013).
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2.5.3 Exponential mixing condition

We consider a class of chaotic dynamical systems — exponentially mixing systems —
that satisfies a concentration inequality obtained in (HANG; STEINWART, 2017). Here, we
state this result applied to network dynamics.

Definition 2.5.7 (Exponential mixing condition). The network dynamics (F,µ) satisfies the
exponential mixing condition for some constant γ > 0 if for all ψ ∈ C 1(MN ;R) and ϕ ∈ L1(µ)

there exists a constant K(ψ,ϕ)> 0 such that∣∣∣∫
MN

ψ · (ϕ ◦Fn)dµ −
∫

MN
ψdµ

∫
MN

ϕdµ

∣∣∣≤ K(ψ,ϕ)e−γn, n ≥ 0. (2.23)

We state an adapted version for network dynamics of the concentration inequality
(HANG; STEINWART, 2017) for C 1(MN ;R) observables.

Theorem 2.5.8 (Bernstein inequality for exponential mixing network dynamics (HANG; STEIN-
WART, 2017).). Let (F,µ) be an exponential mixing network dynamical system on MN for some
constant γ > 0. Moreover, let ψ ∈ C 1(MN ;R) be a function such that

∫
MN ψdµ = 0 and assume

that there exist ς > 0, κ > 0 and σ ≥ 0 such that ∥Dψ∥∞ ≤ ς , ∥ψ∥∞ ≤ κ, and ∥ψ2∥2
µ ≤ σ2. Let

N ⊂ N be defined as

N := [3,∞)
⋂{

p ∈ N : p2 ≥ 808(3ς +κ)
κ

and
p

(ln p)2 ≥ 4
}
.

Then, for all ε > 0 and all

n ≥ n0 := max
{

e
3
γ ,min

N
p
}
, (2.24)

we have

µ

(
x0 ∈ MN :

∣∣∣1
n

n−1

∑
k=0

ψ ◦Fk(x0)
∣∣∣≥ ε

)
≤ 4e−θ(n,ε,σ ,κ), (2.25)

where

θ(n,ε,σ ,κ) :=
nε2

8(lnn)
2
γ (σ2 + εκ/3)

.

2.5.4 Semimetric between probability measures

We consider exponentially mixing systems that have near product structure. To be more
precise, we introduce a semimetric between probabilities measures suitable to our results. Let
M (MN) be the set of probability measures on MN . We introduce a probability semimetric
(RACHEV, 1991) between measures on M (MN) over a reference finite set of functions K that
is composed by functions on the given network library L . In other words, elements of K are
of the form φ

pq
i j ◦πJ with i, j ∈ J ⊂ [N]. They are integrated over a lower dimensional space

than the ambient space MN , which motivates to define a semimetric out of it, rather than using
other metrics on M (MN).
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Definition 2.5.9. For any µ,ν ∈ M (MN) we define the semimetric over a reference network
library L as

dK (µ,ν) = max
ψ∈K

∣∣∣∣∫MN
ψdµ −

∫
MN

ψdν

∣∣∣∣ . (2.26)

dK (µ,ν) is a semimetric and not a metric because: it is symmetric, it satisfies the
triangular inequality, and when µ = ν implies that dK (µ,ν) = 0 but not the converse. Indeed,
consider the set K given by

K = {ψi : Mi → R : i ∈ [N],
∫

ψidxi = 0,ψi(0) = 0},

where we assume that 0∈Mi for any i∈ [N]. Moreover, let δ0 be the Dirac measure at 0. Consider
the following two product measures

µ = LebN
ν = δ

N
0 .

It follows that dK (µ,ν) = 0 but µ ̸= ν .

In what follows in Section 2.7, it is useful to consider the following finite set K =

(L ·L ), where (L ·L ) = {(ψi ·ψ j) : ψi,ψ j ∈ L }, removing any redundancy.

2.5.5 Orthogonal polynomials

We recall some results for orthonormal polynomials. First, let us state an inequality for
orthonormal polynomials in one variable (SZEGÔ, 1939; FTOREK; ORs̋ANSKY, 2014). Here
we consider a system of orthonormal polynomials {ϕp(x)}p≥0 with respect to a measure ν that
is absolutely continuous to Lebesgue, whose density is ρ . Since we are in the one variable case,
the index p corresponds to the degree to which the coefficient xp is positive.

Theorem 2.5.10 (One variable Korous inequality (SZEGÔ, 1939; FTOREK; ORs̋ANSKY,
2014)). Let {ϕp(x)}p≥0 be a generalized system of orthonormal polynomials with respect to
(w.r.t.) the density λ (x) and {ϕ̃p(x)}p≥0 be a system of orthonormal polynomials w.r.t. the
density λ̃ (x) such that

λ (x) = ρ(x)λ̃ (x),

be two weight (density) functions on the segment (a,b), where ρ(x)≥ ρ0 > 0 and ρ is Lipschitz
with constant Lip(ρ). Then the following estimation

|ϕp(x)| ≤
1
ρ0

|ϕ̃p(x)|+
KLip(ρ)

ρ
3/2
0

(|ϕ̃p(x)|+ |ϕ̃p−1(x)|), (2.27)

where ρ0 = minx∈(a,b)ρ(x), x ∈ (a,b) and K = max{|a|, |b|}.

We also recall a result for the product of orthonormal polynomials (DUNKL; XU, 2014).
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Proposition 2.5.10.1 (Proposition 2.2.1 in (DUNKL; XU, 2014)). Let ρ(x1,x2) = ρ1(x1)ρ2(x2),
where ρ1 and ρ2 are two weight functions of one variable. Let {ϕ

p
1 (x1)}∞

p≥0 and {ϕ
q
2 (x2)}∞

q≥0

with p,q ∈ N be sequences of orthogonal polynomials with respect to ρ1 and ρ2, respectively.
Then a mutually orthogonal basis of the space of orthogonal polynomials of degree r with respect
to ρ is given by:

ϕ
pq
12 (x1,x2) = ϕ

p
1 (x1)ϕ

q
2 (x2), 0 ≤ p+q ≤ r.

Furthermore, if {ϕ
p
1 (x1)}∞

p≥0 and {ϕ
q
2 (x2)}∞

q≥0 are orthonormal with respect to ρ1 and ρ2, re-
spectively, then so is ϕ

pq
12 (x1,x2) with respect to ρ .

2.5.6 Gram-Schmidt process

Let ν be a measure on MN that is absolutely continuous with respect to Lebesgue. We
address the problem of ortho-normalizing the ordered network library L with respect to a
measure ν . Let us denote the inner product w.r.t. ν as

⟨φk,φl⟩=
∫

MN
φkφldν ∥φl∥2

ν = ⟨φl,φl⟩. (2.28)

We consider the Gram-Schmidt (GS) process, which is a recursive method given as

ϕ̂1 = φ1

ϕ̂k+1 = φk+1 −
k

∑
l=1

⟨φk+1,ϕl⟩ϕl,

ϕk :=
ϕ̂k

∥ϕ̂k∥ν

, k ≥ 1.

(2.29)

From the ordered network library L the induced library Lν = {ϕk : MN → R : k ∈ [m]} is
given by each k-th orthonormal function written as a linear combination, whose coefficients are
projections on the preceding orthonormal functions.

2.6 Network library is preserved under Gram-Schmidt
process

To ensure that the ergodic basis pursuit has a unique solution, the library matrix used
in the reconstruction must satisfy the restricted isometry property, as defined in Equation (2.8).
However, a priori, the library matrix associated with the network library L , in which Fα has a
sparse representation, does not satisfy RIP. Our strategy is to introduce a new library Lν that is
orthonormal with respect to a suitable measure ν in L2(ν), where the associated library Φν(X)

satisfies RIP.
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2.6.1 The set of pairwise polynomials

We consider a network library given by polynomials in N variables of degree at most r.
This also can be applied to trigonometric polynomials in N variables.

Given r ≥ 2, let us denote the exponent vector set

Vr := {(p,q) ∈ [r−1]2 : p+q ≤ r}, (2.30)

which is organized in graded lexicographic order and denoted as (p′,q′) ≺ (p,q). Moreover,
denote

Ir = {φ
p
i (xi) = xp

i : i ∈ [N], p ∈ [r]},
Pr = {φ

pq
i j (xi,x j) = xp

i xq
j : i, j ∈ [N], i ̸= j,(p,q) ∈ Vr},

where we remove any redundancy. We can unify the notation for both if we denote elements of
Ir as φ

p0
i0 (xi,x j) = xp

i . We define the set of pairwise polynomials in N variables with a degree at
most r

L = {1}∪Ir ∪Pr

= {φ
pq
i j (xi,x j) = xp

i xq
j : i ∈ [N], j ∈ {0}∪ [N], i ̸= j

p = {0}∪ [r],q ∈ {0}∪ [r−1],

p+q ≤ r},

whose cardinality is given by m =
(N

2

)(r
2

)
+Nr + 1. In fact, the independent polynomial 1

contributes with one term. The cardinality of Ir is Nr because for each i ∈ [N] there are r

polynomials in the subset {ϕ
p0
i0 }p∈[r]. Finally, for Pr fix a pair i, j ∈ [N] with i ̸= j. For each

pair, the degree of the pairwise polynomial is p+q = d ∈ [r]. Since they are constrained through
their sum, for each degree d ∈ [r], the first component in the sum p ∈ {1, . . . ,d − 1}, which
also determines the value of q correspondingly. Then, there are total of ∑

r
d=1 d − r possible

combinations. Rewriting it

r

∑
d=1

d − r =
r(r+1)

2
− r

=
r(r−1)

2

=

(
r
2

)
.

Running over all possible distinct pairs i, j, we obtain the total cardinality of Pr equal to
(N

2

)(r
2

)
.

Here we adopt the following ordering: fix j,q = 0 and start with p = 0. Then, for each
i∈ [N], we run through p∈ [r], covering all monomials that depend on one variable. Subsequently,
for each element in {(i, j) ∈ [N]2 : i ∈ [N], j = i+1, . . . ,N} (organized in lexicographic order),
we run through the exponent vector set Vr.
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2.6.2 Network library is preserved

Given a trajectory {x(t)}n
t=0 that is sampled from µα , the natural choice would be to

orthonormalize with respect to µα itself. However, it does not necessarily preserve the sparsity
of the representation of Fα in the network library L . The next theorem states that the GS process
over L with respect to a product measure ν introduces a new network library Lν , and also, Fα

is still sparsely represented in Lν . In this new basis, the sparsity level depends on the maximum
degree r and the sparsity level of the representation in L .

Denote the product measure as ν = ∏
N
i=1 νi and denote

E(xp
i ) =

∫
M

xp
i dνi(xi), i ∈ [N]. (2.31)

Consider the following

Theorem 2.6.1 (Network library is preserved). Let ν be a product measure on MN that is
absolutely continuous with respect to the Lebesgue measure. Gram-Schmidt process maps an
s-sparse representation of Fα in the network library L to an ωr(s)-sparse representation in the
orthonormal network library Lν in L2(ν), with

ωr(s) =
(⌊ r

2

⌋(
r−
⌊ r

2

⌋)
+ r+1

)
s. (2.32)

We divide the proof into two parts: first, we show that the GS process maps the network
library L to another network library Lν that is orthonormal w.r.t. ν . The second part is to
calculate the sparsity level of the representation of Fα in Lν .

2.6.2.1 Proof of Theorem 2.6.1

When we perform the GS process in L2(ν) as in (2.29), to orthonormalize L with respect
to the measure ν , the first element in Lν is evidently 1. Following the order in the network
library L in (2.2), we can show that a general form of all polynomials that depend on only one
variable is given by the proposition below.

Proposition 2.6.1.1 (Formula of orthonormal functions in one variable). Let i ∈ [N] and p ∈ [r].
Then any ϕ

p0
i0 ∈ Lν is given by

ϕ̂
p0
i0 (xi) = xp

i −E(xp
i )−

p−1

∑
l=1

⟨xp
i ,ϕ

l0
i0 ⟩ϕ l0

i0 (xi),

ϕ
p0
i0 (xi) =

ϕ̂
p0
i0 (xi)

∥ϕ̂
p0
i0 ∥ν

,

(2.33)

and

E(ϕ̂ p0
i0 (xi)) = E(ϕ p0

i0 (xi)) = 0. (2.34)
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We prove this statement in two parts. First, we continue the Gram-Schmidt process over
the ordering of L . So, fix i = 1 and run over p ∈ [r]. The next term after the constant function 1
is

ϕ̂
10
10 (x) = φ

10
10 (x1)−⟨φ 10

10 ,1⟩1
= x1 −E(x1),

and consequently, ϕ10
10 (x1) =

ϕ̂10
10 (x1)

∥ϕ̂10
10∥ν

, which satisfies (2.33) and (2.34). To calculate the next

element ϕ20
10 (x1), we follow (2.29):

ϕ̂
20
10 (x1) = φ

20
10 (x1)−⟨φ 20

10 ,1⟩1−⟨φ 20
10 ,ϕ

10
10 ⟩ϕ10

10 (x1)

= x2
1 −E(x2

1)−⟨x2
1,ϕ

10
10 ⟩ϕ10

10 (x1),

and consequently, ϕ20
10 (x1) =

ϕ̂20
10 (x1)

∥ϕ̂20
10∥ν

. Following the ordering, we run over all functions of the

form ϕ
p0
10 , repeating the Gram-Schmidt process (2.29) to show that they satisfy (2.33) and (2.34).

The next functions involve coordinates that are different from i = 1. To prove that these
functions satisfy (2.33) and (2.34), we run a recursive argument. Fix i = 1 and j = 2, and let us
consider the orthogonal function for p ∈ [r] using Gram-Schmidt process:

ϕ̂
p0
20 (x2) = xp

2 −E(xp
2)−

r

∑
l=1

⟨xp
2 ,ϕ

l0
10⟩ϕ l0

10(x1)−
p−1

∑
l=1

⟨xp
2 ,ϕ

l0
20⟩ϕ l0

20(x2).

Note that if all inner products of the form ⟨xp
2 ,ϕ

l0
10⟩ are zero, above equation satisfies (2.33). We

state the following lemma:

Lemma 2.6.2. Let i, j ∈ [N], p,q ∈ [r]. Suppose that ϕ
p0
i0 is an orthonormal polynomial with

respect to ν , i.e., it satisfies (2.33) and ϕ
p0
i0 ∈ Lν . Then,

⟨φ q0
j0 ,ϕ

p0
i0 ⟩= 0.

whenever i ̸= j.

Proof. By Fubini’s theorem, we have that

⟨φ q0
j0 ,ϕ

p0
i0 ⟩=

∫
MN

φ
q0
j0 (x j)ϕ

p0
i0 (xi)dν(x1, . . . ,xN)

= ⟨φ q0
j0 ,1⟩⟨ϕ

p0
i0 ,1⟩.

Since ϕ
p0
i0 satisfies (2.33), it is orthonormal to 1, and the claim holds.

We use above Lemma 2.6.2 to the inner product ⟨xp
2 ,ϕ

l0
10⟩, where ϕ l0

10 satisfies (2.33). We
conclude that for any p ∈ [r]: ϕ

p0
20 also satisfies (2.33) and (2.34). We run iteratively, choosing

i ≥ 2 and j = i+1, and repeating the argument to conclude the proof of Proposition 2.6.1.1.

For polynomials involving two variables, it is enough to construct them from the or-
thonormal polynomials in one variable as follows:
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Proposition 2.6.2.1 (Formula of orthonormal functions in two variables). Let r ≥ 2, i, j ∈ [N]

with i ̸= j and (p,q) ∈ Vr. Then

ϕ
pq
i j (xi,x j) = ϕ

p0
i0 (xi)ϕ

q0
j0 (x j). (2.35)

Proof. The measure ν = ∏
N
i=1 νi. For each marginal νi, let ρi be the density function. Then, we

apply Proposition 2.5.10.1 for every distinct pair of nodes i, j ∈ [N].

To construct Lν we combine Proposition 2.6.1.1 and Proposition 2.6.2.1. The Gram-
Schmidt process induces a set of orthonormal polynomials in one variable that satisfies the
ordering of L . The ordering of polynomials in two variables in Lν also satisfies, by construction,
the ordering in L . This proves the first part of Theorem 2.6.1.

To prove the second part of the theorem, we also use that Lν is constructed via the
Gram-Schmidt process. Let u,uν ∈ Rm be vectors with m =

(N
2

)(r
2

)
+Nr+1 given by

u = (1,x1, . . . ,xr
1,x2, . . . ,xr

2, . . . ,x1x2, . . . ,xN−1xr
N)

and

uν = (1,ϕ10
10 (x1), . . . ,ϕ

r0
10(x1),ϕ

10
20 (x2), . . . ,ϕ

r0
20(x2), . . . ,

ϕ
11
12 (x1,x2), . . . ,ϕ

r−1,1
N−1,N(xN−1,xN)).

Each coordinate of u is an element of L that can be written as a linear combination of elements
in Lν . In fact, we rewrite (2.33) as

xp
i = ∥ϕ̂

p0
i0 ∥νϕ

p0
i0 (xi)+E(xp

i )+
p−1

∑
l=1

⟨xp
i ,ϕ

l0
i0 ⟩ϕ l0

i0 (xi), (2.36)

which expresses the polynomials in one variable as a linear combination of orthonormal polyno-
mials in one variable. For the two variables polynomials of the form xp

i xq
j , we replace each term

in the multiplication by (2.36) and

1. Replace any multiplication of orthonormal polynomial of the form ϕ
p0
i0 (xi)ϕ

q0
j0 (x j) by the

orthonormal polynomial in two variables Equation (2.35).

2. Use these identities that follow from Fubini’s theorem:

⟨xp
i ,ϕ

l0
i0 ⟩⟨xq

j ,ϕ
k0
j0 ⟩= ⟨xp

i xq
j ,ϕ

lk
i j ⟩,

E(xp
i )⟨x

q
j ,ϕ

k0
j0 ⟩= ⟨xp

i xq
j ,ϕ

k0
j0 ⟩

and

∥ϕ̂
p0
i0 ∥ν∥ϕ̂

q0
j0 ∥ν = ∥ϕ̂

pq
i j ∥ν .



2.6. Network library is preserved under Gram-Schmidt process 59

Then, we can recast the Gram-Schmidt process as the following linear equation

uT = uT
ν Rν , (2.37)

where T denotes the transpose and Rν ∈ Rm×m is a triangular matrix given as

Rν =

1 V1 V2

0 U1 U1
2

0 0 U2

 . (2.38)

Here V1 ∈ RrN and V2 ∈ R(
N
2)(

r
2) are given by

V1 =
(

v1 v2 . . . vN

)
V2 =

(
v12 v13 . . . vN−1,N

)
,

where for each i, j ∈ [N] with i ̸= j, vi ∈ Rr and vi j ∈ R(
r
2):

vi =
(
E(xi), . . . ,E(xr

i )
)

and

vi j =
(
E(xi)E(x j),E(xi)E(x2

j),E(x2
i )E(x j), . . . ,E(xr−1

i )E(x j)
)
.

Also, U1 ∈ RNr×Nr and U2 ∈ R(
N
2)(

r
2)×(

N
2)(

r
2) are block diagonal matrices defined as follows:

U1 = diag
(

U1, . . . ,UN

)
U2 = diag

(
U12, . . . ,UN−1,N

)
,

where for each i, j ∈ [N], Ui ∈ Rr×r and Ui j ∈ R(
r
2)×(

r
2) are given by

Ui =


∥ϕ̂10

i0 ∥ν ⟨x2
i ,ϕ

10
i0 ⟩ . . . ⟨xr

i ,ϕ
10
i0 ⟩

0 ∥ϕ̂20
i0 ∥ν . . . ⟨xr

i ,ϕ
20
i0 ⟩

... . . . . . . ...
0 . . . 0 ∥ϕ̂r0

i0 ∥ν



Ui j =



∥ϕ̂11
i j ∥ν ∥ϕ̂10

i0 ∥ν⟨xi,ϕ
10
j0 ⟩ ∥ϕ̂10

j0 ∥ν⟨x2
i ,ϕ

10
i0 ⟩ . . . ∥ϕ̂10

j0 ∥ν⟨xr−1
i ,ϕ10

i0 ⟩
0 ∥ϕ̂12

i j ∥ν 0 . . . 0
0 0 ∥ϕ̂21

i j ∥ν . . . ∥ϕ̂10
j0 ∥ν⟨xr−1

i ,ϕ20
i0 ⟩

...
... 0 . . . ...

0 . . . 0 0 ∥ϕ̂
r−1,1
i j ∥ν


,

and U1
2 ∈ RNr×(N

2)(
r
2) is a block matrix

U1
2 =



U1
12 U1

13 . . . 0
U2

12 0 . . . 0

0 U3
13 . . .

...
... . . . . . . UN−1

N−1,N

0 . . . 0 UN
N−1,N


,
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where for each i ∈ [N], j = i, . . . ,N:

U i
i j =


∥ϕ̂10

i0 ∥νE(x j) ∥ϕ̂10
i0 ∥νE(x2

j) ⟨x2
i x j,ϕ

10
i0 ⟩ . . . ⟨xr−1

i x j,ϕ
10
i0 ⟩

0 0 ∥ϕ̂20
i0 ∥νE(x j) . . . ⟨xr−1

i x j,ϕ
20
i0 ⟩

...
... . . . ...

0 0 . . . ∥ϕ̂
(r−1)0
i0 ∥νE(x j)

 ∈ Rr×(r
2)

U j
i j =


E(xi)∥ϕ̂10

j0 ∥ν ⟨xix2
j ,ϕ

10
j0 ⟩ E(x2

i )∥ϕ̂10
j0 ∥ν . . . E(xr−1

i )∥ϕ̂10
j0 ∥ν

0 ∥ϕ̂10
i0 ∥νE(x2

j) 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0

 ∈ Rr×(r
2).

Linear equation (2.37) is valid for every point x ∈ MN . Hence, evaluating along the trajectory
{x(t)}n

t=0 we obtain:

Φ(X) = Φν(X)Rν . (2.39)

Consider an s-sparse representation in L , then there is an s-sparse vector c ∈ Rm such that

x̄ = Φ(X)c,

where we dropped the dependence on the node i ∈ [N] for a moment. Note that Lν is also a set
of basis functions, so there exists a cν such that

Φ(X)c = Φν(X)cν .

(2.39) implies that cν = Rνc. Since cν is the linear combination of s columns of Rν , the sparsity
level of cν is given by the number of non-zero entries of Rν multiplied by the sparsity level s of
c.

The sparsity of Rν columns can be upper bounded by counting the non-zero entries of
columns in the block matrices involving the pairwise interaction. It is enough to calculate the
maximum number of elements in the multiplication xp

i xq
j using (2.36) for all combinations of

p,q ∈ [r−1] with p+q ≤ r. More precisely, for a p in (2.36) there is a linear combination of
p+1 elements of Lν . Then, in the multiplication xp

i xq
j there are at maximum

ωr = max
p,q∈[r−1],p+q≤r

(p+1)(q+1),

which has the following expression

ωr =
⌊ r

2

⌋(
r−
⌊ r

2

⌋)
+ r+1.

So, cν is an ωr(s)-sparse vector with ωr(s) =
(⌊ r

2

⌋(
r−
⌊ r

2

⌋)
+ r+1

)
s.

We repeat the same argument for each i∈ [N] separately, concluding the proof of Theorem
2.6.1.
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2.6.3 Bounds for orthonormal polynomials

In the next section, we will need bounds of orthonormal polynomials with respect to the
product measure ν . We focus on the one variable case because, as we have seen in the previous
section, it suffices to analyze this case.

First, note that: consider a system of orthonormal polynomials {ψp(z)}p≥0 with weight
(density) function λ (z) defined on the interval [a2,b2]⊂ R. The linear transformation T (x) =

αx+β with α ̸= 0 maps an interval [a1,b1]⊂ R onto the interval [a2,b2], and λ ◦T (x) into λ ,
then the polynomials

{sgn(α)p|α| 1
2 ψp ◦T (x)}p≥0

are orthonormal on [a1,b1] with the weight function λ ◦T (x).

Consider the set of Legendre polynomials {Lp(z)}p≥0 which is defined on [−1,1] with
λ (z) = 1. From the above remark, any Legendre polynomial {L̂p(x)}p≥0 defined in an arbitrary
interval [a,b] is given by

{
L̂p(x) := sgn(

2
b−a

)p
∣∣∣∣ 2
b−a

∣∣∣∣ 1
2

Lp
( 2

b−a
(x−b)+1

)}
p≥0

(2.40)

with weight λ
( 2

b−a(x−b)+1
)
= 1. Note that ∥Lp∥∞ ≤ 1 (SZEGÔ, 1939), consequently,

∥L̂p∥∞ ≤
( 2

b−a

) 1
2∥Lp∥∞ ≤

( 2
b−a

) 1
2
.

We apply the above observation to our case, using the Korous inequality for orthonormal
polynomials 2.5.10. See the following:

Proposition 2.6.2.2 (Supremum norm of orthonormal polynomials in one variable). For a given
i ∈ [N] let Mi = [a,b] ⊂ R with b > a. Consider the one variable orthonormal polynomials
{ϕ

p0
i0 (xi)}p∈[r] with respect to νi, which is the one-dimensional marginal of the product measure

ν . Suppose that νi is absolutely continuous with respect to Lebesgue and its density ρi is at least
Lipschitz with constant Lip(ρi). Moreover, ρi(xi)> 0 for any xi ∈ Mi. The following holds:

∥ϕ
p0
i0 ∥∞ ≤

( 1
ρ0

+2
a1Lip(ρ)

ρ
3/2
0

)( 2
b−a

) 1
2
, p ∈ [r],

where ρ0 = mini∈[N]{minx∈[a,b]ρi(x)}, a1 = max{|a|, |b|} and Lip(ρ) = maxi∈[N]Lip(ρi). More-
over,

∥Dϕ
p0
i0 ∥∞ ≤

( 1
ρ0

+2
a1Lip(ρ)

ρ
3/2
0

)( 2
b−a

)
r2.

Proof. Consider the system {L̂p(x)}p∈[r] of Legendre polynomials as in (2.40) defined on Mi.
Also, consider the orthonormal polynomials {ϕ

p0
i0 (xi)}p∈[r] with respect to νi, which is given by
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dνi(x) = ρi(xi)dLeb(xi) = ρi(xi)λ
( 2

b−a(xi −b)+1
)
dxi. Then, we apply Korous inequality for

orthonormal polynomials 2.5.10. Additionally, using Markov’s inequality for polynomials

∥Dϕ
p0
i0 ∥∞ ≤

( 2
b−a

)
r2∥ϕ

p0
i0 ∥∞,

and the result holds.

Corollary 2.6.3 (Supremum norm of orthonormal polynomials in two variables). Let r ≥ 2,
i, j ∈ [N] with i ̸= j and (p,q) ∈ Vr. Then

∥ϕ
pq
i j ∥∞ ≤

( 1
ρ0

+2
a1Lip(ρ)

ρ
3/2
0

)2( 2
b−a

)
and

∥Dϕ
pq
i j ∥∞ ≤ 2

( 1
ρ0

+2
a1Lip(ρ)

ρ
3/2
0

)2( 2
b−a

) 3
2
r2.

Proof.

∥ϕ
pq
i j ∥∞ = sup

xi,x j∈(a,b)
|ϕ pq

i j (xi,x j)| ≤ ∥ϕ
p0
i0 ∥∞∥ϕ

q0
j0 ∥∞,

and for the derivative, we calculate

∥Dϕ
pq
i j ∥∞ = sup

xi,x j∈(a,b)
|Dϕ

pq
i j (xi,x j)| ≤ ∥Dϕ

p0
i0 ∥∞∥ϕ

q0
j0 ∥∞ +∥ϕ

p0
i0 ∥∞∥Dϕ

q0
j0 ∥∞.

The result holds applying Proposition 2.6.2.2.

From here on, for short notation, we denote

K = K(Lip(ρ),ρ0)≡
( 1

ρ0
+2

a1Lip(ρ)

ρ
3/2
0

)2( 2
b−a

)
. (2.41)

2.7 Ergodic Basis Pursuit has a unique solution
In this section, we present our main result of the paper. We use the exponential mixing

conditions of the network dynamics to estimate the minimum length of time series such that
the ergodic basis pursuit has a unique solution. Here we avoid the multi-index notation in L

and Lν used in the previous section and instead employ the notation that makes explicit the
ordering index as φl : MN →R with l ∈ [m]. More precisely, in an explicit form, we say that each
φl corresponds to a function of the form φ

pq
i j ◦πJ for a particular J ⊂ [N] with i, j ∈ J . Also,

we use the distance between probability measures introduced in 2.5.4.

Theorem 2.7.1. Let (Fα ,µα) be an exponential mixing network dynamical system on MN with
decay exponent γ > 0 uniform on N. Let ν = ∏i∈[N]νi ∈ M (MN) be a product probability
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measure and absolutely continuous w.r.t. Lebesgue. Let Lν be the orthonormal network library
with respect to ν and cardinality m =

(N
2

)(r
2

)
+Nr+1. Let K = (Lν ·Lν) and ωr(s) satisfies

(2.32). Suppose that given α > 0 there is ζ ∈ (0,
√

2−1
2ωr(s)+

√
2−2

) such that dK (ν ,µα)< ζ and each
one-dimensional marginal νi has Lipschitz density ρi with constant Lip(ρ) = maxi∈[N]Lip(ρi)

and ρ0 = mini∈[N]{minx∈Mi ρi(x)}> 0. Then:

1. [Φν(X) satisfies RIP] Given λ ∈ (0,1) there exists set of initial conditions G ⊂ MN with
probability µα(G )≥ 1−λ if the length of time series n satisfies

n ≥ K1
(2ωr(s)+

√
2−2)2(√

2−1−ζ (2ωr(s)+
√

2−2)
)2 ln

(4m(m−1)
λ

)
, (2.42)

for some positive constant K1 =K1(Lip(ρ),ρ0), then Φν(X) satisfies the RIP with constant
δ2ωr(s) ≤

√
2−1.

2. [EBP has unique solution] Consider that the length of time series n satisfies (2.42). Let
x̄ = Φν(X)cν where cν ∈ Rm is an ωr(s)-sparse vector and consider the set Fx̄ = {w ∈
Rm : Φν(X)w = x̄}. Then cν is the unique minimizer of the ergodic basis pursuit:

(EBP) min
u∈Fx̄

∥u∥1. (2.43)

The above theorem has an asymptotic expression for sufficient large networks and small
ζ to a simpler condition on the length of time series:

Corollary 2.7.2. For sufficiently large N > 0, if the length of time series n satisfies

n ≥ n0 =
20K1ω2

r (s)
(
√

2−1)2
ln(Nr)+O(ζ )+O(

1
Nr

). (2.44)

then with probability at least 1− 4
Nr the restricted isometry constant δ2ωr(s) ≤

√
2−1.

Proof. Assume that (2.42) holds. Recall that m =
(N

2

)(r
2

)
+Nr+1, then m < (Nr+1)2. Given

λ ∈ (0,1) there exists N0 > 0 such that for any N ≥ N0: 4
Nr ≤ λ . Then, the following holds

ln
(4m(m−1)

λ

)
< ln

(4(Nr+1)2

λ

)
= ln

(4(Nr)4(1+ 1
Nr )

4

λ

)
≤ ln(Nr)5(1+

1
Nr

)4

= ln(Nr)5 +O(
1

Nr
).

Also, for ζ ∈ (0,
√

2−1
2ωr(s)+

√
2−2

), we can expand in geometric series:

1
(
√

2−1−ζ (2ωr(s)+
√

2−2))2
=

1

(
√

2−1)2(1− ζ (2ωr(s)+
√

2−2)√
2−1

)2

=
1

(
√

2−1)2
(1+O(ζ )).
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So, we obtain the claim.

We split proof of Theorem 2.7.1 in steps detailed in the sections below. First, we show
that the Bernstein-like inequality applied to (Fα ,µα) implies that there exists n0 such that the
library matrix Φν(X) associated to ν has the desired restricted isometry constant. Then, we apply
Theorem 2.5.5 to demonstrate that the ergodic basis pursuit in (2.43) has a unique solution.

2.7.1 Network library matrix satisfies RIP

We begin this section by proving an auxiliary lemma that will be used later.

Lemma 2.7.3. Let ν = ∏i∈[N]νi ∈M (MN) be a product probability measure. Suppose that each
one-dimensional marginal νi is absolutely continuous w.r.t. Lebesgue and its density is Lipschitz
with constant Lip(ρ) and ρ0 = mini∈[N]{minx∈Mi ρi(x)}> 0. Let Lν be the orthonormal network
library and K = (Lν ·Lν). Given α > 0 and ζ > 0 sufficiently small, suppose that dK (ν ,µα)<

ζ . Denote (ψi ·ψ j) = (ϕi ·ϕ j)−
∫

MN (ϕi ·ϕ j)dµα . Then, the following holds:

1. maxi, j ∥(ψi ·ψ j)∥∞ ≤ 2max{1,K2}.

2. maxi, j ∥(ψi ·ψ j)∥2
µα

≤ max{1,K4}+(1+ζ )2,

where K > 0 is the positive constant in (2.41).

Proof. To prove item 1, note that:

∥(ψi ·ψ j)∥∞ ≤ ∥(ϕi ·ϕ j)∥∞ +
∫

|(ϕi ·ϕ j)|dµα

≤ 2∥(ϕi ·ϕ j)∥∞.

To calculate the sup norm of the product of two orthonormal polynomials in Lν , we consider
the notation of the previous section in the following cases:

(ϕi ·ϕ j) =



(1 ·1),
(1 ·ϕ p0

i0 ),

(1 ·ϕ pq
i j ),

(ϕ p0
i0 ·ϕql

jk),

(ϕ
pq
i j ·ϕ ln

km).

By Proposition 2.6.2.2 and Corollary 2.6.3,

∥(ϕi ·ϕ j)∥∞ =

max{K
1
2 ,K,K

3
2 ,K2}, i ̸= j

max{1,K,K2}, i = j.
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A priori, the constant K is a given positive number, so it is enough to consider ∥(ψi ·ψ j)∥∞ ≤
max{1,K2}, proving item 1.

To prove item 2, note that given∣∣∣∣∫MN
(ϕi ·ϕ j)dµα −

∫
MN

(ϕi ·ϕ j)dν

∣∣∣∣≤ dK (ν ,µα)≤ ζ .

Consequently, by the triangular inequality

∣∣∣∣∫MN
(ϕi ·ϕ j)dµα

∣∣∣∣≤
1+ζ , i = j

ζ , otherwise.

Then to prove the statement suffices to use item 1 above:

∥(ϕi ·ϕ j)∥2
µα

=

∣∣∣∣∫ (ϕi ·ϕ j)
2dµα −

(∫
ϕ

2
i dµα

)2
∣∣∣∣

≤ ∥(ϕi ·ϕ j)∥2
∞ +(1+ζ )2

≤ max{1,K4}+(1+ζ )2.

2.7.1.1 Proof of Theorem 2.7.1.1

The following proposition proves that the matrix Φν attains the desired RIP constant
once the length of time series is given by (2.45).

Proposition 2.7.3.1. Consider the setting of Theorem 2.7.1. Given δ ∈ (0,1) and α > 0, suppose
that there is ζ ∈ (0, δ

δ+ωr(s)−1) such that dK (ν ,µα)< ζ . Then, given λ ∈ (0,1) there exists a
set of initial conditions G ⊂ MN with probability µα(G )≥ 1−λ such that

n ≥ K1
(δ +ωr(s)−1)2

(δ −ζ (δ +ωr(s)−1))2 ln
(4m(m−1)

λ

)
(2.45)

for a positive constant K1, then the restricted isometry constant δωr(s) of Φν(X) satisfies δωr(s) ≤
δ .

Proof. We develop the argument for a coordinate of Fα . Let

ui :=
1√
n


ϕi(x0)

...
ϕi(Fn−1

α (x0))

 u j :=
1√
n


ϕ j(x0)

...
ϕ j(Fn−1

α (x0))


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be the i-th and j-th columns of the matrix Φν(X) ∈ Rn×m for an arbitrary initial condition
x0 ∈ MN , and their inner product

⟨ui,u j⟩=
1
n

n−1

∑
k=0

ϕi(Fk
α(x0))ϕ j(Fk

α(x0))

=
1
n

n−1

∑
k=0

(ϕi ·ϕ j)◦ (Fk
α(x0))

=:
1
n

Sn(ϕi ·ϕ j)(x0).

We aim to estimate this inner product using the inner product in L2(ν). By triangular inequality,
we know that:∣∣∣∣1nSn(ϕi ·ϕ j)(x0)−

∫
MN

(ϕi ·ϕ j)dν

∣∣∣∣≤ ∣∣∣∣1nSn(ϕi ·ϕ j)(x0)−
∫

MN
(ϕi ·ϕ j)dµα

∣∣∣∣+∣∣∣∣∫MN
(ϕi ·ϕ j)dµα −

∫
MN

(ϕi ·ϕ j)dν

∣∣∣∣︸ ︷︷ ︸
|hi j|

.
(2.46)

We introduce a variant of (ϕi ·ϕ j) to have zero mean with respect to µα , i.e., let us denote
(ψi ·ψ j) = (ϕi ·ϕ j)−

∫
MN (ϕi ·ϕ j)dµα and by hypothesis,

|hi j|=
∣∣∣∣∫MN

(ϕi ·ϕ j)dµα −
∫

MN
(ϕi ·ϕ j)dν

∣∣∣∣
≤ dK (ν ,µα)

≤ ζ .

(2.47)

Then, we split into two distinct cases that run in parallel:

1. i ̸= j:
∫

MN (ϕi ·ϕ j)dν = 0, consequently, using (2.47) we conclude that follows∣∣∣∣1nSn(ϕi ·ϕ j)(x0)

∣∣∣∣≤ ∣∣∣∣1nSn(ψi ·ψ j)(x0)

∣∣∣∣+ |hi j| ≤
∣∣∣∣1nSn(ψi ·ψ j)(x0)

∣∣∣∣+ζ . (2.48)

2. i = j: we have
∫

MN ϕ2
i dν = 1, and consequently, in (2.46), we obtain∣∣∣∣1nSn(ϕ

2
i )(x0)−1

∣∣∣∣≤ ∣∣∣∣1nSn(ψ
2
i )(x0)

∣∣∣∣+ζ .

By the triangular inequality, we conclude that∣∣∣∣1nSn(ϕ
2
i )(x0)

∣∣∣∣≥ 1−
∣∣∣∣1nSn(ψ

2
i )(x0)

∣∣∣∣−ζ . (2.49)

Note that (ψi ·ψ j) and ψ2
i are given by a finite linear combination of elements in L , and

consequently, the subsets with cardinality
(m

2

)
and m, respectively, satisfy

K1 = {(ψi ·ψ j) : i, j = 1, . . . ,m, i ̸= j} ⊂ C 1(MN ;R) (2.50)
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and

K2 = {ψ
2
i : i = 1, . . . ,m} ⊂ C 1(MN ;R). (2.51)

Choose κ > 0, ς > 0 and σ > 0 such that

κ := max{max
i ̸= j

∥(ψi ·ψ j)∥∞,max
i∈[m]

∥ψ
2
i ∥∞},

ς := max{max
i ̸= j

∥D(ψi ·ψ j)∥∞,max
i∈[m]

∥Dψ
2
i ∥∞},

σ
2 := max{max

i ̸= j
∥(ψi ·ψ j)∥2

µα
,max

i∈[m]
∥ψ

2
i ∥2

µα
}.

(2.52)

By the Bernstein inequality in Theorem 2.5.8, for η0 > 0 and n ≥ n0(κ,ς ,σ ,γ), which is defined
in (2.24), if we define

O1 =
⋃
i̸= j

{
x0 ∈ MN :

∣∣∣∣1nSn(ψi ·ψ j)(x0)

∣∣∣∣≥ η0

}
O2 =

⋃
i∈[m]

{
x0 ∈ MN :

∣∣∣∣1nSn(ψ
2
i )(x0)

∣∣∣∣≥ η0

}
,

then

µα(O1)≤ 4
(

m
2

)
e−θ(η0,n,σ ,κ) and µα(O2)≤ 4me−θ(η0,n,σ ,κ).

We are interested in the case µα(O) = µα(O1 ∪O2)

µα(O)≤ 4
(

m
2

)
e−θ(η0,n,σ ,κ)+4me−θ(η0,n,σ ,κ)

≤ 8
(

m
2

)
e−θ(η0,n,σ ,κ).

For the given λ ∈ (0,1) the set Oc ⊂ MN of initial conditions, whose Birkhoff sum satisfies the
desired precision η1, has measure µα(Oc)≥ 1−λ whenever

n
(lnn)2 ≥ 8

η2
0
(σ2 +κ

η0

3
) ln
( 8

λ

(
m
2

))
. (2.53)

Instead of (2.53), one usually prefers a condition that features only n on the left-hand side.
First, note that whenever n ≥ n0 implies that n ∈ N in (2.24), and consequently, the function
t 7→ t/(ln t)2 is monotonic for values in N . So, the condition in (2.53) is in fact implied by

n ≥ 8
η2

0
(σ2 +κ

η0

3
) ln
(4m(m−1)

λ

)
. (2.54)

For any n satisfying the bound in (2.54), we can normalize any two distinct columns vectors ui

and u j, which we denote vi and v j, respectively. So, we can estimate the coherence of the matrix
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Φν(X) for any x0 ∈ Oc using (2.48) and (2.49)

η(Φν) := max
i̸= j

|⟨vi,v j⟩|= max
i ̸= j

|⟨ui,u j⟩|
∥ui∥2∥u j∥2

= max
i ̸= j

∣∣∣1
nSn(ϕi ·ϕ j)(x0)

∣∣∣∣∣∣1
nSn(ϕ2

i )(x0)
∣∣∣ 1

2
∣∣∣1

nSn(ϕ2
j )(x0)

∣∣∣ 1
2

≤ η0 +ζ

1− (η0 +ζ )
,

which is valid for a η0 such that η0 + ζ < 1. Finally, the desired restricted isometry constant
is attained because the coherence upper bounds the restricted isometry constant of the matrix
Φν(X) by Proposition 2.5.4.2. So, for the given δ ∈ (0,1), we choose

η0 =
δ −ζ (δ +ωr(s)−1)

δ +ωr(s)−1
(2.55)

that is positive as long as ζ ∈ (0, δ

δ+ωr(s)−1). To obtain the desired bounds on the length of the
time series, note that η0 ∈ (0,1). Also, we use Lemma 2.7.3 in order to bound σ2 and κ in
(2.52). Consequently, the condition in (2.53) is also implied by

n ≥ 8
η2

0
(max{1,K4}+(1+ζ )2 +

2
3

max{1,K2}) ln
(4m(m−1)

λ

)
,

which can also be implied by

n ≥ K1

η2
0

ln
(4m(m−1)

λ

)
, (2.56)

with K1 := 8(max{1,K4}+4+ 2
3 max{1,K2}). Replacing (2.55) in (2.56), we obtain the result.

Lemma 2.7.4. Let cν ∈ Rm be a ωr(s)−sparse vector. If the length of time series n satisfies
(2.42), then EBP in (2.43) has cν as its unique solution.

Proof. Combining Proposition 2.7.3.1 with Theorem 2.5.5 suffices.

2.7.2 Ergodic basis pursuit has a sufficient infeasibility condition

Since Theorem 2.7.1 ensures that EBP has a unique solution, we can also prove an
additional result.

Proposition 2.7.4.1 (Sufficient infeasibility condition). Consider that the length of time series
n satisfies (2.42). Let x̄ = Φν(X)cν where cν ∈ Rm is an ωr(s)-sparse vector and consider
the set Fx̄ = {w ∈ Rm : Φν(X)w = x̄}. Given a set U ⊆ [m] where U ∩ supp(cν) ̸= /0. Then
U ⫋ supp(cν) if and only if

Fx̄
⋂
{w ∈ Rm : supp(w) = U }= /0. (2.57)
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Proof. Let us assume that I ⫋ supp(cν). We will prove this by contradiction. Suppose there is
a vector w ̸= 0 in the intersection (2.57) and is given by

w = (w1, . . . ,wωr(s)−1,0, . . . ,0)

as opposed to the ωr(s)-sparse vector c,

cν = (c1, . . . ,cωr(s),0, . . . ,0),

so, the vector w has ωr(s)−1 nonzero entries. Since w ∈ Fx̄, we have

Φν(X)w = Φν(X)cν .

Consequently,

Φν(X)(w− cν) = 0.

But the Φν(X) satisfies RIP with constant δ2ωr(s) <
√

2− 1. Since w− cν is an ωr(s)-sparse
vector, we calculate

∥Φν(X)(w− cν)∥2
2 ≥ (1−δ2ωr(s))∥w− cν∥2

2 > 0.

So, we conclude that this is only possible when w = c, which is a contradiction since c is not in
the intersection, and the claim follows.

The other direction we prove by contrapositive. We contradict I ⫋ supp(cν). Since
I must have an intersection with supp(cν), then suppose that supp(cν)⊆ I . The intersection
(2.57) is non-empty, since the sparse vector cν is an element of the set. This proves the claim,
and the statement follows.

2.8 Noise measurement case
Here, we extend the Ergodic Basis Pursuit to reconstruct the network from corrupted

measurements

y(t) = x(t)+ z(t), (2.58)

such that (zn)n≥0 corresponds to independent and identically distributed [−ξ ,ξ ]N-valued noise
process for ξ ∈ (0,1) with probability measure ρξ . Let the convolution µα,ξ = µα ∗ρξ be the
probability measure of the process (yn)n≥0 (FOLLAND, 2013) and the matrix Ȳ be the noisy
data

Ȳ =


y1(1) · · · yN(1)

... . . . ...
y1(n) · · · yN(n)

 . (2.59)
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The next theorem assumes that there exists a product measure νξ sufficiently close to the measure
µα,ξ . Thus, the s-sparse vector c ∈ Rm corresponding to the representation in L is mapped to
cνξ

which represents the network dynamics in Lνξ
, i.e., it satisfies x̄ = Φνξ

(X)cνξ
. Here, we also

introduce another convex minimization problem in terms of Φνξ
(Y ) evaluated along the process

(yn)n≥0. We show that the family of solutions of this minimization problem is parametrized by
the noise level in such way that approximates the sparse vector cνξ

.

Here, we rewrite the interval bounds: for a given i ∈ [N] let Mi,ξ = [a− ξ ,b+ ξ ] ⊂ R
with b > a and ξ ∈ (0,1). Then, consider the following:

Hypothesis 2.8.1. Let νξ = ∏i∈[N]νi,ξ ∈ M (MN +[−ξ ,ξ ]N) be a product probability measure
and absolutely continuous w.r.t. Lebesgue. Suppose that given a sufficiently small ξ > 0, each one-
dimensional marginal νi,ξ has Lipschitz density ρi,ξ with constant Lip(ρξ ) = maxi∈[N]Lip(ρi,ξ )

and ρ0,ξ = mini∈[N]{minx∈Mi,ξ ρi,ξ (x)}> 0.

Theorem 2.8.2 (Noise reconstruction case). Consider the setting of Theorem 2.7.1 and Hypothe-
sis 2.8.1. Let Lνξ

= {ϕl}m
l=1 be the orthonormal ordered network library with respect to νξ and

K = (Lνξ
·Lνξ

). Suppose that given α > 0 there is ζ ∈ (0,
√

2−1
2ωr(s)+

√
2−2

−K1r2ξ ) such that
dK (νξ ,µα,ξ )< ζ for a positive constant K1 = K1(Lip(ρξ ),ρ0,ξ ,ξ ). Then

1. [Φν(Y ) satisfies RIP] Given λ ∈ (0,1) there exists a set of initial conditions G ⊂ MN with
probability µα(G )≥ 1−λ such that if the length of time series n satisfies

n ≥ K2
(2ωr(s)+

√
2−2)2

(
√

2−1− (ζ +K1r2ξ )(2ωr(s)+
√

2−2))2
ln
(4m(m−1)

λ

)
, (2.60)

for a positive constant K2 = K2(Lip(ρξ ),ρ0,ξ ,ξ ), then the restricted isometry constant
δ2ωr(s) of Φνξ

(X) satisfies δ2ωr(s) ≤
√

2−1.

2. [EBP is robust] Let ȳ ∈ Mn +[−ξ ,ξ ]n be a column of Ȳ , cνξ
∈ Rm be an ωr(s)-sparse

vector with ∥cνξ
∥∞ < ∞ such that x̄ = Φνξ

(X)cνξ
. Consider that the length of time series

n satisfies (2.60). Then the family of solutions {c⋆(ε)}ε>0 to the convex problem

min
ũ∈Rm

∥ũ∥1 subject to ∥Φνξ
(Y )ũ− ȳ∥2 ≤ ε (2.61)

satisfies

∥c⋆(ε)− cνξ
∥2 ≤ K3ε (2.62)

as long as

ε ≥√
nξ

(
1+mNr2K4∥cνξ

∥∞

)
, (2.63)

for positive constants K3 = K3(δ2ωs(r)) and K4 = K4(Lip(ρξ ),ρ0,ξ ).
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We prove the above theorem in steps detailed in the sections below. First, we adapt
the estimate of the minimum length of time series such that the library matrix has the desired
restricted isometry constant. Subsequently, we show that the unique solution of the ergodic basis
pursuit in (2.43) is approximated in ℓ2 by a family of solutions {c⋆(ε)}ε≥0.

2.8.1 Perturbed network library matrix satisfies RIP

We begin estimating the distance between the product measure νξ and the physical
measure µα of the deterministic network dynamics. To this end, we use the auxiliary lemmas
below. First, we show that

Lemma 2.8.3. µα,ξ → µα converges weakly as ξ → 0.

Proof. Fix a continuous function ϕ : MN → R and ξ > 0. Using the definition
∫

ϕdµα,ξ =∫
ϕdµα ∗ρξ =

∫ ∫
ϕ(x+ z)dµα(x)dρξ (z) and

∫
ϕdµα =

∫ ∫
ϕ(x)dµα(x)dρξ (z), we obtain∣∣∣∫ ϕdµα,ξ −

∫
ϕdµα

∣∣∣= ∣∣∣∫ ∫ ϕ(x+ z)dµα(x)dρξ (z)−
∫ ∫

ϕ(x)dµα(x)dρξ (z)
∣∣∣

≤
∫ (∫

|ϕ(x+ z)−ϕ(x)|dρξ (z)
)

dµα(x)

≤
∫

sup
|z|≤ξ

|ϕ(x+ z)−ϕ(x)|dµα(x).

Since MN is a compact set, ϕ is uniformly continuous. Then, letting ξ → 0 implies that the
right-hand side converges to zero, and consequently, the integrals in the left-hand side converge.
This is valid for any continuous function ϕ , concluding the statement.

We address to estimate the distance dK (ν ,µα). Since the product measure νξ is defined
on (MN +[−ξ ,ξ ]N). Also, we define a variant of the constant (2.41) given by

Kξ = K(Lip(ρξ ),ρ0,ξ ,ξ )≡
( 1

ρ0,ξ
+2

a1Lip(ρ)

ρ
3/2
0,ξ

)2( 2
b−a+2ξ

)
(2.64)

that satisfies Kξ → K when ξ → 0. Then, the following holds

Lemma 2.8.4. Let r ≥ 2. Given α,ζ ,ξ ∈ (0,1) suppose that dK (ν ,µα,ξ )< ζ for the product
measure νξ ∈ M (MN +[−ξ ,ξ ]N) . Then, there exists K1 = K1(Lip(ρξ ),ρ0,ξ ,ξ ) such that

dK (ν ,µα)≤ ζ +K1r2
ξ .

Proof. First we calculate dK (µα,ξ ,µα). Fix J ⊂ [N] and ψ ∈ K . Since the projection πJ :
MN → ∏i∈J Mi is Lipschitz with constant 1 and K is a set of product of polynomials, the
composition ψ ◦πJ is also Lipschitz with constant Lip(ψ ◦πJ ) = ∥Dψ∥∞. Then, we obtain∣∣∣∣∫MN

ψ ◦πJ dµα,ξ −
∫

MN
ψ ◦πJ dµα

∣∣∣∣≤ ∫ sup
|z|≤ξ

∣∣ψ ◦πJ (x+ z)−ψ ◦πJ (x)
∣∣dµα(x)

≤ Lip(ψ ◦πJ )ξ .
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For each ψ ∈ K it corresponds to a pair (ϕi ·ϕ j), so we use Proposition 2.6.2.2 and Corollary
2.6.3 to calculate

max
J⊂[N]

1≤|J |≤4

max
(ϕi·ϕ j)∈K

Lip((ϕi ·ϕ j)◦πJ )≤ max
J⊂[N]

1≤|J |≤4

max
(ϕi·ϕ j)∈K

∥Dϕi∥∞∥ϕ j∥∞ +∥ϕi∥∞∥Dϕ j∥∞

that is upper bounded by

Kξ max
{ 4

b−a+2ξ
,4Kξ

( 2
b−a+2ξ

) 1
2
,2K

1
2
ξ

( 2
b−a+2ξ

) 1
2
+
( 2

b−a+2ξ

)
K

1
2
ξ

}
︸ ︷︷ ︸

K1(Lip(ρ),ρ0,ξ ,ξ )

r2.

This yields dK (µα,ξ ,µα)≤ K1r2ξ . Using the triangular inequality

dK (ν ,µα)≤ dK (ν ,µα,ξ )+dK (µα,ξ ,µα),

we conclude the lemma.

Before we proceed, we extend µα ∈ M (MN) to M (MN +[−ξ ,ξ ]N), defining the mea-
sure of a set E ⊆ MN +[−ξ ,ξ ]N as µα(E ∩MN). We abuse notation and denote the measure as
µα .

We can state a similar version of Proposition 2.7.3.1, making the appropriate changes.
See below:

Proposition 2.8.4.1. Consider the setting of Theorem 2.8.2. Given δ ,λ ∈ (0,1) there exists a
set of initial conditions G ⊂ MN with probability µα(G )≥ 1−λ such that

n ≥ K2
(ωr(s)+δ −1)2

(δ − (ζ +K1r2ξ )(ωr(s)+δ −1))2 ln
(4m(m−1)

λ

)
(2.65)

for positive constants K1 and K2, then the restricted isometry constant δωr(s) of Φν(X) satisfies
δωr(s) ≤ δ .

Proof. The proof is similar to the proof of Proposition 2.7.3.1. Using Lemma 2.8.4 for the
measures νξ ,µα , there is a constant K1(Lip(ρξ ),ρ0,ξ ,ξ ) such that dK (νξ ,µα)≤ ζ +K1r2ξ =:
ζ ′, which we define so we can repeat the proof of Proposition 2.7.3.1 replacing ζ by ζ ′. The
new bounds of n0 can be deduced as follows: we estimate a new condition that is implied by

n ≥ 8
η2

0
(max{1,K4

ξ
}+(1+ζ +K1r2

ξ )2 +
2
3

max{1,K2
ξ
}) ln

(4m(m−1)
λ

)
.

This expression can also be implied by

n ≥ K2

η2
0

ln
(4m(m−1)

λ

)
, (2.66)

with K2 := 8(max{1,K4
ξ
}+(2+K1r2)+ 2

3 max{1,K2
ξ
}). Using (2.55) replacing ζ by ζ +K1r2ξ

in the above expression, we obtain the result.

Proof of Theorem 2.8.2.1. It suffices to use Proposition 2.7.3.1 for δ =
√

2−1 and sparsity level
2ωr(s) in the expression of the length of time series in (2.60).
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2.8.2 Ergodic basis pursuit is robust against noise

We can write that X̄ =Φνξ
(X)Cνξ

, where Cνξ
∈Rm×N is the coefficient matrix associated

to the network library Lνξ
. We deduce that the noisy data in (2.59) satisfies

Ȳ = Φνξ
(X)Cνξ

+ Z̄, (2.67)

where

Z̄ =


z1(1) · · · zN(1)

... . . . ...
z1(n) · · · zN(n)

 ∈ [−ξ ,ξ ]n×N , (2.68)

such that each column z̄ of Z̄ is bounded as ∥z̄∥2 ≤
√

nξ . The following lemma states that the
library matrix can be evaluated at the noisy data:

Lemma 2.8.5.

Φνξ
(Y ) = Φνξ

(X)+Λ(X , Z̄), (2.69)

where ∥Λ(X , Z̄)∥∞ ≤ mNr2K4ξ with K4 := max{K
1
2
ξ
,2Kξ

(
2

b−a+2ξ

)
}.

Proof. For l ∈ [m] let ϕl ∈ Lνξ
. The Mean Value Theorem states that for each t = 0, . . . ,n−1:

ϕl(x(t)+ z(t)) = ϕl(x(t))+
(∫ 1

0
Dϕl(x(t)+ sz(t))ds

)
· z(t),

where the integral is understood component-wise. Repeating the calculation for each entry of
Φνξ

(Y ), by linearity we obtain Φνξ
(Y ) = Φνξ

(X)+Λ(X , Z̄), where Λ(X , Z̄) is the matrix with
entries

Λ j,k(X ,Z) =
(∫ 1

0
Dϕk(x( j)+ sz( j))ds

)
· z( j).

We use Proposition 2.6.2.2 and Corollary 2.6.3 for MN +[−ξ ,ξ ]N . Let us denote

max
l∈[m]

∥Dϕl∥∞ ≤ r2 max{K
1
2
ξ
,2Kξ

( 2
b−a+2ξ

)
} ≡ r2K4.

Using Cauchy-Schwarz inequality, note that each entry Λ j,k satisfies

|Λ j,k|= |
(∫ 1

0
Dϕk(x( j)+ sz( j))ds

)
· z( j)|

≤ ∥
∫ 1

0
Dϕk(x( j)+ sz( j))ds∥2∥z( j)∥2

≤ Nr2K4ξ .

So, this implies that ∥Λ(X , Z̄)∥∞ ≤ mNr2K4ξ and proves the lemma.
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Proof of Theorem 2.8.2.2. Using (2.67) and (2.69) we have

Ȳ =
(
Φνξ

(Y )−Λ(X , Z̄)
)
Cνξ

+ Z̄

= Φνξ
(Y )Cνξ

+ Z̄ −Λ(X , Z̄)Cνξ
.

The above equation for each column i ∈ [N] is given by an equation of the form ȳ = Φνξ
(Y )cνξ

+

ūi, where the perturbation is

ū = z̄−Λ(X , Z̄)cνξ
.

Using Lemma 2.8.5 the perturbation vector ū is bounded as

∥ū∥2 ≤
√

nξ +
√

nmNr2K4ξ∥cνξ
∥∞

=
√

nξ

(
1+mNr2K4∥cνξ

∥∞

)
.

We apply Theorem 2.5.6, and this concludes the proof.

2.9 Closing remarks
In summary, we proposed a method to reconstruct sparse networks from noisy and limited

data. Our approach blends ergodic theory of dynamical systems and compressive sensing to
demonstrate that once a minimum length of time series is achieved, the EBP, particularly its
extension QEBP, is a robust method to identify network structures from noisy data. The main
advantage of this method is that it enables to use of a smaller amount of time series (quadratically
in the degree and log of the system size) as opposed to a linear dependence on the system size of
the classical Basis Pursuit method.

We introduced the relaxing path algorithm that reconstructs the network as a weighted
graph parametrized by the bound of the noise. Without prior knowledge of the statistical proper-
ties of the noise corrupting the data, this algorithm can reveal the network structure in an optimal
interval of the tuned parameter. Because a noisy and limited amount of length of time series
arises typically in experimental settings, our findings apply to a wide range of chaotic systems.

Data and code availability. All data necessary for the reproduction of the results, all simulations
and analysis scripts are available in the Ergodic Basis Pursuit repository (SANTOS, b).
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CHAPTER

3
STABILITY UNDER BASIS EXTENSION

This chapter is devoted to presenting our work entitled Recovering sparse networks:

Basis adaptation and stability under extensions (NOVAES; Roque dos Santos; PEREIRA, 2021).

Usually, the reconstruction problem may use prior expert knowledge of possible network
structures. From these guesses, one may extend the reconstruction by identifying further interac-
tions. In this chapter, we study the reconstruction of sparse networks. We start from a network
seed that gives an approximation of the network to be recovered and extend the search for further
connections.

We show that by adapting the reconstruction to the dynamics, the basis extension does
not lead to prediction instability. We discuss the least square techniques are unstable under basis
extension. A heuristic upshot of our study is that if the network is sparse and has k ≪ N links,
where N is the number of nodes in the network, then using sparse recovery we need only O(Nk)

data points as opposed to least-square where we need O(N2).

We will focus on the case when isolated dynamics of the nodes have a stable periodic
motion and the interaction is weak. This is an interesting case, as the phase itself is not observed
and thus we need to preprocess the data.

3.1 Dynamics near a Hopf Bifurcation

We consider the isolated dynamics of each node in the network to be near a Hopf-
Andronov bifurcation, modelled by the Stuart-Landau equation

ż j = F(z j) = (1+ iω j)z j −|z j|2z j, (3.1)

where i2 =−1 and z j is a complex number. Each isolated oscillator has an exponentially attractive
periodic orbit with amplitude 1 and frequency ω j for j = 1, . . . ,N. The effect of a linear pairwise
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interactions is modelled as

ż j = F(z j)+α

N

∑
k=1

A jk(zk − z j) (3.2)

for j = 1, . . . ,N. Here, α denotes the coupling strength, assumed small. The connectivity matrix
A describes the interaction structure: A jk is 1 if node j is influenced by node k and is 0 otherwise.
Notice that in the absence of linear terms, if nonlinear terms are included in the coupling this
could lead to higher order resonances (NIJHOLT et al., 2022). However, we will consider only
linear coupling which is enough to show how the recovery method works.

3.1.1 Phase Dynamics

By introducing polar coordinates z j = r jeiθ j we can obtain the dynamics of amplitudes
r j and phases θ j. As α is small, the network effect on the amplitudes is small, in fact, r j(t) =

1+O(α). The relevant dynamics generated by the network is encoded in the phases. The coupled
phase equations to leading order in α read as

θ̇ j = ω j +α

n

∑
k=1

A jk sin(θk −θ j). (3.3)

Extracting phase from data. In applications, we do not have direct access to θ j(t) and may
need to infer another phase variable from a time series. Let x j and y j denote, respectively, the
real and imaginary parts of z j and we assume that we only measure x j(t) for each oscillator.
Thus, we have a multivariate time series for the network. To extract the phase from each time
series we use the standard Hilbert transform

H(x j(t)) =
1
π

p.v.
∫ +∞

−∞

x j(τ)

t − τ
dτ. (3.4)

Thus using the analytic signal

s j(t) = x j(t)+H(x j(t)) = R j(t)eiϑ j(t) (3.5)

we can extract a phase ϑ j(t) corresponding to the signal x j(t). Although this phase is a surrogate
and not necessarily equal to θ j(t), meaningful dynamical information can be obtained from it.
Once we have the phases ϑ j, their time derivatives are obtained numerically and a smoothing
filter is applied to remove noise introduced in this process.

3.2 The recovery method

3.2.1 The basis functions

The idea is to express the time derivatives of the phases, obtained from data, as linear
combinations of certain functions. Here as we deal with phases we use Fourier modes depending
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on all variables and on the differences of all variables,

ϑ̇ j = ω j +∑
ℓ

g( j)(ϑℓ)+∑
k,m

h( j)(ϑk,ϑm), (3.6)

where
g( j)(ϑℓ) = a( j)

ℓ cos(ϑℓ)+b( j)
ℓ sin(ϑℓ) (3.7)

is the isolated component and the coupling function is

h( j)(ϑk,ϑm) = c( j)
k,m cos(ϑk −ϑm)+d( j)

k,m sin(ϑk −ϑm), k < m. (3.8)

The choice of coupling function h, depending only on phase differences, is motivated by the
theory of phase reduction.

The aim is to find the coefficients {a,b,c,d} that provide a good approximation to the
data ϑ̇ j. We have N time series for our ϑ j variables, with n points each, obtained with a fixed
known sampling rate. With this data we form time-series for the m = 1+ 2N +N(N − 1)/2
Fourier modes and arrange them as columns of a n×m matrix, we denote it as Φ, so

Φ =
1√
n


1 sin(ϑ1(t1)) · · · sin(ϑN(t1)) cos(ϑ1(t1)) · · · cos(ϑN−1(t1)−ϑN(t1))

1 sin(ϑ1(t2)) · · · sin(ϑN(t2)) cos(ϑ1(t2)) · · · cos(ϑN−1(t2)−ϑN(t2))

1 sin(ϑ1(t3)) · · · sin(ϑN(t3)) cos(ϑ1(t3)) · · · cos(ϑN−1(t3)−ϑN(t3))
...

...
...

...
...

. . .
...

1 sin(ϑ1(tn))) · · · sin(ϑN(tn)) cos(ϑ1(tn)) · · · cos(ϑN−1(tn)−ϑN(tn))

.

The problem of recovering the equations of motion can be formulated as the search for a m×n

matrix of coefficients C such that the equation

ΦC =V (3.9)

is satisfied, where

V =


ϑ̇1(t1) · · · ϑ̇N(t1)

... . . . ...
ϑ̇1(tn) · · · ϑ̇N(tn)

 (3.10)

is a n×N matrix of time series of derivatives, we apply smoothening to the derivatives.

The matrix Φ has all possible connections and because the network is sparse only a
subset will contribute. We will denote by

– A a subset of columns of Φ that contain the expert guess.

– B further columns we wish to probe.

Without loss of generality (up to relabelling nodes) we assume that A correspond to the first p

columns of Φ. Next we consider the concatenation of [A,B] of the matrices A and B and consider
the problem

[A,B]c = v
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where v is one of the columns of the matrix V . The vector of coefficients c can be decomposed
in terms of the action of A and B

c =

(
x

y

)
.

The remaining exposition will address two problems: How to find the vector coefficients x, and
the effect of the basis extension B on the solution x.

3.2.2 The minimization

Consider the problem of finding the vector of coefficients starting from the expert guess

Ax = v

The least squares approximation provides the vector x that minimizes the L2 error

min
x∈Rp

∥Ax− v∥2.

A major advantage of this L2 minimization is that the unique solution has a closed form,

x0 = A+v (3.11)

where A+ = (A†A)−1A† is the pseudoinverse of A and † denotes the transpose.

Kraleman et al. (KRALEMANN et al., 2008; KRALEMANN; PIKOVSKY; ROSEN-
BLUM, 2011a) have used L2 minimization to recover the topology of networks with up to nine
oscillators. For a brief review, see (PIKOVSKY, 2018). Notice that, although this approach
minimizes the Euclidean error, it may not be an optimal solution with respect to other criteria,
specially when the smallest singular value of A becomes small. To obtain a well conditioned
matrix the size of the time series needs to be significantly large.

Denote Im A the image of the matrix A. Let us consider the case n > p, if v ∈ Im A the
system of equations has a unique solution and it is independent of the minimization. As the data
is subjected to fluctuations, in general

v = b+ z

where b ∈ Im A and z ∈ (Im A)⊥, the orthogonal complement, with ∥z∥2 ≤ ε , for some small
ε > 0 capturing the fact that fluctuations are small.

3.2.3 Finding Sparse Solutions

For example, we may want a sparse solution, i.e. a vector x with a few non-zero elements.
This will indeed be the case when the network has sparse connectivity (such as the star network
we shall consider, which has only N connections out of a total of N(N −1) possibilities).

Sparsity can be measured in terms of the condition where

∥x∥0 = number of nonzero elements of x (3.12)
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should be as small as possible. Finding a sparse solution is a combinatorial NP-hard problem and
not tractable. When the matrix Φ has some additional structure, namely it satisfies the restricted
isometry property (RIP) (CANDES; ROMBERG; TAO, 2006), it is well known that a valid
heuristics to obtain sparse solutions is to include in the minimization process a penalization on
the L1 norm,

∥x∥1 =
m

∑
i=1

|xi| (3.13)

and consider
min

w̃∈Rm
∥w̃∥1 subject to ∥Φw̃− v∥2 < ε, (3.14)

for some small ε , where we are still considering Φ = [A,B]. This is known as basis pursuit
denoising (DONOHO et al., 2006). The solution to this problem can be obtained by quadratic
programming. This is the idea behind the Matlab package “l1magic”1. However, there is a small
technical drawback here, which is that to start the search for a minimal solution one needs a seed,
and this is usually the L2 solution similar to Equation (3.11). In situations when this L2 solution
is a poor choice (see at Section 3.4.1), the algorithm may not be successful (and finding other
clever seeds is a challenging problem).

Another approach is the LASSO algorithm (least absolute shrinkage and selection
operator), which we shall adopt. It works by computing solutions to

min
w∈Rm

∥Φw− v∥2
2 +λ∥w∥1 (3.15)

for a series of values of λ . When λ is large, the solution approaches the null vector. When λ is
gradually decreased, each previous solution is a good seed for a new minimization process that
finds sparse solutions. If λ becomes too small, sparsity is no longer promoted.

Intermediate values of λ therefore lead to solutions that come close to minimizing
∥Φx−v∥2, while at the same time being significantly sparse. The actual value of λ is selected by
a process of k-fold cross validation, in which: the data is split into k equal-sized parts; a solution
is found using all but the lth part; a prediction error is computed when predicting the behavior
on the lth part; the errors are added for 1 ≤ l ≤ k to form the total prediction error; the value of
λ is chosen to minimize the total prediction error. Later we will see that by our Theorem 3.4.3
once we establish an adapted basis, LASSO is not affected by the poor conditioning of Φ and
performs significantly better when data acquisition time is short.

3.3 Numerical experiments

3.3.1 Results for a directed star

We consider a directed star motif for a paradigm. It consists of a central node driving to
N −1 peripheral nodes, as shown in Figure 11. Since every node’s dynamics is only influenced
1 https://statweb.stanford.edu/ candes/l1magic/
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Figure 9 – Influence of acquisition time tn on the network recovery. We consider a directed star
graph with N = 10 and connections diverging from the hub. Panels a) and c) show the false
positives #FP (circles) predicted by L2 and LASSO, respectively, as number the acquisition
time increases. Panels b) and d) show the false negatives #FN (crosses). Each point is an
average over 100 random initial conditions and the shaded region is the standard deviation.
The inset of panel a) shows the logarithm of the minimum singular value of Φ, averaged over
the 100 random initial conditions.

by node 1, the center, we have that c( j)
km and d( j)

km vanish unless k = 1. In our simulations we
choose a coupling strength α = 0.1, and take the natural frequencies ω j to be random with
uniform distribution in the interval [0,2π] radians per second. Initial conditions are evolved with
a fourth order Runge-Kutta integrator with variable step and time series of the phases φ j are then
collected with a rate of 10 points per second.

To measure the success of the recovery of methods L2 and LASSO, we use the measures

#FP (false positives) consisting of connections that are not present in the true network;

#FN (false negatives) the connections that were missed by the recovery.

We do not take into account the strength of the recovered connection; instead we simply check
whether a certain connection is present or not. We discard connections that are too weak, less
than 10% of the largest entry of the coefficient vector.

3.3.1.1 Effects of the length of the time series

In Figure 9, we show #FP (circles) and #FN (crosses), for the L2 minimization (left
column) and for the solution obtained using LASSO (right column), as the acquisition time tn is
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Figure 10 – Influence network size on the recovery. We consider a directed star graph of N nodes
with connections diverging from. We fix acquisition time tn = 100. Panels a) and c) show the
false positives #FP (circles) recovered by L2 and LASSO, respectively, as number of nodes N
increases. Panels b) and d) show the false negatives #FN (crosses). Each point results from
average over 100 random initial conditions and the shaded region is the standard deviation. In
the inset of panel a) we show logarithm of the minimum singular value of Φ, averaged over
the 100 random initial conditions.

varied. These values were averaged over 100 random initial conditions of our network system
with N = 10 nodes. The LASSO solution is excellent for all values of tn. The L2 minimization
performs relatively well if tn is large, but for small values of tn it predicts many wrong connections.
Similar results were obtained by Napoletani and Sauer (NAPOLETANI; SAUER, 2008).

As discussed in the Section 3.4.1, the performance of L2 minimization as a function of tn
seems to be related to σ1(Φ), the smallest singular value of the matrix Φ, which can be small for
small tn, as shown in the inset. Subsequently, in Section 3.4.3, we show the reason the LASSO
approximation is not affected as much by the poor conditioning of Φ.

3.3.1.2 Effects of the size of the network with fixed length of time series

For the directed star graph, in Figure 10 we show #FP (circles) and #FN (crosses) as
functions of the total number of nodes, for both solutions of L2 minimization and LASSO. The
LASSO solution is stable while L2 minimization is accurate for small networks, with N ≤ 7, and
is not able to handle the large-but-sparse configuration. In the inset, we show the corresponding
average value of log(σ1(Φ)). It suggest a correlation between between the poor performance of
the L2 minimization and ill condition of Φ captured by a small singular value.
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Figure 11 – Comparison between LASSO and L2 minimization for three paradigmatic networks. In
the upper panel the directed star, in the mid panel one connected directed star forcing another
directed star, in the bottom panel a directed ring. The network recovered by the LASSO is
presented in the left and shows perfect recovery and the L2 minimization recover is presented
in the right. Spurious connections are shown as thin red lines, missing connections are shown
as dotted lines. We used a single random initial condition in each case and tn = 100.

3.3.2 Results for other networks

In this section we briefly consider some other sparse networks: the twin stars, which
consists of two stars joined by a single link, and a ring, both are illustrated in Figure 11. In the
twin stars configuration node 1 drives nodes 2 to 6, while node 2 drives nodes 7 to 11. In the
ring configuration node j drives its following neighbour j+1, and node N drives node 1.

We again use α = 0.1 and take the natural frequencies ω j to be random with uniform
distribution in the interval [0,2π]. Initial conditions are evolved with a Runge-Kutta integrator
and time series of the phases φ j are then collected with time steps of 0.1.

In Figure 4 we show the connections that were recovered by the two methods, L2

minimization and LASSO, from a single random initial condition propagated for tn = 100.
We performed a kind of hard thresholding, by discarding connections that were too weak (we
considered coupling strengths smaller that 10% of the largest one to be weak).

The results from LASSO are excellent in all cases, but the L2 minimization does not
perform so well: it fails both to recover existing connections (false negatives depicted with dotted
lines in Figure 3) and recovers false positive (thin grey lines).
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3.3.3 Effects of basis extension

We discuss how the inclusion of new functions in the basis can affect the recovery.
Our first example is shown in Figure 10. Since the network is a directed star with connections
diverging from the hub, the recovery of each node is independent as the hub acts as a master to
the leaves. Thus, increasing the network size and recovering the connections of a given node
has the same effect as including new (a posteriori) unnecessary functions in the basis. We could
wrongly expect this basis extension would not influence the recovery method. Figure 10 shows
that the L2 recovery is strongly affected by such extensions as the inclusions of new functions,
while keeping the length of the time-series fixed, makes the operator Φ ill-conditioned.

Next, we notice that the function g in Eq.(3.6) plays no role in the dynamics when phases
are slow variables. We study the effect of the inclusion of such functions in the recovery process.
Figure 12 shows the results of such basis extension for a directed ring. The basis extension is
made using higher harmonics Ek = {sin(mϑk),cos(mϑk)}10

m=2 for each node k. Starting from
k = 0 we include the new functions of a node k while keeping all previously included functions.
Thus, in the first iterator k = 1 we include 16 new functions and at the end of the process k = 10
we include 160 functions. We observe that the number of false positives and negatives remains
unaltered as the basis is increased either for L2 and LASSO. We notice that LASSO remains
stable under basis extension.
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Figure 12 – Effects of basis extension in the recovery. We consider a fixed acquisition time tn = 100
and a directed ring with N = 10. First, we recover the network without higher harmonics
in the phases corresponding to k. Then, we extend the basis to include higher harmonics
Ek = {sin(mϑk),cos(mϑk)}10

m=2 of a node k iteratively. Thus, for each k we include 16 new
functions in the basis and apply the recovery methods while keeping the previously added
functions. Panels a) and c) show the false positives #FP (circles) recovered by L2 and LASSO,
respectively, as a function of k. Panels b) and d) show the false negatives #FN (crosses). Each
point is an average over 100 initial conditions and the shaded region is the standard deviation.
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3.4 Stability of sparse networks under basis extension

3.4.1 L2 is unstable under basis extension

When we extend the basis, probing new possible connections, we face a problem as
[A,B] may have small singular values, leading to instabilities. This means that even if

Ax = b

has a sparse solution, it may happen that

[A,B]w = b+ z

has a solution w that is far from being sparse in its restriction to the components corresponding
to x, here z captures small measurement errors. This would mean that the basis extension is
unstable.

Our next proposition characterizes this situation. We prove it using the concept of princi-
pal angle between subspaces, in particular the largest principle angle between the orthogonal
complement of the image of matrix A, (Im A)⊥, and the image of the matrix B, Im B.

Proposition 3.4.0.1. Let A ∈Rn×p be a column full rank matrix, b ∈ Im A and z ∈ (Im A)⊥\{0}.
Let x∗ be the unique solution of the problem

min
x∈Rp

∥Ax−b− z∥2.

Let B ∈ Rn×q be such that the matrix concatenation Φ = [A,B] is also column full rank with
n > p+q. Let r = min{p,q} and the principal angles between the subspaces (Im A)⊥ and Im B

satisfy: 0 < β1 < · · ·< βr <
π

2 . Let ŵ = (ŵ1, ŵ2) be the unique solution of the problem

min
w∈Rp+q

∥Φw−b− z∥2.

Then for a generic z> 0 given a natural number N0 > 0 there is a ε > 0 such that if |βr−π/2|< ε

we obtain ∥x∗− ŵ1∥2 > N0.

We prove this proposition in Appendix B.2. The above proposition explains the instability
we observed in the numerical results, which are also in agreement with the observations made by
Napoletani and Sauer (NAPOLETANI; SAUER, 2008).

As a remark, when the dynamics is chaotic the columns of the matrix Φ behave as
pseudorandom vectors. Let us assume that p = q for the matrices A and B. Thus we can think of
the column spaces of A and B as two p-dimensional vector spaces taken at random from a larger
n-dimensional space, n > 2p. The principal angles between them have a joint multivariate beta
distribution (ABSIL; EDELMAN; KOEV, 2006); from well known random matrix theory results,
it then follows that, as n → ∞ with p = ξ n, the average value of the smallest principal angle
satisfies cos(β1) = 4ξ (1−ξ ). The value ξ → 1/2 corresponds to the case Φ = [A,B], when the
principal angles tends to 0. This indicates that, in the large basis limit, instability is generic.
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3.4.2 Basis Adaptation guarantees coherence

Let T = R/2πZ be the torus. From here on our theoretical formulation and analysis
is described in terms of a map denoting the dynamics. This assumption is not harmful since
the phase dynamics recovery on TN is given by the time-one map f of the flow. This map is
induced by the Euler approximation of the differential equations and the sampling procedure of
the trajectories.

In the following exposition we will denote by X the metric space being either a compact
subset of Rd or a parallelizable manifold such as the torus Td . We assume the map denoting the
dynamical system is Cr(X) with r ≥ 1. This will contain all examples in the paper and avoid a
technical detour. We denote ψ as basis functions representing the map f and the functions ϕ and
φ are observables. We understand sparse representation of the map as

Definition 3.4.1 (Sparse Representation). Let f : X → X and L = {ψi}m
i=1 be a set of basis

functions with ψi : X → X for i = {1, . . . ,m} such that

f =
m

∑
i=1

ciψi.

We say that f has an s-sparse representation in L if the vector x = (c1, . . . ,cm)
† is s-sparse.

Dynamical information: Ergodicity. We focus our analysis on ergodic dynamical systems.
A well-known property is that the time average of an observable evaluated at a typical orbit
converges to the space average. This is more generally stated in the following Theorem 3.4.2

Theorem 3.4.2 (Birkhoff Ergodic theorem). Let ( f ,µ) be a discrete ergodic dynamical system
on the compact metric space X . Given any ϕ ∈ L1(µ), there exists a set of initial conditions
E ⊂ X with µ(E) = 1 such that for any ε > 0 and x0 ∈ E there exists n0(ε,x0) > 0 where the
following holds ∣∣∣1

n

n−1

∑
k=0

ϕ ◦ f k(x0)−
∫

ϕdµ

∣∣∣< ε ∀ n > n0. (3.16)

Birkhoff Ergodic theorem is the main ingredient to calculate the coherence for ergodic
dynamical systems in Theorem 3.4.3. It introduces a change of inner product: instead of looking
at the Euclidean inner product among vectors on Rn, we approximate it by the inner product on
the space of integrable functions with respect to the ergodic measure.

Theorem 3.4.3 goes beyond. It states that for any discrete ergodic dynamical system
whose measure has density, we can construct a set of basis functions adapted to the ergodic
measure via Gram-Schmidt procedure2. These adapted basis functions do not harm the sparsity
representation of the map and has control over the coherence of the matrix for large enough data.
2 These adapted basis functions are related to the Bounded Orthonormal System (BOS) in Foucart and

Rauhut (FOUCART; RAUHUT, 2013). They differ in respect to the choice of the reference measure.
BOS carries the measure given by the uniform sampling procedure whereas here it comes along the
observed trajectory.
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Our result is related to what was obtained by Tran and Ward (TRAN; WARD, 2017b).
The authors use Central Limit Theorem applied for Lorenz systems perturbed over time to obtain
the null-space property (which is a weaker property than RIP) for a similar version of the matrix
Φ.

To our best knowledge, our results are one of the few examples to advance the search for
basis functions adapted to the dynamical system generating the time series. Recently, Hamzi and
Owhadi (HAMZI; OWHADI, 2021) proposed a kernal-based method in a similar direction.

Drawback. It is worth noting that Theorem 3.4.3 is an existence statement since it requires
that the sparse representation of the dynamical system is known a priori. Besides it is valid for
large enough data. To determine the minimum amount of data for controlling the coherence of
Φ, it would be necessary to know the speed of convergence of the Birkhoff sums for the basis
functions. This will be done in the near future.

Theorem 3.4.3 (Ergodic Coherence). Let ( f ,µ) be an ergodic dynamical system with µ abso-
lutely continuous with respect to Lebesgue (Leb(X)). Let L0 be a set of basis functions such
that f has an s-sparse representation in L0. Given η0 > 0 and ε ∈ (0,1) there is a set of basis
functions L , n0 > 0 and a good set of initial conditions G ⊂ X such that

(i) µ(G)> 1− ε , and for any x0 ∈ G and n > n0 we have η(Φ(L ))< η0.

(ii) the representation of f in L is also s-sparse.

Proof. We develop the argument assuming that X ⊂ R. To generalize for large dimensions or for
Td it is enough to break down the problem in terms of coordinates. The main ingredient in the
proof is the Birkhoff’s Ergodic Theorem 3.4.2. Having the ergodic theorem we split the proof in
three steps.

Step 1: Ergodicity and basis adaptation. Let L0 = {ψ1, . . . ,ψm} be a set of basis func-
tions, where each ψi : X → X . We perform a Gram-Schmidt process in L2(µ) and obtain an
orthogonal basis

L̂ = {ϕ1, . . . ,ϕm}.

Notice that since µ = νLeb we define

φi = aiϕi

where a2
i = 1/

∫
ϕ2

i ν dLeb such that L = {φi}m
i=1 is an orthonormal system with respect to

L2(µ) in the span of L0. For an arbitrary initial condition x0, let

ui :=
1√
n


φi(x0)

...
φi( f n−1(x0))

 u j :=
1√
n


φ j(x0)

...
φ j( f n−1(x0))

 (3.17)
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be the ith and jth columns of the matrix Φ(L ) ∈ Rn×m. Then notice that the inner product
between columns i and j is

⟨ui,u j⟩ =
1
n

n

∑
k=1

φi( f k(x0))φ j( f k(x0))

=
1
n

n

∑
k=1

(φi ·φ j)◦ ( f k(x0))

=:
1
n

Sn(φi ·φ j)(x0).

From the smoothness of the map f , (φi ·φ j) is integrable L1(µ) so by Birkhoff Ergodic theorem
there is a set Gi j such that µ(Gi j) has full measure and for each x0 ∈ Gi j and ε1 > 0 there is
n0 > 0 such that for any n > n0 we have∣∣∣∣⟨ui,u j⟩−

∫
φi ·φ jdµ

∣∣∣∣≤ ε1∣∣⟨ui,u j⟩−δi j
∣∣≤ ε1

where δi j is the Kronecker delta.

Step 2: Large measure of initial conditions for the basis. Hence, we are interested in the
subset with cardinality K = m(m−1)

2

G = {(φi ·φ j) | i, j = 1, . . . ,m} ⊂ L1(µ) (3.18)

where each element corresponds to pairwise multiplication of basis functions in L . We aim at
finding a good set G of initial conditions where the control of n0 is uniform.

Using Egoroff’s theorem (FOLLAND, 2013) we can make the Birkhoff sum 1
nSnφ con-

verge uniformly on a large measure set Gφ of X instead of the “almost every point" convergence.
Fix η0 > 0 and take ε/(2K). For each observable φ in the set of Equation (3.18), the precision
ε/(2K) determines a subset Gφ of X which by Egoroff’s theorem has measure µ(Gφ )> 1− ε

2K

where the convergence of 1
nSnφ is uniform. So, we take the set of initial conditions as

G =
⋂

φ∈G

Gφ . (3.19)

Using the complement of G we can calculate that

µ(G)> 1− ε.

This determines the set of initial conditions for which we can calculate the coherence of the
matrix Φ(L ). Due to uniformity of initial conditions in G, for each observable (φi ·φ j) in the set
of Equation 3.18 there exists ni, j > 0 such that the inner product of any two distinct normalized
column vectors |⟨vi,v j⟩| has the following form for any n > ni, j

|⟨vi,v j⟩|=
∣∣∣1
n

Sn(φi ·φ j)(x0)
∣∣∣≤ η0.
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Take n0 := maxi̸= j ni, j and this proves the statement.

Step 3: Sparsity. Thus we are only left to prove sparsity. We know by assumption that
there is a sparse solution to

Φ(L0)xs = v.

Let us rearrange L0 such that xs has only its first s entries nonzero. Next, the Gram-
Schmit process reduces to a QR decomposition that is

Φ(L0) = Φ(L )R

thus,

Φ(L0)xs = Φ(L )x̂s

where

x̂s = Rxs

but R is upper triangular and thus by construction only the first s entries of x̂s will be nonzero.

3.4.3 Sparse Solutions are stable under basis extension

Next, we wish to prove that once the basis is adapted and the initial expert guess is
meaningful, extending the basis is not harmful for the solution. Next proposition proves that,
given a set of basis functions which represents f sparsely, the minimization problem from
Candès Theorem 2.5.6 has a solution that approximates the true sparse solution. Moreover, using
Theorem 3.4.3, which introduces a orthonormal set of basis functions L and a matrix Φ(L ),
we can find a sub-matrix of Φ(L ), A(L ), which approximates the same solution in a smaller
space.

It is worth noting that both LASSO and quadratically constrained basis pursuit are L1

minimization problems related to each other. More precisely, for each solution x⋆ of LASSO there
exists a ε := εx⋆ > 0 such that x⋆ is solution of Equation (2.22), see Fourcart and Rauhut (FOU-
CART; RAUHUT, 2013, Proposition 3.2). So, our results using the quadratically constrained
basis pursuit are extended to LASSO solutions as well.

Proposition 3.4.3.1 (Sparsity level is attained). Let L0 be a set of basis functions with cardinality
m such that f has a s-sparse representation in L0. Then, there is n0 > 0, a large set of initial
conditions and a basis L such that we find a matrix A(L ) ∈ Rn×p where s < p < m and the
solution x∗ of the reconstruction problem

min
x̃∈Rp

∥x̃∥1 subject to ∥A(L )x̃− v∥2 < ε (3.20)

attains the sparse representation of f .
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Proof. We use Proposition 2.5.4.2 together with Theorem 3.4.3. Let 1 < s < m be the sparsity
level of the representation of the map f with respect to the proposed set L0. By assumption we
know there exists a sparse solution xs ∈ Rm such that Φ(L0)xs = v. We rearrange L0 such that
xs has only its first s entries nonzero. Fix 0 < η0 < (

√
2−1)/(2s−1). By Theorem 3.4.3 there

exists an orthogonal basis L , n0 > 0 and a large set of initial conditions that η(Φ(L ))≤ η0

and x̂s ∈ Rm. Thus from Proposition 2.5.4.2

δ2s(Φ(L ))<
√

2−1. (3.21)

By Theorem 2.5.6, the sparse solution x̂s is approximated by the solution of the quadractically
constrained basis pursuit problem.

Let p,q ∈ N be chosen such that s < p,q < m and m = p+q. Without loss of generality,
we can rearrange the basis elements in such way Φ(L ) = [A(L ),B(L )] where A(L ) ∈ Rn×p

and B(L )∈Rn×q. Moreover, using A(L ) in the quadratically constrained basis pursuit problem
the solution approximates the sparse solution x̂s through a vector lying in Rp . This is true
because δ2s(Φ(L )) is an upper bound for δ2s(A(L )) and δ2s(B(L )).

For the noiseless case we could say that A(L ) is the minimum matrix such that the
minimization problem attains the sparse solution.

The existence of a sub-matrix of Φ(L ) in the above proposition indicates that we can
use Theorem 3.4.3 in a different way to guarantee that sparse solutions are stable under basis
extension. The following corollary states this stability more precisely.

Corollary 3.4.4 (Stability under basis extension). Suppose L0 is a subset of basis functions with
cardinality p < m such that f has a s-sparse representation in L0. Denote xs ∈ Rp the unique
sparse solution of Equation (3.20). Then there is n0 > 0, a large set of initial conditions and a
basis L such that w = (xs,0) ∈ Rm is solution of

Φ(L )w = [A(L ),B(L )]w = v

and the solution w∗ = (w∗
1,w

∗
2) of

min
w̃∈Rm

∥w̃∥1 subject to ∥[A(L ),B(L )]w̃− v∥2 < ε

satisfies

∥w∗
1 − xs∥2 ≤Cε and ∥w∗

2∥2 ≤ Ĉε

for constants C and Ĉ.

Proof. Thinking in the reverse direction as in the previous proposition we could assume L0 is a
subset of basis functions with cardinality p < m such that f has a s-sparse representation in L0.
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Then by Theorem 3.4.3, Proposition 2.5.4.2 and Candès theorem 2.5.6 there is n1 > 0, a large
set of initial conditions and a basis L such that A(L ) ∈ Rn×p satisfies Equation (3.20).

The key fact is the finiteness of the set of basis functions. Let us denote by L c
0 the

complement of L0. If we take the union L ∪L c
0 we can apply Theorem 3.4.3 for this set. Since

L is already orthonormal, the Gram-Schmidt procedure is necessary only for the functions of
L c

0 . Adjusting n0 > n1 > 0 and the initial conditions, and using orthonormality we can guarantee
continuity of the unique sparse solution of Equation (3.20) in the larger space. The estimate in
Equation (3.4.4) is given by applying Theorem 2.5.6.

3.5 Closing remarks
We considered the problem of recovering, from phase dynamics, the interaction structure

of a sparse network of oscillators. We compared two different recovery methods, both based on a
Fourier expansion of the interaction functions. One of them is the traditional least squares approx-
imation, which finds the vector of coefficients that minimize the L2 error of the approximation
and has been successful in previous approaches. The other is LASSO. For small networks and
when long data sets are available, both approaches are equivalent. But we have found LASSO to
be much more apt to sparse network configurations and short times than the L2 minimization.
We showed that LASSO can perform remarkably well when dynamical information is taken into
account and the basis functions are adapted. This adaptation leads to unique solutions to the
minimization problem that are also stable under basis extension. Once the basis is adapted to the
dynamics LASSO recovers sparse networks with excellent precision even when only relatively
little data is available.
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CHAPTER

4
DIVIDE-AND-CONQUER NETWORK

RECONSTRUCTION

This chapter is devoted to presenting our work entitled Ergodic Basis Pursuit induces

Divide-and Conquer Network Reconstruction, which is in preparation to be submitted.

Can we design an algorithm that reconstructs the network using only part of the input

data? To answer this question we tackle the following perspective: Although the network
structure is unknown, there is still a priori knowledge. For instance, neuronal networks contain
groups of nodes that are expected to interact such as interneurons (TOWLSON et al., 2013;
SPORNS; BETZEL, 2016). The motif structure might be known as rich club motifs, where a
group of nodes form a highly connected cluster mediating information to the rest of the network.
Hence, our approach is to incorporate expert knowledge of the structure into the reconstruction
method. Using expert knowledge we can break the reconstruction into subproblems and solve
each subproblem locally and in parallel. Then, we combine information gathered for each local
solution to form the global solution. That is, if we know which neighbors two distinct nodes
have, we can combine this information and obtain a larger uncovered structure. The caveat of this
approach is to guarantee the exact reconstruction of local network structure and how to combine
them to obtain a global solution. Any instabilities could be obstructions to the search for local
network solutions in parallel.

In this paper, we use a recent reconstruction method introduced by the authors so-called
Ergodic Basis Pursuit (EBP) to solve the inverse problem (PEREIRA; SANTOS; STRIEN, 2023).
EBP is devoted to ergodic network dynamics that exhibit the decay of correlations. Recently, the
authors showed that once a minimum length of time series is attained, EBP guarantees successful
network reconstruction. So, incorporating expert knowledge of the network structure into EBP,
we prove the existence of a Divide-and-Conquer Network Reconstruction (DCNR) method by
solving the local subproblem and combining the found local solution into a large solution. Local
subproblems do not require more data than the estimated minimum, and as we probe new nodes
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or connections the solution remains unchanged. In other words, the reconstruction is stable. The
major advantage is that the search for different motifs can be performed in parallel speeding up
the reconstruction tremendously.

4.1 Network dynamics

We will focus on a class of networks common in applications such as coupled lattice maps
(CHAZOTTES; FERNANDEZ, 2005) and laser dynamics (HART et al., 2019). We consider
networks with N nodes given by

x̄i = fi(xi)+α

N

∑
j=1

Ai jhi j(x j,xi), i ∈ [N] := {1, . . . ,N}, (4.1)

where xi represents the state of node i and x̄i the evolved state, the adjacency matrix A satisfies
Ai j equals 1 if node i receives a connection from j and 0 otherwise. fi : Mi → Mi corresponds
to the isolated map, hi j : Mi ×Mi → Mi is the pairwise coupling function and α is the coupling
strength. Here, Mi is compact subset of R. We let x = (x1, . . . ,xN) and write the full network
dynamics as x̄ = F(x).

We assume the availability of a time series of each node over time, forming a multivariate
time series {x(t)}n

t=0. We aim to obtain the network structure from {x(t)}n
t=0.

4.2 Reconstruction problem as a linear equation

The reconstruction problem can be recast as a linear equation. First, consider the assump-
tion

(a) Denote a finite (ordered) set of basis functions L = {φ1,φ2, . . . ,φm}, where φi : MN → R,
with MN := ∏

N
i=1 Mi. We restrict ourselves to the case that the collection { fi}i∈[N] and

{hi j}i, j∈[N] are in the span of L . In other words, L contains functions that represent up
to pairwise interactions. We refer to L as an ordered network library.

Then, we denote the library matrix as

Φ(X) =
1√
n


φ1(x(0)) φ2(x(0)) · · · φm(x(0))
φ1(x(1)) φ2(x(1)) · · · φm(x(1))

...
... . . . ...

φ1(x(n−1)) φ2(x(n−1)) · · · φm(x(n−1))

 .
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Also, define the n×N matrix of multivariate data

X̄ =


x1(1) · · · xN(1)

... . . . ...
x1(n) · · · xN(n)

 .

Then the reconstruction problem becomes to solve the following linear equation

X̄ = Φ(X)C (4.2)

whose solution is the m×N matrix of coefficients C which encodes the graph structure.

When the length of time series n is sufficiently large (n ≫ m), then the least square
approximation argmin∥X̄ −Φ(X)C∥2 provides a good approximation of the solution C (KRALE-
MANN; PIKOVSKY; ROSENBLUM, 2011a; KRALEMANN; PIKOVSKY; ROSENBLUM,
2011b). In fact, Φ(X) is full column rank (LUENBERGER, 1997) and the least square mini-
mization finds a unique solution, allowing to recover the network structure. However, the least
square approximation applied to large networks requires a large amount of data. For example
consider coupled logistic maps: let M = [0,1], the logistic map f (x) = ax(1− x) as isolated map
and the pairwise coupling function given by

h(x j,xi) = x3
jxi, i, j = 1, . . . ,N. (4.3)

Due to cross terms xp
i xq

j (which are elements of the space of the pairwise polynomials with the
degree at most r = p+q) the number of elements m in the basis will be large. Roughly speaking
the number of functions grows as m = O(N2r2). So, even in small networks of N = 10 nodes
and r = 4, we have m ≈ 1600.

4.3 Uniqueness of solutions

Large networks make Φ(X) ill-conditioned, and Equation (4.2) has infinitely many
solutions. So, recovering C is challenging. The strategy is to use the sparsity of the network and
search sparse matrices C that satisfy the linear equation. More precisely, we assume

(b) The network structure is undirected and sparse, that is only a few connections are realized
out of all possible. So the network sparsity induces a sparse representation of the network
dynamics F . More precisely, for each node i: Fi = ∑l cl

iφl where ci = (c1
i , . . . ,c

m
i ) ∈ Rm is

an s-sparse vector, that is, at most s of its entries are nonzero.

Network sparsity alone is not guaranteed to obtain the uniqueness of sparse solutions that satisfy
the linear equation. The library matrix must satisfy extra conditions. Based on compressive
sensing theory, when any 2s set of columns of Φ(X) forms a set of a near orthonormal system
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of vectors, or more precisely, Φ(X) satisfies restricted isometry property (RIP) or has restricted
isometry constant given by

δs(Φ) := max
S⊂[m],card(S )≤s

∥Φ
∗
S ΦS −1s∥2 ∈ (0,1), (4.4)

where ΦS is the submatrix of Φ composed by columns supported in S , then each column of
Equation (4.2) has a unique s-sparse solution (CANDES; TAO, 2005). Assumption (b) states that
each node dynamics is s-sparsely represented in the library L . In other words, C is the unique
solution of Equation (4.2) whenever Φ(X) satisfies RIP. The caveat is that a priori Φ(X) does
not satisfy this RIP property for the given library L . Then, the strategy is instead of using L ,
whose matrix fails in satisfying RIP, we introduce a new library whose associated matrix has the
desired property.

First, the new library must preserve the sparse representation of F . To this end, we
assume

(c) Also, we assume that the network physical measure µ is close to a product measure ν ,
i.e., statistically the network dynamics evolve almost such as there were N independent
nodes. We can introduce a notion of distance d that calculates the maximum difference
between integrals with respect to µ and ν over a pair of functions in a set of functions.
This assumption is summarized as d(µ,ν) < ζ for small ζ > 0 (PEREIRA; SANTOS;
STRIEN, 2023). For instance, in the weak coupling regime, this assumption is fulfilled
(EROGLU et al., 2020).

This assumption (c) plays a fundamental role. We show that the Gram-Schmidt process in
L2(ν) in the span of L yields Lν = {ϕi}m

i=1 which contains orthonormal functions with respect
to L2(ν), i.e.,

∫
ϕiϕ jdν = δi j with δi j is the Kronecker delta (PEREIRA; SANTOS; STRIEN,

2023). Moreover, F has a ωr(s)-sparse representation in Lν with ωr(s) =
(⌊ r

2

⌋(
r−
⌊ r

2

⌋)
+ r+

1
)

s. From here on, we call Lν the orthonormal network library, its associated library matrix is
denoted Φν(X) and the associated coefficient matrix Cν .

As a second step, dynamical information is relevant to make Φ(X) satisfy RIP. In fact,
when the network dynamics is evolving in synchronous motion, Φ(X) trivially does not fulfill
condition (4.4). Then, the final assumption is a dynamical regime that the network dynamics
must satisfy. We assume that

(d) The data comes from an exponential mixing network dynamics (HANG; STEINWART,
2017), that is, it is chaotic and exhibits exponential decay of correlations. In particular,
(F,µ) corresponds to an ergodic dynamical system with µ being the physical measure.

The main consequence of assumptions (a)− (d) is that for large networks given a desired
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δ ∈ (0,1) then we can determine a minimum length of time series that satisfies

n0 ≈
20K1ωr(s)2

δ 2 ln(Nr), (4.5)

such that δ (Φν)≤ δ with high probability (PEREIRA; SANTOS; STRIEN, 2023).

4.4 Divide-and-Conquer: all or nothing

Equation (4.5) guarantees that Φν(X) satisfies RIP with a desired RIP constant. Hence,
we can apply a known result in compressive sensing theory (CANDES; TAO, 2005) in terms
of network reconstruction. For any δ < 1, once n0 is attained, cν is the unique solution of the
equation

x̄ = Φν(X)cν . (4.6)

Hence, we can describe in detail a divide-and-conquer network reconstruction: (i) Suppose based
on expert knowledge, we know the group of nodes belonging to a motif. Then, when trying
to reconstruct this motif, if we miss a link in the motif, the linear equation Equation (4.6) is
inconsistent, i.e., there exists no solution. (ii) Once all neighbors of a given node are found,
probing extra links does not spoil the connections already found. Looking at this problem as a
basis extension, local solutions are stable under basis extension (NOVAES; Roque dos Santos;
PEREIRA, 2021). A priori, this observation seems obvious, but this is only possible because the
solution is unique. These observations can be summarized in the following result:

Proposition 4.4.0.1 (Sufficient infeasibility condition). (PEREIRA; SANTOS; STRIEN, 2023)
Consider that the length of the time series satisfies Equation (4.5). Let x̄ = Φν(X)cν where
cν ∈ Rm is an ωr(s)-sparse vector and consider the set

Fx̄ = {w ∈ Rm : Φν(X)w = x̄}.

Given a set U ⊆ [m] where U ∩ supp(cν) ̸= /0. Then U ⫋ supp(cν) if and only if

Fx̄
⋂
{w ∈ Rm : supp(w) = U }= /0. (4.7)

See proof in (PEREIRA; SANTOS; STRIEN, 2023).

4.5 Divide-and-Conquer Network Reconstruction (DCNR)

Previous results can be used to construct an algorithm to reconstruct the connections
inside a group of nodes such as motifs or clusters, instead of using all nodes in the library matrix.
There are techniques to identify clusters in complex networks from data, including correlation
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analysis (REVERTER; CHAN, 2008), Granger causality (LADROUE et al., 2009), mutual
information (BUTTE; KOHANE, 1999), causal entropy (SUN; BOLLT, 2014) or via dynamical
systems approach (EROGLU et al., 2020). However, identifying the connections within the
clusters is a hard problem since one faces computational limitations and sensitive dependence on
the network size.

Consider a clustered undirected network and assume that the nodes belonging to each
cluster are known, but their connectivity structure is unknown. The algorithm attempts to find the
intra-cluster connections among those nodes and uncover the bridge nodes, those nodes sharing
connections outside their cluster.

Since we aim to reconstruct the neighbors of a node, note that the assumption (a) implies
that there exists a set of indices U f ⊂ [m] in which the isolated map f ∈ span{ϕl ∈Lν : l ∈U f }.
So, by construction, the ωr(s)-sparse vector cν of the probed node satisfies supp(cν)∩U f ̸= /0.
Besides, U f ⊂ U where U is the set of indices that identifies the subset of basis functions in
Lν representing the dynamics of the probed node. Consequently, the hypothesis of Proposition
4.4.0.1 holds, U ∩ supp(cν) ̸= /0.

The Divide-and-Conquer Network Reconstruction (DCNR) algorithm initializes from an
initial graph partition P[N], whose each element P identifies a cluster of the graph and the zero
coefficient matrix C = 0 ∈ Rm×N . Then, DCNR seeks whenever Equation (4.7) is violated:

I) for P ∈ P[N], construct the subset of basis functions involving the coordinates of nodes
in P. This induces a subset of indices U ⊆ [m], and consequently, a submatrix of Φν(X).
Check:

• if Equation (4.7) holds, classify the probed node as a bridge node of the cluster P.

• Otherwise, recast the Ergodic Basis Pursuit (EBP) for node i ∈ P and find the
minimizer u⋆i

(EBP) u⋆i = argmin
u∈Rm

{
∥u∥1 subject to Φν(X)u = x̄,

supp(u)⊂ U
}
.

(4.8)

Recast as the i-th column vector of the matrix C and construct the subgraph of node i

inside the cluster P.

II) Use the resulting coefficient matrix C to factor out what is already known about the network
structure, i.e., update the data matrix by X̄ −Φν(X)C.

III) repeat I) for the set of bridge nodes and the updated data matrix X̄ −Φν(X)C, see left
panel of Figure 13 for an illustration.
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Figure 13 – PNR algorithm speeds up the network reconstruction. a) The PNR algorithm scheme
contains two stages to find the global network structure. At first, the algorithm searches the
intra-cluster connections, and then the remaining connections among the bridge nodes (in
dark color). b) The relative performance factor ρN(κ) for different clustered network of size
κ in coupled optoelectronic units of Equation (4.10) with β = 4.5,α = 0.05,θ = π

4 . The
dashed line represents the solution in Equation (4.9) for N = 500 and m(N) = 4N +1.

DCNR works because EBP uses Lν . Once n0 in Equation (4.5) is attained with δ (Φν)<√
2−1, EBP is guaranteed to have a unique ωr(s)-sparse solution for the noiseless case, and

known estimates bounds for the noisy case (CANDÈS, 2008).

4.6 DCNR decreases the reconstruction computational
time

The DCNR algorithm splits the reconstruction problem into smaller subproblems since
fewer columns of Φν(X) are involved in the reconstruction, reducing the computational time
and total length of time series to reconstruct the network. Let m(N) be the number of columns of
Φµ(X) written as a function of N. Moreover, we assume a linear polynomial time complexity
to solve the convex optimization problem for m(N), see Appendix C.0.1. Suppose we aim to
reconstruct an undirected network with κ clusters, where each cluster has equal size N/κ and
one bridge node. The computational time of the DCNR algorithm τDCNR is:

τDCNR = κm
(

N
κ

)
N
κ
+m(κ)κ,

where the first term is the computational time to check the intra-cluster connections: m
(N

κ

)
is

the number of columns involved in the cluster reconstruction and N/κ is the number of nodes
in a given cluster. The second term is the time to check the inter-cluster connections: since
the network is undirected by assumption (b), step III) implies the time is reduced in searching
connections exclusively among the κ bridge nodes. We calculate the relative performance factor
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in terms of the number of clusters κ and network size N

ρN(κ) =
κm
(N

κ

) N
κ
+κm(κ)

Nm(N)
, (4.9)

where the denominator corresponds to the computation time when we include all nodes in the
reconstruction.

To illustrate the performance of the PNR algorithm, we compute the relative performance
factor numerically in different clustered networks. For each fixed network size N, we generate
random networks with κ clusters. Each cluster corresponds to an ER network with N/κ nodes
and mean degree 4 and has a unique bridge node. The set of bridge nodes forms an ER network
with a mean degree 4.

We consider the coupled optoelectronic network modeled as

Fi(x(t)) = β Iθ (xi(t))+α

17

∑
j=1

Ai j[Iθ (x j(t))− Iθ (xi(t))] mod 2π, i = 1, . . . ,N, (4.10)

where the normalized intensity output of the Mach-Zehnder modulator is given by Iθ (x) =

sin2(x+ θ), x represents the normalized voltage applied to the modulator, β is the feedback
strength, and θ is the operating point set to π

4 . We consider {x(t)}n
t=0, for N = 100 using

n = 300 while for N = 200 and N = 500 we use n = 600; and parameter values β = 4.5,
α = 0.05 and θ = π

4 . We represent it in terms of trigonometric functions up to second harmonics,
L = {1}∪{sin(kxi),cos(kxi)}2,N

k=1,i=1, so m(N) = 4N +1. We construct the product measure ν

estimating from the data using Gaussian kernel density function. Orthonormalize L to obtain
Lν . The right panel of Figure 13 shows that the numerical relative performance factor and the
expression in Equation (4.9) agree for N = 500.

Discussion and conclusions. We proposed the DCNR method for chaotic and sparse network
dynamics. Our approach merges the ergodic theory of dynamical systems with sparse recovery
to guarantee the network reconstruction once a minimum length of time series is attained. In
principle, designed for clustered networks, DCNR checks for the connections inside the clusters
and combines them into a global network structure.

Two relevant factors heavily influence DCNR: the initial graph partition P[N], and the
dependence of the numerical method to solve the EBP on quantities such as length of time
series n and cardinality of the library m. For instance, assume the underlying graph is connected.
So, if P[N] = {{i} : i ∈ [N]} corresponds to the partition of singletons, the performance of
solving DCNR is definitely worse than taking the entire graph at once since one performs N

additional operations. We could use information theory to interpret how good is the selected
partition, in particular the entropy of the partition. So, the problem is to maximize information
for the reconstruction, which is measured by the entropy of the partition. Establishing a complete
description of solving this variational problem of choosing the initial partition such that DCNR
performs better is beyond the scope of this study and remains a promising subject for future
research.
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Here we discussed a simpler setting which gave us insights into the problem. We restrict
our attention to the case regarding prior knowledge (or an expert) which describes that the
network has community (clusters) structures. Regardless of the way to pre-process the data
for identifying an initial partition, we obtain a proxy of the network structure. The DCNR
algorithm improves this network estimate, allowing us to reconstruct the network from large
experimental data sets. Although the global network structure can be obtained via the EBP as a
single minimization problem, see Appendix C.0.2, for large networks this problem may become
infeasible computationally due to the memory allocation limitations. Thus, our scheme makes
the network reconstruction feasible in this scenario, saving processing demand and the search
can be made in parallel.
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CHAPTER

5
RECONSTRUCTION OF BURSTING

NETWORKS

This chapter is devoted to presenting our work entitled Reconstruction of bursting

networks from data, which is in preparation to be submitted.

Bursting dynamics is the alternation between trains of rapid spike-like oscillations
followed by a moment of silence (RINZEL, 1987). While successful single neuron models capture
bursting dynamics (IZHIKEVICH, 2000), bursting networks evolve in a high-dimensional and
nonlinear system on top of an intricate connectivity structure (BORISYUK; COOKE, 2006;
IZHIKEVICH, 2007). Bursting networks are found in different neuronal systems from cat
primary visual cortex (NOWAK et al., 2003), hippocampal regions (SANABRIA; SU; YAARI,
2001; BUZSáKI, 2015) to rodent trigeminal neurons (NEGRO et al., 1998). There has been
intense research to establish the influence of bursting on the onset of epilepsy seizures either
in animals or humans (SANABRIA; SU; YAARI, 2001; HOFER et al., 2022) (and references
therein). Hence, understanding such bursting network dynamics opens the possibility to gain
insights into the prediction of neurological disorders. Yet current technology only allows us to
observe multivariate time series instead of the actual information about how neurons (nodes)
evolve in time and interact among themselves (PARK; FRISTON, 2013). The challenge is to
reverse engineer and extract the governing equations from data.

A great deal of effort has pushed forward sparse recovery methods to extract governing
equations from data (BONGARD; LIPSON, 2007; SCHMIDT; LIPSON, 2009). Sparse recovery
methods search for sparse representations of the input data and have been used to reconstruct
different systems (NAPOLETANI; SAUER, 2008; WANG; LAI; GREBOGI, 2016; BRUNTON;
PROCTOR; KUTZ, 2016). In neuronal networks, based on empirical observation, sparsity
is a feature that permeates different neuronal systems (MASON; NICOLL; STRATFORD,
1991; WATERS; HELMCHEN, 2006; HE; CHEN; EVANS, 2007; GUZMAN et al., 2016). For
instance, the nematode C.elegans, which is one of the few nervous systems completely mapped
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at the cellular scale, has a small connectivity density (about 10%) (SCHRÖTER; PAULSEN;
BULLMORE, 2017). So, although the whole network is large (order of hundred to thousands
of neurons), each node dynamics can be described by a sparse combination of basis functions.
The connectivity structure has been successfully reconstructed using the basis pursuit method
(BARRANCA; ZHOU, 2019; BARRANCA, 2023), but extracting the governing equations
remains elusive.

In this paper, we utilize implicit-SINDy (MANGAN et al., 2016b) to reconstruct bursting
network dynamics modeled by coupled Rulkov maps in small motifs. We characterize the
performance of implicit-SINDy in terms of length of time series and network size. We show
that the minimum length of time series for a successful reconstruction scales exponentially
with the network size. For sufficient enough data implicit-SINDy can be compared against the
least square approximation. Although both methods have similar performance, the least square
approximation does scales better to tackle large networks. In particular, we estimate the same
amount of work to compute the reconstruction for both methods, O(N6). While implicit-SINDy
requires model selection, the least square approximation can be solved only once.

This paper is organized as follows. First, we introduce the dynamics of coupled Rulkov
maps. Then, implicit-SINDy is reviewed in Section 5.2. Since implicit-SINDy searches sparse
vectors in the kernel of a matrix, we study this kernel to deduce the minimum length of time
series in Section 5.3.1. Section 5.4 compares the performance of implicit-SINDy against a
formulation in terms of a least square approximation, which only assumes the definiteness of the
denominator in the rational representation. In Section 5.5 using theoretical bounds developed
in (Qu; Sun; Wright, 2016), we argue that although implicit-SINDy could be a viable option to
tackle short time series regime, the computational cost is a bottleneck. Finally, in Section 5.6 we
discuss potential directions to tackle large network structures.

5.1 Bursting dynamics
With the interest in investigating the effects of mutual synchronization and chaos regular-

ization of bursting cells, Rulkov (RULKOV, 2001) considered the following two-dimensional
map

f (u,v) =
α

1+u2 + v

g(u,v) = v−β (u+1),
(5.1)

where u is the fast variable, and v is the slow variable due to the small magnitude of β = 0.001.
The value of α determines the dynamical regime, either chaotic oscillations or chaotic spiking
bursts. From here on, without loss of generality, α = 4.4 is fixed and corresponds to a chaotic
bursting regime. The electrical coupling function among cells is modeled as:

hi j(xi,x j) = x j − xi, (5.2)
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which only occurs through the fast variables.

We consider the dynamics of N nodes given by

xi(t +1) = fi(xi(t),yi(t))+
λ

∆

N

∑
j=1

Ai j hi j(xi(t),x j(t)),

yi(t +1) = gi(xi(t),yi(t)),

(5.3)

where the state of node i ∈ [N] := 1, . . . ,N is (xi,yi) ∈ Mi ⊂ R2. The isolated map is the Rulkov
map with components fi and gi in Equation (5.1) evaluated at (xi,yi). The coupling strength λ is
divided by the maximum degree ∆ to normalize the interaction for high-connected nodes. The
adjacency matrix A defines who is connected to whom: Ai j = 1 if nodes i and j are connected
and Ai j = 0 otherwise. Figure 14 b) displays the time series in the chaotic bursting regime of two
nodes depicted in Figure 14 a), where we observe the slow-fast structure by |yi(t +1)− yi(t)|
being much less than one.

For the network structure, we consider motifs of neurologically relevant network struc-
tures. In particular, our main interest is a network featuring highly connected neurons, so-called
hub neurons, that interconnect themselves in an integrating cluster. The phenomenon is named
rich-club effect, where the hubs are densely connected to each other and the level of connectivity
exceeds what would be expected by chance alone. Hence, we consider motifs that are building
blocks of such rich-club networks. For instance, a reference network is the neuronal connectome
of the C.elegans (WHITE et al., 1986) that displays rich-club phenomenon (TOWLSON et al.,
2013).

From here on, the state of the network is denoted as

x = vec(x1,y1, . . . ,xN ,yN) ∈ MN = ∏
i∈[N]

Mi ⊂ R2N ,

where vec corresponds to the vectorization by stacking the vectors (xi,yi) into a single column
vector and write the network dynamics as

x(t +1) = F(x(t))

:= (F1(x(t)),F2(x(t)), . . . ,FN(x(t)),F2N(x(t)))

to make explicit the temporal dependence.

5.2 Reconstruction problem
Consider the multivariate time series {x(t)}n

t≥0 of the network dynamics introduced in
Equation (5.3). We are interested to extract the governing equations of the network dynamics
from the multivariate time series. Since the fast variable of the isolated map contains a rational
function in Equation (5.1), it makes the reconstruction a non-trivial task. In fact, if one attempts
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to reconstruct the dynamics using only polynomials (viewing as a Taylor expansion around zero),
the resulting model only predicts the data inside certain vicinity of zero (EROGLU et al., 2020;
TOPAL; EROGLU, 2023), limiting its usage. So, we consider a class of network dynamics that
can be represented by rational functions.

Consider the following assumptions:

(a). The time series of all nodes in the network are observed.

(b). Rational representation. The map F is given by

Fj(x) =
Pj(x)
Q j(x)

, j ∈ [2N], (5.4)

where the collection of numerators {Pj(x)} j∈[2N] and denominators {Q j(x)} j∈[N] lie in the span
of a library L = {φ1,φ2, . . . ,φm} where φl : MN → R. We consider the polynomials of two
variables with degree at most r

L = {1}∪{xp
i }i,p ∪{yp

i }i,p

∪{xp
i xq

j}i, j,p,q ∪{xp
i yq

j}i, j,p,q ∪{yp
i yq

j}i, j,p,q,
(5.5)

where i, j ∈ [N] with i ̸= j and we remove any redundancy, p ∈ [r],q ∈ [r− 1], and p+ q ≤ r.
The cardinality of L is given by m =

(2N
2

)(r
2

)
+2Nr+1.

The representation of F as in Equation (5.4) may allow for rational functions. In particular,
we are interested in the class of rational functions that contains the x-coordinate of the Rulkov
map in Equation (5.1). We fix maximum degree r = 3 because that is the least degree to represent
coupled Rulkov maps in the rational representation in Equation (5.4). In fact, if we need to
reconstruct the fast coordinate of the isolated map in Equation (5.1), we recast as

f (u,v) =
α + v(1+u2)

1+u2 .

Note that automatically there is the term vu2. The same observation can be done to network
dynamics in Equation (5.3). Although we fix throughout all simulations r = 3, if the coupling
function h had polynomials of the form xp

i xq
j , this would require higher degree polynomials.

(c). Sparse representation. Moreover, real-world neuronal networks are sparse (MASON;
NICOLL; STRATFORD, 1991; WATERS; HELMCHEN, 2006; HE; CHEN; EVANS, 2007;
GUZMAN et al., 2016), then we assume that the network structure, which is encoded by the
adjacency matrix A in (5.3), is sparse, i.e., out of all possible connections only a few are realized.
So, the network dynamics F has a sparse representation in L . Specifically, for each component
j ∈ [2N], Pj = ∑l al

jφl and Q j = ∑l bl
jφl , where a j = (a1

j , . . . ,a
m
j ),b j = (b1

j , . . . ,b
m
j ) ∈ Rm are

sparse vectors, that is, most of their entries are zero. From here on, we denote c j = vec(a j,b j) ∈
R2m.
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We formulate the reconstruction problem in terms of solving a linear equation. Consider
the library matrix

Φ(X) =


φ1(x(0)) φ2(x(0)) · · · φm(x(0))
φ1(x(1)) φ2(x(1)) · · · φm(x(1))

...
...

. . .
...

φ1(x(n−1)) φ2(x(n−1)) · · · φm(x(n−1))

 , (5.6)

where each column is an element of L evaluated along the network trajectory. Let the network
trajectory be recast as

X̄ =


x1(1) y1(1) · · · xN(1) yN(1)

...
... . . . ...

...
x1(n) y1(n) · · · xN(n) yN(n)

 (5.7)

where each column is denoted x̄ j with j ∈ [2N]. Also, let D j = diag(x̄ j) be the diagonal matrix
constructed from the vector x̄ j. Then, define the augmented library matrix

Ψ(x̄ j) :=
[
Φ(X) Φ(X)D j

]
∈ Rn×2m, j = 1, . . . ,2N. (5.8)

Rewriting Equation (5.4) we obtain

Pj(x)−Fj(x)Q j(x) = 0 (5.9)

for each j ∈ [2N]. By assumption (c), Pj and Q j can be written as a linear combination of
polynomials in L , then Equation (5.9) can be rewritten in terms of the augmented library matrix
as

Ψ(x̄ j)c j = 0, j = 1, . . . ,2N. (5.10)

Hence, to reconstruct the network dynamics the sparse vectors c1, . . . ,c2N that satisfy Equation
(5.10) must be found. Since each c j lies on the kernel of the augmented library matrix

ker(Ψ(x̄ j)) = {u ∈ R2m : Ψ(x̄ j)u = 0},

implicit-SINDy is devoted to the following approach: to search the non-zero sparsest vector in
the null space of Ψ(x̄ j) (MANGAN et al., 2016b). A priori, this problem could be formulated
in terms of a ℓ0 minimization problem, but it is intractable computationally (Qu; Sun; Wright,
2016). So the alternative formulation is a ℓ1 minimization problem that is constrained to search
solutions in the unit sphere, due to invariance by scaling of Equation (5.10).

Implicit-SINDy implements the so-called alternating direction method (ADM) algorithm
proposed by Qu and co-authors (Qu; Sun; Wright, 2016). The main idea is to find a linear
combination of the kernel’s orthonormal basis such that the coefficients lie on the unit sphere
and the spanned vector corresponds to the sparsest vector in the kernel, see Appendix D.1 for
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details. More precisely, let Θ j ∈ R2m×d be the orthonormal basis of the kernel of Ψ(x̄ j), where
d is the dimension of ker(Ψ(x̄ j)). The algorithm iterates the following:

uk+1
j = soft(Θ jwk

j,γ),

wk+1
j =

ΘT
j wk+1

j

∥ΘT
j wk+1

j ∥2
,

(5.11)

where soft(u,γ) = sign(u)max{|u|− γ,0} is the soft-thresholding operator applied component-
wise, T corresponds to the transpose and w0

j is initialized using normalized rows of Θ j. Here we
adopt a maximum number of iterations as 10000, see algorithm in 4.

The parameter γ penalizes the large entries of the vector on the null space. Equation
(5.11) depends on γ , and consequently, the resulting sparse solution. Implicit-SINDy solves
Equation (5.11) for different values of γ , and then performs a Pareto front to choose the γ that
corresponds to the most parsimonious model. In particular, Pareto front selects the solution u⋆

that minimizes the error in satisfying Equation (5.10) and also has the least number of non-zero
entries, see Appendix D.2 for details. Overall, implicit-SINDy formulates the network dynamics
reconstruction for each node in the network: iterating (5.11) for each γ , and then finding the best
γ parameters via a Pareto front.

5.2.1 Example: two-nodes motif

To illustrate the reconstruction of bursting network dynamics, let us consider two coupled
nodes as depicted in Figure 14 a). We consider 5000 time steps as transients, so the network can
attain the attractor, and iterate the system during n time steps. We repeat the same scheme for all
motifs tested in this paper.

For n = 200, we run implicit-SINDy for each coordinate j ∈ [2N] and obtain the resulting
coefficient vector, which is plugged into Equation (5.10) to compare against the true model. Using
symbolic language programming (MEURER et al., 2017), we build the reconstructed model
F̂ . Figure 14 c) displays the comparison between the isolated map in Equation (5.1) and the
reconstructed model of the node map projected to its coordinate, i.e., F̂(0,0, . . . ,xi,yi, . . . ,0,0).
We notice that both isolated maps are in agreement, showing that the reconstruction is successful.
In Equation (5.12), we show the reconstructed model expression, where the isolated map,
coupling function, and parameters such as α , β , and coupling strength δ/∆ are successfully
recovered. The reconstructed model for the two nodes motif in Figure 14 c) is given below

x̄1 =
−0.010000184x3

1 +0.010000184x2
1x2 +1.0x2

1y1 −0.010000184x1 +0.010000184x2 +1.0y1 +4.4000005
x2

1 +1.0

ȳ1 =−0.0010000908x1 +1.0y1 −0.0010000908

x̄2 =
0.010000184x1x2

2 +0.010000184x1 −0.010000184x3
2 +1.0x2

2y2 −0.010000184x2 +1.0y2 +4.4000005
x2

2 +1.0

ȳ2 =−0.0010000908x2 +1.0y2 −0.0010000908

(5.12)
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Figure 14 – Reconstruction of a two-nodes motif. a) Two nodes motif. b) Network time series where
each color represents a node. The top panel displays the bursting dynamics of the fast variable
while the bottom panel shows the slow dynamics. c) Reconstruction of the isolated map (5.1).
The top panel is the isolated map projected in the u axis and the bottom panel is in the v axis.
The solid line (in gray) represents the true expression and the dashed line (in blue) represents
the reconstructed model. The network dynamics parameters are λ = 0.01 and ∆ = 1. The
length of the time series is n = 200 and transient time is 5000 time steps.

To recover successfully the original network dynamics, we must perform a factorization in the
numerator and denominator. The factorization can be done even by inspection for small networks,
but it becomes intractable for large networks.

5.3 Trade-off: uniqueness versus performance

The above example demonstrates that the implicit-SINDy successfully reconstructs the
governing equations for both fast and slow variables. Note that when the governing equations
contain rational terms, by construction, if the time series is sufficiently long, then the true
coefficient vector satisfying Equation (5.9) is the unique non-zero vector lying on the null
space of Ψ(x̄ j). Implicit-SINDy finds this vector, which is sparse by Assumption (c), and
exactly reconstructs the governing equations. Although for two nodes this is easily satisfied, we
demonstrate that for larger motifs there is a trade-off: either implicit-SINDy requires a long time
series for exact reconstruction or the reconstruction can be computationally expensive.
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5.3.1 Mininum length of time series

The reconstruction heavily depends on the length of time series n. The natural question
is: how long should be the time series to obtain a unique vector in the null space? We address to
determine the minimum length of time series n0 such that we have a successful reconstruction.
This problem can be investigated in terms of the dimension of the kernel of Ψ(x̄), establishing
the number of sparse vectors that populate the kernel of Ψ(x̄) as the length of time series n and
network size N are varied.

Let us consider the augmented matrix Ψ(x̄) ∈ Rn×2m. Let def(Ψ(x̄)) be the dimension
of ker(Ψ(x̄)), also called defect or nullity (BERNSTEIN, 2009). To obtain the dependence of
def(Ψ(x̄)) with respect to the length of time series n, we consider two cases separately.

Fat matrix (n < 2m). def(Ψ(x̄)) has a linear decay envelope as we increase n. By the dimension
theorem (rank-nullity theorem) and the inequality rank(Ψ(x̄)) ≤ min{n,2m} (BERNSTEIN,
2009) the following holds:

2m ≥ def(Ψ(x̄))≥ 2m−n. (5.13)

Tall matrix (n ≥ 2m). def(Ψ(x̄)) decays nonlinearly as n is increased. The defect is estimated
using Singular Value Decomposition (SVD). SVD calculates the dimension of the orthonormal
basis for the null space in terms of the spectra σ(Ψ(x̄)), selecting those orthonormal vectors
associated with eigenvalues that are smaller than a given threshold. Since each Ψ(x̄) column
is a vector whose entry corresponds to a φl (observable) evaluated at the network trajectory,
spurious linear dependences may occur between columns of Ψ(x̄), and consequently, a nonlinear
dependence on n. After transient, by the construction of Ψ(x̄) in Equation (5.8), we can deduce
that def(Ψ(x̄)) approaches 1 for the fast variables, which contain the rational term. This implies
that as we increase n, eventually def(Ψ(x̄)) converges to the constant 1, so from here on, we
define

Definition 5.3.1. The minimum length of time series n0 is the length of time series when
def(Ψ(x̄)) = 1.

Figure 15 shows how def(Ψ(x̄)) depends on the length of time series n for three distinct
network structures with 10 nodes. At first, def(Ψ(x̄)) decays linearly for both fast and slow
variables, as shown by the agreement with the linear equation n 7→ 2m−n corresponding to the
dashed orange curve. Then, once n is close to 2m, which in this case is 2m = 1261, the curves
split into two. After the splitting point, def(Ψ(x̄)) stabilizes in a plateau for the slow variables.
The isolated map for the slow variable is not a rational function, so def(Ψ(x̄)) is larger than one.
On the other hand, for the fast variables, def(Ψ(x̄)) decays nonlinearly, until it converges to 1
which is represented by the black dashed line. Although the network structures are disparate to
each other, the curves approach 1 similarly for all cases over different initial conditions, showing
that the curve behavior is not strongly related to the network structure itself.
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Figure 15 – Dependence of defect of the augmented matrix for different network structures. a) Ring
graph with 10 nodes. b) Defect of Ψ(x̄) as we increase the length of time series for fast
(dark blue) and slow (light blue) variables. Orange and black dashed lines correspond to the
linear equation n 7→ 2m−n and def(Ψ(x̄)) = 1, respectively. c) Motif with 10 nodes with two
coupled hubs and e) Star motif with 10 nodes. d) and f) are similar to b). For all networks the
curve behavior is similar. When the length of time series is smaller than the number of basis
functions 2m, the defect of Ψ(x̄) decays linearly. Once the length of the time series equals
2m, there is a splitting. For the fast variable, the curve converges to 1 as opposed to the slow
variable, which decays much slower than the fast variable. The dots correspond to the average
over 10 initial conditions after we group all nodes’ variables of the same type (fast or slow),
while the shaded area is the standard deviation.
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Figure 16 – Dependence of defect of the augmented matrix for star graph with different network
sizes. a) - d) The dots correspond to the average over 10 initial conditions after we group
all nodes’ variables of the same type (fast or slow), while the shaded area is the standard
deviation. For N = 15 and N = 20 the dots correspond to one realization.
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Nevertheless, the nonlinear dependence depends significantly on the network size. For
fast variables, fixing the star graph as the reference network, Figure 16 displays the nonlinear
dependence of def(Ψ(x̄)) with respect to the length of the time series under different network
sizes. Note that the variation with respect to initial conditions decreases for larger networks,
as shown in Figure 16 a) - d). All curves are shown in the interval when the length of the
time series is larger than the number of Ψ(x̄) columns, i.e., the interval after the orange dashed
curve in Figure 15. Although the curves have different profiles, the defect slowly decays with
network size, consequently, the minimum length of time series n0 increases with network size.
In particular, for N = 15 and N = 20, the defect reaches 2 instead of 1 in the chosen interval.
This shows that the spurious numerical linear dependencies among columns of Ψ(x̄) can be
long-lasting as larger is the network, requiring large n0.

The defect of Ψ(x̄) can also be used to estimate the computational cost of computing the
solutions via the ADM algorithm as part of the implicit-SINDy method. Qu and co-authors (Qu;
Sun; Wright, 2016) were able to establish conditions for successful reconstruction of the sparsest
solution on the ker(Ψ(x̄)) via ADM algorithm in terms of the defect of Ψ(x̄). In particular,
under a specialized setting called the planted sparse model, which is defined as when ker(Ψ(x̄))
contains the sparsest solution and a sequence of linearly independent random vectors filling
the subspace, the algorithm requires a lower bound condition on the number of columns of
Ψ(x̄): 2m ≥ d4 logd, where d = def(Ψ(x̄)) is the short notation for defect of Ψ(x̄). Moreover,
the formulation of the ADM algorithm (Qu; Sun; Wright, 2016) requires that Equation (5.11)
should be iterated by d4 logd times. Consequently, the ADM algorithm spends as many iterations
to converge to a solution as larger the network size. By Equation (5.5) the number of basis
functions m(N,r) in the library L scales as m = O(N2r2) where N is the network size and
r is the maximum degree. The ADM algorithm may take a number of iterations that scales
as (2N2r2 −n)4 log(2N2r2 −n), i.e., it has leading order growing as O(N8r8). For this reason,
implicit-SINDy consumes a long computational time and may fail to reconstruct the slow variable
dynamics, which does not have any rational term.

Figure 17 displays the dependence of the pair length of time series n and network size
such that def(Ψ(x̄)) = 15. For smaller network sizes, N < 10, the length of the time series grows
quadratically, following the number of columns of Ψ(x̄) with N, represented by the red solid line,
n = 2m. Then, the curve changes growth behavior, scaling exponentially with network size, as
confirmed by the fitting (blue dashed line). The inset in Figure 17 shows the dependence (n,N)

for different defect d values, where as expected, smaller defect values require a large length of
the time series. In particular, the smallest defect represents the behavior of the minimum length
of time series n0. The regime of length of time series [2m,n0), where the number of rows of Ψ(x̄)
is larger than the number of columns, Equation (5.10) becomes overdetermined, but the defect is
still larger than one for the fast variables. Finding the solution may be a computational issue,
and other methods are available to compete with the ADM method to reconstruct the network
dynamics such as least square approximation, as we will show in Section D.2.1.
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Figure 17 – The length of time series grows exponentially with network size. The length of the time
series versus the network size for d = 15, where dots correspond to one initial condition.
The red solid line corresponds to the case n = 2m. The blue (dashed) line corresponds to the
regression of a linear fitting. The inset shows the same curve for different values of d. The
dots correspond to an average over 10 initial conditions while the shaded area is the standard
deviation. The maximum degree is r = 3. The coupling strength is λ = 0.01 and maximum
degree ∆ = N.

Figure 17 illustrates the trade-off for reconstructing large networks: either the length
of the time series should be sufficiently large, or the ADM method requires a sufficiently long
computational time to compute solutions. Note that this performance estimate captures the
reconstruction of a sparse solution for a given γ parameter, but it does not take into account
probing different γ parameters, which also requires further computational time.

5.4 Reconstruction performance

For motifs that have more than 2 nodes, the interpretability of the reconstructed model
becomes challenging. The expressions of the reconstructed model grow prohibitively large,
making it difficult to interpret them by inspection. To quantify the reconstruction performance
we introduce an error function for each node that evaluates one step prediction in fitting the
trajectory of that node, and then average over evenly spaced locations within a certain period τ .
In this way, this error function quantifies successfully whether the selected model captures the
node dynamics in the network.

More precisely, let {x(t)}n
t≥0 be the trajectory of the network dynamics. And let F̂ be the
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Ē1 3.42×10−7

Ē2 6.72×10−8

Ē3 2.78×10−7

Ē4 9.15×10−8

Table 1 – Reconstruction performance of two nodes network for n = 200, τ = 2000.

reconstructed model. Consider at time t

Ei(t) := |xi(t +1)− F̂i(xi(t))|, i = 1, . . . ,2N,

that is one step evaluation of the reconstructed map at the trajectory. Then, we evaluate the
performance of the reconstructed model in 50 evenly spaced locations within a period τ , i.e., we
consider the following error function

Ēi =
( 1

50

50

∑
k=1

E2
i (tk)

) 1
2
, tk ∈ [0,τ].

To illustrate that Ēi captures a successful reconstruction, we calculate it for the coupled two-node
network in Figure 14, see Table 1. We can observe that the order of magnitude of Ēi for each
node matches the precision on the coefficients obtained in the reconstructed model in Equation
(5.12) in Section 5.2.1.

Because of Figure 17 regarding the reconstruction of large networks, we make two
choices: we consider sufficient long time series, otherwise, the ADM algorithm takes a long
time to converge to a solution. Moreover, since the loss function depends on the reconstruction
of all nodes and the dynamics of the slow variables (y−coordinates) are costly to compute, to
reconstruct the slow variables we use:

min
u∈Rm

∥Φ(X)u− x̄∥2,

whose solution is given by u∗=Φ(X)+x̄, where Φ(X)+ :=(Φ(X)T Φ(X))−1Φ(X)T is the Moore-
Penrose pseudo-inverse. Note that using only the library matrix Φ(X) is enough because the
slow variable does not contain the rational term.

To check implicit-SINDy performance, we compare it with another method. We introduce
a least square formulation of the problem, see D.2.1 for details. We evaluate the performance
of the reconstruction method for small motifs as we vary the length of the time series. Figure
18 b) shows the comparison between the implicit-SINDy and least square approximation to
reconstruct the five node motif in Figure 18 a). The curve decays two orders of magnitude
before reaching n = 500, then it attains a plateau where both reconstruction methods correctly
identify the underlying network model. The ℓ2 method outperforms implicit-SINDy using a
single formula and does not require model selection.
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Figure 18 – Comparison of reconstruction methods for varying length of time series. a) Star motif
with five nodes. b) Error function for least square approximation and implicit-SINDy. Dots
corresponds to the average over 10 initial conditions and grouping all nodes’ variables of the
same type (fast or slow), while shaded area is the standard deviation. The coupling strength
λ = 0.01 and ∆ = 5.

5.5 Which method can scale better to large networks?

As observed in Section 5.3, the performance of implicit-SINDy depends on the length of
the time series and network size. But we also can deduce rough estimates of the total amount
of work that implicit-SINDy and ℓ2 methods require to reconstruct the network dynamics with
respect to network size. The main interesting question is: which method does scale better to large
networks?

ADM algorithm uses SVD to determine the defect of Ψ(x̄). To compute SVD the total
amount of work (measured in flop counts) (GOLUB; LOAN, 1996) scales as 4nm2 +8m3. Since
m = O(N2r2), the amount of work scales as O(N6r6). Using the formula ℓ2 method also uses
SVD, having the same performance. We could also estimate in terms of solving normal equations
(GOLUB; LOAN, 1996) that requires nm2 +m3/3 to find a solution, consequently, also scales
as O(N6r6).

In the end, assuming that the length of the time series n is sufficiently large, at least
d = 15 in Figure 17 we can roughly estimate how much work the two reconstruction methods,
implicit-SINDy and ℓ2, take to reconstruct a node dynamics. Implicit-SINDy requires O(N6r6)

times the number of γ parameters tested during the Pareto front. As opposed to the least square
approximation that does not need the Pareto front. When comparing both of them ℓ2 stands as a
better choice for large networks.

5.6 Discussion and conclusions

Overall we numerically investigated the performance of implicit-SINDy for extracting
governing equations of network dynamics. In particular, we evaluated the performance in terms
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of the length of time series and network size. Implicit-SINDy requires at least a minimum amount
of time series to reconstruct that scales exponentially with network size. When compared to least
square approximation, least square approximation has better performance in all tests, being a
better choice to tackle large networks. In particular, it can be solved using a single formula and
does not require model selection.

There has been progress in developing methods to reconstruct rational functions from
data using a mean-field reduction approach for chaotic dynamics (TOPAL; EROGLU, 2023),
two-phase algorithm (GAO; YAN, 2022), or SINDy variants (ZHANG; LIN, 2018; KAHEMAN;
KUTZ; BRUNTON, 2020), but none of these methods use advantageously the slow-fast structure
of the dynamics. For instance, we showed that implicit-SINDy is not well adapted to the slow
variable, due to the absence of rational terms. So, this poses an interesting research direction to
be tackled in future research. We also point out that large networks require smarter reconstruction
strategies. There are occasions when although the network structure is unknown, it is not
completely unknown. For instance, in neuronal systems, a motif structure might be known such
as in rich club motifs (REUS; HEUVEL, 2013; TOWLSON et al., 2013), where a group of
nodes form a highly connected cluster mediating information to the rest of the network. Then to
reconstruct a large network one could incorporate such expert knowledge on the structure into
the reconstruction method. Using the expert knowledge we could break the reconstruction into
subproblems and solve reconstruction subproblems locally. Subsequently, combining information
gathered for each local solution, the global solution is built. Another potential research direction
is multidimensional regression using tensor representation (GELß et al., 2019).

Data Availability Statement. The code to produce the data that supports the findings of
this study is available in the rulkov-repository (SANTOS, a).
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CHAPTER

6
CONCLUSIONS

Over recent years, significant progress has been made in the extraction of governing
equations for complex network dynamics from data. This advancement opens up possibilities for
predicting critical transitions, especially in large-dimensional systems. Leveraging the sparsity
feature commonly found in real networks, sparse recovery methods emerge as potential options
to recover these governing equations. Sparse recovery methods search for a sparse representation
of the data, making them well-suited for reconstructing the network dynamics when the length
of available time series data is much shorter than the network size. In this thesis, we explore the
synergy of dynamical systems theory and ergodic theory with sparse recovery methods to obtain
reconstruction guarantees.

Reconstruction of sparse networks requires a minimum length of time series. In situations
where time series data is limited, the reconstruction problem can formulated as an underdeter-
mined linear system, and sparse solutions become unique under certain conditions, such as when
the matrix satisfies RIP (Restricted Isometry Property). Using the decay of correlations of the
network dynamics, pairs of columns of the associated matrix become linear independent of each
other once a minimum length of time series is attained, see Theorem 1. Our study evaluates the
performance of EBP concerning time series length and network size, highlighting its robustness
against noise and its applicability to experimental data.

Divide-and-conquer approach enabled by uniqueness. Exploiting the unique reconstruction of
the EBP, we explore the reconstruction of clustered networks. We address the question of the best
strategy for reconstructing network structures: dividing them into clusters or solving the entire
network at once. The choice depends on the number of clusters and number of nodes within each
cluster. We delved into the specifics of this dependency, demonstrating the reconstruction can be
sped up tremendously, see 4.6. Moreover, least square approximation fails in implementing this
divide-and-conquer approach within the regime of the short length of time series, see Section
3.4.1.
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Sparse recovery methods are suitable for bursting network reconstruction. We also investi-
gate the suitability of sparse recovery methods for reconstructing bursting network dynamics,
particularly employing implicit-SINDy. Implicit-SINDy requires a minimum length of time
series that scales quadratically with the network size to reconstruct the network dynamics. When
compared to the least square approximation, both had similar performance in the reconstruction,
although the latter offers computational efficiency.

6.1 Open problems and potential research directions

1. Partial Network Observation. Throughout this thesis the main assumption was that
the multivariate time series of all nodes’ states in the network were available. However,
typically this is unrealistic.

Problem. Assume that there are observations given by an observable ψ : M → R

yi(t) = ψ(xi(t)),

where ψ is a projection to a variable on which nodes interact to each other.

Problem. More generally, assume that there are observations given by ψk : MN → R

yk(t) = ψk(x(t)).

Consider the case that k < N. In this scenario, instead of observing all nodes, the network
is partially observed.

2. Extension to maps on the Torus. Although we introduced and demonstrated that EBP
holds for exponential mixing network dynamics, we have not proved that is valid for an
example. Moreover, all examples we have studied consist of isolated maps on a subset of
the real line. In view of standard and recent results of statistical properties of hyperbolic
systems on the torus, we consider

Problem. Formulate a reconstruction problem for maps on TN . A priori, this can be
challenging. In fact, consider the expanding map on the circle x 7→ 3x mod 1. The return
map trajectory of this map is discontinuous in the real line, and any polynomial basis is
not capable of representing the dynamics.

Once the reconstruction problem can be formulated, we envision that skew-product systems
are potential examples such as torus extensions over expanding maps (CHEN; HU, 2018).
In terms of network terminology, torus extensions are directed star graphs, where the hub
receives connections from the leaves. Moreover, uniformly expanding maps are potential
examples to use a key step in our proof (TANZI, 2022): approximate the physical measure
using a product measure.
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3. Robust Noise Magnitude Identification. The Relaxing path algorithm A.1 searches the
noise magnitude tuning the ε parameter to identify the correct structure. However, the
current strategy is fragile. It heavily depends on the interval E and how each probed
parameter is spaced to each other, i.e., which grid we use to probe the parameters.

Problem. Formulate a more robust way to identify the noise magnitude in the recon-
struction of noisy measurements.

4. Cluster Detection. DCNR algorithm depends on the initial partition. We focused on the
reconstruction of clustered networks. We assumed the clusters are given a priori, but that
is not general.

Problem. Pre-process the data to find the cluster information. Consider a correlation
analysis of the time series to find a starting initial partition for DCNR. In particular,
Pearson correlation of the multivariate time series of all nodes in the network. DCNR will
be responsible for identifying the connections inside the clusters and among clusters.

5. Incorporating Slow-Fast Structures. We have used the rational information of the
coupled Rulkov maps to reconstruct the bursting network dynamics. However, the slow
variable is challenging to be recovered using this method, because it does not contain the
rational term. The idea is to exploit the slow-fast structure advantageously. Inspired by the
idea of the critical manifold from Geometric Singular Perturbation Theory (FENICHEL,
1979), consider:

Problem. Assume that the slow variable is a parameter for chunks of data within short
time intervals and solve the reconstruction for the fast variable. Here, we reconstruct the
fast dynamics on the critical manifold. Then, assuming that the fast dynamics is known,
incorporate it in the reconstruction of the slow dynamics akin to the approach described in
(LUCHINSKY et al., 2008).
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APPENDIX

A
ERGODIC BASIS PURSUIT: NOISY DATA

AND ESTIMATING MEASURE

A.1 Relaxing path algorithm

Here we detail the relaxing path algorithm used to reconstruct the coupled optoelectronic
network in Section 2.4. This algorithm tunes the parameter ε to identify correct connections in
the underlying network, see Figure 19 for an illustration of the network reconstruction scheme
using relaxing path algorithm.

Figure 19 – Robust network reconstruction scheme using ergodic basis pursuit. The noisy data is
generated from a network dynamics whose underlying measure is µξ . Using its estimated
measure ν , we induce an orthonormal set of basis functions L (ν) representing the dynamics.
Under the assumption that the network dynamics is sparse, the noisy data and L (ν) are
recast as a minimization problem, whose solution encodes a proxy of the network. Although
the noise level may be unknown, the relaxing path algorithm searches the connections of each
node varying the noise level ε as a parameter. The true connections remain robust over an
interval of ε .

Relaxing path algorithm uses the Theorem 7. To gain insight into what is happening, it is
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worth to consider a special case. Consider the case we probe a node in a weakly coupled network
via the relaxing path algorithm. In this case, the true coefficient vector has the entries’ magnitude
relative to the isolated dynamics f larger than those relative to the coupling function h. This
difference also appears in the family of solutions {c⋆ν(ε)}ε as we increase ε . For small ε , we
may observe a few false connections; see Figure 19. These false connections disappear for larger
ε , and only the robust connections remain. If we keep increasing ε , the robust connections have
their magnitude reduced until we only observe those entries relative to the isolated dynamics, i.e.,
there are no incoming connections. Thus, the parameter ε identifies the magnitude difference
among the entries of the true solution, capturing the correct incoming connections to the node
inside an appropriate interval of ε .

Here, we detail the three main stages of the algorithm.

A.1.1 Model selection (MS)

Model selection selects the coefficient vector of a particular node for a given parameter
value ε . The current version of our algorithm encompasses the criterion used in the main text,
where we search the robust connections in consecutive parameter values. Alternative approaches
are valid and can be incorporated. For short we denote the model selection step as MS(c⋆(ε)) for
a given coefficient vector c⋆(ε).

A.1.2 Network selection

Network selection is a map that obtains the network structure from the coefficient matrix.
Although each coefficient matrix C with column vectors {c1, . . . ,cN} is mapped to a directed
multigraph (a graph that permits multiple edges among the nodes), the Network Selection
introduces a map NS that yields a graph structure instead.

Let Si ⊂ [m] be the set of indices corresponding to basis functions in L that depend
on node i. Thus, the directed multigraph Gm = ([N],Em) from the representation of the network
dynamics in L is defined by

Em = {(i, j) : wk
i j = ck

i ̸= 0,k ∈ S j}, (A.1)

where (i, j) corresponds to an edge from node j to i and wk
i j is the edge weight. Self-loops are

excluded since the graph only carries information about the coupling structure. The Network
Selection step constructs a weighted graph from this multigraph, defined as

Wi j = max
k∈S j

{wk
i j}, (A.2)

such that W corresponds to an adjacency matrix whose entries are the edge weights in (A.2). We
construct a directed subgraph of node i picking the i-th row of W and denote it by subgraph(ci).
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The same construction can be replicated for all nodes, so the graph structure from the coefficient
matrix C is

G =
N⋃

i=1

subgraph(ci),

characterizing the network selection map NS : Rm×N → RN×N defined as C 7→ W . When the
edge weights are unnecessary, all edge weights are set to 1.

A.1.3 Algorithm

Equation (2.17) quantifies the approximation accuracy w.r.t. to the sparse vector cν . We
can use it to estimate the entries’ magnitude lying outside the support set of this sparse vector,
S = supp(cν). Let us denote uS as the vector equal to u on the index set S and zero on its
complement S c. We can decompose c⋆ν(ε) into the sum of c⋆

ν ,S (ε) and c⋆
ν ,S c(ε). Note that

∥c⋆
ν ,S (ε)− cν∥2

2 + ∥c⋆
ν ,S c(ε)∥2

2 = ∥c⋆ν(ε)− cν∥2
2 since S and S c are disjoint, and it implies

that ∥c⋆
ν ,S c(ε)∥2 ≤ K4ε. Hence, assuming the wrong entries are assigned at random, we consider

that any entry of c⋆ν(ε) with a magnitude less than O(ε/
√

m) is zero.

Since the entries’ magnitude supported in S c are bounded by K2ε , we discard the
irrelevant connections (to represent the node dynamics) encoded in c⋆ν(ε) as we tune ε . The idea
is to tune ε and find the connections that are robust over different parameter values, the relevant
connections. The challenge is that ξ is unknown, as well as the other quantities that bound the
error in (2.15). We look at this problem as a one-parameter family, searching the support set that
persists over different ε and reconstructing the sparse network. We propose the relaxing path
algorithm:

1. Select a set of equally spaced values εk within the interval E = [εmin,εmax]. A pre-
processing analysis can estimate the interval bounds (CLEVELAND et al., 1990).

2. For each εk ∈ E find the optimal solution to the (2.16), the support Sk = supp(c⋆ν(εk))

and Tk = Sk∆Sk−1, where ∆ corresponds to the symmetric difference of the two sets and
checks the change in their cardinality (FIGUEIREDO; NOWAK; WRIGHT, 2007).

3. If |Tk|= 0, the support has not changed, then stop, and the corresponding solution c⋆ν(εk)

is returned. Otherwise, iterate k 7→ k+1 and repeat Step 2.

The quadratically constrained Ergodic Basis Pursuit method is given in Algorithm 1. Let
the hard-threshold function be given as

hard(u,λ ) = uχ|u|>λ ,

where χA is the characteristic function on the set A. For a vector u ∈ Rm, we consider that the
hard-threshold function is evaluated coordinate-wise. The relaxing path algorithm reconstructs
the networks as described in Algorithm 2.
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Algorithm 1 – Quadractically constrained Ergodic Basis Pursuit (QEBP)
Input: ȳ ∈ Rn, Φν(Y ) ∈ Rn×m, ε

/* ȳ ∈ Rn: time series (measurement) vector */
/* Φν(Y ) ∈ Rn×m: adapted library matrix */
/* ε: relaxing parameter */
Output: c⋆(ε) coefficient vector

1 Output.
c⋆ν(ε) = argmin

ũ∈Rm
{∥ũ∥1 subject to ∥Φν(Y )ũ− ȳ∥2 ≤ ε}. (A.3)

Algorithm 2 – Relaxing path algorithm
Input: Ȳ = (ȳ1, . . . , ȳN) ∈ Rn×N , Φν(Y ) ∈ Rn×m, X ∈ Rm×N

/* Ȳ: matrix of the noisy multivariate time series */
/* criterion: select criterion for Model Selection */
/* Φν(Y ): adapted library matrix */
Output: Reconstructed graph G

2 Initialization: G0 = ([N], /0), F 0 = /0, εmin,εmax ∈ R for j ∈ [N] do
3 for ε ∈ [εmin,εmax] do
4 c⋆ν(ε) = QEBP(ȳ j,ε) c⋆ν(ε) = hard(c⋆ν(ε),ε/

√
m) c⋆j(ε) = R−1

ν c⋆ν(ε)
5 if MS(c⋆j(ε),criterion) is satisfied then
6 H j = subgraph(c⋆j(ε)) Gk+1 = Gk ∪H j F k+1 = F k ∪{ j}
7 Stop and go to next node
8 end
9 end

10 end
11 Output. Coefficient matrix C⋆.

A.2 Optoelectronic experimental data
The experimental data corresponds to a network of optoelectronic oscillators whose

nonlinear component is a Mach-Zehnder intensity modulator. Each node can be modeled as

xi(t +1) = β Iθ (xi(t))+α

17

∑
j=1

Ai j[Iθ (x j(t))− Iθ (xi(t))] mod 2π, i = 1, . . . ,N, (A.4)

where the normalized intensity output of the Mach-Zehnder modulator is given by

Iθ (x) = sin2(x+θ),

x represents the normalized voltage applied to the modulator, β is the feedback strength,
and δ is the operating point set to π

4 . We obtained the experimental multivariate time series
{y1(t), · · · ,y17(t)}16385

t=1 corresponding to N = 17 units coupled through a network, where the
following parameters were fixed and known experimentally: β = 4.5 and coupling strength
α = 0.171875 (HART et al., 2019). Let us denote the optoelectronic network dynamics as F .
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A.2.1 Localization on a subset of the phase space

Figure 20 illustrates the extraction of experimental data used in the main text.
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Figure 20 – Step-by-step description of the extraction of the experimental data. The top middle panel
displays the return map of the resulting network dynamics’ trajectory with 264-time steps for
coupling α = 0.171875.

Subset selection. In Figure 20, the upper left panel shows the return map for all nodes in
the network measured experimentally (according to private communication, the initial ∼1000
points can be regarded as transient. Hence we removed it). The shaded gray area represents
the phase space subset where nodes spend more time compared to other regions; in this case,
it corresponds to the interval I = [3.4,4.5]. This is confirmed by the bottom left panel, which
depicts the estimated density function for each node. All densities are concentrated inside the
same gray area but decay rapidly to zero over the complement of the interval.

Parabolic shape of the return map. We extracted the most significant sample of the
network dynamics’ trajectory, satisfying that all nodes should remain inside the gray region.
This subset selection yields a sample with a length of 224 time steps and is shown in the top
middle panel. The shape of the return map changes from a sinusoidal to a parabolic shape,
suggesting using polynomial basis functions up to degree two in the library for the reconstruction
procedure. The bottom middle panel shows the estimated density for the trajectories inside the
subset. Observe that in view of the densities, either the bottom left and bottom middle panels,
there are roughly two groups of nodes, represented by nodes 1 to 5 and 6 to 17 (near y = 4.4 this
observation is clear).

Clustering. For each group of nodes, we consider all trajectories as different initial
conditions of the same map and estimate the density function, as described in (A.7). In Figure 20,
right panel depicts the density function ρ1(y1, . . . ,y5) for group 1 to 5 in blue, and ρ2(y6, . . . ,y17)

for group 6 to 17 in red. Note both density functions are smoother than the individual densities
since we used more data to estimate them. The final estimated density we use to orthonormalize
the polynomial basis functions is written as the product density function of both group density
functions, i.e.,

ρ(y1, . . . ,y17)≈ ρ1(y1, . . . ,y5)×ρ2(y6, . . . ,y17). (A.5)
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A.2.2 Basis functions selection preserves the network structure

The parabolic shape of the return map in the top middle panel in Figure 20 corresponds
to the restriction of the optoelectronic network dynamics F onto A , which we denote F̃ = F |A .
Hence, F̃ lies in the span of the quadratic polynomials. Taylor expanding (A.4) at the maximum
point inside the interval A = [3.4,4.5], there are no crossed terms in the expansion. Hence,
we only included monomials up to degree 2, so for each j = 1, . . . ,N, the basis functions are
φk(y j) = yk

j where k = 1,2. The independent term φ0(y) = 1 is added with a single column in
the library matrix.

A.2.3 Reconstruction of the network structure

To quantify the overall reconstruction performance, we introduce a weighted false link
proportion for each node. Let Mi and M̂i be the subset of edges node i shares with its neighbors
of the original and estimated graph, respectively. We assume that any edge has a weight equal to
1, but those estimated using the relaxing algorithm and denoted by {wi j}i, j. So, we calculate the
proportion of false positive (FP) and false negative (FN) at node i as:

FPi =
∑

N
j=1 wi jχM̂i∩M c

i

(
(i, j)

)
∑

N
j=1

(
wi jχM̂i∩M c

i

(
(i, j)

)
+χM̂ c

i ∩M c
i

(
(i, j)

)) ,
FNi =

∑
N
j=1 χM̂ c

i ∩Mi

(
(i, j)

)
∑

N
j=1 χMi

(
(i, j)

) ,

where χU is the indicator function of the subset U .

A.3 Approximating invariant measures from multivariate
time series

In this section, we discuss how we estimate a proxy for the physical measure µα from
the multivariate time series {x(t)}n

t=0 (we write it for the noiseless case, but the same approach
is used for the noisy measurements {y(t)}n

t=0).

Let {x(t)}n
t=0 be the multivariate time series on MN and consider the empirical measure

Pn =
1
n ∑

n−1
t=0 δx(t) on MN . To estimate the physical measure, we employ kernel density estimators.

The kernel density estimator consists of taking the convolution (which we denote by ∗) of
the empirical measure Pn and the kernel Gχ : [0,∞) → [0,∞) (HANG et al., 2018), where
χ is the bandwidth parameter. We consider the Gaussian kernel throughout our results, i.e.,
Gχ(x) = e−x2/χ2

.

Hang and co-authors (HANG et al., 2018) evaluated the convergence rate of kernel
estimators for dynamical systems satisfying certain mixing conditions. Following there results,
assume that µα is absolutely continuous with respect to Lebesgue with density ρα . The rate of
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convergence of the estimated density with respect to ρα in L1-norm depends on the regularity of
ρα . If ρα is β−Hölder continuous then, it behaves asymptotically for the length of time series as

∥ρα −Gχ ∗Pn∥1 ≤ O
(( logn3

n

) β

2β+N
)
. (A.6)

Hence, in the case of large networks, the convergence is slow, which requires a large amount
of time series. In (HANG et al., 2018) the authors also consider more general regularity con-
ditions, for instance pointwise β -Hölder controllable condition. However, there are no explicit
expressions of the convergence rates. So, for sake of exposition we consider the case in (A.6).

A.3.1 Product measure

Following our assumption in the paper, we assume that the physical measure µα is
close to a product measure ν . So, instead of estimating µα , we estimate ν from the data. We
consider the multivariate time series {xi(t)}n,N

t=0,i=1 as the observation from the same system,
i.e., {x(t)}nN

t=0. More precisely, the estimation from data is formulated as follows: we consider
the empirical measure 1

nN ∑
nN−1
t=0 δx(t). Hence, for a fixed χ > 0, the proxy of ρα is given by the

convolution of the empirical measure and the kernel Gχ

ρn,N,χ(x) =
1

nNχ

nN−1

∑
t=0

Gχ(x− x(t)). (A.7)

In other words, the density of the product measure ν is given by ∏i∈[N]ρn,N,χ . Since the expres-
sion of ρn,N,χ corresponds to a sum of Gaussian kernels, it fulfils restrictions on the shape given
in (HANG et al., 2018). In particular, we can deduce an upper bound of the Lipschitz constant of
ρn,N,χ as follows:

Lemma A.3.1. For a given i ∈ [N] let Mi = [a,b] ⊂ R with b > a, and let a1 = max{|a|, |b|}.
Then

Lip( ∏
i∈[N]

ρn,N,χ) = Lip(ρn,N,χ)≤
4

χ2 a1.

Proof. As before, here we consider Lip(∏i∈[N]ρn,N,χ) =maxi∈[N]Lip(ρn,N,χ) then the first equal-
ity holds. By Mean-value theorem, the Lipschitz constant Lip(ρn,N,χ) is given by

Lip(ρn,N,χ) = ∥Dρn,N,χ∥∞

= max
x∈[a,b]

|Dρn,N,χ(x)|

= max
x∈[a,b]

2
nNχ3

∣∣∣∣∣nN−1

∑
t=0

(x− x(t))e
− (x−x(t))2

χ2

∣∣∣∣∣
≤ 2

χ2 (max{|a|, |b|}+ 1
Nn

nN−1

∑
t=0

|x(t)|)

≤ 4
χ2 a1.
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where we used that 1
χ

e
− (x−x(t))2

χ2 ≤ 1 for any x ∈ [a,b], and the claim follows.

We also guarantee that ρn,N,χ(x)> 0 for any x∈ [a,b] then ρ0 =mini∈[N]{minx∈[a,b]ρn,N,χ(x)}>
0. More importantly, the ∥∏i∈[N]ρn,N,χ −ρα∥1 has similar rate of convergence as (A.6), but for
the d = 1. So, the speed of convergence does not depend on the dimension of the phase space.
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APPENDIX

B
STABILITY UNDER BASIS EXTENSION:

NOISE AND PROOF

B.1 Stability of Lasso under noise

We analyse the effect of noise by adding, to the original equations of motion, Equation
(3.1), a term

√
2DḂ j(t), with a homogeneous complex Wiener process B j(t) = ξ j(t)+ iζ j(t)

with ⟨ξk(t)ξ j(s)⟩= ⟨ζk(t)ζ j(s)⟩= δikδ (t − s), and D =diag(η ,η) and we obtain

φ̇ j = ω j +α

N

∑
k=1

A jk sin(φk −φ j)+N j(φ j, t) (B.1)

where the noise term is given by

N j(φ , t) =
√

2η(cos(φ)ξ j(t)+ sin(φ)ζ j(t)). (B.2)

The noisy equations of motion are integrated by Euler’s method with a time step of 0.1, the time
series for the phases are obtained by Hilbert transform and a Savitzky-Golay filter is applied to
them, before the time derivative is calculated. The filtered phases are then used in the matrix Φ.

We use as a measure of performance the number of recovered connections. Suppose we
have found equations of motion for the variables φ j(t) in the form of a vector of coefficients
c( j), 1 ≤ j ≤ N, where c( j) denotes the jth column of C. The norm of the function h( j), we can
recover the strength of the coupling between node j and the central node 1 as

κ j = ∥h( j)∥2 =

√
(c( j)

1 j )
2 +(d( j)

1 j )
2. (B.3)

We define a quantity playing the role of effective total number of connections as

κ =
1
α

N

∑
j=2

κ j, (B.4)
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Figure 21 – Reconstruction against noise. Number of spurious connections κs predicted by the LASSO
in the presence of noise of intensity η , for a star network with N = 10 and averaged over 20
random initial conditions (shaded region represents the corresponding variance).

and the effective number of spurious connections (in general not an integer number),

κs = κ −N. (B.5)

In Figure 21 we show how the performance of the method deteriorates as the amplitude of the
noise increases, by plotting the effective number of spurious connections as a function of the
noise intensity η , averaged over 50 random initial conditions (shaded region corresponds to
standard deviation).

Equation (B.1) can be recast in the linear form

v( j)+
√

2η z( j) = Φw( j), j = 1, . . . ,N, (B.6)

where v( j) ∈Rn corresponds to the Euler approximation of the time-derivative. Besides z( j) ∈Rn

is a random variable whose each entry has the form of Equation (B.2). Equation (B.6) written in
this form is similar to the noisy recovery case estimated by Candès. Again, we take advantage of
the relation between LASSO and the quadractically constrained basis pursuit problem.

Proposition B.1.0.1. Assume that δ2s <
√

2−1. Given η > 0, n > 0 and i = 1, . . . ,N, for each
ε > 0 the following holds

P
(
∥z( j)∥2 ≤

ε√
2η

)
≥ 1− e

− 1
4

(
ε√
2η

−
√

2
π

√
n
)2

(B.7)

So with high probability there exists the solution w⋆ of Equation (2.22) satisfies

∥w∗−w∥2 ≤ K0s−1/2∥w−ws∥1 +K1ε

for constants K0 and K1.
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Proof. Fix a η > 0. We need to estimate how probable
√

2ηz( j) is L2 bounded by a constant ε .
We drop the dependence of ( j). Note that√

2η∥z∥2 ≤
√

2η(∥ξ∥2 +∥ζ∥2) (B.8)

where each ξ and ζ are Gaussian random vectors. So, we can estimate the expected value of this
L2 norm: E(∥ξ∥2)≥

√
2
π

n (FOUCART; RAUHUT, 2013, Proposition 8.1) and the same for ζ .
We use the concentration of measure for Gaussian random vector (FOUCART; RAUHUT, 2013,
Theorem 8.34). Since the norm L2 is a Lipschitz function with constant 1, the estimate follows.
Then ∥ξ∥2 ≤ ε

2
√

2η
holds with probability

1− exp

−1
4

(
ε√
2η

−
√

2
π

√
n

)2
 . (B.9)

Consequently, we can apply Candès’ estimate and the statement is proved.

B.2 Proof of Proposition 3.4.0.1
We first need two preliminary results

Remark B.2.1. Given S ∈ Rs1×s2 with 1 ≤ rank(S)≤ min{s1,s2}, then

∥Sx∥2 ≥ σmin(S)∥x∥2,∀ x ∈ Rs2\{kerS},

where σmin(S) is the minimum singular value of S (BERNSTEIN, 2009, Fact 9.13.1).

Remark B.2.2. Let A ∈ Rn×p and B ∈ Rn×q be column full rank matrices with n > p+q, and
ε ∈ (0,1). Let r = min{p,q}. We have the following:

i) For generic z ∈Rn: z ̸∈ (Im B)⊥. The map H(z) = B†z is not constant thus Leb(H−1(0)) =
0 and Rn\H−1(0) is a generic set.

ii) For generic z ∈ (Im A)⊥ with ∥z∥2 = ε , there exists K(B,ε)> 0 such that

∥B†z∥2 ≥ K cos(βr),

where βr is the largest principle angle between (Im A)⊥ and Im B. Indeed, let QBRB be the
QR decomposition of the matrix B and QA⊥ an orthonormal matrix whose columns form
an orthonormal basis to (Im A)⊥. Hence, there exists a unique v ̸= 0 such that z = QA⊥v

and ∥v∥2 = ε . Applying Remark B.2.1 and previous item (i), generically, we have

∥B†z∥2 ≥ σmin(RB)σmin(Q
†
BQA⊥)∥v∥2. (B.10)

By (ZHU; KNYAZEV, 2013, Theorem 2.1) the principal angles β ’s between subspaces
(Im A)⊥ and Im B are

(cos(β1), . . . ,cos(βr)) = (σmax(Q
†
BQA⊥), . . . ,σmin(Q

†
BQA⊥)), (B.11)
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where βk ∈ [0, π

2 ], k = 1, . . . ,r and βk < βk+1, k = 1, . . . ,r−1. In particular, the cosine of
the largest angle between (Im A)⊥ and Im B is given as follows

cosβr = σmin(Q
†
BQA⊥). (B.12)

So, there exists K(B,ε)> 0 such that

∥B†z∥2 ≥ K cos(βr). (B.13)

Lemma B.2.3. Let A ∈ Rn×p and B ∈ Rn×q be column full rank matrices with n > p+q. Let
r = min{p,q} then βr ̸= π

2 be the largest principle angle between the subspaces (Im A)⊥ and
Im B. Consider

M = B†B−B†A(A†A)−1A†B (B.14)

then there exists a constant K > 0 such that

σmin
(
M−1)≥ 1

K cos2(βr)
. (B.15)

Proof. Let E and F be the orthogonal projection onto the Im A and (Im A)⊥, respectively. So,
using that A is column full rank we can write M as follows:

M = B†B−B†A(A†A)−1A†B

= B†(I−AA+)B

= B†FB ∈ Rq×q.

The orthogonal projections have the following formulas: E = QAQ†
A and F = QA⊥Q†

A⊥ , where
QA and QA⊥ are orthonormal matrices whose columns form an orthonormal basis to Im A and
(Im A)⊥, respectively. Besides, let us denote B = QBRB the QR decomposition of the matrix B.
Using this notation and inequality of the singular value (HORN; HORN, 1991, Theorem 3.3.14)
we can split up the maximum singular value as follows:

σmax(B†FB)≤ σmax(R
†
B)σmax(Q

†
BQA⊥)σmax(Q

†
A⊥QB)σmax(RB). (B.16)

Again by (ZHU; KNYAZEV, 2013, Theorem 2.1) the least angle between (Im A)⊥ and Im B is
given as follows

cosβ1 = σmax(Q
†
BQA⊥) = σmax(Q

†
A⊥QB), (B.17)

Also β1 < βr so β1 ̸= π

2 and Equation (B.17) is not zero. If we use that σmax(B†FB) =
1

σmin((B†FB)−1)
and Equation (B.17) into Equation (B.16) we obtain

σmin((B†FB)−1)≥ 1
K cos2(β1)

, (B.18)

where we use that σmax(RB) can be bounded by a constant K > 0. Since cos is decreasing in the
interval [0, π

2 ], we can replace β1 by the largest principle angle βr, and the claim follows.
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Proof of Proposition 3.4.0.1. Note that since Φ is column full rank, we can write the solution of
Equation (3.16) as (

ŵ1

ŵ2

)
= Φ

+(b+ z) =

(
A†A A†B

B†A B†B

)−1(
A†b

B†b+B†z

)
, (B.19)

where we use that z ∈ (Im A)⊥ implies that A†z = 0. Using the analytic inversion formula (BERN-
STEIN, 2009), we obtain

(Φ†
Φ)−1 =

(
(A†A)−1 +(A†A)−1(A†B)M−1(B†A)(A†A)−1 −(A†A)−1A†BM−1

−M−1(B†A)(A†A)−1 M−1

)
(B.20)

where M−1 = (B†B−B†A(A†A)−1A†B)−1. Since A and B are column full rank, we can use the
formula of A+ and AA+ is a projector onto the Im A. So, we obtain(

ŵ1

ŵ2

)
= Φ

+(b+ z) =

(
A+b−A+BM−1B†z

M−1B†z

)
(B.21)

where we used that b ∈ Im A.

We aim at calculating how much the solution x∗ is perturbed, so

∥x∗− ŵ1∥2 = ∥A+BM−1B†z∥2. (B.22)

Since β1 > 0 we have BM−1B†z ̸∈ (Im A)⊥, so using Remark B.2.1 for A+ we obtain

∥x∗− ŵ1∥2 ≥ σmin(A+)∥BM−1B†z∥2. (B.23)

By item (i) of Remark B.2.2 for generic z ̸= 0 we have B†z ̸= 0. Recall that M−1B†z ∈ (kerB)⊥.
Thus, Remark B.2.1 is valid for B and M−1 and we obtain

∥x∗− ŵ1∥2 ≥ σmin(A+)σmin(B)σmin(M−1)∥B†z∥2.

remarkerve that σmin(A+),σmin(B)> 0 from the full rank condition on the matrices A and B, so
there exists K1 > 0 given by

K1 = min{σmin(A+),σmin(B)}. (B.24)

Moreover, by item (ii) of Lemma B.2.2 we have: ∥B†z∥2 ≥ K2 cos(βr). Hence, by (ZHU;
KNYAZEV, 2013, Property 2.1) if |βr −π/2|< ε for sufficiently small ε , using Lemma B.2.3
there exists K > 0 we obtain

∥x∗− ŵ1∥2 ≥
K1K2

K cosβr
> 0 (B.25)

and the statement holds.
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APPENDIX

C
GREEDY NETWORK RECONSTRUCTION:

FURTHER DETAILS

C.0.1 Convex optimization solvers: polynomial time complexity

To illustrate that polynomial time complexity is valid for the solvers embedded in the
CVXPY package, we compare the performance of ECOS (DOMAHIDI; CHU; BOYD, 2013) and
SCS (O’DONOGHUE et al., 2019; O’DONOGHUE et al., 2016; O’DONOGHUE, 2021) for an
example. We selected to solve the quadratically constrained basis pursuit

argmin
ũ∈Rm

{
∥ũ∥1 subject to ∥Φũ−b∥2 ≤ ε

}
(C.1)

for a dense library matrix Φ. More precisely, let Φ ∈ Rn×m be a random matrix whose entries
φi, j are independent realizations of standard Gaussian random variables

φi, j ∼ N (0,1).

The measurement vector b follows the same distribution, whose entries bi ∼ N (0,1) are inde-
pendent realizations of a standard Gaussian random variable. In all our tests we fixed the relaxing
parameter ε = 0.01. Figure 22 displays the running times for different n values. Note that the
scaling in terms of the number of columns m is O(mq) with q ≈ 1 for all cases.

C.0.2 Global network reconstruction

Note that the global network structure can be obtained via the EBP: let 1N be the identity
matrix and c = vec(c1, . . . ,cN), where vec denotes the vectorization formed by stacking the
columns vectors ci into a single column vector. Define the problem

min
u∈RmN

∥u∥1 subject to (1N ⊗Φν(X))u = (1N ⊗Φν(X))c, (C.2)
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Figure 22 – Convex minimization solvers performance. Running times with respect to the number of
columns m are displayed for different values of rows. The scope of the fitting is shown for
each solver. All scope values are around 1, showing the performance is nearly linear.

where ⊗ is the Kronecker product. Since the library matrix Φν(X) satisfies the RIP property,
then (1N ⊗Φν(X)) satisfies as well, ensuring the uniqueness of solutions for problem Equation
(C.2).

C.0.3 DCNR algorithm

Algorithm 3 – Divide-and-conquer network reconstruction algorithm
Input: X̄ = (x̄1, . . . , x̄N) ∈ Rn×N , Φ ∈ Rn×m, P[N]

/* X̄: matrix of multivariate time series */
/* criterion: select criterion for Model Selection */
/* Φν: adapted library matrix evaluated to the training time series */
/* P

(0)
[N]

: initial graph partition. */
Output: G reconstructed graph

12 Initialization: G0 = ([N], /0), F 0 = /0, T 0 = P1 ∈ P
(0)
[N]

, C0 = 0 ∈ Rm×N

13 for P ∈ P
(0)
[N]

do
14 Hs,U ,Cs+1 = Bε(P,Cs)

Gs+1 = Gs ∪Hs

F s+1 = F s ∪
(
P∩U c)

15 end
16 B = B−ΦC

Hs,U ,Cs+1 = Bε(F c,X s)
Gs+1 = Gs ∪Hs

F s+1 = F s ∪
(
P∩U c)

Output. Reconstructed graph G⋆.
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APPENDIX

D
BURSTING NETWORK DYNAMICS: ADM

METHOD AND PARETO FRONT

D.1 Alternating direction method (ADM)
Suppose a linear space S ⊂ Rm of dimension s contains a sparse vector u⋆ ̸= 0. Given

an arbitrary Ψ ∈ Rs×m with ker(Ψ) = S , we aim to find (efficiently) a nonzero sparse vector u

such that Ψu = 0. A minimization formulation is searching a sparse solution of the problem

min
w∈Rm\0

∥w∥0 subject to Ψw = 0,

but the problem is NP-hard to solve. Then, Qu and co-authors (Qu; Sun; Wright, 2016) introduced
an alternative minimization problem which consists of relaxed version in terms of ℓ1 norm,
∥u∥1 = ∑

m
i=1 |ui|. Since the desired solution is invariant by scaling, the constraint is replaced by

searching vectors that lie on the unit embedded sphere Ss−1 := {u ∈ Rs | ∥u∥2 = 1}, and the
alternative problem is given by:

min
w∈Rs

∥Θw∥1 subject to ∥w∥2 = 1,

where Θ ∈ Rm×p is any orthonormal basis for S . Although the problem is still nonconvex due
the unit sphere is a nonconvex subset of Rs, the authors built an algorithm for finding the sparse
solution on the subspace S , and also, obtain exact reconstruction guarantees (Qu; Sun; Wright,
2016).

We introduce an auxiliary variable u ≈ Θw:

min
w∈Rs,u∈Rm

1
2
∥Θw−u∥2

2 + γ∥u∥1 subject to ∥w∥2 = 1, (D.1)

where γ is a penalty parameter. The algorithm consists of minimizing the problem (D.1) alternat-
ing over different directions until reach the sparse solution. In particular, It starts with a initial
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guess w(0) and it alternates in minimizing with respect to (w.r.t.) x and minimizing w.r.t. to w:

uk+1 = argmin
u∈Rs

1
2
∥Θwk −u∥2

2 + γ∥u∥1,

wk+1 = argmin
w∈Ss−1

1
2
∥Θwk − xk+1∥2

2,

where u(k) and w(k) denote the values of u and w in the k−th iteration. The closed form of the
above minimization problem is given in Equation (5.11).

Algorithm 4 – Modified Alternating Direction Method (ADM) algorithm
Input: Θ, γ , w0 maxiter
/* Θ: orthonormal basis for the null space. We use singular value

decomposition. */
/* γ: regularizer parameter. */
/* w0: normalized row of Θ. */
/* maxiter: maximum number of iterations. We fix 10000. */
Output: The sparsest vector u⋆(γ) = Θw⋆

17 for k = 0, . . . ,maxiter do

18 uk+1
j = soft(Θ jwk

j,γ) wk+1
j =

ΘT
j wk+1

j

∥ΘT
j wk+1

j ∥2

19 if ∥ΘT wk∥2 ≤ 0 then
20 stop.
21 end
22 if ∥wk+1 −wk∥2 ≤ tol then
23 Output. u⋆(γ) = Θw⋆

24 stop.
25 end
26 end

D.2 Implicit-SINDy and Pareto front

Implicit-SINDy algorithm is described in Algorithm 5. The idea is to solve ADM method
for different regularizer parameters γ , and select the most parsimonious via Pareto front. Indeed,
as larger γ becomes sparser the solution u⋆(γ) of the ADM method (it decreases the number of
terms). Left panel of Figure 23 shows the sparsity of u⋆(γ) as γ is increased. Pareto front selects
the most parsimonious model, as shown right panel of Figure 23. The coefficient with minimum
error ∥Ψ(x̄)u⋆(γ)| is chosen as the most parsimonious model. Surprisingly, this method succeeds
at identifying the presence of rational terms.
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Figure 23 – Pareto front for model selection. a) Monotonic behaviour of the number of terms in the
sparse solution as we increase the penalty parameter γ . b) The error ∥Ψ(x̄)u⋆(γ)∥1 versus
the number of non-zero entries of u⋆(γ). The most parsimonious model attains the minimum
error ∥Ψ(x̄)u⋆(γ)∥1, because we aim at identifying the sparsest vector that lies on the kernel
of the augmented matrix. Minimizing ℓ1 norm is an option to have an approximation of such
vector.

Algorithm 5 – Implicit-SINDy
Input: Ψ(x̄), γ0, maxiter, nrows
/* Ψ(x̄): augmented library matrix. */
/* γ0: Initial regularizer parameter for the Pareto front. We fix

γ0 = 10−8. */
/* maxiter: maximum number of regularizer points to be probed in the

Pareto front. We fix maxiter = 30. */
/* nrows: number of Θ’s rows to be tested. We select uniformly 10 percent

of the Θ’s row. */
Output: The model selected u⋆

27 for k = 0, . . . ,maxiter do
28 Θ = null space(Ψ(x̄))
29 for i = 0, . . . ,nrows do
30 Pick a row of Θ, w0 u⋆i (γ

k) = ADM(Θ,γk,w0)
31 end
32 Select the u⋆i (γ

k) with most non-zero elements
33 if ∥u⋆(γk)∥0 ≤ 0 then
34 stop.
35 end
36 γk+1 = 2γk

37 end
38 u⋆ = argmink ∥Ψ(x̄)u⋆(γk)∥1 Output. u⋆
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D.2.1 Alternative reconstruction method

Instead of the denominator polynomial Q j in the rational representation in Equation
(5.4), we consider

Fj(x) =
Pj(x)

1+ Q̃ j(x)
, (D.2)

where the constant term is explicitly chosen 1 for definiteness akin to a Padé approximant
(BAKER; BAKER, 1996), and Q̃ j(x) does not contain the constant term in its polynomial
expansion. We rearrange Equation (D.2) as

Pj(x)−Fj(x)Q̃ j(x) = Fj(x).

Expanding Pj(x) and Q̃ j(x) in terms of polynomials in L , denote the library matrix without
the columns corresponding to the constant term as Φ(X |1). Also, denote the augmented library
matrix as

Ω(x̄ j) :=
[
Φ(X) Φ(X |1)D j

]
∈ Rn×(2m−1), (D.3)

where D j = diag(x̄ j) is the diagonal matrix constructed from the vector x̄ j. Then, we obtain the
linear equation

Ω(x̄ j)c̃ j = x̄ j, (D.4)

which consists of a linear equation where the coefficients c̃ j ∈ R2m−1 are unknown . Here, the
alternative reconstruction formulation is to find the coefficients that satisfy Equation (D.4). To
solve the linear equation we consider the least-square approximation ℓ2

min
ũ∈Rm

∥Ω(x̄ j)ũ− x̄ j∥2, j = 1, . . . ,2N,

whose solution is given by u∗ = Ω(x̄ j)
+x̄. Other methods could also be employed such as

SINDy (BRUNTON; PROCTOR; KUTZ, 2016) that sequentially thresholds a least-square
approximation that fits the data.

—
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