
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

A novel cloud and fog-based architecture to support spatial
analytics in smart cities

João Paulo Clarindo dos Santos
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

João Paulo Clarindo dos Santos

A novel cloud and fog-based architecture to support spatial
analytics in smart cities

Master dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-
USP, in partial fulfillment of the requirements for the
degree of the Master Program in Computer Science
and Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Profa. Dra. Cristina Dutra de Aguiar

USP – São Carlos
January 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

S237n
Santos, João Paulo Clarindo dos
 A novel cloud and fog-based architecture to
support spatial analytics in smart cities / João
Paulo Clarindo dos Santos; orientadora Cristina
Dutra de Aguiar. -- São Carlos, 2022.
 107 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2022.

 1. IoT. 2. spatial data warehouses. 3. fog
computing. 4. smart cities. 5. parallel and
distributed processing. I. Aguiar, Cristina Dutra
de, orient. II. Título.

João Paulo Clarindo dos Santos

Uma nova arquitetura baseada em computação em nuvem e
computação em névoa para a análise de dados espaciais

em cidades inteligentes

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientadora: Profa. Dra. Cristina Dutra de Aguiar

USP – São Carlos
Janeiro de 2022

This work is dedicated to all data lovers.

ACKNOWLEDGEMENTS

I thank my parents and my family for all the support and encouragement for me to move
to a city 1,895 km away from my hometown, Maceió, Brazil, in order to fulfil my biggest dream.
Without you, this dissertation would not be possible.

I thank all my friends. All were essential. I can’t name them all here, so feel represented.

I thank my graduate advisor, Prof. Fabio J. Coutinho, from the Federal University of
Alagoas (Ufal), for his great support during the dissertation, whether in the academic context
or in other activities. I also extend my thanks to all friends and colleagues from Instituto de

Computação – Ufal.

I thank the ICMC/USP for offering a high-quality education, with qualified professors,
administrative technicians, and collaborators. Proud to be a student of one of the best postgraduate
programs in computing in Brazil!

I thank the Brazilian National Council for Scientific and Technological Development
(CNPq) for the financial support (grant 133951/2019-7).

And finally, I thank Professor Cristina Dutra de Aguiar, for her high-quality guidance.
In addition, she helped me a lot in the difficulties I went through during this project, and I am
honoured that I will continue my doctoral journey together. Thanks for everything! I also extend
my thanks to my research group friends, in particular, João Pedro Castro and Juliana Freitas, for
their great contributions.

“Information is the oil of the 21st century,

and analytics is the combustion engine.”

(Peter Søndergaard)

ABSTRACT

SANTOS, J. P. C. A novel cloud and fog-based architecture to support spatial analytics in
smart cities. 2022. 107 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Ma-
temática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2022.

Providing an infrastructure to accommodate a large number of people in cities is a major challenge
for public authorities and private companies. Thereby, the concept of smart cities emerged,
which use technologies like sensors and Internet of Things (IoT) devices to aid in urban growth.
These devices generate spatial data that can be used for spatial analytics by smart city managers
to improve the population’s quality of life. However, these IoT devices quickly generate a large
volume of spatial data, causing big data problems. A smart city manager can benefit from
using concepts such as fog computing, spatial data warehouses, data lakes, and parallel and
distributed storage and processing environments to handle this massive amount of data. Based
on a systematic review, there are no studies in the literature that consider all of these concepts
in the context of smart cities. Therefore, we propose a novel architecture that aims smart city
managers in spatial analytics. This architecture is composed of four layers: (i) terminal, which
consists of a network of IoT devices; (ii) fog computing, which contains data lakes for real-time
data processing; (iii) cloud computing, in which spatial data warehouses are used to support
SOLAP (Spatial Online Analytical Processing) queries carried out in batch; and (iv) analytical
tools, which incorporate data visualisation and analysis tools. Furthermore, we introduce a set of
guidelines to aid smart cities managers to implement the proposed architecture, by describing and
discussing important issues and examples of tools and technologies. The proposed architecture
and guidelines were validated through two case studies that use real data generated by IoT
devices disposed in smart cities. We investigated the execution of three categories of spatial
queries, as well as the execution of queries in the fog, in the cloud, and in both environments.
These case studies demonstrated the architecture’s efficiency and effectiveness to support spatial
analytics in the context of smart cities.

Keywords: IoT, spatial data warehouses, fog computing, smart cities, parallel and distributed
processing.

RESUMO

SANTOS, J. P. C. Uma nova arquitetura baseada em computação em nuvem e computação
em névoa para a análise de dados espaciais em cidades inteligentes. 2022. 107 p. Disserta-
ção (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Prover uma infraestrutura para acomodar uma grande quantidade de pessoas em cidades tem se
mostrado um grande desafio para o poder público e empresas privadas. Logo, surgiu o conceito
de cidades inteligentes, que utilizam tecnologias para auxílio no crescimento urbano. Essas
tecnologias, que consistem em sensores e dispositivos de internet das coisas (ou Internet of

Things, IoT), geram dados espaciais, que podem ser utilizados no auxílio à tomada de decisão por
gestores de cidades inteligentes para a melhoria da qualidade de vida da população. Entretanto,
esses dispositivos IoT geram um grande volume de dados espaciais, de forma veloz, ocasionando
problemas de big data. Um gestor de cidades inteligentes pode se beneficiar com o uso de
conceitos como computação em névoa, data warehouses espaciais, data lakes e ambientes
de processamento e armazenamento paralelo e distribuído para lidar com esse grande volume
de dados e a necessidade de análise voltada à tomada de decisão. Entretanto, com base em
uma revisão sistemática, não foram identificados estudos que aplicam todos esses conceitos no
contexto de cidades inteligentes. Essa limitação motiva o desenvolvimento desta dissertação
de mestrado, na qual são introduzidas as seguintes contribuições. Primeiramente, é proposta
uma arquitetura que visa auxiliar gestores de cidades inteligentes no processo analítico de dados
espaciais. Essa arquitetura envolve quatro camadas: (i) terminal, que consiste em uma rede
de dispositivos IoT; (ii) computação em névoa, que contém data lakes para o processamento
de dados em tempo real; (iii) computação em nuvem, na qual são utilizados data warehouses

espaciais para prover suporte para consultas Spatial On-line Analytical Processing (SOLAP) em
lote; e (iv) ferramentas analíticas, que incorpora ferramentas de visualização e análise dos dados.
Além disso, são propostas diretrizes para auxílio na implementação da arquitetura proposta, com
discussão de desafios que devem ser investigados e com exemplos de tecnologias e ferramentas
que podem ser empregadas. A arquitetura e as diretrizes propostas foram validadas por meio
de dois estudos de caso que utilizam dados reais gerados em cidades inteligentes. Nesses
estudos de caso, foram investigados a execução de diferentes categorias de consultas espaciais
e o processamento de consultas espaciais na névoa, na nuvem ou em ambos os ambientes. Os
resultados demonstraram a eficiência e a eficácia da arquitetura e das diretrizes no suporte ao
processo analítico de dados espaciais.

Palavras-chave: IoT, data warehouses espaciais, computação em névoa, cidades inteligentes,
processamento paralelo e distribuído.

LIST OF FIGURES

Figure 1 – The hierarchical architecture of fog computing. 35

Figure 2 – Simple geometry spatial data representations 37

Figure 3 – Complex geometry spatial data representations 37

Figure 4 – Examples of spatial queries with topological predicates. Object o′ is repre-
sented in blue and objects o are represented in orange. 39

Figure 5 – Example of a star scheme based on a network of sensors in a smart city that
measure the amount of pollutants and their geographic positions. 40

Figure 6 – Number of studies found by search engines, using the search strings listed. . 48

Figure 7 – Proposed architecture overview, which encompasses cloud computing, fog
computing, and frameworks for parallel and distributed data processing. . . 54

Figure 8 – Pipeline for a traditional data warehousing application using open source
technologies. 62

Figure 9 – Pipeline for a traditional data warehousing application using Google Cloud
Services. 63

Figure 10 – Pipeline for a machine learning application using Google Cloud Services. . 63

Figure 11 – Logical schema of the SDW proposed to support the case study. 66

Figure 12 – Containment query results. 68

Figure 13 – Intersection spatial join query results. 69

Figure 14 – K-nearest neighbours query returning the average vehicle speed identified by
the 10 nearest reports from the Aarhus Cathedral. 70

Figure 15 – Convex Hull query returning the minimal convex polygon that contains all
the sensors in the municipality of Aarhus. 72

Figure 16 – Buffer query returning the average vehicle count of the sensors located within
a 100 m buffer of each school in the municipality of Aarhus, considering the
five highest measurements. 73

Figure 17 – Buffer query returning the average vehicle count per hour and day in February
2014, considering the period from 0h to 23h. 74

Figure 18 – Tube station belonging to RIT, Curitiba’s BRT system. These stations allow
accessibility for people with disabilities and fare prepayment. 75

Figure 19 – Logical schema of the SDW proposed to support the case study, which models
data related to sensors contained in buses and other public transportation data. 76

Figure 20 – Pipeline related to the case study, which models data related to sensors
contained in buses and other public transportation data. 77

Figure 21 – Buses belonging to line 203 of the Curitiba’s public transport system, tagged
with bus status. 79

Figure 22 – Heatmaps that represent bus positions in the city of Curitiba. Data were
collected at three-hour intervals on 2021-08-24. 80

Figure 23 – Bar graph that lists the number of Pontual Consortium buses that circulated
on 2021-08-24, grouped by time and status. 81

Figure 24 – Returns the number of passengers who passed through the districts of the city
of Curitiba in December 2020. 84

Figure 25 – Bus stops located within a 20 metres buffer of each hospital in Curitiba. . . 85

LIST OF SOURCE CODES

Source Code 1 – Basic functions that allow queries from fog or mixed contexts. 103
Source Code 2 – Plotting a map the points related to buses from the line 203 on Curitiba,

Brazil, with tags indicating the status of these vehicles. 104
Source Code 3 – Generating a heatmap using folium. 105
Source Code 4 – Mixed query that returns a bar chart that contains the number of buses

belonging to Pontual Consortium, grouped by time, by status. 106
Source Code 5 – Mixed query that returns the nearest bus stop and the estimated time

of arrival. The “$” indicates a SQL query, in this case, Query 10. 107

LIST OF QUERIES

Query 1 – Using a function to convert WKT representations in SedonaSQL. 67
Query 2 – Return the quantity of vehicles that travelled in Aarhus University/Community

Hospital district grouped by day and month. 68
Query 3 – Return the districts whose average vehicle speed reported from the sensors

sets which intercept it is greater than 60 km/h. 69
Query 4 – Return the average vehicle speed identified by the 10 nearest reports from the

Aarhus Cathedral. 70
Query 5 – Distance join query returning the average number of vehicles in traffic and

the average number of parked vehicles, considering the sensors in the streets of the
municipality of Aarhus that are located at a distance of at most 100 m from sensors
placed in parking garages. 71

Query 6 – Return the minimal convex polygon which contains all sensors in Aarhus
municipality. 72

Query 7 – Return the average vehicle count of the sensors located within a 100 m
buffer of each school in the municipality of Aarhus, considering the five highest
measurements. 73

Query 8 – Return the average vehicle count of the sensors located within a 100 m buffer
of a school in the municipality of Aarhus. 74

Query 9 – Using a function to convert WKT representations in Google BigQuery. . . . 78
Query 10 – Returns the distance from a position related to the bus number BE717, which

was on line 203 on 2021-08-24, at 16:55, to the nearest bus stop, as well as the
estimated time. 82

Query 11 – Returns the number of passengers who passed through the districts of the city
of Curitiba in December 2020. 83

Query 12 – Returns the bus stops located within a 20 metres buffer of each hospital in
Curitiba. 85

LIST OF TABLES

Table 1 – Comparing ETL with data warehouse and ELT with data lake. 36
Table 2 – Comparison between selected studies in the systematic review by topics. . . . 51
Table 3 – Distance join query results. 72

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

BI Business Intelligence

BRT Bus Rapid Transit

CIC Cidade Industrial de Curitiba

CSV Comma-Separated Values

DoS Denial of Service

DW Data Warehouse

ELT Extract, Load, and Transform

ETL Extract, Transform, and Load

GIS Geographic Information Systems

GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSM Global System for Mobile

IaaS Infrastructure-as-a-Service

ICT Information and Communication Technology

IoST Internet of Spatial Things

IoT Internet of Things

IPPUC Instituto de Pesquisa e Planejamento Urbano de Curitiba

JSON JavaScript Object Notation

NoSQL Not Only SQL

OLAP On-line Analytical Processing

PaaS Platform-as-a-Service

POIs Points of Interest

RDDs Resilient Distributed Datasets

RFID Radio Frequency IDentification

RIT Rede Integrada de Transporte

SaaS Software-as-a-Service

SASs Spatial Analytics Systems

SDW Spatial Data Warehouse

SOLAP Spatial On-Line Analytical Processing

SOLAPaaS SOLAP as a Service

SQL Structured Query Language

URBS Urbanização de Curitiba

Wi-Fi Wireless Fidelity

CONTENTS

1 INTRODUCTION . 27
1.1 Motivation . 29
1.2 Objectives . 30
1.3 Dissertation Organisation . 32

2 TECHNICAL BACKGROUND . 33
2.1 Internet of things . 33
2.2 Fog computing . 34
2.3 Data Preprocessing . 35
2.4 Spatial data . 37
2.4.1 Spatial queries . 38
2.5 Spatial data warehousing . 39
2.6 Parallel and Distributed Processing Systems 41
2.6.1 Hadoop and Spark . 41
2.6.2 Cloud computing . 42
2.7 Final Remarks . 43

3 SYSTEMATIC REVIEW . 45
3.1 Planning Phase . 45
3.1.1 Research questions . 45
3.1.2 Search engines . 46
3.1.3 Keywords and search strings . 46
3.1.4 Selection criteria . 47
3.1.4.1 Inclusion criteria . 47
3.1.4.2 Exclusion criteria . 47
3.1.4.3 Selection procedures . 47
3.2 Conduction Phase . 48
3.3 Reporting phase . 49
3.3.1 IoT, spatial data and big data . 49
3.3.2 Spatial data warehouses, IoT, and smart cities 49
3.3.3 Fog computing and data lakes . 50
3.3.4 Spatial data warehouses, IoT, fog computing, data lake, and smart

cities . 50

3.4 Final remarks . 51

4 PROPOSED ARCHITECTURE . 53
4.1 The Proposed Architecture . 53
4.1.1 Terminal layer . 53
4.1.2 Fog computing layer . 54
4.1.3 Cloud computing layer . 55
4.1.4 Analytics Tools layer . 55
4.2 Guidelines . 56
4.2.1 Terminal layer . 56
4.2.2 Fog computing layer . 57
4.2.3 Cloud computing layer . 59
4.2.4 Analytics Tools layer . 61
4.3 Pipelines . 62
4.4 Final Remarks . 64

5 CASE STUDIES . 65
5.1 Vehicle Traffic Analyses . 65
5.1.1 Data Loading into the Cloud Layer . 67
5.1.2 Spatial Queries with Topological Predicates 68
5.1.3 Spatial Queries with Metric Relationships 70
5.1.4 Spatial Queries with Type-Dependent Operations 72
5.2 Public Transportation . 75
5.2.1 Data preprocessing . 78
5.2.2 Fog-only queries . 79
5.2.3 Mixed queries . 81
5.2.4 Cloud queries . 83
5.3 Final Remarks . 86

6 CONCLUSIONS . 87
6.1 Publications . 88
6.2 Difficulties in the Development of the Work 89
6.3 Future Work . 91

BIBLIOGRAPHY . 93

APPENDIX A FOG AND MIXED QUERIES SOURCE CODES . . . 103
A.1 Fog queries . 104
A.2 Mixed queries . 106

27

CHAPTER

1
INTRODUCTION

In the last few years, the world population has been growing rapidly. From projections
made by the United Nations, the population will reach 8 billion people in 2025 (FRAGA;
QUEIROLO, 2018). Hence, providing the necessary infrastructure to accommodate a significant
amount of people in cities can be a challenge for public authorities and companies. According
to Ramaswami et al. (2016), the meta-principles for developing a sustainable and healthy city
are “improvements in transportation, basic sanitation and energy supply”, “sustainability”, and
“technology integration”. Thus, the concept of smart cities emerged.

There are several definitions of smart cities in the literature, as discussed in (ISMAG-
ILOVA et al., 2019). In this study, the authors state that there is no agreement regarding the
most accepted definition. However, there are elements and terms that are frequently highlighted,
such as Information and Communication Technology (ICT), Internet of Things (IoT), interaction,
sustainability, citizens, and quality of life. Amongst these definitions, we limit our scope to two
that encompass the concepts of ICT and IoT. These definitions are described as follows. Peng,
Nunes and Zheng (2017) describe smart cities as being “essentially built by utilising a set of
advanced ICT, including smart hardware devices (e.g., wireless sensors, smart meters, smart
vehicles, and smartphones), mobile networks (e.g., Wi-Fi and 3G/4G/5G network), data storage
technologies (e.g., data warehouse and cloud platforms), and software applications (e.g., back-
office control systems, mobile apps, and big data analytical tools)”. Additionally, Yeh (2017)
defines that a smart city “involves the implementation and deployment of ICT infrastructures
to support social and urban growth through improving the economy, citizens involvement, and
government efficiency”.

A network of IoT devices can be used to provide information in a smart city. According
to Patel and Patel (2016), IoT can be classified as “interconnected objects that have data regularly
collected, analysed, and used to initiate action, providing a wealth of intelligence for planning,
management, and decision-making”. The different layers of an IoT architecture include: (i) the
smart device/sensor layer, which is responsible for collecting data from the environment through

28 Chapter 1. Introduction

the employment of connection standards such as Wi-Fi, Global System for Mobile (GSM), and
Bluetooth; (ii) the network layer, which is composed of gateways and gateway networks that
support different communication protocols for sending data to the service layer; and (iii) the
service layer, in which data is processed and prepared to obtain the information required by a
desired application (PATEL; PATEL, 2016; ATZORI; IERA; MORABITO, 2017).

IoT technology is very important in a smart city environment. For instance, it is pos-
sible to apply this paradigm in the context of urban mobility, where sensors placed on streets
and highways collect data on the number of vehicles and average vehicle speed to assist in
decision-making for the improvement of urban traffic. Another IoT application scenario includes
monitoring a public transport system, whose fleet contains sensors that collect data related to
the number of passengers, vehicle type (e.g., buses, trams, taxis), route taken, and maximum
speed, aiming to improve the existing lines. Other examples include pollution control, water con-
sumption analyses, electric energy measurements, and tourist attraction measurements (ATZORI;
IERA; MORABITO, 2017).

Data generated on these scenarios usually include spatial data, which can be represented
by geometries (such as points, lines, and polygons) or combinations of them (ZEE; SCHOLTEN,
2014). For example, sensors inserted in highways, vehicles, smartphones, and wearables can
generate spatial data related to the region where it is located, based on Global Navigation Satellite
Systems (GNSS) technologies. These positioning systems are generally composed of ground
receivers and orbital platforms, including the North American Global Positioning System (GPS)
and the Russian Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) (English:
Global Navigation Satellite System) (BANSAL; CHANA; CLARKE, 2021; ELDRANDALY;
ABDEL-BASSET; SHAWKY, 2019). Sensors with these technologies can generate data about
objects’ position and dimension, usually a point, in longitude-latitude format (RAMNATH et al.,
2017).

Performing analytical queries on data generated by an IoT network in a smart city can
assist managers in the spatial analytics. For instance, a smart cities manager can be interested in
determining “how many vehicles travelled through a given district, per day, per month”. The query
results can be displayed on a map according to the district, helping the manager to intuitively
obtain the necessary knowledge. In order to enable the execution of this type of query, IoT data
needs to be extracted, transformed, and loaded in a Spatial Data Warehouse (SDW). A SDW
is a subject-oriented, integrated, time-variant, and non-volatile collection of conventional and
spatial data. It provides support for the costly Spatial On-Line Analytical Processing (SOLAP)
queries, which are analytical queries extended with spatial predicates (HAN; STEFANOVIC;
KOPERSKI, 1998; RIVEST; BÉDARD; MARCHAND, 2001).

1.1. Motivation 29

1.1 Motivation

The number of IoT devices is growing rapidly. According to Horwitz (2019), in 2025,
more than 75 billion connected IoT devices are expected. As the number of devices increases,
the volume of spatial data increases considerably, causing problems related to big data. In a
smart city context, sensors all over the city can collect and transmit masses of data, such that data
scale becomes increasingly big (CHEN; MAO; LIU, 2014). Nonetheless, for IoT applications
that require low latency, using only environments such as clusters and cloud computing may be
insufficient to deal with the delay caused by data transferring between these environments and
the devices (JAVADZADEH; RAHMANI, 2020).

The fog computing paradigm emerged to solve these problems. It employs computational
resources close to the edge of the network, providing data processing, storage, and distribution
services (BONOMI et al., 2012; TANG et al., 2015; SHI; DUSTDAR, 2016; JAVADZADEH;
RAHMANI, 2020). The hierarchical architecture of fog computing includes a set of fog nodes,
which are low-processing devices located at the edge of the network, where data can be pre-
processed and stored. Some advantages of using fog computing include the wide geographic
distribution of services, sensor networks distributed on a large scale, real-time interactions, and
predominance of wireless access. Another characteristic is the heterogeneity, since sensors of
different natures can exist on a single network.

Data generated by IoT devices tends to be heterogeneous (LAN et al., 2019), so it is
necessary to implement preprocessing and data cleaning mechanisms. In the fog nodes, data lakes
can be used to support this heterogeneity. According to Fang (2015), data lake is a repository
that improves the capture, refinement, archival, and exploration of raw data. These repositories
enable the Extract, Load, and Transform (ELT) operations, where data is transformed according
to the demand for analyses. Furthermore, data lakes also support the continuous flow of data
(i.e., data streaming) generated by IoT devices. Thus, using data lakes on fog nodes can benefit
real-time IoT data analyses, as well as creating prediction models for machine learning (KAUR;
SINGH; NAYYAR, 2020).

After the data preprocessing in the fog nodes, it is sent to a cloud computing environment,
which can contain an SDW. To deal with big data, the management of the SDW can benefit
from the employment of parallel and distributed data processing frameworks, such as Hadoop
(SHVACHKO et al., 2010) and Spark (ZAHARIA et al., 2016), to reduce the complexity of
the cloud. Furthermore, the SOLAP query processing can also benefit from the use of Spatial
Analytics Systems (SASs), which are developed on top of those frameworks to provide extended
functionalities to deal with spatial data and spatial predicates (CASTRO; CARNIEL; CIFERRI,
2020).

The challenge is to propose an IoT architecture for smart cities that encompasses cloud
computing, fog computing, and frameworks for parallel and distributed data processing, and

30 Chapter 1. Introduction

also provides efficient support for storing SDWs and providing spatial analytics. Based on the
systematic review described in Chapter 3, we did not identify any study in the literature that
consider all these technologies in the same setting. That is, existing approaches investigate
separately the use of SDWs (YUAN; ZHAO, 2012), data lakes (THEODOROU; DIAMAN-
TOPOULOS, 2019), and parallel and distributed processing environments (ELDRANDALY;
ABDEL-BASSET; SHAWKY, 2019; JO; JOO; LEE, 2019; WANG; ZHONG; WANG, 2019).
This gap in the literature motivates the development of our work.

1.2 Objectives

Motivated by the difficulty in managing data generated by IoT devices in the context of
smart cities, the primary objective of this dissertation is to propose a user-centric architecture
aimed to assist smart city managers in the spatial analytics process. The architecture encompasses
cloud computing, fog computing, and frameworks for parallel and distributed data processing. It
also stores conventional and spatial data using data lakes and SDWs. As a result, the architecture
provides support for real-time and batch processing, as well as enables the SOLAP query
processing.

Based on this objective, we define the following hypothesis:

Hypothesis: It is possible to assist the smart city manager in the spatial analytics process based
on data from IoT devices, using fog and cloud computing environments, data lakes and SDWs
stored in a parallel and distributed processing environment.

Through the investigation of this hypothesis, we introduce the following contributions:

∙ Identification of particularities related to spatial data generated by IoT devices in smart
cities and technologies that can be used to assist spatial analytics in this context. These
technologies refer to distributed data processing frameworks, fog and cloud computing
solutions, and systems for storing and querying conventional and spatial data in data lakes
and SDWs

∙ Proposal of an architecture aimed to help smart cities managers and residents to perform
spatial analytics. The architecture is composed of four layers: (i) terminal layer, which
consists of a network of IoT devices; (ii) fog layer, which contains fog nodes and stores
data lakes for real-time processing; (iii) cloud layer, which relies on a distributed parallel
processing environment that contains SDWs for batch processing; and (iv) analytics tools
layer, which is composed of tools to assist in data analyses and visualization.

∙ Definition of a set of guidelines to assist in the implementation of the proposed architecture.
These user-centric guidelines describe important characteristics and functionalities of each

1.2. Objectives 31

layer that should be considered to employ the architecture. They also highlight related
technologies and tools.

∙ Validation of the efficacy and effectiveness of the proposed architecture through two case
studies. The first one refers to a real dataset that contains vehicle traffic data collected
from sensors distributed in the municipality of Aarhus, Denmark (ALI; GAO; MILEO,
2015). The second case study uses real data related to the public transportation of the
city of Curitiba, Brazil, where sensors placed on buses collect data related to the spatial
position1. Depending on the demand of these case studies, we carried out real-time and
batch SOLAP queries against data stored in a data lake and in an SDW.

Preliminary results related to these contributions generated the papers described as
follows:

∙ SANTOS, J. P. C.; CIFERRI, C. D. d. A. Processamento de consultas analíticas espaciais
sobre dados de cidades inteligentes. In: 35th Brazilian Symposium on Databases —
Companion Proceedings. Rio de Janeiro, 2020. p. 37–43.

∙ SANTOS, J. P. C.; CASTRO, J. P. d. C.; CIFERRI, C. D. d. A. SOLAP Query Pro-
cessing over IoT Networks in Smart Cities: A Novel Architecture. In: Proceedings of
XXI GeoInfo – Brazilian Symposium in Geoinformatics. São José dos Campos, Brazil:
INPE, 2020. p. 118–129.

∙ SANTOS, J. P. C.; CASTRO, J. P. C.; AGUIAR, C. D. Combining Fog and Cloud Comput-
ing to Support Spatial Analytics in Smart Cities. In: Journal of Information and Data
Management. 2021.

The proposed architecture and guidelines, although focusing on the smart cities context,
can be applied to any context where spatial data is generated by a network of IoT devices, such as
spatial data generated by smartphones, which are made available through social media. Therefore,
the architecture and the guidelines can be used as a basis for the emergence of new solutions in
the academic and market.

1 <http://dadosabertos.c3sl.ufpr.br/curitibaurbs/>

http://dadosabertos.c3sl.ufpr.br/curitibaurbs/

32 Chapter 1. Introduction

1.3 Dissertation Organisation
The remaining chapters of this dissertation are organised as follows:

∙ Chapter 2 contextualises the technical background needed to understand this dissertation.
We describe concepts related to IoT, fog computing, and data preprocessing using data
lakes. We also detail representations of spatial data, spatial relationships, and spatial
queries. Other concepts described in this chapter are related to SDWs and parallel and
distributed processing environments.

∙ Chapter 3 describes the systematic review, in which the planning and conduction phases
are discussed.

∙ Chapter 4 presents the proposed architecture and the guidelines for implementing the
architecture. We also describe some pipelines based on the architecture, which are imple-
mentations of the architecture using technologies available on the market.

∙ Chapter 5 presents two case studies based on the proposed architecture and guidelines.
The first case study focus on the execution of three different categories of spatial queries,
e.g., spatial queries with topological predicates, spatial queries with metric relationships,
and spatial queries with type-dependent operations; The second case study focus on three
different environments that spatial queries can be executed: fog computing environments,
cloud computing environments or both.

∙ Chapter 6 describes the concluding remarks of this dissertation, highlighting the main
contributions and future work.

33

CHAPTER

2
TECHNICAL BACKGROUND

In this chapter, we describe the technical background used to develop our work. Sec-
tion 2.1 introduces concepts related to the Internet of Things, as well as discusses the application
of IoT devices in the smart cities context. Section 2.2 contextualises fog computing and its
architectural components. Section 2.3 details data preprocessing and storage techniques, such as
ELT and data lake. Section 2.4 details the basic definitions of spatial data, spatial relationships,
and spatial queries. Section 2.5 describes the use of repositories to aid spatial analytics in smart
cities, such as data lakes and spatial data warehouses. Section 2.6 details parallel and distributed
processing and storage environments, including cloud computing. Finally, Section 2.7 describes
the final considerations about the chapter.

2.1 Internet of things

Atzori, Iera and Morabito (2017) define Internet of Things (IoT) as “a conceptual
framework that leverages on the availability of heterogeneous devices and interconnection
solutions, as well as augmented physical objects providing a shared information base on global
scale, to support the design of applications involving at the same virtual level both people and
representations of objects”. According to Patel and Patel (2016), an IoT architecture consists of
the following different layers of technologies that support IoT: (i) sensor layer, which is made up
of smart objects integrated with sensors; (ii) network layer, where the objects are interconnected
using connections protocols; (iii) management service layer, where information is obtained
through data processing and analytics; and (iv) application layer, which covers IoT applications
for smart cities and smart health, among others.

Several devices were developed to meet IoT specifications. These devices collect data
from sensors, which can be applied in various scenarios, such as national security (AFZAL et al.,
2019), multimedia environments (ALVI et al., 2015), robotics (SIMOENS; DRAGONE; SAF-
FIOTTI, 2018), medicine (MAHDAVINEJAD et al., 2018), and wearable devices (HIREMATH;

34 Chapter 2. Technical Background

YANG; MANKODIYA, 2015). In smart cities, IoT devices can generate spatial data related to
vehicle trajectory, energy, and public transport (ELDRANDALY; ABDEL-BASSET; SHAWKY,
2019), for instance.

There are several IoT devices with different characteristics, such as Radio Frequency
IDentification (RFID) tags (JING et al., 2018), Arduino (JO; BALOCH, 2017), humidity and
pressure sensors (KOTSEV et al., 2016), vehicle sensors (Wu He; Gongjun Yan; Li Da Xu,
2014), smart traffic lights (MIZ; HAHANOV, 2014), and pollution sensors (KAMILARIS;
PITSILLIDES, 2014). These devices are arranged in a network using communication protocols
such as IEEE 802.11 (known as Wireless Fidelity (Wi-Fi)), 3G/4G/5G, and Bluetooth (GUBBI
et al., 2013; ATZORI; IERA; MORABITO, 2017). In an IoT network, spatial data, which is
obtained through the position, speed, and estimated transmission time of Global Navigation
Satellite System (GNSS) satellites, can be processed close to the network edge. The following
section details how this can be done.

2.2 Fog computing

After collecting the data, it is necessary to define where this data will be processed. For
IoT applications that require low latency, centralised processing can be inefficient due to the
delay caused by transferring data from the IoT devices to the cloud (DASTJERDI; BUYYA,
2016). Thus, a paradigm called edge computing emerged. This paradigm uses computational
resources close to the edge of the network for local storage and preliminary data processing
(SHI; DUSTDAR, 2016; DASTJERDI; BUYYA, 2016).

However, computing resources on devices at the edge of the network may have low
processing power or memory capacity. Thus, Bonomi et al. (2012) proposed the concept of
fog computing, which “is a highly virtualised platform that provides compute, storage, and
networking services between end devices and traditional cloud computing data centres, typically,
but not exclusively located at the edge of the network”. Some authors (SHI; DUSTDAR, 2016;
HU et al., 2017; DASTJERDI; BUYYA, 2016) adopt this concept as “edge computing”. In this
dissertation, we adopt the term “fog computing” and consider “edge computing” as synonymous.

Figure 1 shows the hierarchical architecture of fog computing. It is composed of three
layers: (i) terminal layer, which consists of several IoT devices that generate and send data to
the upper layers; (ii) fog layer, which is located on the edge of the network and is composed of
many fog nodes that have capabilities to compute, transmit, and temporarily store the received
sensed data; and (iii) cloud layer, which consists of multiple high-performance servers and
storage devices. The cloud layer also provides various application services, such as analytics,
data visualisation, and Business Intelligence (BI) (HU et al., 2017). Some advantages of using
fog computing include the wide geographic distribution of services, large-scale distributed
sensor networks, real-time interactions, and the use of wireless networks (BONOMI et al., 2012;
DASTJERDI; BUYYA, 2016).

2.3. Data Preprocessing 35

Figure 1 – The hierarchical architecture of fog computing.

Source: Hu et al. (2017).

Data generated by IoT devices tends to be heterogeneous (LAN et al., 2019; HU et al.,
2017). Therefore, it is necessary to define methods for preprocessing and storing the data in the
fog node (and by extension, in cloud and/or local environments). In the following section, we
describe these methods, including ELT and data lake.

2.3 Data Preprocessing

Data generated by IoT devices is heterogeneous (LAN et al., 2019; HU et al., 2017).
For example, sensors with different technologies can generate similar data but with different
semantics. In addition, various standardization issues such as incorrect and incomplete data can
occur. Thus, providing data quality is important to decide how data can be used in data analytics
(SHEHAB; BADAWY; ALI, 2021). According to Han, Kamber and Pei (2012), the main steps
for data preprocessing include:

36 Chapter 2. Technical Background

∙ Data cleaning. “Cleaning” the data by filling in missing values, identifying or removing
outliers, and resolving inconsistencies;

∙ Data integration. Merging the same data present in multiple sources into a coherent and
integrated version of the data;

∙ Data reduction. Providing a reduced representation of the data set that is much smaller in
volume, yet closely maintains the integrity of the original data;

∙ Data transformation. Transforming or consolidating data for mining, by smoothing noisy
data, aggregating, normalizing, and discretising.

These steps are part of the Extract, Transform, and Load (ETL) process, where data
is (i) extracted from the sources; (ii) transported to a data staging area, where the processing
takes place; (iii) cleaned, integrated, reduced, transformed, and loaded in a Data Warehouse
(DW) (VASSILIADIS, 2009). However, for handling large amount of data, the ETL process
is inefficient, as the transformation step takes up a large amount of time and computational
resources (FANG, 2015). Thereby, the concept of Extract, Load, and Transform (ELT) emerged,
where data is transformed on demand after being loaded (WAAS et al., 2013).

In the ELT process, data is usually loaded into a data lake, which is, according to Fang
(2015), “a massive data repository based on low-cost technologies that improves the capture,
refinement, archival, and exploration of raw data within an enterprise”. Processing data on a data
lake allows the manipulation of heterogeneous data from a programming language on demand.
Thus, libraries offered by languages used in data science, such as Python and R, can be used
to query this data (WAAS et al., 2013; FANG, 2015). Table 1 indicates the main differences
between the traditional ETL process with data warehouse and the ELT process with data lake.

Table 1 – Comparing ETL with data warehouse and ELT with data lake.

ETL with data warehouse ELT with data lake

Schema Requires work at the beginning of the process,
but offers performance security and integration.

Works well for data types where
data value is not known.

Scale Large data volumes at moderate cost. Extreme data volumes at low cost.

Access Data accessed through standard SQL.
Data accessed through programs created by
developers or other query engines.

Query SQL. Various.
Data Cleaned and transformed. Raw.

Source: Adapted from Fang (2015).

IoT devices usually generate spatial data in addition to conventional data. The following
section describes concepts related to spatial data, including how it is represented and manipulated
to allow spatial queries.

2.4. Spatial data 37

2.4 Spatial data
Spatial data (or geographic data), according to Güting (1994), is a component that

represent the geometry of spatial objects. Considering the vector format, this data can be
categorised as having simple or complex geometry. Figure 2 illustrates simple geometry spatial
data types: point (Figure 2a), which represents an exact location in the space; line (Figure 2b),
which represents a set of connected points; and polygon (Figure 2c), which represents a set of
connected lines to form a closed polygonal chain. A polygon can contain holes (Figure 2d).

Figure 2 – Simple geometry spatial data representations

(a) Point

(b) Line

(c) Basic polygon

(d) Polygon

Source: Elaborated by the author.

A complex geometry spatial data represents a collection of simple geometry spatial data.
Figure 3 illustrates collections of points (Figure 3a), lines (Figure 3b), polygons (Figure 3c), and
a heterogeneous collection containing points, lines, and polygons (Figure 3d).

Figure 3 – Complex geometry spatial data representations

(a) Multipoints

(b) Multilines

(c) Multipolygons

(d) Geometry Collection

Source: Elaborated by the author.

According to Egenhofer (1989), vector spatial data can be related through spatial rela-
tionships, which can be classified as metric, topological, and directional. Metric relationships
exploit the existence of measurements, such as distances, where mathematical operations such as
the Euclidean distance can be used. Directional relationships are qualitative spatial relations that
describe how an object or a region is placed with regard to other objects or regions (e.g.,“left”,
“above”, “beside”, and “south”) (EGENHOFER, 1989; PEUQUET; CI-XIANG, 1987). Finally,
topological relationships describe qualitative properties that characterise the relative position of
spatial objects (e.g., “contains” and “intersects”) (EGENHOFER, 1989).

Spatial data can also be represented in the raster format (BONHAM-CARTER, 1994),
which is a bitmap image, such as satellite images and scanned maps, that represents a grid of

38 Chapter 2. Technical Background

pixels. These pixels can be analysed for proper conversion to vectors using image processing
and pattern recognition (CONGALTON, 1997; GÜTING, 1994). Raster formats are used, for
example, in meteorological applications, where there is constant change in images, such as cloud
formation and wind direction. However, we base our work on the vector format to represent
spatial data.

2.4.1 Spatial queries

Spatial queries are queries whose at least one of the predicates involves a spatial rela-
tionship. There are different types of spatial queries that relate objects that are embedded in
d-dimensional Euclidean space (Ed), according to the definitions of Gaede and Günther (1998).
The types of queries of interest to our work are described as follows.

∙ Intersection Query or Region Query or Overlap Query. Given an object o′ with spatial
extent, find all objects o having at least one point in common with o′.

∙ Containment Query. Given an object o′ with spatial extent, find all objects o enclosed by
o′.

∙ k-Nearest-Neighbor Query. Given an object o′ with spatial extent, find the k-nearest
objects o from o′. Common distance functions for points include the Euclidean and the
Manhattan distances.

∙ Convex hull Query. Given a collection R of spatial objects, find the smallest convex object
o′ that encloses all objects o in R.

∙ Buffer Query. Given an object o′ with spatial extent, find all objects o enclosed or
intersected in a zone that is drawn around o′ within a specified distance n of o′.

∙ Spatial Join. Given two collections R and S of spatial objects and a spatial predicate θ ,
find all pairs of objects (o,o′) ∈ R×S where θ(o.G,o′G) evaluates to true, being o.G and
o′.G spatial extents. As for the spatial predicate θ , many spatial relationships can be used,
including intersects, contains, and distance.

Figure 4 illustrates these queries. In Figures 4a and 4b, o′ is a polygon, while in the
remaining figures, o′ is one or a set of points. In Figure 4f, the buffer area is represented in yellow.
In particular, Figure 4d depicts a spatial join with distance as a spatial predicate. Therefore, the
spatial join distance is defined as: given two collections R e S of spatial objects, finds all pairs of
objects (o,o′) ∈ R×S where the distance between o and o′ is less than or equal to a n value.

2.5. Spatial data warehousing 39

Figure 4 – Examples of spatial queries with topological predicates. Object o′ is represented in blue and
objects o are represented in orange.

(a) Containment Query. (b) Intersection Query. (c) k-NN Query.

k = 3

(d) Distance Join Query.

n = 1

(e) Convex Hull Query.

(f) Buffer Query.

n = 1.5

Source: Elaborated by the author.

2.5 Spatial data warehousing

According to Malinowski and Zimnyi (2008), Bimonte, Tchounikine and Miquel (2005),
Han, Stefanovic and Koperski (1998), a spatial data warehouse (SDW) “is a subject-oriented,
integrated, time-variant, and non-volatile collection of spatial and non-spatial data in support of
management’s decision-making process”. To enable complex analyses and visualisation, the data
in a warehouse is typically modelled multidimensionally through a star schema, which contains
a large central table (the fact table) and a set of smaller satellite tables (the dimension tables)
displayed in a radial pattern around the fact table (HAN; STEFANOVIC; KOPERSKI, 1998;
KRIPPENDORF; Il-Yeol Song, 1997).

A fact table contains measures of interest and foreign keys related to the dimension tables.
The combination of the foreign keys is the primary key of the fact table. The measures can be
classified as: (i) numeric measure, which is usually a conventional numeric data; and (ii) spatial
measure, which contains one or a collection of pointers to spatial objects (HAN; STEFANOVIC;
KOPERSKI, 1998). A dimension table consists of a primary key and several attributes. These
attributes may relate to each other through hierarchies of attributes. These hierarchies are based
on the granularity of data, and specify that an attribute of a higher level of granularity can be
generated from an attribute of a lower level of granularity (HARINARAYAN; RAJARAMAN;
ULLMAN, 1996). The hierarchy of attributes is represented by the operator ⪯.

Figure 5 illustrates a star schema based on a network of sensors aimed to investigate
aspects related to pollution considering each sensor, data, region, and pollutant. The table
IdentPol is a fact table that contains the conventional measure quantity of pollutants and the
spatial measure position, which is represented by a point (∙). The tables Date, Sensor, Region,
and Pollutant are dimension tables.

40 Chapter 2. Technical Background

Figure 5 – Example of a star scheme based on a network of sensors in a smart city that measure the
amount of pollutants and their geographic positions.

IDENTPOL

sensorKey (PK, FK)
pollutantKey (PK, FK)
dateKey (PK, FK)
regionKey (PK, FK)
quantity
position ●

IDENTPOL

sensorKey (PK, FK)
pollutantKey (PK, FK)
dateKey (PK, FK)
regionKey (PK, FK)
quantity
position ●

DATE

dateKey (PK)
day
dayOfWeek
week
month
quarter
year

DATE

dateKey (PK)
day
dayOfWeek
week
month
quarter
year

POLLUTANT

pollutantKey (PK)
pollutantType
pollutantName
pollutantCategory
(...)

POLLUTANT

pollutantKey (PK)
pollutantType
pollutantName
pollutantCategory
(...)

POLLUTANT

pollutantKey (PK)
pollutantType
pollutantName
pollutantCategory
(...)

REGION .

regionKey (PK)
district
city
state
country
length

REGION .

regionKey (PK)
district
city
state
country
length

REGION .

regionKey (PK)
district
city
state
country
length

REGION .

regionKey (PK)
district
city
state
country
length

SENSOR

sensorKey (PK)
sensorType
sensorName
insertedAt
(...)

SENSOR

sensorKey (PK)
sensorType
sensorName
insertedAt
(...)

SENSOR

sensorKey (PK)
sensorType
sensorName
insertedAt
(...)

Source: Elaborated by the author.

According to Han, Stefanovic and Koperski (1998), there are three cases for modelling
dimensions in a spatial data cube:

1. Non-spatial dimension. A dimension containing only non-spatial data. In Figure 5, the
dimensional table Pollutant contains non-spatial attributes whose hierarchies are non-
spatial, such as pollutantType and pollutantCategory .

2. Spatial-to-non-spatial dimension. A dimension where the lowest attribute hierarchy
is spatial, but the highest hierarchies are not spatial. For instance, a state is spatially
represented as a polygon. However, each state can be generalised to a non-spatial value,
such as an alphanumeric value, like a telephone area code, and its further generalization is
non-spatial, and thus playing a similar role as a non-spatial dimension.

3. Spatial-to-spatial dimension. A dimension where all levels of the attribute hierarchy
is spatial. In Figure 5, Region is a dimension in which all attributes are spatial (and it
is identified by an icon (), which represents a MultiPolygon (VAISMAN; ZIMÁNYI,
2014)). The granularity of these data is determined from the analysis of the topological
relationships between these objects (MATEUS et al., 2016).

The spatial attributes in an SDW can be manipulated through Spatial On-line Analytical
Processing (SOLAP) queries (RIVEST; BÉDARD; MARCHAND, 2001). The spatial queries
described in Section 2.4 can be used in the analytical process just like traditional On-line
Analytical Processing (OLAP) operations. An example of a query in a SOLAP environment,
using the star schema illustrated in Figure 5, is “to identify the average quantity of pollutants

2.6. Parallel and Distributed Processing Systems 41

in districts that are located in the state of São Paulo (state is represented by a window query,
i.e., a rectangle), grouped by day, by month”. A roll-up (or drill-down) operation can be done
to increase (or decrease) the time granularity, and a containment query can be used to get the
average quantity of pollutants collected by the sensors that are contained in the districts of the
state of São Paulo.

Other possible analytical operations that may be present in a SOLAP query include slice

and dice, pivot, and drill-across. The slice and dice operation restricts data being analysed to
one of its subsets, such as when a given value or set of values is used to select data related to
an attribute. The pivot operation reorients the data multidimensional view, offering different
perspectives of the same data. Finally, the drill-across operation compares numeric measurements
from different fact tables that share at least one common dimension table (VAISMAN; ZIMÁNYI,
2014; CIFERRI et al., 2013).

2.6 Parallel and Distributed Processing Systems

An SDW can hold a large amount of data, so it can be placed in an environment that
allows for efficient processing and storage. Thus, parallel and distributed processing frameworks
available in computer clusters or cloud computing environments can be used. These solutions
are aimed to simplify the interaction between the infrastructure and the user. In this section, we
describe two Apache solutions that deal with parallel and distributed processing (Section 2.6.1).
We also detail platforms as a service available in cloud environments (Section 2.6.2).

2.6.1 Hadoop and Spark

Hadoop is a parallel and distributed processing framework that implements the MapRe-
duce programming model, developed by Dean and Ghemawat (2008). This model incorporates
two functions. The map function processes input data in the form of key-value pairs and transform
this data in intermediate outputs in the form of key-value pairs. The reduce function processes
the generated intermediate output, groups values associated with a key, and generates a set of
key-value pairs as output. It is possible to execute several map and reduce functions in sequence.
The map and reduce functions can require a large amount of read and write data to disk, causing
iterative processing overhead. (SINGH; KHAMPARIA; LUHACH, 2019).

To overcome this limitation, Zaharia et al. (2010) introduced Spark, which uses fault-
tolerant collections of objects that can be partitioned into a cluster, causing data to be manipulated
in parallel (ZAHARIA et al., 2016). These collections, called Resilient Distributed Datasets
(RDDs), allow intermediate outputs in the main memory, reducing the amount of disk accesses
when compared to Hadoop (SINGH; KHAMPARIA; LUHACH, 2019). RDDs support several
types of functions, including map and reduce. Another difference between Spark and Hadoop
is that Spark uses directed acyclic graphs, where vertices represent the RDDs and the edges

42 Chapter 2. Technical Background

represent the operation to be applied on the RDDs. RDDs. The use of these graphs guarantees to
Spark a better global optimization than Hadoop. (ZAHARIA et al., 2016).

Hadoop and Spark usually rely on distributed file systems, such as the Hadoop Distributed
File System (HDFS). According to Shvachko et al. (2010), HDFS “is designed to store very
large data sets reliably, and to stream those data sets at high bandwidth to user applications”.
Any file is divided in blocks, which are distributed and replicated across the nodes. By default,
each block of the file is replicated across three nodes. The HDFS architecture has two types
of nodes: NameNode, or master node, which has the metadata about file blocks location; and
DataNode, or worker node, where data is stored. If the NameNode fails, there is the possibility
of using a backup, which is a secondary NameNode. During the execution of the application,
communication is performed as follows. First, the application accesses the nameNode and uses
the stored metadata to identify the location of the blocks that contain data from the file. Second,
the application accesses the dataNodes to perform read and write operations on the blocks.

According to García-García et al. (2017), Hadoop and Spark have limitations related to
spatial objects manipulation, as these frameworks do not have indexing mechanisms that allow
selective access to specific regions of spatial data. Therefore, several solutions have emerged that
extend these frameworks, aiming at the optimised execution of spatial queries.

These solutions, called Spatial Analytics Systems (SASs), incorporate spatial data ma-
nipulation in Hadoop and Spark frameworks, providing optimised techniques for processing
spatial queries. Castro, Carniel and Ciferri (2019) introduces a user-centric view of several
existing Hadoop and Spark-based SAS in the literature, such as Hadoop-GIS (AJI et al., 2013),
SpatialHadoop (ELDAWY; MOKBEL, 2015), SpatialSpark (YOU; ZHANG; GRUENWALD,
2015) and GeoSpark (YU; WU; SARWAT, 2015). This user-centric view provides a detailed
description of several SASs considering aspects related to general characteristics, support for
spatial data handling aspects, and support for aspects inherent to distributed systems.

2.6.2 Cloud computing

Cloud computing, according to Wang et al. (2010), “is a set of network enabled services,
providing scalable, quality of services guaranteed, normally personalised, inexpensive computing
infrastructures on demand, which could be accessed in a simple and pervasive way”. There are
several players on the market that offer cloud computing services, such as Microsoft Azure1,
Google Cloud2, and Amazon Web Services3. There are several services offered by these players,
such as Infrastructure-as-a-Service (IaaS), which provides hardware virtually, Software-as-a-
Service (SaaS), which offers software that can be used via the Internet, and Platform-as-a-Service
(PaaS), which offers a complete set of technologies required to develop and to operate SaaS

1 <http://azure.microsoft.com>
2 <http://cloud.google.com>
3 <http://aws.amazon.com>

http://azure.microsoft.com
http://cloud.google.com
http://aws.amazon.com

2.7. Final Remarks 43

(BEIMBORN; MILETZKI; WENZEL, 2011).

Parallel and distributed frameworks can be disposed in an IaaS, as well as PaaS with
complete data processing and storage solutions. Therefore, SDWs can benefit from these services.
(DEHNE et al., 2015). Mateus et al. (2016) describe the concept of SOLAP as a Service
(SOLAPaaS), which defines a SOLAP environment as a cloud service. This service allows a
SOLAP server to run on virtual machines in the cloud. In the IoT context, a SOLAPaaS service
can be used for spatial analytics on data generated by IoT devices located at the edge of the
network.

2.7 Final Remarks
In this chapter, we describe the technical background required for this dissertation.

Thereby, we evaluated the following topics: (i) IoT devices and its applications; (ii) fog comput-
ing, where we describe the hierarchical architecture; (iii) data preprocessing, with definitions of
ELT with data lake and ETL with data warehouse; (iv) spatial data manipulation, where we de-
scribe concepts about the definition of spatial data types, spatial relationships and spatial queries;
(v) spatial data warehousing, where we describe the concept of multidimensional modelling of
conventional and spatial data; and (vi) parallel and distributed processing systems, including
frameworks available in computer clusters or cloud computing environment.

In the next chapter (Chapter 3), we describe the systematic review process we did in the
context of this dissertation, which encompasses the concepts described in this chapter to identify
approaches in the literature that are related to the objective of our work.

45

CHAPTER

3
SYSTEMATIC REVIEW

In this chapter, we describe a systematic review conducted for the development of this
project. According to Nakagawa et al. (2017), the systematic review process is divided into
three phases: planning, conduction, and publishing. Section 3.1 describes the planning phase,
which defines the objectives, research questions, keywords, and search strings. Section 3.2 shows
the selection phase, in which searches are performed and the studies that are most related to
the project are selected based on search questions. Section 3.3 details the conduction phase, in
which the selected in the selection phase are synthesised. Finally, Section 3.4 describes the final
considerations about the chapter.

3.1 Planning Phase

Planning is the first phase of a systematic review. It consists of defining the research
questions (Section 3.1.1), the search engines (Section 3.1.2), the keywords and search strings
(Section 3.1.3), and the selection criteria (Section 3.1.4).

3.1.1 Research questions

The research questions that we defined for this systematic review are:

RQ1: How large amounts of spatial data (big data) are generated by IoT devices, and how can
this data be manipulated?

RQ2: How can spatial data generated by IoT devices be managed in an environment that contains
a spatial data warehouse?

RQ3: How can spatial queries help spatial analytics in the smart cities context?

RQ4: How can a data lake be used in fog computing environments?

RQ5: Are there studies that relate SDW, data lake, and fog computing in the smart cities context
to support spatial analytics?

46 Chapter 3. Systematic Review

3.1.2 Search engines

The search engines we used for the systematic review were defined based on criteria
such as the number of studies available and the broad scope. Based on these criteria, we
choose IEEE Xplore Digital Library1, ACM Digital Library2, Elsevier ScienceDirect3. At
Elsevier ScienceDirect, searches were limited only to open access publications. DBLP4 was not
considered because publications indexed in this source, in general, are already indexed in the
chosen search engines (BATISTA et al., 2018). To manage the results, the Elsevier Mendeley5

tool was used, which has a plug-in compatible with all major web browsers, improving the
indexing of these results for this systematic review.

3.1.3 Keywords and search strings
For the definition of the search strings, it is necessary to define the keywords based

on the search questions. Therefore, we defined the following keywords: internet of things, iot,
spatial data, big data; smart cities, smart city; fog computing, edge computing; data lake; spatial
data warehouse, sdw. We elaborate the search strings based on these keywords, using logical
operations, such as AND and OR. The search strings used in this systematic review are listed as
follows:

∙ "spatial data" AND ("internet of things" OR iot) AND "big data";

∙ (SDW OR "spatial data warehouse") AND ("internet of things"

OR iot OR "smart cities");

∙ "data lake" AND ("fog computing" OR "edge computing");

Regarding Elsevier ScienceDirect, we do not consider the acronym “SDW”, as most of
the results returned referred to Spin Density Wave, a physics term related to the conductivity
of materials. This term is not related to the subject of this study. This ambiguity did not often
occur in the other chosen search engines. We chose not to include “cloud computing” as a search
string, as cloud computing can be considered an architectural component of a fog computing
environment (BONOMI et al., 2012; BONOMI et al., 2014; HU et al., 2017; DASTJERDI;
BUYYA, 2016). As cloud computing allows the implementation of parallel and distributed
processing frameworks as-a service, we also do not include these frameworks (and by extension,
SASs), as search strings.

1 <https://ieeexplore.ieee.org>
2 <https://dl.acm.org>
3 <https://www.sciencedirect.com/>
4 <https://dblp.org/>
5 <https://www.mendeley.com>

https://ieeexplore.ieee.org
https://dl.acm.org
https://www.sciencedirect.com/
https://dblp.org/
https://www.mendeley.com

3.1. Planning Phase 47

3.1.4 Selection criteria

The selection criteria consist of defining which studies will be included or excluded, the
selection procedures for choosing studies, and the quality criteria of the journals and conferences.
We chose not to include articles in Portuguese, due to limited results in search engines.

3.1.4.1 Inclusion criteria

∙ Studies that answer at least one of the research questions;

∙ Studies in English;

∙ Studies with open access;

∙ Studies recommended for inclusion by a specialist;

∙ Studies between 2016 and 2021 (more recent studies).

3.1.4.2 Exclusion criteria

∙ Studies that do not meet any of the research questions;

∙ Studies not available in English;

∙ Studies that are not available for free or complete;

∙ Studies where the author of this dissertation is an author.

3.1.4.3 Selection procedures

1. Initial selection: From the keywords, we identified the search strings used in search
engines. From reading the title and abstract, we identified whether the study meets the
criteria. If so, we used it in the final selection.

2. Final selection: At this stage, we performed a complete reading of the studies that meet
the previous criteria, as well as checked whether the study still meets the inclusion criteria.

3. Obtaining information: Using Mendeley for study selection, we extracted information in
order to synthesise the content of results.

4. Quality criteria: The journals and conferences in which the papers were published were
checked using these criteria, like the reputation of the journal or conference where the
study was published, number of citations, author impact factor and writing quality.

48 Chapter 3. Systematic Review

3.2 Conduction Phase
Based on the search strings, our search retrieved 335 studies. Figure 6 illustrates the

number of studies found by the search engines that we defined. There was a large return of
studies that were identified from the string that relates spatial data to the internet of things and
big data (String 1). However, most of these studies refer to trajectory prediction using GPS data
obtained from IoT devices, and do not list in detail how the data is processed or analysed after
extraction. These studies also do not introduce architectures for IoT data management, presenting
the spatial context only as an example of data that can be generated by IoT devices.

Figure 6 – Number of studies found by search engines, using the search strings listed.

String 1: "spatial data" AND ("internet of things" OR iot) AND "big data”
String 2: (SDW OR "spatial data warehouse") AND ("internet of things" OR iot OR "smart cities”)

String 3: “data lake” AND (“fog computing” OR “edge computing”)

20

2 3

79

15 12

75

9

34

0

10

20

30

40

50

60

70

80

90

String 1 String 2 String 3

N
um

be
r

of
 S

tu
di

es

IEEE Xplore ACM DL ScienceDirect

Source: Elaborated by the author.

Using the selection criteria that we defined in Section 3.1.4, we selected five studies, four
from IEEE Xplore (Eldrandaly, Abdel-Basset and Shawky (2019), Jo, Joo and Lee (2019), Liu et

al. (2016) and Theodorou and Diamantopoulos (2019)) and one from Elsevier ScienceDirect
(Wang, Zhong and Wang (2019)). No studies were found in ACM DL that meet the selection
criteria.

Additionally, a study was included based on a specialist indication: Yuan and Zhao
(2012). This study does not meet the research criterion related to the period from 2016 to 2021,
but meets the research question RQ2.

3.3. Reporting phase 49

3.3 Reporting phase
In this phase, we classify the studies in groups in order to answer the research questions

defined in Section 3.1.1. We detail these groups in the following sections: Section 3.3.1, which
group studies related to IoT, spatial data and big data; Section 3.3.2, which contains studies
concerning SDW, IoT, and smart cities; Section 3.3.3, which encompasses studies related to data
lake and fog computing; and Section 3.3.4, which includes studies that encompass all topics
related to this systematic review.

3.3.1 IoT, spatial data and big data

The objective of this group is to identify studies that relate large amounts of spatial data
generation (big data) with IoT devices, thus addressing the research question RQ1. Therefore,
we identified the following studies: Eldrandaly, Abdel-Basset and Shawky (2019), Jo, Joo and
Lee (2019) and Wang, Zhong and Wang (2019).

Eldrandaly, Abdel-Basset and Shawky (2019) define Internet of Spatial Things (IoST), a
model that expands the traditional IoT architecture to handle spatial data using fog computing
concepts. The authors also present a literature review, where they describe IoT classifications in
other areas (such as medical, multimedia, robotics and nanotechnology) and the relationships of
IoT with spatial data.

Jo, Joo and Lee (2019) detail the development of a platform that aims to “efficiently
storing, extracting, processing, and analysing geospatial big data”. The architecture of this
platform is supported by several layers, including ETL and data analysis layers. The authors
conducted tests on a Hadoop environment to identify areas in Seoul, South Korea, that need
more hospitals to treat patients with thermal injuries.

Wang, Zhong and Wang (2019) describe a cloud integrated Geographic Information
Systems (GIS) platform architecture designed to process and analyse spatio-temporal big data.
This architecture provides support for data streaming, enabling real-time data analysis using
Spark. After that, the processed data is sent to a GIS for analysis. The authors used flight-
related data for the case study, where this data was processed in a Spark cluster, with real-time
monitoring. According to the authors, the study makes a contribution to smart cities systems, by
offering solutions for spatial resources’ management, city operation, and city maintenance.

3.3.2 Spatial data warehouses, IoT, and smart cities

The objective of this group is to identify studies that relate IoT and smart cities with an
SDWing environment, thus addressing the research questions RQ2 and RQ3. We identified the
following studies: Liu et al. (2016) and Yuan and Zhao (2012).

50 Chapter 3. Systematic Review

Liu et al. (2016) describe some methods for collecting heterogeneous data obtained from
numerous sources in a smart city, enabling the integration of these data in analytical environments
(like spatial data warehouses). The spatial data sources described by the authors are generic,
making only the question RQ3 be covered by this study.

Yuan and Zhao (2012) present SDWIT, a framework that expands a spatial data ware-
housing environment in IoT context. The ETL process is performed between the device layer
and the storage layer. Unlike a traditional SDW, SDWIT updates the data in real-time (or close
to it). The framework is not related to smart cities in its conception, making only the question
RQ2 be covered by this study.

3.3.3 Fog computing and data lakes

The objective of this group is to identify studies that relate fog computing with data
lakes, thus addressing the research question RQ4. We identified one study, Theodorou and
Diamantopoulos (2019). This study introduces a novel architecture for ELT on edge gateways,
where the data is stored in a lightweight repository, acting as a data lake. This repository, called
by the authors as data lagoon, contains raw data from IoT devices, which is retrieved using
streaming protocols. After that, the data is transformed and integrated with other data. The
processed data can be sent to the cloud or to other services at the edge, such as the local actuation

component, which deals with the IoT devices management.

3.3.4 Spatial data warehouses, IoT, fog computing, data lake, and
smart cities

The objective of this group is to identify studies with similar objectives to this dissertation,
thus addressing the research question RQ5. From the search criteria defined in Section 3.1.4, no
studies were found that relate fog computing, SDW, and data lake in an architecture that aims to
assist managers in the spatial analytics in the smart cities context.

3.4. Final remarks 51

3.4 Final remarks
In this chapter, we contextualise the systematic review conducted for this dissertation.

Table 2 lists the topics covered in this systematic review, by study. Among the studies we selected,
Eldrandaly, Abdel-Basset and Shawky (2019) and Wang, Zhong and Wang (2019) cover several
topics related to this dissertation. However, these studies do not foresee the use of spatial data
warehousing environments. On the other hand, the study of Yuan and Zhao (2012) aims to create
an environment based on the use of a SDW in the IoT context. Nonetheless, this study does not
include fog computing and smart cities concepts in the proposed architecture. Theodorou and
Diamantopoulos (2019) proposes to use a data lake in a fog node, but they have not detailed how
the data can be queried over the data lake. The architecture proposed in this study also does not
foresee spatial data usage.

According to the systematic review, it was not possible to find a study that meets the
research question RQ5, that relate fog computing, SDW and data lake in an architecture that aims
to assist managers in decision-making in smart cities’ context. We fill this gap in the literature,
as shown in the last line of Table 2.

Table 2 – Comparison between selected studies in the systematic review by topics.

Study
Spatial
Data SDW IoT

Smart
Cities

Fog
Computing

Cloud
Computing

Eldrandaly, Abdel-Basset and Shawky (2019) 3 7 3 3 3 3

Jo, Joo and Lee (2019) 3 7 3 3 7 3

Wang, Zhong and Wang (2019) 3 7 7 3 7 3

Liu et al. (2016) 3 3 7 3 7 7

Yuan and Zhao (2012) 7 3 3 7 7 7

Theodorou and Diamantopoulos (2019) 7 7 3 7 3 3

Our study 3 3 3 3 3 3

Source: Elaborated by the author.

In the next chapter (Chapter 4), we describe the novel architecture that we propose, which
aims to help smart city managers for decision-making based on data generated by IoT devices,
using fog computing and a spatial data warehousing environment in the cloud.

53

CHAPTER

4
PROPOSED ARCHITECTURE

In this chapter, we propose an architecture aimed to process and store data generated
by IoT devices in smart cities. The proposed architecture is divided into four layers: terminal,
fog, cloud, and analytics tools. We also introduce a set of guidelines to aid smart cities manages
to make decisions about the implementation of each layer according to the requirements of
the smart city application. Based on these guidelines, we show examples of pipelines, which
instantiate the components of the architecture with technologies. This chapter is organised as
follows. Section 4.1 describes the architecture and its layers. Section 4.2 introduces the guidelines.
Section 4.3 shows examples of pipelines. Finally, Section 4.4 describes the final considerations
about the chapter.

4.1 The Proposed Architecture

In this section, we propose a novel architecture for collecting and analysing, data from
IoT devices in smart cities. The proposed architecture is depicted in Figure 7. It achieves its goals
through the employment of four different layers: (i) the terminal layer; (ii) the fog computing
layer; (iii) the cloud computing layer, which is divided into three sub-layers: preprocessing,
spatial data warehousing, and services; and (iv) the analytics tools layer. In the following sections,
we discuss each layer.

4.1.1 Terminal layer

The terminal layer consists of a network of IoT devices, which are interconnected by
using technologies such as RFID, GPS, and network communication standards, such as Ethernet,
Bluetooth, and Wi-Fi. These devices are available in many parts of a smart city, such as weather
stations, traffic lights, and public transportation. The devices are aimed to collect spatial and
conventional data.

54 Chapter 4. Proposed Architecture

Figure 7 – Proposed architecture overview, which encompasses cloud computing, fog computing, and
frameworks for parallel and distributed data processing.

EnvironmentEnvironment

Terminal Layer

SmartphonesSmartphonesSmartphonesSmartphonesSmartphonesSmartphonesSmartphones
Bluetooth
Sensors

Bluetooth
Sensors

Bluetooth
Sensors

Bluetooth
Sensors

Bluetooth
Sensors

Bluetooth
Sensors

RFID SensorsRFID SensorsRFID SensorsRFID SensorsRFID Sensors
Wereable
Devices

Wereable
Devices

Wereable
Devices

Wereable
Devices

Cloud Computing Layer

Fog Computing Layer

Parallel and
distributed
processing

Parallel and
distributed
processing

Parallel and
distributed
processing

Parallel and
distributed
processing Storage ServiceStorage ServiceStorage ServiceStorage Service

ELTELTELTELTData LakeData LakeData LakeData LakeData LakeData LakeLogging ServiceLogging ServiceLogging ServiceLogging ServiceLogging ServiceLogging Service

Pre-processing Layer

ETL/ELTETL/ELTETL/ELTData LakeData LakeData LakeData LakeData LakeData Lake
Data Staging

Area
Data Staging

Area
Data Staging

Area
Data Staging

Area
Data Staging

Area

Spatial Data Warehousing Layer

Metadata
Repository
Metadata
Repository
Metadata
Repository

Spatial Data
Warehouse
Spatial Data
Warehouse
Spatial Data
Warehouse

Spatial Data
Marts

Spatial Data
Marts

Spatial Data
Marts

Spatial Data
Marts

Services Layer

Data Mining
Service

Data Mining
Service

Data Mining
Service

Query EngineQuery EngineQuery EngineQuery EngineQuery EngineSpatial Analytics
Systems

Spatial Analytics
Systems

Spatial Analytics
Systems

Spatial Analytics
Systems

Spatial Analytics
Systems

META

Statistical
analysis tools

Statistical
analysis tools

Statistical
analysis tools

GISGISGISGISGISGISGISGIS

SOLAP QueriesSOLAP QueriesSOLAP QueriesSOLAP QueriesSOLAP QueriesSOLAP QueriesSOLAP QueriesSOLAP Queries

Real-time

DashboardsDashboardsDashboards

GISGISLogging ToolsLogging ToolsLogging ToolsLogging ToolsGISLogging Tools

SOLAP QueriesSOLAP QueriesSOLAP QueriesWeb-serviceWeb-serviceWeb-serviceWeb-service

GISGISMachine
Learning
Machine
Learning
Machine
Learning
Machine
Learning

GISMachine
Learning

SOLAP QueriesSOLAP QueriesSOLAP QueriesData Mining
Tools

Data Mining
Tools

Data Mining
Tools

Data Mining
Tools

Data Mining
Tools

SOLAP QueriesData Mining
Tools

Analytics Tools
Layer

Statistical
analysis tools

GISGIS

SOLAP QueriesSOLAP Queries

Real-time

Dashboards

GISLogging Tools

SOLAP QueriesWeb-service

GISMachine
Learning

SOLAP QueriesData Mining
Tools

Analytics Tools
Layer

Source: Elaborated by the author.

4.1.2 Fog computing layer

Data collected by terminal layer devices are sent to receivers in the fog computing layer.
These receivers, called fog nodes, can be limited with regard to data processing and storage.
However, by being located close to the network edge, they are in an optimal position to allow
the execution of real-time data analytics and ELT operations. This is due to the low latency in
communication between the terminal layer devices and these nodes.

The collected data from the sensors is temporarily stored in a data lake, which can be
used for real-time queries. These queries, which can be executed via Application Programming
Interface (API), can be done entirely in the data lake, using only the data from the IoT sensors,
or in a hybrid way, with additional queries in the cloud to obtain the required attributes for the
query in the fog node. Finally, a logging service is made available for monitoring the sensor’s
health and to the fog node itself.

4.1. The Proposed Architecture 55

4.1.3 Cloud computing layer

After the data goes through the fog computing layer, it is sent to the cloud computing
layer. This layer contains parallel and distributed processing and storage. Due to the scalable
nature inherent to cloud computing environments, the infrastructure can be improved in terms
of storage and processing according to the queries demand from clients. This layer is divided
into three sub-layers: preprocessing, spatial data warehousing, and services. These sub-layers
are described as follows.

∙ Preprocessing layer. In this layer, data is prepared so that it can be stored in the SDW.
The ETL/ELT component is responsible for extracting, transforming and loading data into
the SDW. The ETL process uses the data staging area for intermediate data storage before
it is loaded. In a big data context, the ELT process can be used, where data is extracted and
loaded into the data lake, to be processed and stored in the SDW when the information
needs to be obtained.

∙ Spatial data warehousing layer. This layer contains an environment that contains an
SDW. The SDW, which is contained in the storage service, is organised multidimensionally
to enable SOLAP queries. In addition to the SDW, there can be many spatial data marts,
which can represent a small SDW with a limited scope when compared to the main SDW.
This layer also encompasses a metadata repository, which includes information about the
SDW, its location and structure, and the semantic data description disposed in the SDW.

∙ Services layer. This layer offers services to aid in the spatial analytics. The query engine
run queries (including SOLAP queries) using a query language such as Structured Query
Language (SQL). If the search engine does not support spatial queries, a SAS can be used
to execute these queries. A data mining service can be used to create prediction models
based on data available in the storage service. These models can help analytics based on
the hidden patterns’ discovery in the data.

4.1.4 Analytics Tools layer

After the data is made available in a SDW, the smart city manager can use tools that
enable strategic decision-making. These tools, which can be available both in the fog and in the
cloud, as well as external clients, are responsible for enabling visualisation and querying based
on the data collected and processed. Some of these tools include:

∙ SOLAP queries tools. Allow the user to analyse data using complex multidimensional
views, enabling the data analysis under different aggregation levels and data types (con-
ventional and/or spatial).

∙ GIS tools. Allow the user to analyse spatial data and visualise the results on maps.

56 Chapter 4. Proposed Architecture

∙ Statistical analysis tools. Allow the user to analyse the data using statistical methods.

∙ Web-service. Allow the user to extract raw data using APIs.

∙ Logging Tools. Allow the user to monitor system from logs.

∙ Dashboards. Allow the user to arrange the data through graphs and tables.

∙ Data Mining Tools. Allow the user to create and manage prediction models.

∙ Reporting Tools. Allow the user to produce reports based on data.

4.2 Guidelines
In this section, we propose a set of guidelines to aid smart cities managers in the process

of implementing the proposed architecture to support spatial analytics in smart cities. Due to
the different characteristics of each smart city, managers should choose the appropriated hints
provided by the guidelines according to these characteristics. Therefore, it is not mandatory
to follow every guideline in its completeness. Thus, a concise yet general description of each
guideline is provided, allowing further specialisation based on the requirements imposed by
each smart city application. The guidelines are named according to the layer that they should be
applied. For instance, Guidelines T1 and T2 are guidelines from the terminal layer.

4.2.1 Terminal layer

Guideline T1. Investigating the IoT devices heterogeneity. A smart city manager should
consider the IoT network heterogeneity, considering the communication protocol between the
devices and the fog and/or cloud, the capacity for processing and storing data and the data format
collected in the terminal layer. To this end, the manager can use the findings introduced in Lan et

al. (2019), which describe “a general ontology-based resource description model of IoT devices
to provide a consistent view of heterogeneous sensing devices for IoT applications in the cloud”
(LAN et al., 2019, p. 44199).

Guideline T2. Deploying IoT devices. IoT devices must be deployed in the terminal layer
considering the communication protocols supported by each sensor and the coverage of each
device. A smart city manager must also consider the communication compatibility between
these devices and the fog nodes. Some investigations found in the literature can be used to
assist in the deployment of these devices. We indicate the work of Alablani and Alenazi (2020),
which introduces an algorithm for sensor distribution and sink placement called EDTD-SC. This
algorithm uses triangulation and clustering techniques to find optimal locations to improve sensor
coverage over a smart city.

4.2. Guidelines 57

4.2.2 Fog computing layer

Guideline F1. Distributing fog nodes across the fog computing layer. After the IoT devices
disposition over the terminal layer, a smart city manager must define which devices should be used
as fog nodes. For instance, some approaches in the literature use Raspberry Pi computers1, which
are small single-boarded computers, as fog nodes, using containerization over these resource-
limited devices (BELLAVISTA; ZANNI, 2017; XU; ZHANG, 2019). Because Raspberry Pi
computers are low cost and support many communication protocols, they are a viable choice
to an IoT network heterogeneous nature. Communication between the fog nodes and the cloud
computing layer can be carried out using 4G/5G or Wi-Fi protocols. Each fog node uses the
Docker container technology2 for creating containers for each application available in a fog
node (i.e., ETL and real-time data analytics). We indicate the work of Prado et al. (2020),
which presents the challenges and opportunities on the schedule of smart containers in the
Cloud-Fog-IoT interfaces.

Guideline F2. Securing the connection between IoT devices and fog nodes. A smart city
manager must be concerned with the data flow security between the IoT devices and the fog
nodes, as sensitive information may be transmitted. For instance, at the terminal layer, some
security threats include signal jamming between IoT devices and Denial of Service (DoS) attacks
(PUTHAL et al., 2019). At the fog computing layer, security threats include phishing attacks,
infected code injection, session hijacking, and distributed DoS (PUTHAL et al., 2019; RAUF;
SHAIKH; SHAH, 2018). To deal with these issues, smart cities managers can take decisions
using as a basis the work of Ni et al. (2018). In this work, the authors discuss security-related
challenges in fog-assisted IoT applications. The authors also review state-of-the-art solutions to
address security and privacy issues in a fog environment deployed in an IoT network.

Guideline F3. Enabling the ELT process. To enable ELT in the fog computing layer, a smart
city manager must model the ELT process, defining which data will be extracted and loaded
from the IoT devices, which transformations must be executed after loading and the data flow
schema design. A solution for modelling and workflow monitoring for ELT is Apache Airflow3,
which is an open-source platform that uses directed acyclic graphs for authoring, scheduling,
and monitoring workflows. We indicate that the tasks be written using the Python programming
language, since it is natively supported by Airflow, which also provides integration with Hadoop,
Spark, and several cloud platforms. For data streaming, an example is Apache Kafka4, which is
a distributed data store optimised for ingesting and processing streaming data in real-time. Kafka
supports APIs, which can be used to send data to cloud for storage and parallel and distributed
processing.

1 <https://www.raspberrypi.org/>
2 <https://www.docker.com/>
3 <http://airflow.apache.org/>
4 <http://kafka.apache.org>

https://www.raspberrypi.org/
https://www.docker.com/
http://airflow.apache.org/
http://kafka.apache.org

58 Chapter 4. Proposed Architecture

Guideline F4. Modelling the data lake. After enabling the ELT routines, the smart city man-
ager must define the data lake modelling, with focus on structure and metadata management
in the data lake. As the data lake is in an infrastructure with limited processing power and
storage, the manager must be concerned with the data format, data querying, data loading and
the availability time of data in the data lake. Sawadogo and Darmont (2021) describe different
approaches to the data lake design. The authors discuss data ingestion (e.g., tools like Kafka and
protocols like HTTP), data storage (e.g., Not Only SQL (NoSQL) and HDFS), data processing
and data access. The paper does not discuss the deploying of the data lake in the fog computing
layer. In this sense, the work of Rani et al. (2021), which is a systematic review, can be used to
define a storage-as-a-service in the fog computing layer.

Guideline F5. Deploying the data lake environment. After modelling the data lake, a smart
city manager should define the environment to implement it. Multiple data management systems,
like NoSQL databases or parallel and distributed storage services can be used to deploy the data
lake. An example is Couchbase Server Lite5, which is a document-oriented database developed
for embedded devices. For the data lake deployment that stores key-value structured data,
RedisEdge6 may be used. Both Couchbase Lite and RedisEdge can synchronise with NoSQL
servers located at the cloud through an API. For integration with parallel and distributed storage
services, Wang et al. (2020) presents Apache IoTDB7, which is “an IoT native database with
high performance for data management and analysis”. IoTDB can be integrated with HDFS,
Spark, and Flink8. IoTDB uses TsFiles, a data file format for time-series data storage. TsFiles
can be directly synchronised with an active IoTDB instance on the cloud and can be persisted
on HDFS. As stated in Guideline F1, storage services can be operated by containers inserted
in the fog node. Taking into account the data heterogeneity from IoT devices (Guideline T1),
polyglot persistence (MEDVEDEV et al., 2016; SADALAGE; FOWLER, 2012) can be used in
a fog node network since it takes into consideration the node processing and physical storage, as
well as the queries that should execute in each node.

Guideline F6. Enabling analytical data processing. In a smart city, IoT devices generate data
constantly, enabling real-time data analysis. Some approaches can be used, such as data querying
over the data lake on demand or prediction models generation for machine learning operations.
The following guidelines detail these approaches.

Guideline F6.1. Enabling analytical queries on data lake. Based on the storage services
chosen according to Guideline F5 and their related services, different query mechanisms can
be used. For example, Couchbase Lite allows queries with selection, projection, grouping, and
joining using an interface compatible with numerous programming languages. Apache IoTDB

5 <https://www.couchbase.com/products/lite>
6 <https://redislabs.com/redis-enterprise/more/redis-edge/>
7 <https://iotdb.apache.org/>
8 <https://flink.apache.org/>

https://www.couchbase.com/products/lite
https://redislabs.com/redis-enterprise/more/redis-edge/
https://iotdb.apache.org/
https://flink.apache.org/

4.2. Guidelines 59

uses an SQL-like interface for queries. These query mechanisms use APIs to integrate with the
query visualisation services. The temporal scope of the queries that can be issued against the
data lake are restricted to the data lake model defined in Guideline F4.

Guideline F6.2. Enabling data mining. In a fog node, data are loaded constantly, enabling real-
time data analytics through the use of techniques like stream data analytics, machine learning,
and deep learning (PRABHU et al., 2020). To this end, a smart cities manager can use the
findings presented in the work of Kaur, Singh and Nayyar (2020), where the authors describe
machine learning applications that can be used in fog computing scenarios, using supervised
learning, distributed decision trees, and clustering methods for big data. Another work to be used
as a basis is described in (SAVAGLIO; FORTINO, 2021), which presents a methodology that
enables IoT data mining in fog/cloud deployments. The knowledge discovery process can be
performed on the fog nodes, enabling high efficiency, responsiveness, and scalability.

4.2.3 Cloud computing layer

Guideline C1. Choosing a parallel and distributed processing service. A smart city manager
should select the most appropriate parallel and distributed data processing framework and
distributed file system. The frameworks offered by Apache, such as Hadoop and Spark, are
widespread in the market. The main PaaS in the market offer these frameworks natively, including
Microsoft Azure, Google Cloud, and Amazon Web Services. These frameworks can also run in a
private cloud, using tools like OpenStack. Furthermore, these frameworks can also be employed
on a local cluster.

Guideline C2. Enabling spatial queries. The SDW application should process SOLAP queries
efficiently. Therefore, a smart city manager must select a query engine that is able to completely
fulfil the SDW application requirements and that is compatible with the data processing and
storage services chosen in Guideline C1. While PaaS in the market support spatial queries9,10,
Hadoop and Spark must use a SAS to support these queries. Because there are several SASs
available in the literature with different characteristics and capabilities, choosing the most
appropriate SAS can become considerably challenging. Thus, smart cities managers should use
as a basis of choice the state-of-the-art user-centric comparison of existing SASs described by
Castro, Carniel and Ciferri (2020). For a system-centric view of SASs, the work of Pandey et

al. (2018) should be referred, as it compares several SASs in the literature based on their query
processing performance.

Guideline C3. Enabling the ELT process. A smart city manager should model the ELT process
and the tools necessary for the execution. As well as in Guideline F3, workflow monitoring
tools, like Apache Airflow, can be used in a cloud environment. Other tools, like Pentaho Data

9 <https://docs.aws.amazon.com/redshift/latest/dg/geospatial-functions.html>
10 <https://cloud.google.com/bigquery/docs/gis-data>

https://docs.aws.amazon.com/redshift/latest/dg/geospatial-functions.html
https://cloud.google.com/bigquery/docs/gis-data

60 Chapter 4. Proposed Architecture

Integration11, Azure Data Factory12, Google Cloud Dataflow13 and AWS Glue14, can be used
with the parallel and distributed processing frameworks indicated in Guideline C1.

Guideline C4. Modelling and deploying the data lake environment. As described in Guide-
line F4, the work of Sawadogo and Darmont (2021) describes different approaches to data lake
design and metadata modelling. The authors also discuss two main approaches to combine a data
lake and a data warehouse in a global data management system: (i) data lake sourcing a data
warehouse; and (ii) data lake within a data warehouse. The storage service must be compatible
with the parallel and distributed service chosen in Guideline C1.

Guideline C5. Multidimensional data modelling contained at data lake. A smart city man-
ager should perform multidimensional modelling at the logical and the physical level. At the
logical level, the manager should use of schemas such as the star schema, the snowflake schema,
and the Geographic Hybrid Star Schema (SIQUEIRA et al., 2012). At the physical level, the
manager should use structures such as star join bitmap indexes and materialised views. For a
conventional star schema modelling, the work of (KIMBALL et al., 2011) can be used. In a
spatial data context, Vaisman and Zimányi (2014) present design discussions to model an SDW
and also introduce the concept of trajectory data warehouses, which can be appropriate for IoT
devices that collect data from sensors installed in moving objects, for instance, in vehicles. The
work of Mateus et al. (2016) details novel schemas design for an SDW deployed in a cloud
environment. The authors also evaluate the SOLAP query processing performance with the
employment of a cloud-based spatial index.

Guideline C6. Configuring the SDW to process SOLAP queries. After choosing the appro-
priate SAS, a smart city manager must configure the SDW environment in the cloud computing
layer to process SOLAP queries. The smart city manager must consider the parallel and dis-
tributed storage chosen in Guideline C1 and the periodicity in which data should be extracted
from the fog computing layer, as well as carefully specify data distribution over the SDW. These
SOLAP services must support APIs and GIS applications in order to visualise the SOLAP queries
results.

Guideline C7. Ensuring secure spatial queries processing. Since cloud computing environ-
ments can be virtually accessed from anywhere, smart cities managers should be concerned with
security issues related to cloud applications. In the same way that fog nodes are subject to security
threats like phishing and DDoS attacks (Guideline F2), a cloud environment also has security
concerns (ALMORSY; GRUNDY; MÜLLER, 2010; BALANI; VAROL, 2020). Solutions for
issues related to security in a cloud computing environment are presented in Singh, Jeong and
Park (2016). Another way to ensure confidentiality is the encryption of data stored in the SDW.
11 <https://pentaho.com>
12 <https://azure.microsoft.com/services/data-factory/>
13 <https://cloud.google.com/dataflow>
14 <https://aws.amazon.com/glue/>

https://pentaho.com
https://azure.microsoft.com/services/data-factory/
https://cloud.google.com/dataflow
https://aws.amazon.com/glue/

4.2. Guidelines 61

Data encryption should be done carefully so that it does not compromise the SDW application
performance. To this end, we indicate the work of Mateus et al. (2016), which proposes an
encryption methodology for a cloud DW stored according to the star schema, considering the
capability of processing analytical queries over the encrypted DW.

Guideline C8. Enabling data mining, machine learning, and deep learning operations.
The smart city manager can use machine learning and deep learning for analytics. To this
end, the manager can use the suggestions from: (i) Soomro et al. (2019), which describes, from a
systematic review, several works that present data mining solutions for thematic domains like
climate science, energy management and transport; and (ii) Adi et al. (2020), which reviews
how IoT-generated data are processed for machine learning. The authors classify many analytics
techniques for IoT, like descriptive, predictive, prescriptive, and adaptive, and the applications of
these techniques.

4.2.4 Analytics Tools layer

Guideline A1. Selecting appropriate analytics tools. A smart city manager may select an-
alytical tools to aid in analytics. There are several tools that are open source, free, and are
consolidated in the market and in the literature. For instance, for a GIS tool, QGIS15 can be
chosen, and for dashboards and statistical analysis, environments like R16 and Conda17 can be
employed. If the manager chooses a PaaS as suggested in Guideline C1, additional analysis tools
can be offered. For example, in an AWS environment, Amazon QuickSight18 can be used for
statistical analysis and dashboards.

15 <https://www.qgis.org>
16 <https://www.r-project.org/>
17 <https://docs.conda.io/en/latest/>
18 <https://aws.amazon.com/quicksight/>

https://www.qgis.org
https://www.r-project.org/
https://docs.conda.io/en/latest/
https://aws.amazon.com/quicksight/

62 Chapter 4. Proposed Architecture

4.3 Pipelines
In this section, we exemplify some pipelines of the architecture proposed in Section 4.1

based on the guidelines presented in Section 4.2. We use both open source and paid technologies.

In Figure 8, we show a pipeline for a traditional data warehousing application, associating
each step with its corresponding guidelines. IoT devices, like Arduino, Raspberry Pi, and GPS
beacons are distributed at the Terminal layer, which are collecting data from the environment
(Guideline T2). These devices send data to the fog computing layer, where the nodes are
Raspberry Pi devices (Guidelines F1 and F2). The data format generated by the IoT devices
includes JavaScript Object Notation (JSON) files, Comma-Separated Values (CSV) files, and
binary files. Data from these files are extracted, loaded, and transformed into a data lake using
Apache Airflow and Apache Kafka (Guideline F3). After defining the data lake modelling
(Guideline F4), the data is loaded into Couchbase Lite, a document-oriented, embedded device
compatible NoSQL (Guideline F5). Queries using data persisted in the data lake can be made
using the Couchbase Lite query service (Guideline F6.1).

Figure 8 – Pipeline for a traditional data warehousing application using open source technologies.

T (ELT)T (ELT)T (ELT)

Cloud layer – Private CloudFog node – Raspberry Pi

Data Lake

[LITE]

Data Lake

[LITE]

Query Engine

[LITE][LITE]

Query Engine

[LITE]

ELT

ApacheApache

ELT

Apache

EL (ELT)EL (ELT)

ApacheApache

EL (ELT)

Apache

GISGIS

py

IoT Devices

Arduino

Raspberry Pi

GPS Beacons

IoT Devices

Arduino

Raspberry Pi

GPS Beacons

Data LakeData LakeData Lake Data WarehouseData WarehouseData WarehouseData Warehouse

Source: Elaborated by the author.

In the cloud computing layer, after choosing Apache Spark with Apache Sedona19 and
HDFS as the frameworks for parallel and distributed processing and storage, arranged in a private
cloud (Guidelines C1 and C2), the data from the fog nodes are extracted and loaded into the data
lake contained in the cloud using Apache Airflow and Apache Sqoop20 (Guideline C3). The data
lake is stored in the HDFS, and the transformation of the data to be used in the data warehousing
environment is performed using Apache Airflow with PySpark21 (Guideline C4). After defining
the multidimensional model, (Guideline C5), SOLAP queries are performed using SedonaSQL
(Guideline C6). SOLAP queries visualisation is carried out using QGIS (Guideline A1).

19 <https://sedona.apache.org/>
20 <https://sqoop.apache.org/>
21 <https://spark.apache.org/docs/latest/api/python/>

https://sedona.apache.org/
https://sqoop.apache.org/
https://spark.apache.org/docs/latest/api/python/

4.3. Pipelines 63

The pipeline illustrated in Figure 8 can be adapted to use cloud technologies available as
PaaS, as depicted in the pipeline of Figure 9. The fog computing layer is implemented similarly
to the previous pipeline, with Realm22 as the data lake and query engine (Guidelines from F1
to F6.1). The cloud computing layer uses technologies from Google Cloud (Guidelines C1 and
C2). The ELT process is done using Dataflow, and the data from the Data Lake is stored using
Cloud Storage (Guidelines C3 and C4) and data from the Data Warehouse is stored in BigQuery.
SOLAP queries are performed using BigQuery (Guideline C6) and SOLAP queries visualisation
can be done using BigQuery GIS (Guideline A1).

Figure 9 – Pipeline for a traditional data warehousing application using Google Cloud Services.

Cloud layer – Google CloudFog node – Intel Galileo

IoT Devices

Arduino

Raspberry Pi

GPS Beacons

IoT Devices

Arduino

Raspberry Pi

GPS Beacons

GISGISData WarehouseData WarehouseData WarehouseData Warehouse

BigQuery

ELT

ApacheApache

ELT

Apache

Query EngineQuery EngineQuery Engine

Data LakeData LakeData Lake ELT

Dataflow

Data Lake
Cloud StorageCloud Storage

BigQuery GIS

Source: Elaborated by the author.

Our proposed architecture allows machine learning applications over the collected data,
based on Guidelines F6.2 and C8. Figure 10 illustrates an example of a pipeline using a Google
Cloud Service environment. In the fog computing layer, data is stored in RedisEdge. The ELT
process is done using Dataflow and the data is stored in Cloud Storage. The machine learning
model is created using AI Platform. Once the model is created, it is sent to the fog computing
layer to enable predictions directly in the fog.

Figure 10 – Pipeline for a machine learning application using Google Cloud Services.

Cloud layer – Google CloudFog node

IoT Devices

Arduino

Raspberry Pi

GPS Beacons

IoT Devices

Arduino

Raspberry Pi

GPS Beacons

ELTELTStorageStorageStorageStorage StorageStorageStorageStorage

Trained ModelTrained Model

ML ModelML Model

Machine LearningMachine LearningMachine Learning

EDGEEDGE

Dataflow Cloud Storage AI Platform

Source: Elaborated by the author.

22 <https://realm.io/>

https://realm.io/

64 Chapter 4. Proposed Architecture

4.4 Final Remarks
In this chapter, we propose a novel architecture for collecting and analysing data gener-

ated by IoT devices in smart cities. The architecture is divided into four layers, which include
terminal, fog, cloud, and analytics tools layers. To assist smart city managers in spatial analytics
and implementing the proposed architecture, we propose a series of guidelines for modelling,
processing, storing and analysing data. Finally, we describe examples of pipelines that employ
technologies that can be used based on the proposed architecture. In the next chapter, we will
present two case studies that use the architecture described in this chapter.

65

CHAPTER

5
CASE STUDIES

In this chapter, we describe two case studies that illustrate the use of proposed architecture.
We define the requirements of two spatial applications, whose objective is to process data
collected from multiple IoT devices in the context of smart cities. These case studies are
aimed to validate the efficacy and effectiveness of the proposed architecture. Focusing on
details regarding the performance and reliability of the architecture is out of the scope of this
dissertation. Section 5.1 describes the use of a dataset related to vehicle traffic and parking,
which was collected using IoT sensors arranged in a smart city. Section 5.2 describes a real-time
pipeline based on data collected by IoT sensors contained in a smart city bus fleet. Finally,
Section 5.3 describes the final considerations about the chapter.

5.1 Vehicle Traffic Analyses

In this case study, we use data related to vehicle traffic collected by sensors placed on
streets and highways. The collected data encompasses the number of vehicles and the average
vehicle speed, which can provide valuable insights for the improvement of urban traffic. We use
a dataset provided by Ali, Gao and Mileo (2015), which contains vehicle traffic data observed
between two street sensors and vehicle count data observed in sensors placed in parking garages.
These sensors are distributed in the municipality of Aarhus, Denmark. The dataset, which is
publicly available in the authors’ website1, contains both conventional (e.g., distance in metres
between the sensors, type of road, etc.) and spatial data (e.g., the sensors locations, represented
by points) referring to the period from February to June 2014. These sensors generate data every
five minutes.

As the dataset only provides data regarding the sensor location (i.e., points), we extended
it with new information to enrich the analyses performed in our spatial application. To this end, we
use road (i.e., lines) and city (i.e., polygons) data obtained by Geofabrik2 from OpenStreetMap,

1 <http://iot.ee.surrey.ac.uk:8080/>
2 <https://www.geofabrik.de/>

http://iot.ee.surrey.ac.uk:8080/
https://www.geofabrik.de/

66 Chapter 5. Case Studies

and statistical district data obtained from OpenDataDK3. We guarantee the spatial relationship
between the data in the sense that a road intersects with sensors, a district contains multiple
roads, and a city contains several districts.

The requirements imposed by the SDW application are described as follows. The ap-
plication should be deployed in the cloud and should communicate with a SAS to process its
queries. Furthermore, data handled by the application should be stored in an SDW designed
according to the logical schema depicted in Figure 11, which should also be located in the cloud.
Another application requirement is that it should support different spatial queries types based on
the definitions of Gaede and Günther (1998), such as spatial join, containment, and k-nearest
neighbour queries. The application should also provide good performance results. Finally, it is
important to highlight that the developers who are going to implement the application have some
previous SQL programming language knowledge.

The schema illustrated in Figure 11 represents data related to sensors and parking lots
scattered in a smart city that collect data on vehicle quantity and average speed. The spatial
attributes in the snowflake schema are represented as described by Vaisman and Zimányi (2014).
There are seven dimension tables in the SDW: (i) Date and Time, storing the moment in which
a measurement occurred; (ii) Report, storing the distance between the two street sensors that
performed the measurement and their geographic locations; (iii) Garage, storing the geographic
location of the sensors placed in parking garages and the total spaces available for vehicles to
park there; and (iv) Road, District, and City, storing the geographic locations associated with
the report and with the garage. The dimension tables are linked through two fact tables: (i)
Measurement, which stores, for each measurement, the vehicle count, the measurement time,
and the vehicle speed; and (ii) Parking, which stores the vehicle count.

Figure 11 – Logical schema of the SDW proposed to support the case study.

MEASUREMENT

reportKey (PK, FK)
timeKey (PK, FK)
dateKey (PK, FK)
measurementTime
vehicleSpeed
vehicleCount

MEASUREMENT

reportKey (PK, FK)
timeKey (PK, FK)
dateKey (PK, FK)
measurementTime
vehicleSpeed
vehicleCount

TIME

timeKey (PK)
second
minute
hour

TIME

timeKey (PK)
second
minute
hour

DATE

dateKey (PK)
day
week
month
year

DATE

dateKey (PK)
day
week
month
year

PARKING

garageKey (PK, FK)
dateKey (PK, FK)
timeKey (PK, FK)
vehicleCount

PARKING

garageKey (PK, FK)
dateKey (PK, FK)
timeKey (PK, FK)
vehicleCount

DISTRICT

districtKey (PK)
districtName
districtGeo
districtPopulation

DISTRICT

districtKey (PK)
districtName
districtGeo
districtPopulation

DISTRICT

districtKey (PK)
districtName
districtGeo
districtPopulation

CITY

cityKey (PK)
cityName
cityGeo
cityPopulation

CITY

cityKey (PK)
cityName
cityGeo
cityPopulation

CITY

cityKey (PK)
cityName
cityGeo
cityPopulation

ROAD

roadKey (PK)
roadName
roadGeo
roadType
postalCode

ROAD

roadKey (PK)
roadName
roadGeo
roadType
postalCode

ROAD

roadKey (PK)
roadName
roadGeo
roadType
postalCode

ROAD

roadKey (PK)
roadName
roadGeo
roadType
postalCode

REPORT

reportKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
firstSensorGeo ●
secondSensorGeo ●
reportDistance

REPORT

reportKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
firstSensorGeo ●
secondSensorGeo ●
reportDistance

REPORT

reportKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
firstSensorGeo ●
secondSensorGeo ●
reportDistance

REPORT

reportKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
firstSensorGeo ●
secondSensorGeo ●
reportDistance

GARAGE

garageKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
garageGeo ●
totalSpaces

GARAGE

garageKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
garageGeo ●
totalSpaces

GARAGE

garageKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
garageGeo ●
totalSpaces

GARAGE

garageKey (PK)
roadKey (FK)
cityKey (FK)
districtKey (FK)
garageGeo ●
totalSpaces

Source: Elaborated by the author.

3 <https://www.opendata.dk/city-of-aarhus/statistikdistrikter>

https://www.opendata.dk/city-of-aarhus/statistikdistrikter

5.1. Vehicle Traffic Analyses 67

According to the proposed architecture (Section 4.1) and guidelines (Section 4.2), the
case study application should be implemented as follows: (i) use of Apache Airflow to perform
the ETL process; (ii) storage of the SDW data in HDFS as the application requires data storage
in the cloud; and (iii) selection of Sedona as the SAS to process spatial queries aimed to support
spatial analytics, as it complies with the application’s requirements regarding performance
and spatial queries, as well as supports the SQL programming language through the use of
SedonaSQL (PANDEY et al., 2018; CASTRO; CARNIEL; CIFERRI, 2020).

In Section 5.1.1, we describe aspects related to data loading, including the preprocessing
of the data. Once the IoT sensors data loading process into the SDW is complete, smart cities
managers are able to execute different analyses using SedonaSQL. We define some query
examples that address key points of the application’s requirements, which are divided into three
different categories: (i) spatial queries with a topological predicate (Section 5.1.2); (ii) spatial
queries with metric relationships (Section 5.1.3); and (iii) spatial queries with type-dependent
operations (Section 5.1.4). These queries may be employed by a smart cities manager to support
spatial analytics. We employ QGIS4 to visualise the results of the queries.

5.1.1 Data Loading into the Cloud Layer

The dataset used in this case study consists of 449 reports and 8 garages. Data from these
reports and garages are stored in CSV files. To be loaded into the SDW, the data must go through
an ELT process in the fog layer (Guideline F5). Thus, Apache Airflow should be employed to:
(i) extract the data from the CSV files; (ii) perform transformations to arrange the data according
to the logical schema depicted in Figure 11; and (iii) load the data into HDFS for later use by
Sedona. To accurately simulate the fog layer, Airflow was executed in a Docker container.

Furthermore, in order to employ SedonaSQL for processing spatial queries over the SDW
stored in HDFS, it is necessary to load its tables into structures called DataFrames. These struc-
tures, which resemble relational tables, do not transform the textual representations of the spatial
data into spatial objects by default. Therefore, it is necessary to carry out the transformations.
SedonaSQL provides a function to convert Well-Known Text (WKT) representations into spatial
objects. An example of using this function during the loading process of the Report table is
detailed in Query 1.

Query 1 – Using a function to convert WKT representations in SedonaSQL.

1: SELECT reportID, roadID, districtID, cityID, reportDistance,

2: ST_GeomFromWKT(firstSensorGeo) AS firstSensorGeo,

3: ST_GeomFromWKT(secondSensorGeo) AS secondSensorGeo

4: FROM sensor

4 <https://qgis.org/>

https://qgis.org/

68 Chapter 5. Case Studies

5.1.2 Spatial Queries with Topological Predicates

In this section, we describe queries that use topological predicates. The two topological
predicates used in our case study analyses are the containment and the intersection spatial join.
The containment query, listed in Query 2, returns the quantity of vehicles that travelled in Aarhus
University/Community Hospital district grouped by day and month. This query can also be
classified as a slice analytical operation, since it returns a subset of the data considering a fixed
value.

Query 2 – Return the quantity of vehicles that travelled in Aarhus University/Community
Hospital district grouped by day and month.

1: SELECT day, month, SUM(vehicleCount)

2: FROM measurement, date, report, district, road

3: WHERE ST_Contains(districtGeo, roadGeo)

4: AND ST_Intersects(roadGeo, ST_MakeLine(firstSensorGeo,

5: secondSensorGeo))

6: AND measurement.reportID = report.reportID

7: AND measurement.dateID = date.dateID

8: AND report.districtID = district.districtID

9: AND report.roadID = road.roadID

10: AND district.name = ’Universitetet/Kommunehospitalet’

11: GROUP BY day, month ORDER BY day, month

By interpreting the query results, as displayed in Figure 12, a smart cities manager can
obtain different types of knowledge. For instance, the measurement of zero vehicles on March
25, 2014 (2014-3-25) could indicate that this was a day in which the sensors in the designated
district were entirely disabled. Another example of knowledge that can be obtained is when the
traffic in this district seems more intense in weekdays when compared with weekends.

Figure 12 – Containment query results.

Source: Research data.

5.1. Vehicle Traffic Analyses 69

The intersection spatial join query is represented in Query 3. It returns districts in which
the average vehicle speed reported from the sensors sets which intercept these sensors is greater
than 60 km/h (37.28 mph). This query can be used to check if there are districts where the
maximum permitted speed is not being respected by the drivers.

Query 3 – Return the districts whose average vehicle speed reported from the sensors sets which
intercept it is greater than 60 km/h.

1: SELECT districtGeo, AVG(vehicleSpeed) AS a

2: FROM measurement, report, district

3: WHERE ST_Intersects(ST_MakeLine(firstSensorGeo,

4: secondSensorGeo), districtGeo)

5: AND measurement.reportID = report.reportID

6: AND report.districtID = district.districtID

7: GROUP BY districtGeo

8: HAVING a >= 60

The query results are depicted in Figure 13, with each selected district being highlighted
in red and the average vehicle speed (in km/h) displayed in its centre. These results indicate that
the average vehicle speed is higher in the northern districts of the municipality of Aarhus. A
smart cities manager can extract different types of knowledge from this information. An example
is the fact that drivers can be less inclined to drive over the speed limit in municipality central
areas (highlighted in purple in Figure 13), probably due to the increased number of pedestrians
in these areas. Another example resides in the assumption that the average speed in the northern
districts is higher due to the fact that some of them connect with external highways (displayed as
pink lines in Figure 13).

Figure 13 – Intersection spatial join query results.

■ districts with an average
 vehicle speed higher
 than 60 km/h
 highways
■ central area

Source: Research data.

70 Chapter 5. Case Studies

5.1.3 Spatial Queries with Metric Relationships

In this section, we describe queries that use metric relationships. The two metric relation-
ships used in our case study analyses are the k-nearest neighbours and the distance spatial join.
The k-nearest neighbours query, represented in Query 4, returns the average vehicle speed identi-
fied by the 10 nearest reports from the Aarhus Cathedral, which is represented by a point. This
type of analyses is necessary to verify if drivers are respecting the speed limit in the surrounding
area of a highly frequented point of interest, as shown in Figure 14.

Query 4 – Return the average vehicle speed identified by the 10 nearest reports from the Aarhus
Cathedral.

1: SELECT AVG(vehicleSpeed), ST_MakeLine(firstSensorGeo,

2: secondSensorGeo) AS reportGeo

3: FROM measurement, report

4: WHERE measurement.reportID = report.reportID

5: GROUP BY reportGeo

6: ORDER BY ST_Distance(reportGeo,

7: ST_GeomFromWKT(’POINT(10.210556 56.156944)’))

8: LIMIT 10

The results displayed in Figure 14 enable smart cities managers to perform a wide
variety of analyses. In particular, one can identify that the highest average speeds around Aarhus
Cathedral can often be observed in the main streets of its district, which are highlighted in
red. Smart cities managers can also observe that these speeds do not go over 33 km/h. This
can indicate that drivers do not tend to speed up in this region, a fact that might indicate the
occurrence of heavy traffic.

Figure 14 – K-nearest neighbours query returning the average vehicle speed identified by the 10 nearest
reports from the Aarhus Cathedral.

■ average vehicle speed
 in km/h
⚫ sensors

Source: Research data.

5.1. Vehicle Traffic Analyses 71

The distance spatial join query, listed in Query 5, compares the amount of occupied
parking spots and the amount of vehicles transiting in the streets in the last week of May,
considering the sensors in the streets that are located at a distance of at most 100 m from sensors
placed in parking garages. Only parking garages that had at least one vehicle parked in the period
were considered. This query also can be classified as a drill-across operation, where the queried
fact tables are Parking and Report.

Query 5 – Distance join query returning the average number of vehicles in traffic and the average
number of parked vehicles, considering the sensors in the streets of the municipality of Aarhus
that are located at a distance of at most 100 m from sensors placed in parking garages.

1: SELECT garage.garageID AS "Garage Name",

2: road.roadName AS "Street Name",

3: ROUND(AVG(measurement.vehiclecount),0)

4: AS "Average number of vehicles in traffic",

5: ROUND(AVG(parking.vehiclecount),0)

6: AS "Average number of parked vehicles"

7: FROM (SELECT reportID, SUM(vehiclecount) AS vehiclecount

8: FROM measurement, date

9: WHERE measurement.dateID = date.dateID

10: AND month = 5 AND week = 4

11: GROUP BY reportID) AS measurement,

12: (SELECT parking.garageID,

13: AVG(vehiclecount) AS vehiclecount

14: FROM parking, date

15: WHERE parking.parkingID = date.dateID

16: AND month = 5 AND week = 4

17: GROUP BY garageID) AS parking, report, garage, road

18: WHERE report.reportID = measurement.reportID

19: AND parking.garageID = garage.garageID

20: AND garage.roadID = road.roadID

21: AND ST_Distance(ST_MakeLine(report.firstsensorgeo,

22: report.secondsensorgeo), garage.geo) ≤ 0.01

23: GROUP BY garage.garageID

The query results are displayed in Table 3. By analysing these results, a smart cities
manager can realise that there is no direct relationship between the average number of vehicles
in traffic and the average number of parked vehicles in the period. This is clear due to the fact
that there are streets with: (i) a high number of vehicles in traffic and few vehicles parked (such
as Kalkværksvej); (ii) a high number of vehicles in traffic and a high amount of vehicles parked
(such as Værkmestergade); and (iii) a few number of vehicles in traffic and a high amount of
vehicles parked (such as Østergade). However, it is important for a smart cities manager to run
this analysis on different weeks and months in order to investigate if this lack of relationship is
dependent on the time period.

72 Chapter 5. Case Studies

Table 3 – Distance join query results.

Garage Name Street Name Average number of
vehicles in traffic

Average number of
parked vehicles

BRUUNS Værkmestergade 5,605 166
BUSGADEHUSET Frederiksgade 4,223 84
KALKVAERKSVEJ Kalkværksvej 4,458 49

MAGASIN Åboulevarden 4,223 108
SALLING Østergade 3,618 191

Source: Research data.

5.1.4 Spatial Queries with Type-Dependent Operations

In this section, we describe queries that use type-dependent operations, i.e., operations
which can be executed over only one specific type of spatial object. In our case study analyses,
we are interested in spatial queries that involve generating a new geometry from a distance
around a specific geometry. For instance, Query 6 is a convex hull query, which returns the
minimal convex polygon (i.e., the convex hull) that contains all the sensors in the municipality of
Aarhus, in order to get the sensor coverage area.

Query 6 – Return the minimal convex polygon which contains all sensors in Aarhus municipality.

1: SELECT ST_ConvexHull(ST_Collect(sensors.sensorGeo))

2: FROM (SELECT report.firstSensorGeo AS sensorGeo FROM report

3: UNION

4: SELECT report.secondSensorGeo AS sensorGeo FROM report)

5: AS sensors

The results displayed in Figure 15 reveal that several districts in the extremities of the
municipality are beyond the sensor coverage area. Further, it is possible to visualise that there
are sensors positioned outside the municipality limits. A smart cities manager should analyse
these results to better determine the sensor distribution across the municipality districts.

Figure 15 – Convex Hull query returning the minimal convex polygon that contains all the sensors in the
municipality of Aarhus.

■ buffer area
⚫ sensors
■ convex hull polygon

Source: Research data.

5.1. Vehicle Traffic Analyses 73

Another analysis, which represents a buffer query, returns the average vehicle count
of the sensors located within a 100 m buffer of each school in the municipality of Aarhus,
considering the five highest measurements. Data relating to schools in the municipality of Aarhus
was extracted from OpenStreetMap and contains as attributes the identifier, school name, and its
representation as a point. This type of analyses can be useful to determine the movement around
school areas in different municipality regions. The following command, described in Query 7
expresses this query.

Query 7 – Return the average vehicle count of the sensors located within a 100 m buffer of each
school in the municipality of Aarhus, considering the five highest measurements.

1: SELECT ROUND(AVG(measurement.vehicleCount),0)

2: as AVGvehicleCount, schoolID

3: FROM schools, report, measurement,

4: ST_Buffer(schools.geom, 0.01) AS schoolbuffer,

5: ST_MakeLine(firstSensorGeo, secondSensorGeo) AS sensorset

6: WHERE ST_Intersects(sensorset,schoolbuffer)

7: AND measurement.reportID = report.reportID

8: GROUP BY schoolID

9: ORDER BY AVGvehicleCount DESC

10: LIMIT 5

Figure 16 shows the query results. It is important to highlight that the buffers are not
depicted as regular circular shapes due to the map projection adopted. Through an analysis of
the query results, a smart cities manager can verify if the movement is higher around a certain
school in comparison with the others.

Figure 16 – Buffer query returning the average vehicle count of the sensors located within a 100 m buffer
of each school in the municipality of Aarhus, considering the five highest measurements.

■ buffer area
⚫ schools

Source: Research data.

74 Chapter 5. Case Studies

It is also possible for the manager to seek more detailed analyses, investigating the
average vehicle count per hour for a certain school, as shown in Query 8.

Query 8 – Return the average vehicle count of the sensors located within a 100 m buffer of a
school in the municipality of Aarhus.

1: SELECT SUM(measurement.vehiclecount), hour, day

2: FROM schools, report, measurement, date, time

3: ST_Buffer(schools.geom, 0.01) AS schoolbuffer,

4: ST_MakeLine(firstSensorGeo, secondSensorGeo) AS sensorset

5: WHERE ST_Intersects(sensorset,schoolbuffer)

6: AND measurement.reportID = report.reportID

7: AND measurement.dateID = date.dateID

8: AND measurement.timeID = time.timeID

9: AND schools.schoolID = 4448940550

10: AND month = 2

11: GROUP BY hour, day

12: ORDER BY day, hour

After interpreting the results depicted in Figure 17, a smart cities manager can obtain
some knowledge regarding the movement of vehicles around the analysed school. For instance,
it is possible to realise that the number of vehicles in the vicinity of the school is greater during
business hours. A smart cities manager can also observe that there is a small decline in the
vehicle count at 7h, a fact that can be further investigated.

Figure 17 – Buffer query returning the average vehicle count per hour and day in February 2014, consid-
ering the period from 0h to 23h.

Source: Research data.

5.2. Public Transportation 75

5.2 Public Transportation
In this case study, we use data related to public transportation, where sensors placed on

buses collect data related to the spatial position to assist in the spatial analytics process for the
improvement of urban traffic. We use data related to the Integrated Transportation Network (in
Portuguese, Rede Integrada de Transporte (RIT)), a Bus Rapid Transit (BRT) system in Curitiba,
Brazil, implemented in 1974. This system contains express bus lanes, in which bi-articulated
buses that use tube-shaped stations are operated, as illustrated in Figure 18. These stations
enable fare prepayment and platform level boarding, encompassing accessibility for people with
disabilities (URBS, 2020).

Figure 18 – Tube station belonging to RIT, Curitiba’s BRT system. These stations allow accessibility for
people with disabilities and fare prepayment.

Source: URBS (2020).

We use a web-service provided by Urbanização de Curitiba (URBS), a mixed economy
company that controls the public urban transportation of Curitiba. The web-service provides
real-time generated data related to the bus position by time, date, and line. This data is publicly
available in the city’s administration website in a dataset containing historical data5 and in a web-
service containing real-time data.6. There is conventional (e.g., bus line name, bus model, etc.)
and spatial data (e.g., bus locations, represented by points) referring to the period from January
2017 to today. The sensors generate data every two minutes. The API offers more complete data
in relation to the dataset containing historical data, such as accessibility, status (delayed, on time
or early) and vehicle category. This allows for real-time analysis of the transport system.

As the dataset only provides data regarding the sensor location (i.e., points), we extended
it with new information to enrich the analyses performed in our spatial application. To this end,
we use road data obtained by BBBike7 from OpenStreetMap and statistical district data obtained
from the Instituto de Pesquisa e Planejamento Urbano de Curitiba (IPPUC)8. We guarantee the
spatial relationship between the data in the sense that a road contains buses and a district contains

5 <http://dadosabertos.c3sl.ufpr.br/curitibaurbs/>
6 <http://transporteservico.urbs.curitiba.pr.gov.br/>
7 <https://extract.bbbike.org/>
8 <http://ippuc.org.br/geodownloads/geo.htm>

http://dadosabertos.c3sl.ufpr.br/curitibaurbs/
http://transporteservico.urbs.curitiba.pr.gov.br/
https://extract.bbbike.org/
http://ippuc.org.br/geodownloads/geo.htm

76 Chapter 5. Case Studies

multiple roads. Furthermore, we use data relating to the number of passengers transported
per line, per month. We obtained this data by using the Brazilian’s access to information law
(BRASIL, 2011).

Data handled by the application is stored in an SDW designed according to the logical
schema depicted in Figure 19, which should also be located in the cloud. This schema represents
data related to bus locations in the city and number of passengers. The spatial attributes in the
star-schema are represented as described by Vaisman and Zimányi (2014). There are seven
dimension tables in the SDW: (i) Date and Time, storing the moment in which a measurement
occurred; (ii) Bus, storing data related to a bus (e.g., model, plate, colour); (iii) Line, storing data
related to a line (e.g., name, category); (iv) BusStop, storing data related to bus stops; and (iv)
Road and District, storing the geographic locations associated with the report and the garage,
respectively. The dimension tables are linked through two fact tables: (i) Location, which stores
the bus position; and (ii) Passengers, which stores the quantity of passengers. Finally, there is a
bridge table, which, according to Kimball et al. (2011), is a solution that is used for multivalued
dimensions. In this case, the bridge table Itinerary is linked to Line and BusStop, where a line

has several bus stops and a bus stop has several lines. A line itinerary have a sequence of bus
stops defined in sequential. A line has the outbound or inbound itinerary, where it is indicated
under itineraryWay.

Figure 19 – Logical schema of the SDW proposed to support the case study, which models data related to
sensors contained in buses and other public transportation data.

LOCATION

busKey (PK, FK)
timeKey (PK, FK)
dateKey (PK, FK)
lineKey (PK, FK)
roadKey (PK, FK)
position ●

LOCATION

busKey (PK, FK)
timeKey (PK, FK)
dateKey (PK, FK)
lineKey (PK, FK)
roadKey (PK, FK)
position ●

BUSSTOP

busStopKey (PK)
busStopNumber
busStopName
busStopType
busStopGroup
busStopGeo ●
busStopInsertedAt

BUSSTOP

busStopKey (PK)
busStopNumber
busStopName
busStopType
busStopGroup
busStopGeo ●
busStopInsertedAt

BUS

busKey (PK)
busPrefix
plate
mercosulPlate
entranceDate
seatingCapacity
standingCapacity
colour
accessible
chassiBrand
chassiModel
bodyBrand
bodyModel
modelYear
modelType
internalArea
busInsertedAt

BUS

busKey (PK)
busPrefix
plate
mercosulPlate
entranceDate
seatingCapacity
standingCapacity
colour
accessible
chassiBrand
chassiModel
bodyBrand
bodyModel
modelYear
modelType
internalArea
busInsertedAt

TIME

timeKey (PK)
second
minute
hour
formatted

TIME

timeKey (PK)
second
minute
hour
formatted

DATE

dateKey (PK)
day
dayOfWeek
week
month
quarter
year
formatted

DATE

dateKey (PK)
day
dayOfWeek
week
month
quarter
year
formatted

ITINERARY

lineKey (FK)
busStopKey (FK)
sequential
itineraryWay

ITINERARY

lineKey (FK)
busStopKey (FK)
sequential
itineraryWay

PASSENGERS

dateKey (PK, FK)
lineKey (PK, FK)
quantity

PASSENGERS

dateKey (PK, FK)
lineKey (PK, FK)
quantity

LINE

lineKey (PK)
linePrefix
lineName
busCardOnly
lineCategory
lineGeo
lineInsertedAt

LINE

lineKey (PK)
linePrefix
lineName
busCardOnly
lineCategory
lineGeo
lineInsertedAt

LINE

lineKey (PK)
linePrefix
lineName
busCardOnly
lineCategory
lineGeo
lineInsertedAt

ROAD

roadKey (PK)
roadName
roadType
oneway
maxSpeed
roadGeo
districtKey

ROAD

roadKey (PK)
roadName
roadType
oneway
maxSpeed
roadGeo
districtKey

ROAD

roadKey (PK)
roadName
roadType
oneway
maxSpeed
roadGeo
districtKey

ROAD

roadKey (PK)
roadName
roadType
oneway
maxSpeed
roadGeo
districtKey

DISTRICT

districtKey (PK)
districtName
regionalName
area
districtGeo

DISTRICT

districtKey (PK)
districtName
regionalName
area
districtGeo

DISTRICT

districtKey (PK)
districtName
regionalName
area
districtGeo

Source: Elaborated by the author.

5.2. Public Transportation 77

According to the proposed architecture (Section 4.1) and guidelines (Section 4.2), the
case study application should be implemented as illustrated in Figure 20. The fog computing
layer consists of Apache Airflow for performing the data extraction and loading from URBS API
and Jupyter notebooks9 for transformation and visualisation of data contained in the data lake,
which is a JSON file. The cloud computing layers consists of Apache Airflow for performing
the extraction, transformation and loading from the fog node data. Since the historical data
provided by URBS is very large, with approximately 405 GB just for the data related to the
bus position, Google Cloud BigQuery can be used, as an SDW, to process the spatial queries
aimed to analytics, as it complies with the application’s requirements regarding performance and
spatial queries, as well as supports the SQL programming language. We consider that smart city
managers have some previous knowledge of the services of this platform and SQL.

Figure 20 – Pipeline related to the case study, which models data related to sensors contained in buses
and other public transportation data.

Cloud layer – Google CloudFog node – Local PC

Spatial data visualisationSpatial data visualisationData WarehouseData WarehouseData WarehouseData Warehouse

BigQuery

T (ELT)T (ELT)

Data LakeData LakeData Lake ELT

JSON files

EL (ELT)EL (ELT)IoT Devices

GPS devices

IoT Devices

GPS devices
API

Source: Elaborated by the author.

In Section 5.2.1, we describe aspects related to data preprocessing. Once the process of
loading data from the IoT sensors into the SDW is complete, smart cities managers are able to
execute different analyses using BigQuery. We define some query examples that address key
points of the application’s requirements, which are divided into three different categories: (i)
fog-only queries (Section 5.2.2); (ii) fog and cloud queries (Section 5.2.3); and (iii) SOLAP
cloud queries (Section 5.2.4). These queries may be employed by a smart cities manager to
support spatial analytics. To visualise the results of the queries, we employ Folium10, a Python
library that builds interactive maps on a Leaflet11 map. Folium supports choropleth maps and
heatmaps.

9 <https://jupyter.org/>
10 <http://python-visualization.github.io/folium/>
11 <https://leafletjs.com/>

https://jupyter.org/
http://python-visualization.github.io/folium/
https://leafletjs.com/

78 Chapter 5. Case Studies

5.2.1 Data preprocessing

The data we use in this case study is extracted through an API provided by URBS. We
developed several functions to obtain the required data, such as getVeiculos, which returns
data on the position of buses, and getLinhas, which returns all the bus lines. Historical data
is available through CSV files. After being extracted, the data must go through an ELT process
in the fog layer (Guideline F5). Thus, Apache Airflow should be employed to: (i) extract the
data from the API and CSV files; (ii) perform transformations to arrange the data according
to the logical schema depicted in Figure 19; and (iii) load the data into a data lake, which is
implemented in this case study as JSON files. In the fog data lake, data can be transformed and
visualised using Jupyter notebooks.

After a 24-hour period disposed in the data lake in the fog node, the data is sent to the
Google Cloud, where it is transformed and loaded into the Location fact table, which is contained
in Google BigQuery. Thus, it is possible to perform spatial queries. To this end, it is necessary
to carry out the spatial data transforming. BigQuery provides a function, listed in Query 9, that
converts WKT representations into spatial objects. For simplicity, we assume that all WKT
representations have been converted to spatial objects.

Query 9 – Using a function to convert WKT representations in Google BigQuery.

1: SELECT busKey, timeKey, dateKey, lineKey, roadKey,

2: ST_GeogFromText(geom) AS position

3: FROM location

The data uploaded in the fog and in the cloud allows numerous queries according to
the demand foreseen by the smart city manager. Using the data lake in the fog allows real-time
queries, but does not allow querying supplementary data that can be integrated. Nonetheless,
cloud queries allow analytics considering multiple dimensions, including spatial dimensions,
providing a wide view of the business, but, in this case, there is no support for real-time queries.
Therefore, mixed queries using the real-time capability of fog and cloud dimension tables can be
performed. In the following sections, we show examples of queries that can be performed only
in the fog, only in the cloud, and in both environments. The source codes of these queries are
listed in Appendix A

5.2. Public Transportation 79

5.2.2 Fog-only queries

Real-time queries can be performed on fog nodes using Python libraries. In this section,
we present two examples of queries that can be executed only with data extracted from sensors,
without using external databases. The first query, listed in Source Code 2 at Section A.1, returns
the vehicle’s location and status, similar to bus monitoring apps like CittaMobi12 and Moovit13.
Figure 21 illustrates the result of a query based on the express line 203 (Santa Cândida – Capão

Raso). Different colours of the markings are used, as follows. Green, red, and blue markings
indicate that the vehicle is on time, late, or early, respectively. In Figure 21, a bus, whose number
is BE717, is delayed in relation to the time defined in its scale.

Figure 21 – Buses belonging to line 203 of the Curitiba’s public transport system, tagged with bus status.

Source: Research data.

From this query, a smart city manager can have a real-time view of the status of vehicles,
by line, by minute. If a line has an excess of late buses, the manager can create guidelines for
bus companies and drivers to reduce these occurrences, such as the use of appropriate vehicles
on the lines and the training of drivers for efficient driving. However, external factors such as
traffic jams can lead to delays. Thus, a new query to detect traffic jams is necessary.

The second query, listed in Source Code 3 at Section A.1, is aimed to generate heatmaps
based on the spatial position of all buses that are travelling in the city. From these heatmaps, it
is possible to detect traffic jams. Figure 22 illustrates heat maps generated by data obtained at
2021-08-24 (August 24, 2021), with an interval of three hours between data collections. There is
a large agglomeration of buses in downtown and near bus terminals during peak hours (Figures
22a and 22d).

12 <https://www.cittamobi.com.br>
13 <https://moovit.com>

https://www.cittamobi.com.br
https://moovit.com

80 Chapter 5. Case Studies

Figure 22 – Heatmaps that represent bus positions in the city of Curitiba. Data were collected at three-hour
intervals on 2021-08-24.

(a) 07:55. (b) 10:55.

(c) 13:55. (d) 16:55.

Source: Research data.

There are several vehicles that are not operating on the lines. The high amount of
these vehicles in the bus garages generates anomalies in the heatmap, therefore vehicles in this
situation are disregarded in the analyses. The smart city manager can use these results to check
the circulation of buses near the terminals and busy avenues and highways in order to detect
possible interruptions in traffic and improve the vehicle flow.

5.2. Public Transportation 81

5.2.3 Mixed queries

Although it is possible to perform queries only with the data available in the fog data
lake, eventually additional data is needed to obtain a more complete query. In this section, we
present two examples of queries that can be executed with data located in both the fog and the
cloud, and how that data can be integrated. The first query evaluates the status of the buses
that belong to companies that are part of a consortium by time and status. The objective of the
query is to verify which period of time in a day have more buses that are late in relation to
their respective schedules. Curitiba has three consortia, Pontual, Transbus, and Pioneiro. In this
query we consider the Pontual consortium, which is formed from the companies Glória, Mercês,
and Santo Antônio (URBS, 2021a). The data obtained in real-time does not have information
about the bus companies, thus a cloud query can be used to get the company associated with that
vehicle, using the vehicle number as a parameter.

This query, listed in Source Code 4, is detailed in Section A.2. The results of this query
are displayed in the bar chart depicted in Figure 23. At 19:55, there is a smaller difference in
the amount of buses that are late or on time. With this information, the smart city manager
can verify the reasons that make buses late in the region where the consortium operates, like
traffic jams, based on the feedback from drivers who were allocated to the line at that time. This
query complements the queries listed in Section 5.2.3, which can help the smart city manager to
improve the lines present in these consortia, offering a smaller amount of late buses.

Figure 23 – Bar graph that lists the number of Pontual Consortium buses that circulated on 2021-08-24,
grouped by time and status.

Source: Research data.

The second query checks the estimated arrival time of a bus to the next bus stop and to
the bus terminal. This information can be used by passengers to check if there is a bus near the
bus stop of interest. As the data contained in the data lake in the fog does not have information
regarding the bus stops, such as the type and spatial position, it is necessary to perform a cloud
query which returns these values, based on the bus current position.

The source code for this query, listed in Source Code 5, is detailed in Section A.2, and
use Query 10 to return the bus stop closest to a given bus, using the vehicle’s line, direction,
and location data. First, let us analyse the estimated arrival time of a bus to the next bus stop.

82 Chapter 5. Case Studies

As an example, consider that the bus has the number BE717, belongs to line 203, and was
travelling on August 24, 2021 at 16:55, heading to Capão Raso. The spatial location of this
bus is (-49.292586 -25.481235) From the equation t = (S/1000)/v, we calculate the
estimated time of arrival in the next bus stop, where S is the distance and v = 17km/h represents
the velocity in km/h. According to URBS (2021b), 17 km/h is the average speed of the express
bus lines. Similarly, it is possible to calculate the distance from the bus to the bus terminal, which
is the last bus stop in the line’s itinerary sequence.

Query 10 – Returns the distance from a position related to the bus number BE717, which was
on line 203 on 2021-08-24, at 16:55, to the nearest bus stop, as well as the estimated time.

1: SELECT ROUND(((d/1000)/17)*60) nextBusPointArrivalTime,

2: d distanceNextBusPoint, busStopName

3: FROM (SELECT bs.busStopName, bs.busStopGeo, finalBusStopGeo,

4: ST_Distance(bs.busStopGeo,

5: ST_GeogFromText(’POINT (-49.292586 -25.481235)’)) d,

6: FROM ‘urbs.linenew‘ line,

7: ‘urbs.itinerary‘ itinerary,

8: ‘urbs.busstopnew‘ busstop

9: WHERE line.lineKey = itinerary.lineKey

10: AND bs.busStopKey = itinerary.busStopKey

11: AND line.linePrefix = ’203’

12: AND itinerary.itineraryWay = ’VOLTA’

13: ORDER BY d ASC

14: LIMIT 1)

Therefore, it is possible to define the following indicatives related to the BE717 bus:

∙ 24 m away from the nearest bus stop, with an expected immediate arrival.

∙ 1173 m from the bus terminal, with an estimated arrival time of four minutes.

These queries can be useful for the passenger, who can calculate the time needed to wait
for the next bus. The smart city manager may use the data generated by this query to define the
bus stops with a longer vehicle arrival time, in order to identify problems in a specific line or bus.

5.2. Public Transportation 83

5.2.4 Cloud queries

Since the SDW is located entirely in the cloud, in this section we present examples of
queries that can be done using the data according to in the star-schema illustrated in Figure 19. A
first query is to check the number of passengers per district, per month, in order to check the
demand for lines in the districts. This is a drill-across analytical query that requires measures
from the fact tables Passengers and Location. Query 11 lists two subqueries: the first returns the
number of passengers per line in the month of December 2020, while the second returns the
lines that operate in the districts based on the buses position.

Query 11 – Returns the number of passengers who passed through the districts of the city of
Curitiba in December 2020.

1: SELECT district.name, district.districtGeo,

2: SUM(totalPassengers.quantity) totalQuantity

3: FROM

4: -- First Query

5: (SELECT line.linePrefix,

6: SUM(passengers.qtde_total) quantity

7: FROM ‘urbs.passengers‘ passengers, ‘urbs.line‘ line,

8: ‘urbs.date‘ date

9: WHERE passengers.dateKey = date.dateKey

10: AND passengers.linekey = line.linekey

11: AND date.year=2020

12: AND date.month = 12

13: GROUP BY linePrefix

14: ORDER BY quantity DESC) totalPassengers,

15: -- Second Query

16: (SELECT DISTINCT line.linePrefix, district.districtKey

17: FROM ‘urbs.line‘ line, ‘urbs.location‘ location,

18: ‘urbs.road‘ road, ‘urbs.district‘ district

19: WHERE location.roadKey = road.roadkey

20: AND road.districtkey = district.districtkey

21: AND location.linekey = line.linekey

22: ORDER BY prefix, districtKey) lineDistrict,

23: ‘urbs.district‘ district

24: WHERE district.districtKey = lineDistrict.districtKey

25: AND lineDistrict.linePrefix = totalPassengers.linePrefix

26: GROUP BY district.name, district.districtGeo

27: ORDER BY district.name;

84 Chapter 5. Case Studies

The result of this query is illustrated in Figure 24. It is possible to see many passengers
who travelled in the central area of the city, as well as in Cidade Industrial de Curitiba (CIC),
located in the west of the city. In this district, there is a large amount of industries, however,
due to the high population density and accessibility to public transport and other facilities, such
as supermarkets and schools, there is a large increase in the population of CIC, surpassing
in population cities such as Araucária and Pinhais (CURITIBA, 2017). Based on the result
illustrated in Figure 24, a smart city manager can provide improvements for the lines that run
through CIC, performing new queries identifying the average number of passengers. Lines with
greater demand can be changed in order to have more appropriate vehicles or a larger number of
buses, or new routes can be created.

Figure 24 – Returns the number of passengers who passed through the districts of the city of Curitiba in
December 2020.

<500000

500000 - 1000000

1000000 - 1500000

1500000 - 2000000

2000000 - 2500000

2500000 - 3000000

>3000000

Quantity of passengers, by district

Cidade Industrial de Curitiba

Centro

Source: Research data.

The second query integrates data contained in the cloud with external data. This external
data, also provided by the web service of URBS, Points of Interest (POIs) located in Curitiba.
They contain a name, type of POI (e.g., hospitals, hotels, schools, etc.), and geographic position.
Hospitals tend to have a higher demand for elderly passengers and people with disabilities,
so it is necessary to have bus stops that offer comfort and accessibility. While a tube station
contains elevators and ramps, Chapéu Chinês-type bus stops have only a canopy and no seats
(CRUZ, 2015). Thus, this query consists of checking the bus stops types contained in a 20-metre
buffer over hospitals. BigQuery does not support the ST_Buffer function (GOOGLE, 2021),
therefore, the buffer operation was calculated using Geopandas. Query 12 returns the bus stops,
which are represented by points, using the ST_Contains function. The points must be distinct,
as there may be intersecting buffers.

5.2. Public Transportation 85

Query 12 – Returns the bus stops located within a 20 metres buffer of each hospital in Curitiba.

1: SELECT DISTINCT busStop.busStopType, busStop.busStopGeo

2: FROM ‘urbs.pois‘ pois, ‘urbs.busStop‘ busStop

3: WHERE ST_Contains(pois.geom, busStop.busStopGeo)

Figure 25 illustrates the result of Query 12. The vast majority of bus stops contained in
hospital buffers are of the new furniture type, which contain a canopy and seats (CRUZ, 2015),
ideal for elderly people and people with disabilities. However, there are a significant number
of bus stops without seats, such as Chapéu Chinês and signs on a pole. This fact, more seen in
hospitals on the outskirts of the city, should be seen with concern, since it is essential that there
is accessibility at these stops so that elderly people or people with disabilities have the necessary
comfort to use hospitals. Based on this data, the smart city manager can arrange for the exchange
of these bus stops to more modern and accessible stops.

Figure 25 – Bus stops located within a 20 metres buffer of each hospital in Curitiba.

Chapéu chinês

Domus

Tube Station

Novel bus stop

Sign on a pipe

Sign on a pole

Platform

Hospitals Buffers

Source: Research data.

86 Chapter 5. Case Studies

5.3 Final Remarks
In this chapter, we present two case studies based on the proposed architecture and that

ware defined according to the proposed guidelines. The first case study involves data related
to the number of vehicles that travel through sensors contained in the municipality of Aarhus,
Denmark. The queries carried out focused on topological, metric, and type dependent spatial
relationships. The second case study involves data from sensors contained in buses in Curitiba,
Brazil, with query examples that can be performed on the fog layer, the cloud layer, and both on
the fog and cloud layers. We also introduced some insights that can be obtained by the smart city
manager to support the spatial analytics.

The next chapter, Chapter 6, presents the conclusion of the dissertation.

87

CHAPTER

6
CONCLUSIONS

In this dissertation, we propose an architecture aimed to help smart cities managers to
enable analyses over IoT data in the context of smart cities. The architecture is composed of
four layers. The terminal layer consists of a network of interconnected IoT devices aimed to
collect spatial and conventional data. The fog computing layer is responsible for data extracting,
loading, and transforming for real-time analyses. The cloud computing layer is a cloud computing
environment based on parallel and distributed data processing frameworks and contains a spatial
data warehouse. The analytics tools layer is composed of tools that enable data visualisation and
querying based on the data collected and processed.

Based on our architecture, we introduce a set of guidelines to aid smart cities managers in
the process of its implementation. We provide a concise yet general description of each guideline,
allowing further specialisation based on the requirements imposed by each smart city application.
Therefore, managers should employ the guidelines according to the specific characteristics of the
smart city application in which the architecture is being employed. The proposed guidelines focus
on the following issues: investigating the IoT devices heterogeneity, deploying these devices in
the terminal layer, distributing fog nodes, securing the connection between IoT devices and fog
nodes, enabling the ELT process in fog nodes, modelling and deploying the data lake, enabling
analytical data in the fog computing layer, enabling spatial queries and the ELT process and
modelling and deploying the cloud data lake, multidimensional data modelling in order to run
SOLAP queries, enabling data mining and machine learning, and selecting appropriate analytics
tools.

We validate the proposed architecture and guidelines by employing them to implement
two case studies. The first case study consists of a spatial data warehousing application that
analyses data collected from real IoT devices located in the municipality of Aarhus, Denmark.
Three different categories of spatial queries were executed, i.e., spatial queries with a topological
predicate, spatial queries with metric relationships, and spatial queries with type-dependent
operations. We also highlight important findings that can be obtained from these queries and

88 Chapter 6. Conclusions

how these findings can assist smart cities managers in the spatial analytics process. The second
case study consists of a spatial data warehousing application that analyses data from sensors
contained in buses belonging to the public transport of the city of Curitiba, Brazil. Three different
categories of spatial queries were executed, i.e. fog queries, cloud queries, and both cloud and
fog queries. Queries performed in the fog are aimed to support real-time data analyses, while
queries carried out in the cloud are aimed to support batch data analyses. Although our case
studies encompass specific cities, our architecture can be applied to any smart city that employs
spatial data generated by IoT devices to improve government intelligence.

This chapter is organised as follows. Section 6.1 lists the papers that were produced
during the period of execution of this dissertation. Section 6.2 describes the difficulties found in
the development of the work. Section 6.3 presents future work.

6.1 Publications

During the development of this dissertation, the following papers were published.

∙ SANTOS, J. P. C.; CIFERRI, C. D. A. Processamento de consultas analíticas espaci-
ais sobre dados de cidades inteligentes. In: 35th Brazilian Symposium on Databases:
Database Theses and Dissertations Workshop, Companion Proceedings. Rio de Janeiro,
2020. p. 37–43.

∙ SANTOS, J. P. C.; CASTRO, J. P. C.; CIFERRI, C. D. A. SOLAP Query Processing over
IoT Networks in Smart Cities: A Novel Architecture. In: Proceedings of XXI GeoInfo -
Brazilian Symposium in Geoinformatics. São José dos Campos, Brazil: INPE, 2020. p.
118–129

∙ CLARINDO, J. P., C; CASTRO, J. P.; AGUIAR, C. D. Combining Fog and Cloud Com-
puting to Support Spatial Analytics in Smart Cities. Journal of Information and Data
Management, 12(4), 2021. p. 342-360 <https://doi.org/10.5753/jidm.2021.1798>

Compared to the aforementioned papers, we also present in this master’s thesis some
additional contributions. We are preparing a new paper to submit to a journal containing these
contributions, which are described as follows.

∙ We introduce new components in the architecture, thus providing new possibilities for
data manipulation. For instance, the use of a data lake in the fog node, the possibility
of applying machine learning techniques, and the specification of the ETL and the ELT
processes;

∙ We define a new set of guidelines, based on these new architectural components;

https://doi.org/10.5753/jidm.2021.1798

6.2. Difficulties in the Development of the Work 89

∙ We describe the second case study (Section 5.2), which analyses real-time data from public
transport in the city of Curitiba.

During the development of the master’s activities, the following papers were also prepared
and published. These papers are not related to the theme of this dissertation. They were written
with researchers from the Federal University of Alagoas, as a consequence of the work carried
out during graduation.

∙ CLARINDO, J. P.; FONTES, W. S.; COUTINHO, F. QualiSUS: um dataset sobre dados da
Saúde Pública no Brasil. In: XXXVI Simpósio Brasileiro de Banco de Dados: Dataset
Show-case Workshop, SBBD 2019 Companion. Fortaleza, CE: SBC, 2019. p. 418–428

∙ VASCONCELOS, F.; TAVARES, J. V.; RIBEIRO, M. U.; COUTINHO, F. J.; CLARINDO,
J. P. CandiDATA: um dataset para análise das eleições no Brasil. In: XXXIV Simpósio
Brasileiro de Banco de Dados: Dataset Showcase Workshop, SBBD 2021 Companion.
Online: SBC, 2021.

6.2 Difficulties in the Development of the Work

In this dissertation, we faced several difficulties, as described as follows.

∙ Lack of related studies for the development of the guidelines. Some topics covered in
this dissertation are relatively recent, implying on the lack of related studies. However,
several papers were published in 2021, supporting the definition of the proposed guidelines.

∙ Setting up of a new Hadoop/Spark cluster. The cluster that was available to run Spark
operations was outdated, with computers manufactured in 2013. To overcome this issue,
we set up a new cluster, using more modern computers manufactured in 2020. This set up,
carried out in 2021, proved to be complex, due to the need to install the new version of
Hadoop and Spark. The current versions of Hadoop and Spark are much newer than those
that were present in the old cluster, increasing the complexity of learning new features.

∙ Limited documentation of the Apache Sedona. Sedona is an Apache incubating project,
thus it is currently under development. Features and documentation are limited.

∙ Using Apache Spark in cluster mode with Python. Apache Spark can be used with
Python, Java, and Scala programming languages. However, the Spark standalone mode
does not support the cluster mode for Python applications (APACHE, 2021). In the case
study described in Section 5.1, it was possible to use Spark together with Sedona due to
the low-volume dataset. However, in the case study described in Section 5.2, it was not
possible to perform queries using the client mode, where operations are performed only

90 Chapter 6. Conclusions

on one node. Due to the difficulty in developing solutions in other languages, we chose
to migrate the data from this case study to Google Cloud BigQuery, which also supports
SQL. The migration of the case study to the Google Cloud was intended to support the fact
that the proposed architecture is flexible to be applied, considering different requirements.
Therefore, the first case study was carried out in a local cluster, while the second case
study was executed in a cloud computing platform.

∙ New coronavirus pandemic. The new coronavirus pandemic, which started in 2020,
caused several delays in the schedules foreseen in the qualification, due to problems in
accessing the tools necessary for the development of the work.

Some additional difficulties faced in the development of the case study described in
Section 5.2 are detailed as follows.

∙ Data access. URBS provides a large part of the public transport data of Curitiba through
APIs. Access to the APIs is only granted upon a request through Brazilian’s access to
information law (BRASIL, 2011). Although the law determines that there is a period in
which the response should be provided, It took a longer time than expected to obtain the
required data.

∙ Data in PDF. The data on the monthly number of passengers, which was also obtained
using the access to information law, was made available in the PDF format. Therefore,
it was necessary to convert the format to CSV in order to be able to load the data into
BigQuery.

∙ ETL/ELT processing over the data. The data provided by URBS is very large, with
approximately 405 GB just for the veiculos table. Because data from the streets that the
buses travelled were not available, we carried out an additional spatial query to generate
the Location fact table. Executing this query was costly, taking several days to build the
fact table.

∙ Limitations in analysing historical vehicle data. The API provides several additional
data about the status of the vehicles: status in relation to the line schedule, accessibility,
and position in the line schedule. However, historical data provided in JSON files only
gives the bus number, line number, collection date, and geographic position of the vehicle.
This ended up limiting the Location fact table, which does not contain this additional data.

∙ Lack of standardization. Spatial coordinates are not standardised. For instance, the
decimal is represented as “.” in older data, while in newer data it is represented as “,”.
Also, several fields are missing, limiting the scope of data analyses.

6.3. Future Work 91

6.3 Future Work

Future work include:

∙ Investigating data mining aspects. In this dissertation, we do not cover in depth data
mining operations that can be done using data from smart cities. For instance, machine
learning models can be used to predict traffic jams, quantity of pollution, and people flow
in a street or district, in order to enable the smart city manager to improve people’s quality
of life. Supervised, unsupervised, and reinforcement learning algorithms can be applied to
improve spatial analytics.

∙ Applying process mining techniques. According to Aalst (2012), process mining refers
to techniques that enable the extraction of knowledge from event logs, using, for example,
data mining to find valuable patterns in these logs. In a smart city context, sensors can
generate a varied amount of data related to measurements and time. Supporting detection
of potential issues in the data flow and processes that can be automated may introduce
interesting findings to the spatial analytics.

∙ Describing new spatial queries. In this dissertation, we describe spatial queries involv-
ing topological predicates and metric relationships. We intend to investigate new query
categories, such as spatial queries with numerical operations, geometric set operations,
and directional relationships. We also plan to investigate where these queries should be
executed: fog, cloud or both environments.

∙ Improving the performance of the spatial queries. Star-joins operations tend to be very
expensive in terms of processing. Although parallel and processing frameworks can be
used to improve these operations, many techniques can be applied to execute spatial queries
that involves star-joins (SANGAT; TANIAR; MESSOM, 2020; BRITO et al., 2016). New
case studies related to big spatial data should investigate the application of the different
star-join techniques to verify which technique is more adequate to the characteristics of
the application. New algorithms should be developed whenever necessary.

∙ Integrating mixed queries automatically. Queries performed both in the fog node and
the cloud environment and then integrated are hard-coded only, with all the parameters
needed for the query being passed as function parameters. We intend to create mechanisms
so that queries are automatically executed and integrated according to the attributes defined
by the smart city manager, avoiding the need to create new functions for specific queries.

∙ Creating case studies related to other contexts. The proposed architecture and guide-
lines, although focused on smart cities, is generic and can be used in other applications,
such as mining, agriculture, industry, and medical areas. New case studies can be developed
using the data generated in these applications.

93

BIBLIOGRAPHY

AALST, W. V. D. Process mining. Communications of the ACM, v. 55, n. 8, p. 76–83, 8 2012.
Citation on page 91.

ADI, E.; ANWAR, A.; BAIG, Z.; ZEADALLY, S. Machine learning and data analytics for the
IoT. Neural Computing and Applications, Springer Science and Business Media Deutschland
GmbH, v. 32, n. 20, p. 16205–16233, 10 2020. ISSN 14333058. Citation on page 61.

AFZAL, B.; UMAIR, M.; SHAH, G. A.; AHMED, E. Enabling IoT platforms for social IoT
applications: Vision, feature mapping, and challenges. Future Generation Computer Systems,
v. 92, p. 718–731, 2019. ISSN 0167739X. Citation on page 33.

AJI, A.; WANG, F.; VO, H.; LEE, H.; LIU, Q.; ZHANG, X.; SALTZ, J. Hadoop-GIS: A high
performance spatial data warehousing system over MapReduce. Proceedings of the VLDB
Endowment, Association for Computing Machinery, v. 6, n. 11, p. 1009–1020, 2013. Citation
on page 42.

ALABLANI, I.; ALENAZI, M. EDTD-SC: An IoT Sensor Deployment Strategy for Smart Cities.
Sensors, Multidisciplinary Digital Publishing Institute, v. 20, n. 24, p. 7191, 12 2020. ISSN
1424-8220. Available: <https://www.mdpi.com/1424-8220/20/24/7191>. Citation on page 56.

ALI, M. I.; GAO, F.; MILEO, A. CityBench: A configurable benchmark to evaluate RSP engines
using smart city datasets. In: Arenas M. et al. (eds) The Semantic Web - ISWC 2015. ISWC
2015. Lecture Notes in Computer Science. Bethlehem, PA, USA: Springer, 2015. v. 9367, p.
374–389. ISBN 9783319250090. Available: <http://www.ict-citypulse.eu>. Citations on pages
31 and 65.

ALMORSY, M.; GRUNDY, J.; MÜLLER, I. An Analysis of the Cloud Computing Security
Problem. In: Proceedings of the APSEC 2010 Cloud Workshop. Sydney: APSEC, 2010.
Available: <http://arxiv.org/abs/1609.01107>. Citation on page 60.

ALVI, S. A.; AFZAL, B.; SHAH, G. A.; ATZORI, L.; MAHMOOD, W. Internet of multimedia
things: Vision and challenges. Ad Hoc Networks, Elsevier, v. 33, p. 87–111, 10 2015. ISSN 1570-
8705. Available: <https://www.sciencedirect.com/science/article/pii/S1570870515000876>. Ci-
tation on page 33.

APACHE. Submitting Applications. 2021. Available: <https://spark.apache.org/docs/3.1.2/
submitting-applications.html>. Citation on page 89.

ATZORI, L.; IERA, A.; MORABITO, G. Understanding the Internet of Things: definition,
potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, Elsevier, v. 56, p.
122–140, 3 2017. ISSN 1570-8705. Available: <https://www.sciencedirect.com/science/article/
pii/S1570870516303316>. Citations on pages 28, 33, and 34.

BALANI, Z.; VAROL, H. Cloud Computing Security Challenges and Threats. In: 8th Interna-
tional Symposium on Digital Forensics and Security, ISDFS 2020. Beirut, Lebanon: IEEE,
2020. ISBN 9781728169392. Citation on page 60.

https://www.mdpi.com/1424-8220/20/24/7191
http://www.ict-citypulse.eu
http://arxiv.org/abs/1609.01107
https://www.sciencedirect.com/science/article/pii/S1570870515000876
https://spark.apache.org/docs/3.1.2/submitting-applications.html
https://spark.apache.org/docs/3.1.2/submitting-applications.html
https://www.sciencedirect.com/science/article/pii/S1570870516303316
https://www.sciencedirect.com/science/article/pii/S1570870516303316

94 Bibliography

BANSAL, M.; CHANA, I.; CLARKE, S. A Survey on IoT Big Data. ACM Computing Surveys,
Association for Computing Machinery (ACM), v. 53, n. 6, p. 1–59, 2 2021. ISSN 0360-0300.
Available: <https://dl.acm.org/doi/10.1145/3419634>. Citation on page 28.

BATISTA, N. A.; SOUSA, G. A.; BRANDÃO, M. A.; SILVA, A. P. C.; MORO, M. M. Tie
Strength Metrics to Rank Pairs of Developers from GitHub. Journal of Information and Data
Management, v. 9, n. 1, 2018. Citation on page 46.

BEIMBORN, D.; MILETZKI, T.; WENZEL, S. Platform as a Service (PaaS). Business &
Information Systems Engineering, v. 3, n. 6, p. 381–384, 2011. ISSN 1867-0202. Available:
<https://doi.org/10.1007/s12599-011-0183-3>. Citation on page 43.

BELLAVISTA, P.; ZANNI, A. Feasibility of fog computing deployment based on docker
containerization over RaspberryPi. In: ICDCN ’17: 18th International Conference on Dis-
tributed Computing and Networking. New York, NY, USA: ACM, 2017. p. 1–10. ISBN
9781450348393. Available: <http://dl.acm.org/citation.cfm?doid=3007748.3007777>. Citation
on page 57.

BIMONTE, S.; TCHOUNIKINE, A.; MIQUEL, M. Towards a Spatial Multidimensional Model.
Proceedings of the 8th ACM international workshop on Data warehousing and OLAP -
DOLAP, ACM Press, New York, New York, USA, 2005. Citation on page 39.

BONHAM-CARTER, G. Geographic information systems for geoscientists : modelling with
GIS. [S.l.]: Pergamon, 1994. 417 p. ISBN 9781483144948. Citation on page 37.

BONOMI, F.; MILITO, R.; NATARAJAN, P.; ZHU, J. Fog computing: A platform for internet
of things and analytics. Studies in Computational Intelligence, Springer Verlag, v. 546, p.
169–186, 2014. ISSN 1860949X. Citation on page 46.

BONOMI, F.; MILITO, R.; ZHU, J.; ADDEPALLI, S. Fog computing and its role in the internet
of things. In: MCC ’12: Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. Helsinki Finland: ACM, 2012. p. 13. ISBN 9781450315197. Available:
<http://dl.acm.org/citation.cfm?doid=2342509.2342513>. Citations on pages 29, 34, and 46.

BRASIL. LEI No 12.527, DE 18 DE NOVEMBRO DE 2011. 2011. Available: <http://www.
planalto.gov.br/ccivil_03/_ato2011-2014/2011/lei/l12527.htm>. Citations on pages 76 and 90.

BRITO, J. J.; MOSQUEIRO, T.; CIFERRI, R. R.; CIFERRI, C. D. A. Faster cloud Star Joins
with reduced disk spill and network communication. In: Procedia Computer Science. [S.l.]:
Elsevier B.V., 2016. v. 80, p. 74–85. Citation on page 91.

CASTRO, J. P.; CARNIEL, A.; CIFERRI, C. Analyzing spatial analytics systems based on
Hadoop and Spark: A user perspective. Software: Practice and Experience, John Wiley and
Sons Ltd, v. 50, n. 12, p. 2121–2144, 12 2020. ISSN 0038-0644. Available: <https://onlinelibrary.
wiley.com/doi/10.1002/spe.2882>. Citations on pages 29, 59, and 67.

CASTRO, J. P. C.; CARNIEL, A. C.; CIFERRI, C. D. A. A User-centric View of Distributed
Spatial Data Management Systems. In: GEOINFO. [S.l.: s.n.], 2019. p. 80–91. Citation on
page 42.

CHEN, M.; MAO, S.; LIU, Y. Big data: A survey. Mobile Networks and Applications, Kluwer
Academic Publishers, v. 19, n. 2, p. 171–209, 1 2014. ISSN 1383469X. Citation on page 29.

https://dl.acm.org/doi/10.1145/3419634
https://doi.org/10.1007/s12599-011-0183-3
http://dl.acm.org/citation.cfm?doid=3007748.3007777
http://dl.acm.org/citation.cfm?doid=2342509.2342513
http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2011/lei/l12527.htm
http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2011/lei/l12527.htm
https://onlinelibrary.wiley.com/doi/10.1002/spe.2882
https://onlinelibrary.wiley.com/doi/10.1002/spe.2882

Bibliography 95

CIFERRI, C.; CIFERRI, R.; GÓMEZ, L.; SCHNEIDER, M.; VAISMAN, A.; ZIMÁNYI, E.
Cube algebra: A generic user-centric model and query language for OLAP cubes. International
Journal of Data Warehousing and Mining, v. 9, n. 2, p. 39–65, 4 2013. ISSN 15483924. Avail-
able: <http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2013040103>.
Citation on page 41.

CLARINDO, J. P.; FONTES, W. d. S.; COUTINHO, F. QualiSUS: um dataset sobre dados
da Saúde Pública no Brasil. In: XXXIV Simpósio Brasileiro de Banco de Dados: Dataset
Showcase Workshop, SBBD 2019 Companion. Fortaleza, CE: SBC, 2019. p. 418–428. No
citation.

CONGALTON, R. G. Exploring and evaluating the consequences of vector-to-raster and raster-
to-vector conversion. Photogrammetric Engineering and Remote Sensing, v. 63, n. 4, p.
425–434, 1997. Citation on page 38.

CRUZ, E. A evolução dos pontos de ônibus de Curitiba . Curitiba: [s.n.], 2015. Available:
<https://www.gazetadopovo.com.br/haus/estilo-cultura/para-nao-perder-o-onibus-da-historia/
>. Citations on pages 84 and 85.

CURITIBA. CIC tem mais moradores que cidades como Guarapuava e Paranaguá
- Prefeitura de Curitiba. 2017. Available: <https://www.curitiba.pr.gov.br/noticias/
cic-tem-mais-moradores-que-cidades-como-guarapuava-e-paranagua/42472>. Citation
on page 84.

DASTJERDI, A. V.; BUYYA, R. Fog Computing: Helping the Internet of Things Realize
Its Potential. Computer, v. 49, n. 8, p. 112–116, 8 2016. ISSN 0018-9162. Available: <http:
//ieeexplore.ieee.org/document/7543455/>. Citations on pages 34 and 46.

DEAN, J.; GHEMAWAT, S. MapReduce. Communications of the ACM, ACM, v. 51, n. 1,
p. 107, 1 2008. ISSN 00010782. Available: <http://portal.acm.org/citation.cfm?doid=1327452.
1327492>. Citation on page 41.

DEHNE, F.; KONG, Q.; RAU-CHAPLIN, A.; ZABOLI, H.; ZHOU, R. Scalable real-time OLAP
on cloud architectures. Journal of Parallel and Distributed Computing, Academic Press Inc.,
v. 79-80, p. 31–41, 6 2015. ISSN 07437315. Citation on page 43.

EGENHOFER, M. J. A formal definition of binary topological relationships. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). Berlin, Heidelberg, Germany: Springer Verlag, 1989. v. 367
LNCS, p. 457–472. ISBN 9783540512950. ISSN 16113349. Citation on page 37.

ELDAWY, A.; MOKBEL, M. F. SpatialHadoop: A MapReduce framework for spatial data. In:
2015 IEEE 31st International Conference on Data Engineering. IEEE, 2015. v. 1, p. 1352–
1363. ISBN 978-1-4799-7964-6. Available: <http://ieeexplore.ieee.org/document/7113382/>.
Citation on page 42.

ELDRANDALY, K. A.; ABDEL-BASSET, M.; SHAWKY, L. A. Internet of Spatial Things: A
New Reference Model With Insight Analysis. IEEE Access, v. 7, p. 19653–19669, 2019. ISSN
2169-3536. Available: <https://ieeexplore.ieee.org/document/8634002/>. Citations on pages 28,
30, 34, 48, 49, and 51.

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2013040103
https://www.gazetadopovo.com.br/haus/estilo-cultura/para-nao-perder-o-onibus-da-historia/
https://www.gazetadopovo.com.br/haus/estilo-cultura/para-nao-perder-o-onibus-da-historia/
https://www.curitiba.pr.gov.br/noticias/cic-tem-mais-moradores-que-cidades-como-guarapuava-e-paranagua/42472
https://www.curitiba.pr.gov.br/noticias/cic-tem-mais-moradores-que-cidades-como-guarapuava-e-paranagua/42472
http://ieeexplore.ieee.org/document/7543455/
http://ieeexplore.ieee.org/document/7543455/
http://portal.acm.org/citation.cfm?doid=1327452.1327492
http://portal.acm.org/citation.cfm?doid=1327452.1327492
http://ieeexplore.ieee.org/document/7113382/
https://ieeexplore.ieee.org/document/8634002/

96 Bibliography

FANG, H. Managing data lakes in big data era: What’s a data lake and why has it became
popular in data management ecosystem. In: 2015 IEEE International Conference on Cyber
Technology in Automation, Control and Intelligent Systems, IEEE-CYBER 2015. [S.l.]:
Institute of Electrical and Electronics Engineers Inc., 2015. p. 820–824. ISBN 9781479987290.
Citations on pages 29 and 36.

FRAGA, E.; QUEIROLO, G. Crescimento populacional fará mundo mudar de cara até
2100. São Paulo: [s.n.], 2018. Available: <https://www1.folha.uol.com.br/mundo/2018/07/
crescimento-populacional-fara-mundo-mudar-de-cara-ate-2100.shtml>. Citation on page 27.

GAEDE, V.; GÜNTHER, O. Multidimensional access methods. ACM Computing Surveys,
ACM, v. 30, n. 2, p. 170–231, 6 1998. ISSN 03600300. Available: <http://portal.acm.org/citation.
cfm?doid=280277.280279>. Citations on pages 38 and 66.

GARCÍA-GARCÍA, F.; CORRAL, A.; IRIBARNE, L.; MAVROMMATIS, G.; VASSI-
LAKOPOULOS, M. A comparison of distributed spatial data management systems for processing
distance join queries. In: Lecture Notes in Computer Science. [S.l.]: Springer Verlag, 2017. v.
10509 LNCS, p. 214–228. ISBN 9783319669168. Citation on page 42.

GOOGLE. Geography functions in Standard SQL . 2021. Available: <https://cloud.google.
com/bigquery/docs/reference/standard-sql/geography_functions>. Citation on page 84.

GUBBI, J.; BUYYA, R.; MARUSIC, S.; PALANISWAMI, M. Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer Systems,
North-Holland, v. 29, n. 7, p. 1645–1660, 9 2013. ISSN 0167-739X. Available: <https://www.
sciencedirect.com/science/article/pii/S0167739X13000241>. Citation on page 34.

GÜTING, R. H. An introduction to spatial database systems. The VLDB Journal, Springer-
Verlag, v. 3, n. 4, p. 357–399, 10 1994. Available: <http://link.springer.com/10.1007/
BF01231602>. Citations on pages 37 and 38.

HAN, J.; KAMBER, M.; PEI, J. Data Mining: Concepts and Techniques. Data Mining: Con-
cepts and Techniques, Elsevier Inc., 2012. Citation on page 35.

HAN, J.; STEFANOVIC, N.; KOPERSKI, K. Selective materialization: An efficient method for
spatial data cube construction. In: LNCS. Berlin, Heidelberg, Germany: Springer, 1998. v. 1394,
p. 144–158. ISBN 3540643834. Citations on pages 28, 39, and 40.

HARINARAYAN, V.; RAJARAMAN, A.; ULLMAN, J. D. Implementing Data Cubes Efficiently.
SIGMOD Record (ACM Special Interest Group on Management of Data), Association for
Computing Machinery (ACM), v. 25, n. 2, p. 205–216, 6 1996. ISSN 01635808. Available:
<http://portal.acm.org/citation.cfm?doid=235968.233333>. Citation on page 39.

HIREMATH, S.; YANG, G.; MANKODIYA, K. Wearable Internet of Things: Concept, archi-
tectural components and promises for person-centered healthcare. Proceedings of the 2014 4th
International Conference on Wireless Mobile Communication and Healthcare - "Trans-
forming Healthcare Through Innovations in Mobile and Wireless Technologies", MOBI-
HEALTH 2014, Institute of Electrical and Electronics Engineers Inc., p. 304–307, 1 2015.
Citation on page 34.

HORWITZ, L. Internet of Things (IoT) - The future of IoT miniguide: The bur-
geoning IoT market continues. 2019. Available: <https://www.cisco.com/c/en/us/solutions/
internet-of-things/future-of-iot.html>. Citation on page 29.

https://www1.folha.uol.com.br/mundo/2018/07/crescimento-populacional-fara-mundo-mudar-de-cara-ate-2100.shtml
https://www1.folha.uol.com.br/mundo/2018/07/crescimento-populacional-fara-mundo-mudar-de-cara-ate-2100.shtml
http://portal.acm.org/citation.cfm?doid=280277.280279
http://portal.acm.org/citation.cfm?doid=280277.280279
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://link.springer.com/10.1007/BF01231602
http://link.springer.com/10.1007/BF01231602
http://portal.acm.org/citation.cfm?doid=235968.233333
https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html
https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html

Bibliography 97

HU, P.; DHELIM, S.; NING, H.; QIU, T. Survey on fog computing: architecture, key technologies,
applications and open issues. Journal of Network and Computer Applications, v. 98, p. 27–42,
2017. Citations on pages 34, 35, and 46.

ISMAGILOVA, E.; HUGHES, L.; DWIVEDI, Y. K.; RAMAN, K. R. Smart cities: Advances in
research—An information systems perspective. International Journal of Information Man-
agement, v. 47, p. 88–100, 2019. Citation on page 27.

JAVADZADEH, G.; RAHMANI, A. M. Fog Computing Applications in Smart Cities: A System-
atic Survey. Wireless Networks, Springer, v. 26, n. 2, p. 1433–1457, 2 2020. ISSN 15728196.
Available: <https://doi.org/10.1007/s11276-019-02208-y>. Citation on page 29.

JING, C.; WANG, S.; WANG, M.; DU, M.; ZHOU, L.; SUN, T.; WANG, J. A Low-Cost Collab-
orative Location Scheme with GNSS and RFID for the Internet of Things. ISPRS International
Journal of Geo-Information, Multidisciplinary Digital Publishing Institute, v. 7, n. 5, p. 180, 5
2018. ISSN 2220-9964. Available: <http://www.mdpi.com/2220-9964/7/5/180>. Citation on
page 34.

JO, B.; BALOCH, Z. Internet of Things-Based Arduino Intelligent Monitoring and Cluster
Analysis of Seasonal Variation in Physicochemical Parameters of Jungnangcheon, an Urban
Stream. Water, Multidisciplinary Digital Publishing Institute, v. 9, n. 3, p. 220, 3 2017. ISSN
2073-4441. Available: <http://www.mdpi.com/2073-4441/9/3/220>. Citation on page 34.

JO, J.; JOO, I. H.; LEE, K. W. Constructing national geospatial big data platform: Current status
and future direction. In: IEEE WF-IoT. [S.l.: s.n.], 2019. p. 979–982. ISBN 9781538649800.
Citations on pages 30, 48, 49, and 51.

KAMILARIS, A.; PITSILLIDES, A. The impact of remote sensing on the everyday lives of
mobile users in urban areas. In: 2014 Seventh International Conference on Mobile Comput-
ing and Ubiquitous Networking (ICMU). IEEE, 2014. p. 153–158. ISBN 978-1-4799-2231-4.
Available: <http://ieeexplore.ieee.org/document/6799087/>. Citation on page 34.

KAUR, A.; SINGH, P.; NAYYAR, A. Fog Computing: Building a Road to IoT with Fog
Analytics. In: Studies in Big Data. Singapore: Springer, 2020. v. 76, p. 59–78. Available:
<https://link.springer.com/chapter/10.1007/978-981-15-6044-6_4>. Citations on pages 29
and 59.

KIMBALL, R.; ROSS, M.; THORNTHWAITE, W.; MUNDY, J.; BECKER, B. The Data Ware-
house Lifecycle Toolkit. Hoboken, NJ: John Wiley & Sons Inc, 2011. ISBN 9780470149775.
Citations on pages 60 and 76.

KOTSEV, A.; SCHADE, S.; CRAGLIA, M.; GERBOLES, M.; SPINELLE, L.; SIGNORINI,
M. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of
Things. Sensors, Multidisciplinary Digital Publishing Institute, v. 16, n. 3, p. 403, 3 2016. ISSN
1424-8220. Available: <http://www.mdpi.com/1424-8220/16/3/403>. Citation on page 34.

KRIPPENDORF, M.; Il-Yeol Song. The translation of star schema into entity-relationship
diagrams. In: Database and Expert Systems Applications. 8th International Conference,
DEXA ’97. Proceedings. [S.l.: s.n.], 1997. Citation on page 39.

LAN, L.; SHI, R.; WANG, B.; ZHANG, L. An IoT Unified Access Platform for Heterogeneity
Sensing Devices Based on Edge Computing. IEEE Access, Institute of Electrical and Electronics
Engineers Inc., v. 7, p. 44199–44211, 2019. ISSN 21693536. Citations on pages 29, 35, and 56.

https://doi.org/10.1007/s11276-019-02208-y
http://www.mdpi.com/2220-9964/7/5/180
http://www.mdpi.com/2073-4441/9/3/220
http://ieeexplore.ieee.org/document/6799087/
https://link.springer.com/chapter/10.1007/978-981-15-6044-6_4
http://www.mdpi.com/1424-8220/16/3/403

98 Bibliography

LIU, S.; PENG, L.; CHI, T.; WANG, X. Research on multi-source heterogeneous data collection
for the Smart City public information platform. In: International Geoscience and Remote
Sensing Symposium (IGARSS). [S.l.]: Institute of Electrical and Electronics Engineers Inc.,
2016. v. 2016-November, p. 623–626. ISBN 9781509033324. Citations on pages 48, 49, 50,
and 51.

MAHDAVINEJAD, M. S.; REZVAN, M.; BAREKATAIN, M.; ADIBI, P.; BARNAGHI, P.;
SHETH, A. P. Machine learning for internet of things data analysis: a survey. Digital Commu-
nications and Networks, Elsevier, v. 4, n. 3, p. 161–175, 8 2018. ISSN 2352-8648. Available:
<https://www.sciencedirect.com/science/article/pii/S235286481730247X>. Citation on page 33.

MALINOWSKI, E.; ZIMNYI, E. Advanced Data Warehouse Design: From Conventional to
Spatial and Temporal Applications (Data-Centric Systems and Applications). 1. ed. [S.l.]:
Springer Publishing Company, Incorporated, 2008. 1–436 p. Citation on page 39.

MATEUS, R. C.; SIQUEIRA, T. L. L.; TIMES, V. C.; CIFERRI, R. R.; CIFERRI, C. D. A.
Spatial data warehouses and spatial OLAP come towards the cloud: design and performance.
Distributed and Parallel Databases, Springer New York LLC, v. 34, n. 3, p. 425–461, 9 2016.
Available: <http://link.springer.com/10.1007/s10619-015-7176-z>. Citations on pages 40, 43,
60, and 61.

MEDVEDEV, A.; ZASLAVSKY, A.; SANTIAGO, M. I.; HAGHIGHI, P. D.; HASSANI, A.
Storing and indexing IoT context for smart city applications. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). St. Petersburg, Russia: Springer Verlag, 2016. v. 9870 LNCS, p. 115–128.
ISBN 9783319463001. ISSN 16113349. Available: <https://link.springer.com/chapter/10.1007/
978-3-319-46301-8_10>. Citation on page 58.

MIZ, V.; HAHANOV, V. Smart traffic light in terms of the cognitive road traffic management
system (CTMS) based on the Internet of Things. In: Proceedings of IEEE East-West Design
& Test Symposium (EWDTS 2014). IEEE, 2014. p. 1–5. ISBN 978-1-4799-7630-0. Available:
<http://ieeexplore.ieee.org/document/7027102/>. Citation on page 34.

NAKAGAWA, E. Y.; SCANNAVINO, K. R. F.; FABBRI, S.; FERRARI, F. C. Revisão Sis-
temática da Literatura em Engenharia de Software: Teoria e Prática. Elsevier Brasil, 2017.
ISBN 9788535285970. Available: <https://books.google.com.br/books?id=kCspDwAAQBAJ>.
Citation on page 45.

NI, J.; ZHANG, K.; LIN, X.; SHEN, X. S. Securing Fog Computing for Internet of Things Ap-
plications: Challenges and Solutions. IEEE Communications Surveys and Tutorials, Institute
of Electrical and Electronics Engineers Inc., v. 20, n. 1, p. 601–628, 1 2018. ISSN 1553877X.
Citation on page 57.

PANDEY, V.; KIPF, A.; NEUMANN, T.; KEMPER, A. How good are modern spatial analytics
systems? In: Proceedings of the VLDB Endowment. Association for Computing Machinery,
2018. v. 11, n. 11, p. 1661–1673. ISSN 21508097. Available: <https://dl.acm.org/doi/10.14778/
3236187.3236213>. Citations on pages 59 and 67.

PATEL, K. K.; PATEL, S. M. Internet of Things-IOT: Definition, Characteristics, Architecture,
Enabling Technologies, Application & Future Challenges. IJSR, v. 6, n. 5, p. 6122–6132, 2016.
Citations on pages 27, 28, and 33.

https://www.sciencedirect.com/science/article/pii/S235286481730247X
http://link.springer.com/10.1007/s10619-015-7176-z
https://link.springer.com/chapter/10.1007/978-3-319-46301-8_10
https://link.springer.com/chapter/10.1007/978-3-319-46301-8_10
http://ieeexplore.ieee.org/document/7027102/
https://books.google.com.br/books?id=kCspDwAAQBAJ
https://dl.acm.org/doi/10.14778/3236187.3236213
https://dl.acm.org/doi/10.14778/3236187.3236213

Bibliography 99

PENG, G. C. A.; NUNES, M. B.; ZHENG, L. Impacts of low citizen awareness and usage
in smart city services: the case of London’s smart parking system. Information Systems and
e-Business Management, Springer Verlag, v. 15, n. 4, p. 845–876, 11 2017. ISSN 16179854.
Available: <https://link.springer.com/article/10.1007/s10257-016-0333-8>. Citation on page
27.

PEUQUET, D. J.; CI-XIANG, Z. An algorithm to determine the directional relationship between
arbitrarily-shaped polygons in the plane. Pattern Recognition, v. 20, n. 1, p. 65–74, 1987. ISSN
00313203. Citation on page 37.

PRABHU, C.; JAN, T.; PRASAD, M.; VARADARAJAN, V. Fog Analytics - a Survey.
Malaysian Journal of Computer Science, v. 1, n. SI1, p. 141–151, 11 2020. Citation on
page 59.

PRADO, R. Pérez de; GARCÍA-GALÁN, S.; MUÑOZ-EXPÓSITO, J. E.; MARCHEWKA, A.;
RUIZ-REYES, N. Smart Containers Schedulers for Microservices Provision in Cloud-Fog-IoT
Networks. Challenges and Opportunities. Sensors, MDPI AG, v. 20, n. 6, p. 1714, 3 2020. ISSN
1424-8220. Available: <https://www.mdpi.com/1424-8220/20/6/1714>. Citation on page 57.

PUTHAL, D.; MOHANTY, S. P.; BHAVAKE, S. A.; MORGAN, G.; RANJAN, R. Fog Com-
puting Security Challenges and Future Directions [Energy and Security]. IEEE Consumer
Electronics Magazine, Institute of Electrical and Electronics Engineers Inc., v. 8, n. 3, p. 92–96,
5 2019. ISSN 21622256. Citation on page 57.

RAMASWAMI, A.; RUSSELL, A. G.; CULLIGAN, P. J.; SHARMA, K. R.; KUMAR, E. Meta-
principles for developing smart, sustainable, and healthy cities. Science, American Association
for the Advancement of Science, v. 352, n. 6288, p. 940–3, 5 2016. ISSN 1095-9203. Available:
<http://www.ncbi.nlm.nih.gov/pubmed/27199418>. Citation on page 27.

RAMNATH, S.; JAVALI, A.; NARANG, B.; MISHRA, P.; ROUTRAY, S. K. IoT based local-
ization and tracking. In: 2017 International Conference on IoT and Application (ICIOT).
IEEE, 2017. p. 1–4. ISBN 978-1-5386-1698-7. Available: <http://ieeexplore.ieee.org/document/
8073629/>. Citation on page 28.

RANI, R.; KUMAR, N.; KHURANA, M.; KUMAR, A.; BARNAWI, A. Storage as a service in
Fog computing: A systematic review. Journal of Systems Architecture, Elsevier B.V., v. 116, p.
1383–7621, 6 2021. ISSN 13837621. Available: <https://doi.org/10.1016/j.sysarc.2021.102033>.
Citation on page 58.

RAUF, A.; SHAIKH, R. A.; SHAH, A. Security and privacy for IoT and fog computing paradigm.
In: 2018 15th Learning and Technology Conference, L and T 2018. Jeddah, KSA: IEEE,
2018. p. 96–101. ISBN 9781538648179. Citation on page 57.

RIVEST, S.; BÉDARD, Y.; MARCHAND, P. Toward better support for spatial decision making:
defining the characteristics of Spatial On-Line Analytical Processing (SOLAP). Geomatica,
v. 55, n. 4, p. 539–555, 2001. Citations on pages 28 and 40.

SADALAGE, P. J.; FOWLER, M. NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. 1st. ed. Chicago, IL, USA: Addison-Wesley Professional, 2012. ISBN
0321826620. Citation on page 58.

https://link.springer.com/article/10.1007/s10257-016-0333-8
https://www.mdpi.com/1424-8220/20/6/1714
http://www.ncbi.nlm.nih.gov/pubmed/27199418
http://ieeexplore.ieee.org/document/8073629/
http://ieeexplore.ieee.org/document/8073629/
https://doi.org/10.1016/j.sysarc.2021.102033

100 Bibliography

SANGAT, P.; TANIAR, D.; MESSOM, C. Distributed ATrie Group Join: Towards Zero Network
Cost. IEEE Access, Institute of Electrical and Electronics Engineers Inc., v. 8, p. 111598–111613,
2020. ISSN 21693536. Citation on page 91.

SAVAGLIO, C.; FORTINO, G. A Simulation-driven Methodology for IoT Data Mining Based
on Edge Computing. ACM Transactions on Internet Technology, Association for Computing
Machinery (ACM), v. 21, n. 2, p. 1–22, 3 2021. ISSN 1533-5399. Available: <https://doi.org/10.
1145/3402444>. Citation on page 59.

SAWADOGO, P.; DARMONT, J. On data lake architectures and metadata management. Journal
of Intelligent Information Systems, Springer, v. 56, n. 1, p. 97–120, 2 2021. ISSN 15737675.
Available: <https://doi.org/10.1007/s10844-020-00608-7>. Citations on pages 58 and 60.

SHEHAB, N.; BADAWY, M.; ALI, H. A. Toward feature selection in big data preprocess-
ing based on hybrid cloud-based model. The Journal of Supercomputing 2021, Springer,
p. 1–40, 7 2021. ISSN 1573-0484. Available: <https://link.springer.com/article/10.1007/
s11227-021-03970-7>. Citation on page 35.

SHI, W.; DUSTDAR, S. The Promise of Edge Computing. Computer, v. 49, n. 5, p. 78–81, 5
2016. ISSN 0018-9162. Available: <http://ieeexplore.ieee.org/document/7469991/>. Citations
on pages 29 and 34.

SHVACHKO, K.; KUANG, H.; RADIA, S.; CHANSLER, R. The Hadoop Distributed File
System. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). Incline Village, NV, USA: IEEE, 2010. p. 1–10. ISBN 978-1-4244-7152-2. Avail-
able: <http://ieeexplore.ieee.org/document/5496972/>. Citations on pages 29 and 42.

SIMOENS, P.; DRAGONE, M.; SAFFIOTTI, A. The Internet of Robotic Things. International
Journal of Advanced Robotic Systems, SAGE PublicationsSage UK: London, England, v. 15,
n. 1, p. 172988141875942, 1 2018. ISSN 1729-8814. Available: <http://journals.sagepub.com/
doi/10.1177/1729881418759424>. Citation on page 33.

SINGH, A.; KHAMPARIA, A.; LUHACH, A. K. Performance comparison of Apache Hadoop
and Apache Spark. In: Proceedings of the Third International Conference on Advanced
Informatics for Computing Research - ICAICR ’19. New York, New York, USA: ACM
Press, 2019. p. 1–5. ISBN 9781450366526. Available: <http://dl.acm.org/citation.cfm?doid=
3339311.3339329>. Citation on page 41.

SINGH, S.; JEONG, Y. S.; PARK, J. H. A survey on cloud computing security: Issues, threats,
and solutions. Journal of Network and Computer Applications, Academic Press, v. 75, p.
200–222, 11 2016. ISSN 10958592. Citation on page 60.

SIQUEIRA, T. L. L.; CIFERRI, C. D. de A.; TIMES, V. C.; CIFERRI, R. R. The SB-index and
the HSB-index: Efficient indices for spatial data warehouses. GeoInformatica, Springer US,
v. 16, n. 1, p. 165–205, 1 2012. ISSN 13846175. Citation on page 60.

SOOMRO, K.; BHUTTA, M. N. M.; KHAN, Z.; TAHIR, M. A. Smart city big data analytics:
An advanced review. Wiley-Blackwell, 2019. e1319 p. Available: <https://doi.org/10.1002/
widm.1319>. Citation on page 61.

TANG, B.; CHEN, Z.; HEFFERMAN, G.; WEI, T.; HE, H.; YANG, Q. A hierarchical dis-
tributed fog computing architecture for big data analysis in smart cities. In: ACM International

https://doi.org/10.1145/3402444
https://doi.org/10.1145/3402444
https://doi.org/10.1007/s10844-020-00608-7
https://link.springer.com/article/10.1007/s11227-021-03970-7
https://link.springer.com/article/10.1007/s11227-021-03970-7
http://ieeexplore.ieee.org/document/7469991/
http://ieeexplore.ieee.org/document/5496972/
http://journals.sagepub.com/doi/10.1177/1729881418759424
http://journals.sagepub.com/doi/10.1177/1729881418759424
http://dl.acm.org/citation.cfm?doid=3339311.3339329
http://dl.acm.org/citation.cfm?doid=3339311.3339329
https://doi.org/10.1002/widm.1319
https://doi.org/10.1002/widm.1319

Bibliography 101

Conference Proceeding Series. [S.l.]: Association for Computing Machinery, 2015. v. 07-09-
Ocobert-2015. ISBN 9781450337359. Citation on page 29.

THEODOROU, V.; DIAMANTOPOULOS, N. GLT: Edge gateway ELT for data-driven in-
telligence placement. Proceedings - 2019 IEEE/ACM Joint 4th International Workshop on
Rapid Continuous Software Engineering and 1st International Workshop on Data-Driven
Decisions, Experimentation and Evolution, RCoSE/DDrEE 2019, Institute of Electrical and
Electronics Engineers Inc., p. 24–27, 5 2019. Citations on pages 30, 48, 50, and 51.

URBS. História do Transporte de Curitiba. 2020. Available: <https://www.urbs.curitiba.pr.
gov.br/transporte/historia-transporte>. Citation on page 75.

. Empresas Operadoras. 2021. Available: <https://www.urbs.curitiba.pr.gov.br/transporte/
rede-integrada-de-transporte/37>. Citation on page 81.

. Obras do Ligeirão Norte-Sul passam por vistoria. 2021. Available: <https://www.urbs.
curitiba.pr.gov.br/noticia/obras-do-ligeirao-norte-sul-passam-por-vistoria>. Citation on page
82.

VAISMAN, A.; ZIMÁNYI, E. Data Warehouse Systems: Design and Implementation. Berlin,
Heidelberg, Germany: Springer Publishing Company, Incorporated, 2014. 625 p. ISBN 978-3-
642-54654-9. Citations on pages 40, 41, 60, 66, and 76.

VASCONCELOS, F.; TAVARES, J. V.; RIBEIRO, M. U.; COUTINHO, F. J.; CLARINDO, J. P.
CandiDATA: um dataset para análise das eleições no Brasil. In: XXXIV Simpósio Brasileiro
de Banco de Dados: Dataset Showcase Workshop, SBBD 2021 Companion. Online: SBC,
2021. No citation.

VASSILIADIS, P. A Survey of Extract–Transform–Load Technology. International Journal
of Data Warehousing and Mining (IJDWM), IGI Global, v. 5, n. 3, p. 1–27, 1 2009. Avail-
able: <https://www.igi-global.com/article/survey-extract-transform-load-technology/3894www.
igi-global.com/article/survey-extract-transform-load-technology/3894>. Citation on page 36.

WAAS, F.; WREMBEL, R.; FREUDENREICH, T.; THIELE, M.; KONCILIA, C.; FURTADO, P.
On-Demand ELT Architecture for Right-Time BI. International Journal of Data Warehousing
and Mining, 4 2013. Citation on page 36.

WANG, C.; HUANG, X.; QIAO, J.; JIANG, T.; RUI, L.; ZHANG, J.; KANG, R.; FEINAUER,
J.; MCGRAIL, K. A.; WANG, P.; LUO, D.; YUAN, J.; WANG, J.; SUN, J. Apache IoTDB.
Proceedings of the VLDB Endowment, VLDB Endowment, v. 13, n. 12, p. 2901–2904, 8 2020.
ISSN 2150-8097. Available: <https://dl.acm.org/doi/10.14778/3415478.3415504>. Citation on
page 58.

WANG, L.; LASZEWSKI, G. von; YOUNGE, A.; HE, X.; KUNZE, M.; TAO, J.; FU, C. Cloud
Computing: a Perspective Study. New Generation Computing, v. 28, n. 2, p. 137–146, 2010.
ISSN 1882-7055. Available: <https://doi.org/10.1007/s00354-008-0081-5>. Citation on page
42.

WANG, S.; ZHONG, Y.; WANG, E. An integrated GIS platform architecture for spatiotemporal
big data. Future Generation Computer Systems, Elsevier B.V., v. 94, p. 160–172, 5 2019.
ISSN 0167739X. Citations on pages 30, 48, 49, and 51.

https://www.urbs.curitiba.pr.gov.br/transporte/historia-transporte
https://www.urbs.curitiba.pr.gov.br/transporte/historia-transporte
https://www.urbs.curitiba.pr.gov.br/transporte/rede-integrada-de-transporte/37
https://www.urbs.curitiba.pr.gov.br/transporte/rede-integrada-de-transporte/37
https://www.urbs.curitiba.pr.gov.br/noticia/obras-do-ligeirao-norte-sul-passam-por-vistoria
https://www.urbs.curitiba.pr.gov.br/noticia/obras-do-ligeirao-norte-sul-passam-por-vistoria
https://www.igi-global.com/article/survey-extract-transform-load-technology/3894 www.igi-global.com/article/survey-extract-transform-load-technology/3894
https://www.igi-global.com/article/survey-extract-transform-load-technology/3894 www.igi-global.com/article/survey-extract-transform-load-technology/3894
https://dl.acm.org/doi/10.14778/3415478.3415504
https://doi.org/10.1007/s00354-008-0081-5

102 Bibliography

Wu He; Gongjun Yan; Li Da Xu. Developing Vehicular Data Cloud Services in the IoT Environ-
ment. IEEE Transactions on Industrial Informatics, v. 10, n. 2, p. 1587–1595, 5 2014. ISSN
1551-3203. Available: <http://ieeexplore.ieee.org/document/6709775/>. Citation on page 34.

XU, Q.; ZHANG, J. PiFogBed: A Fog Computing Testbed Based on Raspberry Pi. In: 2019
IEEE IPCCC. London, United Kingdom: IEEE, 2019. ISBN 9781728110257. Citation on
page 57.

YEH, H. The effects of successful ICT-based smart city services: From citizens’ perspectives.
Government Information Quarterly, JAI, v. 34, n. 3, p. 556–565, 9 2017. ISSN 0740-624X.
Available: <https://www.sciencedirect.com/science/article/pii/S0740624X16300521>. Citation
on page 27.

YOU, S.; ZHANG, J.; GRUENWALD, L. Large-scale spatial join query processing in Cloud. In:
Proceedings - International Conference on Data Engineering. [S.l.]: IEEE Computer Society,
2015. v. 2015-June, p. 34–41. ISBN 9781479984411. ISSN 10844627. Citation on page 42.

YU, J.; WU, J.; SARWAT, M. GeoSpark: A cluster computing framework for processing large-
scale spatial data. In: ACM GIS. New York: [s.n.], 2015. p. 1–4. ISBN 9781450339674. Avail-
able: <http://dl.acm.org/citation.cfm?doid=2820783.2820860>. Citation on page 42.

YUAN, L.; ZHAO, J. Construction of the system framework of Spatial Data Warehouse in
Internet of Things environments. In: 2012 IEEE Fifth International Conference on Advanced
Computational Intelligence (ICACI). Nanjing, China: IEEE, 2012. p. 54–58. ISBN 978-1-
4673-1744-3. Available: <http://ieeexplore.ieee.org/document/6463121/>. Citations on pages
30, 48, 49, 50, and 51.

ZAHARIA, M.; CHOWDHURY, M.; FRANKLIN, M. J.; SHENKER, S.; STOICA, I. Spark:
Cluster Computing with Working Sets. In: HotCloud’10 Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing. Boston, MA, USA: USENIX Association,
2010. p. 10. Available: <https://dl.acm.org/citation.cfm?id=1863113>. Citation on page 41.

ZAHARIA, M.; FRANKLIN, M. J.; GHODSI, A.; GONZALEZ, J.; SHENKER, S.; STOICA,
I.; XIN, R. S.; WENDELL, P.; DAS, T.; ARMBRUST, M.; DAVE, A.; MENG, X.; ROSEN,
J.; VENKATARAMAN, S. Apache Spark. Communications of the ACM, ACM, v. 59, n. 11,
p. 56–65, 10 2016. ISSN 00010782. Available: <http://dl.acm.org/citation.cfm?doid=3013530.
2934664>. Citations on pages 29, 41, and 42.

ZEE, E. van der; SCHOLTEN, H. Spatial dimensions of big data: Application of geographical
concepts and spatial technology to the internet of things. SCI, Springer Verlag, v. 546, p. 137–168,
2014. ISSN 1860949X. Citation on page 28.

http://ieeexplore.ieee.org/document/6709775/
https://www.sciencedirect.com/science/article/pii/S0740624X16300521
http://dl.acm.org/citation.cfm?doid=2820783.2820860
http://ieeexplore.ieee.org/document/6463121/
https://dl.acm.org/citation.cfm?id=1863113
http://dl.acm.org/citation.cfm?doid=3013530.2934664
http://dl.acm.org/citation.cfm?doid=3013530.2934664

103

APPENDIX

A
FOG AND MIXED QUERIES SOURCE CODES

In this appendix, we present the source codes used in the fog and mixed queries in the
case study described in Section 5.2. Source Code 1 lists functions that can be used in both the
fog and mixed contexts. load_to_bigquery() function permits to insert a row (or a set of
rows) in a BigQuery table.

Source Code 1 – Basic functions that allow queries from fog or mixed contexts.

1: import requests
2: import folium
3: import pandas as pd
4: import bigquery
5:
6: # Construct a BigQuery client object.
7: client = bigquery.Client()
8:
9: # Define URBS webservice URL and auth token

10: ws_url = ’http://transporteservico.urbs.curitiba.pr.gov.br/’
11: auth = "TOKEN"
12:
13: # Load a row to a BigQuery table
14: def load_to_bigquery(table_id, rows):
15: client.insert_rows_json(table_id, rows)
16:
17: # Funcion to initialise a folium map centred in Curitiba, Brazil.
18: def initalise_map():
19: return folium.Map(width=700,height=350,location=[-25.45, -49.3

], zoom_start=12, control_scale=True)

104 APPENDIX A. Fog and mixed queries source codes

A.1 Fog queries
Source Code 2 lists how the first query described in Section 5.2.2 can be executed, from

the generation of a map indicating the buses belonging to bus line 203 of the public transport
system in Curitiba, Brazil. The result of this query is illustrated in Figure 21.

Source Code 2 – Plotting a map the points related to buses from the line 203 on Curitiba, Brazil,
with tags indicating the status of these vehicles.

1: # Function to get all vehicles in a line by line number.
2: def get_vehicle(line):
3: return requests.get(f’{ws_url}getVeiculos.php?linha={line}&{

auth}’.json())
4:
5: # Initialise a folium map and get all vehicles in 203 line.
6: m = initialise_map()
7: d = get_vehicle(’203’)
8:
9: for k, v in d.items():

10: # Generating folium parameters from vehicle dictionary.
11: bus, line, status, position = k,v[’CODIGOLINHA’],v[’SITUACAO’

],[float(v[’LAT’]),float(v[’LON’])]
12:
13: # If the bus is not in/going to garage.
14: if line != ’REC’:
15: # Colour the marker according to the bus status.
16: if status == ’ATRASADO’:
17: colour = ’red’
18: elif status == ’NO HORÁRIO’
19: colour = ’green’
20: else:
21: colour = ’blue’
22:
23: # Inserts the marker into the folium object.
24: folium.Marker(
25: location=position,
26: tooltip=bus,
27: popup=’Line: {}\nStatus: {}’.format(line,status),
28: icon=folium.Icon(color=colour, icon=’bus’,prefix=’fa’)
29:).add_to(m)

A.1. Fog queries 105

Source Code 3 lists how heatmaps illustrated in Figure 22 were generated using folium
library.

Source Code 3 – Generating a heatmap using folium.

1: # Get all buses in city through a request from URBS API.
2: def get_bus():
3: return r.get(ws_url + ’getVeiculos.php?c=’ + auth).json()
4:
5: # Initialise a folium map and get all buses positions.
6: m = initialise_map()
7: d = get_bus()
8:
9: # Generate the heatmap excluding out of line buses.

10: heat_data = [[float(v[’LAT’]), float(v[’LON’])]
11: for k, v in d.items() if (v[’CODIGOLINHA’]!=’REC’)]
12: HeatMap(heat_data, radius=14).add_to(m)

106 APPENDIX A. Fog and mixed queries source codes

A.2 Mixed queries
Source Code 4 lists how the query illustrated in Figure 23 was performed using Pandas.

The get_companies function performs a query to BigQuery, which returns all vehicles with
their respective companies. For optimization reasons, the query result is arranged in a dict, not
needing to perform other queries. After that, the company name is associated with the data from
the IoT devices by bus number, and, by using a Pandas dataframe, the data is grouped by time
and status.

Source Code 4 – Mixed query that returns a bar chart that contains the number of buses belong-
ing to Pontual Consortium, grouped by time, by status.

1: # Function that returns a dictionary whose key is the bus number
and the value is the company associated with the bus.

2: def get_company():
3: query_job = client.query(’select company, busPrefix from ‘urbs

.bus‘’)
4: comp_dict = {}
5:
6: for comp in query_job.result():
7: comp_dict = {**comp_dict,**{comp.busPrefix:comp.company}}
8: return comp_dict
9:

10:
11: # Get all vehicles with their companies
12: companies = get_company()
13:
14: # Select only vehicles belonging to the Pontual consortium.
15: cons = [’GLÓRIA’,’MERCÊS’,’SANTO ANTÔNIO’]
16: d = get_bus()
17:
18: for k, v in d.items():
19: if companies.get(v[’COD’]) in cons and v[’SITUACAO’] != ’’:
20: actual = {k:{’STATUS’:v[’SITUACAO’], ’TIME’:v[’REFRESH’]}}
21: nd = {**nd,**actual}
22:
23: # Group by time, by status and plotting using Pandas
24: df = pd.DataFrame(d).T.groupby(’STATUS’).TIME.value_counts().

unstack(0).plot.bar()

A.2. Mixed queries 107

Source Code 5 lists how Query 10 can be performed using BigQuery API to execute
SQL queries. Using the get_vehicle() function, we return all vehicles in line 203, and if
the BE717 bus is on the line, then execute Query 10, marked in the source code as a “$”, in order
to return the nearest bus stop and the estimated time of arrival.

Source Code 5 – Mixed query that returns the nearest bus stop and the estimated time of arrival.
The “$” indicates a SQL query, in this case, Query 10.

1: # Function to get all vehicles in a line by line number.
2: def get_vehicle(line):
3: return requests.get(f’{ws_url}getVeiculos.php?linha={line}&{

auth}’.json())
4:
5: d = get_vehicle(’203’)
6:
7: for k, v in d.items():
8: if k = ’BE717’:
9: client.query(’$’)

10: res_dict = {}
11:
12: for result in query_job.result():
13: print(result)

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Source Codes
	List of Queries
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Objectives
	Dissertation Organisation

	Technical Background
	Internet of things
	Fog computing
	Data Preprocessing
	Spatial data
	Spatial queries

	Spatial data warehousing
	Parallel and Distributed Processing Systems
	Hadoop and Spark
	Cloud computing

	Final Remarks

	Systematic Review
	Planning Phase
	Research questions
	Search engines
	Keywords and search strings
	Selection criteria
	Inclusion criteria
	Exclusion criteria
	Selection procedures

	Conduction Phase
	Reporting phase
	IoT, spatial data and big data
	Spatial data warehouses, IoT, and smart cities
	Fog computing and data lakes
	Spatial data warehouses, IoT, fog computing, data lake, and smart cities

	Final remarks

	Proposed Architecture
	The Proposed Architecture
	Terminal layer
	Fog computing layer
	Cloud computing layer
	Analytics Tools layer

	Guidelines
	Terminal layer
	Fog computing layer
	Cloud computing layer
	Analytics Tools layer

	Pipelines
	Final Remarks

	Case Studies
	Vehicle Traffic Analyses
	Data Loading into the Cloud Layer
	Spatial Queries with Topological Predicates
	Spatial Queries with Metric Relationships
	Spatial Queries with Type-Dependent Operations

	Public Transportation
	Data preprocessing
	Fog-only queries
	Mixed queries
	Cloud queries

	Final Remarks

	Conclusions
	Publications
	Difficulties in the Development of the Work
	Future Work

	Bibliography
	Fog and mixed queries source codes
	Fog queries
	Mixed queries

