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RESUMO
ASPAUZA, A. I. Operações de conjuntos relacionais condicionais. 2022. 107 p. Disserta-
ção (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Um conjunto é uma coleção de objetos distintos entre si. Algumas operações básicas da
Teoria dos Conjuntos são a pertinência (∈), inclusão (⊆), intersecção (∩), e diferença (−). A
Álgebra relacional adapta as operações de conjuntos para trabalhar com relações. No entanto, as
operações de conjuntos têm limitações por causa do uso implícito do predicado de identidade.
Ou seja, uma tupla é membro de um conjunto se for idêntica a qualquer tupla do conjunto.
Por exemplo, vamos considerar duas relações. A primeira é uma lista de produtos que uma
pessoa quer comprar. A segunda é uma lista de produtos que uma loja tem. Agora, poderíamos
pegar qualquer item da lista de produtos desejados e perguntar “podemos comprar esse item
na loja?” com o operador de pertinência (∈). Com o operador de pertinência como base,
podemos também fazer outras consultas, tais como subconjunto, interseção e diferença. O
operador de subconjunto (⊆) responderia a “posso comprar todos os produtos desejados na
loja?”. A interceção (∩) responderia a “quais produtos desejados posso comprar na loja?”. E,
finalmente, a diferença (−) responderia a “quais são os produtos desejados que não consigo
comprar na loja?”. Ainda assim, muitas aplicações precisam de outras formas de comparação
que não se limitem à identidade. Por exemplo, se acrescentar os atributos de quantidade e
preço aos conjuntos de produtos desejados e aos produtos da loja, a comparação das tuplas
por identidade não terá muito sentido, já que um produto na loja com estoque maior do que o
exigido deve ser válido, e também é válido um produto com um preço inferior ao orçamento
máximo do usuário para esse produto. O presente trabalho apresenta as novas Operações de
Conjunto Relacionais Condicionais. Os novos operadores encapsulam a ideia de operações de
conjunto com consultas condicionais, facilitando operadores específicos para eles e permitindo
sua otimização. Por exemplo, eles são potencialmente úteis em aplicações de vendas de produtos
com unidades e preços, promoções de empregos com habilidades desejadas e estágios com notas
mínimas. Validamos a semântica e a escalabilidade de nossa proposta estudando o primeiro
desses aplicativos. Além disso, abrimos caminho para trabalhos futuros como: implementação
dos operadores em um SGBD; propor consultas SQL capazes de responder a esse tipo de consulta
e compará-las com nossa abordagem atual; estender a ideia para trabalhar com bag algebra;
estudar a otimização para nossos algoritmos; adicionar suporte para dados complexos, permitindo
comparações de similaridade no predicado; e, estudar o uso dos novos operadores como base
para outras operações que utilizam a operação de conjunto tradicional como base; entre outros.

Palavras-chave: Operações de conjuntos, Álgebra relacional, Teoria de conjuntos.





ABSTRACT

ASPAUZA, A. I. Relational conditional set operations. 2022. 107 p. Dissertação (Mes-
trado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

A set is a collection of different objects. Some basic operations from the Theory of Sets are the
set membership (∈), subset (⊆), intersection (∩), and difference (−). The relational Algebra
adapts the set operations to work with relations. However, as we show in this work, the set
operations have limitations because of the implicit use of the identity predicate. That is, a tuple
is a member of a set if it is identical to any tuple in the set. For example, let’s consider two
relations. The first one is a list of products that a person wants to buy. The second one is a list of
products that one store has. Now, we could get any item from the desired products list and query
“can we buy this item in the store?” with the set membership operator (∈), being true if the item
is a member of the second set or false if not. With the set membership operator as a basis, we
can also perform other queries such as subset, intersection, and difference. The subset (⊆) query
would answer to “can I buy all the desired products in the store?”. The intersection (∩) would
answer to “what products can I buy in the store?” And finally, the difference (−) would answer
to “what are the desired products that I cannot buy in the store?”. Still, many applications need
other comparison predicates that are not limited to identity. For example, if we add quantity and
price to the sets of desired products and store’s products, comparing the tuples by identity won’t
have much sense, since a product in the store with stock greater than the required should be valid,
and it is also valid a product with a price lower than the user’s maximum budget for that product.
This MSc work presents the new Relational Conditional Set Operations. The novel operators
encapsulate the idea of set operations with conditional queries, facilitating specific operators for
them, and allowing their optimization. For example, they are potentially useful in applications of
product sales with units and prices, job promotions with skills that have enough experience or
certification level, and internships with minimum grades. We validate our proposal’s semantics
and scalability by studying the first of these applications. Also, we open path for future works
such as: to implement the operators in a DBMS; to propose SQL queries able to answer these
kind of queries and compare it with our current approach; to extend the idea for bag algebra; to
explore a whole new path of optimization for our algorithms; to add support for complex data,
allowing similarity comparisons in the predicate; and, to study the use of these operators as basis
for other operations that currently use the traditional set operation as basis; among others.

Keywords: Set Operations, Relational Algebra, Theory of Sets.
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CHAPTER

1
INTRODUCTION

In this chapter, we discuss the motivation to propose the new operators, exemplifying the
limitations of the traditional relational set operations. For this, we explore a case study, showing
the expansion of our new operators which are named as relational conditional set operations, or
“relcond set operations” for short. They are based on the definition of custom predicates used to
compare tuples.

1.1 Context
The set membership (∈), subset (⊆), intersection (∩), and difference (−) are basic

operations from the Theory of Sets (STOLL, 1963). A set can be defined as a collection of
different objects or elements. In the relational model, we can define a relation as a collection
of tuples. Also, the Relational Algebra (CODD, 1972; CODD, 1990; ELMASRI; NAVATHE,
2015) employs the set operations to work with relations and their usability is very intuitive. For
example, in Figure 1.b we have a relation with Desired Products (DP) of a user, and another
one containing a Store’s Products (SP) available. Now, with the traditional set operators, we can
answer the four next queries:

Q1: Can I buy a certain product X in the store? – it can be answered with the set membership
operator (∈). A tuple is a member of a relational set if it is identical to any tuple in the
set. For example, in Figure 1.c the tuple (Fantasy,Robot) is a member of SP since SP

contains an identical tuple (Fantasy,Robot). In contrast, the tuple (Vehicles, Lexus) is not
a member of SP since SP does not contain any identical tuple to it.

Q2: Can I buy all the desired products in the store? – it can be answered with the subset
operator (⊆). A set is a subset of another one if all of its elements are also members of
the second set. For example, in Figure 1.b, DP is not a subset of SP because the tuple
(Vehicles,Lexus) of DP is not a member of SP.
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Figure 1 – Example of the relational set operations.

∩

⊈

∈

∉

a)

Implicit Predicate:
DP.Category = SP.Category AND
DP.Product = SP.Product

Source: Elaborated by the author.

Q3: Which desired products can be bought in the store? – it can be answered with the intersec-
tion operator (∩). Figure 1.d illustrates that the result of DP ∩ SP is a new set with all tuples
from DP that are also members of SP, i.e., the desired products that are available in the store.
In this case, the resulting set is {(Fantasy,Robot),(Farm Animals,Horse),(Educational,

T hinking Game)}.

Q4: Which desired products won’t be found in the store? – it can be answered with the
difference operator (−). Figure 1.e shows that the result of DP−SP is a new set with all
tuples from DP that are not members of SP, i.e., the desired products unavailable in the
store. In this case, we have the set: {(Vehicles,Lexus)}.

We have just introduced an example of sales of products. In this example, a client wants
to buy a list of products from a store. Here, we have category and name for each product, and
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the tuples were compared by identity. However, what if we take this example, and add other
two attributes in each relation: desired units by the client vs available stock at the store, and
maximum price that the client is willing to pay vs tag price for that product at the store. Here,
comparing elements by identity would be senseless. Thus, we will explain our motivation in the
next section.

1.2 Problem and Motivation

The traditional set operators are very useful when elements are compared by identity.
That is, when it makes sense to compare elements by the implicit identity predicate that says
that a tuple is a member of a relation if and only if all of its attributes’ values are identical to
all the corresponding values of any tuple in the set. This predicate was illustrated in Figure 1.a.
However, this implicit predicate has severe limitations. Note that instead of comparing tuples by
identity, we could easily expand the comparison predicate to support any custom predicate with
and and or connectors, =,<,≤,>, and ≥ logical operators, +,−,*,÷ arithmetic operators, and
negations ¬. For instance, let us expand our original example of sales of products with categories
and producs’ names. Now, let’s add two more attributes to both sets DP and SP: units and price.
This is shown in Figure 2.b, where “DP.units” refers to the client’s desired number of units and
“SP.units” refers to the stock available in the store. Also, “DP.price” is the maximum client’s
budget for that product, while “SP.price” is the product price in the store. Let us assume also
that the client can accept fewer units than the desired ones if the price is at most half of his/her
budget. Now, to compare tuples by identity would not be useful. We need to employ a custom
predicate to select products with the client’s preferences, i.e., having enough units and acceptable
price, or simply low price. The predicate c is shown in Figure 2.a. This work then, encapsulates
the concept of set operations with conditional queries into the new Relational Conditional Set
Operations. This is, we aim to facilitate the specification of these kind of operations as well as
make possible their optimization. This is analog to the join operation, which is conceptually a
Cartesian product with a projection, but it is also an specific operator and more efficient that
implement it by using the other two operations. With these concepts, let’s analyze how our
previous queries are adapted and how our operators allow us to use conditional queries to answer
them:

Given a predicate which represents our desired condition for each product, ...

Q1: ... can I buy a certain product X in the store? – it could be answered with the RelCond
Set Membership operator (∈c). One tuple x is a relcondc member of one set T if,
given a predicate c, the evaluation c(x,y) is true for one tuple y ∈ T. For example, in
Figure 2.c, tuple a = (FarmAnimals,Horse,4,16) is a relcondc member of SP, since SP

contains a tuple y = (FarmAnimals,Horse,2,6) such that c(a,y) is true. By contrast, tuple
b = (Fantasy,Robot,17,30) is not a relcondc member of SP because there is not a tuple y
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Figure 2 – Example of the relational conditional set operations.

a)

Predicate c:
DP.Category = SP.Category AND
DP.Product = SP.Product AND
( 
(DP.Units <= SP.Units AND
￢(DP.Price < SP.Price)) OR
DP.Price/2 >= SP.Price

)

€
€

⊈

∉

∈

∩

€ €

Source: Elaborated by the author.

in SP where c(b,y) is true. We can also follow this idea to define a RelCond Set cT as a
set in which c(x,y) is false for any pair of tuples x,y ∈ cT.

Q2: ... can I buy all the desired products in the store? – it could be answered by the RelCond
Subset operator (⊆c). A set is a relcondc subset of another set if all of its elements are
relcondc members of the second set. For example, in Figure 2.b, DP is not a subset of SP

as there are tuples in DP that are not members of SP, i.e., (Fantasy, Robot, 17, 30) and
(Vehicles, Lexus, 33, 16).

Q3: ... which desired products can be bought in the store? – it could be answered with the
RelCond Intersection operator (∩c). Figure 2.d illustrates the result of DP∩c SP, which
is a new set with all tuples from DP that are relcondc members of SP. These are the desired
products that are available in the store.

Q4: ... which desired products won’t be found in the store? – it could be answered with the
RelCond Difference operator (−c). Figure 2.e shows the result of DP−c SP, which is a
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new set with all tuples from DP that are not relcondc members of SP. These are the desired
products that are unavailable in the store.

As we discussed in this section, the use of customized predicates have prompt applications
in real life. However, operators that support them have not been defined in the literature. In this
regard, this MSc work focuses on providing support to the Relational Conditional Set Operators,
exploring the hypothesis as follows:

Hypothesis: Custom predicates applied to set operations are valuable tools to
process relational set operations with conditional queries.

1.3 Contributions

This MSc work investigates Hypothesis 1.2 focused on querying relational set operations
with customized predicates. Specifically, we present the new RelCond Set Operators (∈c,⊆c

,∩c,−c). Our main contributions are:

C1 Operators Design and Usability – we identified severe limitations on the usability of the
traditional set operations, which are caused by the use of implicit identity predicates. Thus,
we tackled the problem by extending these operations into our RelCond Set Operators
(∈c,⊆c,∩c,−c) that are naturally well suited to answer queries in sets with customized
predicates.

C2 Formal Definition and Algorithms – we formally defined the new operators as the
RelCond Set Membership (∈c), RelCond Subset (⊆c), RelCond Intersection (∩c), and
RelCond Difference (−c), thus enabling their use in queries along with the existing
algebraic operators. Also, we designed novel algorithms to execute these new operations
in a fast and scalable manner.

C3 Semantic Validation – we performed a case study by analyzing real data from thousands
of toy products available for sale at Amazon1. The results corroborate the practical usability
of our operators in real-life applications.

C4 Generality and Usability – we present other applications where our operators are well
suitable, thus corroborating their general usability.

C5 Basis for other operators – our new operators can also be used as the basis for other
relational algebra operations. For example, in Appendix A, we discuss the utility of
generalizing the relational division, and present a new operator that can also support
custom predicates, using as a basis our relational conditional set operations.

1<www.amazon.com>

www.amazon.com


32 Chapter 1. Introduction

Reproducibility: for the purpose of reproducibility, all codes, results, and datasets
studied in this work are freely available for download online2.

1.4 Organization
The rest of this monograph follows a traditional organization: background concepts

(Chapter 2), related work (Chapter 3), proposed operators (Chapter 4), algorithms (Chapter 5),
experiments (Chapter 6), discussion (Chapter 7), and conclusions and future work (Chapter 8).
Additionally, we also present the generalization of the relational division in Appendix A.

2<https://github.com/alivasples/RCSetOp>

https://github.com/alivasples/RCSetOp
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CHAPTER

2
BACKGROUND CONCEPTS

In this chapter, we present the fundamental concepts related to this MSc work. The
chapter begins with a review of the Theory of Sets followed by a discussion of the Relational
Algebra. We also present a brief review about infix and postfix notations of arithmetic expressions.
The relevance of the discussion of Theory of Sets and Relational Algebra is very intuitive since
this MSc work proposes to extend the operators from the Theory of Sets applied to relations to
support custom predicates. Precisely, these custom predicates are given by expressions. Thus it
is important to read and process them in an efficient manner, that is the reason we also discuss
the most common forms to represent expressions, such as infix and postfix notations.

2.1 Theory of Sets
A set is a collection of distinct objects, typically of the same type, which are called the

elements or points of the set (UNDE; KURHE, 2018; ALSALLAKH et al., 2016; RAMSDEN,
2004). A key characteristic of this collection is that it does not impose an ordering of the elements.
There are different forms in which a set can be represented. One of the most basic is to represent
it by enumeration. For instance, we can represent the following sets:

∙ Let U be a set of positive integer numbers lower than 10:
U= {1,2,3,4,5,6,7,8,9}.

∙ Let A be a set of pair numbers lower than 10:
A = {2,4,6,8}.

∙ Let B be a set of positive integer numbers lower than 5:
B = {1,2,3,4}.

∙ Let C be a set of the first 2 natural numbers:
C = {1,2}.
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Another representation of a set can be through a Venn Diagram. For example, we can represent
our examples with the set illustrated in Figure 3.

Figure 3 – Sets represented in a Venn Diagram.

U
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Source: Elaborated by the author.

2.1.1 Basic concepts

The Theory of Sets (STOLL, 1963; PINTER, 1971) defines some fundamental relation-
ships between elements and sets, but also between sets and sets.

1. Set membership (∈): The membership relationship between objects and sets denotes
whether an element is an element of a set. For example, from Figure 3 we can say that 8 is
a member of set A (2 ∈ A). In an opposite case, 1 is not a member of set A (1 /∈ A).

2. Subset (⊆): The subset relationship between two sets denotes whether a set is a subset of
another. One set is a subset of another, or one set is included in another if all its elements
are members of the second set. For example, from Figure 3 we can say that set C is a
subset of set B (C ⊆ B) since all elements of C (1 and 2) are members of B. However, C is
not a subset of A (C ̸⊆ A) since there is at least one element in C, in this case, 1, that is not
a member of A.

2.1.2 Algebra of sets

The Theory of Sets also defines some basic operations for sets (STOLL, 1963; PINTER,
1971), from them, the most relevant for our research are:

1. Union (∪): The union of two sets S1 and S2, symbolized by S1∪Ss and read “S1 union S2”
is the set of all objects that are members of either S1 or S2. It is important to point that
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the result is another set, consequently, there are not repeated elements. For example, from
Figure 3, A∪B = {1,2,3,4,6,8}.

2. Intersection (∩): The intersection of two sets S1 and S2, symbolized by S1∩S2 and read
“S1 intersection S2” is the set of all objects that are members of both S1 and S2. For example,
from Figure 3, A∩B = {2,4}. If S1∩S2 = S1 we can say that S1 ⊆ S2.

3. Difference (−): The difference or relative complement of two sets S1 and S2, symbolized
by S1−S1 and read “S1 minus S2” is the set of all objects that are members of S1 but not
S2. For example, from Figure 3, A−B = {1,3,5}.

4. Complement (S): The complement of a set S, symbolized by S is the set of all objects in
the universal set that are not members of S. In order to define this set, it is important to
know what is the universal set. For example, from Figure 3, A = {1,3,5,7,9}.

5. Symmetric Difference (△): The symmetric difference of two sets S1 and S2, symbolized
by S1△S2, is the union of the differences S1−S2∪S2−S1. This is, all elements that are
members of S1 or S2 but not of both. For example, from Figure 3, A△B = {1,3,6,8}.

6. Cartesian Product (×): The Cartesian product of two sets S1 and S2, symbolized by
S1×S1 is the set of all pairs of objects (a,b) where a ∈ S1 and b ∈ S2. For example, from
sets B and C of Figure 3, B×C = {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2)}.

2.2 Relational Algebra
The Relational Algebra (CODD, 1972) is defined as a set of operations, not necessarily

binary, that are performed on relations resulting in another relation, which are suitable for
selecting data from a relational database.

According to Garcia-Molina, Ullman and Widom (2008), an algebra, in general, con-
sists of atomic operators and operands, for example, when we work with real numbers, atomic
operands are variables as x and constants as 15. The operators are the usual arithmetic ones:
addition, subtraction, multiplication, and division. Any algebra allows us to construct expres-
sions by applying operators to atomic operands and/or other algebraic expressions. Usually,
parentheses are required to group operators and their operands. For example, in arithmetic we
have expressions such as (x+ y)* z or ((x+7)/(y−3))+ x.

The Relational Algebra is another example of an algebra. Its atomic operands are
variables that stand for relations and constants, which are finite relations. The Relational Algebra,
then, consists of simple but powerful ways of building new relations from others. Expressions in
relational algebra begin from relations as operands.

Some operations included in the relational algebra (ELMASRI; NAVATHE, 2015; RA-
MAKRISHNAN; GEHRKE, 2000; GARCIA-MOLINA; ULLMAN; WIDOM, 2008; ULLMAN,
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1997; YU; MENG, 1998; CODD, 1972; CODD, 1990) are the unary operations: renaming(ρ),
selection (σ ), and projection (π); the set operations from Theory of Sets: union (∪), intersection
(∩), set difference (-), and cartesian product (×); and the binary operations: join (./) and division
(÷). We will discus those operations in this section.

2.2.1 Unary Operations

The renaming operation (ρ)
This operation does not affect the tuples of the relation but changes the schema of the relation,
for example, the names of attributes or even the name of the relation itself.

Selection (σ ) The selection operator (ULLMAN, 1997), applied on a relation T, produces
a new relation with a subset of the tuples of T. The tuples in the resulting relation are those that
satisfy some condition c that implies the attributes of T. This operation is denoted as σ c(T ).
The schema of the resulting relation is the same as the schema of T and the attributes are
conventionally displayed in the same order as those of T. An example of Selection is presented
in Figure 4.

Figure 4 – Example of the selection from a relation.

Source: Elaborated by the author.

Projection (π) The projection operator (ULLMAN, 1997) is used to produce from
a relation T, a new relation that has only some columns of T. The value of the expression
πA1,A2,...,An(T ) is a relation that only has the columns of the attributes A1,A2, ...,An of T. The
schema of the result is a set of attributes A1,A2, ...,An, which are normally displayed in the order
listed. An example of Projection is presented in Figure 5.

Figure 5 – Example of the projection from a relation.

Source: Elaborated by the author.
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2.2.2 Binary Operations

2.2.2.1 Operations from Theory of Sets

Union (∪). The union (ULLMAN, 1997) of two union compatible relations T1 and T2 is
the set of elements that are in T1 and T2 or in both relations. Two relations are union compatible if
they both have the same number of attributes and each attribute from T1 has the same domain of
its counterpart in T2. Each element only appears once in the resulting relation, even if it belongs
to both T1 and T2. An example of Union is presented in Figure 6.

Figure 6 – Example of the union of two relations.

Source: Elaborated by the author.

Intersection (∩). The intersection (ULLMAN, 1997) between two union compatible
relations T1 and T2 is the resulting set with the elements that are present in both T1 and T2. An
example of Intersection is presented in Figure 7.

Figure 7 – Example of the intersection of two relations.

Source: Elaborated by the author.

Difference (−). The difference (ULLMAN, 1997) of two union compatible relations
T1−T2 is the set of elements that are in T1 but not in T2. In addition, this operation is not
commutative, that is, T1−T2 is not necessarily the same as T2−T1, since in the first we obtain
the elements that are in T1 and not in T2, while in the second, we obtain the elements that are in T2

but not in T1. This is shown in Figure 8 with an example where T1 = Group1 and T2 = Group2.

Cartesian Product (×) The Cartesian product (ULLMAN, 1997), also called simply a
product, of two relations T1 and T2 is the set of pairs that can be formed by choosing any tuple
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Figure 8 – Example of the differences between two relations.

Source: Elaborated by the author.

from T1 as the first element and any tuple from T2 as the second element. Normally this product
is denoted with T1×T2. Since the members of T1 and T2 are tuples, usually consisting of more
than one component, the result of joining a tuple of T1 with a tuple of T2 is a larger tuple, with
a component for each of the constituent tuples, in addition the components of T1 precede the
components of T2 in that order. The schema of the resulting relations is the union of the schemas
of T1 and T2. An example of Cartesian Product is presented in Figure 9.

Figure 9 – Example of the cartesian product of two relations.

Source: Elaborated by the author.

2.2.2.2 Other binary operations

Natural Join (./) More often than making the Cartesian product of two relations, it is
the need to join them (ULLMAN, 1997), joining only those tuples that match in some way.
The simplest form of match is the natural join of two relations (T1 ./ T2), in which only those
attributes that are common to the schemas (same name and compatible domain) of T1 and T2 are
matched. More precisely, being A1,A2, ...,An the common attributes in both schemas of T1 and
T2, then a tuple of T1 and a tuple of T2 are matched if and only if T1 and T2 agree on each of the
attributes A1,A2, ...,An. If tuples T1 and T2 are satisfactorily matched in join T1 ./ T2, then the
result of the pairing is a tuple, called joined tuple, with a component for each of the attributes of
the schemas of T1 and T2. An example of Natural Join is presented in Figure 10.
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Figure 10 – Example of the natural join of two relations.

Source: Elaborated by the author.

Theta Join (./c) The natural join forces to match tuples under a specific condition but
sometimes it is desired to match two relations under other conditions (ULLMAN, 1997). For
this purpose, the theta join allows representing an arbitrary condition, which is denoted by c in
the following expression T1 ./c T2. The result of this operation is constructed in two steps: first,
the product of T1 and T2 is taken, then, only the tuples that satisfy condition c are selected from
the product. As it happens with the Cartesian product, the relation schema resulting is the union
of the schemas of T1 and T2. An example of Theta Join is presented in Figure 11.

Figure 11 – Example of a theta join of two relations.

Source: Elaborated by the author.

Relational Division (÷) The relational division (CODD, 1972; CODD, 1990) is similar
to the division of integer numbers. In both cases there exists one dividend, one divisor, one
quotient and even one residual. Although instead of being integers, these will be relations. When
a relation is divided by another one, at least one pair of columns (one of the dividend and the
other of the divisor) must have the same domain so that each pair of columns can be compared.

Let us consider relation T1 as the dividend and relation T2 as the divisor. The columns
to be compared will be L1 (a list of attributes of T1) and L2 (a list of attributes of T2), obtaining
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as a quotient TR, such that TR×T2 is contained in T1. In addition, L1 and L2 must be union-
compatible, that is, the number of attributes in L1 = (A1,A2, ...,An) must be equal to the number
of attributes in L2 = (B1,B2, ...,Bn) and their elements < A1,B1 >,< A2,B2 >,...,< An,Bn >

must be comparable. This operation is defined as T1[L1÷L2]T2 = TR.

Figure 12 – Example of the relational division of two relations.

Source: Elaborated by the author.

An example of relational division is presented in Figure 12, which aims to solve the
question of Which sellers manage to send all the required products?, where we have as T1 to
the Suppliers relation and as T2 to the Requirement relation. Each group TGi is formed by tuples
that have the same Seller, the attributes [L1÷L2] under which the division is being made are
(Category,Product)÷(Category,Product) and obtaining as a result the list of suppliers that man-
age to meet all the requirements. Thus, for this specific case, the equivalent of T1[L1÷L2]T2 = TR

would be Suppliers[(Category,Product)÷ (Category,Product)]Requirement = PackSuppliers.

Note 1: When we perform a relational division, we group the dividend’s tuples. For
example, in 12 we have TG1 , TG2 , and TG3 . If we do a projection in L1 for each group then we
will have three sets. Let’s call them S1, S2, and S3. We also can note that if the divisor is included
in one set, the corresponding group is part of the quotient. In this case, S1 and S3 contain the
divisor. Thus, TG1 and TG3 are part of the quotient.

Note 2: If the relational division can be approached based on traditional set operations.
Also, if our hypothesis of generalizing the traditional set operations can be expanded to support
custom predicates. Then, we could also explore the possibility of generalizing the relational
division to support custom predicates. This possibility is explored in Appendix A.
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2.3 Infix and Postfix Notations

2.3.1 Basic Concepts

When we work with arithmetic expressions, the form of the expression provides us the
information to interpret it correctly (MILLER; RANUM, 2011). For example, if we have 5×2,
we know that 5 is being multiplied by 2 since the multiplication operator × appears between
both numbers in the expression. This type of notation is referred to as infix since the operator is
in between the two operands that it is working on.

Now, let’s consider the expression 3+5×2. The operators + and × still appear between
the operands, but the expression does not inform which operation should be performed first.
The answer is that the multiplication should be solved first. This is due to the precedence
level of each operator. The operators with higher precedence must be used before operators of
lower precedence. For example, multiplication and division {×,÷} have higher precedence than
addition and subtraction {+,−}. However, if we have an association term in the expression, it
needs to be solved first. For example, in the expression (3+5)×2, we need to solve 3+5 and
its result multiplies it by 2. For another part, in an expression with the same level operators,
for example, 3−2−1, the operations are performed from left to right, i.e, 3−2 and its result
subtracted by 1.

Despite these expressions can be solved intuitively by humans, computers need to know
exactly what operators to perform and in what order. One way to write an expression that
guarantees there will be no confusion with respect to the order of operations is to create what
is called a fully parenthesized expression. This type of expression uses one pair of parentheses
for each operator, so the parentheses dictate the order of operations avoiding ambiguity. In this
case, there is no need to know the precedence of the operators. For example, the expression
1+ 2 * 3+ 4 can be written as ((1+(2 * 3))+ 4). However, despite the fact that the use of
parenthesis avoids ambiguity, the expression might become unnecessarily complex.

For the aforementioned reasons, we will explore other two very important expressions
that guarantee the order of the operations. These are the Polish Notation also known as prefix
notation and the Reverse Polish Notation also known as postfix notation. For example, let’s
consider the infix expression 5×2. What would happen if we moved the operator before the two
operands? The resulting expression would be × 5 2. Likewise, we could move the operator to
the end, having 5 2 ×. These changes to the position of the operator with respect to the operands
create the expressions’ formats, “prefix” and “postfix”. Prefix notation requires that all operators
precede the two operands that they work on. On the other hand, postfix notation requires that its
operators come after the corresponding operands. From both notations, the most efficient one
is the postfix notation. This is because when we evaluate the expression, every time we find an
operator, we know that the last two operands need to be operated with our current operator. This
is the opposite with the prefix expression, where every time we found an operator, we need to
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look for the next two operands, but these ones could need to be operated with other following
operands first. Thus, we will discuss deeply the postfix notation. Let’s explore another example
now, considering the infix expression 3+5×2. In postfix, the expression would be 3 5 2×+.
This means that when the first operator × is read, we need to compute 5 multiplicated by 2,
this is 10. The expression will be reduced to 3 10 +, resulting in 13. Again, note that the order
of operations is preserved since the × appears immediately after 5 and 2, denoting that × has
higher precedence than +. We present more examples of these equivalences on Table 1.

Table 1 – Examples of Infix, Prefix and Posfix equivalences.

Infix Expression Postfix Expression

5 × 2 5 2 ×
3 + 5 × 2 5 2 × 3 +
a + b + c a b + c +

(a + b) × c a b + c ×
(a + b) × (c + d) a b + c d +×
a × (b − c + d) a b c − d +×

a ÷ ((b − c) + (d × e)) a b c − d e ×+÷

2.3.2 Conversion of infix to postfix and expression evaluation

As it was described before, infix expressions are the most intuitive way to write an
expression for humans. However, this form is very complicated for computers. Instead, postfix
expressions are used to solve calculations. The big advantage of this notation is that it is extremely
easy and fast, for a computer to analyze (RASTOGI; MONDAL; AGARWAL, 2015). Postfix
expression can be easily obtained by push - pop operation on a stack data structure. This greatly
simplifies the expression’s computation within computer programs.

Let’s suppose we have an infix expression I, we can transform it to a postfix expression P
by executing Algorithm 1. This algorithm receives a string representing an expression in infix
notation and returns a list of tokens in postfix order. First of all, in lines 1 and 2, we define a stack
S and a list named Postfix which will store the tokens of the expression in postfix notation. Then,
in line 3, we need to push an open bracket “(” onto our stack S and add the close bracket to the
end of our infix string. By doing this, we guarantee that the whole expression will be converted
to postfix. Next, in line 4 we tokenize our infix string and save the tokens in our Infix list, which
now contains all tokens in infix order. Now, in lines 5 to 15, the main loop is executed, reading
token by token from the Infix list. If the read token is an operand, the token will be directly added
to the postfix notation. If the read token is an open bracket “(”, we will add the open bracket to
our stack S. If, instead, the token is a close bracket “)”, we will pop all operators from our stack
S and add them to our Postfix list until an open bracket is found and just removed. If the token is
an operator, we will pop from our stack S all operators with the same or higher precedence than
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Algorithm 1 – InfixToPostfix(In f ixStr)

Input: InfixStr: Expression in infix notation
Output: Postfix: List of tokens in postfix notation

1: create stack S;
2: create list Postfix;
3: push “(” onto S and add “)” to the end of InfixStr;
4: Infix← tokenize InfixStr;
5: for each token of Infix do
6: if token is an operand then
7: add token to Postfix;
8: else if token is “(” then
9: add token to S;

10: else if token is “)” then
11: each operator is added to Postfix by popping from S until “(” is read.
12: remove “(” from S
13: else if token is an operator then
14: each operator is added to Postfix by popping from S which has the same or higher

precedence than the operator encountered;
15: end if
16: end for
17: return Postfix;

Algorithm 2 – EvaluatePostfix(Post f ix)

Input: Postfix: Expression in postfix notation
Output: Result: Result of the expression

1: Create an empty stack called S;
2: for each token of Postfix do
3: if token is an operand then
4: push token into S;
5: else if token is an operator then
6: rightOp = pop from S;
7: leftOp = pop from S;
8: push into S the result of leftOp operated with righOp;
9: end if

10: end for
11: Result = pop from S;
12: return Result;

the operator encountered and add them to our Postfix list. Finally, we will just return the Postfix
list. We can observe an example of this algorithm’s execution in Figure 13.

Once we have our expression in postfix notation, our next step would be to evaluate the
expression itself. To do this, we can follow steps from Algorithm 2. This algorithm receives a
postfix expression and returns the evaluation of the expression. As first step, in line 1, we need to
create an empty stack called S. Then, the main loop, in lines 2 to 10, we will read the postfix
expression from left to right, token by token. If the token is an operand we need to push its
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Figure 13 – Conversion of infix expression to postfix.
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Figure 14 – Evaluating postfix expression.
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value onto S. If instead, the token is an operator, it will need two operands. Pop from S the right
operand, then, pop again from S the left operand. Now, evaluate the operation and push the result
into S. Once the postfix expression has been completely processed, the result is on the stack.
Finally, pop the only value from S and return it. We can observe an example of this algorithm’s
execution in Figure 14.
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2.4 Concluding Remarks
This chapter presented the background concepts used as the basis of this MSc work. We

presented the basic concepts and operations of the Theory of Sets such as the relations of set
membership and subset, and the operations of Union, Intersection, Difference, Complement,
Symmetric Difference, and Cartesian Product. In another section we discussed the Relational
Algebra. This is the set of operations that are performed when we work with relations. One
important note is that the Relational Algebra employs some of the set operations to work with
relations such as the Union, Intersection, Difference, and Cartesian Product. Finally, we also
discussed different ways to write expressions, these are infix, prefix, and postfix notations. Here,
we mentioned that infix notation is the most intuitive way for humans. However, for a computer
to be able to process the expression fast, the best alternative is the postfix notation. We also show
how to convert an infix expression to postfix, as well as to evaluate the expression. The next
chapter presents related works regarding implementations or extensions of operations from the
Relational Algebra.
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CHAPTER

3
RELATED WORK

In this chapter, we discuss the main works related to our proposal. This is, works that
focus on the traditional Relational Algebra with emphasis on the operators from the Theory
of Sets. Then, we discuss the works aimed to extend the operators to support other types of
elements, such as complex data types. Naturally, we also emphasize the set operators.

3.1 Works on the Traditional Relational Algebra

There exist several works that focus on the whole set of operators from the Relational
Algebra(KESSLER et al., 2019; VINAYAKUMAR et al., 2018; GORMAN et al., 2014; MC-
MASTER; SAMBASIVAM; HADFIELD, 2012; MCMASTER et al., 2011; MCMASTER et

al., 2010; LITORIYA; RANJAN, 2010; CAO; BADIA, 2007). Since these operators are fun-
damental for each relational database system, most of these works propose learning tools to
teach Relational Algebra through web applications, MS Access, or interactive block-based
programming tools. Still, there are some of them that study the Relational Algebra for query
optimization (CAO; BADIA, 2007).

Also, there exist works that specifically focus some operators. One case is the join
operation and the works that focus on its implementation or optimization (KVET; MATIASKO,
2021; SHIN et al., 2021; SHIN et al., 2020; XUE et al., 2020; ZHOU et al., 2019; NGO et al.,
2018). The authors usually do it by implementing one of the three base algorithms for joining,
or with variations of them. The first one is the algorithm based on nested loops, which iterate
for each row of the left relation and for each row of the right relation, comparing one by one if
there is a match in the condition to join the tuples. The second one is the merge join algorithm,
which expects to work with two sorted columns or iterating them in order. This way, when the
comparing value in one relation is lower than the comparing value in the other one, we know
that we must continue with the next tuple on the first side and so on until a tuple identifier is
greater than the other one. Then, repeat the same process until one column ends. In the middle of
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the process, if two comparing values are identical, both tuples are joined. The third algorithm is
the hash join. This algorithm receives this name because it uses hash tables. It also requires that
at least one term in the predicate is formed by two columns compared by identity (one equi-join).
As the first step, for the left relation column values, the algorithms call a hash function and
calculate the keys for all values and store them in buckets. Then, for each of the right relation
column values, the key is calculated and then it is searched in the bucket if there exists a value
identical to the current one. If it does, then both tuples are joined as part of the result.

There are also several works focused on implementing and expanding the relational
division. Since most implementations in SQL do not directly implement the division as in
the case of the join operator (ELMASRI; NAVATHE, 2015), some authors implement the
relational division as queries in SQL, stored procedures or even with external codes using an API
(IMAMUDDIN; NAHAR; CHANDRA, 2020; GONZAGA; CORDEIRO, 2016; CAMPS, 2014;
MATOS; GRASSER, 2002; CELKO, 2009). One of these works (GONZAGA; CORDEIRO,
2016) compares the performance of the best implementations for the division operator in SQL,
as well as proposes a new algorithm for the division, which is implemented through stored
procedures. This work presents a case study on the selection of individuals that have certain
genetic characteristics. Given the genetic data of several individuals and the desired genetic
conditions, all those individuals that satisfy all conditions are obtained in response. Figure 15
exemplify the use case. Finally, the results indicate that the proposed implementation is potentially
faster than the best implementation in SQL.

Figure 15 – Example of the relational division used to select individuals that satisfy desired genetic
conditions.

Source: Gonzaga and Cordeiro (2016).

Note 1: Let’s observe in Figure 15 the tuples’ groups (groups of ID = 1, groups of ID
= 2, and groups of ID = 3). Then, let’s do a projection of only the desired attributes (Position,
Allele 1, and Allele 2) for each group. Let’s call these projections as sets S1, S2, and S3. Now, if
each set in the dividend contains as a subset the divisor, we can say that the group satisfies all
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requirements and its ID is part of the quotient.

Note 2: If the relational division can be approached based on traditional set operations.
Besides, if our hypothesis of generalizing the traditional set operations can be expanded to
support custom predicates. Then, we could also explore the possibility of generalizing the
relational division to support custom predicates. This possibility is explored in Appendix A.

Continuing with this work, the authors proposed Algorithm 3, which assumes that there
are index structures for the dividend attributes. Using index structures makes this algorithm to be
way faster than if it doesn’t. This approach starts with a set TR containing the L1 attributes of all
possible tuples, assuming that at the beginning all divisor tuples meet the requirements. Then,
for each tuple t j of T2 a set T is selected that contains the selection of the tuples of T1 that match
in L1 = L2. Finally, the set of elements of TR is updated for its intersection with all the selected
elements of T.

Algorithm 3 – Index_RelationalDivision(T1, L1, T2, L2)

1: TR = π(L1)
(T1)

2: for each tuple t j ∈ π(L2)T2 do

3: T = π(L1)

(
σ(L1=t j)T1

)
4: for each tuple t ∈ T do
5: TR = TR∩ t
6: end for
7: end for
8: return TR

3.1.1 Works on Relational Set Operators

We previously discussed the works that focus generally on the Relational Algebra (KESSLER
et al., 2019; VINAYAKUMAR et al., 2018; GORMAN et al., 2014; MCMASTER; SAMBASI-
VAM; HADFIELD, 2012; MCMASTER et al., 2011; MCMASTER et al., 2010; LITORIYA;
RANJAN, 2010; CAO; BADIA, 2007). Naturally, these works include the relational set opera-
tions. However, there are also some works that study specifically the traditional set operations
from the Relational Algebra (RED’KO et al., 2017; BILLE et al., 2007). These works generally
study the behavior of the set operators in real-world applications or attempt to optimize the
queries for the diverse set operators. This is the case of a recent work (RED’KO et al., 2017) that
compares different algorithms for the intersection, union, and difference operations. The main
goal of this work was to optimize queries for set operations, proposing nested loops algorithms
from their most naive form and adding some changes to find the fastest algorithms for each
operation.

Starting with the intersection of two relations T1 and T2, the authors presented the first
algorithm, which consisted of comparing all rows from table T2 with each row t1 ∈ T1. If there
was a row t2 ∈ T2 such that t1 = t2, then the row t1 was added to the resulting table TR and
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continue to the next row of the table T1. Then, they added a feature and create the second
algorithm. Here, when the row t1 = t2 is found, they still add t1 to result but also delete t2 from
T2. The third variation doesn’t return TR as result anymore, instead, it will be T1 which will be
modified to contain only the result of the intersection. Here, we need to work as left relation
with the relation of lower size. Let’s assume it is T1. Here, we remove all tuples t1 from T1 that
doesn’t match any t2 from T2. Finally, the fourth and best algorithm proposed by the authors
for the intersection was Algorithm 4. In this last algorithm, we can see in lines 1-3 that if the
relation T1 has a greater size than T2, it returns the intersection of both relations transposed. If
not, then in lines 4 to 13, it iterates for each tuple t1 in the left relation, and inside, for each tuple
t2 in the right relation. When t1 = t2 then t2 is removed from T2. Otherwise, t1 is removed from
T1 and the inner loop is leaved to continue with the next tuple in T1.

Algorithm 4 – Intersection(T1,T2)

Input: T1: Left Relation, T2: Right Relation
Output: The intersection of both relations.

1: if |T1|> |T2| then
2: return Intersection(T2,T1)
3: end if
4: for each t1 ∈ T1 do
5: for each t2 ∈ T2 do
6: if t1 = t2 then
7: remove t2 from T2
8: else
9: remove t1 from T1

10: break
11: end if
12: end for
13: end for
14: return T1

Following with the union of two relations T1 and T2, the authors presented the first
algorithm, which consisted of adding all rows from T1 to the result TR. Then, comparing all rows
from table T2 with each row t1 ∈ T1. If there was not a row t2 ∈ T2 such that t1 = t2, then the
row t2 was added to the resulting table TR and continue to the next row of the table T1. In the
next variation, they changed a feature and create the second algorithm. Here, instead of adding
the row t2 from T2 when there was no equal row in T1, they remove the each row t2 from T2 if a
tuple t1 equal to it exists in T1. Finally, the third and best algorithm proposed by the authors for
the union was Algorithm 5. In this last algorithm, we can see in lines 1-3 that if the relation T1

has a greater size than T2, it returns the union of both relations transposed. If not, then in lines
4 to 10, it iterates for each tuple t1 in the left relation, and inside, for each tuple t2 in the right
relation. When t1 = t2 then t1 is removed from T2 and we can continue with the next tuple in T2.
Finally, in lines 12 and 13, all remaining tuples from T1 are added to the result in T2 and this one
is returned.
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Algorithm 5 – Union(T1,T2)

Input: T1: Left Relation, T2: Right Relation
Output: The union of both relations.

1: if |T1|> |T2| then
2: return Union(T2,T1)
3: end if
4: for each t1 ∈ T1 do
5: for each t2 ∈ T2 do
6: if t1 = t2 then
7: remove t1 from T1
8: continue with next tuple of T2
9: end if

10: end for
11: end for
12: Add remaining tuples from T1 to T2
13: return T2

Finally, for the difference of two relations T1 and T2, the authors studied five algorithms.
The first one consisted of comparing all rows from table T2 with each row t1 ∈T1. If there was not
a row t2 ∈ T2 such that t1 = t2, then the row t1 was added to the resulting table TR and continue to
the next row of the table T1. As a variation, they added a feature and create the second algorithm.
Here, the tuple t1 is still added to the resulting relation TR when there was no equal row t2 to
it in T1, but also, if there existed that tuple, then the tuple t2 from T2 was removed from T2. In
the next variation, the result is only being updated in the same table T1. Here, all tuples from
both relations are compared, and if for a tuple t1 ∈ T1 exists an identical tuple t2 ∈ T1, the tuple
t1 is removed from the left relation. In the next variation, they remove not only t1 from left
relation but also t2 from the right relation when t1 and t2 are identical. Finally, the fifth and best
algorithm proposed by the authors for the difference was Algorithm 6. In this last algorithm, we
can see in lines 1-3 that if the relation T1 has a greater size than T2, it returns the union of both
relations transposed. If not, then in lines 4 to 11, it iterates for each tuple t1 in the left relation,
and inside, for each tuple t2 in the right relation. When t1 = t2 then t1 is removed from T2 and we
can continue with the next tuple in T2. Finally, in line 13, the tuples remaining in T1 compose the
result.

Summarizing, the authors proposed four algorithms for intersection, three algorithms
for union and five algorithms for difference. To find the best algorithms for each set operation,
worst-case and average-case complexity values were calculated for each algorithm. As results,
for the intersection operation, the first algorithm has the smallest complexity in the worst case,
but the last algorithm had the smallest average-case complexity. For the union operation, the
third algorithm had the smallest worst-case and average-case complexity. Among the difference
algorithms, the third and fifth algorithms had the smallest worst-case complexity, but only the
fifth algorithm has the smallest average-case complexity. Thus, among the proposed algorithms
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Algorithm 6 – Difference(T1,T2)

Input: T1: Left Relation, T2: Right Relation
Output: The difference of both relations.

1: if |T1|> |T2| then
2: return Difference(T2,T1)
3: end if
4: for each t1 ∈ T1 do
5: for each t2 ∈ T2 do
6: if t1 = t2 then
7: remove t1 from T1
8: continue with next tuple of T2
9: end if

10: end for
11: end for
12: return T1

by the authors, Algorithm 4, Algorithm 5, and Algorithm 6 are the fastest. Also, the authors
experimentally demonstrated their theoretical results by developing a software system that
computed the actual number of executed actions for each of the proposed algorithms and
comparing them with the obtained theoretical estimates, differing from design values by no more
than 0.1%.

3.2 Extensions of Relational Algebra Operators
Following another approach, many modern applications require not only to store numeric

and short character strings but also videos, photos, large text, and several other types of “complex”
data elements. Here, comparing complex elements by identity, in contrast to the traditional simple
elements, is usually senseless because an exact match almost never happens(POLA et al., 2015;
POLA et al., 2013). For example, let’s imagine we are working with images, and we take two
pictures of the same object, it will be almost impossible for both images to be identical. Instead,
it is more significant to evaluate their similarity. This is why there exist several works that focus
on extending the Relational Algebra to support queries with complex data.

To support similarity-aware comparisons, it is common to represent the dataset in a
metric space. A metric space < S,d > is a combination of a data domain S and a distance
function d : S×S→ R+ that meets the following properties, for any s1, s2 and s3 in S.

∙ Identity: d(s1,s2) = 0 ⇐⇒ s1 = s2

∙ Non-Negativity: 0 < d(s1,s2)< ∞; ∀s1 ̸= s2

∙ Symmetry: d(s1,s2) = d(s2,s1)

∙ Triangle inequality: d(s1,s2)< d(s1,s3)+d(s3,s2)
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Another fact distinguishes complex data even more from traditional data: ordering
properties does not hold among complex data elements. One can say only that two elements are
equal or different, as in a general case there is no rule that allows sorting the elements. As a
consequence, the relational operators <, ≤, >, and ≥ cannot be used for comparisons. Moreover,
since exact match rarely occurs or makes sense here, the identity-based operators = and ̸= are
also almost useless. Therefore, only similarity-based operations can be performed over complex
data. The main similarity-based comparison operations are the similarity range and k-nearest
neighbor. Both operations receive a query center sq to perform the selection. The similarity range
also receives a threshold ξ and retrieves the elements si ∈ S, such that d(si,sq)≤ ξ . Likewise,
the k-nearest neighbor selection receives the parameter k and retrieves the k elements in S that
are nearest to sq.

There are many works that study the similarity-aware Selection (LU et al., 2018; LU
et al., 2017; SILVA et al., 2013; SILVA et al., 2010; BARIONI et al., 2009; SANTOS et al.,
2013; BUDíKOVá; BATKO; ZEZULA, 2012; BELOHLAVEK; VYCHODIL, 2010), in which
similarity awareness is achieved by using range queries, nearest neighbor queries, and their
variants.

Other proposals explore the similarity-aware Join (RONG et al., 2017; YU et al., 2016;
SILVA et al., 2015; DENG et al., 2015; JIANG et al., 2014; SILVA et al., 2013; KALASH-
NIKOV, 2013; SILVA; PEARSON, 2012; SILVA; AREF; ALI, 2010; JACOX; SAMET, 2008)
implementing range queries and nearest neighbor queries as well. The main approaches are: (a)
Range Distance Join that retrieves every pair of tuples with distance lower or equal than the
threshold; (b) kNN Join, which for each tuple on the left relation, retrieves the k most similar
tuples from the right one, and; (c) k-Distance Join that retrieves the overall k most similar pairs
of tuples.

Other contributions we can mention are the extensions of the relational division to
work with complex data, proposing the definitions, algorithms and utility of the similarity-
aware division (GONZAGA; CORDEIRO, 2019; GONZAGA; CORDEIRO, 2017) and also the
inclusion of these algorithms to the database management systems (VASCONCELOS; KASTER;
CORDEIRO, 2018; VASCONCELOS et al., 2018).

Also, there exists another branch of research that discusses the Relational Algebra
operations with an approach in fuzzy logic (GALINDO; URRUTIA; PIATTINI, 2005). Following
this approach, many works (BOSC; PIVERT, 2013; ZHAO et al., 2007; TANG; CHEN, 2004;
SHARMA et al., 2004) attempt to extend the Relational Algebra semantics to a fuzzy domain,
which implies having fuzzy relations with vague values using linguistic labels, weighted tuples,
and grades with different meanings for the attributes. However, none of them is concerned in
extending the relational set operations for conditional sets.
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3.2.1 Extensions of Relational Set Operators

We have previously discussed the works that extend different operators from the Rela-
tional Algebra, such as selection, join and division. Now, let’s explore the related works aimed
to extend the databases set operators.

There are many works that focus on adapting the set operators to work with complex
data (Al Marri et al., 2016; POLA et al., 2015; MARRI et al., 2014; POLA et al., 2013).
Remember the traditional concept tell us that a set cannot include the same element twice (there
can’t be two identical elements in the same set). Now, let’s imagine we are working with complex
data. As exact match on pairs of complex elements seldom occurs or makes sense, the usual
concept of “set” also blurs for these data. Instead, the concept equivalent to “sets” for complex
data: the “similarity sets” or just SimSets can be defined as a set of complex elements without
any two elements “too similar” to each other (POLA et al., 2015; POLA et al., 2013).

Figure 16 – (a) Example of a 2-dimensional dataset; (b)–(d) examples of 2-simsets produced from our
toy dataset using the Euclidean distance; (e) corresponding ξ -similarity graph for ξ = 2.

Source: Pola et al. (2015).

Two fundamental concepts defined by the authors are the similarity-set and the similarity
graph. As mentioned before, a similarity-set is a concept aimed to work with sets of complex
objects, where we want to ensure that two “too similar” elements do not be in the same set. So in
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the same way that we use distance functions to measure similarity, where larger values represent
less similar items; we call as SimSet to a set where there are no elements that are too similar.
Formally, A ξ -similarity-set Ŝξ is a set of elements from a metric domain < S,d >, Ŝξ ⊂ S, such
that there is no pair of elements si,s j ∈ Ŝξ where si=̂

ξ s j. Two elements s1,s2 are ξ -similar if
d(s1,s2)≤ ξ . It is important to note that there may exist many distinct ξ -simsets within a set
S. For example, Figure 16(a) illustrates a set of points associated with distance ξ = 2 which
produces many distinct 2-simsets. Examples are {p2, p5} from Figure 16(b), {p1, p3, p4} from
Figure 16(c) and {p3, p4, p5} from Figure 16(d), since the distance between p2 and p5 is greater
than 2, and it also happens for p1, p3 and p4, and for p3, p4 and p5. The other fundamental
concept is the corresponding ξ -similarity graph for of a set: Ĝξ (S) = {V,E}, where each node
vi ∈V corresponds to an element si ∈ S, and there is an edge < vi,v j >∈ E if and only if si=̂

ξ s j.
Figure 16(e) illustrates the 2-similarity graph of Figure 16(a).

As traditional union, intersection and difference operations are not well suited to work
with complex data, these concepts were also adapted to handle these operations by similarity.
The ξ -similarity Union of two ξ -simsets Ŝξ and R̂ξ is defined as the set T̂ ξ of all elements that
are either in Ŝξ or in R̂ξ , and do not exist any two elements ti, t j ∈ T̂ ξ such that ti=̂ξ t j. The
similarity union is illustrated in Figure 17(a). The ξ -similarity Intersection of two ξ -simsets
Ŝξ and R̂ξ is defined as the set T̂ ξ of all elements in the traditional union Ŝξ ∪ R̂ξ such that
ti ∈ Ŝξ ∧∃r j ∈ R̂ξ |t1=̂ξ r j or ti ∈ R̂ξ ∧∃sk ∈ Ŝξ |ti=̂ξ sk. The similarity intersection is illustrated in
Figure 17(b). The ξ -similarity Difference of two ξ -simsets Ŝξ and R̂ξ is the set of the elements
si ∈ Ŝξ such that there is no element ri ∈ R̂ξ such that si=̂

ξ r j. The similarity difference is
illustrated in Figure 17(c).

Figure 17 – Representation of similarity binary operations: (a) similarity union, (b) similarity intersection,
(c) similarity difference.

Source: Pola et al. (2015).

Naturally, the authors also contributed with the algorithms to support their new concepts
for selecting similarity sets from a set (a distinct algorithm), and one single algorithm called
“BinOp” that supports querying the three binary operations (similarity union, similarity intersec-
tion, and similarity difference). Finally, they validated their proposal by performing experiments
with synthetic and real data, proving that the proposed algorithms are scalable and accurate.

We’ve studied different works that include the Relational Algebra operators from the
Theory of Sets. Some of those works even extended the operations to answer more complex
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queries. However, none of them allows answering “conditional” queries with custom predicates.

3.3 Concluding Remarks
This chapter presented related works in traditional Relational Algebra operators and also

on extensions of them, with more emphasis in works that study the relational operators from
the Theory of Sets. In the first section, we discussed works that focus generally on Relational
Algebra, but also in some specific operands such as joins and division. In the second section, we
studied the extensions of these operations to support complex data, defining first the new type
of set, in this case the similarity set, and extending the binary operations of union, intersection
and difference. Although all these works contribute with our research, as we may see in Table 2,
none of them allows answering “conditional” queries with custom predicates. Thus, we present
our proposal in the next chapter.

Table 2 – Summary of the State of the Art in Relational Algebra Set Operations

Present
Scalable

Algorithms

Support
Identity

Predicates

Support
Similarity-aware

Predicates

Support
Custom

Predicates

Al Marri et al. (2016) X X X

Marri et al. (2014) X X X

Pola et al. (2013) X X X

Red’ko et al. (2017) X X

Bille et al. (2007) X X

Our Contribution X X X
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CHAPTER

4
RELATIONAL CONDITIONAL SET

OPERATIONS

This chapter presents the main contribution of this MSc work: the Relational Conditional
Set Operations. First of all, we present here some previous definitions to then present the formal
definitions for all of our operators.

4.1 Formal Definitions

Definition 1. An arithmetic operator between values (⊗) is represented by a1⊗a2, in which
a1 ∈ R and a2 ∈ R, and the result a1⊗a2 ∈ R. By enumeration:

⊗ ∈ {+,−,*,/} (4.1)

Definition 2. A logical operator between attribute values (⊙) is represented by a1⊙ a2, in
which a1 ∈ A1 and a2 ∈ A2 are attribute values and the result is either true or f alse. A1 and
A2 are attributes that must have the same domain, Dom(A1) = Dom(A2). By enumeration, the
operator is expressed as:

⊙ ∈ {<,≤,>,≥,=, ̸=} (4.2)

The logical operator ⊙ may not be commutative. Thus, a1⊙ a2 and a2⊙ a1 do not
necessarily produce the same logic result.
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Definition 3. The logical negation (¬) is represented as ¬b. It reverses the state of truth of one
boolean value b. That is:

¬b =

 true, if b is f alse

f alse, if b is true
(4.3)

Definition 4. A logical connector between boolean values (◇) is represented by b1 ◇ b2, in
which b1 and b2 are logical states of true or f alse, and the result of the connection can only be
true or f alse as well. By enumeration:

◇ ∈ {∧,∨} (4.4)

The logical connector ◇ is commutative. Therefore, b1 ◇b2 = b2 ◇b1 .

Definition 5. A predicate between tuples (c) is represented by c(t1, t2), in which t1 and t2 are
tuples from relations T1 and T2, respectively. Relations T1 and T2 must be union compatible.
The predicate is a logical expression that can group different operands with logical connectors,
negations, and parentheses; its result is always true or f alse. Formally, we have:

c(t1, t2) =


t1.a1 [⊗p ] ⊙ t2.a2 [⊗q ]

(c(t1, t2)◇ c(t1, t2))

¬c(t1, t2)

(4.5)

Here, [ ] indicate optional operands, p and q are arithmetic expressions involving only
constant values, and t.a is an attribute value of tuple t. c(t1, t2) may not be commutative. Thus,
c(t1, t2) and c(t2, t1) are not necessarily equivalent.

Definition 6. A relational conditional set (cT) is a relation T in which all of its tuples are
conditionally different. That is, given a predicate c, there are no pair of tuples in T that satisfies
the predicate. Formally, we have:

T is cT⇎ ∃ ti ∈ T, t j ∈ T : c(ti, t j) is true ∧ ti ̸= t j (4.6)

Definition 7. Two relational conditional sets cT1 and cT2 are union compatible if they both
have the same number of attributes and each attribute from cT1 has the same domain of its
counterpart in cT2. Let us consider Ai to be the ith attribute in the schema Sch(cT) of a set cT.
The domain of Ai is Dom(Ai). In this setting, cT1 and cT2 are union compatible if and only if:

( |Sch(cT1)|= |Sch(cT2)|) ∧

(∀Ai ∈ Sch(cT1),∀A j ∈ Sch(cT2), i = j : Dom(Ai) = Dom(A j))
(4.7)
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Definition 8. The relational conditional set membership (∈c) is represented as t ∈c cT, in
which cT is a relational conditional set and t is a tuple from any relation T. Relations cT and T
must be union compatible. Tuple t is a conditional element of cT if and only if there exists one
tuple t j ∈ cT that satisfies the predicate c(t, t j). Formally, we have:

t ∈c cT⇔∃ t j ∈ cT : c(t, t j) (4.8)

Following the same idea, t is not a conditional element of cT if and only if there is no tuple
t j ∈ cT that satisfies predicate c(t, t j). Formally, it is given by:

t /∈c cT⇔ @ t j ∈ cT : c(t, t j) (4.9)

Definition 9. The relational conditional subset (⊆c) is given by cT1 ⊆c cT2, where cT1 and cT2

are relational conditional sets, and the result is either true or f alse. Relations cT1 and cT2 must
be union compatible. cT1 is a conditional subset of cT2 if and only if every tuple ti ∈ cT1 is also a
conditional element of cT2. Formally, its is defined by:

cT1 ⊆c cT2⇔∀ ti ∈ cT1 : ti ∈c cT2 (4.10)

The conditional subset operation may not be commutative, so if cT1 ⊆c cT2 is valid we
cannot affirm that cT2 ⊆c cT1 is also valid. However, one interesting property is that cT1 ⊆c cT2

can be valid even when the cardinality of cT1 is larger than that of cT2, since a single tuple of cT2

can satisfy many tuples of cT1.

Definition 10. The relational conditional intersection operation (∩c) is a binary operation
represented as cT1 ∩c cT2 = cTR, in which cTR has the result of the conditional intersection
between cT1 and cT2. Relations cT1 and cT2 must be union compatible. The resulting relation cTR

has all tuples of cT1 that are also conditional members of cT2. Formally, we have:

cTR = {ti : ti ∈ cT1 ∧ ti ∈c cT2} (4.11)

The relational conditional intersection may not be commutative. Thus, queries cT1∩c cT2

and cT2∩c cT1 do not necessarily produce the same results.

Definition 11. The relational conditional difference operation (−c) is a binary operation
represented as cT1−c cT2 = cTR, in which cTR has the result of the conditional difference between

cT1 and cT2. Relations cT1 and cT2 must be union compatible. The resulting relation cTR has all
tuples of cT1 that are not conditional members of cT2. Formally, we have:

cTR = {ti : ti ∈ cT1 ∧ ti /∈c cT2} (4.12)
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The relational conditional difference may not be commutative. Thus, queries cT1−c cT2

and cT2−c cT1 do not necessarily produce the same results.

4.2 Conclusion
This chapter presented the formal definitions for our Relational Conditional Set Op-

erations. For this, we first presented some base definitions: the arithmetic operator between
tuples (⊗), the logical operator between attribute values (⊙), the logical negation (¬), the logical
connector between boolean values (◇), the predicate between tuples (c), the relational conditional
set (cT), and the union compatibility between two conditional sets. Subsequently, we formally
define our four relational conditional set operations: the relational conditional set membership
(∈c), the relational conditional subset (⊆c), the relational conditional intersection (∩c), and the
relational conditional difference (−c).
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ALGORITHMS FOR THE RELCOND SET

OPERATIONS

In order to allow the execution of our conditional set operations, we developed algorithms
to support them. Here, the following considerations must be made.

Relations: The algorithms read both relations from disk. One relation is iterated in a
full table scan; the other is read through indexes for each column. In our motivational examples,
the right relation is the largest one, i.e., SP. However, in general, one of the two relations must
contain index structures.

Arithmetic Expressions: We assume that all expressions in the predicate refer to
the table without indexes. Note that it is always possible, e.g., instead of writing DP.Price ≥
SP.Price*2 one may write DP.Price/2≥ SP.Price.

5.1 Proposed Algorithms

Let us now focus on the algorithms. We present in this section the Algorithm 7, which
converts an expression in infix notation to one in postfix notation. This algorithm is important
in order to process efficiently evaluate the expression later. Starting the algorithm, in Lines 1-2,
we need to create a stack of pending operations and a vector to contain the postfix expression
to be returned. Also, in the initialization, Line 3 pushes an open bracket “(” onto the stack
of pending operations, as well as Line 4, adds the closing bracket “)” to the end of our input
expression. Lines 5-22 are the main loop, which will get every single token extracted from the
original expression in infix notation (in f ixExp). The current token being read will be processed
according to its type. If the token is an operand (any constant or reference to a column table), it
will be added directly to the postfix expression vector. In case the token is an opening bracket
“(”, it will be added to the stack of pending operations. But if the token is a closing bracket “)”,
we will pop tokens from the pending operations and add them to the postfix expression until
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Algorithm 7 – ToPostfix(in f ixExp)
Input: in f ixExp: Expression in infix notation
Output: post f ixExp: Expression in postfix notation

1: create stack pendingOps;
2: create vector post f ixExp;
3: push “(” onto pendingOps;
4: add “)” to the end of in f ixExp;
5: for each token extracted from in f ixExp do
6: if token is an operand then
7: add token to post f ixExp;
8: else if token is “(” then
9: add token to pendingOps;

10: else if token is “)” then
11: lastToken = pop from pendingOps;
12: while lastToken != “(” do
13: add lastToken to post f ixExp;
14: lastToken = pop from pendingOps;
15: end while
16: else if token is an operator then
17: while pendingOps.top is an operator with equal or higher precedence than token do
18: lastToken = pop from pendingOps;
19: add lastToken to post f ixExp;
20: end while
21: add token to pendingOps;
22: end if
23: end for
24: return post f ixExp;

an opening bracket is found, and the bracket will just be discarded. As the last option, if the
token is an operator of any type (logical negation, arithmetic operator, logical operator, or logical
connector), we will add to the postfix expression all top operators from the pending operations
while the top is an operator with higher or equal precedence than the current token; and then,
add the token to the stack of pending operations. The next operators are ordered by higher to
lower precedence:

1. ¬

2. *, / both with same precedence

3. +, - both with same precedence

4. <,≤,>,≥,=, ̸= both with same precedence

5. ∧

6. ∨
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Finally, we will return our postfix expression vector.

Algorithm 8 – EvaluateRelCond(cT, t, c)
Input: cT: relational conditional set, t: tuple of interest, c: predicate
Output: result: array of bits indicating each tuple of cT that satisfies c for t

1: create stack operands;
2: create stack subresults;
3: exp = ToPostfix(c); . from Algorithm 7
4: for each token in exp do
5: switch token do
6: case relation’s column name cT.A do
7: push token into operands;
8: case tuple’s column value t.A do
9: push value of t.A into operands;

10: case constant value val do
11: push token into operands;
12: case arithmetic operator ⊗ do
13: valR = pop from operands;
14: valL = pop from operands;
15: push value of valL⊗ valR into operands;
16: case logical operator ⊙ do
17: val = pop from operands;
18: A = pop from operands;
19: subresult = IndexQuery(cT, A, val, ⊙);
20: push subresult into subresults;
21: case negation ¬ do
22: R = pop from subresults;
23: push ¬R into subresults;
24: case logical connector ◇ do
25: R = pop from subresults;
26: L = pop from subresults;
27: push result of L◇R into subresults;
28: end switch;
29: end for;
30: return top from subresults;

Algorithm 8 identifies which tuples of a relational conditional set cT satisfy a predicate c

for a tuple of interest t. As it was discussed before, c is stored in a stack following the postfix
notation, and there exist index structures for each column of cT. For instance, this algorithm
could take one tuple t from relation DP of our motivational example shown in Figure 2, such
as t = (FarmAnimals, Horse, 4, 16), and return the tuples from relation SP that conditionally
satisfy t using predicate c. As a result, we would have one array of bits 10000, where a 1 in an
ith position would mean that the ith tuple of relation SP satisfies the condition, while zeros would
have the opposite meaning. Therefore, only the first tuple of SP would satisfy c for t. As it is
shown in Lines 1-2 of Algorithm 8, the first step is to create two stacks: one to store the next
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operations to be performed and another stack to store the subresults of the previous operands.
Then, as shown in Line 3, we need to get the postfix notation of the expression and save it into
exp. Now, for each token read from the expression exp, we execute an action according to the
type of the token: a) if the token refers to an attribute from relation cT (Lines 6-7), the token is
pushed into the operands stack; b) if the token refers to an attribute from tuple t (Lines 8-9), the
attribute value is pushed into the operands stack; c) if the token is a constant value (Lines 10-11),
that value is pushed into the operands stack; d) if the token is an arithmetic operator ⊗ (Lines
12-15), we pop the last two operands from the operands stack and push into the same stack the
result of the arithmetic operation; e) if the token is a logical operator ⊙ (Lines 16-20), we pop
the last two operands from the operands stack. One will always be a constant value val, and the
other will refer to an attribute A of relation cT. Then, we perform an indexed query according to
the logical operator. That is, the query retrieves each tuple ti ∈ cT such that ti.A ⊙ val is true.
The result is represented as an array of bits, where the ith bit is 1 if the ith tuple of cT is returned
by the query, and it is 0 otherwise. Then, the array is pushed into the subresults stack; f) if the
token is a negation ¬ (Lines 21-23), we negate the top of stack subresults, and; g) as the last
option, if the token is a logical connector ◇ (Lines 24-27), we pop the last two arrays of bits from
stack subresults, perform the logical operation and push the resulting array into the same stack.
Finally, once the loop ends, we have only one array of bits in the subresults stack; it is returned
as the final result of the whole operation.

Algorithm 9 implements the relational conditional set membership ∈c from Definition 8.
Thus, it identifies whether or not a tuple t is a conditional member of a set cT according to a
predicate c. The algorithm is twofold: a) use Algorithm 8 to get an array of bits representing the
tuples of cT that satisfy the condition, and; b) return true if there is any bit 1 in the array; return
f alse, otherwise.

Algorithm 9 – IsCondMember(cT, t, c)

Input: cT: relational conditional set, t: tuple of interest, c: predicate
Output: true if t ∈c cT; f alse, otherwise

1: result = EvaluateRelCond(cT, t, c); . from Algorithm 8
2: if result has any bit 1 then
3: return true;
4: end if;
5: return f alse;

Algorithm 10 implements both the conditional intersection ∩c and the conditional dif-
ference −c from Definitions 10 and 11, respectively. It receives as parameters the left relation

cT1, the right relation cT2, the predicate c, and an indicator SetOp ∈ {∩c, −c} of the operation
of interest. The result cTR is either cT1∩c cT2 or cT1−c cT2, according to SetOp. As it is shown
in Lines 1-6, the algorithm begins by creating an array of bits R to be used latter to indicate the
tuples of cT1 that should be in cTR. If SetOp = ∩c, R is initialized with 0s; otherwise, it receives
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1s. Now, as a first possibility as it is shown in lines 7-16, is that the right relation is the one with
index structures. Here, there is a loop in lines 8-16 iterating for each tuple ti ∈ cT1. The loop
updates array R only when the current tuple ti is a conditional member of cT2. In this case, R[i]

receives 1 if SetOp = ∩c; otherwise, R[i] is set to 0. As the second possibility, we could have
the index structures not in the right relation but in the left one, as it is shown in lines 17-26.
Here, there is a loop in lines 18-26 iterating for each tuple t j ∈ cT2. The first step in this loop
is to compute the sub-result S as a bits vector indicating for each tuple of cT1 if it satisfies the
predicate with t j. In this case, we will update our result R with a bit-wise operation of R∨S if
SetOp = ∩c; otherwise, R is set to R∧S. Finally, cTR is obtained as being the tuples of cT1 that
refer to each bit 1 in R.

Algorithm 10 – RelCondSetOp(cT1, cT2, c, SetOp)

Input: cT1, cT2: relational conditional sets, c: predicate, SetOp: ∩c or −c
Output: the result cTR from cT1∩c cT2 or from cT1−c cT2, according to SetOp

1: create an array of bits R of size |cT1|;
2: if SetOp is ∩c then
3: initialize R with 0s;
4: else
5: initialize R with 1s;
6: end if;
7: if cT2 is the table with index structures then
8: for each tuple ti ∈ cT1 do
9: if IsCondMember(cT2, ti, c) then . from Algorithm 9

10: if SetOp is ∩c then
11: set R[i] as 1;
12: else
13: set R[i] as 0;
14: end if;
15: end if;
16: end for;
17: else if cT1 is the table with index structures then
18: for each tuple t j in cT2 do
19: S = EvalRelCond(cT1, t j, c); . from Algorithm 8
20: if SetOp is ∩c then
21: R = R∨S;
22: else
23: R = R∧¬S;
24: end if
25: end for
26: end if
27: cTR = get tuples from cT1 that refer to each bit 1 in R;
28: return cTR;

Algorithm 11 implements the relational conditional subset operator ⊆c from Definition 9.
Thus, it receives as parameters the left relation cT1, the right relation cT2, and the predicate c.
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This short algorithm simply executes the conditional intersection cT1∩c cT2, and verifies it the
result of this operation is equal to relation cT1. If so, the algorithm returns true; otherwise, it
returns f alse.

Algorithm 11 – IsCondSubset(cT1, cT2, c)

Input: cT1, cT2: relational conditional sets, c: predicate
Output: true if cT1 ⊆c cT2; f alse, otherwise

1: if RelCondSetOp(cT1, cT2, c, ∩c) = cT1 then . from Algorithm 10
2: return true;
3: end if;
4: return f alse;

5.1.1 Complexity Analysis:

For the analysis, let us consider p to be the number of tokens that a predicate c has, while
m and n are the cardinalities of relations cT1 and cT2, respectively. Algorithm 7 only iterates the
size of the predicate that is passed as parameter, using simple push and pop operations of the stack.
As all process is executed accessing memory, the time is negligible and the complexity would
be only O(1). Algorithm 8 iterates each predicate token. Each iteration runs an indexed query
over a given relation; let us assume it to be cT2. The algorithm takes advantage of existing index
structures to perform the queries, so the use of state-of-the-art indexes allows each execution
of function IndexQuery in Line 17 to cost O(logn+ s) time, where s ≤ n is the number of
tuples selected by the query. Thus, the overall time complexity of Algorithm 8 is O(p(logn+ s)).
Algorithm 9 executes Algorithm 8 using as parameters a tuple t, a predicate c and a given
relation; again, let us assume it to be cT2. Then, the algorithm looks at negligible cost for a bit 1
in the resulting array of bits. Thus, the overall time complexity of Algorithm 9 is O(p(logn+ s)).
Algorithm 10 initializes at negligible cost an array of bits. Then, according to where the index
structures are located. If index is in right relation cT2, the loop in Lines 8-13 executes Algorithm 9
for each of the m tuples in cT1, using cT2 as a parameter with cost O(mp(logn+ s)). If index
is in left relation cT2 the loop in Lines 18-25 executes Algorithm 8 for each of the n tuples
in cT2, using cT1 as a parameter with cost O(np(logm+ s)). Then, the whole function costs
O(p(m(logn+ s)+ n(logm+ s))) in total. At last, in Line 14, relation cT1 is scanned at cost
O(m). Thus, the overall cost of Algorithm 10 is O(mp(logn+ s) +m). Algorithm 11 runs
Algorithm 10 and validates at cost O(m) if the result is equal to cT1. Thus, the overall complexity
of Algorithm 11 is O(p(m(logn+ s)+n(logm+ s))+m). Finally, let us emphasize that p tends
to be small in practice because large predicates are rare, so our algorithms are fast and scalable
as long as the query selectivity s is also small, just like it happens with any index-based access
method.
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5.2 Conclusion
We have presented in this chapter all necessary algorithms to support our relational

conditional set operations. In this case, we started with Algorithm 7 which converts an infix
expression into postfix notation, allowing us to read a user formatted query, and after its con-
version to postfix, to be able to evaluate it efficiently with Algorithm 8. This algorithm for
evaluation will require the relational conditional set, a tuple, and a predicate; and identifies which
tuples of the relational conditional set satisfy a predicate for the tuple of interest. Then, we
present our Algorithm 9, which answers if a certain tuple is a conditional member of a relational
conditional set for a given predicate. Also, this algorithm is used by Algorithm 10 that performs
the conditional intersection or conditional difference, according to a parameter, returning the
resulting conditional set for the desired operation. Finally, we also presented Algorithm 11,
which verifies if one conditional subset is a conditional member of another. Additionally, we
discussed the complexity analysis of all our algorithms.
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EXPERIMENTS

We evaluated the semantics and the usability of our operators, as well as the scalability
of our algorithms by following the motivational example of product sales. The experiments were
performed to answer two main Research Questions:

∙ RQ1: How accurate are the new relational conditional set operations in the sense of
returning what the users expect to receive?

∙ RQ2: How effective and scalable are the algorithms that we propose?

Algorithms 7-11 were implemented in C++ with page buffer management. Library
Arboretum1 was used to run indexed queries. All experiments were performed with an Intel
Core i7 processor working at 3.4GHz and 8GB of RAM.

Observation: for the purpose of reproducibility, all codes, results, and datasets studied
in this work are freely available for download online2.

6.1 Amazon Toys

Following our motivational example of product sales, we studied a dataset3 of toy
products from Amazon. The dataset was preprocessed to suit the purpose of our case study.
Originally, it had 10,000 tuples and 16 attributes. However, each tuple representing a product
contained information about a collection of suppliers and their respective prices. Thus, we
preprocessed the data to have one tuple per supplier of each product. Unfortunately, the number
of units available of each product was the stock of all suppliers combined, and not the stock
of each individual seller. Thus, we were forced to generate random numbers of units that are

1<https://bitbucket.org/gbdi/arboretum/>
2<https://github.com/alivasples/RCSetOp>
3<https://www.kaggle.com/PromptCloudHQ/toy-products-on-amazon>

https://bitbucket.org/gbdi/arboretum/
https://github.com/alivasples/RCSetOp
https://www.kaggle.com/PromptCloudHQ/toy-products-on-amazon


70 Chapter 6. Experiments

lower than or equal to the corresponding total stock of each product. We also removed tuples
with missing information. The preprocessed dataset is freely available for download online 2.
It has 25,457 tuples referring to 4,277 unique toy products, and 5 columns: supplier, category,
product, units, and price.

6.2 Semantic Validation

This section investigates Research Question RQ1 by validating the semantics of our
operators in the case study of sales of products. To make it possible, we generated 200 conditional
sets by sampling at random the Amazon Toys dataset; they represented 100 pairs of relations DP

and SP to be given as input for the queries. As this experiment intended to validate semantics
only, the numbers of tuples, i.e., products, in the relations are small, varying from 3 to 6, so that
we could manually verify if the results are meaningful. For each pair DP and SP, we ran the 4
motivational queries that were described previously in Chapter 1, that is: Query Q1 – “Can I buy
a certain product X in the store?”; Query Q2 – “Can I buy all the desired products in the store?”;
Query Q3 – “Which desired products can be bought in the store?”, and; Query Q4 – “Which
desired products won’t be found in the store?”. Note that, for Query Q1, each pair led to several
executions by verifying if one can buy each product in DP individually. In summary, correct
results were obtained for all 100 pairs of relations; thus, we argue that they validate the semantics
of our proposals. From the pairs of relations studied, one specific case shown in Tables 3 and 4
was the one that we took as inspiration for our motivational example of the introductory Figure 2.
Table 5 shows the results obtained from our algorithms for our query Q3, this is, the intersection
of DP∩c SP: the list of products that can be bought in the store. The tuples listed in the result
are also the tuples that satisfy are true in the result of query Q1, the tuples that are conditional
members of SP. In contrast, Table 6 shows the results obtained from our algorithms for our
query Q4, this is, the difference of DP−c SP: the list of products that can’t be bought in the store.
Here, the listed tuples, are those which are not conditional members of SP. As there were tuples
in the left relation DP that were not conditional members of the right relation DP, consequently,
our algorithm’s answer for Query Q2 is also f alse.

Table 3 – Relational conditional set Desired Products (DP) and query results

CATEGORY PRODUCT UNITS PRICE
Fantasy Robot 17 30.32

Farm Animals Horse 4 15.57
Educational Think. Game 4 52.8

Vehicles Lexus 33 16.05
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Table 4 – Relational conditional set Store Products (SP)

CATEGORY PRODUCT UNITS PRICE
Farm Animals Horse 2 6.24
Educational Think. Game 4 52.8

Fantasy Robot 9 32.51
Star Wars Wicket 13 16.26

Accessories Playmobil 20 12.99

Table 5 – Relational conditional intersection (DP∩c SP) results

CATEGORY PRODUCT UNITS PRICE
Farm Animals Horse 4 15.57
Educational Think. Game 4 52.8

Table 6 – Relational conditional difference (DP−c SP) results

CATEGORY PRODUCT UNITS PRICE
Fantasy Robot 17 30.32
Vehicles Lexus 33 16.05

R. C. Intersection ( ⋂ ) R. C. Difference ( － ) R. C. Subset ( ⊆ ) R. C. Member. ( ∈ )c c c c

| |c 1T | |c 1T | |c 1T | |c 1T

| |c 2T | |c 2T | |c 2T | |c 2T

R. C. Intersection ( ⋂ ) R. C. Difference ( － ) R. C. Subset ( ⊆ ) R. C. Member. ( ∈ )c c c c

| |c 2T

1K 2K 3K 4K

Figure 18 – Scalability of our conditional set operators in dataset Amazon Toys.

6.3 Scalability

This section investigates Research Question RQ2 by evaluating the scalability of our
algorithms. To make it possible, we generated random samples of varying sizes from dataset
Amazon Toys to represent pairs of conditional sets cT1 and cT2. Specifically, we created 100
pairs by varying the cardinality of cT1 from 40 to 4,000 and using a fixed cardinality of 1,000 for

cT2. Other 300 pairs were created in a similar way: 100 pairs with |cT2|= 2,000, 100 pairs with
|cT2|= 3,000 and 100 pairs with |cT2|= 4,000. Then, operators ∩c,−c and⊆c were executed 10
times for each of these pairs of relations to obtain average runtime results. A distinct procedure
was necessary for operator ∈c, since it receives a tuple t and a single conditional set cT as input;
not, two sets. Thus, we took each of the 4,000 tuples from our largest relation cT1 to be tuple t

and executed t ∈c cT2 to obtain the average runtime. The distinct versions of relation cT2 were
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considered, whose cardinalities go from 1,000 to 4,000. Figure 18 reports the results obtained
from the aforementioned procedure. Each individual plot reports average runtime versus the
cardinality of cT2; distinct lines refer to distinct cardinalities of cT1. As it can be seen, the results
corroborate our theoretical analysis of complexity from our motivational example, by indicating
that all of our algorithms are fast and scalable.

6.4 Conclusion
We discussed in this chapter the experiments performed so as to semantically validate our

proposal and also achieve demonstrating the scalability of our algorithms. For this, we followed
our motivational example of sales of amazon toys, and generated several short tests and big tests.
From the short tests, we observed that all return the expected results, and picked up one of them
to explain it in the results. With this, we semantically validated our proposal. With the big tests,
we ran our algorithms many times and demonstrated the scalability of our algorithms.



73

CHAPTER

7
DISCUSSION

In this chapter, we will discuss two important points. Firstly, we discuss the generality
and usability of our relational conditional set operations, showing other real-life applications
where our operator could be used. Secondly, we discuss the reason why a relational conditional
union operator was not defined in previous chapters as well as present how it would be its formal
definition and algorithm.

7.1 Usability and Generality

This section presents other applications where our operators are well suitable, thus
corroborating their general usability.

7.1.1 Job Promotion

Let us consider a call for a job promotion supported by data from the Desired Skills
(DS) for the job position and one candidate Employee’s Skills (ES). Each skill can be quantified
by a certification grade on a scale from 1 (beginner) to 5 (expert), with 0 for none; or, by
the number of years of experience. Thus, we have relations with schemas Sch(DS) = Sch(ES)
= (Skill, Grade, Exp). The traditional set-based operators would be helpless here, as they
would not allow to verify if the employee has the minimal certification grade or the minimal
experience for each desired skill. However, this condition can be easily treated by our operators
as illustrated in Figure 19. Here, we only have to consider a predicate shown in Figure 19.a:
c : DS.Skill =ES.Skill ∧ (DS.Grade≤ES.Grade ∨ DS.Exp≤ES.Exp). Now, one may design
and execute queries like: a) “Does one skill t ∈ ES satisfy any desired skill?” with t ∈c DS; b)
“Does the employee satisfy all the desired skills?” with DS⊆c ES; c) “Which desired skills does
the employee satisfy?” with DS∩c ES, and; d) “Which are the desired skills that the employee
does not satisfy?” with DS−c ES.
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Figure 19 – Example of RelCond Set Operations: Job Promotion.

Predicate c:
ES.Skill = DS.Skill AND
(ES.Grade >= DS.Grade OR
ES.Exp >= DS.Exp)

a)

d) e)

EMPLOYEE’S SKILLS (ES)

Skill Grade Exp

Python 0 3

MySQL 2 1

HTML 4 0

⊈

b)

c

∉

∈

c)

MySQL 2 1

HTML 4 0

c

c

INTERSECTION (ES ∩ DS)

Course Score

Python 0 3

HTML 4 0

DIFFERENCE (ES － DS)

Course Score

MySQL 2 1

c c

DESIRED SKILLS (DS)

Skill Grade Exp

Python 3 1

HTML 3 2

MySQL 4 2

Source: Elaborated by the author.

7.1.2 Internship

For this case let us consider an organization that wants to recruit an intern. Naturally,
the organization would like to analyze the best options among the applicants, and the first step
would be to inspect their grades in the Courses Attended (CA) in college. Here, the organization
would list the Requested Courses (RC) with minimal grades, and contact an applicant for an
interview only if he/she satisfies those requisites. Therefore, the schemas Sch(RC) = Sch(CA) =
(Course, Score). The traditional set-based operators would be helpless here, as they would not
allow one to verify if an applicant has the minimal grades for the requested courses. Fortunatelly,
our operators are promptly applicable as illustrated in Figure 19. Here, we only have to consider
a predicate shown in Figure 20.a: c : RC.Course =CA.Course ∧ RC.Score≤CA.Score. Now,
one may design and execute queries like: a) “Does a certain applicant’s course t ∈CA satisfy any
of the requested courses?” with t ∈c RC; b) “Does the applicant satisfy all the requested courses?”
with RC ⊆c CA; c) “Which requested courses does the applicant satisfy?” with RC∩c CA, and; d)
“Which are the requested courses that the applicant do not satisfy?” with RC−c CA.
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Figure 20 – Example of RelCond Set Operations: Internship selection.

Predicate c:
CA.Course = RC.Course AND
CA.Score >= RC.Score

a)

d) e)

COURSES ATTENDED (CA)

Course Score

Algorithms 6

Data Structures 6

Linear Algebra 8

⊈

b)

c

∉

∈

c)

Algorithms 6

Data Structures 6

c

c

INTERSECTION (CA ∩ RC)

Course Score

Data Structures 6

DIFFERENCE (CA － RC)

Course Score

Algorithms 6

Linear Algebra 8

c
c

REQUESTED COURSES (RC)

Course Score

Algorithms 7

Data Structures 6

Source: Elaborated by the author.

7.2 Conditional Union

In this work, we have expanded different concepts from the Theory of Sets. However, we
did not discuss a potential conditional union operation because we could not identify practical
utility for it. For example, let us consider once again the motivational case study on sales of
products that is illustrated in Figure 2. The union of relations DP and SP would return the
products that are either desired by the client or available in the store. In the job promotion
case from Section 7.1.1, the union of DS and ES would be the skills that are either desired by
the employer or present in the employee. Also, in the internship example of Section 7.1.2, the
union of RC and CA would be the courses that are either requested to recruit applicants or in
the applicant’s curriculum. In our humble opinion, none of these results seem to be meaningful
for practical use. However, it would be straightforward to define a relational conditional union
operator ∪c, if it is required in any future work. Thus, we present its formal definition in
Definition 12.

Definition 12. The relational conditional union operation (∪c) is a binary operation repre-
sented as cT1∪c cT2 = cTR, in which cTR has the result of the conditional union between cT1 and

cT2. Relations cT1 and cT2 must be union compatible. The resulting relation cTR has all tuples of
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cT1 in addition to all tuples of cT2 that are not conditional members of cT1. Formally, we have:

cTR = cT1 ∪ {ti : ti ∈ cT2 ∧ ti /∈c cT1} (7.1)

The relational conditional intersection may not be commutative. Thus, queries cT1∩c cT2

and cT2∩c cT1 do not necessarily produce the same results.

Algorithm 12 – RelCondSetOp(cT1, cT2, c, SetOp)
Input: cT1, cT2: relational conditional sets, c: predicate, SetOp: ∩c or −c or ∪c
Output: the result cTR from cT1∩c cT2 or from cT1−c cT2, according to SetOp

1: create an array of bits R1 of size |cT1|;
2: create an array of bits R2 of size |cT2|;
3: if SetOp is ∩c then
4: initialize R1 with 0s;
5: else
6: initialize R1 with 1s;
7: end if;
8: initialize R2 with 0s;
9: for each tuple ti ∈ cT1 do

10: S = Index_TupleQuery(cT2, ti, c);
11: if SetOp is ∩c and S has any bit 1 then
12: set R1[i] as 1;
13: else if SetOp is −c and S has any bit 1 then
14: set R1[i] as 0;
15: else
16: R2 = R2∨S
17: end if;
18: end for;
19: cTR1 = get tuples from cT1 that refer to each bit 1 in R1;
20: cTR2 = get tuples from cT2 that refer to each bit 1 in R2;
21: return cTR1∪ cTR2;

Also, it would be easy to adapt our Algorithm 10 to support the conditional union. This
adaptation is studied in Algorithm 12. Algorithm 12 receives as parameters the left relation cT1,
the right relation cT2, the predicate c, and an indicator SetOp ∈ {∩c, −c, ∪c} of the operation of
interest. The result cTR is either cT1∩c cT2, cT1−c cT2, or cT1∪c cT2, according to SetOp. As it is
shown in Lines 1-8, the algorithm begins by creating the arrys of bits R1 and R2 to be used latter
to indicate the tuples of cT1 that should be in cTR1 and the tuples of cT2 that should be in cTR2

respectively. If SetOp = ∩c, R1 is initialized with 0s; otherwise, it receives 1s. In all cases, R2

will be initialized with 0s. The main loop in Lines 9-18 iterates for each tuple ti ∈ cT1. The first
step in this loop is to compute the sub-result S as a bits vector indicating for each tuple of cT2

if it satisfies the predicate with ti. Then, if SetOp = ∩c and any bit of S is 1, R[i] receives 1. If
instead SetOp =−c and any bit of S is 1, R[i] receives 1. Otherwise, R2 is set to R2∨S. Finally,
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cTR1 is obtained as being the tuples of cT1 that refer to each bit 1 in R1, cTR2 is obtained as being
the tuples of cT2 that refer to each bit 1 in R2 and the union of both cTR1∪ cTR2 is returned.

7.3 Conclusion
We discussed in this chapter two important points. As first point, we discuss the generality

and usability of our relational conditional set operations. Here, we presented an example of
job promotion and one of internship. We discussed how the left and right relations would
be constructed and which queries would be answered by the conditional membership, subset,
intersection, and difference. Also, we illustrated both examples. The other important point was
to justify why we didn’t present the relational conditional union operation as a main part of our
proposal. Still, we discuss how it would be its definition and the algorithm to support it.
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CHAPTER

8
CONCLUSIONS AND FUTURE WORK

In this chapter we present our final conclusions as well as discussing future work.

8.1 Conclusions

In this work, we demonstrated that the set-based operations of the Relational Algebra
have severe limitations that prevent their use in several real-world applications. Thus, we tackled
the problem by means of four main contributions:

C1 Operators Design and Usability – We first discussed about the traditional set operators
and point that they are very useful when elements are compared by identity. That is, when
it makes sense to compare elements by the implicit identity predicate that says that a tuple
is a member of a relation if it is identical to any tuple in the set. Also, we explored the
related works on the relational set operations, many of them even extend the operators to
work with other type of data, such as complex data. When we are working with data types
as images, videos, long texts, and other complex elements, we can use the similarity-aware
sets and the similarity-aware binary operations. However, even when we found several
works that extend the set operations, none of them allow us to compare tuples by custom
predicate predicates. Therefore, we tackled the problem by presenting the new Relational
Conditional Set Operators that are naturally well suited to answer queries using custom
predicates.

C2 Formal Definition and Algorithms – we formally defined the new conditional set oper-
ators as the relational conditional Set Membership ∈c, relational conditional Subset ⊆c,
relational conditional Intersection ∩c, and relational conditional Difference −c, thus en-
abling their usage in queries along with the existing algebraic operators. Additionally, we
designed novel algorithms that execute these operators in a fast and scalable manner.
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C3 Semantic Validation – we performed a case study by analyzing real data from thousands
of toy products available for sale at Amazon. We generated several datasets from the
original. Then, we ran our relational conditional set algorithms with them. The results
corroborate the practical usability of our operators in real-life applications.

C4 Generality and Usability – we exemplified other cases of use where our operators are
well suitable, thus corroborating their generality and usability. Here, we presented an
example of job promotion with desired skills and grades or certifications, and the other
example of students internships, considering graduation scores. We presented schemas for
both cases constructed and the queries that can be answered with our relational conditional
set membership, subset, intersection, and difference operations. Thus, corroborating that
our operators can be used in more real-life applications.

C5 Basis for other operators – our new operators can also be used as the basis for other
relational algebra operations. For example, in Appendix A, we discuss the utility of gener-
alizing the relational division to a new operator that can also support custom predicates,
using as a basis our relational conditional set operations.

In addition, as part of this MSc work, we generated two publications, the first one (LIMA
et al., 2020) as collaborator together with other authors, and the second one (LESCANO;
CORDEIRO, 2021) is the publication that shares our hypothesis results.

1. Afonso Lima, Alexander Florez, Alexis Aspauza, João Novaes, Natalia Martins, Caetano
Traina, Elaine P. M. de Sousa, José F. Rodrigues Júnior, Robson L. F. Cordeiro: Analysis
of ENEM’s attendants between 2012 and 2017 using a clustering approach. In: Journal of
Information and Data Management 2020. Pages 115-130. Available at: <https://periodicos.
ufmg.br/index.php/jidm/article/view/24835>.

2. Alexis Iván Aspauza Lescano, Robson Leonardo Ferreira Cordeiro: Relational Conditional
Set Operations. In: 25th European Conference on Advances in Databases and Informa-
tion Systems. Pages 38-49. Available at: <https://link.springer.com/chapter/10.1007%
2F978-3-030-85082-1_4>.

8.2 Future Work
This MSc work achieved all proposed objectives and yet, it is just a tiny part of science.

It opens then, path for future works such as follows:

∙ We formally defined our relational conditional set operators and proposed scalable algo-
rithms to support them. Thus, one of the closest future works would be to implement these
algorithms into Database Management Systems.

https://periodicos.ufmg.br/index.php/jidm/article/view/24835
https://periodicos.ufmg.br/index.php/jidm/article/view/24835
https://link.springer.com/chapter/10.1007%2F978-3-030-85082-1_4
https://link.springer.com/chapter/10.1007%2F978-3-030-85082-1_4
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∙ In parallel, we could also propose SQL sentences to express our relational conditional set
operations in DBMS. Then, we can even compare the results and running measurements
against our base algorithms.

∙ Also, in contrast to the traditional set operations where the tuples in the intersection’s
result are member of both relations, here they do not necessary belong to the right relation
but always do it to the left one. Consequently, another future work can explore the utility
of allowing the user to specify the default’s relation result.

∙ When we work with SQL, we actually work with bags or multisets. This is, a relation
can actually have duplicate elements. Thus, future works can generalize the use of our
relational conditional set operations to work with multisets.

∙ We presented scalable algorithms to support our novel operators. However, these algorithms
are only a starting point. Then, there is a whole new path to explore the optimization of
these novel operators.

∙ So far we only used simple data in our proposal. However, we could also extend the
concept to support similarity in future works. For example, in our motivation example
of sales of toys, we could compare images of the toys, but keeping the other conditional
elements, such as quantity and price.

∙ Finally, the algebra of sets is such a fundamental concept that we believe that future works
can explore the usability of our novel operators as basis of other operations. As an example,
we present in Appendix A how the relational division could be generalized to also support
custom predicates.
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APPENDIX

A
RELATIONAL CONDITIONAL FOR ALL AND

FOR ANY OPERATIONS

In Relational Algebra, the operator of division (÷) is an intuitive way to answer queries
with the concept of “for all”, and thus, it is constantly required in real applications. The dividend’s
tuples are grouped into sets and each set that contains the whole divisor as a subset is part of
the quotient. However, these operations have limitations because of the implicit use of the
identity predicate. That is, a tuple is a member of a set if it is identical to any tuple in the set.
Still, many applications need other comparison predicates different than identity. Also, with a
simple variation, we could also answer queries with the concept of “for any”. This appendix
presents the new Relational Conditional For All ( ∀c ) and Relational Conditional For Any
( ∃c ) operators. These novel operators are naturally well suited to answer queries with an idea
of “candidate elements and requirements” to be performed with custom predicates. The first
one is the generalization of the relational division, which allows us to answer queries when all
requirements are needed. In contrast, the second one will allow us to answer queries when at least
one requirement is needed. For example, they are potentially useful to support products’ imports,
detect allergen products, filter candidates for job promotions, and filter candidates for internships.
We semantically validate our proposals by studying the first two of these applications. Also, we
propose scalable algorithms to support our novel operators.

A.1 Introduction

The Relational algebra(CODD, 1972; CODD, 1990) is a set of operations performed on
relations such as: Union (∪), Intersection (∩), Difference (−), Selection (σ ), Projection (π), Join
(./), Cartesian Product (×) and Division (÷). One of these operations, the relational division
is defined for convenience for dealing with queries that involve universal quantification or the
“for all” condition. Most Relational DataBase Management Systems (RDBMS) do not directly



90 APPENDIX A. Relational Conditional For All and For Any operations

implement division, and still, the relational division is required in real-world applications. For
example, it is useful to answer the next queries:

∙ “What students approved all courses required for an internship?”

∙ “What employees have all skills for a job promotion?”

∙ “What food products have all ingredients of a list in their composition?”

∙ “Which suppliers can send all requested products in just one shipment?”

T1: SUPPLIERS

SupplierID Category Product

A1 Toys Card Games UNO Cards

A1 Toys Vehicles Thomas Train

A1 Toys Action Figures Black Widow

A1 Toys Card Games Yu-Gi-Oh!

Blue Trade Card Games UNO Cards

Blue Trade Chess Chess Teacher

Fun Collectables Card Games UNO Cards

Fun Collectables Card Games Looney Labs

Fun Collectables Action Figures Black Widow

T2: REQUEST

Category Product

Card Games UNO Cards

Action Figures Black Widow÷
TR: PACK SUPPLIER

SupplierID

A1 Toys

Fun CollectablesTG3

TG2

TG1

Implicit Predicate (c):
T1.Category = T2.Category AND T1.Product = T2.Product

Figure 21 – Example of relational division. Querying all suppliers who can send all requested products in
a single shipment.

In order to understand better the relational division, let’s focus on the last example.
Suppose that a client wants to import a list of products urgently and he is willing to pay for an
express shipment. Then, all the required products should come in just one shipment. Given a
list of suppliers with all the products they offer, the relational division can answer the query:
Q1: which suppliers can send all requested products in just one shipment? This example is
presented in Figure 21. Here, the dividend (T1) is the list of suppliers and their products, having as
attributes: the supplier identifier, the product category, and the product name. Also, the dividend
is split into different products sets, grouped by the supplier, in our example, the products from
the stores “A1 Toys”, “Blue Trade”, and “Fun Collectables”. The divisor (T2) is composed by the
list of requirements, also containing category and name of each product. Finally, each group that
contains all divisor requirements is part of the result or quotient (TR). In our example, the result
is formed by the stores that can deliver all desired products. Note that the traditional division
uses an implicit identity predicate to compare the tuples between dividend and divisor. This is,
tuples from dividend and divisor must be identical in all pairs of comparison attributes’ values.
This predicate is also illustrated in Figure 21.
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Now, let’s expand our example by adding other two attributes to both relations: units
and price. This is illustrated in Figure 22. In T1 these attributes refer to each store’s available
units and tag price. In T2 they refer to the client’s desired units and maximum affordable price.
Additionally, let us assume that the client can accept fewer units than the desired ones if the
seller has a low price, let’s say it is at most half of the client’s budget. Now, to compare tuples by
identity would not be useful. We need to employ a custom predicate to match suppliers’ products
with the client’s preferences, i.e., having enough units and acceptable price, or simply low price.
The predicate c is also shown in Figure 22.

Remember that we need to answer the query “Q1: which suppliers can send all requested
products in just one shipment?”. However, we need to compare tuples with a custom predicate
that the relational division doesn’t support. Thus, it could be answered with the Relational
Conditional For All ( ∀c ) operator. This new operator is a generalization of the relational
division with a new feature to support custom predicates. Also, this new operator loses the
property of being “the opposite operation of the Cartesian Product”. Thus, we also need to adapt
the concepts of dividend, divisor and quotient, and rename them as “candidates”, “requirements”,
and “result” relations respectively. Here, the candidates’ relation (T1) needs to be split into
groups, being grouped by those attributes that are not part of the predicate. In our example from
Figure 22, T1 is grouped by supplier. Then, if all requirements’ relation (T2) tuples satisfy the
predicate to any tuple of one group, this group is part of the result. In our example, each supplier
who has all required products with enough units and affordable price, or low price, is part of the
result.

T2: REQUEST

Category Product Units Price (€)

Card Games UNO Cards 40 15

Action Figures Black Widow 20 13

T1: SUPPLIERS

SupplierID Category Product Units Price (€)

A1 Toys Card Games UNO Cards 25 6

A1 Toys Vehicles Thomas Train 1 7

A1 Toys Action Figures Black Widow 24 13

A1 Toys Card Games Yu-Gi-Oh! 12 15

Blue Trade Card Games UNO Cards 20 6

Blue Trade Chess Chess Teacher 3 20

Fun Collectables Card Games UNO Cards 44 6

Fun Collectables Card Games Looney Labs 13 14

Fun Collectables Action Figures Black Widow 26 12

∀c
TR: PACK SUPPLIER

SupplierID

A1 Toys

Fun Collectable

Explicit Predicate (c):
T1.Category = T2.Category AND 
T1.Product = T2.Product AND 
((T1.Units >= T2.Units AND 
T1.Price <= T2.Price) OR
T1.Price <= T2.Price * 0.5)

TG3

TG2

TG1

Figure 22 – Example of relational conditional For All operation: Suppliers which can send all requested
products in just one ship, “having enough” units and price “up to” the client’s budget, or a
low price for that product.

Now, let’s assume that the client doesn’t need the products with urgency, and conse-
quently, he can receive the products from different suppliers. This case is too similar to the
previous one, same data and same predicate, but instead of answering the “for all” query, we
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T2: REQUEST

Category Product Units Price (€)

Card Games UNO Cards 40 15

Action Figures Black Widow 20 13

T1: SUPPLIERS

SupplierID Category Product Units Price (€)

A1 Toys Card Games UNO Cards 25 6

A1 Toys Vehicles Thomas Train 1 7

A1 Toys Action Figures Black Widow 24 13

A1 Toys Card Games Yu-Gi-Oh! 12 15

Blue Trade Card Games UNO Cards 20 6

Blue Trade Chess Chess Teacher 3 20

Fun Collectables Card Games UNO Cards 44 6

Fun Collectables Card Games Looney Labs 13 14

Fun Collectables Action Figures Black Widow 26 12

∃c

TR: PACK SUPPLIER

SupplierID

A1 Toys

Blue Trade

Fun Collectable

Explicit Predicate (c):
T1.Category = T2.Category AND 
T1.Product = T2.Product AND 
((T1.Units >= T2.Units AND 
T1.Price <= T2.Price) OR
T1.Price <= T2.Price * 0.5)

TG3

TG2

TG1

Figure 23 – Example of relational conditional For Any operation: Suppliers which can send any require
product, “having enough” units and price “up to” the client’s budget, or a low price for that
product.

need to answer a “for any” query. This new operator will allow us to answer the query: “Q2:
which suppliers can send any desired product?”. Let’s call this a Relational Conditional For
Any ( ∃c ) operation. Here, if any requirement’s relation (T2) tuple satisfy the predicate to any
tuple of one group in the candidates’ relation (T1), this group is part of the result. This case is
illustrated in Figure 23. In our example, each supplier who has any required product with enough
units and affordable price, or low price, is part of the result.

As it was described before, the relational division is well suited to answer queries with
the “for all” concept. However, it has severe limitations when we need to compare tuples by any
predicate different than identity.

This proposal tackles the problem by presenting the new Relational Conditional For
All ( ∀c ) and Relational Conditional For Any ( ∃c ) database operators. Note that if we use
identity predicates with our For All operator, we would be performing a relational division. In
general, our main contributions are:

C1 Operator Design and Usability – we identified severe limitations on the usability of the
Relational Division to process queries of the “For All” type with custom predicates. We
also notice that with a simple variation, we could answer queries of the “For Any” type.
Thus, we extended these operators into a new one to tackle the problem.

Our Relational Conditional For All ( ∀c ) and Relational Conditional For Any ( ∃c )
operators are naturally well suited to answer queries with the idea of “candidate elements
and requirements” to be performed when all requirements are requested or just any of
them. Also, the predicates to compare tuples can be customized by the user and are not
limited to identity.
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C2 Formal Definition and Algorithms – we formally defined the Relational Conditional
For All and For Any operators, enabling their usage in queries along with the existing
algebraic operators. Also, we carefully designed novel algorithms to execute our new
operators in a fast and scalable manner.

C3 Semantic Validation – we analyzed a case of products’ importation, following our
motivational example with toys, units, and price. Also, we proposed a case for the detection
of allergen products. The results of these case studies corroborate the practical usability of
our operators in real applications.

C4 Generality and Usability – we also exemplified other cases where our operators are well
suitable, corroborating their general usability.

Observation: for the purpose of reproducibility, all codes, detailed results, parameter
values tested and datasets studied in this chapter are freely available for download online 1.

A.2 Background

A.2.1 Relational Algebra

The Relational Algebra (CODD, 1972; CODD, 1990) is defined as a set of operations,
not necessarily binary, that are performed on relations and the result is another relation. Some
relational algebra operations are: the renaming operation (ρ), selection (σ ), projection (π), union
(∪), intersection (∩), difference (−), Cartesian product (×), join (./), and division (÷). In this
section, we will focus on relational division.

A.2.1.1 Relational Division (÷)

The relational division (CODD, 1972; CODD, 1990) is very similar to integers division
(RAMAKRISHNAN; GEHRKE, 2000). In both cases, there exists a dividend, divisor, quotient,
and residual. Remember that for two integers D and d, D÷d gives us as quotient q, which is the
largest integer such that q×d ≤D. Also, the missing units for D, this is D−q×d, is the residual.
Very similar, when we work with relations T1 and T2, T1÷T2 gives us as quotient TR, which is
the largest relation such that TR×T2 ⊆ T1. Here, the missing tuples to T1, this is T1−TR×T2,
make up the residual.

Some considerations when performing a relational division between dividend T1 and
divisor T2 are: (1) the lists of attributes to be compared from both relations, L1 ∈ Sch(T1) and
L2 ∈ Sch(T2), can be expressed in the operation T1[L1÷L2]T2; (2) both lists of attributes L1 and
L2 must be union-compatible, i.e. both lists must contain same number of attributes and each
pair of L1[i],L2[i] must have the same domain; (3) if L1 and L2 are not explicitly expressed in the

1https://github.com/alivasples/ConditionalBinOps
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operation T1÷T2, they will be composed by the attributes with same name and domain in both
relations.

The schema of the quotient TR has the columns of T1 that are not present in L1,Sch(TR) =

L1, and the values it takes are the subset of π(L1)
(T1) with the greatest possible cardinality, such

that TR×T2 ⊂ T1. Thus, T1 is partitioned into k ≥ 0 different groups of tuples such that each TGk

group ⊂ T1 represents a candidate tuple for the quotient TR if it manages to satisfy the conditions
of TR×T2 ⊂ T1 and T1 = ∪k

k=1TGk . Finally the residual is given by T1− (TR×T2). Equation A.1
defines the Relational Division operation.

T1[L1÷L2]T2 = π(L1)
(T1)−π(L1)

((
π(L1)

(T1)×π(L2)(T2)
))
−T1 (A.1)

An example of the relational division was presented in Figure 21, which aims to solve
the query “Which suppliers can send all requested products in just one ship?”. Here, T1 is
the Suppliers relation and T2 is the Request relation. Each group TGi is formed by tuples that
have the same Seller, the attributes [L1÷L2] under which the division is being executed are
(Category,Product)÷ (Category,Product) and the result is the list of suppliers that meet all the
requirements.

A.2.2 Relational Conditional Set Operations

The Relational Conditional “For All” and “For Any” operations will also have as ba-
sis many of the concepts we previously defined in Chapter 4. Remember that the Relational
Conditional Set Operations extend the traditional concepts of set membership (∈), subset (⊆),
intersection (∩), and difference (−) from the relational algebra set operations. These extensions
are well suited to work with custom predicates, this is when we want to compare tuples by
any user custom condition and not necessarily compare them by identity. As an example of the
relational conditional set operations, let’s take a look to Figure 22. Let’s have as left relation
the group TG1 , getting only the projection of category, product, units, and price. In other words,
we have a list of products from a single store. As the right relation, let’s use T2. This is the list
of desired products by a client. In the end, with a conditional set membership operator (∈c)
we could query if any desired product can be bought at that store. With the conditional subset
operator (⊆c) we could know if all desired products can be bought at the store. The relational
conditional intersection operator (∩c) would tell us all products that can be bought in the store.
Finally, in contrast, the relational conditional difference operator (−c) tells us the products not
available in the store.
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A.3 Related Work

In this section we discuss the main works related to our proposal. As we previously
discussed most of these related works in Chapter 3, in this section we will only summarize the
ones most related to the relational division. First, we discuss the works that focus on implementing
operators able to answer queries of “for all” and “for any” in the Relational Algebra. Then, we
discuss the works that generalize the relational division.

A.3.1 For All and For Any operations in the Relational Algebra

We consider the “For All” ( ∀c ) and “For Any” ( ∃c ) operations as binary operations
that receive one relation of “candidates” and another relation of “requirements”. The “For All”
operation will retrieve the groups of candidates that satisfy all the requirements. Unlike, the “For
Any” operation will retrieve the groups that satisfy any requirement. Also, note that the meaning
of our operators is different to the relational calculus quantifiers: ∀c ̸= ∀ and ∃c ̸= ∃. This is
because the quantifiers are not binary operators that receive two relations. They are declarations
asserting that given a formula f (x), it is true for all or any values of x. Under these concepts,
in the Relational Algebra, there is already one operation that performs a an specific case of
“For All” query, when we need to compare tuples by identity. This operation is the relational
division (CODD, 1972), which retrieves the groups that satisfy by identity to all requirements.
However, there is no operation that implements a “For Any” query. Thus, in this section, we
discuss the related works to the relational division.

Most implementations in SQL do not directly implement the division as in the case of
the join operator (ELMASRI; NAVATHE, 2015). Thus, some authors implement the relational
division as queries in SQL (CAMPS, 2014; MATOS; GRASSER, 2002; CELKO, 2009). However,
recent works (IMAMUDDIN; NAHAR; CHANDRA, 2020; GONZAGA; CORDEIRO, 2016)
have demonstrated that there are more efficient ways to implement the operation. The first one
(IMAMUDDIN; NAHAR; CHANDRA, 2020), implements a division algorithm in external
source code, in this case, a c file. Also, the authors modify the SQLite library in order to make
the engine recognize the “DIVIDE” token with the grammar-compliant syntax and produces
output that matches the division operation. The second one (GONZAGA; CORDEIRO, 2016)
implements the operation through a stored procedure. Also, the proposed algorithm makes use of
indexes to improve the performance of the implementation. However, none of them is concerned
in handling custom predicates for cases of candidates and requirements, allowing answering
queries of the “for all” and the “for any” types.

A.3.2 Extensions of the relational division

An expansion of the relational division is the similarity-aware division (GONZAGA;
CORDEIRO, 2017; GONZAGA; CORDEIRO, 2019), which answers the “For All” query when
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the attributes to compare are not simple but complex. The authors proposed two algorithms for
their operator, one based on Index structures to improve the performance of the query, and the
other one is Full Table Scan, which is used when there are no indexes for the attributes.

Also, another work (VASCONCELOS; KASTER; CORDEIRO, 2018) incorporates and
studies the behavior of several similarity aware division algorithms in a commercial RDBMS.
The authors compare the two aforementioned algorithms for the similarity-aware division against
several SQL statements that they adapted from the relational division to the similarity-aware
division and test them with synthetic data. The conclusion was that for a long number of tuples
or groups in the divisor, the best approach is to perform the Indexed Algorithm.

An application of the similarity-division is a system called Tender-Sims (VASCONCE-
LOS et al., 2018). This system can help with a public tendering process. The initial step of
a public tendering process is to publish a Request For Tender (RFT) document outlining the
agency’s needs, requirements, criteria, and instructions. When the RFT is designed to acquire
goods, the latter are usually grouped in lots, which can have the requirement that a bidding
company should provide all the goods listed. RFTs are semi-structured documents, as their
structure may vary for each specific request and agency, and product/service descriptions are
usually written in natural language. Moreover, these documents are commonly organized by
grouping products and/or services in lots to which a business must be able to supply all of them
to qualify for the tender. Finally, Tender-Sims focuses on answering the question of selecting
lots where a company has an item similar enough for all the required items.

We’ve studied different works that extended the relational division to support complex
data. However, none of them pretended to answer queries of the “For All” and “For Any” types
with conditions not limited to identity or similarity.

A.4 Proposal

In this section, we propose a formal definition for the novel operators, as well as the
algorithms to support them.

A.4.1 Formal Definition

This section presents the formal definition of the Relational Conditional For All ( ∀c )
and Relational Conditional For Any ( ∃c ) database operators. These are presented in Defini-
tions 13 and 14 respectively. Also, our new definitions use as basis the definitions we discussed
in Chapter 4.

Definition 13. The Relational Conditional For All ( ∀c ) operation is a binary operation repre-
sented as bT1 ∀c cT2 = dTR, in which bT1, cT2 and dTR are relations that respectively correspond
to the candidates’ relation, requirements’ relation and the result, with c as the custom predicate.
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L1 and L2 are respectively the lists of attributes of T1 and cT2 that are internally used in c. The
schema of dTR is defined as Sch(dTR) = L1 = Sch(T1)−L1. The candidates’ relation is grouped
by L1, each group TGk contains a key π(L1)

TGk and a conditional set cT1k = π(L1)TGk . The instance
of cTR is the union of the groups keys π(L1)

TGk where the requirements’ relation is a conditional
subset of cT1k. Formally, the result cTR is defined as:

dTR =
κ⋃

k=1

 π(L1)
TGk , i f cT2 ⊆c cT1k

∅, otherwise.
(A.2)

Definition 14. The Relational Conditional For Any ( ∃c ) operation is a binary operation rep-
resented as bT1 ∃c cT2 = dTR, in which bT1, cT2 and dTR are relations that respectively correspond
to the candidates’ relation, requirements’ relation and the result, with c as the custom predicate.
L1 and L2 are respectively the lists of attributes of T1 and cT2 that are internally used in c. The
schema of dTR is defined as Sch(dTR) = L1 = Sch(T1)−L1. The candidates’ relation is grouped
by L1, each group TGk contains a key π(L1)

TGk and a conditional set cT1k = π(L1)TGk . The instance
of cTR is the union of the groups keys π(L1)

TGk where the result of the conditional intersection

cT1k∩c cT2 is not null. Formally, the result cTR is defined as:

dTR =
κ⋃

k=1

 π(L1)
TGk , i f cT2∩c cT1k ̸=∅

∅, otherwise.
(A.3)

A.4.2 Algorithms

In this section, we present the algorithm to support our new operators. Our algorithm
is well suitable to support the relational conditional for all ( ∃c ) and for any ( ∀c ) operations.
Also, our algorithm includes the option to perform an index-based approach if the candidates’
relation has index structures for each attribute referenced in the predicate, or a full table scan
(FTS) approach if not.

Algorithm 13 receives as parameters the candidates’ relation (bT1), the requirements’
relation (cT2), the candidates’ relation’s groups (TG), the custom predicate c and the operation
type (op ∈ { ∀c , ∃c }). As result, it will return the list of the identifiers of the groups that satisfy
all or any requirements, according to the operation type. Let’s divide our algorithm into four
sections: (1) the initialization in lines 1-2; (2) the index-based approach in lines 4 - 12; (3) the
full table scan (FTS) approach in lines 14-20, and; (4) the finalization in lines 21-27. In the
initialization, we only need to create a matrix M of boolean values. This matrix will be useful to
store the requirements that the groups satisfy, each row being a group id, and each column being
a requirement id. Then, in the best case, if the candidates’ relation bT1 contains index structures
for all the columns referenced in the predicate, we will be taking advantage of these indexes
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Algorithm 13 – RelCondForAllAndForAny(bT1, cT2, TG, c, op)
Input: bT1: candidates’ relation, cT2: requirements’ relation, TG: candidates’ relation

groups, c: predicate, op: operator ∈ { ∃c , ∀c }
Output: G: vector of resulting groups ids

1: # Create a matrix to mark the requirements satisfied by each group
2: M = |TG|× |T2| matrix of booleans with all values set to f alse;
3: # Algorithm based on index
4: if bT1 has index structures for all attributes used in the predicate then
5: for each tuple t j ∈ T2 do
6: # Bits vector indicating for each tuple ti ∈ bT1 the result of c(ti, t j)
7: S = IndexTupleQuery(bT1, t j,c)
8: # Mark as true all groups that satisfy the current requirement t j
9: for each si ∈ S : ti ∈ TGk do

10: if si = 1 then: M[k][ j] = 1
11: end for
12: end for
13: # Algorithm based on Full Table Scan
14: else
15: for each tuple ti ∈ T1 : ti ∈ TGk do
16: for each tuple t j ∈ T2 do
17: if c(ti, t j) = True then: M[k][ j] = 1
18: end for
19: end for
20: end if
21: # Sending all valid groups to the result
22: for each group TGk ∈ TG do
23: if (op = ∀c and M[k] contains only 1’s) or

(op = ∃c and M[k] contains at least one 1) then
24: Add k to G
25: end if
26: end for
27: return G

to speed up the queries. Here, we will execute for each requirement t j, an index-tuple-query,
which using index based-queries will return a vector of bits indicating for all tuples in bT1 if
they satisfy the current requirement. For each tuple marked with 1, i.e. tuple that satisfies the
current requirement, we will mark in our matrix M its group id and current requirement id as 1.
In contrast, if the candidates’ relation does not have index structures, we will be using a full table
scan approach. In other words, we will be iterating for each tuple ti in bT1, each tuple t j in cT2

and evaluating the predicate in both tuples. When the result of the predicate evaluation c(ti, t j) is
true, then we will mark in our matrix, the group of ti and the requirement t j with 1. In the end, in
the finalization of our algorithm, we will have our matrix M fulled with 0’s or 1’s, indicating for
each group, which requirements are satisfied. Then, for each row of the matrix, we will verify
if all or any (according to the operation type) requirements are marked with 1, if yes, then the
current group will be sent to the list of valid groups. Finally, the list of valid groups is returned.
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A.5 Experiments

We evaluated the semantics and the usability of our proposals by studying two distinct
applications: (1) Amazon Toys import, following the motivational example, and; (2) Food
allergies, to find allergen products from a list. Their features are summarized in Table 8. Also, we
simulated several synthetic datasets with different characteristics and run our algorithms to test
the scalability of them. They are summarized in Table 7. Specifically, we performed experiments
aimed at answering two main questions:

RQ1 How accurate are the relational conditional For All and For Any operations in the sense of
returning what the users expect to receive?

RQ2 How effective and scalable are the algorithms that we propose?

The experiments were performed in a machine with an Intel R○ Core i7 processor
of 3.40GHz and 8GB of RAM. Our Algorithm 13 was implemented in C++ with page buffer
management. Library Arboretum2 was used for the indexed-based queries.

Observation: for the purpose of reproducibility, all codes, detailed results, parameter
values tested and datasets studied in this chapter are freely available for download online 3.

Dataset |T1| |T2| |TG| Groups
Valid |Sch(T2)| Distribution

Groups

Var |T1| [1K;10K] 10 10 - 3 Normal

Var |T2| 1K [10;100] 10 - 3 Normal

Var |TG| 1K 10 [10;100] - 3 Normal

Var Valid Groups 1K 10 10 [0;100]% 3 Normal

Var |Sch(T2)| 1K 10 10 - [2;20] Normal

Var Groups Dist 1K 10 10 - 3
Exponential }

Uniform,
{ Normal,

Table 7 – Summary of the Synthetic datasets

2https://bitbucket.org/gbdi/arboretum/
3https://github.com/alivasples/ConditionalBinOps
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Dataset |T1| |T2| |TG| |Sch(T1)| |Sch(T2)|

Toys Import 25,457 [2;10] 3,523 7 4

Food Allergies 93,414 [2;10] 8,990 5 1

Table 8 – Summary of the real datasets

A.5.1 Amazon Toys

Aimed to answer our first research question RQ1, we validated the semantics of the new
operators in a case study with suppliers and toys products. We obtained a dataset4 of amazon toy
products and preprocess it in order to give it the desired format to perform our operation. One
fundamental step was to separate the suppliers’ groups of each product in different lines. Each
supplier had its own price for a product. Unfortunately, the units were part of the original rows
and not part of the suppliers’ list, unlike the prices, and we considered for our execution random
units lower or equal than the originals for each product. Consequently, the processed dataset5

contains supplier, category, product, units, and, price. This dataset is already our candidates’
relation.

As it can be seen in Table 8, our dataset contains 25,457 candidates tuples split in 3,523
groups, 4 attributes for comparison and 3 additional attributes in T1. Also, in order to test our
queries of “For All” and “For Any”, we’ve generated 100 test cases varying the number of
requirements between 2 and 10 tuples. We first found all couples of suppliers with at least
4 common products, each group with the same couple received the name “pack”. Then, we
randomly selected one of those packs and randomly select between 2 and 10 tuples to compose
the test case requirements’ table. We ran the two queries for each test case, taking the averages
for each test case and computing the total average and standard deviation of all test cases. In our
three queries, we compared categories and products’ names by identity and the other attributes
according to our first case study. For our query Q1: “which suppliers can send all requested
products in just one shipment?”, we obtained 8.75 sec. of average and 3.55 sec. of standard
deviation for the FTS approach; and, 151 ms. of average and 66 ms. of standard deviation for the
index-based approach. For our query Q2: “which suppliers can send any desired product?”, we
also obtained 8.75 sec. of average and 3.55 sec. of standard deviation for the FTS approach; and,
161 ms. of average and 66 ms. of standard deviation for the index-based approach.

For example, one of the test cases is the one we took as example in Figures 22 and 23.
Naturally, in our illustration we only shown few groups in the candidates’ relation. Still, the
requirements’ relation is totally adapted from our real test case, having as requirements: (1)
a set of “UNO Cards” from category “cards games” with a minimum stock of 40 units and a

4https://www.kaggle.com/PromptCloudHQ/toy-products-on-amazon
5https://github.com/alivasples/ConditionalBinOps/blob/master/Experiments/

ForAllAndForAny/Real-AmazonToys/T1.data
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maximum price of 15 euros each, and; (2) a “black widow funko” from category “figures and
playsets” with a minimum stock of 20 units and maximum price of 13 euros each. For this case,
our query Q1 retrieved only two groups. The first one represented by the supplier “a1 Toys”,
having for the first toy, only 25 units but with a price of 6.13 euros, and for the second one, 24
units and price of 12.99 euros. The second one represented by the supplier “Fun Collectables”,
having for the first toy, 44 units and price of 5.99 euros, and for the second one, 26 units and a
price of 11.78 euros. The averages of 10 executions’ runtime measurements were 3.97 sec. and
45 ms. for FTS and index-based approaches respectively.

Finally, our query Q2 retrieved the two previous groups in addition to 12 others that only
satisfy one requirement. One of them was represented by the supplier “Blue Trade”, which had
only the first toy, 20 units, and a price of 6.29 euros. The averages of 10 executions’ runtime
measurements were 3.93 sec. and 45 ms. for FTS and index-based approaches respectively.

The results of the three queries are summarized in Table 9.

Suppliers R.C. For All R.C. For Any
“a1 Toys” X X

“Fun Collectable” X X
“Blue Trade” X

... ... ...
Table 9 – Toys Import queries results.

A.5.2 Food Allergies

We also obtained another dataset6 for testing a “For Any” query. This one, exemplified
in Figure 24, consisted in selecting products that are allergens. A product is considered allergen
if contains an allergen component. Thus, given a list of products and its components, and a list of
the components that a person is allergic to, all the allergen products are retrieved. Then, to find the
allergen products we need to answer the query Q3: “Which products contain any of the allergen

components?” For example, in the requirements’ relation, we can see the allergen components
are “orange peel” and “vanilla bean”, and cookies contain both of them, but marmalade and chai
tea only contain one each. Still, the three of them are allergen since they contain at least one
allergen component.

In our dataset7 we separated the components in different rows since the original dataset
contained a list of products and components in a single row. After pre-processing it, we had for
each row, a product and a component.

As it can be seen in Table 8, our dataset contain 93,414 candidates tuples divided in
8,990 groups, only 1 attribute for comparison and 4 additional attributes in T1. Also, we’ve

6https://www.kaggle.com/datafiniti/food-ingredient-lists
7https://github.com/alivasples/ConditionalBinOps/blob/master/Experiments/

ForAllAndForAny/Real-ProductsAllergies/T1.data
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T1: MARKET PRODUCTS

Product Component

cookies milk

cookies vanilla bean

cookies orange peel

cookies barley

cookies sugar

marmalade orange peel

marmalade citric acid

marmalade water

chocolate cocoa

chocolate salt

chocolate cane juice

chai tea vanilla bean

chai tea milk

chai tea ginger root

T2: ALLERGIES

Component

orange peel

vanilla bean
=

TR: ALLERGEN PRODUCTS

Product

cookies

marmalade

chai tea

∃c

Predicate (c):
T1.Component = T2.Component

TG3

TG2

TG1

TG4

Figure 24 – Example of For Any relational condition. The allergen products are those which have as a
component any of the allergen components.

ALLERGEN PRODUCTS
“Celestial Seasonings Sugar Cookie
Sleigh Ride Holiday Herb Tea 20 Tea
Bags”
“Polaner Sugar Free Orange Marmalade,
135 Oz”
“India Chai Tea Spice 220 oz”

...
Table 10 – Result of the query “Which products contain any allergen component?”

generated 100 test cases varying the number of requirements between 2 and 10 tuples. We ran
each test 10 times and find its average, after that, we computed the average and standard deviation
of all test cases. We obtained 4.94 sec. of average and 2.11 sec. of standard deviation for the
FTS approach; and, 211 ms. of average and 97 ms. of standard deviation for the index-based
approach.

For example, one of the test cases had as allergen products “orange peel” and “vanilla
bean” and the query retrieved 42 groups that contained at least one of them in their composition.
As presented in Table 10, three of these groups are the representations of “cookies”, containing
both allergen components, “marmalade”, containing only the orange peel, and the “chai tea”,
containing only the vanilla bean. The other 39 groups only contain orange peel. The averages
of 10 executions’ runtime measurements were 1.995 sec. and 75 ms. for FTS and index-based
approaches respectively.
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A.5.3 Synthetic Data

In order to answer our research question RQ2: How effective and scalable are the

algorithms that we propose?, we’ve generated 6 different features’ families, each one varying
different features in the families. Table 7 summarizes them. We defined as default the following
features for all datasets: 1,000 tuples in T1 normally distributed in 10 groups, 10 tuples in
T2, and 3 attributes in T2. In a general way, each family contains several datasets varying the
corresponding features between the parameter limits. The predicate always take all attributes
of T2 and compares with their compatible attributes in T1. Also, the predicate follows the
form “T1.A = T2.A and (T1.B < T2.B or (T1.C > T2.C and (...)))”, always swapping the logical
connectors between “or” and “and”, and the logical operators between =,<,>,≤,and ≥. Each
dataset inside a family was executed 10 times for both queries, “For All” and “For Any”, and
for both approaches, index-based when T1 contains index structures, and full table scan (FTS)
when it does not. Then, the average of the runtime measurements was computed. Finally, for
each features family, we present in

a.1) a.2) b.1) b.2)

c.1) c.2) d.1) d.2)

e.1) e.2) f.1) f.2)

Figure 25 – Results of the Relational Condition varying distinct features in different datasets families.

Figure 25 the results of all instances measurements averages.

For the “Var |T1|” Family we varied the number of tuples in the candidates’ relation from
1000 to 10000. Figure 25.a.1 shows the running time for the FTS approach with both queries.
Figure 25.a.2 shows the running time for the Index approach with both queries. Thus, for this
case, the linear scalability seems to be present.

For the “Var |T2|” Family we varied the number of tuples in the requirements’ relation
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from 10 to 100. Figure 25.b.1 shows the running time for the FTS approach with both queries.
Figure 25.b.2 shows the running time for the index-based approach with both queries. Also here,
the linear scalability seems to be present.

For the “Var |TG|” Family we varied the number of groups from 10 to 100. Figure 25.c.1
shows the running time for the FTS approach with both queries. Figure 25.c.2 shows the running
time for the index-based approach with both queries. In both cases, it can be observed that the
running time for all the cases tends to be uniform. That is, the number of groups apparently does
not affect much the runtime for our algorithms.

For the “Var Valid Groups” we varied the expected valid groups in result from 0%
to 100%. Figure 25.d.1 shows the running time for the FTS approach with both queries. Fig-
ure 25.d.2 shows the running time for the index-based approach with both queries. Also here, we
can observe that the running time for all the cases tends to be uniform. That is, the number of
valid groups in the result apparently does not affect much the runtime for our algorithms.

For the “Var |Sch(T2)|” Family we varied the number of attributes in Sch(T2) from 2 to
20. By doing this, we also varied the attributes in |Sch(T1)|= |Sch(T2)|+1 and the predicate to
compare all attributes by equality or inequality. Figure 25.e.1 shows the running time for the FTS
approach with both queries. Figure 25.e.2 shows the running time for the index-based approach
with both queries. In both cases, the linear scalability seems to be present.

Finally, for the “Var Groups Dist” Family we varied the distributions in the groups to
be either exponential, uniform, or normal. Figure 25.f.1 shows the running time for the FTS
approach with both queries. Figure 25.f.2 shows the running time for the index-based approach
with both queries. We can observe that the running time for all the cases tends to be uniform.
Thus, the groups’ distribution apparently does not affect much the runtime of our algorithms.

A.6 Generality and Usability

The usability of our novel operators are not restricted only to our case study. There are
several examples in real life that can use it. Basically, whenever exist queries with the idea of
“candidate elements and requirements”, our operator is well suited to answer them. In this section,
we will show other applications.

A.6.1 Job Promotion

Let us consider a call for a job promotion supported by data from the Desired Skills
(DS) for the job position and one candidate Employee’s Skills (ES). In this case, ES and DS

will be the candidates’ relation and requirements’ relation respectively. This is illustrated in
Figure 26. Here, each skill can be quantified by a certification grade on a scale from 1 (beginner)
to 5 (expert), with 0 for none; or, by the number of years of experience. Thus, our candidates’
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ES: EMPLOYEE’S SKILLS

Employee Skill Grade Exp

Oliver Python 0 3

Oliver MySQL 3 0

Oliver MongoDB 0 4

Oliver HTML 3 3

Harry MySQL 3 1

Harry HTML 2 1

Lena Java 0 3

Lena Python 3 1

Lena MongoDB 4 0

DS: DESIRED SKILLS

Skill Grade Exp

Python 3 1

HTML 3 2

MySQL 4 2

Predicate c:
ES.Skill = DS.Skill AND
(ES.Grade >= DS.Grade OR
ES.Exp >= DS.Exp)

TG3

TG2

TG1

ES DS∀c

TR: RESULT ∀

Employee

Oliver

ES DS∃c

TR: RESULT ∃

Student

Oliver

Lena

Figure 26 – Example of relational conditional For All and For Any operations: Employees that have all
or any desired skills for a new job position.

relation will have the schema Sch(ES) = (Employee, Skill,

Grade, Exp) and the requirements’ relation will have Sch(DS) = (Skill,

Grade, Exp). The traditional division operator would be helpless here, as it would not allow
to verify if the employee has the minimal certification grade or the minimal experience for
each desired skill. However, this condition can be easily treated by our new operators; we
only have to consider a custom predicate c : ES.Skill = DS.Skill ∧ (ES.Grade≥ DS.Grade ∨
ES.Exp ≥ DS.Exp). Now, with our relational conditional For All operation we can query:
“Find all employees that satisfy all requirements” with ES ∀c DS. Also, with our relational
conditional For Any operation, we can query: “Find all employees that satisfy any requirement”
with ES ∃c DS.

A.6.2 Internship

For this case let us consider an organization that wants to recruit interns. Naturally, the
organization would have minimum expectations about their grades in the Courses Attended in
college. This is illustrated in Figure 27. Here, the organization would list the Requested Courses
(RC) with minimal grades, and will receive a list of candidates (CA). In this case, CA and RC will
be the candidates’ relation and requirements’ relation respectively. Therefore, the candidates’
relation will have the schema Sch(RC) = (Candidate,
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CA RC

CA: CANDIDATES

Student Course Score

George Algorithms 6

George Data Structures 6

George Linear Algebra 8

Mary Data Structures 8

Mary Algorithms 7

Peter Databases 5

Peter Algorithms 7

Peter Data Structures 5

RC: REQUESTED COURSES

Course Score

Algorithms 7

Data Structures 6

Predicate c:
CA.Course = RC.Course AND
CA.Score >= RC.Score

TG3

TG2

TG1

∀c

TR: RESULT ∀

Student

Mary

CA RC∃c

TR: RESULT ∃

Student

George

Mary

Peter

Figure 27 – Example of relational conditional For All and For Any operations: Candidates that have all
or any desired grades for an internship.

Course, Score) and the requirements’ relation Sch(CA) = (Course, Score). The traditional
division operator would be helpless here, as they would not allow one to verify if an applicant has
the minimal grades for the requested courses. Fortunatelly, our operators are promptly applicable
with a predicate c : CA.Course = RC.Course ∧ CA.Score≥ RC.Score. Now, with our relational
conditional For All operation we can query: “Find all candidates that passed the requested courses
with enough scores” with CA ∀c RC. Also, with our relational conditional For Any operation,
we can query: “Find all candidates that passed any requested course with enough score” with
CA ∃c RC.

A.7 Conclusion
In this work, we identified severe limitations on the usability of the Relational Division to

process queries of the “For All” type with custom predicates. We also noticed that with a simple
variation, we could answer queries of the “For Any” type. Thus, we extended these operators
into new ones to tackle the problem. Our main contributions were:

C1 Operator Design and Usability – We designed our Relational Conditional For All ( ∀c )
and Relational Conditional For Any ( ∃c ) operators. They are naturally well suited to
answer queries with the idea of “candidate elements and requirements” to be performed
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when all requirements are requested or just any of them. Also, the predicates to compare
tuples can be customized by the user and are not limited to identity.

C2 Formal Definition and Algorithms – we formally defined the Relational Conditional
For All and For Any operators, enabling their usage in queries along with the existing
algebraic operators. Also, we carefully designed novel algorithms to execute our new
operators in a fast and scalable manner.

C3 Semantic Validation – we analyzed a case of products’ importation, following our
motivational example with toys, units, and price. Also, we proposed a case for the detection
of allergen products. The results of these case studies corroborate the practical usability of
our operators in real applications.

C4 Generality and Usability – we also exemplified other cases where our operators are well
suitable, corroborating their general usability.
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