
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Teaching Parallel Programming in Containers: Virtualization
of a Heterogeneous Local Infrastructure

Naylor Garcia Bachiega
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Naylor Garcia Bachiega

Teaching Parallel Programming in Containers: Virtualization
of a Heterogeneous Local Infrastructure

Doctoral dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-
USP, in partial fulfillment of the requirements for the
degree of the Doctorate Program in Computer Science
and Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Paulo Sérgio Lopes de Souza

USP – São Carlos
January 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

B123t
Bachiega, Naylor Garcia
 Teaching Parallel Programming in Containers:
Virtualization of a Heterogeneous Local
Infrastructure / Naylor Garcia Bachiega; orientador
Paulo Sérgio Lopes de Souza. -- São Carlos, 2021.
 214 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2021.

 1. Computing Education. 2. Parallel Programming
Teaching. 3. High-Performance Computing. 4.
Containers. 5. Virtualization. I. Souza, Paulo
Sérgio Lopes de, orient. II. Título.

Naylor Garcia Bachiega

Ensino de Programação Paralela em Contêineres:
Virtualização de uma Infraestrutura Local Heterogênea

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Paulo Sérgio Lopes de Souza

USP – São Carlos
Janeiro de 2022

First of all, I dedicate this doctoral thesis to Adonai for my existence and intelligence, however

limited.

My wife, Carla Fernanda de Souza Bachiega, has always been by my side and provided me with

a beautiful family.

To my kids, Benyamin de Souza Bachiega and Sarah Vitória de Souza Bachiega, who gave me

joy and hope throughout this journey.

My parents, Vitória Garcia Bachiega and Laércio Donizetti Bachiega, worked day and night to

supply my studies.

And to my advisor, who was the most understanding and patient person on the planet.

I will never forget this, and I will never be able to pay for what they did for me.

ACKNOWLEDGEMENTS

I thank my sisters Amanda Bachiega Fernandes and Najara Garcia Bachiega for their
care, affection, and understanding during these years of study.

I thank my in-laws, Carlos Alberto de Souza and Marilza Pereira Cardozo de Souza, for
providing me with a home to complete my work, and Diego Alberto de Souza and Vitor Alberto
de Souza for their fellowship and friendship.

I thank my friends Eder Sotto, Otávio Fernandes, Thiago Coutinho, and Denis Contini
for their friendship over the years.

I thank Aparecida Dias Rodrigues for taking care of our family at this crucial moment.

The main thanks go to Júlio Estela, Sarita Bruschi, Simone Souza, and the other ICMC
lecturers who helped, in some way, in carrying out this work. I also thank the fellowship and the
affection of LaSDPC co-workers.

Special thanks go to the Federal Institute of Education, Science, and Technology of São
Paulo, Paraná, and Santa Catarina to support my work.

I also want to thank all ICMC employees, without whom this research could not be
carried out, such as librarians, office staff, security, cleaning, and administration staff.

“Blessed is the man who finds wisdom, the man who acquires understanding, for she is more

profitable than silver, and her gain is better than fine gold. She is more precious than rubies;

nothing you desire compares with her.”

(Mishlê; 3:13-15)

RESUMO
BACHIEGA, N. G. Ensino de Programação Paralela em Contêineres: Virtualização de uma
Infraestrutura Local Heterogênea. 2022. 214 p. Tese (Doutorado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2022.

Fornecer ensino em programação paralela é um desafio emergente, necessitando de abordagens
de ensino para fomentar o processo de aprendizagem e de complexa infraestrutura para proporci-
onar um ambiente adequado para as aulas práticas de laboratório. Não priorizar requisitos de
programação paralela no aprendizado dos futuros profissionais em computação pode levar a uma
significativa lacuna de formação, a qual impactará negativamente no uso eficiente das atuais pla-
taformas computacionais. Para popularizar o ensino desse tipo de computação, é imprescindível
a adoção de abordagens eficazes de aprendizagem e meios para facilitar a configuração de soft-
ware e da infraestrutura necessária para a prática do ensino em laboratório. Muitas instituições
públicas e privadas não possuem um cluster ou uma infraestrutura adequada para execução dos
programas paralelos. Além disso, há um custo operacional para criar e manter um ambiente
próprio para essas aulas em laboratório. A falta de docentes que atuam em pesquisas relacionadas
à computação de alto desempenho e as dificuldades inerentes ao gerenciamento do ambiente de
execução são outros dois fatores que criam barreiras ao ensino de programação paralela. Dessa
forma, o objetivo desta tese é avaliar se a virtualização de arquiteturas paralelas heterogêneas
contribui para o ensino de programação paralela por alunos de computação em instituições de
ensino que não dispõem de tais arquiteturas paralelas, nem pessoal qualificado para a gestão
desses ambientes. Esta pesquisa teve como ponto de partida um estudo de trabalhos existentes na
literatura, para determinar como o ensino prático de programação paralela é realizado atualmente.
Após esse levantamento, foi constatado que nenhuma ferramenta atendia às necessidades de virtu-
alização idealizadas. Definidos os requisitos da virtualização, uma ferramenta usando contêineres
foi desenvolvida. Posteriormente, foram conduzidos experimentos com profissionais da área e
alunos para avaliar eficácia dessa ferramenta no ensino prático de programação paralela. Como
resultado, foi criada a Iguana, uma ferramenta de código aberto para o ensino de programação
paralela, pensando em alunos de baixa renda que não têm acesso a arquiteturas paralelas. A
ferramenta permite que os alunos criem e executem seus códigos paralelos por meio de uma
interface web em tempo real, sem a necessidade de acessar terminais por linha de comando ou
aguardar seu processamento em lote. Ademais, a Iguana pode funcionar sem Internet em uma
simples máquina virtual, exigindo apenas conhecimentos básicos de informática, permitindo seu
uso a qualquer aluno do primeiro ano de graduação.

Palavras-chave: Educação em Computação, Ensino de Programação Paralela, Computação de
Alto Desempenho, Contêineres, Virtualização.

ABSTRACT

BACHIEGA, N. G. Teaching Parallel Programming in Containers: Virtualization of a He-
terogeneous Local Infrastructure. 2022. 214 p. Tese (Doutorado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2022.

Providing parallel programming education is an emerging challenge, requires teaching ap-
proaches to further the learning process and a complex infrastructure to provide a suitable
environment for the laboratory practical classes. Do not prioritize parallel programming re-
quirements in future computing professionals’ learning can lead to a significant training gap,
negatively impacting the efficient use of current computing platforms. To popularize "parallel
thinking," it is essential to adopt practical learning approaches and means to facilitate software
configuration and the infrastructure necessary for laboratory classes. Unfortunately, many public
and private institutions do not have a cluster or an infrastructure to run parallel programs. Also,
there is an operational cost to create and maintain a required environment for these laboratory
classes. The lack of lecturers who work in research related to high-performance computing
and the difficulties inherent in managing the execution environment are two other factors that
create barriers to teaching parallel programming. Thus, this thesis aims to evaluate whether
the virtualization of heterogeneous parallel architectures contributes to the teaching of parallel
programming by computing students in educational institutions, which do not have such parallel
architectures or qualified personnel to manage these environments. This research started with
a study of existing works in the literature to determine how the practical teaching of parallel
programming is carried out today. After this survey, we found that no tool met the idealized
virtualization needs. Next, we defined the virtualization requirements, and a tool was developed
using containers. Subsequently, experiments were carried out with professionals in the field and
students to evaluate the effectiveness of this tool in the practical teaching of parallel programming.
As a result, Iguana was created, an open-source tool for teaching parallel programming, thinking
about low-income students who do not have access to parallel architectures. The tool allows
students to develop and run their parallel code through a real-time web interface without the need
to access command-line terminals or wait for batch processing. Furthermore, Iguana can operate
without the Internet in a simple virtual machine, requiring only essential computer resources,
allowing its use by any first-year undergraduate student.

Keywords: Computing Education, Parallel Programming Teaching, High-Performance Comput-
ing, Containers, Virtualization.

LIST OF FIGURES

Figure 1 – Structure of the Computing Curricula Series 40

Figure 2 – Brazilian institutions according to geographic location 45

Figure 3 – Prerequisites of the topics related to PDC for Brazilian institutions 48

Figure 4 – Total loads of the topics related to PDC for Brazilian institutions 48

Figure 5 – Semester of the provision of the topics related to PDC for Brazilian institutions 49

Figure 6 – Elective and required topics about PDC for Brazilian institutions 49

Figure 7 – Bibliographic information of the topics related to PDC for Brazilian institutions 50

Figure 8 – Total loads of the topics related to PDC for the world institutions 54

Figure 9 – Year of the provision of the topics related to PDC for the world institutions . 56

Figure 10 – Elective and required of the topics related to PDC for the world institutions . 56

Figure 11 – Bibliographic information of the topics related to PDC for the world institutions 57

Figure 12 – Parallel computing course . 59

Figure 13 – Hybrid schematic distribution with MPI, OpenMP, and CUDA 70

Figure 14 – Cluster HPC Beowulf . 71

Figure 15 – HPL benchmark for Docker containers . 75

Figure 16 – Memory usage in Docker . 75

Figure 17 – Comparison between virtualization modes 76

Figure 18 – Docker infrastructure . 79

Figure 19 – Docker Swarm architecture . 80

Figure 20 – Results for synthetic imbalances . 82

Figure 21 – Volume sharing with NFS . 84

Figure 22 – Volume sharing and MPI . 85

Figure 23 – Volume sharing with Docker . 86

Figure 24 – Benchmark for the image filter . 87

Figure 25 – Iguana infrastructure . 93

Figure 26 – Languages used in the tool development 95

Figure 27 – Locahost architecture . 97

Figure 28 – Local network architecture . 98

Figure 29 – The Iguana’s main screen . 98

Figure 30 – Compile and run parameters . 100

Figure 31 – Node selection . 100

Figure 32 – Orderly presentation of the result . 101

Figure 33 – Result of the lecturer and student code . 102

Figure 34 – Exercises solved . 102

Figure 35 – Creating virtual nodes . 102

Figure 36 – SUS scoring scale . 107

Figure 37 – Age of participants in the experiment with professionals and lecturers 108

Figure 38 – Academic degree of participants . 108

Figure 39 – Experience in the computing area . 109

Figure 40 – Experience in parallel programming . 109

Figure 41 – Answers for the ten SUS questions about usability - 1st round 110

Figure 42 – Answers for the five user interface satisfaction questions - 1st round 111

Figure 43 – Answers about running parallel programs in Iguana with focus in teaching -
1st round . 112

Figure 44 – Answers for the ten SUS questions about usability - 2nd round 113

Figure 45 – Answers for the five user interface satisfaction questions - 2nd round 113

Figure 46 – Answers about teaching parallel programming through the tool - 2nd round . 114

Figure 47 – Students’ scores for the first exercise . 115

Figure 48 – Students’ scores for the second exercise 115

Figure 49 – Comparing the variability of scores in exercises with and without Iguana
support . 116

Figure 50 – Comparing the distribution of scores in exercises with and without Iguana
support . 116

Figure 51 – Answers related to usability to teach parallel programming through the Iguana117

Figure 52 – Answers for Iguana execution effectiveness 118

Figure 53 – Answers for learning effectiveness through Iguana 119

Figure 54 – Hello aCe World . 128

Figure 55 – Response time viewer . 129

Figure 56 – MPI job submission through the portal . 130

Figure 57 – Supercomputing resources available for the students 130

Figure 58 – StarHPC solution architecture . 131

Figure 59 – Pilot API . 132

Figure 60 – The architecture of the ZawodyWeb system 133

Figure 61 – Queuing system workflow . 134

Figure 62 – Screenshot of Open edX navigation bar . 135

Figure 63 – Job launch in a three-node cluster . 135

Figure 64 – High-level architecture of Everest . 136

Figure 65 – Submit form of generic service for running MPI programs 137

Figure 66 – Results of completed job for MPI service 138

Figure 67 – The Let’s HPC platform . 139

Figure 68 – A screenshot of how the data filtering process is implemented on the Let’s
HPC platform . 139

Figure 69 – A unifying classroom computing environment 140
Figure 70 – Running a simple parallel program on Jupyter Notebook 141
Figure D.1 – Output of hello world in CUDA . 181
Figure D.2 – Output of descriptive statistics metrics in CUDA 181
Figure D.3 – Output of thresholding in CUDA . 182
Figure D.4 – Output of greatest common divisor in CUDA 182
Figure D.5 – Output of matrix multiplication in CUDA 182
Figure D.6 – Output of multiplication of vectors by a scalar in CUDA 182

LIST OF CHARTS

Chart 1 – Teaching PDC in 2013 curriculum guidelines for computer courses, according
to ACM/IEEE . 42

Chart 2 – Teaching PDC in 2013 curriculum guidelines for computer courses, according
to ACM/IEEE . 43

Chart 3 – List of PDC topics covered by BCS with ACM/IEEE 44
Chart 4 – List of Brazilian institutions selected according to ranking scores 47
Chart 5 – Adherence of topics on PDC with the ACM/IEEE and BCS reference curricula

for Brazilian institutions. 51
Chart 6 – List of world institutions selected according to ranking scores 53
Chart 7 – Topics and prerequisites related to PDC for the world institutions 55
Chart 8 – Adherence of PDC topics to ACM/IEEE reference curricula for world institutions 58
Chart 9 – Papers related to teaching strategies . 64
Chart 10 – Papers related to laboratory tools . 66
Chart 11 – Different stress tests . 87
Chart 12 – Summary of system use cases . 90
Chart 13 – SUS questions for usability . 106
Chart 14 – Questions for user interface satisfaction . 110
Chart 15 – Questions about running parallel programs in Iguana with focus in teaching . 111
Chart 16 – Questions about Iguana execution effectiveness 118
Chart 17 – Questions about learning effectiveness through Iguana 119
Chart 18 – Input and output of hello world in CUDA 121
Chart 19 – Input and output of descriptive statistics metrics in CUDA 122
Chart 20 – Input and output of thresholding in CUDA 123
Chart 21 – Input and output of greatest common divisor in CUDA 123
Chart 22 – Input and output of matrix multiplication in CUDA 124
Chart 23 – Input and output of multiplication of vectors by a scalar in CUDA 124
Chart 24 – Tools for teaching parallel programming . 143
Chart A.1 – Paired t-test - significance for SSD . 170
Chart A.2 – Paired t-test - significance for HDD . 171
Chart B.1 – Professionals suggestions for improvements in the tool after the first experiment173
Chart B.2 – Students’ suggestions after performing experiments with the tool 176
Chart C.1 – Feedback from professionals after the features are applied 177
Chart C.2 – Feedback from students about the Iguana tool 178

LIST OF SOURCE CODES

Source code 1 – Example of a simple OpenMP loop 67
Source code 2 – Example of an MPI code . 68
Source code 3 – Example of a CUDA code . 69
Source code 4 – Sample data returned with JSON structure 94
Source code 5 – Example of using special tags . 99
Source code 6 – Script Install Command . 103
Source code 7 – Hello World in CUDA . 121
Source code F.1 – Iguana installation script . 211

LIST OF TABLES

Table 1 – Computing Knowledge . 41
Table 2 – Different stress tests . 83
Table 3 – Non-functional requirements . 91
Table 4 – Selected papers . 128

LIST OF ABBREVIATIONS AND ACRONYMS

ACM Association for Computing Machinery

BCS Brazilian Computer Society

CC Communication and Coordination

CD Compact Disc

CLI Command-line Interface

CPU Central Processing Unit

CS/PP Concurrent Systems/Parallel Processing

CWUR Center for World University Rankings

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DP Distributed Programming

DRBD Distributed Replicated Block Device

DS Distributed Systems

DV Docker Volumes

EC2 Amazon Elastic Computing Cloud

ECTS European Credit Transfer System

EFTSL Full-time Equivalent Student Load

FM Formal Methods

FMS Formal Models and Semantics

FS File System

FUR Folha University Ranking

GPGPU General Purpose Computing on Graphics Processing Units

GPU Graphics Processing Unit

HDD Hard Disk Drive

HPC High-Performance Computing

HTML HyperText Markup Language

I/O Input/Output

IDEs Integrated Development Environments

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

LaSDPC Distributed Systems and Concurrent Programming Laboratory

LVM Logical Volume Manager

LXC Linux Containers

MAC Mandatory Access Control

MPI Message Passing Interface

MPMD Multiple Program Multiple Data

NAT Network Address Translation

NFS Network File System

NIS Network Information Service

NTP Network Time Protocol

OS Operating System

PA Parallel Architecture

PAAP Parallel Algorithms, Analysis, and Programming

PCA Parallel Computer Architectures

PCEs Parallel Compute Environments

PD Parallel Decomposition

PDC Parallel and Distributed Computing

PDT Parallel and Distributed Templates

PE Performance Evaluation

PF Parallelism Fundamentals

PHP Hypertext Preprocessor

PP Parallel Performance

PS Proprietary Software

QoS Quality of Service

QUIS User Interface Satisfaction Questionnaire

RAID Redundant Array of Inexpensive Disks

RFC Request for Comments

RPC Remote Procedure Call

SLA Service Level Agreement

SPMD Single Program Multiple Data

SPOC Small Private Online Course

SSD Solid State Drive

SSH Secure Shell

SSL Secure Sockets Layer

SUS System Usability Scale

TLS Transport Layer Security

UMA Uniform Memory Access

VM Virtual Machine

VMM Virtual Machine Manager

WS Web Services

WUR World University Rankings

CONTENTS

1 INTRODUCTION . 33
1.1 Problem Contextualization . 34
1.2 Motivation . 35
1.3 Research Question . 36
1.4 The Main Proposed Innovation . 36
1.5 Thesis Structure . 37

2 PARALLEL PROGRAMMING TEACHING 39
2.1 Computer Science Curricula . 40
2.2 The PDC Teaching in Brazil . 45
2.3 The PDC Teaching Around the World 52
2.4 Mapping of Theoretical and Practical Teaching Approaches 57
2.5 Content of Parallel Programming Teaching 67
2.5.1 Shared Memory (OpenMP) . 67
2.5.2 Message-Passing (MPI) . 68
2.5.3 Accelerator-oriented Massively-parallel Programming (GPUs) 69
2.5.4 Infrastructure for teaching parallel programming 70
2.6 Final Considerations . 71

3 VIRTUALIZATION . 73
3.1 Container-based and Hypervisor-based Performance 74
3.2 Container-based . 75
3.3 Technologies for Containerization . 77
3.3.1 Docker . 78
3.3.2 Docker Swarm . 79
3.3.3 Constraint Isolation in Container . 81
3.4 Volume Sharing in Containers . 83
3.4.1 Network File System . 84
3.4.2 Docker Volumes . 85
3.4.3 DV and NFS Performance Evaluation 86
3.5 Final Considerations . 88

4 IGUANA CLUSTER SYSTEM . 89
4.1 Requirement Analysis . 89

4.2 System Design . 91
4.2.1 Architecture . 92
4.2.2 Platforms . 92
4.2.3 Programming . 94
4.2.4 Communications . 95
4.2.5 Security . 96
4.3 Implementation . 97
4.4 Testing and Deployment . 103
4.5 Final Considerations . 104

5 EXPERIMENTAL EVALUATION . 105
5.1 System Usability Scale . 106
5.2 Evaluating Usability with Lecturers and Computing Professionals . 107
5.2.1 Distribution of professionals . 107
5.2.2 Results of the experiment - 1st round 109
5.2.3 Results of the experiment - 2nd round 112
5.3 Teaching Parallel Programming with Iguana 114
5.3.1 Iguana and non-Iguana grades . 114
5.3.2 Results of the experiment . 117
5.4 Experiments with CUDA . 120
5.4.1 Hello World . 120
5.4.2 Metrics of descriptive statistics . 121
5.4.3 Thresholding . 122
5.4.4 Greatest common divisor . 123
5.4.5 Matrix multiplication . 123
5.4.6 Multiplication of vectors by a scalar 124
5.5 Final Considerations . 124

6 RELATED WORK . 127
6.1 Systematic Mapping . 127
6.1.1 aCe C . 128
6.1.2 STEADY . 129
6.1.3 A Grid Portal . 129
6.1.4 StarHPC . 131
6.1.5 Pilot Library . 132
6.1.6 ZawodyWeb System . 133
6.1.7 SAUCE . 133
6.1.8 SPOC . 134
6.1.9 OnRamp . 135
6.1.10 Everest . 136

6.1.11 Let’s HPC . 138
6.1.12 Palmetto/JupyterHub . 140
6.2 Final Considerations . 141

7 CONCLUSION AND FUTURE WORK 145
7.1 Contributions . 146
7.2 Future Work . 147
7.3 Papers . 147
7.3.1 Journals . 147
7.3.2 Conferences . 148

BIBLIOGRAPHY . 149

GLOSSARY . 165

APPENDIX A DV AND NFS PERFORMANCE EVALUATION . . . 169

APPENDIX B IGUANA DESIGN SUGGESTIONS COLLECTED FROM
THE EXPERIMENTS 173

APPENDIX C IGUANA FEEDBACK COLLECTED FROM EXPERI-
MENTS . 177

APPENDIX D CUDA EXPERIMENTS 181

APPENDIX E IGUANA CLUSTER SYSTEM TOOL MANUAL . . . 183

APPENDIX F INSTALLATION SCRIPT 211

33

CHAPTER

1
INTRODUCTION

High-Performance Computing (HPC), unlike other types of computing, addresses partic-
ular challenges and conditions. As a result, the teaching addresses large amounts of information,
computational problems, and understanding of supported platforms, where students need skills
and abilities to operate these environments. (SHAMSI; DURRANI; KAFI, 2015).

Zarza et al. (2012) highlight the importance of HPC as a valuable tool for society. HPC
provides the development of a vast number of applications and services. They also address that
the study of parallel architectures is one of the key issues in academic computer science students
because of computers’ general use in many disciplines.

Parallel Programming, a part of the HPC, became active and intrinsic to the currently
available technologies, mainly considering the distinct programming models coming from these
different architectures.

Nowadays, heterogeneous computing is a reality, with a broader range of low-cost sys-
tems using more than one Central Processing Unit (CPU) core or another type of processor
(hardware accelerators, Graphics Processing Unit (GPU), cryptography co-processors, pro-
grammable network processors, A/V encoders/decoders, and others).

This new trend changes the focus of sequential programming, widely taught and used
in past times and routes for parallel programming, enjoying new environments to access this
new technology. Currently, there are 2 million developers registered on the NVIDIA website to
use CUDA, a parallel computing platform extended from the C language and widely studied to
develop applications as part of the teaching and learning process (RAMEY, 2021).

Addressing parallel programming in the curricular bases of undergraduate and graduate
courses is not something new. The Computing Curriculum proposed by Association for Comput-
ing Machinery (ACM) in 2001 included a course on High-Performance Computing (ROBERTS
et al., 1999) apud (CARLEY et al., 2013), and the 2008 interim revision included a course on
Parallel Computation (CASSEL et al., 2008) apud (CARLEY et al., 2013). In the year 2013, a

34 Chapter 1. Introduction

new review addressed current and pedagogical aspects (CURRICULA; SOCIETY, 2013).

Given its importance, parallel programming must be incorporated into the computer
science curriculum as necessary knowledge, rather than complementing the unit of knowledge or
being offered an elective course (LI; GUO; ZHENG, 2008). Marowka (2008) argues that the
"parallel" prefix can be added to any topic (e.g., architecture, operating systems, among others)
due to today’s current revolution.

However, parallel programming education brings many challenges, especially in two
approaches: theory and practice. The theoretical approach is necessary to know if the teaching
method effectively acquires competence for a particular subject. In addition, there is a need to
define the laboratory environment and tools required to perform the exercises in the practical
approach.

Kim, Jiang and Rajput (2016) highlight the importance of laboratories for the teach-
ing/learning process. The experience is an essential component for parallel programming educa-
tion, providing students with the opportunities to practice and apply the learned and observed
concepts.

1.1 Problem Contextualization
However, adding parallel programming in the computer science curriculum brings a new

problem for educators and students: the infrastructure necessary for the course to be delivered
with the least resources. Baldwin et al. (2016) point out that lecturers need specific HPC resources
to prepare students for industry and research positions. This concern about the infrastructure was
highlighted in the ACM/IEEE guidelines curriculum:

There are implications for institutional resources to support such a signif-
icant scaling up of the teaching mission of computer science departments,
particularly in terms of instructors and laboratories (CURRICULA; SO-
CIETY, 2013, 48).

Furthermore, Curricula and Society (2013, 33) cites that "... students to spend a significant
amount of additional time outside of class developing facility with the material presented in
class". Thus, emphasizing the need to provide infrastructure for students to develop their studies
outside the classroom.

Parallel computers and supercomputers infrastructures are expensive and hardly used
in a computer science undergraduate course in many countries, such as Brazil. However, these
resources are available remotely over a shared infrastructure, management costs, access issues,
user creation, and bandwidth (LI; GUO; ZHENG, 2008).

The popularization of multicore machines has helped in the teaching of parallel program-
ming of MIMD machines (FLYNN, 2011) with shared memory (OpenMP (DAGUM; MENON,

1.2. Motivation 35

1998)) and even with distributed memory (MPI (CLARKE; GLENDINNING; HEMPEL, 1994)).
However, the availability of only these multicore machines limits the teaching of parallel pro-
gramming, as they do not allow practical teaching on clusters of computers or heterogeneous
platforms with GPUs or other accelerators (WOLFER, 2015).

According to Ivica, Riley and Shubert (2009), besides these costs, we can still mention
hardware costs, costs associated with hosting, power, and cooling for a typical cluster. Another
desirable configuration is to change a cluster for use in classrooms, where it may require some
differentiated packages, creating students’ accounts, and students and lecturers access manuals.

High-performance computing hardware has a high added value and requires non-trivial
configuration. Different hardware must be acquired and managed for each system component.
Furthermore, ensuring the application is configured correctly is an expensive task that requires
specific technical skills (BALDWIN et al., 2016).

Most of the works focused on the use of clusters and complex infrastructures to make
available to students. Generally, the lecturer needs to create an account in a particular cluster,
and the student needs to receive the connection parameters. Some systems still try to facilitate
access, allowing students to send the code through a web interface for execution, needing to wait
for the result, making an online/remote class unfeasible, for example.

This is the case of SAUCE (HUNDT; SCHLARB; SCHMIDT, 2017) and OnRamp (FO-
LEY et al., 2017), one of the most current web systems found in the literature makes available
their entire infrastructure through clusters. The student must send his code and wait for the
process to return.

1.2 Motivation

Besides challenges inherent in teaching parallel programming, there is also the challenge
of using an infrastructure that allows the execution and testing of these codes, both by students
and lecturers. Usually, these parallel infrastructures are expensive and require much energy from
a technical team to teach correctly; these structures are not generally available for teaching due
to their high cost.

While local computers with multiple cores are already usual nowadays, clusters of
computers with remote machines and heterogeneous computing (with GPUs, for example) are
still not the reality of many computing courses. This infrastructure is often borrowed from a
“near” research center or rented in the cloud for practical parallel programming classes.

These existing solutions sit challenges for teaching parallel programming, such as the
presence of multi-users (researchers) with their applications in the parallel architecture execution
queue and the high cost, the last one for both the acquisition of this equipment and the rental of
them (if it is the case).

36 Chapter 1. Introduction

Besides such aspects, the hardware for high-performance computing usually requires
a non-trivial configuration. For example, there is only one microcomputer in some colleges
in Brazil for one or more students to share. Thus, parallel programming education’s primary
challenge is to develop platforms that fit the reality of the available laboratories in undergraduate
and graduate courses. Carley et al. (2013) address a challenge for lecturers to find a mechanism
to provide resources from a cluster inside the classroom. These challenges include the cost,
resources availability, and the desired performance for the tests.

Jiang and Song (2015) point out problems in an infrastructure shared with other courses or
disciplines: the coexistence of other programs that use part of the storage space and computational
resources, limiting the number of resources available for the parallel execution of programs. Kim,
Jiang and Rajput (2016) also emphasize that Virtual Machine (VM) has been used intensively
in the last decades to teach information technologies. However, according to Pahl (2015a), this
virtualization model requires more resources for its support; for example, more extensive disk
storage and initialization is slow.

Given the lack of infrastructure in educational institutions and engaged in the populariza-
tion of "parallel thinking", this work addresses the use of containers as a solution for low-cost
infrastructure and greater accessibility. Furthermore, unlike proprietary solutions, the containers
are open source and are available at no cost to use. Virtual machines have a more significant
workload than containers due to virtualization, paravirtualization, or full virtualization modes. On
the other hand, containers use the host operating system’s kernel and are considered lightweight
as they have no emulation layer (DUA; RAJA; KAKADIA, 2014).

Thus, it is essential to provide a light and virtual infrastructure for parallel programming
teaching. The containers can currently meet this need and help lecturers and students in the
effectiveness of the teaching and learning process. As previously seen, parallel programming is
present in the daily lives of students and lecturers. However, in the related work, it is evident
the difficulty of teaching this type of programming and searching for the student’s interest in
learning new methodologies.

1.3 Research Question

This thesis’s research question is: to evaluate if developing a tool can help the practical
classes of parallel programming and contribute to improving this teaching in institutions without
infrastructure or qualified employees.

1.4 The Main Proposed Innovation

This thesis proposes to develop the Iguana, a novel software tool for the practical
teaching of parallel programming in educational institutions without dedicated infrastructure,

1.5. Thesis Structure 37

and to evaluate its effectiveness. For the complete development of the work, several steps are
necessary, as described below:

1. Conduct a systematic review of the state-of-the-art literature on teaching parallel program-
ming in Brazil and worldwide;

2. Perform a systematic review of theoretical and practical teaching methods for PDC;

3. Investigate open-source technologies for creating the tool;

4. Develop a specific container management system for parallel programming teaching,
allowing the lecturer to configure and control the execution environment for students;

5. Conduct experiments to validate the developed tool effectiveness; and

6. Publish all research results and the results of this thesis, to disseminate new knowledge to
the interested community and those who need the teaching of parallel programming.

As a consequence of this work, we can also cite the use of containers to improve the
popularization of parallel programming teaching.

1.5 Thesis Structure
Chapter 1 presents the introduction of the work, and the other chapters were distributed

as follows:

∙ The Chapter 2 shows the teaching of parallel programming and the current overview in
institutions around the world;

∙ The Chapter 3 addresses the concepts of virtualization and containerization;

∙ The Chapter 4 presents the Iguana tool, developed for the practical teaching of parallel
programming;

∙ The Chapter 5 addresses the performance evaluation carried out with professionals in
computing and with students on the tool’s effectiveness;

∙ In the Chapter 6, we present a systematic review of the state of the art of the related work
to the parallel programming teaching and the infrastructures available for the practical
classes; and

∙ Finally, in Chapter 7, we finalize with conclusions of this work and its contribution to
education and society.

39

CHAPTER

2
PARALLEL PROGRAMMING TEACHING

Parallel systems are being adopted due to the physical limitations in manufacturing chips
with a single processor. Thus, as parallel systems, it is possible to use several processing cores
connected by bus or network (EL-REWINI; ABD-EL-BARR, 2005).

With this move to parallel systems, it will be necessary for all students to acquire
multi-processor programming skills. Some skills involve using distributed memory, hierarchical
memory models, and using GPUs to increase performance (FERNER; WILKINSON; HEATH,
2013).

International institutions, such as the ACM and the Institute of Electrical and Electronics
Engineers (IEEE), recommend that Parallel and Distributed Computing (PDC) should be consid-
ered one of the significant areas of knowledge in computing, precisely because of its rise in the
educational context.

On the same page, the Brazilian Computer Society recommends that the teaching of PDC
is one of the main competencies developed in different training axes in Computer courses. Thus,
higher-level computing courses need to incorporate these guidelines on PDC teaching into their
curricula to prepare students for an increasingly parallelized and distributed world.

Because of the importance of teaching PDC, this section will show a detailed study of
parallel programming teaching in Brazil and the world to know the theoretical and practical
approaches to teaching and define gaps in the learning effectiveness.

For this purpose, Section 2.1 will cover the computer science curricula. In Section 2.2,
we examine PDC teaching in Brazil. In Section 2.3, we explore how parallel programming is
addressed in the world’s leading universities. Section 2.4 presents a mapping to identify the
approaches for teaching theoretical and practical parallel programming. In Section 2.5, we show
the contents covered in a parallel programming class. Finally, Section 2.6 presents the section
summary.

40 Chapter 2. Parallel Programming Teaching

2.1 Computer Science Curricula
The use of single-processor computers in the past has led to programming teach-

ing based on sequential algorithms, in which PDC was usually offered (and at most) as op-
tional (ACM/IEEE-CS, 2013). However, with the increasing technological development and
the consequent adoption of multi-core processors, it was necessary to reorganize the computer
curriculum for this new programming need.

The Computing Curricula Series brings a set of curriculum standards related to undergrad-
uate programs in computing. These standards help as a guideline for creating and restructuring
courses in the area. Figure 1 shows the design of this report and all other documents used.

For the six-existing discipline specific curricula volumes, each one rep-
resents the best judgment of the volunteers representing relevant pro-
fessional, scientific, and educational associations. Each report serves
as a definition of what these degree programs should be and accom-
plish (Computing Curricula Series Report, 2020, 19).

Figure 1 – Structure of the Computing Curricula Series

Source: Adapted from Computing Curricula Series Report (2020).

Table 1 presents the minimum (1) and maximum (5) values of the importance of teaching
Parallel and Distributed Programming for courses related to computing. These values were
scored based on the opinion of the members of the steering committee.

Computing Curricula Series Report (2020) shows the draft competencies to Parallel and
Distributed Computing of the disciplines presented in Table 1 to IS 2010, CS 2013, SE 2014,
and CE 2016:

∙ Apply parallel-bases or task-based decomposition to create a scalable parallel algorithm
for an IT company;

2.1. Computer Science Curricula 41

Table 1 – Computing Knowledge

Discipline Minimum Maximum
Information Systems 1 3
Computer Science 2 4
Software Engineering 2 3
Computer Engineering 2 4
Information Technology 1 3
Cybersecurity 1 2

Source: Adapted from Computing Curricula Series Report (2020).

∙ Write a program containing actors and/or simultaneous processes, locks, and synchro-
nized queues. The program should terminate without error when all concurrent tasks are
completed;

∙ Create a test program that shows a concurrent program error, for example, missing infor-
mation when two processes try to update a variable;

∙ Identify and parallelize independent tasks, complete the critical path to a parallel execution
diagram, and present the results; and

∙ Implement a performance evaluation between parallel and sequential solutions by imple-
menting a parallel divide and conquer (and/or graph algorithm).

CS 2013 was created by the ACM and IEEE-Computer Society to help standardize and
establish international curriculum guidelines for undergraduate courses in computer science
and related fields (ACM/IEEE-CS, 2013). The guidelines proposed by the 2013 ACM present
eighteen knowledge areas, which represent relevant fields of study in computing. PDC is one of
these areas, due to its current importance in the development of computational solutions.

Initially, PDC contents were spread among other knowledge areas, including parallel
and distributed programming topics. Thus, as shown in Chart 1, the 2013 curriculum revision
included PDC contents in a new area, including specific contents such as fundamentals of
parallelism, parallel decomposition, parallel algorithms, analysis and programming, and parallel
architectures (ACM/IEEE-CS, 2013).

Chart 2 details the topics needed to be covered within the computer science curricula.
The topics of Parallel Performance, Distributed Systems, Cloud Computing and Formal Models
and Semantics do not have essential and additional hours, only elective hours.

Teaching PDC in the computing curriculum proposed by ACM/IEEE is quantified in
hours. This unit is defined as the time needed to present a traditional reading material. This time
does not include extra work, practical classes in laboratories, lectures, among others. Chart 1
shows the essential hours for the Computer Science curriculum; that is, topics need to be inserted

42 Chapter 2. Parallel Programming Teaching

Chart 1 – Teaching PDC in 2013 curriculum guidelines for computer courses, according to ACM/IEEE

Topics
Total Instructional
Hours Includes

ElectivesEssential Additional
Parallelism Fundamentals (PF) 2 No
Parallel Decomposition (PD) 1 3 No
Communication and Coordina-
tion (CC)

1 3 Yes

Parallel Algorithms, Analysis,
and Programming (PAAP)

3 Yes

Parallel Architecture (PA) 1 1 Yes
Parallel Performance (PP) Yes
Distributed Systems (DS) Yes
Cloud Computing Yes
Formal Models and Semantics
(FMS)

Yes

Source: ACM/IEEE-CS (2013).

within the curriculum in a specific subject or addressed in another syllabus (ACM/IEEE-CS,
2013).

The additional hours are usually essential for an undergraduate course in computer
science. However, some courses may allow the student to specialize in a specific topic from the
third year and do not cover the other topics. Another problem that may influence the application of
additional hours concerns administrative issues such as lecturer lack and physical and budgetary
constraints.

However, the ACM/IEEE clarify that a curriculum may include elective material as
required in those specific courses, specializations, masters, and doctoral degrees, as the essential
topics are insufficient for a complete curriculum. Furthermore, a computer science curriculum
should cover 90-100% of the add-on topics, with 80% considered a minimum (ACM/IEEE-CS,
2013).

In Brazil, the Brazilian Computer Society (BCS) is the national academic reference
that directs computing’s teaching. It defined the document named Training References for the
Undergraduate Programs in Computer Science (RF-CC-17) to serve as a basis for Pedagogical
Projects (ZORZO et al., 2017).

BCS recommends, in its training references, that the teaching of PDC is one of the main
competencies developed in different axes of formation in Computer courses. Considering this
context, higher education courses in Computing in Brazil need to incorporate these guidelines on
PDC teaching in their curricula to prepare students for an increasingly parallelized and distributed
world.

2.1. Computer Science Curricula 43

Chart 2 – Teaching PDC in 2013 curriculum guidelines for computer courses, according to ACM/IEEE

Essential Additional Electives
PF Multiple simultaneous

computations, goals of
parallelism, communica-
tion, coordination, and
programming errors

Not specified Not specified

PD Need for communication
and coordination. Syn-
chronization, Indepen-
dence and partitioning

Parallel decomposition
concepts, task-based
decomposition, data-
parallel decomposition
and actors and reactive
processes

Not specified

CC Shared memory and con-
sistency

Message passing and
atomicity

Barriers, counters, or re-
lated constructs, and Con-
ditional waiting (e.g., us-
ing condition variables)

PAAP Not specified Critical paths, work and
span. The relation to Am-
dahl’s law, speed-up, scal-
ability. Naturally (embar-
rassingly) parallel algo-
rithms, and parallel algo-
rithmic patterns

Parallel graph algorithms,
matrix computations,
producer-consumer and
pipelined algorithms,
and non-scalable parallel
algorithms

PA Multicore processors,
Shared, and distributed
memory

Symmetric multiprocess-
ing (SMP), SIMD, and
vector processing

GPU, co-processing,
Flynn’s taxonomy, in-
struction level support
for parallel program-
ming, memory issues,
and topologies

PP Load balancing, performance measurement, scheduling and contention, eval-
uating communication overhead, data management, and power usage and
management

DC Faults, distributed message sending, distributed system design tradeoffs,
distributed service design, and core distributed algorithms

CC Internet-Scale computing, cloud services, virtualization, and cloud-based
data storage

FMS Formal models of processes and message passing, parallel computation,
shared memory consistency, algorithmic progress, and computational de-
pendencies. Linearizability and techniques for specifying and checking
correctness

Source: Adapted from ACM/IEEE-CS (2013).

44 Chapter 2. Parallel Programming Teaching

Chart 3 points out the topics explained by BCS and are equivalent to the topics referenced
by ACM/IEEE in CPD.

Chart 3 – List of PDC topics covered by BCS with ACM/IEEE

ACM/IEEE SBC
Parallelism Fundamentals (PF) Concurrent Systems/Parallel Processing

(CS/PP)
Parallel Decomposition (PD) .
Communication and Coordination (CC) .
Parallel Algorithms, Analysis, and Pro-
gramming (PAAP)

Parallel and Distributed Programming
(DP)

Parallel Architecture (PA) Parallel Computer Architectures (PCA)
Parallel Performance (PP) Performance Evaluation (PE)
Distributed Systems (DS) Distributed Systems (DS)
Cloud Computing .
Formal Models and Semantics (FMS) Formal Methods (FM)

Source: Elaborated by the author.

The BCS document does not provide the details of each discipline. It is also possible to
note that some areas are not covered, such as Cloud Computing, Parallel Decomposition and
Communication, and Coordination. However, these areas may be covered in other topics, such
as Parallel and Distributed Programming.

Students need to understand these topics to develop skills and competencies, as guided
by computing curricula, to work in these computing environments, increasingly common in the
daily lives of companies and universities (SHAMSI; DURRANI; KAFI, 2015).

Also, students must need to know a considerable range of previous content from other
disciplines, increasing its complexity, such as the organization and architecture of computers,
operating systems, computer networks, and computer programming (ZARESTKY; BANGERTH,
2014).

Thus, it is possible to insert PDC topics into existing disciplines in a computer science
course. For example, an Algorithms class may include parallel algorithms, a Computer Organiza-
tion class may cover multicore architectures, and a Programming Languages class may consist
of distributed computing message-passing primitives (ADAMS et al., 2021).

Considering these restructurings in PDC teaching by ACM and IEEE and the importance
of parallel/distributed programming in future computer professionals’ training, it is essential
to determine how universities address parallel programming. The following sections show this
scenario.

2.2. The PDC Teaching in Brazil 45

2.2 The PDC Teaching in Brazil

In this section, we analyze computer education institutions in Brazil, focusing on teaching
PDC in some of the most important universities spread across different regions of the country.
The survey shows national universities about the teaching of PDC suggested by the ACM, IEEE,
and BCS, highlighting convergences and divergences concerning these references, topics not
covered, and difficulties in finding official consultation documents.

The 45 universities analyzed were chosen according to the scoring systems available in
Folha University Ranking (FUR) (Folha de São Paulo, 2018) released in 2017 and each region’s
demographic density (IBGE, 2010), as shown in Figure 2.

Figure 2 – Brazilian institutions according to geographic location

Source: Elaborated by the author.

FUR was chosen by the considered educational institutions and the use of five distinct
indicators: research, internationalization, innovation, teaching, and market. For example, about
research, items such as total scientific publications, citations, citations per lecturer, scholarship
holders, and productivity, among others, are considered. Regarding teaching, items are considered

46 Chapter 2. Parallel Programming Teaching

a percentage of lecturers with master’s and doctorate degrees, full and partial dedication, and
Enade’s grade (RIGHETTI, 2015).

We selected the number of institutions according to the highest score in the country’s
ranking and demographic density. Thus, the number of chosen institutions ranged from seven
(North and Center-West) to twelve (Southeast). In addition, according to the best positions in
the ranking, two private universities were also intentionally selected, whose names are shown in
yellow in Figure 2.

The materials consulted for data collection were available on each institution’s websites,
such as syllabus, teaching plans, lesson plans, and pedagogical projects. The data obtained
refer to the semester in which the topic is offered, the number of hours, mandatory or elective,
bibliographic references, and prerequisites.

Chart 4 presents the highest-scoring educational institutions for computing and similar
courses, topics related to PDC teaching, and ranking position. The discipline of Distributed
Systems is the most common, followed by Concurrent Programming.

Considering the researched institutions, only Federal University of Paraíba (2018),
Federal University of São João del-Rei (2018), Pontifical Catholic University of Rio de Janeiro
(2018), State University of Londrina (2018) do not have topics related to parallelism specifically
in their syllabus (indicated as NA) or did not make the information available on their websites;
these topics may be inserted into other courses.

Figure 3 shows the prerequisites1 most used by educational institutions. The topics of
Operating Systems, Programming, and Networks are the most common. Of this total, twenty-
three institutions have no prerequisites or have not been found. In addition, no institution requires
corequisite2.

Figure 4 shows the total, practical and theoretical loads for the topics. Of this total,
three institutions did not make their hours available, and four did not have these topics. Many
universities also show the total loads but do not specify the number of hours reserved for practical
and theoretical teaching.

Also, for those institutions that are available information, eight institutions teach only
theoretical classes. In contrast, Federal Fluminense University (2018) teaches only practical
classes. The average total load is 60 hours, with a maximum of 105 hours (University of São
Paulo, 2018) and a minimum of 30 hours (Pontifical Catholic University of Rio Grande do Sul,
2018). The observed average of practical classes is 30 hours and 45 hours for theoretical classes.

Figure 5 provides the semester in which these topics are offered, and eleven institutions
did not provide these data. Most institutions offer topics in the 7th semester. It is also interesting
to note that none of them offers in the 1st and 2nd semesters, which probably happens due to the

1 A prerequisite is a topic that needs to be attended to before applying for the PDC course.
2 Corequisite is subject that needs to be taken concurrently with the topic related to the PDC.

2.2. The PDC Teaching in Brazil 47

Chart 4 – List of Brazilian institutions selected according to ranking scores

Shortname Institution Topic Ranking

N
or

th

UFAM Federal University in Amazonas (2018) Distributed Systems 25
UFPA Federal University of Pará (2018) Distributed Systems 30
UFT Federal University of Tocantins (2018) Distributed Systems 46
UFRA Federal Rural University of the Amazon (2018) Distributed Systems 156
UNIR Federal University of Rondônia (2018) Distributed Systems 178
CESUPA University Center of the State of Pará (2018) Distributed and Parallel

Programming
34

UNAMA State University of Amazonas (2018) Distributed Systems 58

N
or

th
ea

st

UFPE Federal University of Pernambuco (2018) Concurrent Programming
Distributed

5

UFCG Federal University of Campina Grande (2018) Concurrent Programming
Fundamentals

15

UFPB Federal University of Paraíba (2018) NA 20
UFS Federal University of Sergipe (2018) Distributed Systems 21
UFC Federal University of Ceará (2018) Parallel Computing 26
UFRN Federal University of Rio Grande do Norte (2018) Concurrent Programming 42
UFBA Federal University of Bahia (2018) Distributed Algorithms 44
UNIFOR University of Fortaleza (2018) Distributed Systems 33
UNICHRISTUS Christus University Center (2018) Distributed Systems 61

M
id

w
es

t

UNB University of Brasilia (2018) Concurrent Programming 11
UFG Federal University of Goiás (2018) Parallel Computing 17
UFMT Federal University of Mato Grosso (2018) Distributed Systems 51
UFGD Federal University of Grande Dourados (2018) Distributed Systems 149
UFMS Federal University of Mato Grosso do Sul (2018) Parallel Programming 154
PUC GOIÁS Pontifical Catholic University of Goiás (2018) Distributed Systems 60
UNIVAG University Center of Varzea Grande (2018) Advanced Networks and

Distributed Systems
100

So
ut

he
as

t

UFRJ Federal University of Rio de Janeiro (2018) Concurrent Computing 1
USP University of São Paulo (2018) Concurrent Programming 2
UNICAMP State University of Campinas (2018) Introduction to Parallel

Programming
3

UFMG Federal University of Minas Gerais (2018) Projects and Concepts of
Parallel and Distributed
Systems

6

ITA Technological Institute of Aeronautics (2018) Distributed Processing 8
UFSCAR Federal University of São Carlos (2018) Distributed Systems 9
UNESP São Paulo State University (2018) Distributed Computing 13
UFF Federal Fluminense University (2018) Parallel Programming

Laboratory
27

UERJ State University of Rio de Janeiro (2018) Distributed Systems 28
UFSJ Federal University of São João del-Rei (2018) NA 36
PUC-RIO Pontifical Catholic University of Rio de Janeiro

(2018)
NA 10

MACKENZIE Mackenzie Presbyterian University (2018) Parallel Computing 18

So
ut

h

UFRGS Federal University of Rio Grande do Sul (2018) Distributed and Parallel
Programming

4

UFSC Federal University of Santa Catarina (2018) Concurrent Programming 7
UFPR Federal University of Paraná (2018) Parallel Programming 12
UTFPR Federal Technological University of Paraná (2018) Distributed Systems 16
UFSM Federal University of Santa Maria (2018) Distributed Systems 22
UEL State University of Londrina (2018) NA 40
UEM State University of Maringá (2018) Concurrent Programming 48
PUCRS Pontifical Catholic University of Rio Grande do

Sul (2018)
Models for Concurrent
Computing

14

PUCPR Pontifical Catholic University of Paraná (2018) Distributed Systems 24

Source: Elaborated by the author.

48 Chapter 2. Parallel Programming Teaching

Figure 3 – Prerequisites of the topics related to PDC for Brazilian institutions

Source: Elaborated by the author.

Figure 4 – Total loads of the topics related to PDC for Brazilian institutions

Source: Elaborated by the author.

2.2. The PDC Teaching in Brazil 49

time required to fulfill the prerequisites.

Figure 5 – Semester of the provision of the topics related to PDC for Brazilian institutions

Source: Elaborated by the author.

Figure 6 shows whether the topic is offered as an elective or required. It is usually
required, with six institutions not providing the information.

Figure 6 – Elective and required topics about PDC for Brazilian institutions

Source: Elaborated by the author.

Figure 7 shows the grouping of bibliographies by the year used in those institutions’
syllabus available online. Most institutions have bibliographies published between 2005 and
2012. However, some institutions work with bibliographies from the 1980s (1988), while the
most current is from 2013.

50 Chapter 2. Parallel Programming Teaching

Figure 7 – Bibliographic information of the topics related to PDC for Brazilian institutions

Source: Elaborated by the author.

Chart 5 shows the PDC topics’ adherence to the ACM/IEEE and BCS guidelines. We
listed in the table only institutions with the syllabus that we found on the official website.
Unfortunately, the BCS references do not include the topics’ specifications; therefore, we
grouped the discipline according to the name and content.

Few institutions teach the last topics of Chart 5, such as Cloud Computing and Formal
Methods. Also, 49% of the investigated courses explicitly offer parallel programming in their
grades and only 20% address topics about parallel performance.

According to ACM/IEEE-CS (2013), parallel and distributed programming remains more
complex in contemporary programming environments. Thus, assimilating these programming
models can help students acquire the necessary skills in this area, making parallel teaching vital
for computer courses. However, it is possible to note that most courses have chosen to offer this
topic in the later semesters due to its high complexity and prerequisites.

Many educational institutions use non-contemporary bibliographies, not addressing
relatively new topics, such as Cloud Computing. It is also highlighted that only 62% of these
institutions offer the topic as required, while the others do not offer it as required or do not even
offer it.

Another critical key is the loads for a topic’s success. In this study, we noticed a significant
divergence in the number of hours needed. The average indicated it was around 60 hours, while
the ACM/IEEE points 80 minimum hours.

Regarding the institutions’ adherence to the ACM/IEEE and BCS curriculum guidelines,
many institutions go beyond the minimum proposal, covering current topics. However, many
universities do not address essential topics, such as Parallel and Distributed Programming, a

2.2. The PDC Teaching in Brazil 51

Chart 5 – Adherence of topics on PDC with the ACM/IEEE and BCS reference curricula for Brazilian
institutions.

BCS CS/PP PDP PCA PE DS FM
ACM/IEEE PF PD CC PAAP PA PP DS Cloud FMS

In
st

itu
tio

n

UFAM X X X X
UFPA X X X X
UFT X X X X
UFRA X X X X
UNIR X X X X X X
CESUPA X X X X X X
UFPE X X X X
UFCG X X X X
UFS X X X X
UFC X X X X
UFRN X X X X
UFBA X X X X X
UNIFOR X X X X X
UFG X X X X X X
UFMT X X X
UFGD X X X X
UFMS X X X X X X
PUC-GOIAS X X X
UFRJ X X X X X
USP X X X X X X X
UNICAMP X X X X X
UFMG X X X X X
ITA X X X X X
UFSCAR X X X X X X
UNESP X X X
UFF X X X X
MACKENZIE X X X
UFRGS X X X X X X
UFSC X X X
UFPR X X X X
UTFPR X X X X
UFSM X X X
UEM X X X X
PUC-RS X X X

Source: Elaborated by the author.

52 Chapter 2. Parallel Programming Teaching

subject of extreme importance today.

2.3 The PDC Teaching Around the World
In this section, we analyze the teaching of PDC in the most important universities on their

respective continents, according to the main rankings in the area. In addition, we also highlight
the divergences and convergences about the teaching of PDC suggested by the ACM and IEEE.

We chose 30 universities according to the scoring systems available in two rankings used
worldwide: World University Rankings (WUR) (The World University Ranking, 2018) and QS
World University Rankings (QS World University Rankings, 2018).

The rankings selected use indicators such as academic reputation, employer reputation,
faculty/student ratio, citations by faculty, international faculty index, international student index,
among others. In addition, we chose five universities according to their location in North America,
Europe, Asia, South America, Africa, and Oceania to limit the results.

Each ranking was filtered by the highest-scoring institutions for computer science courses.
Then, we calculated the scores based on position in the two rankings; for example, Stanford
University (USA) is #1 in the WUR and #2 in the QS, so its total score was 3. Chart 6 presents
the position of each institution according to the sum of the scores for the respective rankings.

For the African continent, we used the ranking called Center for World University Rank-
ings (CWUR) (Center for World University Rankings, 2018) of equal notoriety; unfortunately,
the WUR was not available for that continent.

The collected data have been searched on the official websites of each educational
institution, such as teaching plans, curriculum matrices, and syllabus. We filtered information
by bibliography used, prerequisites, corequisites, course load, and required or elective. The
information might be outdated. Many universities did not provide the full syllabus, only parts
they considered significant, and this could affect the results of this study.

For example, Peking University (2018), Nanyang Technological University (2018),
Pontifical Catholic University of Chile (2018) do not have information on their websites about
the computer science course topics. We sent an email to these institutions requesting this
information, but we received no response.

Many topics about PDC may be inserted into other subjects, such as Computer Pro-
gramming and Operating Systems. It is also possible that PDC topics were made available in
other courses/areas or provided as an extension program. However, the focus of the work is
undergraduate courses.

Chart 7 shows the names of the disciplines found related to PDC, precisely parallel
and distributed programming. In addition, the table shows the offer type and prerequisite for a
particular topic. Unfortunately, few institutions offer PDC topics as required, making it difficult

2.3. The PDC Teaching Around the World 53

Chart 6 – List of world institutions selected according to ranking scores

Shortname Institution Country Ranking Score

N
or

th
A

m
er

ic
a Stanford Stanford University (2018) EUA W(1) Q(2) 3

MIT Massachusetts Institute of Technology
(2018)

EUA W(2) Q(1) 3

CMU Carnegie Mellon University (2018) EUA W(6) Q(3) 9
Harvard Harvard University (2018) EUA W(11) Q(6) 18
Princeton Princeton University (2018) EUA W(12) Q(8) 20

E
ur

op
e

Oxford University of Oxford (2018) UK W(3) Q(7) 9
Cambridge University of Cambridge (2018) UK W(5) Q(5) 10
ETH ETH Zurich (2018) Switzerland W(4) Q(9) 13
Imperial Imperial College London (2018) UK W(9) Q(12) 21
École École Polytechnique Fédérale de Lau-

sanne (2018)
Switzerland W(10) Q(18) 28

A
si

a

NUS National University of Singapore
(2018)

Singapore W(13) Q(10) 23

Tsinghua Tsinghua University (2018) China W(20) Q(20) 40
Peking Peking University (2018) China W(25) Q(17) 42
Hong
Kong

Hong Kong University of Science and
Technology (2018)

Hong
Kong

W(28) Q(14) 42

Nanyang Nanyang Technological University
(2018)

Singapore W(31) Q(16) 47

So
ut

h
A

m
er

ic
a USP University of São Paulo (2018) Brazil W(?) Q(51) 51

Chile University of Chile (2018) Chile W(?) Q(51) 51
Unicamp State University of Campinas (2018) Brazil W(?) Q(101) 101
UBA University of Buenos Aires (2018) Argentina W(?) Q(151) 151
PUC
Chile

Pontifical Catholic University of Chile
(2018)

Chile W(201)
Q(101)

301

O
ce

an
ia

Melbourne University of Melbourne (2018) Australia W(39) Q(14) 53
Sydney University of Technology Sydney

(2018)
Australia W(83) Q(36) 119

Australian Australian National University (2018) Australia W(83) Q(37) 120
South
Wales

University of New South Wales (2018) Australia W(101) Q(41) 142

Queensland Queensland University of Technology
(2018)

Australia W(98) Q(51) 149

A
fr

ic
a

Cape
Town

University of Cape Town (2018) South
Africa

CW(223)
Q(301)

521

Witwaters-
rand

University of the Witwatersrand
(2018)

South
Africa

CW(230) Q(?) 230

Stellenbosch Stellenbosch University (2018) South
Africa

CW(448)
Q(401)

849

Pretoria University of Pretoria (2018) South
Africa

CW(438)
Q(401)

839

Cairo Cairo University (2018) Egypt CW(452)
Q(301)

753

Source: Elaborated by the author.

54 Chapter 2. Parallel Programming Teaching

to disseminate "parallel thinking".

We analyzed 30 universities, where 11 institutions did not have prerequisites or were not
informed (NI), and six institutions did not present data (NA). Operating Systems, Programming,
and Architecture are the most common prerequisites, and no institution presented corequisites.

Figure 8 presents 22 institutions that do not show hours dedicated to practical and
theoretical teaching; these institutions only inform the total course load. Only seven universities
detailed the number of theoretical and practical hours. Despite the limited amount of information,
a large divergence in the total load number between institutions was detected, directly impacting
the student’s knowledge and skills.

Also, converting different course load formats makes the calculation process a bit subjec-
tive. For example, in Europe, the credits can be called European Credit Transfer System (ECTS)
or Full-time Equivalent Student Load (EFTSL) and are stipulated in hours. In North America,
course loads are described in units and can have different values for each university.

Figure 8 – Total loads of the topics related to PDC for the world institutions

Source: Elaborated by the author.

Figure 9 shows the year of offering the topic related to PDC. Unfortunately, most
institutions, 22 universities, do not specify which year the students take the discipline. This can
happen because students need to fulfill prerequisites before starting a topic or because the course
is optional and depends on offers.

Despite the complexity of PDC topics, some institutions offer these disciplines in the
first year, for example, École Polytechnique Fédérale de Lausanne (2018) and Stellenbosch
University (2018), preparing students earlier. Unlike École, which is a full bachelor’s degree,
Stellenbosch is explicitly targeted to Parallel Computing. However, most institutions have chosen
to teach PDC in the last years.

2.3. The PDC Teaching Around the World 55

Chart 7 – Topics and prerequisites related to PDC for the world institutions

Shortname Topic Offer Prerequisite
Stanford Parallel Computing Elective Compilers; Principles of Com-

puter Systems
MIT Multicore Programming Elective Introduction to Algorithms
CMU Parallel Computer Architecture

and Programming
Elective Intro to Computer Systems

Harvard Introduction to Distributed Com-
puting

Elective Operating Systems

Princeton Distributed Systems Elective Introduction to Programming
Systems; Operating Systems; Ad-
vanced Programming Techniques

Oxford Concurrent Programming Required Object Oriented Programming
Cambridge Concurrent and Distributed Sys-

tems
Required Operating Systems

ETH Parallel Programming Required NI
Imperial Distributed Algorithms Elective Concurrency, Maths

École Parallelism and Concurrency NI Functional programming; Algo-
rithms; Computer Architecture

NUS Parallel and Concurrent Program-
ming

Elective NI

Tsinghua Distributed Computing NI NI
Peking NA NA NA

Hong Kong Parallel Programming Elective NI
Nanyang NA NA NA

USP Concurrent Programming Required NI
Chile Parallel Computing and Applica-

tions
Elective Design and Analysis of Algo-

rithms
Unicamp Introduction to Parallel Program-

ming
Elective NI

UBA Complex Systems in Parallel Ma-
chines

Elective NI

PUC Chile NA NA NA
Melbourne NA NA NA

Sydney NA NA NA
Australian Parallel Systems Elective NI

South Wales Distributed Systems NI NI
Queensland High Performance and Parallel

Computing
NI NI

Cape Town NA NA NA
Witwatersrand Parallel Computing III NI Operating Systems II; Computer

Networks II; Analysis of Algo-
rithms II

Stellenbosch Concurrent Programming 1 and
2

Required NI

Pretoria Concurrent Systems Required Operating Systems; Data Struc-
tures and Algorithms

Cairo Parallel Processing Required Computer Architecture and
Organization

Source: Elaborated by the author.

56 Chapter 2. Parallel Programming Teaching

Figure 9 – Year of the provision of the topics related to PDC for the world institutions

Source: Elaborated by the author.

Figure 10 shows 12 institutions in which the discipline about PDC is elective. However,
only in seven universities, the subject is required. In addition, five institutions did not present
any information (NI), and six only offered the discipline in graduate studies and did not present
the course syllabus (NA).

Figure 10 – Elective and required of the topics related to PDC for the world institutions

Source: Elaborated by the author.

Figure 11 groups the bibliographies used in the PDC topics. Most bibliographies are
between 1990 and 2017, with more than 20 years of publication. However, the information may
be incorrect or outdated on the websites of these institutions.

Considering that the information on the websites is correct, many educational institutions

2.4. Mapping of Theoretical and Practical Teaching Approaches 57

Figure 11 – Bibliographic information of the topics related to PDC for the world institutions

Source: Elaborated by the author.

use outdated bibliographies concerning new technologies, such as Cloud Computing. Unfortu-
nately, this type of approach can sit problems for the student to acquire real-world skills (QIU et

al., 2017).

Chart 8 maps the topics that educational institutions cover. Most universities teach
essential topics following ACM/IEEE guidelines. However, the subject of Parallel Architecture
was inserted in the syllabus only by some institutions.

Also, some institutions, for example, National University of Singapore (2018) insert
all topics (essential, additional, and elective) inside one discipline, perhaps not teaching the
subject in-depth, increasing the number of hours, and making the course load intense. However,
Figure 12 shows a Parallel Computing course that covers all topics in the ACM/IEEE reference
curriculum.

Some institutions, such as University of Cambridge (2018), have placed all course
material available online for anyone to download, such as annotated lessons, exercises, program
codes, exercise solving, and ready-made lessons. This type of action helps to increase the
teaching of PDC. However, some courses are still not covered by universities, such as Cloud
Computing, Formal Models, and Parallel Performance.

2.4 Mapping of Theoretical and Practical Teaching Ap-
proaches

With the study carried out in Section 2.2 and Section 2.3, it was possible to know how the
teaching of PDC is approached in Brazilian and world teaching institutions. With this information,

58 Chapter 2. Parallel Programming Teaching

Chart 8 – Adherence of PDC topics to ACM/IEEE reference curricula for world institutions

Institution
Topics

PF PD CC PAAP PA PP DS Cloud FMS
Stanford X X X X X
MIT X X X X
CMU X X X X X
Harvard X X X X X
Princeton X X X X X
Oxford X X X X
Cambridge X X X X X
ETH X X X X
Imperial X X X X
École X X X X
NUS X X X X X X X X
Tsinghua X X X X
Hong Kong X X X X
USP X X X X X X X X
Chile X X X X X
Unicamp X X X X X
UBA X X X X X
Australian X X X X X X
South Wales X X X X X X X
Queensland X X X X X X X
Witwatersrand X X X X
Stellenbosch X X X X
Pretoria X X X X
Cairo X X X X X X

Source: Elaborated by the author.

we carried out a mapping of the learning of parallel programming, a part of PDC, to identify the
theoretical and practical approaches used for this type of teaching.

Based on the previous sections, but specifically in Chart 4 and Chart 7, we performed a
systematic mapping with the PICO3 strategy, where a search string was defined, in the primary
databases (ACM, IEEE, Scopus, and Springer): (teach* OR education OR learn*) AND (parallel

or distributed) AND (programming OR computing OR concurrent). The search returned 180
articles, and after reading the title and abstract, we selected 24 that addressed the teaching of
parallel programming. Below, we present a summary of each selected article.

Joiner et al. (2006) demonstrate tools for teaching high-performance computing through
two educational methods. The first method uses a bootable Compact Disc (CD) that temporarily

3 PICO stands for an acronym for Patient, Intervention, Comparison, and Outcome. These four com-
ponents are the essential elements of the research question in the Evidence-Based Practice discipline
and the construction of the question for the bibliographic search for evidence (SANTOS; PIMENTA;
NOBRE, 2007).

2.4. Mapping of Theoretical and Practical Teaching Approaches 59

Figure 12 – Parallel computing course

Source: National University of Singapore (2018).

transforms the workstation into a cluster for running parallel code. The second method uses
a cluster prototype. For the teaching part, they used practical implementation and collected
feedback.

Marowka (2008) shows an introductory course in parallel programming for third-year
undergraduate students in Computer Science. The course addresses representative, theoretical
and practical topics. It focuses on three points: how to show students that parallel computing is
everywhere, how to train students to think in parallel, and which parallel programming model is
used to practice this type of programming.

Li, Guo and Zheng (2008) approach a 16-week course introducing parallel and distributed
computing principles and techniques to computer students. The course content is divided into
parallel programming, parallel algorithm, and parallel computer architecture. Classes are divided
into theoretical and practical, using OpenMP and Message Passing Interface (MPI) for the
laboratory.

Ivica, Riley and Shubert (2009) present a parallel programming education system con-
sisting of a preconfigured virtual machine image that, through scripts, builds a cluster based on
the Amazon Elastic Computing Cloud (EC2). This cluster, called StarHPC, is shared by the class
for running parallel codes.

60 Chapter 2. Parallel Programming Teaching

Arroyo (2013) proposes a set of modules for parallel programming teaching, starting
with basic computation, advanced high performance, and parallel and distributed programming
themes. Also, the paper cites the development of a C++ library with a set of parallel patterns for
program development. This library was called Parallel and Distributed Templates (PDT) and
focuses on teaching programming through parallel patterns or skeletons.

Adams, Brown and Shoop (2013) show two approaches to parallel programming teaching.
The first approach is the use of parallel programming standards based on the professionals’
experience. These standards are delivered to students as a collection of problems to be solved.
The second approach involves using parallel programming techniques to solve some real issues,
motivating students to learn the principles and practices of parallel programming.

Branco et al. (2013) propose a course with two approaches for advanced undergraduate
or graduate students. First, the method uses books as expository materials, and in the practical
part, the students execute prepared codes in the laboratory. Then, after they understand the code,
the students could change it. The first approach is to use wireless sensor networks to define
topics such as fault tolerance and coordination. The second approach is to insert a new topic to
improve understanding of a multitasking level.

Ferner, Wilkinson and Heath (2013) have developed educational materials based on two
approaches to parallel programming teaching for graduate students. The first approach uses
proprietary software that creates a high-level abstraction for parallel and distributed programming
based on the pattern programming approach. The second approach uses compiler guidelines to
describe how a program is to be paralleled.

Ferner, Wilkinson and Heath (2014), in another paper, present the results obtained with
the materials developed, where it can be concluded that 1) teaching parallel computing in the
context of patterns has a positive impact on student learning; 2) teaching the lower-level tools first
would be beneficial; 3) the improvements made to the Paraguin compiler directives significantly
improved the student’s confidence in using the tool, and 4) the lower-level tools can still be
taught in the context of patterns.

Shafi et al. (2014) present an overview of the undergraduate software engineering course.
The course was divided into three sections, the first one dealing with parallel programming
techniques for shared memory systems. The second section discusses parallel tools used for
distributed memory and cluster. The last approach included advanced topics such as MapReduce
and the General Purpose Computing on Graphics Processing Units (GPGPU)4.

Burkhart, Guerrera and Maffia (2014) show a project-based approach for solving specific
problems. In their paper, two methods are defined, standalone and integrated. Students need
to configure the development environment in the standalone approach, generate the data, and
analyze the results, taking time and learning problems. Also, a pedagogical tool was developed

4 GPGPU is the use of a GPU, to perform computation in applications traditionally handled by the CPU.

2.4. Mapping of Theoretical and Practical Teaching Approaches 61

in the integrated approach that makes the environment preconfigured and integrated. In this
environment, the necessary tools are available to solve problems and analyze the results.

Zarestky and Bangerth (2014) describe the use of the flipped classroom in teaching HPC.
In this type of approach, the instructor offers the homework and after the classroom activity is
performed. The course was administered based on three components: flipped format, research
journals (the students should describe what they saw in the homework), and reflective writing
(the students should analyze the homework they have learned). Thus, the authors concluded that
the students had a greater involvement with the course content, increased motivation, and ease of
communication with the instructor.

Shamsi, Durrani and Kafi (2015) take a hands-on approach based on programming and
using multiple HPC platforms. The theoretical load of the course is extensive and covers all
subjects planned for an HPC course. In addition, teaching methodology, feedback techniques,
interactive learning, peer discussion, and group discussions are used.

Dolgopolovas et al. (2015) present a methodology based on a constructivist approach.
This approach is model-centered and comparative learning through programming models based
on stochastic simulations provided by a multi-phase queuing system. This queuing system is used
for the simplicity and possibilities of parallelization, allowing several experiments to compare
and investigate the effectiveness of the parallelized method. Parallelization methods include
distributed and shared memory and hybrid parallelization using OpenMP and MPI.

Ul-Abdin and Svensson (2015) provide an analytical approach to parallel computing
education, focusing on embedded systems’ performance and energy efficiency. The course is
divided into theoretical and practical, where the practical part includes a small project and
seminar. The teaching methods are based on constructivist learning theory, where students are
involved in knowledge construction and analysis of real case studies.

Nezu (2015) presents a short work where materials containing parallel programming
exercises are used. The basic idea of the material is to allow students to program with their Linux
computers.

Schlarb, Hundt and Schmidt (2015) present software for the evaluation and automated for
measurement of parallel programs’ source code. The "System for AUtomated Code Evaluation"
(SAUCE) system is free, open-source software written in Python, running through a web browser.
This tool provides immediate feedback, can be used in the classroom, and supports MPI, OpenMP,
and CUDA.

Cuenca and Giménez (2016) use bi-objective optimization problems5 to teach parallel
programming to students of the Software Engineering course. This problem-based learning

5 The bi-objective optimization problem is a multi-criteria decision-making area, which relates to
mathematical optimization problems involving more than one objective function to be optimized
simultaneously (DEB, 2014).

62 Chapter 2. Parallel Programming Teaching

focuses on practical work and consists of optimizing execution time and energy consumption in
a primary heterogeneous cluster. The course lasts one semester and covers topics such as review
of parallel architectures, parallel programming paradigms, and parallel programming tools.

Liu (2016) emphasizes the use of coding in his classes. The need to prioritize the coding
will also help the student gain experience in acquiring concepts such as process communication,
blocking, and load balancing. Clusters are used for laboratory classes with some possible
architectures such as Uniform Memory Access (UMA)6, GPUs, and clusters Beowulf. Students
need to do practical programming projects, as well as research and presentations.

Eijkhout (2016) presents a standard sequence of steps for parallel programming teaching
with MPI. The article describes the required exercises and workshops to complete the teaching
and learning process, starting with mechanisms that emphasize the symmetry between processes
in the Single Program Multiple Data (SPMD)7 programming models. In work, it is reiterated
that OpenMP should be taught after MPI because of its more intuitive parallelism model. It will
be more difficult for students to understand MPI’s symmetric model if they acquire concepts like
master thread and parallel regions.

Moore and Dunlop (2016) used the flipped classroom’s pedagogical approach, in which
the typical reading and lesson elements of a course are reversed. For this, small videos and
lectures are sent to students before the start of the lesson. After the classroom, the time is
dedicated to exercises and discussions about the video’s covered concepts. Compared to the
traditional teaching approach, the paper concludes that this new approach motivated students and
showed better results. Also, to these aspects, they were grouped by mixing more experienced
with less experienced students. The class was also composed of undergraduate and graduate
students.

Baldwin et al. (2016) present a teaching tool called Scholar for computational literacy.
This tool is used in classrooms to teach HPC and conduct experiments. To provide access to
high-performance computing, Scholar has access to the "Hathi" cluster, a 576-node HPC system,
built with 2.6 GHz Intel Xeon E5-2660 processors. Each node has 64 GB of RAM and is
interconnected with 56Gb FDR Infiniband. It still provides three software packages: Thin-line,
Rstudio Server, and Jupyterhub. Scholar still supports Apache Hadoop YARN and Spark on
batch computing nodes.

Gardner and B. (2017) describe a paper report the experience of parallel teaching for
undergraduates. In addition, they present a Pilot library, which represents a layer above the MPI
to assist students in scheduling message passing.

Grossman et al. (2017a) present a parallel programming introductory course, discussing
the course structure and teaching approaches. The method uses a partially flipped classroom

6 UMA is a shared memory architecture used in parallel programming.
7 SPMD describes an execution method with several parallel computing operating units so that the same

instruction is applied simultaneously to several data to produce more results.

2.4. Mapping of Theoretical and Practical Teaching Approaches 63

because it is used in the last minutes of class and uses quizzes, videos, and homework to increase
the pedagogical issues. In addition, they used the HJlib and Habanero Autograder tools for
laboratory classes.

Capel, Tomeu and Salguero (2017) created a teaching model that involves a demonstra-
tive approach to constructing the parallel program. First, examples are selected through code
fragments and a set of standard algorithms. These cases are available to students from Moodle,
where students follow specific steps in a work cycle: the teacher explains the particular example
in a lecture; students develop the program to solve a specific problem; and finally, they analyze
the result and do the exercises.

In Chart 9, we grouped the most relevant points about theoretical approaches to teaching
parallel programming. Therefore, we present in the table only the papers that include some
teaching-related strategies. Understanding how the teaching of this type of programming is
carried out is essential to define teaching strategies.

The vast majority of the teaching strategies presented by the authors address the pre-
sentation of PDC topics, exercises based on code standards, and examples. It is essential to
highlight that not all papers address theoretical and practical classes in the courses. For example,
some works use only theoretical material (ADAMS; BROWN; SHOOP, 2013; ZARESTKY;
BANGERTH, 2014), while others only teach based on laboratory practice (IVICA; RILEY; SHU-
BERT, 2009; SCHLARB; HUNDT; SCHMIDT, 2015; BALDWIN et al., 2016; GARDNER; B.,
2017).

Some theoretical teaching strategies provide all PDC materials accessible to students,
describing all exercises and workshops necessary for the learning process (EIJKHOUT, 2016).

Chart 10 presents teaching parallel programming strategies for practical laboratory
classes. The vast majority of the papers address the use of OpenMP and MPI for code paralleliza-
tion (JOINER et al., 2006; MAROWKA, 2008; IVICA; RILEY; SHUBERT, 2009; ARROYO,
2013; SHAFI et al., 2014; BURKHART; GUERRERA; MAFFIA, 2014; SHAMSI; DURRANI;
KAFI, 2015; SCHLARB; HUNDT; SCHMIDT, 2015; CUENCA; GIMÉNEZ, 2016; EIJKHOUT,
2016; MOORE; DUNLOP, 2016). For the execution of the programs, the largest of the works
had a cluster infrastructure (LIU, 2016; MOORE; DUNLOP, 2016; BALDWIN et al., 2016).

Still, many other works use Proprietary Software (PS) for the practice of parallel pro-
gramming, so few infrastructure details are shown (JOINER et al., 2006; IVICA; RILEY;
SHUBERT, 2009; ARROYO, 2013; ADAMS; BROWN; SHOOP, 2013; FERNER; WILKIN-
SON; HEATH, 2013; FERNER; WILKINSON; HEATH, 2014; BURKHART; GUERRERA;
MAFFIA, 2014; UL-ABDIN; SVENSSON, 2015; SCHLARB; HUNDT; SCHMIDT, 2015;
BALDWIN et al., 2016; GARDNER; B., 2017; GROSSMAN et al., 2017a). Also, we highlight
that the Java language is constantly mentioned in papers (ADAMS; BROWN; SHOOP, 2013;
FERNER; WILKINSON; HEATH, 2013; FERNER; WILKINSON; HEATH, 2014; SHAFI et

64 Chapter 2. Parallel Programming Teaching

Chart 9 – Papers related to teaching strategies

Paper Approach Method
Joiner et al. (2006) Feedback Examples
Marowka (2008) Quiz, examples, and presentation
Li, Guo and Zheng (2008) Examples
Arroyo (2013) Pattern Programming
Adams, Brown and Shoop (2013) Pattern Programming Our Pattern Language
Ferner, Wilkinson and Heath (2013) Pattern Programming
Branco et al. (2013) Presentation and examples
Shafi et al. (2014) Presentation and examples
Burkhart, Guerrera and Maffia
(2014)

Project-Based Learning Research journals, and reflective
writing

Zarestky and Bangerth (2014) Flipped Classroom
Shamsi, Durrani and Kafi (2015) Programming-Based Feedback, interactive learning,

peer discussion, and group dis-
cussions

Dolgopolovas et al. (2015) Model-Centered Learn-
ing
(Constructivist)

Examples

Ul-Abdin and Svensson (2015) Analytical (Construc-
tivist)

Lecture, laboratory, small project,
and seminar

Nezu (2015) Exercises
Cuenca and Giménez (2016) Problem-based Learning Presentations and examples
Liu (2016) Research, exercises, and presen-

tations
Eijkhout (2016) Examples and intensive work-

shop
Moore and Dunlop (2016) Flipped Classroom Lecture, exercise, class discus-

sion, individual help, videos, and
quizzes

Grossman et al. (2017a) Partially Flipped Class-
room

Quiz, videos, and homework

Capel, Tomeu and Salguero (2017) Pattern Programming Examples and exercises
Source: Elaborated by the author.

2.4. Mapping of Theoretical and Practical Teaching Approaches 65

al., 2014; BURKHART; GUERRERA; MAFFIA, 2014; BALDWIN et al., 2016; GROSSMAN
et al., 2017a). However, only a few works use GPU for this type of teaching (ARROYO, 2013;
BURKHART; GUERRERA; MAFFIA, 2014; SHAMSI; DURRANI; KAFI, 2015; LIU, 2016).

Although CUDA is not an open-source tool, it is still preferred for teaching due to its low
complexity imposed by OpenCL, such as discovering platforms and devices, setting the queues
and, compiling the kernel (ADAMS, 2021).

Also, we highlight the use of feedback for theoretical (SHAMSI; DURRANI; KAFI,
2015) and practical (SCHLARB; HUNDT; SCHMIDT, 2015) classes; in the latter, the code
verification system informs students if the exercise is correct after the program is submitted.
Energy efficiency is a concern when using huge infrastructures (CUENCA; GIMÉNEZ, 2016;
UL-ABDIN; SVENSSON, 2015), such as a cluster, for example.

Finally, some investigated papers are concerned that students can run parallel programs
from their personal computers through scripts to create the environment (JOINER et al., 2006;
IVICA; RILEY; SHUBERT, 2009) or web interfaces for program submission (SCHLARB;
HUNDT; SCHMIDT, 2015).

66 Chapter 2. Parallel Programming Teaching

Chart 10 – Papers related to laboratory tools

Paper Infrastructure PS Method
Joiner et al. (2006) Parallel Virtual

Machine (PVM)
X BCCD, MPICH, and OpenMosix

Marowka (2008) Visual Studio and C++
Li, Guo and Zheng (2008) OpenMP and MPI
Ivica, Riley and Shubert
(2009)

Virtual Machine
(VM)

X StarHPC, OpenMP, and MPI

Arroyo (2013) X PDT, OpenMP, MPI and OpenCL
Adams, Brown and Shoop
(2013)

X Java-based, Paraguin Compiler, and
Seeds Framework

Branco et al. (2013) TinyOS
Ferner, Wilkinson and Heath
(2013), Ferner, Wilkinson
and Heath (2014)

X Java and Paraguin compiler

Shafi et al. (2014) Java Threads, OpenMP, Intel Cilk
Plus, and MPJ Express

Burkhart, Guerrera and Maf-
fia (2014)

X Java, Chapel, OpenMP, MPI, Patus,
and CUDA

Shamsi, Durrani and Kafi
(2015)

MPI, OpenMP, Hadoop, and
GPGPU

Dolgopolovas et al. (2015) OpenMP and MPI
Ul-Abdin and Svensson
(2015)

Open Virtual Plat-
form (OVP)

X aDesigner, GT-Board, and C

Nezu (2015) C and OpenMP
Schlarb, Hundt and Schmidt
(2015)

Web X System for AUtomated Code Evalu-
ation (SAUCE)
Cuenca and Giménez (2016) Simu-
lated System OpenMP and MPI

Cuenca and Giménez (2016) Simulated System OpenMP and MPI
Liu (2016) UMA, Clusters Be-

owulf, and GPUs
Microsoft’s Visual Studio Task Par-
allel Library and C#

Eijkhout (2016) MPI
Moore and Dunlop (2016) Stampede Super-

computer
C and MPI

Baldwin et al. (2016) Hathi Cluster X Scholar, Thin-line, Rstudio Server,
and Jupyterhub

Gardner and B. (2017) X Pilot Library
Grossman et al. (2017a) X HJlibparallel and Habanero

Autograder
Source: Elaborated by the author.

2.5. Content of Parallel Programming Teaching 67

2.5 Content of Parallel Programming Teaching
As discussed in Section 2.4 of this chapter, several techniques are used for the practical

and theoretical teaching of parallel programming. Chart 10 addresses shared memory, message-
passing, and accelerator-oriented Massively-parallel Programming (GPUs), which are the leading
managed technologies (CESAR et al., 2017; ADAMS, 2015).

This work proposes developing a learning tool for parallel programming; thus, in this
section, we analyzed the teaching needs for the most used technologies: OpenMP, MPI, and
CUDA.

2.5.1 Shared Memory (OpenMP)

In shared-memory systems, several computational cores share the same primary memory,
through which communication can occur. Today, students can test and run the programs shown
in class with their own desktop and laptops with multicore processors. (CESAR et al., 2017;
ADAMS, 2015).

According to Cesar et al. (2017), as OpenMP requires minor modification to a simple
program written in C, this may be the way to teach parallelism to students initially. With some
directives, it is possible to teach parallelized code in the first lab class. First, however, students
need to have C skills and basic concepts of parallel algorithms.

The following example, Source code 1, demonstrates how to parallelize a simple loop
using the parallel loop construction. The iterative loop variable is private by default, so it is
unnecessary to specify it in a private clause explicitly (OpenMP Architecture Review Board,
2016).

Source code 1 – Example of a simple OpenMP loop

1: void simple(int n, float *a, float *b)
2: {
3: int i;
4: #pragma omp parallel for
5: for (i=1; i<n; i++) /* i is private by default */
6: b[i] = (a[i] + a[i-1]) / 2.0;
7: }

OpenMP classes should teach the parallel programming model of MIMD machines with
the shared memory communication paradigm. Through compilation directives (#pragma omp),
OpenMP allows the programmer to specify where parallelism should be applied and built.

Thus, the beginning of the course addresses the concepts of threads, shared and private
variables, and the need for diverse synchronizations, such as those that protect critical regions

68 Chapter 2. Parallel Programming Teaching

and ensure mutual exclusion.

2.5.2 Message-Passing (MPI)

MPI is the most used interface for teaching and developing parallel distributed memory
programs (CESAR et al., 2017). The interface is very similar to the standard C library spec-
ification, and it allows a program written in MPI to be portable from one implementation to
another. MPI also specifies a set of command-line programs used to initiate parallel executions
or compile MPI programs (BAYSER; CERQUEIRA, 2017).

MPI can automatically run n copies of a program and allocate them to the compute nodes
according to user specifications. Each program is assigned an ID numeric called a “rank”. The
instance with rank 0 is often used to perform initial configuration tasks or other coordination
tasks by convention (BAYSER; CERQUEIRA, 2017).

Once running, an instance can send a message to any other instance identified by classi-
fication or even groups of classifications. For example, the following Source code 2 shows an
example of a program written with MPI directives for the C language.

Source code 2 – Example of an MPI code

1: // Initialize the MPI environment
2: MPI_Init(NULL, NULL);
3:

4: // Get the number of processes
5: int world_size;
6: MPI_Comm_size(MPI_COMM_WORLD, &world_size);
7:

8: // Get the rank of the process
9: int world_rank;

10: MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
11:

12: // Get the name of the processor
13: char processor_name[MPI_MAX_PROCESSOR_NAME];
14: int name_len;
15: MPI_Get_processor_name(processor_name, &name_len);
16:

17: // Print off a hello world message
18: printf("message: %s from processor: %s, rank: %d out of %d processors\n", "

Hello World", processor_name, world_rank, world_size);
19:

20: // Finalize the MPI environment.
21: MPI_Finalize();

2.5. Content of Parallel Programming Teaching 69

In an MPI course, the concepts of parallel computing of distributed memory, the structure
of an MPI program (initialization, communication, number and classification of processes and
termination), point-to-point communication (MPI_Send and MPI_Recv), blocking and non-
blocking (MPI_Wait and MPI_Test), barrier implementation, and performance (MPI_Time) are
discussed.

2.5.3 Accelerator-oriented Massively-parallel Programming (GPUs)

After MPI and OpenMP, it is necessary to introduce programming concepts for GPUs
such as OpenACC and CUDA. For this, the student must acquire in-depth knowledge in the use
of thousands of threads and memory hierarchy to reach performance increases for this type of
computation.

Similar to other parallelization models, a CUDA syntax is inserted within a program
written in C. In addition, the structure of a CUDA program allows the host (CPU) and one or
more devices (GPUs) to coexist on the computer. Therefore, each CUDA output file can contain
a combination of host and device code. Also, it is possible to add device resources and data
declarations to any C source file through Particular CUDA keywords (SITSYLITSYN, 2020).

The Source code 3 below shows the C and CUDA implementation, where the main
difference is the keyword (__global__) that indicates the execution of a particular function on
the GPU device.

Source code 3 – Example of a CUDA code

1: __global__ void cuda_hello(){
2: printf("Hello World from GPU!\n");
3: }
4:

5: int main() {
6: cuda_hello<<<1,1>>>();
7: return 0;
8: }

The GPU programming course covers concepts of thread hierarchies (warp, CTA (Coop-
erating Thread Array) and grid. 3-dimensional thread identifiers), memory allocation, synchro-
nization, execution, and performance.

According to Cesar et al. (2017), an entire infrastructure and equipment for practical
classes are required for the teaching of parallel programming, especially teaching with GPUs.
Furthermore, Cesar et al. (2017), cite in the paper that the Computer Architecture and Operating
Systems department at the Universitat Autònoma of Barcelona has received support from
computer industry leaders for the design and development of computer labs.

70 Chapter 2. Parallel Programming Teaching

2.5.4 Infrastructure for teaching parallel programming

To teach parallel programming with main tools (OpenMP, MPI in CUDA), it is necessary
a cluster infrastructure with various requirements and configurations, which can be exhausting,
depending on a technical team to keep it works. Adams (2021) cites that a lecturer must choose
an infrastructure based on the student’s desired learning outcomes and the budget available to
purchase the equipment for PDC teaching.

The basic structure of a regular Linux cluster, for example, has several SMP systems
interconnected by a network. Parallelization can be process-based (MPI) and thread-based
(OpenMP, required by an SMP machine). On the other hand, MPI can use multiple nodes.
Figure 13 shows a hybrid system that uses threads in nodes and MPI processes to communicate
between nodes. Furthermore, the GPU can also be accessed by an MPI process and/or OpenMP
threads.

Figure 13 – Hybrid schematic distribution with MPI, OpenMP, and CUDA

Source: Elaborated by the author.

Configuring a cluster with dedicated servers for teaching parallel computing can be
expensive and require specialized operations for construction, maintenance, and support. The
initial cost of purchasing the HPC cluster hardware can range from $150,000 to $500,000 (Ad-
vanced Clustering Technologies, 2021). In addition, electrical consumption can vary from 60 to
130 MW annually, reaching $1M annually (YANG et al., 2013). Another alternative presented
in Figure 14 is to build a cluster from conventional computers called Beowulf. However, the
educational institution needs to have extra resources for this type of architecture (ADAMS et al.,
2021).

In addition to the cluster, it is also necessary to interconnect the network between
computers and create access for students and lecturers. López and Baydal (2018) cite some
topics for building a High-Performance service, such as Operating System (OS) installation
and configuration, network parameters (Network Address Translation (NAT), Secure Shell

2.6. Final Considerations 71

Figure 14 – Cluster HPC Beowulf

Source: Adams et al. (2021).

(SSH), Network Information Service (NIS), Domain Name System (DNS), Network Time
Protocol (NTP), and Dynamic Host Configuration Protocol (DHCP), and Network File System
(NFS)), disk array management (Distributed Replicated Block Device (DRBD), Redundant
Array of Inexpensive Disks (RAID), and Logical Volume Manager (LVM)), and installation and
configuration of systems to run parallel applications (CUDA, OpenMP, and MPI).

Remote PDC teaching is another concern of lecturers and students. The Covid-19 pan-
demic evidenced this type of teaching and induced new challenges to parallel programming about
changing the infrastructure access (ADAMS et al., 2021). Other installations and configurations
will be necessary if there is a web system to support students and lecturers. In addition, students
will need to be trained to access the system and know commands from the host operating system.

2.6 Final Considerations

Parallel and distributed programming are still challenging in contemporary programming
environments (ACM/IEEE-CS, 2013). However, parallel understanding processing is vital for
computer courses, and learning these programming models as soon as possible can increase the
students’ skills in this area.

The recommendation of the IEEE Technical Committee on Parallel Computing (TCPP)
is that every CS student learns about PDC (ADAMS et al., 2021). However, the research
presented in the previous sections in Chart 5, Chart 7, and Chart 8 showed that some educational
institutions still do not cover essential areas, do not offer parallel programming, and as far
as we kwnow, they do not have the necessary infrastructure to run these programs.

About the infrastructure, we found many papers that use various solutions based on

72 Chapter 2. Parallel Programming Teaching

proprietary software, which involves risks such as outdated software, high maintenance costs, or
project end. Thus, teachers need to consider these risks before adopting these tools in computing
courses.

However, some technologies dominate the market and become the standard, such as
CUDA, which, although not open-source, makes available for free to students and develop-
ers (ADAMS et al., 2021). Thus, lecturers cannot ignore this tool in teaching parallel program-
ming. Other solutions include developing frameworks and libraries, cluster, prototypes, and the
use of pre-configured machines. Virtualized solutions, VMs, PVMs, and OVPs, were also found
that require setup costs, teacher and student skills, and high consumption of hardware resources.

Therefore, in this chapter, we carried out a detailed survey of the teaching of parallel
programming in Brazil and the world. These data allowed us to define the scope of this doctoral
thesis. Furthermore, this research showed a lack of tools for the practical teaching of parallel
programming, an essential part for students to acquire the skills and abilities necessary to work
with parallelism.

Most tools are focused on using clusters to provide the infrastructure for students
and lecturers. However, educational institutions with a lack of resources may not acquire this
infrastructure because of the high acquisition and maintenance cost. This way, students will not
test their parallel programs. Other tools also try to facilitate access via a web browser; however,
internally, the cluster structure persists.

In addition, with this research, we can define some aspects that a tool should have to
address some problems highlighted in the papers: avoid using solutions that increase the cost,
cluster acquisition or services such as Amazon EC2 (IVICA; RILEY; SHUBERT, 2009; JOINER
et al., 2006); provide feedback to the student at the time of submission (SCHLARB; HUNDT;
SCHMIDT, 2015); take into account energy efficiency (CUENCA; GIMÉNEZ, 2016; UL-
ABDIN; SVENSSON, 2015); allow the student to use their computer (NEZU, 2015); promote
coding during classes (LIU, 2016); use of open-source software (FERNER; WILKINSON;
HEATH, 2013); optimize response and execution time (CUENCA; GIMÉNEZ, 2016); ease of
use of the tool (MOORE; DUNLOP, 2016) and the results visualization (CAPEL; TOMEU;
SALGUERO, 2017).

Another critical feature is that tool needs to be lightweight, low-cost, and easy to install.
Some courses shown in this chapter are teaching quickly and the tools need to respond fast. One
of the technologies that allow this type of response is virtualization, little explored in the papers
exposed and included in Chapter 3.

73

CHAPTER

3
VIRTUALIZATION

Virtualization is an established and prevalent technology in recent years, and its adoption
has extended to different areas such as Internet of Things (IoT), cloud environments, and
virtualization of network functions. Its growth is due, for example, to increase data center capacity
through server virtualization and reducing energy consumption. Among its main benefits are
isolation, hardware independence, and scalability, among others (MORABITO; KJäLLMAN;
KOMU, 2015).

Virtualization development provided flexible and manageable scaling of resources (CPU,
memory, filesystem, and networks). An entire environment can be isolated by a virtual machine
instance, containing all resources such as an operating system, hardware devices, memory, disk
storage, and networking. Also, multiple instances can run on a host; however, this can impact the
number of resources needed for the system to support itself (PAHL, 2015b).

Recently, a new mode of virtualization has become popular in academia and many
companies. Called a container, this type of virtualization has limited overhead because it works
at the operating system level, allowing multiple user-space instances (TURNBULL, 2014a).

The container uses the host OS kernel for the virtualization functions having an
almost native performance; therefore, it presents a lower resource overhead than a VM and its
virtualization, paravirtualization, or full virtualization methods. For this reason, the container is
also called operating system-level virtualization (DUA; RAJA; KAKADIA, 2014).

There are many differences between these architectures and implementations, for exam-
ple, differences in security and isolation provided by VMs instead of the near-native performance
by containers. Thus, before creating new projects, we need to evaluate these virtualization
differences in infrastructure.

This chapter presents the tools and technologies necessary to create the infrastructure
proposed in this work. Section 3.1 shows the performance evaluation between containers and
virtual machines. Section 3.2 deals with container-based virtualization. Section 3.3 covers the

74 Chapter 3. Virtualization

tools needed for clustering. Section 3.4 shows how volume sharing between containers works,
essential for MPI applications. Finally, Section 3.5 summarizes and concludes the chapter.

3.1 Container-based and Hypervisor-based Performance

High-Performance Computing is a term adopted by systems that use resources that
require intensive computing. Many HPC systems are being migrated to virtualization for
ease of management and resource allocation. In addition, virtualization also provides reduced
operating costs, high availability, elasticity, and reduced energy consumption (BESERRA et al.,
2015).

Virtualization has an abstraction layer between the host hardware and the virtualized
operating system. However, despite the advantages, this technology usually has performance
degradation by sharing resources. Khanghahi and Ravanmehr (2013) cite that factors such as
storage capacity, availability, usability, data center location, workload, redundancy, latency,
bandwidth, buffer capacity, etc., are factors that can affect the virtualization performance of
virtual machines and containers.

Performance evaluation techniques are being used in containers to evaluate their effective-
ness and efficiency compared to other types of virtualization. Some benchmarks for containers
in HPC environments have shown that the performance evaluation for this virtualization is
almost native to CPU, memory, disk, and network (XAVIER et al., 2013).

Beserra et al. (2015) highlight the importance of evaluating virtualization performance
in HPC applications, especially for Message Passing Interface (MPI) systems running in clusters.
Thus, another experiment with a benchmark demonstrated that containers perform equal to
or better than virtual machines in all cases tested (FELTER et al., 2015). Furthermore, Ruiz,
Jeanvoine and Nussbaum (2015) used a benchmark to demonstrate that container communication
is better for virtual devices using MPI processes on HPC systems.

Another research shows the container performance evolution compared to VMs. For
example, in Figure 15, VMs perform better with arrays smaller than 65% of RAM, and containers
(Docker) perform better with arrays ranging from 75% to 80% of RAM. This result demonstrates
an evolution in the benchmark results for processing large amounts of data in containers (CHUNG
et al., 2016).

Figure 16 presents an accurate comparison of memory usage between a virtual machine,
container (Docker), where the containers have a performance very close to the physical machine
(PM).

Since the first used benchmarks to evaluate the container performance about conven-
tional virtualization performed by the VMs, there is a distinguished improvement in container
performance, which has a superior performance to a VM with some exceptions. Thus, the use of

3.2. Container-based 75

Figure 15 – HPL benchmark for Docker containers

Source: Chung et al. (2016).

Figure 16 – Memory usage in Docker

Source: Chung et al. (2016).

containers for HPC applications has become common and very attractive, especially for MPI.
Zhang, Lu and Panda (2016) et al. developed a locale-aware HPC cloud MPI library for detecting
co-resident containers at runtime.

In this work, we chose container-based as the virtualization technology for all the benefits
and performance differences already presented, in addition to other advantages such as ease of
installation, configuration, and management.

3.2 Container-based

Containers can run applications and systems without the need for a virtual machine
instance. This virtualization happens at the operating system level and can isolate multiple
systems using just a kernel into one host. This type of virtualization has become popular for its
efficiency in running multiple instances on a single OS.

76 Chapter 3. Virtualization

In Figure 17b, the hypervisor-based virtualization has an abstraction layer between the
guest operating system and the infrastructure, increasing operation overhead. Containers run
directly on the OS, as shown in Figure 17a.

Figure 17 – Comparison between virtualization modes

(a) Container-based (b) Hypervisor-based

Source: Adapted from Jiang and Song (2015).

Also, these technologies can work at different problems, even though they are both
virtualization techniques. For example, virtual machines perform in IaaS (Infrastructure as a Ser-
vice)1, provisioning hardware management and resource allocation. In contrast, containers work
in PaaS (Platform as a Service)2, allocating and distributing resources to packaged applications
and significant capacity to test applications on multiple servers.

Containers are widely used for testing and distributing software, providing all necessary
infrastructure like files, network access, and libraries. Multiple instances of containers can run
concurrently on a single operating system. In a dispute of containers for resources, the OS is
responsible for performing access control to the physical machine, thus creating several isolated
systems.

The use of containers supports software distribution facilities for developers to create,
develop and distribute applications without worrying about the platform that the software will
run. In addition, containers encapsulate applications and their dependencies, thus abstracting
environment settings and system dependencies, allowing more time to be spent on other resources
such as networks (MOUAT, 2015).

Mouat (2015) cites some advantages of containers, which would be difficult or impossible
with virtual machines, such as sharing host OS resources, accelerating container creation and
destruction, and facilitating application portability by avoiding packages for different system

1 In this model, the service provider offers the entire infrastructure to the customer through virtualization,
such as servers, networks, operating systems, and storage.

2 The service provider provides all the necessary infrastructure, such as libraries, tools, storage, etc., for
consumers to build and test their applications.

3.3. Technologies for Containerization 77

configurations. In addition, virtually no overhead, a large number of containers can run on a
single host.

Regarding security, Turnbull (2014b) cites that containers were less secure than the
complete isolation of hypervisor-based since the containers share the same host operating system.
However, lightweight containers have a smaller attack area than the whole operating system
required for a VM. Also, regarding virtual machines, the hypervisor layer can be the target to
attack.

An alternative to this problem is to create containers inside a virtualized operating system.
That way, if an intrusion happens to one of the containers, the attacker will only have access to
that VM. Another security alternative is a chroot jail that isolates a directory for a specific process.
If there is a security breach in this process, the attacker will be confined in this environment,
unable to interfere with other host resources.

Another problem is that containers are less flexible, as they typically run only the same
or similar operating system under the host. On the other hand, containers can be created faster
than VMs by hypervisors (TURNBULL, 2014b).

Despite the limitations, containers are being used for various purposes, such as hyper-
scale deployments of multi-tenant services3, lightweight sandboxing4, and, despite concerns
about their security, as process isolation environments.

3.3 Technologies for Containerization

There are many details to check before adopting a containerization technology, especially
when building a cluster with containers to run parallel programs. There are several open-source
systems for containers, for example, Docker, OpenVZ, LXC, FreeBSD Jails, etc. Although these
examples are used to create containers, they are not the same thing.

Linux Containers (LXC) is a tool for OS-Level virtualization, running multiple isolated
Linux instances on a single host. Docker previously used LXC to create containers but with
additional management commands. Most container tools have equivalent functions, such as
memory allocation, CPU, IP addresses, applications, and libraries.

LXC combines several kernel security features to isolate the instance from other running
processes at the operating system, such as Mandatory Access Control (MAC)5, namespaces6,

3 Multi-tenants are architectures that use the same software instance to serve several clients (CUSATIS;
CANNISTA; HAZARD, 2014).

4 Sandboxing monitors and limits the program access program to the operating system re-
sources (AMEIRI; SALAH, 2011).

5 Mandatory access control is system-enforced access control to limit access to resources based on
authorizations.

6 Namespaces are a Linux kernel abstraction feature that makes processes with the same namespace
appear to be in an isolated instance of other processes.

78 Chapter 3. Virtualization

and control groups to isolate CPU, file system, memory, and networks (LINUX. . . , 2016).
Container isolation is an essential requirement for running parallel applications. Since a process
can interfere with the execution of other processes, such as resource disputes, for example.

HPC environments handle multiple processes or instances of virtualization. In addition,
orchestration technology allows the creation and management of container-based clusters. Still,
the sharing of resources between the created instances is fundamental for MPI applications. Thus,
this section presents some features required in these processes.

3.3.1 Docker

Docker’s popularity as a container virtualization technology began with the adoption
of large companies such as IBM, Microsoft, and Google. These companies worked together
to improve the Docker project. After that, many other companies participated in the project,
encouraging the open-source development community (NICKOLOFF, 2016).

Docker is a command-line program, a background daemon, and a set
of remote services that take a logistical approach to solving common
software problems and simplifying your experience installing, running,
publishing, and removing software. It accomplishes this using a UNIX
technology called containers. (NICKOLOFF, 2016, p. 4).

According to Turnbull (2014b), users of the tool can create containers in less than one
second; it has easy administration and maintenance of instances quickly since the containers do
not need a hypervisor. Below, we have listed the main features of Docker:

∙ Docker daemon: it is an always running process. Each container instance has a docker
daemon child process running in its own userspace and memory.

∙ Docker CLI: it is a command line interface or an API for accessing the daemon’s resources.

∙ A Docker image: is a system packaged with all the files necessary for a program to run
inside a container.

∙ Registries: it stores public and private images in Docker; and

∙ Docker containers: they are created from images and can contain one or more services.

Figure 18 shows an example of how Docker works. First, when there is a request to create
a container to run a program, the system will check if the request image is already in the registries.
Next, Docker will look for the image in an external repository called Docker Hub if the image is
not found. Once the image is found in the Docker Hub, the system automatically downloads and
registers the image. Afterward, Docker creates the container and starts the requested program.

3.3. Technologies for Containerization 79

Figure 18 – Docker infrastructure

Source: Adapted from Nickoloff (2016).

Docker can run on any x64 Kernel Linux host; it stopped using LXC and created its
standard library called libcontainer but remained supporting the LXC. Docker isolates file
systems, processes, and networks through namespaces, each container having root as owner.

Also, Docker has virtual IP interfaces and, through groups, isolates resources such as
memory and CPU. In addition, it has a registration system, collecting information from STDOUT,
STDERR, and STDIN7. Finally, it also provides a pseudo-tty as an interactive shell.

The containers have all the required software to build a cluster to develop and execute
applications, such as network isolation, DHCP and DNS services, and instance management. All
these items are necessary because it facilitates the containers creation, users and the execution
environment configuration. These programs are referred to as orchestration.

Finally, Docker also has solutions for scalability, such as Docker Swarm, Cloudify,
Mesos, and Google Kubernetes, which are open-source orchestrators for containers (KRATZKE,
2017).

3.3.2 Docker Swarm

The leading orchestration technologies used in Docker are Kubernetes and Docker Swarm.
Kubernetes is an open-source initially developed by Google, which later donated the project
to the community. Starting in 2016, Docker created its orchestration tool, called Swarm. The
orchestration architecture can incorporate several tools for the use and monitoring of applications
under the layer. We also note the similarity with other orchestration tools already conceptualized
in hypervisor-based virtualization.

7 STDIN (standard input), STDOUT (standard output), and STDERR (standard error) are usual channels
between a program and the environment (Linux, a terminal) for sending information.

80 Chapter 3. Virtualization

Although Kubernetes is a complete and highly used tool, we chose to use Docker Swarm
for this work because it is a lightweight cluster management tool, already integrated into the
Docker Engine, and does not require additional installation, unlike Kubernetes.

Figure 19 shows how swarm is grouped by several Docker hosts that can run as man-
agers (to manage the association of nodes and delegation of services), workers (who perform
services), or perform both functions. We can create a service just defining the number of replicas,
network, storage, ports that the service exposed. Then, Docker works to maintain the desired
state (DOCKER, 2021b).

Figure 19 – Docker Swarm architecture

Source: Docker (2021b).

For example, Docker schedules nodes’ tasks that have become unavailable to other nodes
that are part of the swarm. Thus, service in Swarm, rather than a standalone container, is a
containerized running task. Also, in swarm mode, the system can run standalone containers on
any Docker hosts that participate in the cluster.

As previously discussed, Docker offers an orchestration service without the need for
additional software through API or Command-line Interface (CLI). Furthermore, the Swarm
commands allow the creation and management of containerization behavior. In addition to these
points, we can highlight other attributes of this architecture (DOCKER, 2021b):

∙ Integrated cluster management: orchestrator is part of the Docker package; no additional
software is required;

∙ Decentralized design: it is possible to change the operation of the container at runtime to
manager or worker. In addition, we can build an entire swarm from a single image;

3.3. Technologies for Containerization 81

∙ Declarative service model: allows defining the types of applications in the swarm. For
example, one application can run a back-end as a database and another as a front-end web
server;

∙ Scheduling: it is possible to define the number of nodes participating in the swarm for
each service, which may increase or decrease the number of nodes at run time;

∙ Reconciliation of the desired state: the manager monitors the swarm state, and if any
inconsistencies occurred, it tries to change to the initial desired state;

∙ Multiple host network: network addresses are automatically assigned to containers through
an overlay network;

∙ Service discovery: each service in the swarm is assigned a unique DNS name;

∙ Load balancing: internally, the swarm allows distribution services between nodes. In
addition, we can provide load balancing through port publishing;

∙ Secure by default: to protect internal and inter-node communication, swarm uses mutual
encryption Transport Layer Security (TLS) and authentication; and

∙ Continuous updates: offers incremental updates or updates when a service is created.

As seen, Swarm is a lightweight cluster with all the necessary properties for the develop-
ment of this thesis, which focuses on providing an infrastructure with few resources for practical
classes in parallel programming. As analyzed in the survey in Chapter 2 of Chart 10, MPI is the
most used application for this type of teaching. Its application involves using multiple processes
on nodes in a cluster.

However, we can have several containers on the same machine creating a cluster, signifi-
cantly reducing the infrastructure needed to run an MPI program for a lab class. Thus, we need to
estimate the isolation level between instances, so an MPI process does not interfere with another.

3.3.3 Constraint Isolation in Container

The Quality of Service (QoS) is an essential factor for a Service Level Agreement (SLA).
Many factors are determinants for virtualization technologies, such as response time, failure rate,
resource utilization, among others. Containers are also ruled by these interferences, as external
or inter-instance competing for resources.

Container isolation is necessary for HPC applications. However, the competition for
resources between instances can result in a variable impact in shared environments; once one
container gets more resources than another, it can finish processing first. This interference is
known as a load imbalance problem, which occurs when nodes that have finished running must
wait for the slower node to complete.

82 Chapter 3. Virtualization

Ma et al. (2016) emphasize that an MPI process occupies only one entire container and
that interference occurs when applications are running concurrently in other containers on the
same physical host. This is a problem for HPC environments. For example, if a student runs the
performance evaluation of a particular parallel code versus the sequential code. In that case, the
speedup8 values may suffer interference if another student is also running some program at that
time.

To demonstrate this problem, Ma et al. (2016) emulated a real-world computing environ-
ment. Then, they performed a benchmark in containers, generating interference through an MPI
library for partitioning unstructured graphs, called ParMETIS (KARYPIS, 2017).

Corbalan, Duran and Labarta (2004) show in Figure 20 load unbalance scenarios without
any load balancing mechanisms for synthetic applications running under containers. They also
present in their work a mechanism to balance the load, at runtime, for containers that are
executing their applications.

Figure 20 – Results for synthetic imbalances

(a) Speedups
(b) Processor distribution

Source: Corbalan, Duran and Labarta (2004).

The programs run simultaneously by students on a single-host cluster, which is common
in a lab class with 40 to 60 students, may have inconsistent results. For example, Swarm delegates
a percentage of CPU to each container or distribute the load among them; thus, how the cluster
is created will impact speedups.

Table 2 shows a benchmark to assess how the virtualization system can limit the impact
of resource disputes among containers running on the same host. For this, the authors stressed

8 The speedup is used to measure the performance increase of the relationship existing between parallel
and sequential code execution.

3.4. Volume Sharing in Containers 83

one of the instances and performed the measurements. As a result, no CPU impact occurred due
to restrictions by cgroup and vCPU.

However, when a particular instance was stressed, the other resources had some impact.
The table shows how much influence the well-behaved guests (users who did not have a high
consumption of resources) had. Thus, the performance degradation in concurrent instances is
evident on a single host, as the kernel needs to respond to instruction calls from stressed guests
and well-behaved guests (XAVIER et al., 2013).

Table 2 – Different stress tests

LXC OpenVZ VServer Xen
CPU Stress 0 0 0 0
Memory 88.2% 89.3% 20.6% 0.9%
Disk Stress 9% 39% 48.8% 0
Network Receiver 2.2% 4.5% 13.6% 0.9%
Network Sender 10.3% 35.4% 8.2% 0.3%

Source: Xavier et al. (2013).

Adams (2021) argues that it is not possible to verify the benefits of parallel programming
and satisfactorily measure the speedups of MPI programs in a lab class with many students. For
example, this happened in a class where the students’ MPI applications competed for resources
from a single host.

Docker provides ways to control the amount of memory, CPU, or Input/Output (I/O)
block a container can use about this problem (DOCKER, 2017). Thus, to avoid the execution of
a student interfering with another student’s measurement, the container has mechanisms to limit
the number of resources used by each container.

Also, we can use queuing systems for an academic class to guarantee exclusive ac-
cess to the resource at code execution time. In this way, students could submit their work
without concurrency and evaluate the performance of parallel programs about sequential pro-
grams.

3.4 Volume Sharing in Containers

Some applications require data persistence for information sharing. However, contain-
ers do not keep file system data after the state is stopped, unlike virtual machines. For MPI
applications, this is a problem as we need to share information between processes. (NATH,
2020).

Thus, two technologies are used in the Swarm cluster for persistence and data sharing.
Network File System is generally used to share file systems between different hosts. On the

84 Chapter 3. Virtualization

other hand, Docker Volumes, integrated into the Docker package, allows containers to share a
directory with the host system or between instances.

3.4.1 Network File System

NFS uses a client/server architecture to share data between different hosts or even
different containers, on the same host or not. Figure 21 shows this infrastructure, where the
server contains the local file system shared with clients. Clients, through Remote Procedure Call
(RPC) stubs, point the remote file system to a local file system.

Figure 21 – Volume sharing with NFS

Source: Adapted from Sterling, Anderson and Brodowicz (2018).

NFS is specified by Request for Comments (RFC) 7530. The FS call layer provides
a layer for accessing the local file system. Read and write operations are sent to the NFS
Kernel, which interprets and changes these operations into NFS procedures (CREATE, READ,
REMOVE, ACCESS, among others). The client uses RPC to execute functions on the remote
file system (JONES, 2019).

This file-sharing system is one of the oldest and most widespread in computing and is
also used to share resources with HPC systems. Figure 22 shows the use of NFS on systems with
MPI to transfer data between the various nodes involved in the cluster.

The system needs in-depth knowledge of Linux from students and lectures. To install
NFS, they need networking skills, disk administration, firewall, and file permissions. In addition,
both client and server need to be suitably installed and configured (UBUNTU, 2019).

Also, NFS operates in two modes. First, the server needs to write all data in the storage
and respond to the client in synchronous mode. Second, in the asynchronous mode, the server

3.4. Volume Sharing in Containers 85

Figure 22 – Volume sharing and MPI

Source: Elaborated by the author.

notifies the client before the write data in disk; in this mode, the performance is better, but the
reliability decreases since any problem on the server can cause data loss.

3.4.2 Docker Volumes

Docker Volumes (DV) are used to persist data generated by containers or share directories
between the host operating system’s containers. All share management is handled by Docker,
abstracting the infrastructure complexity for students and lecturers (DOCKER, 2019).

As shown in Figure 23, volumes are stored in disk space on the file system not to use the
disk space inside the container. Also, we can use three methods to share volumes. The first is
called bind mount, a directory on the host operating system linked into the container.

In the second mode, called volumes, Docker manages the volume created between the
file system and the container. Finally, the third mode, called tmpfs, is a temporary space in the
host’s RAM (DOCKER, 2019).

Different systems require different levels of file system sharing consistency. However,
there are cases where temporary consistency is acceptable to achieve better performance. Thus,
just as NFS has two synchronous and asynchronous modes, Docker Volumes also have three
modes: consistent, cached, and delegated.

Consistent mode, similar to synchronous NFS mode, the container and the host maintain

86 Chapter 3. Virtualization

Figure 23 – Volume sharing with Docker

Source: Docker (2019).

the same view as the file system. However, in cached mode, host views are official, and some
container update delays may occur. Finally, delegated mode, container views are official, and
some host’s File System (FS) update delays may occur.

3.4.3 DV and NFS Performance Evaluation

Considering the proposal of this work to develop a light and low-cost cluster infrastruc-
ture, evaluating the performance differences between the volume sharing modes is fundamental
for MPI applications, which depend on this type of service. Thus, we planned three experiments
with a virtual machine instead of a physical machine. We made this choice based on the expecta-
tion that students and lecturers will install the system on a VM, one of the worst performance
scenarios.

We performed all benchmarks in a virtual machine with the minimum necessary resources
containing 1vCPU, 1GB RAM, and 10GB of disk storage. The physical device has an Intel Core
i7 processor (3537U) and 8GB of RAM. In addition, we used two storage disks, Hard Disk Drive
(HDD) and Solid State Drive (SSD), with different technologies.

We chose Sysbench for testing as it is the most used benchmark system. Chart 11 shows
all tested factors and levels. For all tested modes (A = read, write, concurrency, no concurrency,
SSD, and HDD), we run the benchmark 30 times for each factor and level to calculate significance.
For example, we used one container for no concurrency tests and ten containers for concurrency
tests. As a result, we collected 66,000 events after running the experiments that are available
online (BACHIEGA, 2021).

For the database, we used MySQL for its popularity and easy installation. Sysbench
supports this database and evaluates the read and write of queries and the number of transactions
performed. We used two file sizes for the FS read and write tests (100MB and 2GB). Finally, we

3.4. Volume Sharing in Containers 87

used an MPI program to apply a filter for small images (SI) and large magnets (LI).

Chart 11 – Different stress tests

Technology Sharing mode MySQL 100M 2G SI LI
NFS vs Docker Sync vs Consistent A A A A A
NFS vs Docker Sync vs Cached A A A A A
NFS vs Docker Sync vs Delegated A A A A A
NFS vs NFS Sync vs Async A A A A A
NFS vs Docker ASync vs Consistent A A A A A
NFS vs Docker ASync vs Cached A A A A A
NFS vs Docker ASync vs Delegated A A A A A
Docker vs Docker Consistent vs Cached A A A A A
Docker vs Docker Cached vs Delegated A A A A A
Docker vs Docker Delegated vs Consistent A A A A A

Source: Elaborated by the author.

In Figure 24, we illustrated how the algorithm for applying an image filter works. First,
the program divides the workload between the nodes, providing resource concurrency. Thus,
while one process reads the image, another process applies the filter to the image.

Figure 24 – Benchmark for the image filter

Source: Elaborated by the author.

The tables in Appendix A present all experiments according to their significance. We
used the t-test paired with a normal distribution to compare over 480 test combinations. Chart A.1
presents read (R) and write (W) results for SDD disks, and Chart A.2 presents the same results
for HDD disks.

As a result of this experiment, we observed that most tests are significant for comparisons
between NFS and Docker volume sharing modes. However, for the comparisons between the
Docker methods (consistent, cached, and delegated), the difference in the result was slight, even
when significant. About NFS, asynchronous mode showed the best results for both hard disks.

A better understanding of these sharing and performance issues helped define the require-
ments and configurations necessary for the development of this work. Thus, in this first version

88 Chapter 3. Virtualization

of the system, we will adopt Docker consistent mode for sharing between container and host.

For the volume sharing between separate physical nodes, we will use asynchronous
NFS because of its performance benefit. Despite increasing the risk of data loss, in teaching
programming, if a physical host crashes, Swarm will remove this host from the cluster. On the
subsequent submission of the program by the student, the processes will redirect to others nodes.

3.5 Final Considerations
In this chapter, we showed the importance of virtualization for the Iguana’s development.

With virtualization, we can quickly provision the infrastructure on-demand and change the
horizontal dimensioning. Also, it makes it possible to create a cluster with low resources,
minimizing the time of installation, configuration, and complexity involved in this process.

As seen, there are many virtualization technologies, both hypervisor- and container-based.
With containerization, we can create a lightweight cluster infrastructure to run parallel
programs in practical classes or by students on their personal computers.

Docker was chosen for its simplicity of installation among containerization technologies,
a complete access API (necessary for the front-end of this work), and having Swarm integrated
with the Docker Engine, removing all the complexity of managing the cluster. These items made
it possible to develop an application to run parallel code without much complexity.

Other technologies with superior performance than Docker, such as Singularity and
Shifter, are used in the HPC environment. However, we did not use them for technical reasons;
for example, Singularity can make container portability difficult because it is not compatible
with all Linux kernel versions, more complex installation, and various packages than Docker, for
example.

According to Rudyy et al. (2019), Docker underperforms Singularity and Shifter when
there is a large amount of collective communication regarding MPI processes; due to its virtual
network’s architecture.

However, this work does not propose the maximum performance inherent to real appli-
cations but rather a lightweight cluster for teaching parallel programming in the laboratory. As
such, we directed this study of Singularity integration into future work to increase the tool’s
performance. Furthermore, the installation of Singularity is still a challenge by its complexity;
this work tries precisely to simplify this process.

Finally, these studies guided us to define the necessary configurations and parameters for
creating the proposed work, such as selecting Docker and NFS volume sharing methods and the
use of queues to minimize the effects of constraint isolation between containers.

89

CHAPTER

4
IGUANA CLUSTER SYSTEM

This chapter describes the project, development, implementation, and evaluation of the
support tool for parallel programming (called Iguana Cluster System). Its primary function is to
provide a low-cost structure for teaching parallel programming.

The construction of software follows a set of steps that includes methods and tools, which
keep the layers of technologies cohesive, enabling the development of the software product
effectively and efficiently (PRESSMAN; MAXIM, 2016).

Thus, for this system development, we have separated this chapter into five sections.
Section 4.1 shows requirements analysis are covered. In Section 4.2, we describe the system
design. Section 4.3 shows the implementation of the system. Section 4.4 describes testing and
deployment show the evolution of the system. Finally, in Section 4.5, we present the summary of
that chapter.

4.1 Requirement Analysis

The system’s main objective is to provide a low-cost infrastructure, with minimal hard-
ware configurations (e.g., a single virtual machine with 1 CPU, 1GB RAM, and 8GB disk space),
without the need for specialized labor or involving any costs for the end-user of the tool, students,
and lecturers.

We defined the prerequisites based on related studies and proposals for tools from other
authors to run parallel codes. Then, through research in Chapter 2 and Chapter 3, we determined
the system main functional and non-functional requirements based on theoretical teaching and
practice in parallel programming.

Chart 12 presents the summarized description of the system functional requirements. The
main features that the tool must have are an authentication system, student registration (create,
delete and update), exercise registration (create, delete, change, correct, feedback, score, and

90 Chapter 4. Iguana Cluster System

code download), code editor, and compilation and submission online of exercises.

Chart 12 – Summary of system use cases

User case Name Short description
UC-01 Login/Logout/Recover

Password
System authentication for students and lecturers

UC-02 Add/Edit/Delete User It allows the lecturer to add, update and delete any regis-
tered user

UC-03 Add/Edit/Delete Group It allows the lecturer to add, update and delete any group
UC-04 Add/Edit/Delete Exercise It allows the lecturer to add, update and delete any exer-

cise
UC-05 Add Answer to Exercise It allows students and lecturers to send an answer to an

exercise
UC-06 Add Score for Student Re-

sponse
Allows the lecturer to grade a student

UC-07 Add Exercise Feedback Allows the lecturer to give feedback to a student
UC-08 Edit/Compile/Run Code Allows the editing, compilation, and execution of code

by any user of the system
UC-09 Download Student Codes Enables the lecturer to download the codes sent by the

students
UC-10 Download Code Reports It enables the lecturer to download the code reports con-

taining the number of compilation attempts to arrive at
the correct result, grade, and feedback

UC-11 Update Settings Allows the lecturer (admin) to change the default sys-
tem settings (public host interface, back-end service port,
front-end service port, cluster name, cluster password,
operation mode, number of virtual nodes, the maximum
number of nodes, host user, host password, host self-
registration, code execution timeout, queuing system,
maximum queue concurrency, debug messages, error
messages and SMTP service settings for sending mes-
sages by email)

UC-12 Setting the Operation Mode It allows the admin to change the system’s operating
mode (master, node, local)

UC-13 Connect to an Available
Cluster

It allows the admin to connect to an available network
cluster

UC-14 Add/Delete Virtual Nodes
in Cluster

It allows the admin to add or remove virtual nodes in the
system to execute MPI codes

UC-15 Check the Queue It allows to monitor the system queue and see what tasks
students are compiling/running

UC-16 Check Users Online It makes it possible to see online users
Source: Elaborated by the author.

Table 3 provides a brief description of the non-functional requirements. For example, the
system must allow students to use it on their computers without an Internet connection and no
required configurations. Also, the tool should allow the use of multiple compilers, use lightweight

4.2. System Design 91

resources, perform an automatic integration with other nodes, and be available online.

Table 3 – Non-functional requirements

ID Name Short description
NF-01 User-friendly Graphical In-

terface
Provide a friendly interface for
students and lecturers

NF-02 Authentication Provide authentication through
changes of cryptographic keys

NF-03 No Cluster Infrastructure The system should allow the exe-
cution of MPI codes without the
cluster infrastructure

NF-04 No Previous Configurations The tool should automatically rec-
ognize the network settings, defin-
ing its back-end and front-end
ports, as well as the Ips

NF-05 Multiple Compilers It should support multiple compil-
ers and allow the inclusion of new
ones

Source: Elaborated by the author.

It is essential to highlight that, as this system was developed as part of a doctoral thesis
by only one student, the software validation occurred in meetings with his advisor, who also
teaches parallel programming disciplines.

The validation with the advisor considered how practical parallel programming classes
are taught in different paradigms, such as MIMD machines with shared memory, MIMD machines
with distributed memory, and heterogeneous platforms. The validation also considered practical
aspects of code development by students and groups of students (intraclass and extra-class),
corrective aspects of submitted exercises, and immediate feedback. These and other factors were
considered in the validation of the Iguana project.

In addition, we also tested the tool with students (not experiment) in the first half of 2020
to obtain feedback on the design, navigability, and possible changes.

4.2 System Design

We designed a structure to popularize the teaching of parallel programming in environ-
ments with limited resources, often without cluster availability and without quality access to the
Internet. In addition, this structure provides all the support to lecturers, and students can build
and execute their parallelized codes.

Also, the tool allows users with little experience in computing to run their parallel code,
like first-year students of a computing course, through virtual machines, using the installation

92 Chapter 4. Iguana Cluster System

script on Linux or the website. The system is designed to work even on VMs with 1GB RAM
and 8GB of disk space.

4.2.1 Architecture

Iguana is a modular tool. Therefore, we built it in independent parts coupled together to
form the structure shown in Figure 25. The front-end is the web interface accessed by students
and lecturers that perform all function calls for the back-end. Lecturers and students logged into
the system have a different view of the front-end. For the user interface (the student) is only
allowed access to their data and the exercises. For the admin (lecturers), all functionalities are
delivered.

The admin can create exercises, groups, and other users, basic functions for a practical
lab class. Also, the admin can change the method the system works:

∙ Localhost: used when the user has only one physical or virtual machine to run the tool.
In this case, to run programs in MPI, Iguana will create containers to simulate nodes in
a cluster. The student views these containers in the tool as we do, with their respective
Internet Protocol (IP) numbers.

∙ Local network: when the tool is installed on two or more physical or virtual hosts, Iguana
(in cluster mode) automatically identifies these computers and groups them together.

∙ Remote cluster: the system can interconnect with remote clusters and send processes to
run on those nodes. This item is listed for future work.

∙ Cloud: it allows the system to use the cloud, such as Amazon EC2, Google, or others, to
integrate the cluster infrastructure. This item is listed for future work.

Students will perform the same roles as the admin on the front-end, as long their host is
not in a network dominated by a back-end/lecturer. The tool allows this because students must
use the infrastructure at home to practice and run exercises. In addition, they will also have an
interface to create and test algorithms on a virtual cluster.

With Iguana, students can turn a simple notebook or VM into a cluster to run their
experiments with many nodes for their parallel code. Furthermore, they can create networks
between one or more VMs, for example, to extend the number of nodes or choose a cloud service.

4.2.2 Platforms

Initially, the tool will be provided to the lecturer through a pre-configured virtual machine
image or by downloading an installation script:

4.2. System Design 93

Figure 25 – Iguana infrastructure

Source: Elaborated by the author.

94 Chapter 4. Iguana Cluster System

∙ Pre-configured image: in this option, available online, the lecturer or student can run the
VM and define the operating mode (virtual cluster, local network cluster, remote cluster,
or cloud); or

∙ Installation script: the lecturer or student will load an installation script and run it on their
already installed operating system. Initially, the script (Appendix F) supports Linux-based
environments (Ubuntu and Debian).

In the case of the preconfigured VM, when it is executed in a virtual machine with
minimal configurations, after its initialization, it will inform the user which the number of IPs
enabled for access via any web browser. For installation via a script, the user must run it on their
operating system.

The base operating system for the construction of this project was Ubuntu 21.04 Linux
kernel 5.4, which may be extended in the future to other systems based on Linux, such as Red
Hat, Suse, among others. In addition, Iguana is a lightweight infrastructure cluster, meaning
the student can run the tool on a Linux-based virtual machine inside a Microsoft Windows host
operating system.

4.2.3 Programming

Angular is the language used to create the Iguana front-end. It is an open-source language
developed by Google to create dynamic web applications (TypeScript). It is used by more than
44.3% of software engineers to build user interfaces. It is a powerful language, and it is on the
increase (STACKOVERFLOW. . . , 2021).

The language offers excellent documentation; the number of people who use it is sup-
ported by a large company and allows modular implementation. Also, the language works with
Web Services (WS), which is the communication designed for Iguana’s back-end.

Another critical point in adopting Angular is that the application is rendered on the
client-side, unlike other web systems, such as Hypertext Preprocessor (PHP). In PHP, the server
is responsible for processing and returning the HyperText Markup Language (HTML) page to
the client’s browser (ANGULAR, 2021).

To Angular, all processing is done by the client’s browser. As a result, the back-end can
use these extra resources to run MPI programs. Communication is done through a RESTful API
that only requests data to the back-end, which it returns encapsulated in JSON structures (Source
code 4) to the front-end. Angular then processes this data and displays the information in HTML
pages.

Source code 4 – Sample data returned with JSON structure

1: {"Students":[

4.2. System Design 95

2: { "name":"Naylor Bachiega","email":"naylor@usp.br"},
3: { "name":"Paulo Sérgio","email":"pssouza@icmc.usp.br"},
4:]}

For the back-end, we chose the open-source language called Golang, also developed
by Google. In addition to being a high-performance language, Golang is also used for building
the Docker Engine and Swarm. Furthermore, the language offers a complete library of access
to container management functions by Docker and cluster management by Swarm, essential to
create the infrastructure proposed in this work (DOCKER, 2021a).

Iguana is also open source and available for download from GitHub (https://github.com/iguana-
hpc-usp/ICS). Figure 26 summarizes the division of languages used in the tool, where 41%
corresponds to the front-end with 10091 lines and 401 functions and the back-end with 30.8%
corresponding to 5669 lines and 187 functions created directly and/or indirectly by the devel-
oper (GITHUB, 2021).

Figure 26 – Languages used in the tool development

Source: Adapted from GitHub (2021).

Many lines and functions indicate an extensive system developed in these years as a
doctoral project. As a result, the Iguana has many internal and design revisions before the last
version used in the experiments. However, as a modular tool, this author highlights the easy
modification and customization.

4.2.4 Communications

Iguana was designed to work in four modules to allow different operation modes: local-
host, local network cluster, remote cluster, and cloud. Figure 27 shows the operation of Iguana
on only one physical machine or VM (localhost). In this case, to run algorithms in MPI, the user
can create several virtual nodes on a Docker Volume to share the data and binaries inherent to
MPI.

By default, the Iguana engine detects the number of cores on a host. For example, if
a host contains four cores, Iguana starts the master container on one vCPU and another three

96 Chapter 4. Iguana Cluster System

containers through swarm to the other three remaining vCPUs. This way, the student can test
programs in MPI with four nodes. For speedup, for example, the student can run the sequential
algorithm on one node and then the parallel algorithm on the others.

However, Iguana is flexible enough to define, for example, that each node can be grouped
by two or more vCPUs, in the case of hybrid algorithms with OpenMP. In addition, it is possible
to have another configuration model where nodes use processing available at request time, as
shown on the right in Figure 28.

The Iguana engine (created with the Go language) controls the entire back-end, receiving
requests from the front-end through Web Services (WS) and sending requests to the other layers.
For example, when the system starts, the tool sends a request to Docker to start the master
container, responsible for executing the program in MPI with the other nodes.

Afterward, the engine sends a request to Swarm to create the cluster according to the
default configuration or user customization. Swarm receives the order with the number of nodes
needed and makes the dimensioning and management of the requests and creating the volume
necessary to interconnect the nodes. Iguana also allows changing the number of nodes in the
system at runtime.

Finally, when the user starts the system through the web interface in the browser, the
files will be transferred and rendered by Angular. Later, all communication is carried out by web
services.

Figure 28 shows the operation through a computer network. It is in this part that Iguana
shows its potential for self-configuration. Once in a network, if the tool is in master mode, it
sends a message via broadcast through default port 10001.

If there are other machines on the network in node mode, those machines will automati-
cally connect to Iguana. The tool also allows the creation of several clusters in the same network.
In this case, the admin can provide a name and password for a particular cluster. Only nodes that
know these credentials can be members of the cluster.

We can have a laboratory with 20 machines, install Iguana, and define one of the machines
as a master and the others as a node. Iguana will automatically do all the configuration, insert the
machines in clusters and make the necessary shares to execute MPI codes.

Internally, on the host, sharing between containers is performed by Docker Volumes in
consistent mode. We have pointed the volume to a logical link on disk, a directory path, and then
that path is shared between hosts by asynchronous NFS.

4.2.5 Security

Additional security measures have been adopted, in addition to those provided by Angular
and Golang. The front-end remote procedure calls to the back-end were all encrypted, regardless

4.3. Implementation 97

Figure 27 – Locahost architecture

Source: Elaborated by the author.

of whether the user contracted the Secure Sockets Layer (SSL) service. Many public education
companies do not have funds for this type of service.

The cryptographic key changes every time the user enters the system. Also, the back-end
only receives registered requests from registered users. Therefore, any strange requests are
discarded. There are also other levels of security in file system sharing by Docker and NFS. In
this case, these mechanisms were sets to allow only the registered host on the network to access
the files.

4.3 Implementation
This section only shows the main Iguana screens due to the number of screens in the

system. Figure 29 is the tool’s main screen, right after the user enters with the correct username
and password. On the left panel, the menus appear according to the access profile. In the "My
Panel" menu, the admin can access users, groups, exercises, system settings and try a code,
which shows the screen on the right.

Also, in the left menu, the admin has the options Operation Mode (change the mode

98 Chapter 4. Iguana Cluster System

Figure 28 – Local network architecture

Source: Elaborated by the author.

Figure 29 – The Iguana’s main screen

Source: Elaborated by the author.

4.3. Implementation 99

to localhost, local network, remote cluster, and cloud), Clusters Available (shows the clusters
already in the local network and allows connecting to one of them), Virtual Nodes (increase or
decrease the number of nodes in the cluster), Queue Monitoring (shows which students have
code in three states: queued, compiling and running), and Users Online (shows which students
are logged into Iguana).

On the right, we have the Monaco code editor (using the VS Code language). It allows
the student to write the code directly into the browser with various features of a desktop editor
such as color functions, line numbering, auto-complete, search, minimap, theme choice (light or
dark), font size, auto-save, sample codes, and C language command palette.

Finally, in the lower right corner is the Compile and Run button. Immediately after the
student writes the code and clicks on the button, the system will send the program to the queue.
If no other students are in dispute, the program is compiled and run in the cluster, returning the
result immediately to the screen. The button is floating, so if the code has many lines, the button
will follow the screen, always being available.

Figure 30 shows the customization of parameters for code compilation and running.
Iguana automatically recognizes the type of the student’s code by the program header (mpi.h or
omp.h) and makes the necessary adjustments to compile and run without human intervention.
However, if essential, it is possible to change all parameters manually, adding arguments,
replacing compile and run commands, uploading files to use in the running process, adding or
removing nodes, view results, and special tags.

Figure 31 shows the nodes’ selection for running MPI programs. The student can select
one or more specific nodes to run his program or not pick any to includes all nodes. Furthermore,
it is also possible to define the number of processes.

Figure 32 shows the result using special tags. In this type of view, the system auto-
matically groups the ranks by the node. Thus, the student can identify and better visualize the
distribution of processes after parallel code execution.

As presented in Source code 5, the tags are included in the code prints written by the
student. Three labels are used (M=message, P=processor, and R=rank) inserted in the print
command like the example.

Source code 5 – Example of using special tags

1: // Print off a hello world message
2: printf("message: {M}%s{M} from processor: {P}%s{P}, rank: {R}%d{R} out of %

d processors\n", "Hello World", processor_name, world_rank, world_size);

The next screen shows the result of the exercise for the student. Figure 33 shows code
outputs; one is the lecturer output generated when adding the exercise (Admin Result), and the

100 Chapter 4. Iguana Cluster System

Figure 30 – Compile and run parameters

Source: Elaborated by the author.

Figure 31 – Node selection

Source: Elaborated by the author.

4.3. Implementation 101

Figure 32 – Orderly presentation of the result

Source: Elaborated by the author.

other (Your Result) is the student output. For different outcomes, the system informs which row
and column there is a divergence immediately after the code running, stimulating learning and
facilitating correction. In addition, the teacher can set a time limit for the student to solve the
exercise and for the number of submissions for the student to send the code.

Figure 34 shows the exercise screen for students. It is possible to check the last submission
date, the previous result, the lecturer’s score and feedback, and the number of attempts to solve
the exercise. Also, expanding the screen to check all submissions, we have added code analysis,
which provides the student with code quality feedback (code smell).

Also, we show the response time of the code execution and the number of events needed
to send the code, that is, how many times the student must compile and execute to produce some
result. This is important as it can allow the lecturer to measure the difficulty of the exercise or
the student’s difficulty in solving the problem.

Figure 35 shows which physical or virtual hosts are available. In the figure, there is only
one host called "hal11". This host has an 8-core CPU, with the load split between three nodes.
As already mentioned in Subsection 4.2.4, Iguana allows other load configurations besides. This
type of approach is interesting for students without cluster access; they can create multiple virtual
nodes to run MPI programs without any infrastructure.

102 Chapter 4. Iguana Cluster System

Figure 33 – Result of the lecturer and student code

Source: Elaborated by the author.

Figure 34 – Exercises solved

Source: Elaborated by the author.

Figure 35 – Creating virtual nodes

Source: Elaborated by the author.

4.4. Testing and Deployment 103

Finally, the lecturer can download all the programs sent and a spreadsheet with the
execution data. Furthermore, it is possible to change all system settings, front-end and back-end
ports, cluster operation mode, and add and remove nodes. To run programs on GPU, like CUDA,
for example, Iguana has some limitations, such as the need for host GPU. However, not all
educational institutions or students have this type of hardware. Therefore, we included future
work to integrate the tool with NVEmulate and MCUDA (STRATTON; STONE; HWU, 2008)
to support GPU emulation.

4.4 Testing and Deployment

The project to create a tool to help teach parallel programming began in 2018. Since
the first version, extremely limited and without a graphical interface, Iguana has supported
improvements based on feedback from students, professionals in the field, and lecturers. The
tool was tested by students from the Federal Institute of Paraná, Instituto Federal Catarinense
and in a concurrent programming undergraduate course at USP-ICMC before being used in the
experiments.

Since 2020, the tool has been available online under the domain www.parallelcoding.com
but is still not open to public users. However, the intention is to make it available for anyone to
test parallel code. Also, we created an account on GitHub exclusively for Iguana through the
link github.com/iguana-hpc-usp/ICS, with all the tool’s source code (back-end and front-end)
and also the preconfigured virtual machine. Thus, once the VM is downloaded and run, no
configuration is required.

In addition to the VM, users can install directly on Linux to create an easy-to-configure
cluster. When running, the script automatically installs all packages, and configurations are
performed. Thus, deploying Iguana in a laboratory with 40 physical machines would not be
difficult. For example, it is unnecessary to download the script; just run line 1 shown in Source
code 6

Source code 6 – Script Install Command

1: apt install curl -y && curl -s https://raw.githubusercontent.com/iguana/
doutorado/master/install.sh | bash -s --

Finally, the Iguana manual is also available for download with all its features and its
use in detail. We separated the manual into three categories: installation process, lecturers, and
students. Appendix E presents the latest version of the manual.

104 Chapter 4. Iguana Cluster System

4.5 Final Considerations
This chapter shows the tool development through the requirements discovered in Chap-

ter 2 and the technologies integration presented in Chapter 3. We created Iguana with the limited
resources for an educational institution with a lack of resources. Thus, we can install the tool on
a simple VM. Furthermore, the system is flexible enough to be installed on a cluster of physical
machines taking advantage of all the resources.

The Iguana can run on a single VM with 1GB of RAM, allowing any student to download
the tool and have a cluster system run parallelized codes in a few minutes. Also, it promotes
another facility that usually requires a lot of time and expertise from professionals, which is to
create a cluster on a physical network. Install Iguana on each machine and define one as master
and the others as nodes; the system will automatically do all the necessary installations.

The tool offers the student an environment to write and execute his programs without
installing any other software from the practical teaching of parallel programming. According to
the student’s and professionals’ suggestions, we redesigned the interface for better usability.

The lecturer has absolute control of the tool, registering users, groups, and exercises.
In addition, the tool automatically corrects the code and provides other options to a practical
laboratory class.

Finally, we chose to make the tool open-source as we believe in the philosophical ideas
involved in sharing code with the community. In addition, we would like to promote "parallel
thinking" and Iguana directly contributes to that end. Thus, students no longer need to worry
about implementation details and focus only on parallel code development. Likewise, lecturers
do not need to worry about providing the infrastructure for lab classes.

105

CHAPTER

5
EXPERIMENTAL EVALUATION

Iguana is a doctoral project, and it was developed and perfected over three years. The
tool is in a solid stage of development and has no bugs discovered, and we used the version 3.5
in the experiments. We planned and ran three experiments to assess the use of the tool.

For the first experiment, we invited computer industry professionals and lecturers. We
also chose people with no parallel programming experience to check the tool’s performance with
these users.

In the second experiment, we used the tool at the University of São Paulo with 129
undergraduate students in concurrent programming discipline. The objective of this experiment
was to evaluate the efficacy of Iguana as a support tool for teaching parallel programming.

For the first two experiments, including participants, we applied a widely used usability
test called System Usability Scale (SUS) and other questions for tool evaluation. Still, we
conducted these two experiments with many participants into a simple virtual machine and
multiple concurrent submissions of parallel programs.

Also, due to the covid-19 pandemic, students accessed the tool through the web browser
in their homes. Iguana’s queuing system allowed multiple students to write and test code
simultaneously despite minimal virtual machine setup. The cluster used by the students had four
virtual nodes, and the entire system was running under a VM with 8GB of storage, 2GB RAM,
and one vCPU.

The third experiment consisted of validating tool efficacy for running the CUDA codes.
The codes were extracted from Silva (2021) and did not include participants. For the tests, we
used an Intel Core i7-3537U, 8GB RAM, 2TB of storage hosted in LaSDPC (Distributed Systems
and Concurrent Programming) of the University of São Paulo.

Therefore, Section 5.1 introduces the concept of evaluation with the SUS. Then, Sec-
tion 5.2 presents the experiment with lecturers and computing professionals. Next, Section 5.3

106 Chapter 5. Experimental Evaluation

shows the experiments with the students. Then, Section 5.4 presents the CUDA codes tested
with the tool. Finally, Section 5.5 contains considerations about this chapter.

5.1 System Usability Scale
We use SUS for the survey after experiments with professionals, lecturers, and students.

Despite its described as a quick and dirty method, there is a significant correlation between
the results indicated by the SUS in direct comparisons with usability tests. Researchers and
professionals widely use SUS to conduct usability tests of different websites and tools (PERES;
PHAM; PHILLIPS, 2013).

Chart 13 shows the questions for the usability test (SUS). This SUS scoring system uses
ten questions and each with five answer options. The answers start with totally disagree (value 1)
and totally agree (value 5). The even-numbered questions (2 and 4) represent negative levels of
agreement; that is, the fewer answers, the better the result. Conversely, odd questions (1,3, and 5)
represent positive levels of agreement (BROOKE, 1996).

Chart 13 – SUS questions for usability

Questions
1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be
able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system
very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with
this system.

Source: Adapted from Brooke (2013).

Thus, for even responses, subtract the user responses from 5, and for odd responses,
remove one from the user response. This scales all values from 0 to 4. Afterward, we must add
up all the converted answers for each user and multiply this total by 2.5. This converts the range
of possible values from 0 to 100.

Finally, the score is divided into scales, as shown in Figure 36; 100 is considered the
best user experience, equivalent to an A grade. Above 80.3 is rated excellent, and between
68 and 80.3 is classified as good. Ratings below 68 are considered an F grade and are not
acceptable (BANGOR; KORTUM; MILLER, 2009; BROOKE, 2013).

5.2. Evaluating Usability with Lecturers and Computing Professionals 107

Figure 36 – SUS scoring scale

Source: Elaborated by the author.

5.2 Evaluating Usability with Lecturers and Computing
Professionals

The first experiment objective was to evaluate the tool usability with lecturers and
professionals in computing. All participants have extensive experience in sequential programming
and different knowledge levels in parallel programming. Furthermore, some of them still have
experience with teaching parallel programming. They work in the industry as software developers
or in academia as lecturers.

We sent the invitation to 36 participants, of which 24 responded. Afterward, we sent an
email again with the instructions for experimenting to the participants:

1. First step: a link to a 5-minute training video explaining how to log in and execute an
exercise in the tool;

2. Second step: participants had to access the tool and perform four exercises. We sent the
answers to the exercise to not overload the guests, as the purpose was to evaluate the
Iguana and not the participants’ ability to solve exercises; and

3. Last step: after completed step two, we asked the guests to answer a survey with 25
questions.

The following ten questions evaluated the tool usability with SUS. Then, another five
questions to assess user satisfaction with the interface and finally, ten questions about running
parallel programs with Iguana focus on teaching.

5.2.1 Distribution of professionals

The survey has seven questions to analyze the distribution of professionals and lecturers
according to age, academic degree (undergraduate, specialist, master or doctor), place of work,
guest location, years of computing experience, years of parallel programming experience, and
which tool they usually compile and run parallel programs.

108 Chapter 5. Experimental Evaluation

Figure 37 presents the age of the participants, where the minimum was 23, the maximum
was 52, and the median was 33. Thus, the principal age ranged (between the first and third
quartiles, called the interquartile range) from 28 to 41 years old. Most participants for this
experiment had masters and doctoral degrees. Figure 38 shows the academic degree, where 3
participants were undergraduate, 5 specialists, 9 master’s degrees, and 6 doctorates.

Figure 37 – Age of participants in the experiment with professionals and lecturers

Source: Elaborated by the author.

Figure 38 – Academic degree of participants

Source: Elaborated by the author.

The boxplot in Figure 39 shows the years of experience of the participants in parallel
programming, where the minimum was 6, the maximum was 30, and the median was 14.5. Thus,
the interquartile years of the experience were between 8.25 and 20.

5.2. Evaluating Usability with Lecturers and Computing Professionals 109

Figure 40 shows the years of experience of the participants in computing, where the
minimum was 0, the maximum was 12, and the median was 2. Also, this boxplot features two
outliers, 15 and 30. Thus, the interquartile years of the experience were between 0 and 5.

Figure 39 – Experience in the computing area

Source: Elaborated by the author.

Figure 40 – Experience in parallel programming

Source: Elaborated by the author.

5.2.2 Results of the experiment - 1st round

Figure 41 shows the participants’ responses to SUS questions in Chart 13. The average
ranged from 1.3 to 2.0 for negative questions (even) and from 3.8 to 4.3 for positive questions

110 Chapter 5. Experimental Evaluation

(odd). The SUS score for this first questionnaire was 79.9 with a 95% confidence level. As shown
in Figure 36, this score is classified as acceptable.

Figure 41 – Answers for the ten SUS questions about usability - 1st round

Source: Elaborated by the author.

Chart 14 shows five questions added to identify other subjective responses from the par-
ticipants about using the system and the information displayed in the tool. These questions were
taken from the User Interface Satisfaction Questionnaire (QUIS) (CHIN; DIEHL; NORMAN,
1988) and allowed us to evaluate the Iguana better.

Chart 14 – Questions for user interface satisfaction

Questions
1. I feel comfortable with this system.
2. It was easy to find the information I needed.
3. I liked using the system interface.
4. The system interface is nice.
5. The organization of information on the system screen is clear.

Source: Adapted from Chin, Diehl and Norman (1988).

Figure 42 shows the responses to the second questionnaire, shown in Chart 14. Again,
the average of the responses was 4 (agree), with a confidence level of 95%, indicating that the
participants were satisfied with the tool’s interface.

Chart 15 presents the last ten questions sent to the participants containing questions about
executing parallel programs with the tool. The results allowed us to observe the most prominent
items in this type of programming. Figure 43 shows the averages of the responses, again with a
95% confidence level. The average ranged from 4.1 to 4.6 for inexperienced participants and 3.9
to 5.0 for answers from experienced guests. The overall average fluctuated from 4.1 to 4.9.

5.2. Evaluating Usability with Lecturers and Computing Professionals 111

Figure 42 – Answers for the five user interface satisfaction questions - 1st round

Source: Elaborated by the author.

Also, we applied a paired test t to check whether there was a significant difference
between the responses of the inexperienced and experienced participants. Again, we found no
significant difference between groups of responses (p > 0.05).

Chart 15 – Questions about running parallel programs in Iguana with focus in teaching

Questions
1. I find the tool intuitive/easy in program execution.
2. I think the Iguana tool can make teaching parallel programming
easier for students with little or no Linux skills.
3. I think that the Iguana tool can encourage students to run parallel
programs.
4. I find the tool more intuitive for executing parallel programs than
the traditional command-line way.
5. I think that the time to create and execute program in the Iguana
tool is less than the conventional method, through the command line.
6. I think editing program directly in the browser is better than having
to use an installed application.
7. I think that comparing the result of the lecturer’s program helps to
produce a correct result.
8. I think the tool is flexible enough to allow me to change my compi-
lation and execution parameters.
9. I would recommend using the tool.
10. I would use the tool in practical classes.

Source: Elaborated by the author.

112 Chapter 5. Experimental Evaluation

Figure 43 – Answers about running parallel programs in Iguana with focus in teaching - 1st round

Source: Elaborated by the author.

Finally, we asked participants to submit any suggestions for improvement or feedback
regarding the tool. We received many constructive answers as adding auto-recognition of compi-
lation parameters according to the code typed by the student, auto-save of code while writing it
in the editor, and some interface improvements, for example.

We included in Appendix B, in Chart B.1, the responses related to Iguana improvements,
the risk of implementing these suggestions, and which ones were applied. We registered 31
recommendations, of which twenty-three were used in the tool, and eight were designated for
future work.

5.2.3 Results of the experiment - 2nd round

After applying the suggestions pointed out in the previous experiment, we decided to
ask the participants for another evaluation with these new features in Iguana. Again we sent 24
invitations and received 12 responses, two undergraduates, one specialist, six masters, and three
doctors.

For the second round, the median age of participants was 28.5, with a minimum of 24 and
a maximum of 50, and an interquartile between 25.25 and 40.75. For experience in the computing
field, the median was 9.5, with a minimum of 6, a maximum of 30, and an interquartile between
7 and 19.25. For experience in parallel programming, the median was 3.5, with a minimum of 0,
a maximum of 4.75, and interquartile between 0.25 and 4.75, and an outlier of 15.

Figure 44 now shows the score for responses to the questionnaire SUS. Comparatively,
in the first experiment, in Figure 41, the SUS was 79.9 and, after applying the features in Iguana,
the SUS increased to 88.3, an excellent rating (acceptable) in the score shown in Figure 36. Also,

5.2. Evaluating Usability with Lecturers and Computing Professionals 113

the figure still presents the mean variation for negative answers, from 1.2 to 1.6, and positive
responses, from 4.2 to 4.7.

Figure 44 – Answers for the ten SUS questions about usability - 2nd round

Source: Elaborated by the author.

Figure 45 shows the mean responses for the QUIS. In the first experiment, we received
an average of 4 and now 4.5 for the second round. The participants showed greater satisfaction
with the interface after the features, increasing the score (of agree to strongly agree), evidenced
by the responses presented. The confidence level for the SUS and QUIS responses was 95%.

Figure 45 – Answers for the five user interface satisfaction questions - 2nd round

Source: Elaborated by the author.

Figure 46 shows the averages for the last section of questionnaire answers that evaluated
the parallel program execution in the tool. The average of responses for inexperienced participants

114 Chapter 5. Experimental Evaluation

was 4.7 to 5, and for experienced participants was 4.1 to 5.0. Compared with the same section of
the first experiment, we registered a mean increase from 4.5 to 4.7 for experienced participants
and 4.5 to 5 for inexperienced participants. Thus, the result approached the borderline of
significance for these two groups of responses (p = 0.07).

Figure 46 – Answers about teaching parallel programming through the tool - 2nd round

Source: Elaborated by the author.

Finally, in Appendix C, in Chart C.1, we listed all the positive and negative feedback
regarding the use of Iguana, and we performed several adjustments to improve usability.

5.3 Teaching Parallel Programming with Iguana
The second experiment was performed during the High-Performance Computing course

at the University of São Paulo in the second half of 2020 and involved 129 undergraduate students
in Computer Science. The students were divided into 28 groups named A and B to facilitate
teacher monitoring. The objective of the experiment was to evaluate the efficacy of the tool in
supporting parallel programming.

At the end of the course, the 129 students used Iguana to develop two algorithms. The
programs used in this experiment were more complex than other algorithms at the beginning of
the course. They involved collective message passing, dynamic generation of processes in MPI,
and a hybrid model (OpenMP and MPI).

5.3.1 Iguana and non-Iguana grades

The first algorithm objective was to determine how many elements in matrix columns
were smaller than the average of the same matrix elements. The second algorithm should find a
list of words within strings ordered in an array.

5.3. Teaching Parallel Programming with Iguana 115

The score for each program is expressed by the weighted average of three parameters:
50% for correct use of MPI resources, 30% for proper program execution, and 20% for source
code quality. Figure 47 shows the scores of the 28 groups (sections A and B) for the first exercise.

Figure 47 – Students’ scores for the first exercise

Source: Elaborated by the author.

The first parameter of score checks if the student correctly used the OpenMP and MPI
resources to solving the exercises. The second parameter validates the exercise’s correct answer,
and the third parameter corresponds to the quality of the source code, such as comments,
indentation, and readable structure. Figure 48 shows the scores for the second exercise (Find
Words).

Figure 48 – Students’ scores for the second exercise

Source: Elaborated by the author.

116 Chapter 5. Experimental Evaluation

Again, the scoring system used was the same as in the first exercise; that is, the weighted
average for all 28 groups’ scores (sections A and B). Figure 49 shows the averages of the
participants’ scores for nine exercises conducted before the experiments (non-Iguana grades)
and two Iguana activities (Iguana grades).

Figure 49 – Comparing the variability of scores in exercises with and without Iguana support

Source: Elaborated by the author.

Figure 50 shows the boxplot between the two means of the previous exercises and the
exercises with the tool. Again, we observe similar behavior (variability) in this graph, where
scores with Iguana have the median, the first and third quartile above scores without Iguana
support.

Figure 50 – Comparing the distribution of scores in exercises with and without Iguana support

Source: Elaborated by the author.

5.3. Teaching Parallel Programming with Iguana 117

We performed this comparison to detect if Iguana could add any difficulty to problems
solve. The statistical test confirmed significance between the means of two scores (p < 0.05),
indicating higher scores using the tool. Despite this, we highlighted that two groups (8A and
14B) did not submit the exercises; they failed to develop parallel solutions with OpenMP and
MPI for more complex problems. On the other hand, students reported to the lecturer that no
problems were using the tool.

5.3.2 Results of the experiment

Students were invited, after completing the two exercises, to answer a questionnaire.
However, to improve the confidence level in the responses, we notified the students that the
questionnaire was not required and the responses would be anonymous. Thus, 54 out of 129
students participated in the survey. Figure 51 shows the students’ responses to SUS questions in
Chart 13.

Figure 51 – Answers related to usability to teach parallel programming through the Iguana

Source: Elaborated by the author.

The average ranged from 1.6 to 1.9 for negative questions (even) and from 4.0 to 4.5
for positive questions (odd). The SUS score for this first questionnaire was 81.1 with a 95%
confidence level. As shown in Figure 36, this score is classified as acceptable. In addition to
SUS, we also requested two other questionnaires for students to answer. Chart 16 shows the
questions regarding the effectiveness of the execution of parallel programs in Iguana.

Figure 52 shows the answers averages to the questions presented in Chart 16. For example,
question 3, about editing programs directly in the browser, had an average of 2.7, a point of
divergence among students.

This divergence may have occurred because the students already used their Integrated
Development Environments (IDEs) during the course, mainly using shell command lines (editing,

118 Chapter 5. Experimental Evaluation

Chart 16 – Questions about Iguana execution effectiveness

Questions
1. I think that the time to create and execute programs in the
Iguana tool is less than the conventional method, through the
command line.
2. It was NOT easy to find the information I needed.
3. I think editing programs directly in the browser is better than
having to use an installed application.
4. I think the tool is flexible enough to allow the compilation
and execution of parallel programs on different platforms, just by
changing compilation and execution parameters for MPI, Open-
MPI or CUDA.
5. The organization of information on the system screen is clear.

Source: Elaborated by the author.

Figure 52 – Answers for Iguana execution effectiveness

Source: Elaborated by the author.

compiling, and executing); they used Iguana at the semester end. For the last section of the
student questionnaire, we presented questions about the effectiveness of learning using the tool,
shown in Chart 17.

Students evaluated Iguana’s strengths and weaknesses compared to their previous experi-
ences, that is, in the context of their learning. In addition, students developed parallel programs
in practical laboratory classes in the experiments, with code editing, compilation, execution, and
comparison of the lecturer’s results through a web browser. Thus, Figure 53 shows how students
evaluated these activities offered by Iguana about the questions in Chart 17. The average of the
answers ranged from 3.8 to 4.8, indicating a positive evaluation of these topics.

5.3. Teaching Parallel Programming with Iguana 119

Chart 17 – Questions about learning effectiveness through Iguana

Questions
1. I think first-year students (with little or no experience in
programming) can learn parallel programming more easily us-
ing Iguana than with command-line shells or other pre-installed
applications/IDEs.
2. I think it should be easier to learn parallel programming re-
motely, without face-to-face classes, using the Iguana tool than
with command-line shells or other pre-installed applications/IDEs.
3. I think it should be easier to learn parallel programming in
person (with practical classes in person) using the Iguana tool than
with command-line shells or other pre-installed applications/IDEs.
4. I think that editing the program directly in the browser without
using a pre-installed application or IDE can facilitate the teaching
of parallel programming.
5. I think that comparing the result of the lecturer’s program
helps produce a correct result than submitting an exercise without
knowing the expected answer.
6. I think the tool can facilitate parallel programming learning
even without the need for a physical and local infrastructure of
parallel machines.
7. I think the use of the tool facilitates learning in practical classes.
8. I think that using the tool motivates the learning of parallel
programming because I get immediate feedback compared to the
traditional submission that allows analyses by the lecturer just
after.

Source: Elaborated by the author.

Figure 53 – Answers for learning effectiveness through Iguana

Source: Elaborated by the author.

120 Chapter 5. Experimental Evaluation

At the end of the experiment, we asked participants to submit any suggestions for
improvement or feedback regarding the tool. We received many constructive answers and
excellent feedback, some encouraging ones such as:

I thought the tool made the development of the programs a lot easier, as it
saves time in organizing the files and applications needed for compilation
and execution (Anonymous, 2020).

The tool is handy because not everyone has machines to execute the
program (which might need cards from Nvidia, for example), and the
tool helps a lot in this regard (Anonymous, 2020).

This tool was of great help to us (students) because we did not have a
device configured at home for the development and execution of parallel
programs. Iguana allowed the introduction to the parallel programming
in few steps (Anonymous, 2020).

We included in Appendix B, in Chart B.2, the responses related to Iguana improvements,
the risk of implementing these suggestions, and which ones were applied. We registered 11
recommendations, of which five were used in the tool, and eight were designated for future work.
Finally, in Appendix C, in Chart C.2, we listed all the positive and negative feedback regarding
the use of Iguana, and we performed several adjustments to improve usability.

5.4 Experiments with CUDA

For this experiment, we used the CUDA algorithms developed in the undergraduate
course (SILVA, 2021). We executed tests at the Distributed Systems and Concurrent Programming
Laboratory (LaSDPC) of the ICMC-USP. The equipment used was a Core 17-4790 3.60GHz
processor, 32GB of RAM, and a GeForce GTX 650 video card.

The test consisted of running the selected codes in Iguana on one of the lab machines
with a video card. The objective was to determine if the tool would execute the codes correctly.
For this, we used 12 ready-made algorithms with test cases and the correct output produced by
Silva.

5.4.1 Hello World

This test aims to print a Hello world message in N*M times, using N blocks and M
threads, in CUDA. Source code 7 shows the first code used in this experiment. The other
programs are in the cited work due to many code lines. All examples follow the same external
file calling pattern, as seen in lines 8 to 11.

5.4. Experiments with CUDA 121

Source code 7 – Hello World in CUDA

1: __global__ void hello(){
2: printf("Hello world\n");
3: }
4:

5: int main(int argc,char **argv){
6: int blocos, threads;
7:

8: FILE * pFile;
9: pFile = fopen("file.txt","r");

10: fscanf(pFile, "%d ", &blocos); //read the matrix line.
11: fscanf(pFile, "%d ", &threads); //read the matrix column.
12:

13: hello<<<blocos,threads>>>();
14: cudaDeviceSynchronize();
15: }

Table 18 shows the contents of the input file used in Source code 7. With this input, the
code generated the result shown in the output print column. Figure D.1 in Appendix D shows the
result of Source code 7. Again, we ran the code in Iguana and returned the same output.

Chart 18 – Input and output of hello world in CUDA

Input file Output print
2 4 Hello world

Hello world
Hello world
Hello world
Hello world
Hello world
Hello world
Hello world

Source: Adapted from Silva (2021).

5.4.2 Metrics of descriptive statistics

This algorithm aims to calculate for each sample (column) the following metrics: arith-
metic mean, harmonic mean, median, mode, variance, standard deviation, and coefficient of
variation, as described below (SILVA, 2021):

∙ Arithmetic mean: sum of all elements in the sample, divided by the sample size (sum of
the rows in the matrix column divided by the number of rows);

122 Chapter 5. Experimental Evaluation

∙ Harmonic mean: the ratio between the sample size and the sum of the inverse of the
samples;

∙ Median: average element of the sample (average element of the ordered column). For an
even number of elements, the median is the mean between the elements in the middle
((n/2+n/2+1)/2);

∙ Mode: most frequent element of the sample (the element that appears the most in the
column, if there is more than one, only the first is considered. If not, it returns -1);

∙ Variance: sum of squares of the differences between the sample element and the calculated
arithmetic mean;

∙ Standard deviation: square root of the variance; and

∙ Coefficient of variation: the ratio between standard deviation and arithmetic mean.

Chart 19 shows the contents of the input file used to calculate the descriptive statistics
metrics. With this input, the code generated the result shown in the output print column. Fig-
ure D.2 in Appendix D shows the result. Again, we ran the code in Iguana and returned the same
output.

Chart 19 – Input and output of descriptive statistics metrics in CUDA

Input file Output print
6 4
9 8 4 5
4 12 20 40
8 8 4 4
8 12 4 21
33 44 20 1
10 18 17 10

12.0 17.0 11.5 13.5
8.1 12.1 6.6 3.7
8.5 12.0 10.5 7.5
8.0 8.0 4.0 -1.0
110.0 188.4 68.7 217.9
10.5 13.7 8.3 14.8
0.9 0.8 0.7 1.1

Source: Adapted from Silva (2021).

5.4.3 Thresholding

Thresholding is used to apply a filter and correct brightness to images by defining the
threshold and applying it on all pixels (cells of a matrix). The algorithm reads the threshold
from a file and compares it with matrix elements. If the element is greater than the threshold, the
column value is replaced by 1, and if it is smaller, the value is replaced by 0 (SILVA, 2021).

Chart 20 shows the contents of the input file used to thresholding. With this input, the
code generated the result shown in the output print column. Figure D.3 in Appendix D shows the
result. Again, we ran the code in Iguana and returned the same output.

5.4. Experiments with CUDA 123

Chart 20 – Input and output of thresholding in CUDA

Input file Output print
3 3
0.5
0.5 0.9 0.3
0.5 0.7 0.7
0.8 0.8 0.3

0.0 1.0 0.0
0.0 1.0 1.0
1.0 1.0 0.0

Source: Adapted from Silva (2021).

The first line of the input file defines the number of lines and columns of the matrix, the
second line is the threshold value, and the other lines are the matrix elements.

5.4.4 Greatest common divisor

The algorithm reads a vector of n integer elements. Then, it calculates the greatest
common divisor between these elements: the largest divisor of two or more natural numbers that
can be found by dividing these numbers by the natural numbers greater than zero (SILVA, 2021).

Chart 21 shows the contents of the input file used for this algorithm. With this input, the
code generated the result shown in the output print column. Figure D.4 in Appendix D shows the
result. Again, we ran the code in Iguana and returned the same output.

Chart 21 – Input and output of greatest common divisor in CUDA

Input file Output print
3
45 15 135

15

Source: Adapted from Silva (2021).

The first line indicates the vector size (number of elements). The second line shows the
vector components, that is, the factors used to calculate the greatest common divisor.

5.4.5 Matrix multiplication

The next program calculates the product of two square matrices of type double (A * B)
and prints the result into a third matrix (C) (SILVA, 2021).

Chart 22 shows the contents of the input file used to matrix multiplication. With this
input, the code generated the result shown in the output print column. Figure D.5 in Appendix D
shows the result. Again, we ran the code in Iguana and returned the same output.

The first line of the input file defines the matrix dimension (M). The lines between the
second line and line number M+1 represent the elements of matrix A. The line M+2 to the end
of the file defines the second matrix B.

124 Chapter 5. Experimental Evaluation

Chart 22 – Input and output of matrix multiplication in CUDA

Input file Output print
3
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0
9.0 8.0 7.0
6.0 5.0 4.0
3.0 2.0 1.0

30.0 24.0 18.0
84.0 69.0 54.0
138.0 114.0 90.0

Source: Adapted from Silva (2021).

5.4.6 Multiplication of vectors by a scalar

The algorithm objective is to perform the multiplication between a scalar and the elements
of a vector, that is, given a scalar x=4 and a vector v=(2,4,6), where the product of x*v=4*, is
(2.4.6)=(8.16.24) (SILVA, 2021).

Chart 23 shows the contents of the input file used to algorithm . With this input, the code
generated the result shown in the output print column. Figure D.6 in Appendix D shows the
result. Again, we ran the code in Iguana and returned the same output.

Chart 23 – Input and output of multiplication of vectors by a scalar in CUDA

Input file Output print
3 4
2 4 6

8 16 24

Source: Adapted from Silva (2021).

The first element in the first row indicates the vector size, the second element in the first
row shows the scalar, and the second row indicates the vector.

Finally, the tests performed show that Iguana is also capable of executing and returning
code in CUDA. We also tested many other algorithms and chose some of them for this work.
In addition to the compilers experimented with the tool (OpenMP, MPI, and CUDA), Iguana is
flexible enough to add new compilers and change the compilation and execution parameters.

5.5 Final Considerations

For the first and second experiments, we used SUS to measure Iguana usability. However,
after searching for related work, we did not find any other tool evaluated in this way; therefore,
this is the first work to use the SUS to measure the usability of tools for teaching heterogeneous
parallel programming.

5.5. Final Considerations 125

The tool had usability considered good (SUS of 79.9) in the first experiment with lecturers
and professionals in the computing area, with extensive experience in IDE and command-line
shells to develop parallel and sequential algorithms. In addition, after applying the features
pointed out by these professionals, the SUS score changed to 88.3 on a scale ranging from 0 to
100, causing Iguana’s usability is now considered excellent.

In addition to SUS, participants answered other questionnaires about teaching practical
parallel programming with the tool: developing, compiling, and executing programs in practical
laboratory classes. Iguana received the top 20% survey scores (4.0 and 5.0). Furthermore,
participants indicated that the tool is intuitive and simple to use in practical classes; it can
produce parallel programs with correct results and facilitate student learning.

In the second experiment, Iguana provided the necessary infrastructure to support the
compilation and execution of parallel programs developed by the students during the practical
laboratory classes. The participants, involving 129 students, used OpenMP and MPI, which
represent separate programming models, for the proposed exercises. The submission of programs
by the students showed that the tool is proficient in managing different infrastructures, multicore
processors, and computer clusters.

In addition, students used a tool that offers a virtualized parallel infrastructure to run
parallel programs without quality infrastructure or Internet access. They can even install on
their machines or download a pre-configured virtual machine and run directly on their laptops
and computers. Through the feedbacks collected in the experiment, we could observe that the
students felt motivated to practice parallel programming using the Iguana, expanding the theory
of parallel thinking.

Iguana also proved to be a helpful resource in reducing the time and energy spent on
evaluating the exercises presented by the students. The lecturer responsible for the classes in the
experiment successfully and quickly carried out all corrections and analyses of the programs
submitted in the tool.

Iguana enabled remote education possible. Participants and students accessed the tool
from their homes through simple browsers on different devices without an additional installation.
In addition, the experiment was performed in the middle of the Covid-19 pandemic, where
classes were obligatorily remotely.

This possibility of remote execution was fundamental and is the tool’s strength; without
Iguana, another alternative could have failed due to the complexity of running parallel programs
by students remotely. Furthermore, even if not on a pandemic, many educational institutions
do not have the minimum infrastructure and adequate workers to support parallel programs in
practical laboratory classes. Iguana is a simple and accessible option to solve this problem.

127

CHAPTER

6
RELATED WORK

The research conducted in Chapter 2 and Chapter 3 allowed us to define the necessary
system parameters to create a lightweight cluster for teaching parallel programming in practical
laboratory classes. Unfortunately, many of the approaches found involve developing proprietary
software, high-cost clusters, shared infrastructure, skilled workers, and payment services.

Thus, Chapter 4 presented the creation of Iguana, a tool that overcame these problems
over the other infrastructures, as evidenced by the experiments conducted in Chapter 5. Finally,
this chapter shows a systematic mapping of tools to teach parallel and distributed programming
and compares the results with the system proposed in this work. Section 6.1 presents the papers
found in the main research bases, and Section 6.2 provides a summary for this systematic
mapping.

6.1 Systematic Mapping

It is known that the complexity of parallel programming requires appropriate teaching,
with an unequal division between theoretical and practical classes. It is estimated that one-
third of the classes are theoretical. In the remaining period, students are trained in laboratories,
programming through tools and libraries to acquire the skills necessary to develop parallel
programs (ALOISIO et al., 2005). The tools, therefore, facilitate the peculiar teaching of parallel
programming.

Therefore, this section shows the works that present tools dedicated to parallel teaching
programming, where we highlight its advantages and disadvantages compared to Iguana. Our
methodology for identifying tools can be described as follows, starting from the question: which
teaching tools were developed for the execution of parallel programs?

We found 114 papers in the standard digital libraries (ACM DL, IEEE Xplore, Scopus,
Science Direct) in 2011-2021. This search used the keyword “Teach* Parallel Programming

128 Chapter 6. Related Work

Tool”. After analyzing the titles, abstracts and reading the full articles, it was possible to select
the 12 most relevant articles that present at least one tool for teaching parallel programming
(Table 4). In Chart 24, we compare Iguana’s resources with the other tools found.

Table 4 – Selected papers

Database journal Number of papers Alter filter
ACM Digital Library 5 2
IEEE Digital Library 57 3
Science@Direct 11 6
Scopus 30 0
Springer Link 11 1

Source: Elaborated by the author.

6.1.1 aCe C

The first tool found in the paper (DORBAND; ABURDENE, 2002) is an effort to
encourage students to develop parallel applications. The aCe (Architecture Adaptive Computing
Environment) is a C-based parallel language for architecture-adaptive programming.

aCe was developed to provide essential parallel programming execution and communica-
tion capabilities and make these features more accessible to programmers and students. Figure 54
shows an aCe program. Note that it looks no different from a standard C program. This program
will print “Hello aCe World” 10 times because the printf command is executed by each of the
ten threads of A (DORBAND; ABURDENE, 2002).

Figure 54 – Hello aCe World

Source: Dorband and Aburdene (2002).

The aCe language facilitates aspects of parallelism such as race condition, process
synchronization, and message and parallel consolidation, minimizing the programmer’s need to
concern about parallel architecture details and developing an algorithm with a high degree of
parallelism (DORBAND; ABURDENE, 2002).

6.1. Systematic Mapping 129

6.1.2 STEADY

Dempster et al. (2005) developed a system that facilitates the visualization of parallel
databases. As a result, STEADY can show students the effects of system performance from
different software and hardware configurations, as shown in Figure 55.

Figure 55 – Response time viewer

Source: Dempster et al. (2005).

Students can visualize, for example, bottlenecks, response times, utilization, throughput
for complex queries through the tool’s capabilities to performance prediction. According to the
authors, providing access to a complete parallel database structure is very expensive, and the
process takes a long time to complete. Thus, the developed tool has been used in the last three
years to support the teaching of parallel programming (DEMPSTER et al., 2005).

The tool can complement the learning by students to understand the performance factors
that affect the parallel database system. After surveying, the results indicated that the laboratory
session had increased students’ understanding (DEMPSTER et al., 2005).

6.1.3 A Grid Portal

Grid Portal (TOURINO et al., 2005) is a web interface developed (Figure 56) for
undergraduate students to send their parallel programs to a grid containing several computers
(Figure 57). In addition, the system also publishes results and feedback.

130 Chapter 6. Related Work

Figure 56 – MPI job submission through the portal

Source: Tourino et al. (2005).

Figure 57 – Supercomputing resources available for the students

Source: Tourino et al. (2005).

6.1. Systematic Mapping 131

Students provided positive feedback on the design and functionality of the web inter-
face. They pointed out that it is unnecessary to access the machine to run programs, and the
system is always available online. For this, they only had a browser to access the computational
grid (TOURINO et al., 2005).

6.1.4 StarHPC

StarHPC (IVICA; RILEY; SHUBERT, 2009) is a solution that pre-packages into an
Amazon EC2 virtual machine image the scripts used by an administrator and cluster access for
students to support parallel programming teaching. This system is used for the Massachusetts
Institute of Technology courses and requires a cluster infrastructure for students to run a parallel
program.

As Figure 58 shows, StarHPC corrects the problems traditionally associated with the
support of classroom computing resources by providing a dedicated, dynamic on-demand
computing cluster hosted by Amazon’s EC2 web service (IVICA; RILEY; SHUBERT, 2009).

Figure 58 – StarHPC solution architecture

Source: Ivica, Riley and Shubert (2009).

132 Chapter 6. Related Work

StarHPC architecture can be adopted without increasing high costs in other educational in-
stitutions for parallel programming; however, the institution needs to have a dedicated computing
cluster for this purpose (IVICA; RILEY; SHUBERT, 2009).

6.1.5 Pilot Library

The Pilot library (GARDNER; CARTER, 2014) can offer parallel programming with
MPI enjoyable and teach programming principles with message passing in a simple process and
channel-based Multiple Program Multiple Data (MPMD) model. User-defined architecture is
applied at runtime, with extensive diagnostics for all types of errors using the built-in deadlock
detector.

Figure 59 shows the entire Pilot API, including only 24 functions. The API allows a
single Pilot call to execute multiple MPI calls and facilitates variable-length data communication.
Even a format code automatically allocates an array of suitable lengths to contain the input
data (GARDNER; CARTER, 2014).

Figure 59 – Pilot API

Source: Gardner and Carter (2014).

Typical execution of clustered programs provides low visibility for troubleshooting and
error debugging. The Pilot library can help students by delivering extensive verification and
diagnosis of usage issues through an integrated deadlock detector (GARDNER; CARTER, 2014).

The library was used in a course at the University of Guelph, including 12-week topic
programming, organization (assignments, semester project, final exam), textbook, and parallel
programming platforms (GARDNER; CARTER, 2014).

6.1. Systematic Mapping 133

6.1.6 ZawodyWeb System

The ZawodyWeb (NOWICKI et al., 2015) system was initially developed for students to
submit programs for online validation and later was extended to support parallel programs written
in different programming paradigms. With this, the ZawodyWeb system allows the student the
possibility of running problems in production systems with thousands of cores, hiding all the
complexity of large multiprocessor computers.

Figure 60 shows the system architecture, created in the Java language, using the Spring
Framework and JavaServer Faces libraries (Facelets, Richfaces, Restfaces, etc.). The system is
hosted on the Apache/Tomcat server. The PostgreSQL database is used for the data store, and
Hibernate maps Java objects to the data (NOWICKI et al., 2015).

Figure 60 – The architecture of the ZawodyWeb system

Source: Nowicki et al. (2015).

The system was used at the University of Warsaw with undergraduate students in a
parallel programming course. The tool’s evaluation highlighted the number of submissions by
students to complete a given parallel program (NOWICKI et al., 2015).

6.1.7 SAUCE

Hundt, Schlarb and Schmidt (2017) discuss a selection of known parallel algorithms
based on C++ 11, OpenMP, MPI, and CUDA threads that can be applied to teach parallel
computing or HPC lecture using a unified framework for automated source code evaluation
named SAUCE (Automatic Code Assessment System). It is a web system that allows the
submission and execution of parallel programs.

134 Chapter 6. Related Work

Figure 61 shows a schematic overview of the distributed architecture. The system uses a
task queue to submit the compilation and execution of test jobs for several workers (HUNDT;
SCHLARB; SCHMIDT, 2017).

Figure 61 – Queuing system workflow

Source: Hundt, Schlarb and Schmidt (2017).

The infrastructure has a dedicated web server where the SAUCE web application running
and a lightweight queuing system to run tests on worker nodes instead of the host system. A test
job is a contiguous unit of work consisting of repeated compilation and execution, one for each
defined test case (HUNDT; SCHLARB; SCHMIDT, 2017).

SAUCE has an integrated plagiarism search system that uses all submissions based on
the Jaccard index and compares them with students’ other codes. In addition, the system has an
unlimited number of requests that students can make in a given period, providing immediate
feedback for corrective exercises (HUNDT; SCHLARB; SCHMIDT, 2017).

6.1.8 SPOC

Small Private Online Course (SPOC) (MULLEN et al., 2017) presents the design of an
HPC course to undergraduate students, precisely parallel programming, and makes it available
through MOOCs (Massively Open Online Courses). The theoretical content was developed for
students through the usual HPC cases and strategies for developing parallelism.

Figure 62 shows the student interface, where units flow from one tab to another with
the mouse button click. For example, a student navigates to a course section and then moves to
video, text, illustrations, questions, etc (MULLEN et al., 2017).

The authors also highlight that learning HPC concepts, algorithms, and techniques
requires practice in a parallel computing system. Thus, the main challenge in converting SPOC
into a MOOC is providing thousands of students access to HPC resources. In addition to the

6.1. Systematic Mapping 135

Figure 62 – Screenshot of Open edX navigation bar

Source: Mullen et al. (2017).

theory, the work also presents how programs are executed through a scheduler. For execution by
the terminal, the student must know Linux (MULLEN et al., 2017).

6.1.9 OnRamp

OnRamp (FOLEY et al., 2017) is an open-source system that provides parallel computing
concepts on day one, such as scaling, decomposition, and parallel architectures through a web
portal. The tool abstracts the details of the complex ecosystem of software and infrastructure
present in PDC practices. The system is based on interactive modules allowing the exploration of
PDC concepts using different Parallel Compute Environments (PCEs). The web system provides
the submission of parallel algorithms and the visualization of results (Figure 63).

Figure 63 – Job launch in a three-node cluster

Source: Foley et al. (2017).

136 Chapter 6. Related Work

There are two REST interfaces to provide these features: one for the Web Interface to
assign a request to the server and one for the Server to assign a request to the PCE Service
(clusters, clouds, and virtual clouds). The PCE service creates a directory structure for managing
users, modules, and jobs. Each user has a unique directory (FOLEY et al., 2017).

The tool was evaluated in a computer architecture course, with 19 out of 21 students
present. The study’s main objective was to explore the number of information users wanted to
display in the web interface when interacting with OnRamp. As a result, two designs for the Web
Interface were implemented. Unfortunately, the data collected for the preferred method choice
by students was not statistically significant impact on their learning (FOLEY et al., 2017).

6.1.10 Everest

Everest (SUKHOROSLOV, 2018) is a web-based system built to facilitate the submission
of MPI programs by students and lecturers, providing feedback and result of the program
execution. Figure 64 shows the architectural design of the tool.

First, Everest creates a new job for each request, consisting of one or more computational
tasks generated by the application according to the job entries. Next, the platform on user-
specified computing resources executes the jobs. Finally, the completed tasks are sent back to the
application and are used to produce work outputs or new jobs, if necessary (SUKHOROSLOV,
2018).

Figure 64 – High-level architecture of Everest

Source: Sukhoroslov (2018).

6.1. Systematic Mapping 137

The submission form is shown in Figure 65 and includes the entries that a student must
specify. Some entries can have the default values predefined and also can be configured as
mandatory or optional. For example, a user can specify a custom job name and enable email
notification when the job is complete (SUKHOROSLOV, 2018).

Figure 65 – Submit form of generic service for running MPI programs

Source: Sukhoroslov (2018).

After the work submission, the student is redirected to the work page that displays
dynamically updated information about the task status. Figure 66 contains a screen capture of
the completed work for the MPI service (SUKHOROSLOV, 2018).

In 2017, the author conducted a survey of students from the Parallel and Distributed
Computing course at the Yandex School of Data Analysis (YSDA, Moscow, Russia) to evaluate
the approach presented in terms of student satisfaction. 87 students participated in the survey of
110 enrolled students (SUKHOROSLOV, 2018).

The level of convenience of running programs via the provided generic execution services
was rated on a five-point scale as 5 or 4 by 80% of students (5–57%, 4–23%, 3–17%, 2–
3%). The level of convenience of testing solutions via the provided assignment evaluation

138 Chapter 6. Related Work

Figure 66 – Results of completed job for MPI service

Source: Sukhoroslov (2018).

services was rated on the same scale as 5 or 4 by 74% of students (5–37%, 4–37%, 3–18%,
2–8%) (SUKHOROSLOV, 2018).

The survey results indicate that the approach presented is feasible and well received by
students. However, the lower rating of assignment evaluation services can be explained by the
remaining difficulties in debugging defective programs (SUKHOROSLOV, 2018).

6.1.11 Let’s HPC

Let’s HPC (CHAUDHURY et al., 2018a) web platform was developed for teaching
parallel programming to facilitate the analysis process of HPC/PDC programs. The platform’s
tools automate the compilation and execution of code and data collection. Figure 67 contains a
conceptual scheme that describes the system flow and how users filter data according to their
requirements.

Each tool interacts with the database that uses these data to build charts used to an-
alyze performance. Thus, the user can compare and understand the importance of various
deterministic and non-deterministic software and hardware factors that affect the parallels’
performance (CHAUDHURY et al., 2018a).

As shown in a screenshot in Figure 68, the user first selects a category and a prob-
lem inside this category. After the student chooses the problem, the shared, distributed, or
heterogeneous architecture is selected (CHAUDHURY et al., 2018a).

Then, the site gets data from the database and offers three options (compare approaches,
machines, or programming environments). The students can select several instances to compare
methods, such as matrix multiplications, for example (CHAUDHURY et al., 2018a).

The user can generate graphs from the data retrieved from the instance selection. Further-
more, the data can be adjusted according to the problem size, allowing the user to adjust the plot

6.1. Systematic Mapping 139

Figure 67 – The Let’s HPC platform

Source: Chaudhury et al. (2018a).

Figure 68 – A screenshot of how the data filtering process is implemented on the Let’s HPC platform

Source: Chaudhury et al. (2018a).

140 Chapter 6. Related Work

according to their preferences (CHAUDHURY et al., 2018a).

6.1.12 Palmetto/JupyterHub

Palmetto Supercomputer (NGO et al., 2018a) features multiple remote and local comput-
ing capabilities grouped in one framework to support graduate-level education in parallel and
distributed computing. This structure, shown in Figure 69, uses Clemson University’s research
cluster, the Palmetto Supercomputer (Palmetto). For advanced PDC concepts, educational mod-
ules are developed using CloudLab, a public research computing testbed (RICCI; EIDE; TEAM,
2014).

Figure 69 – A unifying classroom computing environment

Source: Ngo et al. (2018a).

The grouping of these features allows teaching PDC, system, and architectural concepts
through a standard browser-based interface (JupyterHub, in Figure 70) and a single program-
ming environment (Python and its supported libraries). In this way, students and lecturers can
focus more on PDC principles and less on technical aspects of native languages for different
platforms (NGO et al., 2018a).

According to the authors, besides interactive lessons, having MPI Python code and
classes inside a Jupyter notebook allows instructors to create faster exercises for students. In
addition, feedback from instructors and students using the platform has been positive due to
new advantages such as reduced technical support required, simplified syntax, and the ability to
create lesson slides with a coding interface built into Jupyter notebooks (NGO et al., 2018a).

6.2. Final Considerations 141

Figure 70 – Running a simple parallel program on Jupyter Notebook

Source: Ngo et al. (2018a).

6.2 Final Considerations
After presenting the 12 tools in the previous sections, we identified the advantages and

principal features these systems offer for teaching PDC. Below we describe what each attribute
means, and in Chart 24, we present a summary of the characteristics found in the related work.

∙ Works without cluster structure: the tool allows students to run the parallel programs in
a distributed-memory MIMD architecture without a cluster infrastructure.

∙ Works without a previous configuration: it is not necessary to undergo a configuration
step before use.

∙ Graphical interface: whether the tool has a graphical interface.

∙ Source code editor: the system’s web interface that provides source code editor.

∙ Multiple compilers: it allows the students to use several compiled source codes when
executing their programs.

∙ Consolidated results: tool displays results of computations.

∙ Report generator: the tool provides usage reports.

∙ Portable: it can be copied and used without extra installation requirements, by means of
the virtualization through containers.

∙ Automatic integration: it is able to recognize and add new nodes in the cluster.

142 Chapter 6. Related Work

∙ Code smell: if the tool includes source code analysis to indicate its quality (MANTYLA;
VANHANEN; LASSENIUS, 2003) and (FERNANDES et al., 2016).

∙ Available online: if the tool is available via web browser.

∙ Automatic correction: whether the tool supports automatic program correction.

∙ Queue system: if it has a queuing system, preventing an executing program from interfer-
ing with another or that students compete for resources simultaneously.

∙ Run-time limit: if the tool has a runtime limit to avoid deadlocks.

∙ Feedback: whether the system allows the lecturer to provide feedback for students as
comments and grades.

∙ Works without internet connection: can be used without an internet connection (on a
student computer).

∙ Orchestration: the tool manager can add or remove nodes for the execution of programs.

∙ Lightweight resources: if the tool does not require heavy computational resources to run,
such as clusters and servers.

∙ Uses virtualization: it shows that the tool uses virtualization to create its infrastructure.

∙ Heterogeneous computing: it refers to systems that use more than one kind of processor
or cores, such as multicore CPUs, clusters, GPUs, FPGAs, among others.

∙ Validation/evaluation: if the tool has been formally validated and/or evaluated.

The last column in Chart 24 offers the comparison with Iguana. The usability tests
are one of the attributes neglected in the 12 tools found in the related work. Only two
papers present validation or evaluation (DORBAND; ABURDENE, 2002; HUNDT; SCHLARB;
SCHMIDT, 2017). Although validated with students, Steady, Grid Portal, StarHPC, Pilot Library,
ZawodyWeb, SPOC, and OnRamp do not describe how evaluations were precisely measured or
conducted (DEMPSTER et al., 2005; IVICA; RILEY; SHUBERT, 2009; GARDNER; CARTER,
2014; MULLEN et al., 2017; TOURINO et al., 2005; NOWICKI et al., 2015; FOLEY et al.,
2017).

Everest, Let’s HPC, and Palmetto, performed evaluations of the systems with the students’
previous experiences in developing and executing clustered parallel programs (SUKHOROSLOV,
2018; CHAUDHURY et al., 2018b; NGO et al., 2018b). None of the related works found,
presented in Chart 24, based the evaluation of the tool on widely used and standardized surveys for
usability testing, such as the SUS (BROOKE, 1996) and the QUIS (CHIN; DIEHL; NORMAN,
1988).

6.2. Final Considerations 143

Chart 24 – Tools for teaching parallel programming

PAPER aC
e

ST
E

A
D

Y

G
ri

d
Po

rt
al

St
ar

H
PC

Pi
lo

tl
ib

ra
ry

Z
aw

od
yW

eb

SA
U

C
E

SP
O

C

O
nR

am
p

E
ve

re
st

L
et

’s
H

PC

Pa
lm

et
to

Ig
ua

na

Year of Publication 20
02

20
05

20
05

20
09

20
14

20
15

20
16

20
17

20
17

20
18

20
18

20
18

20
21

Works without cluster
structure

- o o o - o o - o o - o x

Works without a previous
configuration

- o o o - o o - o o - o x

Graphical interface - x x x - x x x x x x x x
Source code editor - o o x - o o - o o - o x
Multiple compilers - o x x - x x - x x - x x
Consolidated results - x o x - o x - o x - x x
Report generator - x o o - o o - o o - o x
Portable - o o o - o o - o o - o x
Automatic integration - o o o - o o - o o - o x
Code smell - o o o - o o - o o - o x
Available online - o x o - x x - x x - x x
Automatic correction - o o o - x o - o o - x x
Queue system - o x o - x x - o x - o x
Run-time limit - o o o - o o - o x - o x
Feedback - x o o - x x - o o - x x
Works without Internet
connection

- o o o - o o o o o o o x

Orchestration - o o o - o o - o o - o x
Lightweight resources - o o o - o o - o o o o x
Uses virtualization - o o o - o o - o o - o x
Heterogeneous comput-
ing

- o o o - o x - x x - x x

Validation/evaluation - x x x - x o - x x x x x
Source: Elaborated by the author.

144 Chapter 6. Related Work

There are other tools for submitting student programs, in addition to those shown in
Chart 24, that can be modified for teaching parallel programming, even not the primary purpose.
Mooshak, for example, is a system for managing programming contests on the Web, including
answering questions for clarification, automatic judgment, and re-evaluation of programs, among
other features.

In addition to Mooshak, two other tools for programming contests (PC2 and BOCA),
although not created for teaching parallel programming, are also used for this purpose (MARTINS
et al., 2020). However, these systems may not be proper for this type of teaching. Grossman et

al. (2017b) mention that Mooshak has web interface limitations that impact the tool’s adherence
to teaching parallel programming. PC2 presents the same difficulty. According to (MARTINS et

al., 2020), compared to Mooshak, PC2 has limited usability, and the configuration is moderately
complicated.

Many educational institutions have limited financial resources for infrastructure acqui-
sition. As shown, all the mentioned tools require an adjacent infrastructure, cluster, or
even cloud services (e.g., Amazon EC2) to run parallel programs. This cost and infrastructure
complexity can make this type of education unfeasible.

In addition to infrastructure resources, the tools also require specialized labor, main-
tenance, and management costs. Thus, developing a system that uses minimal resources is a
valuable requirement; because it allows students to run parallel programs on their computers
without the need for clusters, in a simple VM, for example.

Another important aspect is the accessibility of these tools to students and not just
allow their use in the lab class or remote access. None of the systems enable students to
instantly download and run in a virtual machine without configuration or installation.
This portability and quickness is an essential stimulus for students adoption the Iguana.

Another fundamental challenge is the need to assist students in socioeconomic vulnerable.
Campbell et al. (2014), for example, demonstrated through his equation that investing early in
childhood, especially in vulnerable children, is the key to increase social development. Thus,
creating tools to assist people in this situation can contribute to their development, giving
them the opportunity for learning and future professional growth, even if late.

Furthermore, the need for the Internet to use these tools is another barrier to development.
Brazil, for example, intends to invest R$ 24 million to serve 900,000 university students without
the Internet and in a situation of socioeconomic vulnerability. As such, a lightweight tool that
runs on any virtual machine with 1GB RAM and 8GB of storage is decisive for resource-poor
environments. To our knowledge, Iguana is the first proposal that has all the features present in
Chart 24 and is the first desktop student-focused tool because it does not require remote access,
equipment setup, or purchasing (or rental) of a parallel infrastructure by the educational
institution.

145

CHAPTER

7
CONCLUSION AND FUTURE WORK

The infrastructure needed to support parallel programming can be a barrier to teaching
at many universities, as it involves the use of parallel hardware and specialized technical team.
However, it is essential to complement the theoretical material with practical programming lab
since parallel programming is challenging and unknown to students trained only in sequential
programming. Until now, the main alternative to teaching multiple parallel programming models
(shared memory, memory passing, and CUDA) is the use of local clusters and cloud-based
solutions.

However, these solutions increase costs, as acquiring local computing resources or
remote, paid cloud service requires strong Internet connectivity. In addition, in these institutions,
even a local cluster infrastructure, teachers often need to train and assist students in configuration
and to run the exercises.

These limitations increase the difficulty of teaching parallel programming in institutions
with limited financial resources. Moreover, even when resources are available, the lecturer must
spend an excessive amount of time configuring and allow access to students to the infrastructure
before teaching about parallel programming. On the other hand, the student could run all these
services on his notebook; however, the installation and configuration complexity will be difficult.

Thus, this thesis proposed the Iguana software tool to provide a local-virtual infrastructure
for teaching heterogeneous parallel programming. Iguana is an open-source tool geared towards
students who do not have access to this type of infrastructure, usually low-income students. The
tool allows lecturers and students to create and execute parallel programs on a web interface in
real-time, without needing terminals or command-line or to wait for batch processing.

In addition, Iguana can operate with no Internet connection in a simple virtual machine
and run on student desktops with no costs, requiring only basic computer skills, allowing first-
year undergraduates to experiment and run parallel code. We have argued that Iguana has a
superset of features common to other such tools and many additional ones. A study that surveyed

146 Chapter 7. Conclusion and Future Work

both professionals and students provided evidence of usability and effectiveness.

As discussed previously, there are not many tools developed to teach parallel program-
ming. Considering those we found, they require an expensive local or remote infrastructure to run
parallel programs. Also, fewer than half are designed for heterogeneous computing, restricting
practical laboratory classes. We mitigated the problems related to infrastructure, high service
costs, and demand for specialized professionals by employing container-based virtualization.

Iguana not only relieves instructors of having to master infrastructure details, but it also
allows hosts to automatically connect in a local cluster, allowing students to develop their parallel
programs on these machines, increasing the number of available cores on the network.

Finally, we emphasized that Chart 1 contains some laboratory programming subjects,
as described in the ACM/IEEE curriculum guidelines. Iguana can address all topics, except for
Cloud Computing, which requires process migration and resource sharing. However, these items
have been scaled for future work.

7.1 Contributions
The research conducted to develop this doctoral thesis served several national and

international contributions to the scientific and academic world. In addition, the literature review
of parallel programming teaching in Brazil and the world identified how this teaching approach
is performed in the leading Brazilian universities.

In addition to this research, we mapped the tools used for the theoretical and practical
teaching of PDC; this allowed us to discover the methods applied for practical classes in the
laboratory. Finally, we investigated the needed infrastructure technologies, publishing results on
the performance evaluation between container volume sharing techniques.

Then, we designed and created a tool based on all the research conducted previously.
Iguana can be installed on standard computers with resources accessible by an educational
institution or student computer. In addition, the tool can even be installed on dedicated servers,
increasing its computing processing.

For this, we used containers to virtualize all the necessary infrastructure and packages. We
created a back-end that controls the cluster (Docker Swarm), executes the codes, and orchestrates
the nodes. In parallel, we have developed a front-end to access virtualized resources.

Iguana can configure itself in a minimal network configuration without a professional’s
expertise in the area. Also, it allows the student to create, edit and execute his parallel codes
directly in the browser without the need for third-party software installations.

All contributions from Iguana’s development, orchestration, and professional and student
evaluation were submitted for publication in Computer Science Education international journal,
pointing to advances in the practical teaching of parallel programming. Also, Iguana will help

7.2. Future Work 147

educate and spread parallel thinking.

7.2 Future Work

For future work, we can highlight the professionals’ suggestions in Chart B.1 and the
students in Chart B.2 that were not addressed in this work because of the time available to
implement these features.

Among these points, we can highlight gamification’s inclusion on the platform. With
some changes, we can transform Iguana into a conquest tool, like Mooshask and Boca; but with
additional resources, as a self-configuration cluster, no need for installation and lightweight
resources.

Another implementation suggestion is to generate comparative graphs of sequential and
parallel codes, allowing better visualization of the speedup and balancing the load between the
cluster nodes. Also, integrate Iguana with online code repositories to open the source code in the
editor direct GitHub, for example.

The tool has some limitations about the code execution by the GPU. In this case, the
system needs a graphical interface to run. We intend to add NVEmulate/MCUDA (STRATTON;
STONE; HWU, 2008) to emulated GPU support for institutions without this hardware.

Tutorials about the tool and HPC, such as videos and texts, can also be added. These
tutorials can help the student understand the concepts and the tool operation; this type of strategy
was addressed in Mullen et al. (2017).

Finally, Iguana was designed to work in 4 methods: localhost, local network, remote
cluster, or cloud. This work implemented two strategies: localhost and local network, leaving the
other two ways for future implementations.

7.3 Papers

This section lists the papers published based on the results and researches carried out to
prepare this thesis.

7.3.1 Journals

∙ 2021 (Submitted): Using The Iguana Software Tool to Teach Parallel Programming:
Virtualization of Heterogeneous Local Infrastructures with Containers. Computer
Science Education Journal.

∙ 2019 Best Paper Award (Qualis B5): The World Teaching of Parallel and Distributed
Programming. International Journal of Computer Architecture Education. Porto Alegre:

148 Chapter 7. Conclusion and Future Work

Sociedade Brasileira de Computação, 2019.

7.3.2 Conferences

∙ 2020 (Qualis A3): Research on Parallel Computing Teaching: state of the art and
future directions, 2020 IEEE Frontiers in Education Conference (FIE), Uppsala, 2020,
pp. 1-9, doi: 10.1109/FIE44824.2020.9273914.

∙ 2020 (Qualis B2): Performance Evaluation of Container’s Shared Volumes, 2020
IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Porto, Portugal, 2020, pp. 114-123, doi: 10.1109/ICSTW50294.2020.00031.

∙ 2019 (Qualis B4): Avaliação do Docker Volume e do NFS no Compartilhamento
de Sistemas de Arquivos em Contêineres. In: SIMPÓSIO EM SISTEMAS COM-
PUTACIONAIS DE ALTO DESEMPENHO (WSCAD), 20. , 2019, Campo Grande.
Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 446-453. DOI:
https://doi.org/10.5753/wscad.2019.8690.

∙ 2018 (Qualis A3): Container-Based Performance Evaluation: A Survey and Chal-
lenges, 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL,
2018, pp. 398-403, doi: 10.1109/IC2E.2018.00075.

∙ 2018 (Qualis B2): Um Panorama do Ensino de Programação Paralela e Distribuída
em Universidades Brasileiras. Anais dos Workshops do Congresso Brasileiro de Infor-
mática na Educação, [S.l.], p. 480, out. 2018. ISSN 2316-8889.
doi:http://dx.doi.org/10.5753/cbie.wcbie.2018.480.

∙ 2017 (Qualis B2): Mapeamento Sistemático do Ensino Teórico e Prático de Progra-
mação Paralela. Anais dos Workshops do Congresso Brasileiro de Informática na Edu-
cação, [S.l.], p. 1089, out. 2017. ISSN 2316-8889.
doi:http://dx.doi.org/10.5753/cbie.wcbie.2017.1089.

149

BIBLIOGRAPHY

ACM/IEEE-CS. Computer Science Curricula 2013. [S.l.], 2013. Available: <http://dx.doi.org/
10.1145/2534860>. Citations on pages 40, 41, 42, 43, 50, and 71.

ADAMS, J.; BROWN, R.; SHOOP, E. Patterns and exemplars: Compelling strategies for teaching
parallel and distributed computing to cs undergraduates. In: 2013 IEEE International Sympo-
sium on Parallel Distributed Processing, Workshops and Phd Forum. [S.l.: s.n.], 2013. p.
1244–1251. Citations on pages 60, 63, 64, 65, and 66.

ADAMS, J. C. Patternlets: A teaching tool for introducing students to parallel design pat-
terns. In: IEEE. 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop. [S.l.], 2015. p. 752–759. Citation on page 67.

. Evolving pdc curriculum and tools: A study in responding to technological change.
Journal of Parallel and Distributed Computing, 2021. ISSN 0743-7315. Available: <https:
//www.sciencedirect.com/science/article/pii/S0743731521001490>. Citations on pages 65, 70,
and 83.

ADAMS, J. C.; BROWN, R.; MATTHEWS, S. J.; SHOOP, E. Teaching pdc in the time of covid:
Hands-on materials for remote learning. In: 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). [S.l.: s.n.], 2021. p. 342–349. Citations on
pages 44, 70, 71, and 72.

Advanced Clustering Technologies. Download Our HPC Pricing Guida. 2021. Available:
<https://www.advancedclustering.com/the-cost-of-hpc>. Accessed: 11/02/2021. Citation on
page 70.

ALOISIO, G.; CAFARO, M.; EPICOCO, I.; QUARTA, G. Teaching high performance computing
parallelizing a real computational science application. In: SUNDERAM, V. S.; ALBADA, G. D.
van; SLOOT, P. M. A.; DONGARRA, J. J. (Ed.). Computational Science – ICCS 2005. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005. p. 10–17. ISBN 978-3-540-32114-9. Citation on
page 127.

AMEIRI, F. A.; SALAH, K. Evaluation of popular application sandboxing. In: 2011 Interna-
tional Conference for Internet Technology and Secured Transactions. [S.l.: s.n.], 2011. p.
358–362. Citation on page 77.

ANGULAR. Server-side rendering (SSR) with Angular Universal. 2021. Available: <https:
//angular.io/guide/universal>. Accessed: 05/02/2021. Citation on page 94.

ARROYO, M. Teaching parallel and distributed computing to undergraduate computer sci-
ence students. In: 2013 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum. [S.l.: s.n.], 2013. p. 1297–1303. Citations on pages 60, 63, 64,
65, and 66.

Australian National University. Parallel Systems. 2018. Available: <https://programsandcourses.
anu.edu.au/course/comp4300>. Accessed: 18/05/2018. Citation on page 53.

http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1145/2534860
https://www.sciencedirect.com/science/article/pii/S0743731521001490
https://www.sciencedirect.com/science/article/pii/S0743731521001490
https://www.advancedclustering.com/the-cost-of-hpc
https://angular.io/guide/universal
https://angular.io/guide/universal
https://programsandcourses.anu.edu.au/course/comp4300
https://programsandcourses.anu.edu.au/course/comp4300

150 Bibliography

BACHIEGA, N. G. Shell scripts and results used for the creation of the paper Performance
Evaluation of Container Share Volumes for ITEQS 2020. 2021. Available: <https://github.
com/naylor/ITEQS>. Accessed: 20/04/2021. Citation on page 86.

Bachiega, N. G.; de Souza, P. S. L.; Bruschi, S. M.; de Souza, S. d. R. S. Performance evaluation
of container’s shared volumes. In: 2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). [S.l.: s.n.], 2020. p. 114–123. Citations on
pages 170 and 171.

BALDWIN, M. E.; ZHU, X.; SMITH, P. M.; HARRELL, S. L.; SKEEL, R.; MAJI, A. Scholar:
A campus hpc resource to enable computational literacy. In: 2016 Workshop on Education for
High-Performance Computing (EduHPC). [S.l.: s.n.], 2016. p. 25–31. Citations on pages 34,
35, 62, 63, 65, and 66.

BANGOR, A.; KORTUM, P.; MILLER, J. Determining what individual sus scores mean:
Adding an adjective rating scale. J. Usability Studies, Usability Professionals’ Association,
Bloomingdale, IL, v. 4, n. 3, p. 114–123, May 2009. ISSN 1931-3357. Citation on page 106.

BAYSER, M. de; CERQUEIRA, R. Integrating mpi with docker for hpc. In: IEEE. 2017 IEEE
International Conference on Cloud Engineering (IC2E). [S.l.], 2017. p. 259–265. Citation
on page 68.

BESERRA, D.; MORENO, E. D.; ENDO, P. T.; BARRETO, J.; SADOK, D.; FERNANDES, S.
Performance analysis of lxc for hpc environments. In: 2015 Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems. [S.l.: s.n.], 2015. p. 358–363. Citation
on page 74.

BRANCO, A.; MOURA, A. L. d.; RODRIGUEZ, N.; ROSSETTO, S. Teaching concurrent and
distributed computing – initiatives in rio de janeiro. In: 2013 IEEE International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum. [S.l.: s.n.], 2013. p. 1318–
1323. Citations on pages 60, 64, and 66.

BROOKE, J. Sus: a “quick and dirty’usability. Usability evaluation in industry, v. 189, 1996.
Citations on pages 106 and 142.

. Sus: a retrospective. Journal of usability studies, Usability Professionals’ Association
Bloomingdale, IL, v. 8, n. 2, p. 29–40, 2013. Citation on page 106.

BURKHART, H.; GUERRERA, D.; MAFFIA, A. Trusted high-performance computing in the
classroom. In: 2014 Workshop on Education for High Performance Computing. [S.l.: s.n.],
2014. p. 27–33. Citations on pages 60, 63, 64, 65, and 66.

Cairo University. Course Specification. 2018. Available: <http://fci.cu.edu.eg/userfiles/CS471%
20-%20Parallel%20Processing.pdf>. Accessed: 18/05/2018. Citation on page 53.

CAMPBELL, F.; CONTI, G.; HECKMAN, J. J.; MOON, S. H.; PINTO, R.; PUNGELLO,
E.; PAN, Y. Early childhood investments substantially boost adult health. Science, American
Association for the Advancement of Science, v. 343, n. 6178, p. 1478–1485, 2014. Citation on
page 144.

CAPEL, M. I.; TOMEU, A. J.; SALGUERO, A. G. Teaching concurrent and parallel program-
ming by patterns: An interactive ict approach. Journal of Parallel and Distributed Computing,

https://github.com/naylor/ITEQS
https://github.com/naylor/ITEQS
http://fci.cu.edu.eg/userfiles/CS471%20-%20Parallel%20Processing.pdf
http://fci.cu.edu.eg/userfiles/CS471%20-%20Parallel%20Processing.pdf

Bibliography 151

v. 105, p. 42 – 52, 2017. ISSN 0743-7315. Keeping up with Technology: Teaching Parallel, Dis-
tributed and High-Performance Computing. Available: <http://www.sciencedirect.com/science/
article/pii/S0743731517300163>. Citations on pages 63, 64, and 72.

CARLEY, C.; SELLS, L.; MCKINNEY, B.; ZHAO, C.; NEEMAN, H. Using a shared, remote
cluster for teaching hpc. In: 2013 IEEE International Conference on Cluster Computing
(CLUSTER). [S.l.: s.n.], 2013. p. 1–6. ISSN 1552-5244. Citations on pages 33 and 36.

Carnegie Mellon University. Bachelors Curriculum - Admitted 2014,
2015 & 2016. 2018. Available: <https://www.csd.cs.cmu.edu/undergraduate/
bachelors-curriculum-admitted-2014-2015-2016>. Accessed: 18/05/2018. Citation on
page 53.

CASSEL, L.; CLEMENTS, A.; DAVIES, G.; GUZDIAL, M.; MCCAULEY, R.; MCGETTRICK,
A.; SLOAN, B.; SNYDER, L.; TYMANN, P.; WEIDE, B. W. Computer Science Curriculum
2008: An Interim Revision of CS 2001. New York, NY, USA, 2008. Citation on page 33.

Center for World University Rankings. Center for World University Rankings. 2018. Avail-
able: <https://cwur.org/>. Accessed: 18/04/2018. Citation on page 52.

CESAR, E.; CORTéS, A.; ESPINOSA, A.; MARGALEF, T.; MOURE, J. C.; SIKORA, A.;
SUPPI, R. Introducing computational thinking, parallel programming and performance engi-
neering in interdisciplinary studies. Journal of Parallel and Distributed Computing, v. 105, p.
116–126, 2017. ISSN 0743-7315. Keeping up with Technology: Teaching Parallel, Distributed
and High-Performance Computing. Available: <https://www.sciencedirect.com/science/article/
pii/S0743731517300059>. Citations on pages 67, 68, and 69.

CHAUDHURY, B.; VARMA, A.; KESWANI, Y.; BHATNAGAR, Y.; PARIKH, S. Let’s hpc:
A web-based platform to aid parallel, distributed and high performance computing education.
Journal of Parallel and Distributed Computing, v. 118, p. 213 – 232, 2018. ISSN 0743-7315.
Available: <http://www.sciencedirect.com/science/article/pii/S0743731518301205>. Citations
on pages 138, 139, and 140.

. Let’s hpc: A web-based platform to aid parallel, distributed and high performance comput-
ing education. Journal of Parallel and Distributed Computing, Elsevier, v. 118, p. 213–232,
2018. Citation on page 142.

CHIN, J. P.; DIEHL, V. A.; NORMAN, K. L. Development of an instrument measuring user
satisfaction of the human-computer interface. In: Proceedings of the SIGCHI conference on
Human factors in computing systems. [S.l.: s.n.], 1988. p. 213–218. Citations on pages 110
and 142.

Christus University Center. Information Systems Syllabus. 2018. Available: <https://
unichristus.edu.br/graduacao/sistemas-de-informacao-computacao/estrutura-curricular/>. Ac-
cessed: 18/05/2018. Citation on page 47.

CHUNG, M. T.; QUANG-HUNG, N.; NGUYEN, M. T.; THOAI, N. Using docker in high
performance computing applications. In: 2016 IEEE Sixth International Conference on Com-
munications and Electronics (ICCE). [S.l.: s.n.], 2016. p. 52–57. Citations on pages 74
and 75.

http://www.sciencedirect.com/science/article/pii/S0743731517300163
http://www.sciencedirect.com/science/article/pii/S0743731517300163
https://www.csd.cs.cmu.edu/undergraduate/bachelors-curriculum-admitted-2014-2015-2016
https://www.csd.cs.cmu.edu/undergraduate/bachelors-curriculum-admitted-2014-2015-2016
https://cwur.org/
https://www.sciencedirect.com/science/article/pii/S0743731517300059
https://www.sciencedirect.com/science/article/pii/S0743731517300059
http://www.sciencedirect.com/science/article/pii/S0743731518301205
https://unichristus.edu.br/graduacao/sistemas-de-informacao-computacao/estrutura-curricular/
https://unichristus.edu.br/graduacao/sistemas-de-informacao-computacao/estrutura-curricular/

152 Bibliography

CLARKE, L.; GLENDINNING, I.; HEMPEL, R. The mpi message passing interface standard.
In: Programming environments for massively parallel distributed systems. [S.l.]: Springer,
1994. p. 213–218. Citation on page 35.

Computing Curricula Series Report. Computing Curricula 2020: Paradigms for Global Com-
puting Education. New York, NY, USA: Association for Computing Machinery, 2020. ISBN
9781450390590. Citations on pages 40 and 41.

CORBALAN, J.; DURAN, A.; LABARTA, J. Dynamic load balancing of mpi+openmp appli-
cations. In: International Conference on Parallel Processing, 2004. ICPP 2004. [S.l.: s.n.],
2004. p. 195–202 vol.1. ISSN 0190-3918. Citation on page 82.

CUENCA, J.; GIMÉNEZ, D. A parallel programming course based on an execution time-energy
consumption optimization problem. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). [S.l.: s.n.], 2016. p. 996–1003. Citations on
pages 61, 63, 64, 65, 66, and 72.

CURRICULA, A. f. C. M. A. Joint Task Force on C.; SOCIETY, I. C. Computer Science Curric-
ula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Sci-
ence. New York, NY, USA: Association for Computing Machinery, 2013. ISBN 9781450323093.
Citation on page 34.

CUSATIS, C. D.; CANNISTA, R.; HAZARD, L. Managing multi-tenant services for software
defined cloud data center networks. In: 2014 IEEE 6th International Conference on Adaptive
Science Technology (ICAST). [S.l.: s.n.], 2014. p. 1–5. ISSN 2326-9413. Citation on page 77.

DAGUM, L.; MENON, R. Openmp: an industry standard api for shared-memory programming.
IEEE computational science and engineering, IEEE, v. 5, n. 1, p. 46–55, 1998. Citation on
page 35.

DEB, K. Multi-objective optimization. In: Search methodologies. [S.l.]: Springer, 2014. p.
403–449. Citation on page 61.

DEMPSTER, E.; WILLIAMS, M. H.; BURGER, A.; TAYLOR, H. A tool for supporting the
teaching of parallel database systems. IEEE Trans. on Educ., IEEE Press, v. 48, n. 2, p. 238–247,
May 2005. ISSN 0018-9359. Available: <https://doi.org/10.1109/TE.2004.842895>. Citations
on pages 129 and 142.

DOCKER. Runtime options with Memory, CPUs, and GPUs. [S.l.], 2017. Available: <https:
//docs.docker.com/engine/admin/resource_constraints/>. Citation on page 83.

. Performance tuning for volume mounts. 2019. Available: <https://docs.docker.com/
docker-for-mac/osxfs-caching/>. Accessed: 2019.11.11. Citations on pages 85 and 86.

. Docker Engine API. 2021. Available: <https://docs.docker.com/engine/api/>. Accessed:
15/03/2021. Citation on page 95.

. Swarm mode key concepts. 2021. <http://docs.docker.com/engine/swarm>. Available:
<http://docs.docker.com/engine/swarm>. Accessed: 02/02/2021. Citation on page 80.

DOLGOPOLOVAS, V.; DAGIENĖ, V.; MINKEVIČIUS, S.; SAKALAUSKAS, L. Teaching
scientific computing: A model-centered approach to pipeline and parallel programming with

https://doi.org/10.1109/TE.2004.842895
https://docs.docker.com/engine/admin/resource_constraints/
https://docs.docker.com/engine/admin/resource_constraints/
https://docs.docker.com/docker-for-mac/osxfs-caching/
https://docs.docker.com/docker-for-mac/osxfs-caching/
https://docs.docker.com/engine/api/
http://docs.docker.com/engine/swarm
http://docs.docker.com/engine/swarm

Bibliography 153

c. Sci. Program., Hindawi Publishing Corp., New York, NY, United States, v. 2015, p. 11:11–
11:11, Jan. 2015. ISSN 1058-9244. Available: <https://doi.org/10.1155/2015/820803>. Citations
on pages 61, 64, and 66.

DORBAND, J. E.; ABURDENE, M. F. Architecture-adaptive computing environment: a tool
for teaching parallel programming. In: 32nd Annual Frontiers in Education. [S.l.: s.n.], 2002.
v. 3, p. S2F–S2F. Citations on pages 128 and 142.

DUA, R.; RAJA, A. R.; KAKADIA, D. Virtualization vs containerization to support paas. In:
2014 IEEE International Conference on Cloud Engineering. [S.l.: s.n.], 2014. p. 610–614.
Citations on pages 36 and 73.

EIJKHOUT, V. Teaching mpi from mental models. In: 2016 Workshop on Education for High-
Performance Computing (EduHPC). [S.l.: s.n.], 2016. p. 14–18. Citations on pages 62, 63,
64, and 66.

EL-REWINI, H.; ABD-EL-BARR, M. Advanced Computer Architecture and Parallel Pro-
cessing (Wiley Series on Parallel and Distributed Computing). [S.l.]: Wiley-Interscience,
2005. ISBN 0471467405. Citation on page 39.

ETH Zurich. 252-0029-00L Parallel Programming. 2018. Available: <http://www.vvz.ethz.
ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018S&ansicht=ALLE&lerneinheitId=
120165&lang=en>. Accessed: 18/05/2018. Citation on page 53.

Federal Fluminense University. Computer Science Syllabus. 2018. Available: <http://www2.
ic.uff.br/RelatorioDeDisciplinasCompleto2018_1527277785161.pdf>. Accessed: 18/05/2018.
Citations on pages 46 and 47.

Federal Rural University of the Amazon. Computer Science Syllabus. 2018. Available: <https:
//novo.ufra.edu.br/images/PPC_Licenciatura_Computacao.pdf>. Accessed: 18/05/2018. Citation
on page 47.

Federal Technological University of Paraná. Computer Engineering Syllabus. 2018.
Available: <http://www.utfpr.edu.br/curitiba/cursos/bacharelados/Ofertados-neste-Campus/
engenharia-de-computacao/matriz/matriz-curricular-721-engenharia-de-computacao/view>.
Accessed: 18/05/2018. Citation on page 47.

Federal University in Amazonas. Computer Science Syllabus. 2018. Available: <http://icomp.
ufam.edu.br/site/phocadownload/ppc_cc_2012.pdf>. Accessed: 18/05/2018. Citation on page
47.

Federal University of Bahia. Computer Science Syllabus. 2018. Available: <https://alunoweb.
ufba.br/SiacWWW/ExibirEmentaPublico.do?cdDisciplina=MATA90&nuPerInicial=20072>.
Accessed: 18/05/2018. Citation on page 47.

Federal University of Campina Grande. Computer Science Syllabus. 2018. Available: <http://
www.computacao.ufcg.edu.br/graduacao/projeto-pedagogico>. Accessed: 18/05/2018. Citation
on page 47.

Federal University of Ceará. Computer Science Syllabus. 2018. Available: <http://www.
campusrussas.ufc.br/grades/projeto-pedagogico-CC.pdf>. Accessed: 18/05/2018. Citation
on page 47.

https://doi.org/10.1155/2015/820803
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018S&ansicht=ALLE&lerneinheitId=120165&lang=en
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018S&ansicht=ALLE&lerneinheitId=120165&lang=en
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018S&ansicht=ALLE&lerneinheitId=120165&lang=en
http://www2.ic.uff.br/RelatorioDeDisciplinasCompleto2018_1527277785161.pdf
http://www2.ic.uff.br/RelatorioDeDisciplinasCompleto2018_1527277785161.pdf
https://novo.ufra.edu.br/images/PPC_Licenciatura_Computacao.pdf
https://novo.ufra.edu.br/images/PPC_Licenciatura_Computacao.pdf
http://www.utfpr.edu.br/curitiba/cursos/bacharelados/Ofertados-neste-Campus/engenharia-de-computacao/matriz/matriz-curricular-721-engenharia-de-computacao/view
http://www.utfpr.edu.br/curitiba/cursos/bacharelados/Ofertados-neste-Campus/engenharia-de-computacao/matriz/matriz-curricular-721-engenharia-de-computacao/view
http://icomp.ufam.edu.br/site/phocadownload/ppc_cc_2012.pdf
http://icomp.ufam.edu.br/site/phocadownload/ppc_cc_2012.pdf
https://alunoweb.ufba.br/SiacWWW/ExibirEmentaPublico.do?cdDisciplina=MATA90&nuPerInicial=20072
https://alunoweb.ufba.br/SiacWWW/ExibirEmentaPublico.do?cdDisciplina=MATA90&nuPerInicial=20072
http://www.computacao.ufcg.edu.br/graduacao/projeto-pedagogico
http://www.computacao.ufcg.edu.br/graduacao/projeto-pedagogico
http://www.campusrussas.ufc.br/grades/projeto-pedagogico-CC.pdf
http://www.campusrussas.ufc.br/grades/projeto-pedagogico-CC.pdf

154 Bibliography

Federal University of Goiás. Computer Science Syllabus. 2018. Available: <http://www.inf.
ufg.br/sites/default/files/uploads/Nova%20Matriz%20CC.pdf>. Accessed: 18/05/2018. Citation
on page 47.

Federal University of Grande Dourados. Computer Science Syllabus. 2018. Available: <https:
//portalead.ufgd.edu.br/wp-content/uploads/2013/03/PPC-LICENCIATURA-COMPUTA%
C3%87%C3%83O.pdf>. Accessed: 18/05/2018. Citation on page 47.

Federal University of Mato Grosso. Computer Science Syllabus. 2018. Available: <http://
sistemas.ufmt.br/ufmt.ppc/PlanoPedagogico/Download/310>. Accessed: 18/05/2018. Citation
on page 47.

Federal University of Mato Grosso do Sul. Computer Science
Syllabus. 2018. Available: <http://cppp.sites.ufms.br/files/2013/04/
5-RESOLU-O-COEG-COC-RTR-n-520-de-28-10-2014-computa%C3%A7%C3%A3o.pdf>.
Accessed: 18/05/2018. Citation on page 47.

Federal University of Minas Gerais. Computer Science Syllabus. 2018. Available: <https:
//ufmg.br/cursos/graduacao/2377/77220/60514>. Accessed: 18/05/2018. Citation on page 47.

Federal University of Paraná. Computer Science Syllabus. 2018. Available: <https://web.inf.
ufpr.br/bcc/curriculo/grade-curricular/>. Accessed: 18/05/2018. Citation on page 47.

Federal University of Paraíba . Computer Science Syllabus. 2018. Available: <https://sigaa.
ufpb.br/sigaa/public/curso/ppp.jsf?lc=pt_BR&id=1626786>. Accessed: 18/05/2018. Citations
on pages 46 and 47.

Federal University of Pará. Computer Science Syllabus. 2018. Available: <http://computacao.
ufpa.br/DocumentosPublicos/PPC%20de%20Ciencia%20da%20Computacao%202010.pdf>.
Accessed: 18/05/2018. Citation on page 47.

Federal University of Pernambuco. Computer Science Syllabus. 2018. Available:
<https://www.ufpe.br/documents/38970/411209/ciencia_computacao_perfil_2002.pdf/
09862676-8330-4642-af94-6ec9e8607a62>. Accessed: 18/05/2018. Citation on page 47.

Federal University of Rio de Janeiro. Computer Science Syllabus. 2018. Available:
<https://www.siga.ufrj.br/sira/temas/zire/frameConsultas.jsp?mainPage=/repositorio-curriculo/
FA9F18A7-92A4-F79B-1A98-293E97D8939B.html>. Accessed: 18/05/2018. Citation on page
47.

Federal University of Rio Grande do Norte. Computer Science Syllabus. 2018. Available: <http:
//arquivos.info.ufrn.br/arquivos/2014248042a1081902632bfcc77db8587/pp-bcc-2014.pdf>. Ac-
cessed: 18/05/2018. Citation on page 47.

Federal University of Rio Grande do Sul. Computer Science Syllabus. 2018. Available: <http:
//www.inf.ufrgs.br/site/ciencia-da-computacao/descricao/>. Accessed: 18/05/2018. Citation on
page 47.

Federal University of Rondônia. Computer Science Syllabus. 2018. Available: <http:
//www.dacc.unir.br/uploads/91919191/arquivos/3438_ppc_bcc_1179480801.pdf>. Accessed:
18/05/2018. Citation on page 47.

http://www.inf.ufg.br/sites/default/files/uploads/Nova%20Matriz%20CC.pdf
http://www.inf.ufg.br/sites/default/files/uploads/Nova%20Matriz%20CC.pdf
https://portalead.ufgd.edu.br/wp-content/uploads/2013/03/PPC-LICENCIATURA-COMPUTA%C3%87%C3%83O.pdf
https://portalead.ufgd.edu.br/wp-content/uploads/2013/03/PPC-LICENCIATURA-COMPUTA%C3%87%C3%83O.pdf
https://portalead.ufgd.edu.br/wp-content/uploads/2013/03/PPC-LICENCIATURA-COMPUTA%C3%87%C3%83O.pdf
http://sistemas.ufmt.br/ufmt.ppc/PlanoPedagogico/Download/310
http://sistemas.ufmt.br/ufmt.ppc/PlanoPedagogico/Download/310
http://cppp.sites.ufms.br/files/2013/04/5-RESOLU-O-COEG-COC-RTR-n-520-de-28-10-2014-computa%C3%A7%C3%A3o.pdf
http://cppp.sites.ufms.br/files/2013/04/5-RESOLU-O-COEG-COC-RTR-n-520-de-28-10-2014-computa%C3%A7%C3%A3o.pdf
https://ufmg.br/cursos/graduacao/2377/77220/60514
https://ufmg.br/cursos/graduacao/2377/77220/60514
https://web.inf.ufpr.br/bcc/curriculo/grade-curricular/
https://web.inf.ufpr.br/bcc/curriculo/grade-curricular/
https://sigaa.ufpb.br/sigaa/public/curso/ppp.jsf?lc=pt_BR&id=1626786
https://sigaa.ufpb.br/sigaa/public/curso/ppp.jsf?lc=pt_BR&id=1626786
http://computacao.ufpa.br/DocumentosPublicos/PPC%20de%20Ciencia%20da%20Computacao%202010.pdf
http://computacao.ufpa.br/DocumentosPublicos/PPC%20de%20Ciencia%20da%20Computacao%202010.pdf
https://www.ufpe.br/documents/38970/411209/ciencia_computacao_perfil_2002.pdf/09862676-8330-4642-af94-6ec9e8607a62
https://www.ufpe.br/documents/38970/411209/ciencia_computacao_perfil_2002.pdf/09862676-8330-4642-af94-6ec9e8607a62
https://www.siga.ufrj.br/sira/temas/zire/frameConsultas.jsp?mainPage=/repositorio-curriculo/FA9F18A7-92A4-F79B-1A98-293E97D8939B.html
https://www.siga.ufrj.br/sira/temas/zire/frameConsultas.jsp?mainPage=/repositorio-curriculo/FA9F18A7-92A4-F79B-1A98-293E97D8939B.html
http://arquivos.info.ufrn.br/arquivos/2014248042a1081902632bfcc77db8587/pp-bcc-2014.pdf
http://arquivos.info.ufrn.br/arquivos/2014248042a1081902632bfcc77db8587/pp-bcc-2014.pdf
http://www.inf.ufrgs.br/site/ciencia-da-computacao/descricao/
http://www.inf.ufrgs.br/site/ciencia-da-computacao/descricao/
http://www.dacc.unir.br/uploads/91919191/arquivos/3438_ppc_bcc_1179480801.pdf
http://www.dacc.unir.br/uploads/91919191/arquivos/3438_ppc_bcc_1179480801.pdf

Bibliography 155

Federal University of Santa Catarina. Computer Science Syllabus. 2018. Available: <https:
//planos.inf.ufsc.br/modulos/planos/pdf.php?codigo=1374>. Accessed: 18/05/2018. Citation on
page 47.

Federal University of Santa Maria. Computer Science Syl-
labus. 2018. Available: <http://w3.ufsm.br/prograd/index.php/
documentos/12-ppcs-projetos-pedagogicos-dos-cursos-de-graduacao/
40-elenco-das-disciplinas-ciencia-da-computacao>. Accessed: 18/05/2018. Citation
on page 47.

Federal University of Sergipe . Computer Science Syllabus. 2018. Available:
<https://www.sigaa.ufs.br/sigaa/public/departamento/componentes.jsf;jsessionid=
BA223F19700C38DED638A808008A7FAD.canario1>. Accessed: 18/05/2018. Cita-
tion on page 47.

Federal University of São Carlos. Computer Science Syllabus. 2018. Available: <http://bcc2.dc.
ufscar.br/wp-content/uploads/2016/02/Projeto_Pedagogico_BCC.pdf>. Accessed: 18/05/2018.
Citation on page 47.

Federal University of São João del-Rei. Computer Science Syllabus. 2018. Available: <https:
//ufsj.edu.br/portal2-repositorio/File/soces/Res050CONEP2011PPCCienciasComutacao_
Anexo.pdf>. Accessed: 18/05/2018. Citations on pages 46 and 47.

Federal University of Tocantins. Computer Science Syllabus. 2018. Available:
<http://download.uft.edu.br/?d=754389e0-6bdf-4dd2-b948-00ef6e152e15:20_2011_
atualizacao_do_ppc_do_curso_de_ciencia_da_computacao_4668.pdf>. Accessed: 18/05/2018.
Citation on page 47.

FELTER, W.; FERREIRA, A.; RAJAMONY, R.; RUBIO, J. An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). [S.l.: s.n.], 2015. p. 171–172.
Citation on page 74.

FERNANDES, E.; OLIVEIRA, J.; VALE, G.; PAIVA, T.; FIGUEIREDO, E. A review-based
comparative study of bad smell detection tools. In: Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2016. (EASE ’16). ISBN 9781450336918. Available:
<https://doi.org/10.1145/2915970.2915984>. Citation on page 142.

FERNER, C.; WILKINSON, B.; HEATH, B. Toward using higher-level abstractions to teach
parallel computing. In: 2013 IEEE International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum. [S.l.: s.n.], 2013. p. 1291–1296. Citations on pages 39,
60, 63, 64, 65, 66, and 72.

. Using patterns to teach parallel computing. In: 2014 IEEE International Parallel Dis-
tributed Processing Symposium Workshops. [S.l.: s.n.], 2014. p. 1106–1113. Citations on
pages 60, 63, 65, and 66.

FLYNN, M. J. Flynn’s Taxonomy. 2011. Citation on page 34.

FOLEY, S. S.; KOEPKE, D.; RAGATZ, J.; BREHM, C.; REGINA, J.; HURSEY, J. Onramp: A
web-portal for teaching parallel and distributed computing. Journal of Parallel and Distributed
Computing, v. 105, p. 138 – 149, 2017. ISSN 0743-7315. Keeping up with Technology: Teaching

https://planos.inf.ufsc.br/modulos/planos/pdf.php?codigo=1374
https://planos.inf.ufsc.br/modulos/planos/pdf.php?codigo=1374
http://w3.ufsm.br/prograd/index.php/documentos/12-ppcs-projetos-pedagogicos-dos-cursos-de-graduacao/40-elenco-das-disciplinas-ciencia-da-computacao
http://w3.ufsm.br/prograd/index.php/documentos/12-ppcs-projetos-pedagogicos-dos-cursos-de-graduacao/40-elenco-das-disciplinas-ciencia-da-computacao
http://w3.ufsm.br/prograd/index.php/documentos/12-ppcs-projetos-pedagogicos-dos-cursos-de-graduacao/40-elenco-das-disciplinas-ciencia-da-computacao
https://www.sigaa.ufs.br/sigaa/public/departamento/componentes.jsf;jsessionid=BA223F19700C38DED638A808008A7FAD.canario1
https://www.sigaa.ufs.br/sigaa/public/departamento/componentes.jsf;jsessionid=BA223F19700C38DED638A808008A7FAD.canario1
http://bcc2.dc.ufscar.br/wp-content/uploads/2016/02/Projeto_Pedagogico_BCC.pdf
http://bcc2.dc.ufscar.br/wp-content/uploads/2016/02/Projeto_Pedagogico_BCC.pdf
https://ufsj.edu.br/portal2-repositorio/File/soces/Res050CONEP2011PPCCienciasComutacao_Anexo.pdf
https://ufsj.edu.br/portal2-repositorio/File/soces/Res050CONEP2011PPCCienciasComutacao_Anexo.pdf
https://ufsj.edu.br/portal2-repositorio/File/soces/Res050CONEP2011PPCCienciasComutacao_Anexo.pdf
http://download.uft.edu.br/?d=754389e0-6bdf-4dd2-b948-00ef6e152e15:20_2011_atualizacao_do_ppc_do_curso_de_ciencia_da_computacao_4668.pdf
http://download.uft.edu.br/?d=754389e0-6bdf-4dd2-b948-00ef6e152e15:20_2011_atualizacao_do_ppc_do_curso_de_ciencia_da_computacao_4668.pdf
https://doi.org/10.1145/2915970.2915984

156 Bibliography

Parallel, Distributed and High-Performance Computing. Available: <http://www.sciencedirect.
com/science/article/pii/S0743731517300205>. Citations on pages 35, 135, 136, and 142.

Folha de São Paulo. RUF: Ranking Universitário. 2018. <http://ruf.folha.uol.com.br/
2017/ranking-de-cursos/computacao,18/04/2018>. Available: <http://ruf.folha.uol.com.br/2017/
ranking-de-cursos/computacao>. Accessed: 18/04/2018. Citation on page 45.

GARDNER; B., W. Should we be teaching parallel programming? In: Proceedings of the 22Nd
Western Canadian Conference on Computing Education. New York, NY, USA: ACM, 2017.
(WCCCE ’17), p. 3:1–3:7. ISBN 978-1-4503-5066-2. Available: <http://doi.acm.org/10.1145/
3085585.3085588>. Citations on pages 62, 63, and 66.

GARDNER, W. B.; CARTER, J. D. Using the pilot library to teach message-passing pro-
gramming. In: Proceedings of the Workshop on Education for High-Performance Com-
puting. IEEE Press, 2014. (EduHPC ’14), p. 1–8. ISBN 9781479970216. Available: <https:
//doi.org/10.1109/EduHPC.2014.14>. Citations on pages 132 and 142.

GITHUB. ICS - Iguana Cluster System. 2021. Available: <https://github.com/iguana-hpc-usp/
ICS>. Accessed: 15/03/2021. Citation on page 95.

GROSSMAN, M.; AZIZ, M.; CHI, H.; TIBREWAL, A.; IMAM, S.; SARKAR, V. Pedagogy
and tools for teaching parallel computing at the sophomore undergraduate level. Journal of
Parallel and Distributed Computing, v. 105, p. 18 – 30, 2017. ISSN 0743-7315. Keeping up
with Technology: Teaching Parallel, Distributed and High-Performance Computing. Available:
<http://www.sciencedirect.com/science/article/pii/S0743731517300047>. Citations on pages
62, 63, 64, 65, and 66.

. Pedagogy and tools for teaching parallel computing at the sophomore undergraduate level.
Journal of Parallel and Distributed Computing, v. 105, p. 18 – 30, 2017. ISSN 0743-7315.
Keeping up with Technology: Teaching Parallel, Distributed and High-Performance Computing.
Available: <http://www.sciencedirect.com/science/article/pii/S0743731517300047>. Citation
on page 144.

Harvard University. Introduction to Distributed Computing. 2018. Available: <https://courses.
my.harvard.edu/psp/courses>. Accessed: 18/05/2018. Citation on page 53.

Hong Kong University of Science and Technology. BEng in Computer Science. 2018. Available:
<http://ugadmin.ust.hk/prog_crs/pdf/ug/comp.pdf>. Accessed: 18/05/2018. Citation on page 53.

HUNDT, C.; SCHLARB, M.; SCHMIDT, B. Sauce: A web application for interactive teaching
and learning of parallel programming. Journal of Parallel and Distributed Computing, v. 105,
p. 163 – 173, 2017. ISSN 0743-7315. Keeping up with Technology: Teaching Parallel, Distributed
and High-Performance Computing. Available: <http://www.sciencedirect.com/science/article/
pii/S0743731517300060>. Citations on pages 35, 133, 134, and 142.

IBGE. Censo Demográfico. 2010. <http://www.censo2010.ibge.gov.br>. Available: <http://
www.censo2010.ibge.gov.br>. Accessed: 12/02/2018. Citation on page 45.

Imperial College London. CO347 Distributed Algorithms. 2018. Available: <http://intranet.
ee.ic.ac.uk/electricalengineering/eecourses_t4/course_content.asp?c=CO347&s=J3>. Accessed:
18/05/2018. Citation on page 53.

http://www.sciencedirect.com/science/article/pii/S0743731517300205
http://www.sciencedirect.com/science/article/pii/S0743731517300205
http://ruf.folha.uol.com.br/2017/ranking-de-cursos/computacao, 18/04/2018
http://ruf.folha.uol.com.br/2017/ranking-de-cursos/computacao, 18/04/2018
http://ruf.folha.uol.com.br/2017/ranking-de-cursos/computacao
http://ruf.folha.uol.com.br/2017/ranking-de-cursos/computacao
http://doi.acm.org/10.1145/3085585.3085588
http://doi.acm.org/10.1145/3085585.3085588
https://doi.org/10.1109/EduHPC.2014.14
https://doi.org/10.1109/EduHPC.2014.14
https://github.com/iguana-hpc-usp/ICS
https://github.com/iguana-hpc-usp/ICS
http://www.sciencedirect.com/science/article/pii/S0743731517300047
http://www.sciencedirect.com/science/article/pii/S0743731517300047
https://courses.my.harvard.edu/psp/courses
https://courses.my.harvard.edu/psp/courses
http://ugadmin.ust.hk/prog_crs/pdf/ug/comp.pdf
http://www.sciencedirect.com/science/article/pii/S0743731517300060
http://www.sciencedirect.com/science/article/pii/S0743731517300060
http://www.censo2010.ibge.gov.br
http://www.censo2010.ibge.gov.br
http://www.censo2010.ibge.gov.br
http://intranet.ee.ic.ac.uk/electricalengineering/eecourses_t4/course_content.asp?c=CO347&s=J3
http://intranet.ee.ic.ac.uk/electricalengineering/eecourses_t4/course_content.asp?c=CO347&s=J3

Bibliography 157

IVICA, C.; RILEY, J. T.; SHUBERT, C. Starhpc - teaching parallel programming within elastic
compute cloud. In: Proceedings of the ITI 2009 31st International Conference on Informa-
tion Technology Interfaces. [S.l.: s.n.], 2009. p. 353–356. ISSN 1330-1012. Citations on pages
35, 59, 63, 65, 66, 72, 131, 132, and 142.

JIANG, K.; SONG, Q. A preliminary investigation of container-based virtualization in informa-
tion technology education. In: Proceedings of the 16th Annual Conference on Information
Technology Education. New York, NY, USA: ACM, 2015. (SIGITE ’15), p. 149–152. ISBN
978-1-4503-3835-6. Available: <http://doi.acm.org/10.1145/2808006.2808021>. Citations on
pages 36 and 76.

JOINER, D. A.; GRAY, P.; MURPHY, T.; PECK, C. Teaching parallel computing to science
faculty: Best practices and common pitfalls. In: Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. New York, NY, USA:
ACM, 2006. (PPoPP ’06), p. 239–246. ISBN 1-59593-189-9. Available: <http://doi.acm.org/10.
1145/1122971.1123007>. Citations on pages 58, 63, 64, 65, 66, and 72.

JONES, M. Network file systems and Linux. 2019. Available: <https://developer.ibm.com/
tutorials/l-network-filesystem>. Accessed: 29/12/2019. Citation on page 84.

KARYPIS, G. ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering.
[S.l.], 2017. Available: <http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview>. Citation
on page 82.

KHANGHAHI, N.; RAVANMEHR, R. Cloud computing performance evaluation: Issues and
challenges. International Journal on Cloud Computing, AIRCC, p. 29–41, 2013. Citation
on page 74.

KIM, T.-H.; JIANG, K.; RAJPUT, V. S. Adoption of container-based virtualization in it education.
In: ASEE’s 123rd Annual - Conference and Exposition. New Orleans, LA: [s.n.], 2016.
Citations on pages 34 and 36.

KRATZKE, N. Smuggling multi-cloud support into cloud-native applications using elastic con-
tainer platforms. In: Proceedings of the 7th International Conference on Cloud Computing
and Services Science. [S.l.: s.n.], 2017. p. 57–70. ISBN 978-989-758-243-1. Citation on page
79.

LI, J.; GUO, W.; ZHENG, H. An undergraduate parallel and distributed computing course in
multi-core era. In: 2008 The 9th International Conference for Young Computer Scientists.
[S.l.: s.n.], 2008. p. 2412–2416. Citations on pages 34, 59, 64, and 66.

LINUX Containers - Documentation. 2016. Available: <https://linuxcontainers.org>. Accessed:
21/01/2017. Citation on page 78.

LIU, J. 20 years of teaching parallel processing to computer science seniors. In: 2016 Work-
shop on Education for High-Performance Computing (EduHPC). [S.l.: s.n.], 2016. p. 7–13.
Citations on pages 62, 63, 64, 65, 66, and 72.

LÓPEZ, P.; BAYDAL, E. Teaching high-performance service in a cluster computing course.
Journal of Parallel and Distributed Computing, Elsevier, v. 117, p. 138–147, 2018. Citation
on page 70.

http://doi.acm.org/10.1145/2808006.2808021
http://doi.acm.org/10.1145/1122971.1123007
http://doi.acm.org/10.1145/1122971.1123007
https://developer.ibm.com/tutorials/l-network-filesystem
https://developer.ibm.com/tutorials/l-network-filesystem
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://linuxcontainers.org

158 Bibliography

MA, H.; WANG, L.; TAK, B. C.; WANG, L.; TANG, C. Auto-tuning performance of mpi
parallel programs using resource management in container-based virtual cloud. In: 2016 IEEE
9th International Conference on Cloud Computing (CLOUD). [S.l.: s.n.], 2016. p. 545–552.
Citation on page 82.

Mackenzie Presbyterian University. Computer Science Syllabus. 2018. Available: <http://up.
mackenzie.br/graduacao/sao-paulo/ciencia-da-computacao/matriz-curricular-2018/>. Accessed:
18/05/2018. Citation on page 47.

MANTYLA, M.; VANHANEN, J.; LASSENIUS, C. A taxonomy and an initial empirical study
of bad smells in code. In: International Conference on Software Maintenance, 2003. ICSM
2003. Proceedings. [S.l.: s.n.], 2003. p. 381–384. Citation on page 142.

MAROWKA, A. Think parallel: Teaching parallel programming today. IEEE Distributed
Systems Online, v. 9, n. 8, p. 1–1, Aug 2008. ISSN 1541-4922. Citations on pages 34, 59, 63,
64, and 66.

MARTINS, G.; SOUZA, P. S. L. de; CONTE, D. J.; BRUSCHI, S. M. Learning parallel program-
ming through programming challenges. In: 2020 IEEE Frontiers in Education Conference
(FIE). [S.l.: s.n.], 2020. p. 1–9. Citation on page 144.

Massachusetts Institute of Technology. 6.816/6.836 Multicore Programming. 2018. Available:
<https://stellar.mit.edu/S/course/6/sp14/6.816/?toolset=hidden>. Accessed: 18/05/2018. Citation
on page 53.

MOORE, S. V.; DUNLOP, S. R. A flipped classroom approach to teaching concurrency and
parallelism. In: 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). [S.l.: s.n.], 2016. p. 987–995. Citations on pages 62, 63, 64, 66, and 72.

MORABITO, R.; KJäLLMAN, J.; KOMU, M. Hypervisors vs. lightweight virtualization: A
performance comparison. In: 2015 IEEE International Conference on Cloud Engineering.
[S.l.: s.n.], 2015. p. 386–393. Citation on page 73.

MOUAT, A. Using Docker: Developing and deploying software with containers. [S.l.]: O’Reilly
Media, 2015. Citation on page 76.

MULLEN, J.; BYUN, C.; GADEPALLY, V.; SAMSI, S.; REUTHER, A.; KEPNER, J. Learn-
ing by doing, high performance computing education in the mooc era. Journal of Paral-
lel and Distributed Computing, v. 105, p. 105 – 115, 2017. ISSN 0743-7315. Keeping up
with Technology: Teaching Parallel, Distributed and High-Performance Computing. Available:
<http://www.sciencedirect.com/science/article/pii/S0743731517300217>. Citations on pages
134, 135, 142, and 147.

Nanyang Technological University. Computer Science (CS) Programme. 2018. Available:
<http://scse.ntu.edu.sg/Programmes/CurrentStudents/Undergraduate/Pages/CS.aspx>. Accessed:
18/05/2018. Citations on pages 52 and 53.

NATH, D. Running an MPI Cluster within a LAN. 2020. Available: <https://mpitutorial.com/
tutorials/running-an-mpi-cluster-within-a-lan/>. Accessed: 05/01/2020. Citation on page 83.

National University of Singapore. Computer Science Focus Areas for BComp (CS). 2018.
Available: <https://www.comp.nus.edu.sg/programmes/ug/focus>. Accessed: 18/05/2018. Cita-
tions on pages 53, 57, and 59.

http://up.mackenzie.br/graduacao/sao-paulo/ciencia-da-computacao/matriz-curricular-2018/
http://up.mackenzie.br/graduacao/sao-paulo/ciencia-da-computacao/matriz-curricular-2018/
https://stellar.mit.edu/S/course/6/sp14/6.816/?toolset=hidden
http://www.sciencedirect.com/science/article/pii/S0743731517300217
http://scse.ntu.edu.sg/Programmes/CurrentStudents/Undergraduate/Pages/CS.aspx
https://mpitutorial.com/tutorials/running-an-mpi-cluster-within-a-lan/
https://mpitutorial.com/tutorials/running-an-mpi-cluster-within-a-lan/
https://www.comp.nus.edu.sg/programmes/ug/focus

Bibliography 159

NEZU, N. Teaching parallel programming in 50 minutes. J. Comput. Sci. Coll., Consortium
for Computing Sciences in Colleges, USA, v. 31, n. 2, p. 18–24, Dec. 2015. ISSN 1937-4771.
Available: <http://dl.acm.org/citation.cfm?id=2831432.2831435>. Citations on pages 61, 64,
66, and 72.

NGO, L. B.; SRINATH, A. T.; DENTON, J.; ZIOLKOWSKI, M. Unifying computing resources
and access interface to support parallel and distributed computing education. Journal of Parallel
and Distributed Computing, v. 118, p. 201 – 212, 2018. ISSN 0743-7315. Available: <http:
//www.sciencedirect.com/science/article/pii/S0743731518300984>. Citations on pages 140
and 141.

. Unifying computing resources and access interface to support parallel and distributed
computing education. Journal of Parallel and Distributed Computing, Elsevier, v. 118, p.
201–212, 2018. Citation on page 142.

NICKOLOFF, J. Docker in Action. 1st. ed. USA: Manning Publications Co., 2016. ISBN
1633430235. Citations on pages 78 and 79.

NOWICKI, M.; MARCHWIANY, M.; SZPINDLER, M.; BAŁA, P. On-line service for teaching
parallel programming. In: HUNOLD, S.; COSTAN, A.; GIMÉNEZ, D.; IOSUP, A.; RICCI,
L.; REQUENA, M. E. G.; SCARANO, V.; VARBANESCU, A. L.; SCOTT, S. L.; LANKES,
S.; WEIDENDORFER, J.; ALEXANDER, M. (Ed.). Euro-Par 2015: Parallel Processing
Workshops. Cham: Springer International Publishing, 2015. p. 78–89. ISBN 978-3-319-27308-
2. Citations on pages 133 and 142.

OpenMP Architecture Review Board. OpenMP Application Program Interface. [S.l.], 2016.
Version 4.5.0. Available: <https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.
0.pdf>. Citation on page 67.

PAHL, C. Containerization and the paas cloud. IEEE Cloud Computing, v. 2, n. 3, p. 24–31,
May 2015. ISSN 2325-6095. Citation on page 36.

. Containerization and the paas cloud. IEEE Cloud Computing, v. 2, n. 3, p. 24–31, May
2015. ISSN 2325-6095. Citation on page 73.

Peking University. Undergraduate Programs. 2018. Accessed: 18/05/2018. Citations on pages
52 and 53.

PERES, S. C.; PHAM, T.; PHILLIPS, R. Validation of the system usability scale (sus): Sus in the
wild. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, v. 57,
n. 1, p. 192–196, 2013. Available: <https://doi.org/10.1177/1541931213571043>. Citation on
page 106.

Pontifical Catholic University of Chile. Bachelor: Major in Computer Science. 2018. Avail-
able: <https://www.ing.uc.cl/ciencia-de-la-computacion/programas/licenciatura/>. Accessed:
18/05/2018. Citations on pages 52 and 53.

Pontifical Catholic University of Goiás. Computer Science Syllabus. 2018. Available:
<http://sites.pucgoias.edu.br/cursos/cienciadacomputacao/wp-content/uploads/sites/18/2013/
04/Matriz-Curricular-Ci%C3%AAncia-da-Computa%C3%A7%C3%A3o-2013.1.pdf>.
Accessed: 18/05/2018. Citation on page 47.

http://dl.acm.org/citation.cfm?id=2831432.2831435
http://www.sciencedirect.com/science/article/pii/S0743731518300984
http://www.sciencedirect.com/science/article/pii/S0743731518300984
https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
https://doi.org/10.1177/1541931213571043
https://www.ing.uc.cl/ciencia-de-la-computacion/programas/licenciatura/
http://sites.pucgoias.edu.br/cursos/cienciadacomputacao/wp-content/uploads/sites/18/2013/04/Matriz-Curricular-Ci%C3%AAncia-da-Computa%C3%A7%C3%A3o-2013.1.pdf
http://sites.pucgoias.edu.br/cursos/cienciadacomputacao/wp-content/uploads/sites/18/2013/04/Matriz-Curricular-Ci%C3%AAncia-da-Computa%C3%A7%C3%A3o-2013.1.pdf

160 Bibliography

Pontifical Catholic University of Paraná. Computer Science Syllabus. 2018. Avail-
able: <https://www.pucpr.br/escola-politecnica/wp-content/uploads/sites/4/2017/06/matriz_
ciencia-da-computacao_.pdf>. Accessed: 18/05/2018. Citation on page 47.

Pontifical Catholic University of Rio de Janeiro. Computer Science Syllabus.
2018. Available: <http://www.inf.puc-rio.br/wordpress/wp-content/uploads/2018/04/
PPC-Ciencia-da-Computacao.pdf>. Accessed: 18/05/2018. Citations on pages 46 and 47.

Pontifical Catholic University of Rio Grande do Sul. Computer Science Syllabus. 2018. Avail-
able: <http://www.pucrs.br/politecnica/informacoes-academicas/ciencia-da-computacao/>. Ac-
cessed: 18/05/2018. Citations on pages 46 and 47.

PRESSMAN, R.; MAXIM, B. Engenharia de Software-8a Edição. [S.l.]: McGraw Hill Brasil,
2016. Citation on page 89.

Princeton University. COS-418, Fall 2016: Distributed Systems. 2018. Available: <https://
www.cs.princeton.edu/courses/archive/fall16/cos418/>. Accessed: 18/05/2018. Citation on page
53.

QIU, J.; KAMBURUGAMUVE, S.; LEE, H.; MITCHELL, J.; CALDWELL, R.; BULLOCK, G.;
HAYDEN, L. Teaching, learning and collaborating through cloud computing online classes. In:
Proceedgins of the 2017 Workshop on Education for High-Performance Computing. [S.l.:
s.n.], 2017. Citation on page 57.

QS World University Rankings. Computer Science & Information Systems. 2018. Avail-
able: <https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/
computer-science-information-systems>. Accessed: 18/04/2018. Citation on page 52.

Queensland University of Technology. Bachelor of Information Technology (Computer Sci-
ence). 2018. Available: <http://pdf.courses.qut.edu.au/coursepdf/qut_IN01_34130_int_cms_unit.
pdf>. Accessed: 18/05/2018. Citation on page 53.

RAMEY, W. 2 Million Registered Developers, Countless Breakthroughs. 2021. Avail-
able: <https://blogs.nvidia.com/blog/2020/08/19/2-million-registered-developers-breakthroughs/
>. Accessed: 11/02/2021. Citation on page 33.

RICCI, R.; EIDE, E.; TEAM, C. Introducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications. ; login:: the magazine of USENIX & SAGE, USENIX
Association, v. 39, n. 6, p. 36–38, 2014. Citation on page 140.

RIGHETTI, S. Fórum Nacional de Educação Superior. 2015. Available:
<http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=
17209-cne-forum-educacao-superior-2015-apresentacao-20-sabine-righetti&category_
slug=marco-2015-pdf&Itemid=30192>. Accessed: 13/06/2018. Citation on page 46.

ROBERTS, E.; SHACKELFORD, R.; LEBLANC, R.; DENNING, P. J. Curriculum 2001: Interim
report from the acm/ieee-cs task force. SIGCSE Bull., ACM, New York, NY, USA, v. 31, n. 1, p.
343–344, Mar. 1999. ISSN 0097-8418. Available: <http://doi.acm.org/10.1145/384266.299802>.
Citation on page 33.

RUDYY, O.; GARCIA-GASULLA, M.; MANTOVANI, F.; SANTIAGO, A.; SIRVENT, R.;
VáZQUEZ, M. Containers in hpc: A scalability and portability study in production biological
simulations. In: 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). [S.l.: s.n.], 2019. p. 567–577. Citation on page 88.

https://www.pucpr.br/escola-politecnica/wp-content/uploads/sites/4/2017/06/matriz_ciencia-da-computacao_.pdf
https://www.pucpr.br/escola-politecnica/wp-content/uploads/sites/4/2017/06/matriz_ciencia-da-computacao_.pdf
http://www.inf.puc-rio.br/wordpress/wp-content/uploads/2018/04/PPC-Ciencia-da-Computacao.pdf
http://www.inf.puc-rio.br/wordpress/wp-content/uploads/2018/04/PPC-Ciencia-da-Computacao.pdf
http://www.pucrs.br/politecnica/informacoes-academicas/ciencia-da-computacao/
https://www.cs.princeton.edu/courses/archive/fall16/cos418/
https://www.cs.princeton.edu/courses/archive/fall16/cos418/
https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/computer-science-information-systems
https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/computer-science-information-systems
http://pdf.courses.qut.edu.au/coursepdf/qut_IN01_34130_int_cms_unit.pdf
http://pdf.courses.qut.edu.au/coursepdf/qut_IN01_34130_int_cms_unit.pdf
https://blogs.nvidia.com/blog/2020/08/19/2-million-registered-developers-breakthroughs/
https://blogs.nvidia.com/blog/2020/08/19/2-million-registered-developers-breakthroughs/
http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=17209-cne-forum-educacao-superior-2015-apresentacao-20-sabine-righetti&category_slug=marco-2015-pdf&Itemid=30192
http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=17209-cne-forum-educacao-superior-2015-apresentacao-20-sabine-righetti&category_slug=marco-2015-pdf&Itemid=30192
http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=17209-cne-forum-educacao-superior-2015-apresentacao-20-sabine-righetti&category_slug=marco-2015-pdf&Itemid=30192
http://doi.acm.org/10.1145/384266.299802

Bibliography 161

RUIZ, C.; JEANVOINE, E.; NUSSBAUM, L. Performance evaluation of containers for hpc. In:
In: Hunold S. et al. (eds) Euro-Par 2015: Parallel Processing Workshops. Euro-Par 2015.
[S.l.: s.n.], 2015. p. 813–824. Citation on page 74.

SANTOS, C. M. d. C.; PIMENTA, C. A. d. M.; NOBRE, M. R. C. The pico strategy for the
research question construction and evidence search. Revista latino-americana de enfermagem,
SciELO Brasil, v. 15, p. 508–511, 2007. Citation on page 58.

SCHLARB, M.; HUNDT, C.; SCHMIDT, B. Sauce: A web-based automated assessment tool
for teaching parallel programming. In: . Euro-Par 2015: Parallel Processing Workshops:
Euro-Par 2015 International Workshops, Vienna, Austria, August 24-25, 2015, Revised
Selected Papers. Cham: Springer International Publishing, 2015. p. 54–65. ISBN 978-3-319-
27308-2. Available: <https://doi.org/10.1007/978-3-319-27308-2_5>. Citations on pages 61,
63, 65, 66, and 72.

SHAFI, A.; AKHTAR, A.; JAVED, A.; CARPENTER, B. Teaching parallel programming using
java. In: Proceedings of the Workshop on Education for High-Performance Computing.
Piscataway, NJ, USA: IEEE Press, 2014. (EduHPC ’14), p. 56–63. ISBN 978-1-4799-7021-6.
Available: <http://dx.doi.org/10.1109/EduHPC.2014.7>. Citations on pages 60, 63, 64, 65,
and 66.

SHAMSI, J. A.; DURRANI, N. M.; KAFI, N. Novelties in teaching high performance computing.
In: 2015 IEEE International Parallel and Distributed Processing Symposium Workshop.
[S.l.: s.n.], 2015. p. 772–778. Citations on pages 33, 44, 61, 63, 64, 65, and 66.

SILVA, G. M. da. Desenvolvimento de desafios para o aprendizado de programação par-
alela. Bachelor’s Thesis (Graduação) — Instituto de Ciências Matemáticas e de Computação -
USP São Carlos, São Carlos, 2021. Citations on pages 105, 120, 121, 122, 123, and 124.

SITSYLITSYN, Y. Methods and tools for teaching parallel and distributed computing in univer-
sities: a systematic review of the literature. In: EDP SCIENCES. ICHTML 2020: SHS Web of
Conferences. [S.l.], 2020. Citation on page 69.

STACKOVERFLOW Developer Survey Results. 2021. Available: <https://insights.stackoverflow.
com/survey/2017>. Accessed: 15/03/2021. Citation on page 94.

Stanford University. CS149 - Parallel Computing. 2018. Available: <http://scpd.
stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=8254396>. Ac-
cessed: 18/05/2018. Citation on page 53.

State University of Amazonas. Computer Science Syllabus. 2018. Available:
<http://blogs.unama.br/sites/blogs.unama.br/files/anexo/gra-mat-0279-c_-_ciencia_da_
computacao_fmn_-_estrutura_curricular.pdf>. Accessed: 18/05/2018. Citation on page 47.

State University of Campinas. MC970/MO644 Parallel Programming. 2018. Available: <http:
//oxent2.ic.unicamp.br/node/41>. Accessed: 18/05/2018. Citations on pages 47 and 53.

State University of Londrina. Computer Science Syllabus. 2018. Available:
<http://www.uel.br/prograd/acolhimento/documentos/matriz_curricular/matriz_curricular_
acolhimento_semana_retomada_ciencia_computacao.pdf>. Accessed: 18/05/2018. Citations on
pages 46 and 47.

https://doi.org/10.1007/978-3-319-27308-2_5
http://dx.doi.org/10.1109/EduHPC.2014.7
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=8254396
http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=8254396
http://blogs.unama.br/sites/blogs.unama.br/files/anexo/gra-mat-0279-c_-_ciencia_da_computacao_fmn_-_estrutura_curricular.pdf
http://blogs.unama.br/sites/blogs.unama.br/files/anexo/gra-mat-0279-c_-_ciencia_da_computacao_fmn_-_estrutura_curricular.pdf
http://oxent2.ic.unicamp.br/node/41
http://oxent2.ic.unicamp.br/node/41
http://www.uel.br/prograd/acolhimento/documentos/matriz_curricular/matriz_curricular_acolhimento_semana_retomada_ciencia_computacao.pdf
http://www.uel.br/prograd/acolhimento/documentos/matriz_curricular/matriz_curricular_acolhimento_semana_retomada_ciencia_computacao.pdf

162 Bibliography

State University of Maringá. Computer Science Syllabus. 2018. Available: <http://www.pen.
uem.br/deg/apoio-aos-colegiados-aco/graduacao/cursos/PPPInformtica2018.pdf>. Accessed:
18/05/2018. Citation on page 47.

State University of Rio de Janeiro. Computer Science Syllabus. 2018. Available: <http://
www.dep.uerj.br/arqs/fluxogamas_cursos/ciencia_da_computacao.pdf>. Accessed: 18/05/2018.
Citation on page 47.

Stellenbosch University. Academic Programmes and Faculty Information. 2018. Avail-
able: <https://www.sun.ac.za/english/Documents/Yearbooks/Current/Science.pdf>. Accessed:
18/05/2018. Citations on pages 53 and 54.

STERLING, T.; ANDERSON, M.; BRODOWICZ, M. Chapter 18 - file systems. In: STER-
LING, T.; ANDERSON, M.; BRODOWICZ, M. (Ed.). High Performance Computing. Boston:
Morgan Kaufmann, 2018. p. 549–578. ISBN 978-0-12-420158-3. Available: <https://www.
sciencedirect.com/science/article/pii/B9780124201583000186>. Citation on page 84.

STRATTON, J. A.; STONE, S. S.; HWU, W.-m. W. Mcuda: An efficient implementation of
cuda kernels for multi-core cpus. In: AMARAL, J. N. (Ed.). Languages and Compilers for
Parallel Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 16–30. ISBN
978-3-540-89740-8. Citations on pages 103 and 147.

SUKHOROSLOV, O. Building web-based services for practical exercises in parallel and
distributed computing. Journal of Parallel and Distributed Computing, v. 118, p. 177
– 188, 2018. ISSN 0743-7315. Available: <http://www.sciencedirect.com/science/article/pii/
S0743731518301023>. Citations on pages 136, 137, 138, and 142.

São Paulo State University. Computer Science Syllabus. 2018. Available: <http://www.fct.
unesp.br/Home/Graduacao/CienciadaComputacao/PPP.pdf>. Accessed: 18/05/2018. Citation
on page 47.

Technological Institute of Aeronautics. Computer Engineering Syllabus. 2018. Available:
<http://www.ita.br/sites/default/files/pages/collection/ITA-CG-2014.pdf>. Accessed: 18/05/2018.
Citation on page 47.

The World University Ranking. Computer Science - Times Higher Education. 2018. Avail-
able: <https://www.timeshighereducation.com/world-university-rankings/2018/subject-ranking/
computer-science>. Accessed: 18/04/2018. Citation on page 52.

TOURINO, J.; MARTIN, M. J.; TARRIO, J.; ARENAZ, M. A grid portal for an undergraduate
parallel programming course. IEEE Transactions on Education, v. 48, n. 3, p. 391–399, 2005.
Citations on pages 129, 130, 131, and 142.

Tsinghua University. The Undergraduate and Graduate Courses Taught in English
and Open to the International Visiting/Exchange Students at Tsinghua University.
2018. Available: <http://www.tsinghua.edu.cn/publish/9320/2016/20160122162541542994324/
20160122162552835226823>. Accessed: 18/05/2018. Citation on page 53.

TURNBULL, J. The Docker Book: Containerization is the New Virtualization. [S.l.]: James
Turnbull, 2014. Citation on page 73.

. The Docker Book: Containerization is the New Virtualization. [S.l.]: James Turnbull,
2014. Citations on pages 77 and 78.

http://www.pen.uem.br/deg/apoio-aos-colegiados-aco/graduacao/cursos/PPPInformtica2018.pdf
http://www.pen.uem.br/deg/apoio-aos-colegiados-aco/graduacao/cursos/PPPInformtica2018.pdf
http://www.dep.uerj.br/arqs/fluxogamas_cursos/ciencia_da_computacao.pdf
http://www.dep.uerj.br/arqs/fluxogamas_cursos/ciencia_da_computacao.pdf
https://www.sun.ac.za/english/Documents/Yearbooks/Current/Science.pdf
https://www.sciencedirect.com/science/article/pii/B9780124201583000186
https://www.sciencedirect.com/science/article/pii/B9780124201583000186
http://www.sciencedirect.com/science/article/pii/S0743731518301023
http://www.sciencedirect.com/science/article/pii/S0743731518301023
http://www.fct.unesp.br/Home/Graduacao/CienciadaComputacao/PPP.pdf
http://www.fct.unesp.br/Home/Graduacao/CienciadaComputacao/PPP.pdf
http://www.ita.br/sites/default/files/pages/collection/ITA-CG-2014.pdf
https://www.timeshighereducation.com/world-university-rankings/2018/subject-ranking/computer-science
https://www.timeshighereducation.com/world-university-rankings/2018/subject-ranking/computer-science
http://www.tsinghua.edu.cn/publish/9320/2016/20160122162541542994324/20160122162552835226823
http://www.tsinghua.edu.cn/publish/9320/2016/20160122162541542994324/20160122162552835226823

Bibliography 163

UBUNTU. Network File System (NFS). 2019. Available: <https://ubuntu.com/server/docs/
service-nfs>. Accessed: 2019.11.11. Citation on page 84.

UL-ABDIN, Z.; SVENSSON, B. Towards teaching embedded parallel computing: An analytical
approach. In: Proceedings of the Workshop on Computer Architecture Education. New
York, NY, USA: ACM, 2015. (WCAE ’15), p. 8:1–8:6. ISBN 978-1-4503-3717-5. Available:
<http://doi.acm.org/10.1145/2795122.2795130>. Citations on pages 61, 63, 64, 65, 66, and 72.

University Center of the State of Pará. Computer Science Syllabus. 2018. Avail-
able: <http://www.cesupa.br/Graduacao/Exatas/Doc/BCC/7Per/Programacao_Distribuida_e_
Paralela.pdf>. Accessed: 18/05/2018. Citation on page 47.

University Center of Varzea Grande. Systems Analysis and Development Syl-
labus. 2018. Available: <https://www.univag.com.br/curso/matriz-curricular/27/
analise-e-desenvolvimento-de-sistemas/>. Accessed: 18/05/2018. Citation on page
47.

University of Brasilia. Computer Science Syllabus. 2018. Available: <https://cic.unb.br/~lamar/
coordenacao/ppp_bcc_final.pdf>. Accessed: 18/05/2018. Citation on page 47.

University of Buenos Aires. Faculty of Exact and Natural Sciences. 2018. Available: <https:
//www.dc.uba.ar/materias/scmp/sigao.pdf>. Accessed: 18/05/2018. Citation on page 53.

University of Cambridge. Computer Science Tripos. 2018. Available: <https://www.cl.cam.ac.
uk/teaching/1718/cst.pdf>. Accessed: 18/05/2018. Citations on pages 53 and 57.

University of Cape Town. Undergraduate Courses. 2018. Available: <https://www.cs.uct.ac.
za/teaching/undergraduate-courses>. Accessed: 18/05/2018. Citation on page 53.

University of Chile. Course Program. 2018. Available: <https://www.dcc.uchile.cl/sites/default/
files/info-cursos/CC5307%20Computaci%C3%B3n%20Paralela%20y%20Aplicaciones%
202012-2.pdf>. Accessed: 18/05/2018. Citation on page 53.

University of Fortaleza . Computer Science Syllabus. 2018. Available: <https://www.unifor.br/
web/graduacao/ciencia-da-computacao>. Accessed: 18/05/2018. Citation on page 47.

University of Melbourne. Distributed Computing Project (COMP90019). 2018. Available:
<https://handbook.unimelb.edu.au/subjects/comp90019>. Accessed: 18/05/2018. Citation on
page 53.

University of New South Wales. Distributed Systems - COMP9243. 2018. Available:
<http://www.handbook.unsw.edu.au/undergraduate/courses/2018/COMP9243.html>. Accessed:
18/05/2018. Citation on page 53.

University of Oxford. Concurrent Programming: 2017-2018. 2018. Available: <https://www.
cs.ox.ac.uk/teaching/courses/2017-2018/concurrentprogramming/timetable.html>. Accessed:
18/05/2018. Citation on page 53.

University of Pretoria. Concurrent systems 226 (COS 226). 2018. Available: <https://www.up.
ac.za/yearbooks/pdf/module/COS%20226>. Accessed: 18/05/2018. Citation on page 53.

University of São Paulo. Concurrent Programming. 2018. Available: <https://uspdigital.usp.
br/jupiterweb/obterDisciplina?sgldis=SSC0143>. Accessed: 18/05/2018. Citations on pages 46,
47, and 53.

https://ubuntu.com/server/docs/service-nfs
https://ubuntu.com/server/docs/service-nfs
http://doi.acm.org/10.1145/2795122.2795130
http://www.cesupa.br/Graduacao/Exatas/Doc/BCC/7Per/Programacao_Distribuida_e_Paralela.pdf
http://www.cesupa.br/Graduacao/Exatas/Doc/BCC/7Per/Programacao_Distribuida_e_Paralela.pdf
https://www.univag.com.br/curso/matriz-curricular/27/analise-e-desenvolvimento-de-sistemas/
https://www.univag.com.br/curso/matriz-curricular/27/analise-e-desenvolvimento-de-sistemas/
https://cic.unb.br/~lamar/coordenacao/ppp_bcc_final.pdf
https://cic.unb.br/~lamar/coordenacao/ppp_bcc_final.pdf
https://www.dc.uba.ar/materias/scmp/sigao.pdf
https://www.dc.uba.ar/materias/scmp/sigao.pdf
https://www.cl.cam.ac.uk/teaching/1718/cst.pdf
https://www.cl.cam.ac.uk/teaching/1718/cst.pdf
https://www.cs.uct.ac.za/teaching/undergraduate-courses
https://www.cs.uct.ac.za/teaching/undergraduate-courses
https://www.dcc.uchile.cl/sites/default/files/info-cursos/CC5307%20Computaci%C3%B3n%20Paralela%20y%20Aplicaciones%202012-2.pdf
https://www.dcc.uchile.cl/sites/default/files/info-cursos/CC5307%20Computaci%C3%B3n%20Paralela%20y%20Aplicaciones%202012-2.pdf
https://www.dcc.uchile.cl/sites/default/files/info-cursos/CC5307%20Computaci%C3%B3n%20Paralela%20y%20Aplicaciones%202012-2.pdf
https://www.unifor.br/web/graduacao/ciencia-da-computacao
https://www.unifor.br/web/graduacao/ciencia-da-computacao
https://handbook.unimelb.edu.au/subjects/comp90019
http://www.handbook.unsw.edu.au/undergraduate/courses/2018/COMP9243.html
https://www.cs.ox.ac.uk/teaching/courses/2017-2018/concurrentprogramming/timetable.html
https://www.cs.ox.ac.uk/teaching/courses/2017-2018/concurrentprogramming/timetable.html
https://www.up.ac.za/yearbooks/pdf/module/COS%20226
https://www.up.ac.za/yearbooks/pdf/module/COS%20226
https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=SSC0143
https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=SSC0143

164 Bibliography

University of Technology Sydney. 42009 Parallel and Multicore Computing. 2018. Available:
<http://handbook.uts.edu.au/subjects/42009.html>. Accessed: 18/05/2018. Citation on page 53.

University of the Witwatersrand. 2018 ScI Rules Syllabuses. 2018. Available:
<https://www.wits.ac.za/media/wits-university/students/academic-matters/documents/
2018%20ScI%20Rules%20Syllabuses%20-%20reduced%20size.pdf>. Accessed: 18/05/2018.
Citation on page 53.

WOLFER, J. A heterogeneous supercomputer model for high-performance parallel computing
pedagogy. In: IEEE. 2015 IEEE Global Engineering Education Conference (EDUCON).
[S.l.], 2015. p. 799–805. Citation on page 35.

XAVIER, M. G.; NEVES, M. V.; ROSSI, F. D.; FERRETO, T. C.; LANGE, T.; ROSE, C. A.
F. D. Performance evaluation of container-based virtualization for high performance computing
environments. In: 2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. [S.l.: s.n.], 2013. p. 233–240. ISSN 1066-6192. Citations on
pages 74 and 83.

YANG, X.; ZHOU, Z.; WALLACE, S.; LAN, Z.; TANG, W.; COGHLAN, S.; PAPKA, M. E.
Integrating dynamic pricing of electricity into energy aware scheduling for hpc systems. In:
SC ’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. [S.l.: s.n.], 2013. p. 1–11. Citation on page 70.

ZARESTKY, J.; BANGERTH, W. Teaching high performance computing: Lessons from a flipped
classroom, project-based course on finite element methods. In: 2014 Workshop on Education
for High Performance Computing. [S.l.: s.n.], 2014. p. 34–41. Citations on pages 44, 61, 63,
and 64.

ZARZA, G.; LUGONES, D.; FRANCO, D.; LUQUE, E. An innovative teaching strategy to
understand high-performance systems through performance evaluation. Procedia Computer
Science, v. 9, p. 1733 – 1742, 2012. ISSN 1877-0509. Available: <http://www.sciencedirect.
com/science/article/pii/S1877050912003122>. Citation on page 33.

ZHANG, J.; LU, X.; PANDA, D. K. High performance mpi library for container-based hpc
cloud on infiniband clusters. In: 2016 45th International Conference on Parallel Processing
(ICPP). [S.l.: s.n.], 2016. p. 268–277. Citation on page 75.

ZORZO, A.; NUNES, D.; MATOS, E.; STEINMACHER, I.; LEITE, J.; ARAUJO, R.; COR-
REIA, R.; MARTINS, S. Referenciais de Formação para os Cursos de Graduação em Com-
putação. Sociedade Brasileira de Computação (SBC). 153p. [S.l.], 2017. Citation on page
42.

École Polytechnique Fédérale de Lausanne. Parallelism and concurrency. 2018. Available:
<http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=1887880865&ww_x_
anneeAcad=2018-2019&ww_i_section=249847&ww_i_niveau=6683117&ww_c_langue=
em>. Accessed: 18/05/2018. Citations on pages 53 and 54.

http://handbook.uts.edu.au/subjects/42009.html
https://www.wits.ac.za/media/wits-university/students/academic-matters/documents/2018%20ScI%20Rules%20Syllabuses%20-%20reduced%20size.pdf
https://www.wits.ac.za/media/wits-university/students/academic-matters/documents/2018%20ScI%20Rules%20Syllabuses%20-%20reduced%20size.pdf
http://www.sciencedirect.com/science/article/pii/S1877050912003122
http://www.sciencedirect.com/science/article/pii/S1877050912003122
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=1887880865&ww_x_anneeAcad=2018-2019&ww_i_section=249847&ww_i_niveau=6683117&ww_c_langue=em
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=1887880865&ww_x_anneeAcad=2018-2019&ww_i_section=249847&ww_i_niveau=6683117&ww_c_langue=em
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=1887880865&ww_x_anneeAcad=2018-2019&ww_i_section=249847&ww_i_niveau=6683117&ww_c_langue=em

165

GLOSSARY

Amazon Elastic Computing Cloud (EC2): is a cloud service that provides scalable computing
capacity. This service is designed to make computational scalability at the Web level easier
for developers.

Apache Hadoop YARN: is a cluster management technology and processing large data vol-
umes, including attention to fault tolerance.

API: is an interface provided by an application for external access by other applications through
pre-established commands.

Cgroup: is a Linux kernel implementation that allows to partition system resources (CPU,
memory, I/O) by process group.

Distributed Replicated Block Device (DRBD): generally used in high-availability clusters,
offering storage devices available through a computer network.

Docker: is a virtualization system for containers compatible with Linux and Windows Server,
provides isolation and security to run and manage applications quickly and reliably.

Dynamic Host Configuration Protocol (DHCP): is a service protocol for granting IP addresses
to computers and devices on a network.

ENADE: is a Brazilian national examination that performance evaluates undergraduate students
based on defined parameters.

Full Virtualization: provides the OS a replica of the underlying hardware.

HPC: uses computers and parallel processing techniques to handle and analyze large amounts
of data or complex computational problems with high speed.

Infrastructure as a Service (IaaS): is a service model that outsources hardware, storage, servers,
and networking components to other organizations.

Jaccard index: is used to measure the similarity between two samples.

JavaScript Object Notation (JSON): is a lightweight data-interchange format widely used for
exchanging information between systems.

166 GLOSSARY

KVM: is a Linux virtualization solution to run multiple virtual machines. Each virtual machine
has private virtualized hardware without changes the guest OS image.

Logical Volume Manager (LVM): is a logical volume manager for Linux, managing partitions
and file systems.

MapReduce: is a proposed programming model by Google to facilitate the processing of large
data volumes (Big Data).

MPMD: is a programming model for achieving parallelism, with many different programs
running on different parts of data.

Multi-tenant: is an architecture that provides a particular software to multiple clients in a single
shared instance.

NAT: is a network address translation system that assigns a public address to a computer for
private network interconnection. In this case, the computers in the private network have
public network access through the NAT translation.

Network Information Service (NIS): is a directory service protocol that distributes resource
names on the network.

Network Time Protocol (NTP): is a protocol used for synchronizing the clocks of computers
and devices in data networks.

Open Virtual Platform (OVP): is a virtual platform that simulates a given system by hardware
or software representation.

OpenVZ: is a container virtualization system for Linux; it allows multiple containers inside
the host operating system. It also promotes security and isolation, guaranteeing that user
applications do not conflict.

OS-level: is a virtualization approach based on OS installations that partition the machine’s
physical resources, creating multiple users isolated instances over a single host kernel.

Paravirtualization: sends instructions to the host system when it causes a change in the system
state. This represents a significant performance increase, unlike full virtualization, where
VMM tests all instructions.

Platform as a Service (PaaS): in this service model, the tools and libraries for software creation
are offered to the user, who controls the configuration and distribution of the software.

PVM: is a software system that allows heterogeneous computers (shared or local memory
multiprocessors, vector supercomputers, graphics engines) used as a simultaneous compu-
tational resource that various networks can interconnect.

GLOSSARY 167

Redundant Array of Inexpensive Drives (RAID): creates data redundancy between two or
more disks.

Sandboxing: is a method to isolate and monitor programs in isolated spaces at the operating
system level.

Secure Shell (SSH): is an encrypted secure communication channel for communication be-
tween remote hosts.

Spark: is an Apache system that provides high-level APIs for fast cluster computing, optimized
for graphics support, structured data processing, machine learning, and graph processing.

Symmetric Multiprocessing (SMP): is composed of two or more identical processors sharing
the main memory.

TypeScript: is a JavaScript-based open-source language that adds static type definitions.

vCPU: is used to assign physical processing units to virtual machines.

VMM: is the operating system modified to invoke the Virtual Machine Manager (VMM) when
some instruction can change the system state. This modification reduces the VMM needs
to test each instruction and represents a significant performance increase.

VPS: is a private virtual server that simulates a dedicated machine through a specific program
or system on a physical server.

VServer: is a Linux virtualization system for container creation, management, and manipulation.
This system works by creating instances by kernel isolation.

Xen: is an open-source for hypervisor-based virtualization; it allows creating and executing
multiple virtual machines over the same hardware.

169

APPENDIX

A
DV AND NFS PERFORMANCE EVALUATION

This appendix presents the tables containing all results and significance levels for the
experiments comparing Docker (consistent, cached, and delegated) and NFS (synchronous and
asynchronous) volume sharing, shown in Subsection 3.4.3 of Chapter 3.

Chart A.1 shows all tested factors and levels for all modes (read and write operations
with concurrency and no concurrency of resources) for SSD disks. Chart A.2 shows the same
data for HDD disks. The blue columns (o) present the results without statistical significance; that
is, there is no difference between the averages of the results. Red columns (x) represent results
with significance.

170 APPENDIX A. DV and NFS Performance Evaluation

Chart A.1 – Paired t-test - significance for SSD

D
is

k

B
en

ch
m

ar
k

C
on

cu
rr

en
cy

O
pe

ra
tio

n
(r

ea
d/

w
ri

te
)

Sy
nc

-D
V

co
ns

is
te

nt

Sy
nc

-D
V

ca
ch

ed

Sy
nc

-D
V

de
le

ga
te

d

Sy
nc

-A
sy

nc

A
Sy

nc
-D

V
co

ns
is

te
nt

A
Sy

nc
-D

V
ca

ch
ed

A
Sy

nc
-D

V
de

le
ga

te
d

D
V

co
ns

is
te

nt
-c

ac
he

d

D
V

ca
ch

ed
-d

el
eg

at
ed

D
V

de
le

ga
te

d
-c

on
si

st
en

t

SS
D

M
yS

Q
L

R o o o o o o o x x x

W o o o o o o o x x x

T o o o o o o o x x x

Q o o o o o o o x x x

X

R o o o o o o o x x x

W o o o o o o o x x x

T o o o o o o o x x x

Q o o o o o o o x x x

Fi
le

10
0M

R o o o o o o o o o o

W o o o o o o o o o o

X
R o o o o o o o o o o

W o o o o o o o o o o

Fi
le

2G

R o o o o o o o o o o

W o o o o o o o o o o

X
R o o o o o o o o o o

W o o o o o o o o o o

Sm
al

lI
m

ag
e R o o o x o o o x x x

W o o o o o o o x x x

X
R o o o x o o o x x x

W o o o o o o o x x x

L
ar

ge
Im

ag
e R x o x x x x x x x x

W o o o o o o o x x x

X
R o o o x o o o x x x

W o o o o o o o x x x
Source: Bachiega et al. (2020).

171

Chart A.2 – Paired t-test - significance for HDD
D

is
k

B
en

ch
m

ar
k

C
on

cu
rr

en
cy

O
pe

ra
tio

n
(r

ea
d/

w
ri

te
)

Sy
nc

-D
V

co
ns

is
te

nt

Sy
nc

-D
V

ca
ch

ed

Sy
nc

-D
V

de
le

ga
te

d

Sy
nc

-A
sy

nc

A
Sy

nc
-D

V
co

ns
is

te
nt

A
Sy

nc
-D

V
ca

ch
ed

A
Sy

nc
-D

V
de

le
ga

te
d

D
V

co
ns

is
te

nt
-c

ac
he

d

D
V

ca
ch

ed
-d

el
eg

at
ed

D
V

de
le

ga
te

d
-c

on
si

st
en

t

H
D

D

M
yS

Q
L

R o o o o o o o x x x

W o o o o o o o x x x

T o o o o o o o x x x

Q o o o o o o o x x x

X

R o o o o o o o o o x

W o o o o o o o o o x

T o o o o o o o o o x

Q o o o o o o o o o x

Fi
le

10
0M

R o o o o o o o o o x

W o o o o o o o o o x

X
R o o o o o o o o o o

W o o o o o o o o o o

Fi
le

2G

R o o o o o o o o o o

W o o o o o o o o o o

X
R o o o o o o o x o o

W o o o o o o o x o o

Sm
al

lI
m

ag
e R o x o x o o o x x x

W o o o o o o o x x x

X
R o o o o o o o x x x

W o o o o o o o x x x

L
ar

ge
Im

ag
e R o o o x o o o x x x

W o o o o o o o x x x

X
R o o o o o o o x x x

W o o o o o o o x x x
Source: Bachiega et al. (2020).

173

APPENDIX

B
IGUANA DESIGN SUGGESTIONS

COLLECTED FROM THE EXPERIMENTS

This appendix shows the suggestions inserted by professionals Chart B.1 and stu-
dents Chart B.2 in the experiments carried out with the Iguana tool. The tables show the
suggested recommendations. In addition, we defined in column R the risk of implementation of
the feature in Iguana as low (L), moderate (M), and high (H), as follows:

∙ Low: a slight impact on the system, just a change of content or improvement in the HTML.

∙ Moderate: change in some function or part of the code that does not significantly change
the tool operation mode.

∙ High: potential risk of causing problems due to significant changes in functions or system
logic.

In column F, we presented the implementations directed for future work. Finally, in
column I, we marked all the features that have been implemented.

Chart B.1 – Professionals suggestions for improvements in the tool after the first experiment

Suggestions R F I

Exercise List: a clear indication that the exercise has been delivered. L X

Exercise List: clear indication if the exercise is correct. L X

In the "DIFF" tab, after compiling and executing the code, in the "Exercise
Result/Your Result:" field, the term "EQUAL" appears twice on the screen.

L X

In the "Coding" tab, when maximizing the code editor, the button does not
change the text to "Minimize" to make the command more intuitive.

L X

174 APPENDIX B. Iguana Design Suggestions Collected from the Experiments

For ease of usability, I would change the "Compile / Compile and Run" button
to after the configuration/parameterization block.

L X

Change "Self-registration" to "create an account" or "register". L X

Set "Record updated successfully" when to change password. L X

Recover password: change colors (contrast is bad to see the selected option). L X

Entering the wrong password returns, "You are not authorized to make this
request". Change to "This email or password is incorrect" or something.

L X

Non-existent user returns the same message as the wrong password: "You are
not authorized to make this request". Switch to "This user does not exist on
our database".

L X

Change "add exercise files" to "add input file" or something like that. L X

In exercise 3, it was not very clear how to define an input parameter. Maybe
put a separate option, like "Extra arguments".

L X

One of the points is in the tab of the difference between the codes; it is not very
clear which is the teacher’s code and which is the student’s code; this could be
clearer without the person having to read the text above the comparison area in
full.

L X

Another point is entering the exercise; when you enter it, you go to the list of
answers already given, instead of going into the exercise itself, which is the
behavior I expected based on websites like NepsAcademy, Hackerrank, etc.
The list of answers could be a tab on the exercise page; in my opinion, it would
make it simpler and reduce the number of clicks to reach the exercise.

H X

At the end of the run, I could tell if the result worked or not so that I wouldn’t
have to go to the Diff tab.

L X

The Action button for each exercise could have a name instead of an icon. L X

It bothered me a little that the User button always displayed in the Module div
even though I had already created the user.

L X

You could add Gamification to the Iguana Platform. H X

I missed the tool to save the screens’ states; when I changed from exercises to
try code and then returned, I lost the code I had done in any of the windows.

M X

It would be nice to leave guides (hints) explaining a little bit about parallel
programming for the more lay. It could be a link to some pages within the
system itself.

L X

As for the compiler’s choice (Parameters): it could be automatic based on the
#include files.

M X

175

System messages could be more highlights. L X

Compile and run could be defaulted, personally I used it the most. L X

Comparative graph of parallel vs. serialized processing time for the same task. M X

Color load balancing options, for example, core X, will be responsible for 75%
of processing, and core Y will be responsible for 25%.

H X

I recommend rethinking the position of the call to compare the code with the
registered result. The processed result appears at the bottom of the page, so I
believe that there should already be the trigger to access the comparison, which
is now at the top of the page.

L X

Integration with remote/online repositories would make it more attractive
because it would be possible to use the online repository and trigger its actions
to execute code in parallel.

M X

The location where the user/exercise buttons are is a little strange; you could
have a smaller or side menu to occupy less of the screen while executing codes.

L X

At first, navigating between exercises and attempts using the top right buttons is
not very comfortable. Perhaps using the buttons at the bottom and a breadcrumb
at the top will help in a more intuitive experience.

L X

The text editor used has a scroll bar even without content overflow, which gets
in the way when using the mouse scroll.

L X

The interface design can be improved. L X

Source: Elaborated by the author.

176 APPENDIX B. Iguana Design Suggestions Collected from the Experiments

Chart B.2 – Students’ suggestions after performing experiments with the tool

Suggestions R F I
Save the code automatically. M X

Increase timeout time. L X

Possibility to increase the editor’s font. L X

Highlight the "Submit" button. L X

Monitoring of resources used. M X

Access the tool with the same login from different computers at the same time. H X

Set "Record updated successfully" when to change password. L X

As soon as the user logs in, the exercises that are in progress could already be
presented.

L X

Use stdin. H X

Improve error messages. M X

After we submit an activity, I think it would be interesting if we received an
email confirmation.

M X

Source: Elaborated by the author.

177

APPENDIX

C
IGUANA FEEDBACK COLLECTED FROM

EXPERIMENTS

This appendix provides feedback after the experiments are performed. Chart C.1 shows
the opinions of professionals in the field and lecturers about teaching with Iguana. Chart C.2
shows student impressions after using the tool to create and run parallel code.

Chart C.1 – Feedback from professionals after the features are applied

Feedback
I believe that using the Iguana tool in my learning process would have increased my
learning curve and, consequently, would bring me more courage when perfecting the
parallel programming techniques.

Congratulations for the work!
After the modifications, the tool was cleaner and more organized. It certainly contributes to
the learning of beginners.
I believe that the system has a friendly and attractive interface. Some interface elements
could be improved usability (contrasts, shading, etc.), but they are essential elements of .css
and not mandatory. The tool features, in themselves, are its differential. The system can
promote teaching and learning, especially in environments with limited infrastructure, and
motivate students to exercise parallel programming. I congratulate those involved and wish
them success in continuing this project.
The tool is very robust and addresses several concepts that facilitate the learning of parallel
programs.
I believe that the Iguana tool has the potential to contribute to the teaching and learning
of concurrent programming inside and outside the classroom; however, issues with the
navigability of the interface need to be improved.

Source: Elaborated by the author.

178 APPENDIX C. Iguana Feedback Collected from Experiments

Chart C.2 – Feedback from students about the Iguana tool

Feedback

I found that the tool made the development of the exercises a lot easier. In addition, it saved
time for organizing the files and applications needed for compilation and execution.

I really liked the tool, mainly to compile and run CUDA. The only warning is that I still think
that using an IDE to test and debug before sending it to Iguana is a little faster. However,
overall the experience was very positive.

I believe that Iguana is incredible because it allows us to execute code in parallel without
configuring anything on our machines. In addition, remote access is impressive, especially for
those who have few resources available.

I do not think it directly affects learning. But, still, it is really a facilitator, being very easy to
use, quick to understand, and helps many students who cannot run parallel programs due to a
lack of personal structure.

The tool is helpful because not everyone has machines to execute the code (video cards from
Nvidia, for example), and the tool helps a lot in this regard. However, when writing the code
directly in the browser, I found the experience a little strange, perhaps because there was no
way to keep the entire screen editable.

I found the interface unintuitive for the exercises.

I liked the system, and I think it can make parallel code execution a lot easier. Our group found
no problem.

I liked the platform because it makes programming immediately, without going through the
journey of installing the necessary packages (I had several problems installing MPI on my
computer).

The system is excellent and, in a way, innovative. However, creating and executing parallel
programming programs in the terminal of your computer has disadvantages, such as the
complicated installation of libraries, hardware often inaccessible (multicore CPUs, GPUs,
Clusters, etc.), and some advantages such as better monitoring of resources, the possibility of
additional tools (IDEs, Valgrind, gdb, etc.). Thus, this tool is helpful to students who have not
had contact with parallel programming. Therefore, they do not have a device configured to
create and execute parallel programs, allowing an introduction to this area with fewer problems
and pains. Also, I found the tool very important and exciting, and I hope you will continue to
work and research it. Congratulations to all the researchers involved!

From the mature Linux user view, I believe that it has exciting potential. Furthermore, part of
the difficulties I noticed in my classmates was not related to the parallelism but in accessing
the cluster via ssh and handling files remotely. In summary, most students are not experts in
the Linux platform, so a web platform seems like an exciting alternative.

179

I found Iguana very good for allowing simple code execution directly in the cluster, especially
when some code was executed correctly on my machine but had a compilation error in the
laboratory due to differences in versions. In the following classes, I will have fewer problems
like these and will focus my time more on the code.

In general, the platform is excellent. The interface is intuitive, simple, and beautiful. Use is
straightforward. Comparing the execution with the available input files is a perfect teaching
tool and makes exercises much more accessible.

I found the tool very cool! I believe it will help a lot in teaching parallel programming.

I really liked Iguana, it was effortless to understand, and it seems to work perfectly. The only
objection I have is about the layout, and I believe it could be more intuitive in some parts.

Although we used the platform only at the end of the course, it was an excellent experience.
Only a few things in the interface are a little confusing, like selecting input files, but it sure is a
great platform, and I imagine that the following high-performance computing classes will have
a great starting point.

Source: Elaborated by the author.

181

APPENDIX

D
CUDA EXPERIMENTS

This appendix presents the results of CUDA algorithms executed in Iguana, as shown in
Section 5.4 of Chapter 5.

Figure D.1 – Output of hello world in CUDA

Source: Elaborated by the author.

Figure D.2 – Output of descriptive statistics metrics in CUDA

Source: Elaborated by the author.

182 APPENDIX D. CUDA Experiments

Figure D.3 – Output of thresholding in CUDA

Source: Elaborated by the author.

Figure D.4 – Output of greatest common divisor in CUDA

Source: Elaborated by the author.

Figure D.5 – Output of matrix multiplication in CUDA

Source: Elaborated by the author.

Figure D.6 – Output of multiplication of vectors by a scalar in CUDA

Source: Elaborated by the author.

183

APPENDIX

E
IGUANA CLUSTER SYSTEM TOOL MANUAL

This appendix presents the manual of the Iguana tool, containing three sections: lecturer
(admin), student (user), and the guide for cluster installing and using.

IGUANA CLUSTER SYSTEM

PRODUCED BY: NAYLOR G. BACHIEGA

NAYLOR@USP.BR

ADVISOR: PAULO SERGIO LOPES DE SOUZA

THIS MANUAL SHOWS THE IGUANA, A TOOL USED FOR THE PRACTICAL TEACHING OF

PARALLEL PROGRAMMING. THIS SYSTEM CREATES AND MANAGES A CLUSTER

INFRASTRUCTURE TO RUN CODES IN MPI, OPENMP, AND CUDA.

Table of Contents

1 Introduction 2

1.1 Infrastructure . 2

1.2 Installation . 4

2 User Roles 5

2.1 Login . 5

2.2 Modules . 6

2.3 Exercises . 7

2.3.1 Content Tab . 9

2.3.2 Coding Tab . 9

2.3.3 Diff Tab . 14

2.4 Try a Code . 15

3 Admin Roles 16

3.1 Default User Admin . 16

3.2 Modules . 16

3.3 Users . 17

3.4 Groups . 17

3.5 Exercises . 18

3.5.1 Add an exercise . 19

3.5.2 Answers . 21

3.6 Settings . 22

3.7 Try a Code . 23

4 Cluster Operation 24

4.1 Operation mode . 24

4.2 Clusters available to connect . 25

4.3 Current nodes in the cluster . 25

4.4 Active nodes . 26

4.5 Active front-ends . 26

About This File

This file was created by Ph.D. candidate Naylor Garcia Bachiega, under the supervision of

Paulo Sergio Lopes de Souza from USP-ICMC.

1

Introduction 1SECTION

Introduction

This is a self-configuring cluster system specially designed for parallel teaching programming,

and its goal is to create a low-cost cluster without configuration and maintenance.

Iguana can run on one physical or virtual host and create dozens of virtualized nodes to test and

distribute parallelized code. The tool also connects more than one host to instantiate thousands

of virtualized nodes to simulate an extensive network or a large cloud.

1.1 Infrastructure

The cluster system consists of two parts, front-end, and back-end, running on the same ma-

chine, as shown in Figure: 1:

• front-end: consists of the user interface. It has all the functionality of the system with two

permission modes: user and admin.

• back-end: the part responsible for creating the cluster infrastructure. The back-end uses

Docker, the Network File System (NFS), APIs, and other technologies to create a cluster to

execute parallel codes. Then, the back-end receives the code, runs it on the nodes, and

returns the result to the front-end.

In the front-end, guidelines about users are described in Section 2, and the admin’s functions

are specified in Section 3. In the back-end, the cluster management and configuration functions

are described in Section 4.

2

Figure 1: Cluster infrastructure

3

The base operating system for the construction of this project was Ubuntu 21.04 Linux kernel

5.4. The system is designed to work even on VMs with 1GB RAM and 8GB of disk space.

1.2 Installation

The tool can be installed in two ways:

• 1. Run the command below on Linux to execute the installation script:

sudo apt i n s t a l l curl −y &&

curl −s https : / / raw . githubusercontent .com/_

iguana−hpc−usp/ICS/master/ i n s t a l l . sh | bash −s −−

• 2. Download the virtual machine ready and import it into VirtualBox:

https://github.com/iguana-hpc-usp/ICS/

If using the VM, do not forget to correctly configure the network adapter for bridge mode

(https://www.virtualbox.org/manual/ch06.html).

After installation, the system prints the machine’s IP for browser access on port 8000, and

that’s it! See an example:

http://IP:8000

4

User Rules 2SECTION

User Roles

2.1 Login

Figure 2 shows the login screen for already-registered users. If the self-registration is enabled in

the system, the tool will show the Sign-Up link.

Figure 2: Logging or creating a user

The system delivers the form shown in Figure 3 to the creation of self-registered users.

5

Figure 3: Creating a user

Now, with the user and passwords registered, it is possible to log in, as shown in Figure 4.

Figure 4: Login

2.2 Modules

Figure 5: User modules

6

When logged in a user mode, the module panel (Figure 5) releases some features, including:

• Users: allows changing user data, such as name, password, and e-mail.

• Exercises: presents the exercises sent by the admin.

• Try a Code: shows the code editor and compiler to run codes quickly.

• Active Nodes: presents the physical and virtual nodes of the cluster.

• Queue Monitoring: shows processes and users waiting for code execution in the queue.

• Users Online: lists users are logged into the tool.

2.3 Exercises

This module shows the exercises registered (Figure 6) by the admin.

Figure 6: Exercises

• Title: displays the exercise title.

• MSN/T: displays the maximum number of submissions for this exercise and the maximum

execution timeout.

• Expiration Date: shows the exercise’s expiration date, and delivery after the deadline is

no longer possible.

• RT: display the response time of the exercise registered by the admin.

• Code Analysis: shows the automatic correction of the code semantics (code smell), for

more information, see the Clang-Tidy documentation available at https://clang.llvm.
org/extra/clang-tidy/.

• Delivered: to solve and record the answers to this exercise (Figure 8).

7

When the mouse clicks the icon in the Delivered column, the system will show the screen in

Figure 7.

Figure 7: Exercise answers

More details can be seen by clicking on the line containing the exercise answer, as shown in

Figure 8.

Figure 8: Exercise answers detail

• Last Submission: records the date and time of the last submission.

• Last Result: shows whether the submission result was the same as the submission result

made by the admin.

• Score/Feedback: displays the score and feedback recorded by the admin.

• Attempts Number: shows the number of submissions delivered.

• Code Analysis: shows the automatic correction of the code semantics (code smell), for

more information, see the Clang-Tidy documentation available at https://clang.llvm.
org/extra/clang-tidy/.

• Response Time: displays the response time of the exercise.

• Events: shows the number of builds and runs before submitting the exercise.

8

• Action: displays the code of the response sent.

Click the Add button to add a new response attempt. After clicking the button, a new screen will

appear with three available tabs (Figure 9):

• Content: shows the content and description of the exercise sent by the admin.

• Coding: presents the code editor and the compilation and execution options.

• Diff: shows the difference in the result of the user’s execution and the admin’s execution.

Figure 9: Exercise content

2.3.1 Content Tab

The content tab shows the exercise description registered by the admin (Figure 9).

2.3.2 Coding Tab

The Coding tab shows the system code editor, as shown in Figure 10. There are many options;

let’s describe them from top to bottom:

• Theme: allows choosing between a light or dark theme, according to programmer prefer-

ences.

• Font Size: the tool offers different font sizes.

• MiniMap: shows the minimap on the right side of the editor.

• Load Example Code: allows to load an example code.

• Maximize Window Code: increases the code editor area.

• Code Saving: the system automatically saves the code as the programmer writes in it.

9

Figure 10: Code editor

10

• Queue Off/On: when turned on, the user will enter a queuing system and waiting to com-

pile and execute the code. This will ensure that there is no competition for resources from

other users simultaneously.

• Compile and Run: compiles and/or executes the code.

• Parameters: defines the compilation and execution parameters (Figure 11).

• Files: allows upload external files to be called in the code or to use the files inserted by the

admin in the exercise content.

• Nodes: shows the nodes available for execution.

• Results: displays the code result or shows the compilation/execution errors.

• Special Tags: is a visual way of showing nodes and ranks using special tags.

Parameters Tab Figure 11 shows the Parameters tab to load standard configurations for com-

piling and executing code in MPI, OpenMP, CUDA, or OpenMP/MPI hybrid. It is possible to

change the parameters for other executions and compilations. For that, the compiler needs to

be installed on the host system.

Figure 11: Parameters

After defining the compilation and execution parameters, the system releases the button to com-

pile and run the code written in the editor (Figure 12). Note that the parameters are the same

used conventionally in a command prompt.

11

Figure 12: Compile and run

Files Tab The tool allows compiling a program using external files. For this, on the left side of

Figure 13, the system has an area for uploading a file. Also, there are cases where the admin has

attached a file in the exercise content for compilation. In this example, the middle frame shows

the files available for upload and download.

On the right side, the last frame shows an example of how to call the file inside the code. Again,

always use the same original file name.

Figure 13: Files

Nodes Tab With MPI, the tool chooses the number of processes and hosts to run. However, if

no specific host is selected, the system will determine them all to run.

12

Figure 14: Nodes

Results Tab When clicked on the button to compile or compile/run, the system will automat-

ically check if the execution queue was requested. If yes, the user waits in the queue.

If the user does not need a queue, the system will run code immediately, first performing the

compilation. Then, it is successful; the system will show the time spent and the compile com-

mand line (Figure 15).

Figure 15: Result area

Afterward, the system will send the code to run according to the user’s choices. If no errors,

13

the system displays the time spent for execution and the run command line. If no errors, the

program return is copied to the result area.

Special Tags Tab Special Tags allow visualizing the code result separated by Nodes and Ranks

(Figure 16).

Figure 16: Special tags result

For this, it is necessary to use tags to mark in the outputs, as shown in Figure 17.

Figure 17: Tags

2.3.3 Diff Tab

The "Diff" section presents the result of the activity. However, the "Diff" section is locked; it is

not editable for users and admins to keep the result impartiality.

Figure 18 shows on the left side the answer to the admin’s code execution and, on the right, the

result of the user’s code. If the codes are NOT precisely the same, the message "NOT EQUAL"

will be displayed.

The result comparison is made similar to the diffused by the Linux/Unix-based system. For more

information, consult the documentation available at http://man7.org/linux/man-pages/
man1/diff.1.html.

14

Figure 18: Comparison of user and admin results

2.4 Try a Code

Try a Code is a system screen that allows running a quick code without prior registration. Then,

write or paste the program and run. These features are described in Section 2.3.2.

Admin Rules

15

3SECTION

Admin Roles

3.1 Default User Admin

By default, the system enables the default user and the password. At the first login, it is necessary

to change the password for security reasons.

User: user@user

Password: user

3.2 Modules

When logged in a admin mode, the module panel (Figure 19) releases some features, including:

Figure 19: Admin modules

16

• Users: allows to create, change, or delete users.

• Groups: allows to create, change, or delete groups.

• Exercises: shows the exercises created by the admin.

• Settings: lists the main features of the system and the default values.

• Try a Code: shows the code editor and compiler to perform tests quickly.

3.3 Users

In this module, it is possible to register, change, and delete users. For example, if the system is

configured for Self Registration, registered users will appear in the list shown in Figure 20.

Figure 20: Users

3.4 Groups

In this module, it is possible to register, change, and delete groups. After creating a group, it is

necessary to add users by clicking on the action button (Figure 21).

Figure 21: Groups

Type the user name inside the input and press enter to add, as shown in Figure 22.

17

Figure 22: Members

3.5 Exercises

In this module, the system prints the exercises registered (Figure 23) by the admin. The sys-

tem enables all options to the admin user: add, edit, or delete an exercise. Furthermore, in the

Answers button, it is possible to view the activities sent by the users.

Figure 23: Exercises

• Title: displays the exercise title.

• MSN/T: displays the maximum number of submissions for this exercise and the maximum

execution timeout.

• Expiration Date: shows the exercise’s expiration date, and delivery after the deadline is

no longer possible.

• RT: displays the response time of the exercise registered by the admin.

• Code Analysis: shows the automatic correction of the code semantics (code smell), for

more information, see the Clang-Tidy documentation available at https://clang.llvm.
org/extra/clang-tidy/.

• Delivered: allows to view and score the users’ responses for this exercise.

18

The admin can click Add to enter a new exercise (Subsection 3.5.1) or click Delivered to view the

submissions by students (Subsection 3.5.2).

3.5.1 Add an exercise

To submit an exercise, click the Add button. After, in the next screen shown in Figure 24, the

admin sets the title, content, expiration date, and code in the next screen.

Figure 24: Exercise content

Content Tab In this tab, the admin defines the title and content of the exercise.

Parameters Tab This section defines code execution parameters by users.

• Expiration Date: sets the time and date limit for exercise submission by the user.

• Maximum Number of Submission: sets the maximum number of attempts a user can

submit an exercise.

• Maximum Timeout (seconds): sets the timeout that user code can be running.

• Maximum file size: sets the maximum file size a user can upload to the code.

19

Figure 25: Exercise parameters

Groups Tab In this tab, the admin inserts the groups to access the exercise.

Figure 26: Exercise groups

Files Tab In this tab, the admin inserts the test files used by the users when executing the

code.

20

Figure 27: Exercise files

Code Tab For details on this tab, see Subsection 2.3.2.

3.5.2 Answers

In the list of user responses, it is possible to check the user’s name, the number of attempts, the

execution time, code analysis, status, score, and feedback (Figure 28).

Figure 28: User answers

In addition to the parameters already explained in Section 2.3, the admin can define the score

and feedback for the exercise on this screen, as shown in Figure 29

Figure 29: Score and feedback of the answer

21

3.6 Settings

In the settings module, it is possible to change several system configurations, according to Fig-

ure 30.

Figure 30: Settings

Network Tab

• Public Host Interface: defines which network interface back-end and front-end will use

to listen to network services.

• Back-end Service Port: sets the port value to list the services between the back-ends in

the network (default: 10001).

• Front-end Service Port: sets the port value to list the services for the front-ends (default:

8000).

Cluster Tab

• Cluster: the default cluster name (default: CLUSTER01).

• Cluster Password: defines the cluster password for connection between nodes. If the

password is left empty, the nodes will connect automatically if their operating modes are

set to NODE (default: empty).

• Operation Mode: the default operation mode to start on back-end init (default: LOCAL).

• Number of Nodes: the number of containers (virtual nodes) to be started on back-end init

(default: 0).

• Maximum Number of Nodes: the maximum number of containers running as nodes (de-

fault: 30).

22

Admin Tab

• Host User: sets the default user for the host and for accessing the front-end Administrator

roles (default: user@user).

• Host Password: sets the default user password (default: user).

• Self Registration: allows users to create their own logins on the server (default: On)

Coding Tab

• Code Execution Timeout: defines a timeout to code execution in seconds (default: 20s).

• Queuing System: if enabled, a queue system will prevent two codes from running at the

same time. If disabled, it will become optional for each run (default: Off).

• Maximum Queue Concurrency: defines the maximum number of users in the queue,

competing for resources (default: 30).

Debug Tab

• Debug: shows debug messages on the back-end (default: Off).

• Error: shows error messages on the back-end (default: Off).

SMTP Account Tab

• Smtp Server: server address responsible for sending the account registration and pass-

word recovery emails.

• Smtp Port: mail server port.

• Smtp User: registered user for sending emails.

• Smtp User Password: user Password registered for sending emails.

3.7 Try a Code

Try a Code is a system screen that allows running a quick code without prior registration. Then,

write or paste the program and run. These features are described in Section 2.3.2.

23

Cluster Operation 4SECTION

Cluster Operation

4.1 Operation mode

As shown in Figure 31, the system has three operation modes that define the cluster behavior.

These modes control the connection between hosts. For example, we can have two machines on

the same network, one the master and the other the node. These hosts will group in and increase

the number of nodes to run parallel programs.

Figure 31: Operation mode

• Master: in this mode, the system will be the master and announce via broadcasting, its

Cluster ID, and its variables for connection. When selected, the administrator must put a

name on the Cluster and, optionally, a password (Figure 32).

24

Figure 32: Defining a cluster name and password

• Node: in this mode, the host is on standby, waiting for some master on the network. If

found, the node will automatically connect if the cluster does not have an entry password;

otherwise, the node needs the correct password.

• Local: this option allows the user to work outside a cluster on the network or in an isolated

virtual machine without conflicting with other hosts.

4.2 Clusters available to connect

This section shows the masters on the network available for connection. If the master has a

secret key (Figure 33), the nodes will need the password to connect to the cluster. If no private

key is set to cluster, the nodes will connect automatically.

Figure 33: Clusters available to connect

4.3 Current nodes in the cluster

When Iguana is set to master or local mode, it is possible to define the number of nodes available

to execute the parallel codes (Figure 34). The admin can increase or decrease the number at any

time.

If the network has more than one host connected to the cluster, the nodes are distributed equally

and automatically. Therefore, if one host goes offline, the other hosts will continue to function

normally without action.

If another host arrives on the network (in node mode) and connects to the cluster, these nodes

will run parallel codes in the next change in the node number.

25

Figure 34: Current nodes in the cluster

4.4 Active nodes

This section (Figure 35) shows the active hosts and nodes in the system.

Figure 35: Active nodes

4.5 Active front-ends

This section (Figure 36) shows all users logged into the system, their IPs, and hosts. Thus, it is

still possible to view the user’s last activity on the cluster.

Figure 36: Active front-ends

26

211

APPENDIX

F
INSTALLATION SCRIPT

This appendix contains the Iguana installation script. Users can use this script to install
the tool directly on the Linux operating system. Tested and valid on Ubuntu 21.04 operating
system.

Source code F.1 – Iguana installation script

1: #!/bin/sh
2: ###
3: # Iguana Installation Script #
4: # Doctoral Project - ICMC USP #
5: # Author: Naylor Garcia Bachiega #
6: # Date: 2019-09-10 #
7: ###
8: NAME=cluster
9: DIR=/usr/local

10: SRC=$DIR/src
11: BIN=$DIR/bin
12: ETC=$DIR/etc/$NAME
13: NFS=/$NAME
14: SHARED=/$NFS/shared
15: MASTER=$SHARED/master
16: SERVICE=/var/lib/systemd/system
17: RUN=/run/$NAME
18: INIT=/etc/init.d
19: STATIC=/usr/local/share/$NAME
20:

21: echo "\nProgram name: $NAME"
22: echo "Instalation dir: $DIR"

212 APPENDIX F. Installation script

23: echo "NFS dir: $NFS"
24: echo "Configuration dir: $ETC\n"
25:

26: func_packages() {
27: LIST_OF_APPS="git golang-go golang docker-compose docker.io nfs-kernel-

server nfs-common clang-tidy"
28: apt update
29:

30: for p in $LIST_OF_APPS
31: do
32: if [$(dpkg-query -W -f=’${Status}’ $p 2>/dev/null | grep -c "ok

installed") -eq 0];
33: then
34: apt-get install -y $p;
35: fi
36: done
37: }
38:

39: func_mkdirs() {
40: LIST_OF_DIRS="$NFS $SHARED $MASTER $ETC $SERVICE $RUN $STATIC"
41:

42: for d in $LIST_OF_DIRS
43: do
44: if [-d "$d"]; then
45: echo "$d find!"
46: else
47: mkdir $d
48: echo "Creating $d directory"
49: fi
50: done
51: }
52:

53: func_clone() {
54: if [-d "$SRC/$NAME"]; then
55: cd "$SRC/$NAME"
56: echo "start git pull!"
57: git pull
58: else
59: echo "start git clone!"
60: cd $SRC
61: git clone https://github.com/naylor/$NAME
62: fi

213

63: }
64:

65: func_build() {
66: export GOPATH=$SRC/$NAME/
67: rm -fr $SRC/$NAME/src
68: cd $SRC/$NAME/backend
69: cp kill.sh $NFS
70: go get -d
71: rm -fr ../src/github.com/docker/docker/vendor/github.com/docker/go-

connections/
72: go get -d
73: go build -o $NAME *.go
74: cp $NAME $BIN/
75: chmod u+x $BIN/$NAME
76: cp ../config/config.yaml $ETC/
77: }
78:

79: func_containers() {
80: cd $SRC/$NAME/containers
81: docker-compose build
82: }
83:

84: func_frontend() {
85: cd $SRC/$NAME/frontend
86: cp -fr dist/frontend/* $STATIC/
87: }
88:

89: func_clusterService() {
90: cd $SRC/$NAME
91: cp $NAME.service $SERVICE/
92: chmod u+x $NAME
93: cp $NAME $INIT/
94: systemctl daemon-reload
95: systemctl enable $NAME
96: }
97:

98: ###### MAIN ######################
99: /etc/init.d/cluster stop

100:

101: dhclient
102:

103: func_packages

214 APPENDIX F. Installation script

104: func_mkdirs
105: func_clone
106: func_build
107: func_containers
108: func_frontend
109: func_clusterService
110:

111: /etc/init.d/cluster start
112: /etc/init.d/cluster status
113:

114: exit

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of charts
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Problem Contextualization
	Motivation
	Research Question
	The Main Proposed Innovation
	Thesis Structure

	Parallel Programming Teaching
	Computer Science Curricula
	The PDC Teaching in Brazil
	The PDC Teaching Around the World
	Mapping of Theoretical and Practical Teaching Approaches
	Content of Parallel Programming Teaching
	Shared Memory (OpenMP)
	Message-Passing (MPI)
	Accelerator-oriented Massively-parallel Programming (GPUs)
	Infrastructure for teaching parallel programming

	Final Considerations

	Virtualization
	Container-based and Hypervisor-based Performance
	Container-based
	Technologies for Containerization
	Docker
	Docker Swarm
	Constraint Isolation in Container

	Volume Sharing in Containers
	Network File System
	Docker Volumes
	DV and NFS Performance Evaluation

	Final Considerations

	Iguana Cluster System
	Requirement Analysis
	System Design
	Architecture
	Platforms
	Programming
	Communications
	Security

	Implementation
	Testing and Deployment
	Final Considerations

	Experimental Evaluation
	System Usability Scale
	Evaluating Usability with Lecturers and Computing Professionals
	Distribution of professionals
	Results of the experiment - 1st round
	Results of the experiment - 2nd round

	Teaching Parallel Programming with Iguana
	Iguana and non-Iguana grades
	Results of the experiment

	Experiments with CUDA
	Hello World
	Metrics of descriptive statistics
	Thresholding
	Greatest common divisor
	Matrix multiplication
	Multiplication of vectors by a scalar

	Final Considerations

	Related Work
	Systematic Mapping
	aCe C
	STEADY
	A Grid Portal
	StarHPC
	Pilot Library
	ZawodyWeb System
	SAUCE
	SPOC
	OnRamp
	Everest
	Let’s HPC
	Palmetto/JupyterHub

	Final Considerations

	Conclusion and Future Work
	Contributions
	Future Work
	Papers
	Journals
	Conferences

	Bibliography
	Glossary
	DV and NFS Performance Evaluation
	Iguana Design Suggestions Collected from the Experiments
	Iguana Feedback Collected from Experiments
	CUDA Experiments
	Iguana Cluster System Tool Manual
	Installation script

