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RESUMO

MARTINS, L. V. C. Competição de Partícula de Dois Passos para Detecção de Comunida-
des Desbalanceadas em Redes Complexas. 2020. 79 p. Dissertação (Mestrado em Ciências –
Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

O uso de redes complexas provou ser uma excelente ferramenta para revelar informações de
sistemas complexos devido à sua capacidade de descrever relações espaciais, funcionais e
topológicas entre os dados. Uma característica inerente às redes complexas, que é uma excelente
fonte de informações, é sua estrutura de comunidade–geralmente definida como um conjunto
de nós mais densamente conectados entre si do que com outros nós da rede. Para extrair essa
informação, diversas técnicas foram propostas. Uma técnica interessante é a Competição de
Partícula, que é uma abordagem inpirada de fenômenos da natureza na qual um conjunto de
partículas é inserido na rede e deve competir entre si para capturar o maior número possível de
nós. A competição, aqui representada como um sistema dinâmico estocástico que controla as
partículas, é um comportamento amplamente encontrado na natureza quando há escassez de
recursos, como água, alimentos ou parceiros–os vértices do grafo são esses recursos escassos.
No entanto, comunidades desbalanceadas são frequentes em redes complexas reais. Embora
muitas técnicas de detecção da comunidade tenham sido desenvolvidas e algumas delas possuam
um certo grau de tolerância ao diferentes tamanhos de comunidade, ainda falta um mecanismo
explícito e eficiente para tratar esse problema. Neste documento, propomos um modelo de
Competição de Partículas em Dois Passos para detectar comunidades desbalanceadas. No
primeiro estágio, chamado Competição, as partículas competem entre si para ocupar o maior
número possível de nós. No segundo estágio, um mecanismo de regularização do tipo difusão
é introduzido para determinar o nível de dominância de cada partícula, baseado no grau de
dominância da vizinhança de cada nó. As duas etapas executam alternativamente até o processo
de regularização convergir. No modelo original da Competição de Partículas, todas as partículas
têm o mesmo comportamento; portanto, não há como cada partícula ocupar corretamente as
comunidades com diferentes tamanhos ou estruturas. No modelo proposto, o mecanismo de
regularização faz com que cada partícula tenha um comportamento diferente de acordo com
a estrutura da rede. Consequentemente, comunidades com diferentes tamanhos ou estruturas
podem ser corretamente detectadas pelas partículas. Simulações de computador mostram
resultados promissores do modelo proposto. Além disso, o mecanismo de regularização melhora
a precisão e a velocidade computacional do método, pois menos iterações são necessárias até a
convergência, quando comparado aos métodos anteriores de Competição de Partículas.

Palavras-chave: Rede Complexa, Detecção de Comunidade, Comunidades Desbalanceadas,
Competição de Partícula.





ABSTRACT

MARTINS, L. V. C. A Two-Stage Particle Competition Model for Unbalanced Community
Detection in Complex Networks. 2020. 79 p. Dissertação (Mestrado em Ciências – Ciên-
cias de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2020.

The usage of Complex Networks has proved to be an excellent tool in reveling prevalent infor-
mation from complex systems due to its ability to describe spatial, functional, and topological
relations among the data. One inherent characteristic of Complex Networks, which is an excellent
source of information, is its community structure–commonly defined as a set of nodes more
densely connected than to other nodes of the networks. In order to extract this information, many
techniques have been proposed. One interesting technique is the Particle Competition method,
which is a bio-inspired approach in which a set of particles are inserted into the network and must
compete with themselves to capture as many nodes as possible. Competition, here represented
as a stochastic dynamic system that controls the particles, is a behavior widely encountered in
nature when there is a shortage of resources, such as water, food, or mates—the nodes of the
graph are the limited resources each particle must conquer. However, unbalanced communities
commonly appear in real complex networks. Although many community detection techniques
have been developed, and some of them possess a certain degree of tolerance to unbalance,
there is still lacking an explicit and efficient mechanism to treat this problem. In this document,
we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At
the first stage, named Competition, the particles compete with themselves to occupy as many
nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced
to determine the dominance level of each particle at a neighborhood of each node. The two
stages work alternatively until the regularization process converges. In the original Particle
Competition model, all particles have the same behavior; therefore, there is no way to correctly
occupy the communities with different sizes or structures by the particles. In the proposed model,
the regularization mechanism makes each particle to have a different behavior according to the
network structure. Consequently, communities with different sizes or structures can be correctly
detected by the particles. Computer simulations show promising results of the proposed model.
Moreover, the regularization mechanism improves both the accuracy and computational speed
of the method as fewer iterations are required until convergence when compared to previous
Particle Competition methods.

Keywords: Complex Networks, Community Detection, Unbalanced Community, Particle Com-
petition.





LIST OF FIGURES

Figure 1 – Graph representation from real-world scenarios. (a) Visual representation
of the Seven Bridges of Königsberg. (b) Graph representation of the Seven
Bridges of Königsberg problem. . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2 – Visual example of a community: a sub-set of nodes more densely connected
with each other than to other nodes of the graph. . . . . . . . . . . . . . . . 30

Figure 3 – Example of the effect of Eq. 3.9 on the preference levels of a node. Suppose
the Competition step just ended and the Regularization step starts with 𝑀 =

𝑁(𝜏): the preference level of A takes into consideration its direct neighbors:
as most neighbors belong to the “blue particle”, this particle will have a
higher likelihood of defending it on the future. . . . . . . . . . . . . . . . . 41

Figure 4 – Example of the incremental executions of the regularization function upon
the previous execution: by applying Eq. 3.9 incrementally on the previous
result 𝐵(𝑡𝐵−1), the model is able to increasingly improve the results from
the Competition stage, which may be beneficial to obtain fast and accurate
community detection results with fewer iterations. . . . . . . . . . . . . . . 42

Figure 5 – Execution flow of the proposed method . . . . . . . . . . . . . . . . . . . . 43

Figure 6 – Snapshots of a single execution of the proposed method on the GN network
with 𝑍𝑜𝑢𝑡/⟨𝑘⟩ = 0.3. (a), (b), (c) shows the 𝑁(𝑡) domination-levels of the
particles on time 0, 300, and 2000 respectively. It can be noted that at time
2000, each particles roughly settles in a community. (d) shows the first
regularization result obtained upon 𝑁(2000), which is indeed the expected
community result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 7 – Example of the average domination levels on the nodes of each 𝑀 = 4

communities of the network, for the 𝐾 = 4 particles in the system. The GN
benchmark network was generated with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.2. Each particle finds
and dominates a community of the network. . . . . . . . . . . . . . . . . . 53

Figure 8 – Additional executions of the regularization function can be beneficial to
correctly identify communities in networks with unbalanced or otherwise
densely connected communities. . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 9 – Analysis of the accuracy of results through different epochs on a GN bench-
mark network with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.3 and 𝑉 = 10000 nodes, which shows that
the back and forth between both stages may improve the community detection
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Figure 10 – Effect of Δ parameter on the GN Benchmark network with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.5.
Averaged over 100 executions . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 11 – Effect of Δ parameter on the unbalanced community network, containing
two communities with 10 and 100 nodes. Averaged over 100 executions . . 56

Figure 12 – The impact of different values for the 𝜆 parameter for the GN Benchmark
network, with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.5. Averaged over 30 executions. . . . . . . . . 57

Figure 13 – Effects of the 𝜆 parameter in terms of accuracy and iterations until conver-
gence on a network with unbalanced community structure containing two
communities, one with 10 nodes and another with 100 nodes. Average of 30
executions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 14 – Impact of different values for 𝜇 on different network structures. (a) shows
the GN Benchmark network with varying 𝑍𝑜𝑢𝑡/⟨𝑘⟩, allowing the comparison
on different level of community mixture. (b) shows the impact on networks
with varying degree of community sizes: the first community has 10 nodes
and the second community varies. Averaged over 100 executions. . . . . . . 59

Figure 15 – Community detection accuracy of the proposed method on the GN benchmark
network [Danon et al. 2005], averaged over 100 attempts. After 𝑍𝑜𝑢𝑡/⟨𝑘⟩=
0.5, the communities are no longer strongly defined. However, because there
are 𝑀 = 4 communities, the proposed method is still able to identify the
communities with certain accuracy, as the number of inner community links
are higher than the amount of links to vertex of other communities. . . . . . 62

Figure 16 – Unbalanced community in terms of size by varying the size of the second
community between 50 and 5050 nodes. The plotted line is the NMI, while
the error bars shows the best and worst NMI obtained in 100 attempts. . . . 63

Figure 17 – Unbalanced community in terms of density by varying the inner degree of
the first community. The plotted line is the NMI, while the error bars shows
the best and worst NMI obtained in 100 attempts. . . . . . . . . . . . . . . 64

Figure 18 – Unbalanced community detection accuracy averaged over 100 executions
with comparison to other three methods. All the methods are applied to a
sequence of networks each containing two communities, the first of which
containing 50 nodes and the second community varying from 50 to 5050
nodes. Since the first community has fixed size (50 nodes), the networks
become more unbalance as the size of the second community increases
(shown by x-axis). When 𝑥 = 0.010, the second community is 100 times
larger than the first one, i.e., 50 nodes vs. 5050 nodes. . . . . . . . . . . . 65

Figure 19 – Community detection result of the proposed method with 𝐾 = 2 on the
famous Zachery’s karate club network. The proposed method is able to
correctly identify the community structure of the network. Previously no
Particle Competition model were able to correctly identify node 9. . . . . . 65



Figure 20 – Visualization of the results of the Bonferroni-Dunn test. The methods outside
of the CD range from the proposed technique are said to be significantly
different from the proposed method. . . . . . . . . . . . . . . . . . . . . . 68





LIST OF ALGORITHMS

Algorithm 1 – Two-stage Particle Competition Algorithm . . . . . . . . . . . . . . . 46
Algorithm 2 – Particle Competition step . . . . . . . . . . . . . . . . . . . . . . . . . 46
Algorithm 3 – Regularization step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47





LIST OF TABLES

Table 1 – The list of parameters of the algorithm, containing their description and a short
discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 2 – UCI data set meta data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 3 – Comparison between data clusterization methods and the proposed algorithm

in 20 independent runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 4 – Proposed Method and Silva & Zhao, 2012 average running time in seconds . 69





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 FUNDAMENTAL CONCEPTS . . . . . . . . . . . . . . . . . . . . . 27
2.1 Complex Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Community Detection Algorithms . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Divisive Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Modularity-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Label Propagation-Based Methods . . . . . . . . . . . . . . . . . . . . 35

3 A TWO-STAGE PARTICLE COMPETITION MODEL . . . . . . . . 37
3.1 Particle Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The Two-Stage Particle Competition Model . . . . . . . . . . . . . . 39
3.2.1 The Proposed Regularization Stage Mechanism . . . . . . . . . . . . 40
3.3 Transition Matrix for Network Exploration . . . . . . . . . . . . . . . 42
3.4 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Initial Condition of the System . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.1 Competition stage termination criteria . . . . . . . . . . . . . . . . . 44
3.6.2 Model termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Algorithm and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Model Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9 Parameters overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 EMPIRICAL ANALYSIS OF THE MODEL . . . . . . . . . . . . . . 51
4.1 Empirical Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 Single-execution illustration . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Competition over time (𝑁(𝑡)) . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Regularization analysis (𝐵(𝑡𝐵)) . . . . . . . . . . . . . . . . . . . . . . 53
4.1.4 Epoch analysis (𝜏) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



4.2 Parameters analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Impact of Δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Impact of 𝜆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Impact of 𝜇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 COMMUNITY DETECTION AND DATA-CLUSTERING SIMULA-
TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Simulations on Artificial Data . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Simulations on Real World Data . . . . . . . . . . . . . . . . . . . . . 64

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Submissions during Master Period . . . . . . . . . . . . . . . . . . . . 72
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



21

CHAPTER

1
INTRODUCTION

Humans have a special ability and necessity to analyze, interpret information and,
ultimately, build knowledge. Our search for knowledge has come a long way, and time has
proved humankind’s everlasting effort in pursuing it. Humanity went from rudimentary drawings
on walls to advanced communication through speaking and written language and, in the last
century or so, to the development of machines capable of making complex calculations in a
matter of seconds, which no average person would be able to accomplish. In the last few decades,
to be specific, it has shown a rush towards extracting information and learning knowledge through
machines in the so-called machine learning field. The focus of research in machine learning is
in creating and studying models for data representation and ever-improving methods to extract
information from those models, through tasks such as classification [Wang et al. 2020, Silva and
Zhao 2012], clustering, regression [Wan et al. 2015], pattern recognition.

Although humans and machines obtain, represent, and analyze data in different ways,
that does not stop us from taking inspiration from real-life and nature-inspired behaviors when
developing new models and techniques for computer intelligence. That is the case of graphs and
Complex Networks: a data representation model capable of describing real-world systems and
phenomenons effortlessly, such as social networks, the internet [Rowe et al. 2007, Simeonovski
et al. 2017], co-authorship networks [Chuan et al. 2018], among others. Graph as a data rep-
resentation object for machine learning is currently the focus of much research because of its
ability to represent data understandably and intuitively to humans. Additionally, graphs have
proved to generate great results in many fields and tasks, ranging from sentiment analysis [Wang
et al. 2018] to 3D DNA folding [Cabreros, Abbe and Tsirigos 2016] – a comprehensive review
of applications can is available in [Costa et al. 2011].

Graphs work in a very intuitive way: there is a set of nodes, and there is a set of links.
Nodes (or vertices) are objects or agents that interact with each other in the system; On the
other hand, the edges (or links) represent the connections or interactions between those nodes or
agents. In a graph, the edges link the vertices in such a way relevant to the context represented.
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The graph is used to extract information since real-world systems are likely present complex
behaviors and unique properties such as a high number of nodes and links, presence of hubs,
community structure [Boccaletti et al. 2006, Newman 2018]. Graphs can reveal the represented
system’s inherent behaviors and characteristics by its structure.

An essential property of a graph that can reveal relevant information is its’ community
structure. The concept of a community in graphs has long been the focus of discussion [Costa
et al. 2007]. Nevertheless, it is wildly referred to as a sub-group of nodes more connected to
each other than to other nodes of the graph [Girvan and Newman 2002]. The detection of the
community structure has great potential in revealing vital information on the system represented
by the Complex Network. Community detection is an NP-complete problem, and there are many
community detection algorithms developed so far [Fortunato 2010], each one with their own set
of benefits and drawbacks.

One interesting approach to community detection is the bio-inspired Particle Competition
model, first introduced in [Quiles et al. 2008] and later improved on [Silva and Zhao 2012].
Competition is a natural behavior that occurs when there is a lack of resources such as food,
water, or mates. This bio-inspired method works by randomly releasing particles in a network,
which then must compete with each other to conquer as many nodes as possible, with the nodes
of the network being the limited resource. The particles are random-walkers: in short, means
they visit the network node by node making a trajectory.

The Particle Competition model works in the following way: each node has a domination-
level that informs which community it belongs, and the particle has an energy level to guide its
behavior. Each time a particle visits a node, its domination-level on the node increases, while the
domination-level of its rivals decreases, simultaneously the particle’s energy level is also altered.
In essence, it increases when it visits a node it owns, but it decreases when it attacks a node
owned by a rival. The particle with most domination-level is said to own the node. The particle’s
energy level guides the Competition by forcing the particle to stay in its community, defending
it. In essence, if the particle attacked too many nodes belonging to rivals, it gets teleported back
to its community, where it must recharge its’ energy by visiting and defending its nodes. Finally,
each particle occupies a set of nodes to form a community.

To improve the Competition process, each Particle Competition model proposes two
ways for the particle to choose the neighboring node to visit. The first movement type is referred
to as the Random Walk movement: each neighboring node has the same probability of being
chosen. This movement type is essential for good clustering results, as it acts as a novelty finder
and helps the particle explore the network and avoid traps. Additionally, each version of the
Particle Competition model proposes a second movement type, in which the particle chooses the
neighboring node based on the members of the particle’s community. The idea is to assert that
the particle will remain in its community to defend it from rivals. In the work of [Quiles et al.

2008], this biased movement type is known as the Deterministic Walk. In essence, each time the
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particle is about to visit a new node, the movement type is chosen using the 𝜆 parameter. If the
chosen movement type is the Deterministic Walk, the particle is only allowed to visit nodes that
already belong to the particle’s community. However, the work of [Silva and Zhao 2012] further
improved the model by proposing a combination of the two walking types, rather than selecting
and only using a movement each time. Such a combination, named Preferential Walk, allows the
particle to choose the next node to navigate to freely, but giving preference (i.e., higher chance)
to choose nodes it already visited more frequently in the past. The Preferential Walk further
improved the model’s ability to detect and provide accurate community results.

Both previous iterations of the Particle Competition model rely on knowledge build
upon the frequency of visitation each node received up to that moment as a guide. The second
movement type uses this guide to incentivize the particle to continue visiting the nodes most
likely to belong to its’ community. As studied in both papers, the combination of both movement
types is essential to obtain good clustering results. However, over time it was found that the
random walk alone has a few disadvantages, which can mainly be summarized as a “lack of
vision”. 1) because each particle behaves the same, the detection of communities of different
sizes is nearly impossible; 2) to achieve good clustering results, it is necessary a high amount of
iterations for the particle to find, own and defend all member of the community.

1.1 Motivation

The usage of graphs for machine learning tasks already proved to be quite useful [Wang
et al. 2020, Chuan et al. 2018, Simeonovski et al. 2017, Javed et al. 2020], specially through the
detection of communities. However, there is one salient aspect in community detection often
overlooked when choosing or even when developing new community detection techniques: the
detection of communities of different sizes or densities, i.e., unbalanced community detection. In
reality, balanced classes or communities of the same sizes are not a reasonable expectation when
representing a real-world system or data sets in graphs [Danon, Díaz-Guilera and Arenas 2006].
Entirely on the contrary, the works of [Guimera et al. 2003,Palla et al. 2005] found that in reality,
real-world networks are likely to have community sizes that follow a power-law distribution.

However, not every community detection method can accurately identify community
structures of different sizes. For example, the authors of [Fortunato and Barthelemy 2007] proved
many modularity optimization-based techniques might fail to correctly identify communities that
are too small when compared to others, related to network size. Such characteristic highlights how
overlooked the field might be since the usage of modularity is one of the most famous approaches
to community detection [Fortunato 2010]. Indeed, many great techniques (modularity-based or
not), including the Particle Competition, are unable to provide accurate results when used in a
network with such behavior. Still, unbalanced community detection is an important topic that
has received increasing attention due to the complex nature of data in real-world systems.
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In order to work around such predicament, researchers started to focus on the development
of new methods capable of dealing with such expectations. However, up to now, there still lacks
a general and efficient method to detect unbalanced communities in Complex Networks.

Furthermore, the proposed method works by proposing a novelty combination of two
well-establish concepts: the sequential propagation of information with Random Walk, through
the Competition and parallel propagation of information through the Regularization. Therefore,
the proposed method can be extended or modified for other areas, leaving room for future work.

The Particle Competition is based on random walks in networks, where each walker
randomly selects a node to visit at each step. Random walk is a stochastic process that has been
extensively studied in various disciplines, such as in physics and chemistry, biology, financial
economics, image processing, and vision science [W. and N. 1974, G. 1992, H. 1984, Grady
2006, Rucci and Victor 2015]. The approach is also employed in several machine learning
methods [Silva and Zhao 2016]. Similarly, parallel propagation of information, also known
as just propagation or diffusion, is another extensively studied topic, which can be used to
model various natural and artificial processes [Landau and Lifshitz 1980, Pavliotis 2014]. It has
also been employed in many machine learning techniques. Examples ranges from community
detection [Fortunato 2010, Raghavan, Albert and Kumara 2007, Zhu and Xia 2018] to semi-
supervised learning [Culp and Michailidis 2008, Zhou et al. 2004] and even deep learning [Wu
et al. 2019].

The combination of both fields of study proposed in this work may contribute to the
further development of graph-based techniques for machine learning.

1.2 Objective

The Particle Competition model can achieve excellent results in both community detec-
tion and data-clustering tasks at the same as it has a low computationally complexity. However,
because every particle in the system shares the same behavior, the method is prone to fail to
identify communities with different sizes correctly. This failure in detecting unbalanced commu-
nities happens because every particle in the system has the same ability to attack and defend its
community from its peers. Therefore, a particle attempting to defend a larger community will
not be able to defend its nodes at the same rate in which a particle from a smaller community
can attack them. The project’s primary goal is to propose a new mechanism for the Particle
Competition model to improve its community detection results on networks with an unbalanced
community structure.
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1.3 Main Results

In summary, this project augments the Particle Competition model by proposing a new
“guide” mechanism based on local observation of the graph, generated from a process we named
Regularization. Previously, all Particle Competition models use the number of visits up to
that point to bias the particle towards staying in its’ community through the deterministic or
preferential walking model. In this project, we propose a new Particle Competition model,
augmented with a new diffusion-like regularization mechanism that creates a custom guide for
each particle to follow. This guide will influence the particle to visit the nodes that are most
likely to belong to its community, allowing for the detection of unbalanced communities.

The guide is based on the neighborhood of each node. In essence, if a given node has more
neighbors that belong to a rival particle, then this rival particle will have a higher likelihood of
visiting this given node. Thus, we create, for each particle, a individual guide with a custom and
unique behavior tailored to the community structure the particle is dominating. This mechanism
poses a massive functional difference in the proposed method in comparison to previous Particle
Competition, as no longer the Preferential Walk can be misled by the particles’ equal ability to
attack and defend nodes. Rather, the Preferential Walk will adapt to the structure of the network.

Conceptually, we are proposing a model which combines two propagation models:
sequential and parallel. The Particle Competition propagates the label information in sequence
by visiting the nodes one by one in a detailed way and provides a chance to correct errors. In
contrast, the parallel propagation can quickly share the label information to the nodes, but it
loses the self-correcting ability. The proposed model combines both models to better understand
the community structure of the network.

The usage of this guide, build from the particle’s community and its neighborhood,
provides some advantages to the proposed model when compared to both versions of the Particle
Competition model [Quiles et al. 2008, Silva and Zhao 2012, Gao et al. 2019], mainly:

1. Unbalanced Community Detection: the diffusion-like guide builds upon the direct neigh-
bors of each node and allows each particle to have different behavior, per the network’s
topology. Such behavior makes it possible for each particle to identify communities of
different sizes, regardless of the level of unbalance in the communities of the network.

2. Improved detection of nodes sharing links with other communities: in the original
Particle Competition model, the domination-level of a node (which is responsible for its’
label) only changes when it gets visited by a particle. As a result, nodes sharing links to
other communities frequently gets visits from rivals, which may affect the accuracy of
the results in larger networks, due to the large number of iterations required to defend
those nodes properly. The diffusion-like regularization model asserts to only guide the
particle to visit nodes that it has the majority of its neighbors. Therefore, nodes whose
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links are shared between different communities are more likely to be correctly clustered in
the proposed model.

3. Improved time efficiency of the model: the Particle Competition model can only prop-
agate labels node by node, which means that it needs to visit every node of network at
least once to classify it. Moreover, due to the stochastic nature of the method, the model is
prone to initially misclassify nodes during the initial iterations, until each particle roughly
settles in a community. Therefore, the correct identification of the communities and even-
tual correction of misclassified nodes requires Competition to occur, which demands a
large number of iterations, especially in larger networks. The proposed diffusion-like
regularization function improves the method on both aspects. In essence, no longer the
Particle Competition is required to run enough iterations to visit every node of the network.
When the Regularization mechanism propagates the labels through the network, nodes
that have not yet received visits are automatically labeled. Additionally, the proposed
regularization mechanism thrives in fixing eventual misclassifications, which are certain to
occur. Therefore, the proposed method can handle much larger networks with drastically
fewer iterations. At the same time, it maintains the same computational complexity order
of the previous Particle Competition models.

In this document, we propose the new Two-Stage Particle Competition method for the
Particle Competition family of algorithms. The method has two steps. The first is the Competition
itself, which is when the particles will roam the network, trying to conquer as many nodes as
possible. The second step is the diffusion-like regularization mechanism, which will generate
a custom guide for each particle, tailored for its community’s topology. Both stages learn and
regulate each other until convergence. The guide is built upon the topology of the particle’s
community, allowing each particle to have different behavior, making possible the detection of
communities of different sizes.

1.4 Document organization
The organization of this document is as follows: firstly, a quick introduction of the main

concepts, ideas, and results is given in this chapter. Next, in Chapter 2, we shall dive into details
into the main topics of the document: complex networks, community detection, and the Particle

Competition algorithm. Then, in Chapter 3, the proposed method for unbalanced community
detection is described in detail. Chapter 4 contains an empirical analysis of the proposed model,
which illustrates how it works and analyzes how it behaves under different circumstances and
different parameters. Finally, in Chapter 5, the proposed method is applied to real-world and
artificial community detection and data-clustering tasks. The last chapter, Chapter 6, concludes
this document and discusses future works regarding the proposed method.
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CHAPTER

2
FUNDAMENTAL CONCEPTS

In this section, essential concepts related to this project are introduced, such as the history,
models, and techniques used on graph-based machine learning. Models for community detection
related to this project are also revised.

2.1 Complex Networks

(a) Real-world (b) Graph

Figure 1 – Graph representation from real-world scenarios. (a) Visual representation of the Seven Bridges
of Königsberg 1. (b) Graph representation of the Seven Bridges of Königsberg problem.

Graph was first proposed as an analytical solution to the famous “Seven Bridges of
Königsberg” problem. The problem was to determine whether or not it was possible to navigate

1 By Bogdan Giuşcă - Public domain (PD), based on the image, CC BY-SA 3.0, <https://commons.
wikimedia.org/w/index.php?curid=112920>

https://commons.wikimedia.org/w/index.php?curid=112920
https://commons.wikimedia.org/w/index.php?curid=112920
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through the seven bridges that existed back then in Königsberg (now Kaliningrad) and go back
to the starting point without ever crossing a bridge more than once. It was Leonhard Euler in
1736 who proved such a task was not possible by representing such a system as a graph, with the
locations as the vertices and the bridges as the edges, representing the bridges between them.
This structure, which is the base of a graph object and is still in use today, marked the start of
Graph Theory and the study of Topology [Shields 2012]. The following years showed an increase
in the research and new developments for graphs in terms of theory and applications. Although
research started in the mathematics field, it eventually expanded to other areas such as computer
science, physics, linguistics, as indeed, there are many applications for graphs [Fortunato 2010].

Formally a graph is represented as tuple 𝐺= (𝑉,𝑒), in which 𝑉 = {𝑣1,𝑣2, ...,𝑣𝑛} is the
set of nodes or agents in the system and 𝑒= {𝑒1, 𝑒2, ..., 𝑒𝑛} is the edges or links that connect those
agents. However, in order to allow for even more robust and direct representation of real-world
phenomenons without losing information, new graphs structures were proposed that extend this
basic definition. Some specific definition of graphs is as follows:

• Directed Graph: A directed graph can better represent a system in which a link between
two nodes is not symmetric. A famous example is when representing social networks, in
which a person may follow someone that does not follow them back. An intuitive definition
is when the link between node 𝑣𝑖 and node 𝑣𝑗 is different from the link between node 𝑣𝑗 to
node 𝑣𝑖, i.e., (𝑣𝑖,𝑣𝑗) ̸= (𝑣𝑗 ,𝑣𝑖).

• Weighted Graph: Weighted graphs allows additional information in the form of weight
in the links connecting nodes. The weight between the nodes can be used by machine
learning algorithms to better extract information from the represented system. Formally,
the edges of a weighted graph has the following structure: 𝑒= {(𝑣𝑖,𝑣𝑗 ,𝑤1)}.

There are different approaches to represent a graph in a computer. The most common one
is by using a square adjacency matrix 𝐴, with dimension dim(𝐴) = |𝑉 |× |𝑉 |. Each element 𝐴𝑖𝑗

is used to represent a possible edge in the graph connecting the nodes 𝑣𝑖 and 𝑣𝑗 , i.e., 𝐴𝑖𝑗 > 0 when
such link exists, otherwise 𝐴𝑖𝑗 = 0. Therefore, the matrix 𝐴 needed to constitute an undirected
and unweighted graph is symmetrical, containing only 1s and 0s to represent the links. In the
case of a weighted graph, 𝐴𝑖𝑗 can represent the weight of the link between nodes 𝑣𝑖 and 𝑣𝑗 .
Many relevant properties of the graph may be extracted using such representation. For example:
to obtain the degree of a node, one must sum the row which belongs to it.

The distinction between a graph and Complex Networks has also been the focus of
discussion. Some authors define graphs as a mathematical representation of a network [Newman
2018]. Others define networks as a natural representation of a complex system and graphs as a
human-made representation [Mihalcea and Radev 2011]. However, the most used definition is
that networks are graphs with non-trivial topology, often representing systems with hubs and
community structure [Mihalcea and Radev 2011, Newman 2018]. Networks frequently exhibit



2.2. Community Detection 29

a high number of nodes and edges with a diversity of connections, in the form of weights and
directions.

In machine learning, the traditional model for data representation is vector-based, which
represents data through instances and their attributes. Therefore, in order to take advantage of
methods and machine learning approaches available for graphs, an important topic is how to
translate a real-world data set, originally a vector-based representation, as a graph for machine
learning tasks. There are many approaches to accomplish such a task, as this is a relevant topic
that is receiving increasingly more attention. Some of the simplest approaches to such task are:

• K-Nearest Neighbor Graph: one of the most famous approaches is to generate a graph
by connecting each item of the data set to their 𝐾 most similar data point. Initially, each
data point of the data set is a node in the graph. Then, using a similarity measure, all
elements get connected to their first 𝐾 most similar data point from the data set.

• 𝜖-Radius Graph: another approach to generate to consider each data point as a node in
the graph. Each node gets linked to its most similar neighbors, who are inside the radius of
𝑒. This approach can generate densely connected communities, at the risk of generating
too many edges, as 𝐾 is sensitive both to the applied similarity function, as well as the
data set.

• Mutual K-Nearest Neighbor Graph: [Brito et al. 1997] proposes a modification to the
K-Nearest Neighbor graph. This approach only connects nodes (data points) that are both
in their 𝑘 most similar neighbors.

2.2 Community Detection
One inherent aspect of a Complex Network is the presence of a community structure,

which is an essential source of information explored in many works [Javed et al. 2020, Kawasaki
and Ikeda 2020]. Indeed, in the context of a society, the members of a community can be defined
as a group of invidious that shares common characteristics, interests, or beliefs, often because of
religion, culture, or historical heritage. That is the type of information or insight a community
can provide: which members of the system share the same behavior, function, or play similar
roles in the overall system. This information can and have been exploited to understand many
real-world scenarios, for example, in amazon.com data set, energy point of failure example, and
molecular structure [Guimera and Amaral 2005]. Additionally, community detection through
graphs proved to be an advantageous model for data-clustering tasks of real-world data sets, once
the data get represented as a graph [Silva and Zhao 2012, Javed et al. 2020, Kawasaki and Ikeda
2020].

The definition of a community in a Complex Network is simple. In essence, a community
is a sub-group of nodes more densely connected to themselves than to nodes of other communities
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Figure 2 – Visual example of a community: a sub-set of nodes more densely connected with each other
than to other nodes of the graph.

[Girvan and Newman 2002]. Due to the complex nature of real-world data, graphs may display
very complex behavior in the form of their structure, including in its community. Two prevalent
examples of complex behaviors found in the communities of a Complex Network are: they may
be unbalanced, i.e., have strikingly different sizes or exhibit a hierarchical structure in which
communities are composed of smaller sub-communities.

Community detection is somewhat similar to graph partition, which is an NP-Hard prob-
lem. Throughout the last two decades, however, many authors proposed different approximate
and efficient heuristic methods to this task [Fortunato 2010].

2.3 Community Detection Algorithms

Many community detection methods have been developed [Fortunato 2010]. However,
most of them do not provide an explicit mechanism to detect unbalanced communities, which is
a phenomenon widely observed in real-world applications. In this section, we provide a quick
review of some community detection approaches and methods.

2.3.1 Divisive Based Methods

Divisive methods are one of the most classic approaches to community detection. Those
are methods that increasingly divide the members of a network by removing the edges which
connect different communities following given criteria. The idea is that, following this criteria,
one may identify what members belong in the same community.

One of the earliest proposals in this field is in [Girvan and Newman 2002, Newman
and Girvan 2004], as it not only defined an excellent approach for community detection but
also marked the beginning of a new era in the field by highlighting the importance of studying
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the community structure in a network and introducing the field to physicists. The method
introduces one of the most straightforward approaches to divisive methods. In essence, using
the edge centrality measure, the authors propose the detection of the community structure in the
network by removing the edges which connect different communities, highlighted by higher edge
betweenness values. In practice, the edge centrality measures how important an edge is when
flowing information through the network. Propose we need to exchange information between
two communities of a given network. By sending the information node by node, the edges which
connect different communities would be highly used, as there are not many choices of edges
when passing the information outside the community in comparison to inside the community.
The algorithm proposed in [Girvan and Newman 2002, Newman and Girvan 2004] consists
of calculating the edge centrality measure for all links in the network. Then, the link with
the highest value gets removed from the network. The process is restarted by calculating the
centrality measure for all links again and repeating the process.

In [Tyler, Wilkinson and Huberman 2005], the authors improve the original GN method in
terms of computational speed, allowing it to be employed in more massive graphs. Additionally,
the model can detect overlapping communities, which is the identification of nodes that belong to
more than one community at a time. The idea is only to calculate the edge betweenness measure
to a set of a limited number of centers in the graph, which are picked at random following a
Monte Carlo estimate. The lower number of calculations assures a faster computational speed.
This approach also allows identifying the degree of overlapping between communities each node
has. The method proposed in [Rattigan, Maier and Jensen 2007] is also a faster version of the
GN method; this approach uses a network structure index, which is a set of node annotations
combined with a distance measure [Rattigan, Maier and Jensen 2006]. This approach consists in
approximating the edge betweenness by dividing the network into regions and computing the
distances of every node from each region using the distance measure. Such an approach has a
lower complexity in comparison to the original GN algorithm.

Another highly relevant method worth to be explained in detail is presented in the recent
work of [Žalik and Žalik 2018], where the authors propose a model for detecting unbalanced
communities in networks by combining a set of different network measures. The model’s most
interesting aspect is to identify the communities one by one, which supposedly assures the
correct identification of every community regardless of its size or density. The detection of the
local community uses a set of measures that analyses the topology of the network. Important
measures used are:
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𝑆𝑖𝑗 = 𝐴𝑖𝑗 .𝐴
𝑇
𝑖 .𝐴𝑗 (2.1)

𝑠𝑖𝑚𝑑𝑒𝑔𝑖 = ∑
𝑗∈𝐺

𝑆𝑖𝑗 (2.2)

𝑠𝑖𝑚𝐶𝑖,𝑙 = 𝑆𝑇
𝑖 .𝐶𝑙 (2.3)

𝑠𝑖𝑚𝐶𝑙 = ∑
𝑖∈𝐶𝑙

𝑠𝑖𝑚𝐶𝑖,𝑙 (2.4)

𝑠𝑖𝑚𝐶𝑚𝑎𝑥
𝑖 =max(𝑠𝑖𝑚𝐶𝑖,𝑙′), 𝑙

′ ∈ 𝑃 (2.5)

𝑠𝑖𝑚𝐶𝑖,𝑙 = 𝑠𝑖𝑚𝐶𝑚𝑎𝑥
𝑖 (2.6)

The first equation (Eq. 2.1) quantifies the similarity between two given nodes (𝑖 and 𝑗):
their similarity increases proportionally to the number of common nodes they share connections
to. Equation 2.2 (𝑠𝑖𝑚𝑑𝑒𝑔𝑖) is referred to as the similarity degree of node 𝑖, which is the sum of
similarities (Eq. 2.1) of all direct neighbors of node 𝑖. The next set of measures compares nodes
to communities: Eq. 2.3 (𝑠𝑖𝑚𝐶𝑖,𝑙), for example, quantifies the similarity of the node 𝑖 to the
members of the community 𝐶𝑙. Equation 2.5 extends the previous equation for comparison to
other communities detected (𝑙′ ∈ 𝑃 , and 𝑃 is the set of communities), this equation is important
because it allows comparing how coherent it is for a given node 𝑖 to be in part of the community
𝑙, which is what the Eq. 2.6 yields.

𝑠𝑖𝑚𝑑𝑒𝑔𝑖,𝑗 =
𝑆𝑖,𝑗

𝑑𝑒𝑔𝑖
(2.7)

𝑃𝑉𝑙 = {𝑖|𝑠𝑖𝑚𝑑𝑒𝑔𝑖,𝑗 > 𝛼 AND 𝑠𝑖𝑚𝑑𝑒𝑔𝑗,𝑖 > 𝛽,𝑖 /∈ 𝑙, 𝑗 ∈ 𝑙} (2.8)

The authors propose the following algorithm: nodes currently not in a community are
in a set of free nodes. Each iteration, the node with the highest similarity degree (Eq. 2.2) is
chosen from this set as the starting point for the local community identification. From this node,
a new community 𝑙 will be uncovered, starting by the node’s neighbors. For that, we use the
set 𝑃𝑉𝑙 of candidate nodes. It defines a threshold that limits what nodes may get added to the
community currently in creation. Only nodes that are not yet part of the community 𝑙, but that
shares a 𝑠𝑖𝑚𝑑𝑒𝑔𝑖,𝑗 (Eq. 2.7) higher than 𝛼 to any node 𝑗 of the community, may be added to
the current community. This criterion assures only nodes in this threshold can be added to the
community, therefore, allowing to detect only one community at each time. Additionally, by
controlling 𝛼 and 𝛽, the user may set the behavior in which communities are discovered.

The candidate nodes available in 𝑃𝑉𝑙 are added to the current community if they are
strongly connected to the community as per Eq. 2.6, extended with all possible nodes of the
community 𝑙 (Eq. 2.3). At which point, the next community must be uncovered, and the process
restarts again by selecting the next node with the highest similarity degree from the free nodes

set. The process repeats until there are no more nodes in the free nodes set.
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𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑙,𝑢 = ∑
𝑖∈𝑙,𝑗∈𝑢

𝑆𝑖,𝑗 (2.9)

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑚𝑎𝑥
𝑙 =max(𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑖,𝑢),𝑢 ∈ 𝑃 ; (2.10)

𝑄𝑀 =
𝑘

∑
𝑙=1

𝑒𝑙𝑙−2* 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑚𝑎𝑥
𝑙

𝛼𝑙
;𝑒𝑙𝑙 = 𝑠𝑖𝑚𝐶𝑙;𝛼𝑙 = ∑

𝑖∈𝑙
𝑠𝑖𝑚𝑑𝑒𝑔𝑖 (2.11)

Δ𝑄𝑀 =
𝑒𝑙𝑙−2* 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑚𝑎𝑥

𝑙

𝛼𝑙
− (

𝑒𝑖𝑖−2* 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑚𝑎𝑥
𝑖

𝛼𝑖
−

𝑒𝑗𝑗−2* 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑚𝑎𝑥
𝑗

𝛼𝑗
) (2.12)

The communities identified so far are called “preliminary communities”, they can be
unstable and as such, must be joined together to form a stable community. For this task, the
authors define Eq. 2.12, which is a quality function of stability, used when joining two preliminary
communities 𝐶𝑖 and 𝐶𝑗 to form a new stable community 𝐶𝑙. Equation 2.12 compares the input
communities using measures already defined, such as 𝑠𝑖𝑚𝐶𝑙 (Eq. 2.4), 𝑠𝑖𝑚𝑑𝑒𝑔𝑖 (Eq. 2.2) and
𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑙,𝑢 (Eq. 2.9), which quantifies how separable the communities are. Each community is
merged together with its neighbor as to maximize and increase the quality function Δ𝑄𝑀 (Eq.
2.12).

However, the selection of reasonable values for the parameters 𝛼 and 𝛽 adds to the com-
plexity of the method, as it is unclear what values are appropriate for each network. Additionally,
because of the selection of specific network measures, the ability of unbalanced community
detection may be restricted.

2.3.2 Modularity-Based Methods

The modularity equation was first proposed by [Newman and Girvan 2004] with the
simple goal of providing a measure of how modular the network is, and as such, to qualify
the results obtained by community detection methods. The Eq. 2.13 presents the modularity
function.

𝑄=
1

2𝑚∑
𝑖𝑗

(𝐴𝑖𝑗−𝛾
𝑘𝑖𝑘𝑗
2𝑚

)𝛿(𝑔𝑗 ,𝑔𝑗) (2.13)

To better define the modularity function, consider the input Complex Network as an
adjacency matrix 𝐴. The modularity function contains the following elements: firstly, 𝐴𝑖𝑗 are
the elements of the graph matrix 𝐴, 𝑚 is the sum of all weights in the network, 𝑘𝑖 is the weight
of the 𝑖 vertex, as 𝑘𝑗 is the weight of the 𝑗 vertex. Finally, 𝛾 is a parameter to define the scale
of the community detection: smaller values for 𝛾 generates a higher number of communities.
The modularity function uses the concept of a null model network, which is a synthetic network
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whose edges are created at random and, therefore, should display no community structure. 𝑄
exploits this concept by comparing the original network against the null model: given a network
and a community structure, 𝑄 returns a close to 1 when the structure is highly modular, indicating
the existence of a community structure. Otherwise, 𝑄 returns a value close to 0, indicating the
given community structure is no more modular than that of the null model.

Later, the discovery of modularity leads to a new set of methods that exploits the value
as a means to obtain accurate community detection results. By using the measure as an indicator
of the quality of a community division, one can identify communities by identifying which set of
communities or divisions of the graph maximizes this value. The challenge, however, becomes a
matter of identifying the best way to select and generate such community division, as arranging
𝑉 nodes into different sets of possible communities is very costly [Newman 2004], and it is
indeed an NP-Complete problem [Brandes et al. 2007]. In light of this, in the same year, the
work of [Newman 2004] proposed a new community detection technique based on modularity
optimization through a standard greedy optimization algorithm, capable of providing fast and
reliable results. Exploiting the same idea, [Blondel et al. 2008] proposes a method able to handle
massive networks with modularity optimization. It proposes a new and faster way to compute the
modularity, which makes it feasible to decide which community each node should be by change
each node’s community to increase its value.

Modularity was exploited in a wide range of ways for community identification. Besides
the Greedy optimization techniques, some authors also proposed the optimization of modularity
through simulated annealing [Kirkpatrick, Gelatt and Vecchi 1983] – an approach that manages to
obtain highly accurate results at the cost of high computational complexity. The work of [Guimera,
Sales-Pardo and Amaral 2004] proposes the usage of two moves for such an optimization: local
moves, in which only one node gets changed from a cluster to another; global moves, which
can split or join different communities. The two-movement types generate different community
structures, which are validated and improved with the simulated annealing algorithm. However,
although this approach can obtain accurate results, it has a low computational speed. In order to
obtain good computational speed, some authors also proposed the usage of extremal optimization
through a heuristic search [Duch and Arenas 2005]. As a fitness function to be optimized, the
method proposes the usage of local modularity divided by the node’s degree. The method starts
by randomly dividing the graph into two communities. Then, on each iteration, the node with
the lowest fitness is moved from its community to the other. This step gets repeated until the
modularity value does not change anymore. In order to detect more than two communities in a
network, the process gets repeated, considering each generated community as a graph itself. This
approach manages to obtain accurate results and maintains good computational speed.

Most recently, researchers also studied the ability to detect communities using new
approaches for optimization. Examples of such work are on [Yang et al. 2016], which can
identify the best combination of communities by combining the optimization of modularity with
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a stochastic block model using deep learning. The work of [Zhou et al. 2019] employs a new
global optimization method named Discrete State Transition Algorithm. The idea is to find the
state (a possible configuration of the community) to maximize the fitness function given by the
modularity value. The authors define two operations to change such a state: the first is the Vertex
Substitute Transformation, which changes the community of 𝑘 selected nodes. The selection of
the 𝑘 nodes is made using the neighborhood of the node: if most neighbors belong to another
community, this node has a higher chance to be selected. The other is the Community Substitute
Transformation, which changes the label of all nodes of the same community. Once again, the
criteria used is the neighborhood of the community. In essence, if the neighborhood is mostly
composed of different labels, the community has a higher chance of being selected.

Focusing on the resolution problem modularity-based methods faces, [Zhang and Zhao
2012] proposed a new community detection technique that focuses on working around the prob-
lems in modularity-optimization, as to make it suitable for unbalanced community detection. The
model focuses on community detection through the leading eigenvector model [Newman 2006],
which is unable to correctly identify communities when they have drastically different degrees:
a common occurrence in unbalanced networks. First, the authors propose the identification of
the number of communities presented in the network. Such a task is accomplished through
a modification of a graph partition technique the authors also propose. The first step of the
method is to generate the 2𝐴−𝐷 matrix, with 𝐴 being the adjacency matrix representing an
unweighted graph and 𝐷 being a diagonal matrix containing the degree of each one of the vertex
in the graph. Such a matrix exposes the idea of modularity: it is an approximation of which
vertice’s degree most differs from that of a network with no community structure. With the
number of communities 𝐾 of the network, the model proposes the identification of the largest
𝐾 eigenvector of the 2𝐴−𝐷 matrix. Such result is then used to generate a new matrix 𝑇 , with
dimension 𝑑𝑖𝑚(𝑇 ) = |𝑉 |×𝐾. The 𝐾-means clustering method is then applied to the newly
created 𝑇 matrix, identifying the communities of the network. By clustering the vertices using
the combination of the 𝐾 largest eigenvectors and the 𝐾-means method, the authors manage
to bypass the resolution limit, by treating each community separately. The downside of the
approach is that the method has a somewhat high complexity order. Additionally, the authors
themselves commented that the leading eigenvector model has several limitations when dealing
with larger networks with a high number of communities, and it is not clear either this approach
improves on such limitations as well.

2.3.3 Label Propagation-Based Methods

Another approach to community detection is through a process named propagation. The
work of [Bagrow and Bollt 2005] was one of the earliest approaches to community detection
using this concept. The idea is to answer the question, "how would a person who just moved to
a new city identify what community they belong to?". [Bagrow and Bollt 2005] answered by
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proposing a new l-shell algorithm for local community detection, which propagates a label it
received outwards, to their neighbors. The process repeats until the number of edges proceeding
out of the community drops below a threshold value. In order to extend this concept to detect
all communities in the network, the method requires the creation of a matrix with |𝑉 | × |𝑉 |
dimension. In this matrix, the 𝑖𝑗th element is equal to 1 if they belong to the same community
and 0 otherwise. Then, each row of the community gets rearranged to be next to each other based
on their similarity. The process gets repeated until the distance of a row to the next is higher than
a given threshold, identifying, then, which elements belong to the same community. The process
repeats until there are no more communities in the network, which makes it computationally
expensive.

One of the most famous approaches to community detection using such a concept is
introduced in [Raghavan, Albert and Kumara 2007]. The authors propose a fast method for
community detection, able to handle large networks. The method works in two steps; the first
step is to assign a new random label for every node of the network. The second step is the
propagation procedure, in which every node gets assigned the label whose most neighbors share.
During the propagation procedure, ties will happen when choosing what label will be propagated
to the current node: the method deals with such a situation by breaking the ties randomly. One
of the advantages to such an approach is that not only the method has a low complexity order,
making it able to handle larger networks, but it is also able to detect unbalanced community
structure to some degree.

In order to improve the stability of results and increase the accuracy, a set of techniques
that attempts to improve on the label propagation algorithm were proposed. For example, [Zhu
and Xia 2018] proposes the usage of an Adaptive H-index value to rank the nodes of the
network in an attempt to set an optimal order for propagation. By propagation the neighborhood
information in the order given by proposed measure, the method can provide more stable results
and even increase accuracy in some cases.
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CHAPTER

3
A TWO-STAGE PARTICLE COMPETITION

MODEL

In this section, we introduce and describe in detail the proposed model for unbalanced
community detection through the combination of two stages that learns and regulates each other.
The model built upon the foundation of the Particle Competition family of algorithms. In all
Particle Competition models, a set of particles are randomly inserted in the network to compete
with each other to capture as many nodes as possible for its community. We start by revising the
first Particle Competition method, used as the first stage of the proposed model almost unchanged.
Next, we introduce the second step and describe how both stages interact with each other. Then,
we address the initialization and termination criteria strategies for both stages. Finally, we present
the full model as an algorithm and discuss its computational complexity and parameters.

3.1 Particle Competition

The Particle Competition model was first proposed by [Quiles et al. 2008], which
presented a procedure of the method without a formal definition. Later, [Silva and Zhao 2012]
improved the Particle Competition method by proposing a new paradigm for particle exploration
and modeling the behavior of the particles as a stochastic dynamical system. The model presented
in this work builds upon the work of [Silva and Zhao 2012]. Here we briefly review the Particle
Competition model proposed initially in [Quiles et al. 2008, Silva and Zhao 2012, F.A.N. and L.
2018], which will contribute to the conceptual understanding and later, to develop the Two-Stage
Particle Competition model for detecting unbalanced network communities.

Consider a graph 𝒢 = ⟨𝒱 ,ℰ⟩ where 𝒱 = {v1, ...,v𝑉 } is a set of nodes (or vertices) and ℰ
is a set of links ℰ = {e1, ...,e𝐿}. The graph object is represented by an adjacency matrix 𝐴, with
dim(𝐴) = 𝑉 ×𝑉 and 𝑎𝑖𝑗 > 0 indicates a edge connecting node 𝑖 to node 𝑗.

The Competition step of the proposed system uses a set of particles 𝒦 = {1, ...,𝐾},
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which will explore the network and compete with each other to conquer as many the vertex of
the graph as possible. Each particle carries both a flag to label the nodes and an energy level to
guide the exploration process. When a particle visits a node, its domination level on that node
strengthens while the domination level of its rival weakens. In order for a particle to label a node
of the network, it must become its owner by having the highest domination level on it. When a
particle visits a node it owns, its energy level increases, on the other hand, it decreases when the
particle invades a node belonging to a rival particle.

The particle’s energy level guides the Competition by discouraging the particle from
wondering around rival communities for too long. When a particle is exhausted, i.e., its energy
level is too low, the particle teleports back to a node of its community to recharge the energy
and, consequently, defend its community from rival particles. Otherwise, when the particle is
active, it is free to explore the network using a combination of two movements: Random Walk
and Preferential Walk.

The Random Walking movement type, in which the particle will randomly choose a
neighbor node to visit, is responsible for the discovery of new territories and its ability to attack
and conquer new nodes. On the other hand, Preferential Walk guides the particle to choose the
nodes that are most likely to belong to that particle. As a result, it is responsible for guiding the
particles into settling in a community and defend them from rivals.

The particle competition is a stochastic dynamical system, which is given by

𝑝(𝑘)(𝑡+1) = 𝑗,𝑗 ∼ P(𝑘)
transition(𝑡) (3.1)

𝑁
(𝑘)
𝑖 (𝑡+1) =𝑁

(𝑘)
𝑖 (𝑡)+1[𝑝(𝑘)(𝑡+1)=𝑖] (3.2)

𝐸(𝑘)(𝑡+1) =



min(𝑤𝑚𝑎𝑥,𝐸
(𝑘)(𝑡)+Δ,

if owner(k, i)

max(𝑤𝑚𝑖𝑛,𝐸
(𝑘)(𝑡)−Δ,

if ¬ owner(k, i)

(3.3)

𝑆(𝑘)(𝑡) = 1[𝐸(𝑘)(𝑡)=𝑤𝑚𝑖𝑛] (3.4)

(3.5)

In Eq. 3.1, 𝑝(𝑘)(𝑡+1) represents the network position (node) of particle 𝑘 at iteration
𝑡+1. This equation controls which particle is visiting which vertex of the graph. This is done
using the time-varying transition matrix P(𝑘)

transition(𝑡), explained in detail in Eq. 3.8. Equation 3.2
counts the amount of times that each particle 𝑘 has visited each node 𝑖 up to the time 𝑡, in other
words, it updates the ownership of the particles on the nodes (𝑁 (𝑘)

𝑖 (𝑡+1)). Equation 3.3 updates
the energy level of each particle 𝐸(𝑘)(𝑡): it increases by Δ when visiting a node that the particle
owns, otherwise it decreases by Δ if the particle is invading a rival’s territory. The last equation
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updates and keeps track of the state of each particle. When the energy level is decreased to the
minimal level i.e., 𝑆(𝑘)(𝑡) = 1, its status is exhausted and it should be randomly reset at another
node of the network; otherwise, the particle is at active status and walks normally in the network.

P(𝑘)
rean(𝑖, 𝑗, 𝑡) =

1

[
argmax

𝑚∈𝐾
(𝑁

(𝑚)
𝑗 (𝑡)) = 𝑘

]
∑
𝑉
𝑢=1

1

[
argmax

𝑚∈𝐾
𝑁

(𝑚)
𝑗 (𝑡) = 𝑘

] (3.6)

P(𝑘)
rand(𝑖, 𝑗) =

𝑎𝑖𝑗

∑
𝑉
𝑢−1𝑎𝑖𝑢

(3.7)

Equations 3.6 and 3.7 controls two of three prevalent walking behaviors of the particles.
Equation 3.6 is responsible for teleporting the particle directly to a node it owns. In essence,
it works by creating a transition matrix with an equal chance of movement for each node in
which the current particle (𝑘) has the highest domination-level. The operation 1[.] returns 1 if
the logical criteria in [.] is met and 0 otherwise. Equation 3.7 controls the Random Walk policy
of the particles. This equation is given by the weight or existence of a link between the current
node and its neighborhood. In essence, P(𝑘)

rand results in a transition matrix that allows the particle
to chose and visit a neighbor of the current node: the particle has a higher likelihood of choosing
the neighbor with the highest weight on a weighted Complex Network.

Finally, the transition matrix P(𝑘)
transition(𝑡), which governs the behavior of the particle, is

presented:

P(𝑘)
transition(𝑡) = (1−𝑆(𝑘)(𝑡))

[
𝜆P(𝑘)

pref +(1−𝜆)P(𝑘)
rand

]
+𝑆(𝑘)(𝑡)P

(𝑘)
rean(𝑡)

(3.8)

In summary, Eq. 3.8 works in the following way: when a given particle’s status is
exhausted, i.e., 𝑆(𝑘)(𝑡) = 1, the movement policy switches to a defensive strategy using the P(𝑘)

rean

transition matrix, which will return the particle to a node it owns to recharge its’ energy and
defend its’ community. Otherwise, when the particle is active, the movement policy will use
a combination of random walking, using the transition matrix P(𝑘)

rand, and preferential walking,
given by the P(𝑘)

pref transition matrix, which we will introduce in the next section. The 𝜆 parameter,
0≤ 𝜆≤ 1, indicates the emphasis on the preferential walking policy, which keeps the particle
defending the nodes it is most likely to belong to the particle’s community.

3.2 The Two-Stage Particle Competition Model

In the original Particle Competition models, the particle’s only bias is to defend the
nodes it already conquered. While this is a valid and desirable behavior as proved in [Quiles et
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al. 2008, Silva and Zhao 2012], it does not take into consideration the topology of the network
but rather, it uses its own previous performance and exploration of the network. Indeed, the
usage of only its previous exploration of the network is the Particle’s downfall when dealing
with unbalanced communities, as the sequential nature of Random Walks is unable to extract
such a complex information from network by itself. On the other hand, the Regularization stage
employs a parallel mechanism to diffuse the label information in the network. Such a mechanism,
can indeed better understand the topology of the community. Therefore, the combination of both
mechanisms, sequential and parallel, can improve the community detection results and allow for
the correct detection of unbalanced communities.

In order to help the Competition step with the preferential walk, the Regularization step
uses the knowledge obtained from the Competition stage to generate a guide for each particle.
This guide helps the particles to visit the nodes most likely to belong to its community on the
next epoch (𝜏 ) by using the labels propagated to the neighbors of each node in the previous
Competition step. In brief, if a particle owns most of the neighbors of a given node, this node
will have a higher likelihood of belonging to that particle than to any other, which in turn will
force the particle to defend it on the next epoch, i.e., the next iteration of both stages.

Both steps learn and regulate each other. The Competition guides the Regularization,
which in turn influences the Competition. Once both steps runs, an epoch – denoted by 𝜏 – passes,
and the process restarts. In a broad horizon of time, the preferences of the particle (given by the
Regularization guide) no longer changes, uncovering the community structure in the network.

3.2.1 The Proposed Regularization Stage Mechanism

The Regularization step’s main goal is to generate the matrix 𝐵(𝜏), which defines the
preference level each particle upon every vertex of the graph. Moreover, this preference matrix
will act as a guide for the next iteration of Competition and will ultimately contain the community
structure of the network. For this purpose, we define the regularization function as:

𝑅(𝑖,𝑘,𝑀) =
∑
𝑉
𝑢=1𝑎𝑖𝑢 *𝑀𝑢𝑘

∑
𝐾
𝑗=1∑

𝑉
𝑢=1𝑎𝑖𝑢 *𝑀𝑢𝑗

(3.9)

Eq. 3.9 yields the likelihood of the node 𝑖 to belong to the particle 𝑘 by taking into
account the preference levels on the input matrix 𝑀 , with dim(𝑀 )= 𝑉 ×𝐾.

Notice that in Eq. 3.9, 𝑀 has not been defined yet. That is because 𝑀 is a placeholder
for either the matrix 𝑁(𝜏) or 𝐵(𝜏): for example, when the Regularization step first starts, Eq.
3.9 is called with 𝑀 =𝑁(𝜏), therefore, it takes into consideration the domination levels from
the Competition (which is given by 𝑁(𝜏)). By multiplying the weights from all links from node
𝑖 (𝐴𝑖𝑢) by the domination matrix (when 𝑀 =𝑁(𝜏)), Eq. 3.9 produces a number close to 1 when
most neighbors of 𝑖 belongs to the community 𝑘 (indicating a high likelihood of the node 𝑖
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belonging to the particle 𝑘); otherwise, Eq. 3.9 returns a low preference if the particle 𝑘 doesn’t
have high domination levels in node 𝑖’s neighbors.
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Figure 3 – Example of the effect of Eq. 3.9 on the preference levels of a node. Suppose the Competition
step just ended and the Regularization step starts with 𝑀 = 𝑁(𝜏): the preference level of A
takes into consideration its direct neighbors: as most neighbors belong to the “blue particle”,
this particle will have a higher likelihood of defending it on the future.

With Eq. 3.9, the current step of the system holds the preference levels of each one of 𝐾
particle in the system for the node 𝑖 up to epoch 𝜏 using the vector:

𝐵𝑖(𝜏) = [𝐵(1)(𝜏),𝐵(2)(𝜏), ...,𝐵(𝐾)(𝜏)] (3.10)

with dim(𝐵𝑖(𝜏))= 1×𝐾. Finally, the 𝐵 matrix is defined by extending the 𝐵𝑖(𝜏) vector to every
node of the network, having dim(𝐵(𝜏)) = |𝑉 |×𝐾:

𝐵(𝜏) = [𝐵1(𝜏),𝐵2(𝜏), ...,𝐵|𝑉 |(𝜏)] (3.11)

The Regularization stage is executed after the Competition ends, which can be after a
fixed number of iterations 𝛼 or by the termination criteria presented in [Silva and Zhao 2012].
The dynamics of the Regularization stage is modeled as follows:

1. When the Regularization step first starts, Eq. 3.9 is applied to each entry 𝐵(𝑡𝐵), i.e.,
𝐵

(𝑘)
𝑖 (𝑡𝐵) =𝑅(𝑖,𝑘,𝑁(𝜏)). Therefore, the Regularization step initially takes into considera-

tion the domination level of the particles after the Competition step has ended.

2. Additionally, the incremental execution of Eq. 3.9 on the resulting preference matrix 𝐵(𝑡𝐵)

can yield better results in networks with very dense and unbalanced communities. As such,
it might be desirable to execute Eq. 3.9, 𝜇 more times (𝜇≥ 0) upon the matrix 𝐵(𝑡𝐵), i.e.,
𝐵

(𝑘)
𝑖 (𝑡𝐵) =𝑅(𝑖,𝑘,𝐵(𝑡𝐵−1)). The user-defined parameter 𝜇 is denotes the total amount

of incremental executions of Eq. 3.9 applied to 𝐵(𝑡𝐵). The behavior of the incremental
executions is illustrated in Fig. 4.



42 Chapter 3. A Two-Stage Particle Competition Model

A

E

F

C
D

H

B

G

A

E

F

C
D

H

B

G

E Preference levels

= = 0.66
2

3
Particle

Particle = = 0.33
1

3

A

E

F

C
D

H

B

G

F Preference levels

= = 0.66
2

3
Particle

Particle = = 0.33
1

3

HHH

F belongs to the
blue particle

Matrix N Matrix B Matrix B

E belongs to the orange
particle at the end of the

Competition

E belongs to the blue particle in the
first iteration of the Regularization

= 0�� = 1��

Figure 4 – Example of the incremental executions of the regularization function upon the previous
execution: by applying Eq. 3.9 incrementally on the previous result 𝐵(𝑡𝐵−1), the model is
able to increasingly improve the results from the Competition stage, which may be beneficial
to obtain fast and accurate community detection results with fewer iterations.

3.3 Transition Matrix for Network Exploration

The walking dynamics of the particles connect both steps of the system. They govern
how the particle chooses the next vertex of the network to navigate, and, therefore, dictates how
they compete for the nodes of the network.

In the Two-Step Particle Competition model, the random walk rule doesn’t change, i.e.,
at each step, each particle randomly select a neighbor node to visit. However, the preferential rule
has been changed considering the new guiding matrix 𝐵(𝜏), generated by the the Regularization
function described in the previous section. The P(𝑘)

pref transition matrix guides the particle 𝑘 to
remain visiting the nodes it is more likely to belong to its community. Therefore, each 𝑘 particle
has its own preferential transition matrix on the time 𝑡. P(𝑘)

pref is then generated by applying the
following equation on each one of (𝑖, 𝑗) ∈ 𝑉 ×𝑉 elements:

P(𝑘)
pref(𝑖, 𝑗, 𝑡) =

𝑎𝑖𝑗𝐵𝑗𝑘(𝑡)

∑
𝑉
𝑢=1𝑎𝑖𝑢𝐵𝑢𝑘(𝑡)

(3.12)

Equation 3.12 denotes the likelihood of the particle 𝑘 visiting the node 𝑗 from the current
node 𝑖 by taking into consideration the guide 𝐵(𝜏) matrix, from the Regularization step. If node
𝑗 has more neighbors belonging to particle 𝑘, this particle has a higher likelihood of visiting
node 𝑗 in the future.
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Figure 5 – Execution flow of the proposed method

3.4 The Proposed Algorithm

The Regularization step learns from the Competition using the ownership matrix the
Competition generates. Competition is, in turn, influenced by the preference matrix generated
from the Regularization step.

The process starts with the Competition step without preferential walking or bias. The
dynamic system of the Competition stage runs until each particle has roughly settled in a
community. As a result, the Competition stage yields the 𝑁(𝜏) matrix, containing the domination
level of the particles over the vertex of the network. After which, the Regularization step will
take resulting domination matrix 𝑁(𝜏) and use it to generate the guide matrix 𝐵(𝜏), as explained
in detail in 3.2.1. Finally, the Competition step restarts and the label propagation occurs from the
beginning, allowing for multi-samples of Competition results.

When both stages of the system run and a new preference matrix gets generated by the
Regularization stage, we say a epoch (𝜏 ) passed. Therefore, 𝜏 counts how many times both stages
were executed. The Competition and Regularization steps shall be executed alternately until the
preference matrix 𝐵(𝜏) converges. On each new epoch, the Competition must be restarted clean,
following the procedure detailed in Section 3.5.
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3.5 Initial Condition of the System
The initial conditions to run the proposed method are now described. The proposed

method starts with the Competition step. On its first execution, however, there is no data to
generate the guide matrix 𝐵(𝜏). Therefore, each entry of 𝐵(0), is initialized with

𝐵
(𝑘)
𝑖 (0) =

1

𝐾
(3.13)

, indicating no strong preference for the vertices of the graph by any of the particles.

The Competition step initialization procedure first selects a starting vertex for each
particle in the system. The vertex selection uses the particle’s preference over the nodes, given
by the guiding matrix 𝐵(𝑘)(𝜏). When 𝜏 = 0, this selection is naturally based on a uniform
distribution, as initially, the particles have no strong preference over any of the vertex of
the network, as stated in 3.13. However, should the guiding matrix 𝐵(𝑘)(𝜏) follow another
distribution – which may happen after the Regularization step executes once – the starting vertex
would be selected based on the preference of particle for it.

Additionally, the Competition must be restarted clean in the start of a new epoch, i.e.,
the only information it retains from the previous epoch is the new guide matrix, 𝐵(𝜏). Once the
starting nodes are selected, the dominance-level matrix 𝑁(0) is initialized by the expression

𝑁
(𝑘)
𝑖 =

2, if vertex 𝑖 was selected for particle 𝑘

1, otherwise
(3.14)

Lastly, the Competition initialization also requires to initialize the energy-level control
vector 𝐸(𝑡) equally for each particle and the particle’s state is set to active, as indeed the particles
have enough energy to start to explore the network:

𝐸(0) =
1

𝐾
(3.15)

𝑆(𝑘)(0) = 0 (3.16)

3.6 Termination criteria
With the model now defined, an important subject to be addressed is how to identify

when it is the moment to stop iterating the Competition stage as well as the model itself. In this
section, we will discuss possible termination criteria for both.

3.6.1 Competition stage termination criteria

The Competition must run enough times so that each particle may roughly dominate a
community of the network. Notice that, as the task of clustering the nodes is delegated to the
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Regularization stage, the Competition is no longer required to identify all the members of the
community correctly – therefore, it is not required to run for many iterations. There are two
approaches to decide when to stop the Competition stage:

• Run a fixed amount of iterations: the simplest approach is to set a fixed amount of
iteration for the stage through the 𝛼 user-defined parameter.

• Check if the biggest change in domination-levels is below a certain threshold: [Silva
and Zhao 2012] proposes the usage of the infinity max-norm of the difference between the
previous iteration 𝑁(𝑡−1) and the current one 𝑁(𝑡) to identify when is the best moment
to stop the stage. The idea is that, if the highest level of change between iterations is below
a certain threshold, then the model most likely has converged.

In the proposed two-stage model, we opted to use a fixed amount of iterations through
the 𝛼 parameter, as it provided better control over the behavior and speed of the Competition.

3.6.2 Model termination criteria

The following strategies can be employed as the termination criteria for the proposed
method:

• Fixed amount of iterations: a basic approach would be to run both stages a fixed number
of times and then return the preference matrix (𝐵(𝜏)), which contains what community
each node belongs.

• Check if the biggest change in preference-levels (𝐵(𝜏)) is below a threshold: the equa-
tion ||𝐵(𝜏)−𝐵(𝜏 − 1)||∞, which is the infinity max-norm of the difference between
𝐵(𝜏) and the 𝐵(𝜏 −1) matrix, yields how much change has occurred from one epoch 𝜏

to another. If the change is smaller than a threshold (𝜖), then the model most likely has
converged, and there is no need to continue the process.

• Iterate until no class change between epochs: another simple concept is to stop the
model when no node change owners. At the end of each epoch, the newly preference-
matrix 𝐵(𝜏) is compared to the previous 𝐵(𝜏 −1) matrix. If none of the particles changes
the majority of preference for the nodes, then it is an indicator that the model converged.

In this document we opted to check the difference of preference levels of epochs, using
the equation ||𝐵(𝜏)−𝐵(𝜏 −1)||∞ < 𝜖, where ||.||∞ is the matrix max-norm of the difference
between the preference matrix at epoch 𝜏 and the preference matrix at epoch 𝜏 −1.
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3.7 Algorithm and Parameters

The proposed method is now described in an algorithmic manner (Algorithm 1). It takes
a total of six user-defined parameters; however, only 𝐾, Δ, 𝜆 and 𝜇 are essential parameters.
The parameters of the model will be discussed in detail in the next section.

Algorithm 1 – Two-stage Particle Competition Algorithm
1: procedure PCR(𝐾,𝐴,Δ,𝜆,𝛼,𝜇,𝜖)
2: 𝐵(0)← initializeB() ◁ Use 3.13
3: 𝜏 ← 0
4: repeat
5: 𝑁(𝜏)← ParticleCompetition(𝐾,A,𝐵(𝜏),Δ,𝜆,𝛼)
6: 𝜏 ← 𝜏 +1
7: 𝐵(𝜏)← Regularization(A, 𝑁(𝜏 −1), 𝜇)
8: until ||𝐵(𝜏)−𝐵(𝜏 −1)||∞ < 𝜖

return 𝐵(𝜏)
9: end procedure

Algorithm 2 – Particle Competition step
1: procedure PARTICLECOMPETITION(𝐾,𝐴,𝐵,Δ,𝜆,𝛼)
2: 𝑝← assignRandomVertex(A, K)
3: Prand← generateRandomMovement(𝐴) ◁ Use 3.7
4: 𝑁(0)← generateInitialN(𝑝(0)) ◁ Use 3.14
5: 𝐸(0)← generateInitialE(𝐾) ◁ Use 3.15
6: 𝑁(0)← generateInitialS(𝑝(0)) ◁ Use 3.16
7: 𝑡← 0
8: while 𝑡 < 𝛼 do
9: for 𝑘 = 1 to 𝐾 do

10: P(𝑘)
rand(𝑡)← calculate𝑃pref(𝑁(𝑡),𝑝(𝑡)) ◁ Use 3.12

11: P(𝑘)
rean(𝑡)← calculate𝑃rean(𝑁(𝑡),𝑝(𝑡)) ◁ Use 3.6

12: P(𝑘)
trans(𝑡)← calculate𝑃trans(P

(𝑘)
rean(𝑡),Prand,𝜆) ◁ Use 3.8

13: 𝑝(𝑘)(𝑡)← chooseNextVertex(P(𝑘)
trans(𝑡), 𝑘)

14: end for
15: 𝑁(𝑡) = updateN(𝑁(𝑡−1))
16: 𝐸(𝑡) = updateE(𝑁(𝑡−1)) ◁ Use 3.3
17: 𝑆(𝑡) = updateS(𝐸(𝑡−1)) ◁ Use 3.4
18: 𝑡← 𝑡+1
19: end while

return 𝑁(𝑡)
20: end procedure

The Competition stage is mostly similar to the one presented in [Silva and Zhao 2012],
with the critical difference being line 18 of [Silva and Zhao 2012, Algorithm 1], in which,
originally, the domination-level matrix �̄�(𝑡) gets calculated. The �̄�(𝑡) matrix is simply a
normalized version of the 𝑁(𝑡) matrix, that the model uses to: 1) calculate the Prand random
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walking matrix; 2) identify the particle who owns each node of the network. Such operation is
no longer necessary: it is delegated to the Regularization step.

The Regularization stage, presented as a standalone function in Algorithm 3, takes the
input graph (𝐴), the domination-level matrix 𝑁(𝜏) from the previous Competition step, and
the user-defined parameter 𝜇. The 𝜇 parameter (𝜇 ≥ 0) allows additional Regularization to
be executed upon the newly generated 𝐵(𝜏) preference matrix. Additional executions of the
function may improve the regularization results with graphs with a very unbalanced community
structure – Section 4.2.3 provides an empirical study of additional executions.

Algorithm 3 – Regularization step

1: procedure REGULARIZATION(A,𝑁(𝜏),𝜇)
2: 𝐵(0)← calculateB(A,𝑁(𝜏)) ◁ Use 3.9
3: 𝑡𝐵 ← 1
4: for 𝑖 to 𝜇 do
5: 𝐵(𝑡𝐵)← calculateB(A,𝐵(𝑡𝐵−1)) ◁ Use 3.9
6: 𝑡𝐵 ← 𝑡𝐵+1
7: end for

return 𝐵(𝑡𝐵)
8: end procedure

3.8 Model Complexity

We now discuss the computational complexity of the proposed method. The Particle
Competition function, presented in 2, has the following complexity:

1. Line 2: Selecting a random node to start the particle has the complexity order of 𝑂(𝐾);

2. Line 3: The random movement transition matrix requires each edge to be visited, as such,
it has the complexity order of 𝑂(𝐿);

3. Line 4: Each 𝑉 vertex has a counter for every 𝐾 particle in the system to be initialized;
therefore, this step has the complexity order of 𝑂(𝐾|𝑉 |);

4. Line 5 and line 6: For both lines, each particle has an energy level and a state to initialize,
the complexity order is 𝑂(𝐾);

5. Line 10: The preferential movement transition matrix requires each link of the current
node to be visited. Consider ⟨𝑘⟩ to be the average degree of the graph: this step can be
generalized to 𝑂(⟨𝑘⟩);

6. Line 11: By using a hashable table to keep track of which nodes belong to each particle,
this step can have the complexity order of 𝑂(1).
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7. Line 12: The transition matrix generation requires a scalar multiplication with a complexity
order of 𝑂(⟨𝑘⟩).

8. Line 13: The probability distribution given by line 12 is used to choose the next node to
visit. This distribution takes into consideration the links connecting the current node to its
neighbors. Therefore, the complexity order can be generalized to 𝑂(⟨𝑘⟩), as ⟨𝑘⟩ represents
the average degree of the graph;

9. Line 15: To update the domination-matrix 𝑁(𝑡), it is necessary to increment 𝐾 positions
visited by each particle. It takes 𝑂(𝐾);

10. Line 16 and line 17: Complexity order for both is 𝑂(𝐾), as it is required to update each
one of the 𝐾 particles in the system.

The lines 10 to 13 has the computational complexity of 𝑂(⟨𝑘⟩) and is repeated for each
particle for a total of 𝐾 times, for a total complexity of 𝑂(𝐾⟨𝑘⟩). Inside the main loop still,
lines 15 to 18 have the complexity of 𝐾, which brings the complexity of the main loop block
to 𝑂(𝐾⟨𝑘⟩+𝐾). Additionally, the Competition step must also run enough iterations so the
communities may be defined. We propose two termination criteria for this loop. The simplest
one is to iterate a fixed 𝛼 amount of time. If such an approach is used, the Competition stage has
the complexity order of 𝑂(𝛼𝐾⟨𝑘⟩+𝛼𝐾).

The work of [Silva and Zhao 2012] makes an approximation of the total amount of
iterations necessary for the main loop. For the sake completeness, let us estimate the required
amount of iterations of the Competition stage (approximate 𝛼): propose we have a network with
completely separated communities. In such a network, it only takes one single visit in every
node to classify it correctly. Therefore, the main loop would be required to iterate 𝑐1|𝑉 | times
(𝑂(|𝑉 |)), where 𝑐1 is the fraction of random movement the particles may perform (which dictates
how likely the particle is to visit unknown nodes). Extending the idea to a connected network
with a well-defined community structure, the number of iterations required is 𝑐2|𝑉 |, with 𝑐2

being a constant 𝑐2 > 𝑐1 (again, 𝑂(|𝑉 |)). Generalizing the same idea for any network, we find
that the total amount of iterations required for all nodes to be dominated by the particles is 𝑐|𝑉 |,
and 𝑐 is a constant, which increases with the proportion of inter-community links. Therefore, we
estimated that the main loop of the Competition stage repeats 𝑐|𝑉 | times.

The Regularization stage complexity order is much simpler to calculate. Equation 3.9
gets executed for all 𝑉 nodes of the network. For each node, we must identify the domination-
levels of each 𝐾 particle of the node’s neighbor. Such a task carries the complexity order of
𝑂(|𝑉 |⟨𝑘⟩𝐾), as ⟨𝑘⟩ represents the average degree of the network.

In summary, taking into consideration the main loop of the Competition runs 𝑐|𝑉 | times,
the Competition stage has the Complexity order of 𝑂(𝛼𝐾⟨𝑘⟩|𝑉 |+𝐾|𝑉 |). The Regularization



3.9. Parameters overview 49

stage, which repeats 𝜇 times, has the Complexity order of 𝑂(𝜇|𝑉 |⟨𝑘⟩𝐾). In practice, there are a
few situations to consider when dealing with real-world networks:

• Sparse networks: in sparse networks, when ⟨𝑘⟩ ≪ |𝑉 |, the Competition stage runs closer
to 𝑂(𝐾|𝑉 |), with 𝐾 and 𝑉 being the most impactful parameters.

• Dense networks: if the average degree ⟨𝑘⟩ grows proportionally to the number of vertices
|𝑉 | in a network (and, therefore, the network is very dense), the Competition stage will
run at 𝑂(𝐾|𝑉 |2).

• In general: many real-world networks are sparse (⟨𝑘⟩ ≪ |𝑉 |) and display fewer com-
munities than nodes (𝐾 ≪ |𝑉 |). For such networks, the Competition stage should run
near-linear time, with a complexity order of 𝑂(|𝑉 |).

In practice, the complexity of the proposed model is dominated by the Competition
stage, as the amount of iterations of the Regularization, 𝜇, is much smaller than the number of
iterations of the Competition: 𝜇≪ 𝛼: as discussed in Section 3.9, an appropriate value for 𝜇
resides between 0 and 20, often staying on the smaller side of this scale. Therefore 𝜇 can be
considered as a constant, i.e., 𝜇= 𝑐=𝑂(1).

3.9 Parameters overview

In order to elucidate the user-defined parameters used by the technique and presented in
Alg. 1, we present them in table 1, with their description and a small discussion. In section 4.2,
the main parameters of the model are further discussed, including how they impact the accuracy
and performance of the model.
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Parameter Description and discussion
K The number of communities to identify. Both [Silva and Zhao 2012] and [Gao et

al. 2019] defines two different models for automatically identifying the appropri-
ate 𝐾 parameter, which can be used with the Competition stage of the proposed
method.

Δ Ranging from 0 to 1, Δ represents the amount of energy to recharge or to consume
from a particle when it defends its community or attacks a node who belongs to
another particle. In general, a good value for Δ is 0.2.

𝜆 Ranging from 0 to 1, 𝜆 defines the emphasis (or weight) given to the preferential
walking model. A higher 𝜆 means the particle will have a higher preference in
defending its community. A good value for 𝜆 is often 0.6.

𝜇 The total amount of additional executions of the Regularization function (Eq. 3.9)
upon its previous execution. When 𝜇 = 0, the Regularization stage only takes
into consideration the domination-matrix 𝑁(𝜏) of the Competition. The behavior
of a positive 𝜇 is discussed in Section 3.2.1 and highlighted in Figure 3: a higher
value for 𝜇 may improve how fast the model is able to achieve good clustering
results.

𝛼 Implementation detail: 𝛼 is used as a straightforward termination criteria for
Competition step, i.e., when the competition iteration counter (𝑡) reaches 𝛼, the
Competition ends and the Regularization stage begins with the domination matrix
𝑁(𝑡).

𝜖 Implementation detail: 𝜖 is used as the termination criteria threshold of the
model. Section 3.6 defines other criterias to identify when it’s appropriate to stop
the proposed model and provide the results. An appropriate value for 𝜖, used
throughout this project, is 0.05.

Table 1 – The list of parameters of the algorithm, containing their description and a short discussion.
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CHAPTER

4
EMPIRICAL ANALYSIS OF THE MODEL

With the proposed model now fully described, this chapter aims to illustrate how the
model works in practice while also providing guidelines for its usage in real-world scenarios.
Additionally, it also highlights the aspects in which the Proposed model excels previous Particle
Competition models on unsupervised learning tasks and acts as a motivator for its usage over the
original Particle Competition models.

4.1 Empirical Model Analysis

This section demonstrates how both stages can work with each other to identify the
communities of the network. We present four different analyses: firstly, a single execution of
the model, with snapshots of the domination-level matrix 𝑁 and the preference-level matrix 𝐵

during the process, the point is to highlight how both stages learn with each other. in practice.
Next, each stage is analyzed separately, starting with the behavior of the Competition stage,
which shows that each particle is, indeed, capable of finding the whereabouts of the communities
of the network. Then, we illustrate the behavior of the Regularization stage. The objective is to
highlight the usefulness of the incremental executions of the Regularization function. Lastly, we
apply the model on a larger network, which serves to motivate the usage of multiple epochs on
the clustering process.

We apply the model on the GN Benchmark network [Danon et al. 2005] with 𝑍𝑜𝑢𝑡/⟨𝑘⟩=
0.2. The network is generated with 𝑀 = 4 communities with 𝑉 = 128 nodes in total, making it
32 nodes per community.

4.1.1 Single-execution illustration

To illustrate how the proposed method behaves and to exemplify how both steps learn
with each other, Fig. 6 shows the domination and regularization clustering results during four
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(a) 𝑁(0) (b) 𝑁(300) (c) 𝑁(2000) (d) 𝐵(0)

Figure 6 – Snapshots of a single execution of the proposed method on the GN network with 𝑍𝑜𝑢𝑡/⟨𝑘⟩=
0.3. (a), (b), (c) shows the 𝑁(𝑡) domination-levels of the particles on time 0, 300, and 2000
respectively. It can be noted that at time 2000, each particles roughly settles in a community.
(d) shows the first regularization result obtained upon 𝑁(2000), which is indeed the expected
community result.

distinct moments in the process. Fig. 5a reflects the domination matrix 𝑁(0) on time 𝑡 = 0,
the first iteration of the Competition: each particle has been randomly placed in a node and
automatically dominates it. Figure 5b and 5c, however, shows the Competition at later times
(𝑡= 300 and 𝑡= 2000, respectively), where each particle has roughly settled and dominated a
community. Finally, Fig. 5d shows the first iteration of the Regularization, which in this particular
network is enough to yield the correct community result. Next, the Competition would then
restart from scratch, but this time each particle would take into preference visiting the nodes
from the previous Regularization step, i.e., Fig. 5d.

Although not reported in Fig. 6, the process is then repeated until the current and previous
classification results are similar enough, which, depending on the network, may take only one
additional execution to converge depending on the criteria used (as specified in Section 3.6). It is
also worth pointing out that, although possible with enough iterations, the Competition step is
not required to identify all the members of the community correctly, but rather, only label its’
whereabouts, as shown in Fig. 6.

4.1.2 Competition over time (𝑁(𝑡))

The Competition stage must roughly label the communities of the network for the
Regularization step. Therefore, each particle must settle in a community at the end of the
Competition. In this section, we verify such a requirement by analyzing the domination-level
matrix 𝑁(𝑡) throughout the first epoch, which will ultimately contain the node’s owner.

Figure 7 shows the behavior of the domination matrix 𝑁(𝑡), normalized between 0 and
1, and averaged over all the nodes of each community for each particle. The analysis shows,
for each one of the 𝐾 = 4 particles in the system, the average domination level each particle
possesses upon all nodes of 𝑀 = 4 communities in the network. The particle with the highest
domination level is the owner of the node; therefore, the expectation is that each particle to have
a higher average domination level on the nodes of a single community only. Fig. 7 indeed shows
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Figure 7 – Example of the average domination levels on the nodes of each 𝑀 = 4 communities of the
network, for the 𝐾 = 4 particles in the system. The GN benchmark network was generated
with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.2. Each particle finds and dominates a community of the network.

that each one of the particles, during the Competition stage, can correctly find, dominate, and
defend the members of a single community of the network. Furthermore, it is worth pointing out
the particle’s ability to expel or remove an enemy particle from its dominated community, such
as in Fig. 6d, where particle four gets expelled from dominating the members of community 4,
which is ultimately owned by particle 3.

4.1.3 Regularization analysis (𝐵(𝑡𝐵))

The Regularization function will ultimately contain the community structure of the
network by taking into account the neighbors of each node. Therefore, it is required to be executed
at least once after the Competition stage. Still, additional executions of the Regularization
function upon the first Regularization result might be desired. Incremental executions may help
classify networks with very unbalanced or high-density communities.

(a) 𝑡𝐵 = 0 (b) 𝑡𝐵 = 9 (c) 𝑡𝐵 = 14

Figure 8 – Additional executions of the regularization function can be beneficial to correctly identify
communities in networks with unbalanced or otherwise densely connected communities.

Figure 8 illustrates the behavior of incremental executions of the Regularization function
in extremely unbalanced networks with two communities, one containing 10 nodes and the other
community having 500: Fig. 7a shows the first execution of the Regularization, which is not
enough to identify the community in such a degree of unbalance. The incremental executions of
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the function, is beneficial to community detection, as shown in Fig. 7b and 7c. In Section 4.2.3,
we also discuss and provide a guideline for choosing the value of 𝜇.

4.1.4 Epoch analysis (𝜏)

1 2 3 4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ψ= 0.99

Figure 9 – Analysis of the accuracy of results through different epochs on a GN benchmark network
with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.3 and 𝑉 = 10000 nodes, which shows that the back and forth between both
stages may improve the community detection results.

Lastly, we investigate the behavior throughout different epochs by analyzing the com-
munity detection accuracy (Ψ) from the Regularization function, obtained at the end of each
epoch. Figure 9 shows the result from such test, executed upon a GN benchmark network with
𝑍𝑜𝑢𝑡/⟨𝑘⟩ = 0.3 and 𝑉 = 10000. As Fig. 9 shows, the back-and-forth of the Competition with
the guide data from the Regularization is beneficial to obtain accurate community detection
results. In essence, the first epoch’s community detection rate (Ψ) is only 0.69; the second
epoch improves the result to 0.99; finally, the community can be fully recovered by epoch 3 and
confirmed by epoch 4.

4.2 Parameters analysis
In this section, the main parameters of the model are tested with the object to compare

its behavior with the previous Particle Competition model. It also provides guidelines on how
to choose appropriate values for each parameter, depending on the network. To empirically
test the sensitivity of the proposed method, we will employ two artificial network models with
community structure. We will employ those networks for testing purposes throughout the rest of
the document; therefore, we shall describe them now.

The first network is the Girvan and Newman’s benchmark network, first described
in [Newman and Girvan 2004]. It quickly became the standard benchmark for community
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detection [Danon et al. 2005] and has been widely used to test the accuracy and robustness of
many community detection techniques. The method takes as input the number of vertices (𝑉 ,
usually kept at 128), the average degree of the nodes (⟨𝑘⟩, usually 16), the number of communities
(𝑀 , usually 4) and 𝑍𝑜𝑢𝑡/⟨𝑘⟩which is the proportion of links made to nodes inside the community.
The last parameter is often between the 0.0 to 0.5 range: by changing the proportion of links
going to nodes outside of the community, one can specify how well defined the communities
of networks are. The community-mixing parameter is especially useful to identify how well
a community detection technique performs under different densities of communities. When
𝑍𝑜𝑢𝑡/⟨𝑘⟩ is close to 0.0, there will be fewer links going to nodes of another community, and
the community will be highly dense and easier to classify. On the other hand, as 𝑍𝑜𝑢𝑡/⟨𝑘⟩ gets
closer to 0.5, the model will generate communities highly mixed. When 𝑍𝑜𝑢𝑡/⟨𝑘⟩ = 0.5, for
example, half of the links of each node will be going to nodes of other communities; therefore,
the community will not be as well defined.

The second network employed in this document will focus on testing the model’s ability
to identify unbalanced communities correctly. We propose an artificial network, composed of two
communities with varying sizes. The following parameters control the creation of the network:
the first community size and degree, the second community size and degree, and finally, the
number of bridge links, i.e., links connecting the two communities in a network. We now describe
how to create the network: firstly, the nodes of both communities are generated and connected
within themselves randomly until the target inner community degree of the community is reached.
After generating both communities, links are created between nodes of both communities at
random, until the target number of connecting links is reached. As a result, a network with two
communities of different sizes and densities is generated for unbalanced community tests.

4.2.1 Impact of Δ

The Δ parameter controls how quickly the particle’s energy gets recharged (when
visiting a node it owns) or drained (when visiting node belonging to another particle). The
previous version of the Particle Competition model was not susceptible to the Δ parameter when
0.05 ≤Δ ≤ 0.5, therefore, the general rule is to choose a Δ ≤ 0.5 to assure good community
detection accuracy. On the other hand, Δ≥ 0.5 could be detrimental to the performance of the
method and the reason is straight forward: higher values for Δ forces the particle to retreat to its
community as soon as it attacks a node owned by another particle, limiting the occurrence of
Competition.

The proposed method, however, is even more robust to the value of Δ. Figure 10 shows
the impact of different values for Δ in the GN Benchmark network with 𝑍𝑜𝑢𝑡/⟨𝑘⟩ = 0.5 and
𝑀 = 4 communities. Once again, the Proposed Model manages to obtain similar accuracy
regardless of the Δ used. In terms of speed, Δ also does not impact the total amount of iterations
required to converge.
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Figure 10 – Effect of ∆ parameter on the GN Benchmark network with 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.5. Averaged over
100 executions
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Figure 11 – Effect of ∆ parameter on the unbalanced community network, containing two communities
with 10 and 100 nodes. Averaged over 100 executions

Figure 11 shows the same test in a network with an unbalanced community structure.
Although it gives the same results in terms of accuracy, it displays an unusual behavior in the
total iterations before converging. Values for Δ above 0.5, which forces the particle to teleported
back to its community faster, converge much quicker than when Δ ≤ 0.5, which allows the
particle to wander around an enemy community for longer. This behavior may happen because
the network has only two unbalanced communities. Therefore, the quick return of the invading
particle may be beneficial to constrain it inside its community.
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4.2.2 Impact of 𝜆

The 𝜆 parameter, discussed in Section 3.9, controls the mixture of random and preferential
behavior of the particle. Higher values for 𝜆 bias the particle towards choosing the nodes it
already owns. Both previous iterations of the Particle Competition model [Quiles et al. 2008,Silva
and Zhao 2012] proved that choosing the appropriate value for 𝜆 was essential to obtain good
community detection results and indeed, the empirical tests showed that 0.6 was good value for
𝜆, as it allowed for both movements to be combined [Quiles et al. 2008].

The GN benchmark network is also employed in the same test in [Quiles et al. 2008, Fig.
2], therefore the can be used as a comparison between the performance of both techniques.
Generally, the proposed method can achieve good clustering results in a wider range of values for
𝜆, usually at the cost of speed. The model was tested with the following parameters set: 𝜇= 1,
Δ= 0.07 and 𝜖= 0.05.

(a) Accuracy (Ψ)
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Figure 12 – The impact of different values for the 𝜆 parameter for the GN Benchmark network, with
𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.5. Averaged over 30 executions.

Figure 12 show the results obtained when executing the proposed method with different
values for 𝜆, in terms of community detection accuracy (Fig. 12a) and total amount of iterations
until convergence (Fig. 12b) for the GN Benchmark network. For such a network, the model can
also achieve good clustering results in a wide range of values for 𝜆. When comparing to [Quiles
et al. 2008, Fig. 2], the proposed method manages to surpass its results in terms of accuracy
regardless of the chosen value for 𝜆. Additionally, once again, values close to 0.6 ensured the
highest average of accuracy.

Figure 13 presents the results on the unbalanced network previously described. The
model can correctly identify all members of the communities of the network when 𝜆 ≥ 0.25:
once again, allowing for a broader range of acceptable values for this parameter, but often
failing when 𝜆 is too low. In essence, the most significant impact of an inappropriate value for 𝜆
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Figure 13 – Effects of the 𝜆 parameter in terms of accuracy and iterations until convergence on a network
with unbalanced community structure containing two communities, one with 10 nodes and
another with 100 nodes. Average of 30 executions.

also observed in Fig. 12, is the model’s speed: the selection of values that do not allow for the
appropriate mixture of movement forces the model to continue iterating until convergence.

The empirical tests demonstrate that the proposed model is much less susceptible to the
value of 𝜆. The model is more robust than previous Particle Competition techniques because
the clustering results are always generated from the Regularization stage, which displays a high
ability to correctly identify which members of the community belong with each other, often
fixing the occasional mistakes of the Competition. Moreover, the back and forth between the
two stages, combined with the used termination criteria, assures that the model will continue
to work when uncertain of the results (through results too different between epochs). Such a
combination of characteristics makes the proposed method more robust and resilient than the
previous versions.

4.2.3 Impact of 𝜇

Although the proposed model can achieve accurate results in a wide range of values for
the parameters Δ and 𝜆, the same can not be said to parameter 𝜇, as the model displays a high
sensibility to the accuracy of the results obtained.

In order to test the impact of the parameter, the proposed model is applied to two sets of
tests with 5 different values for 𝜇: 0, 5, 10, 15, 20. The first test checks the accuracy of the model
when executed in a balanced GN benchmark network, with a varying mixture of communities
(𝑍𝑜𝑢𝑡/⟨𝑘⟩). The second test compares how each 𝜇 behaves when faced with networks with
an unbalanced community, whose generation was previously described. Once again, the first
community contains 10 nodes, and the size of the second community varies. The tests reveal
the model is very susceptible to the value of 𝜇, which must be chosen according to the topology
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(a) GN Benchmark network (b) Unbalanced Communities
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Figure 14 – Impact of different values for 𝜇 on different network structures. (a) shows the GN Benchmark
network with varying 𝑍𝑜𝑢𝑡/⟨𝑘⟩, allowing the comparison on different level of community
mixture. (b) shows the impact on networks with varying degree of community sizes: the first
community has 10 nodes and the second community varies. Averaged over 100 executions.

of the network, requiring some knowledge about it. Figure 14 shows the accuracy obtained on
both tests: Fig. 13a is the GN Benchmark with a varying mixture of links and Fig. 13b is the
unbalanced network with varying levels of unbalance.

As can be observed, 𝜇 displays different effects on different networks. Figure 13a, which
shows the effects on the accuracy on communities with increasing levels of mixtures, it can be
observed that higher values for 𝜇 are detrimental to the accuracy of the model: the higher 𝜇
is, the quicker it starts to fail in detecting the communities. This effect occurs because higher
values for 𝜇 may spread the influence of the particles beyond their community, exceeding the
boundaries of their community. Therefore, higher values for 𝜇 are only appropriate when the
network exhibits strongly defined communities, which is when the proportion of links between
communities is low.

Figure 13b, however, presents a very different behavior in comparison to Fig. 13a: smaller
values are not able to produce accurate results. This effect happens because, if the community
structure is too unbalanced, too few iterations of the Regularization are not enough to fix the
wrongfully classified nodes and restrain the particles. This consequence occurs primarily in
networks with highly unbalanced communities (see Fig. 3). However, if 𝜇 is too high, the
Regularization might overstep the boundaries of each community and wrongfully generate a
guide that joins two or more communities in one.

The value of 𝜇 must be chosen based on the structure of the network: higher values are
appropriate only when the network displays highly unbalanced and sharply defined communities.
Otherwise, lower values should be used, as they are appropriate for networks that display poorly
defined communities. Still, it is essential to notice that, even when 𝜇 is 0, the model is still able to
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provide more accurate and faster results in comparison to previous Particle Competition models,
as seen in the next section.



61

CHAPTER

5
COMMUNITY DETECTION AND

DATA-CLUSTERING SIMULATIONS

In this chapter, we apply the proposed method to a set of artificial networks and real-world
networks for community detection. Additionally, the model is tested in graph-based classification
tasks, using famous real-world data sets from UCI, where it is compared to the state-of-the-art
methods for data classification.

5.1 Simulations on Artificial Data

In order to test the performance and accuracy of the proposed method, the Girvan and
Newman’s benchmark [Danon et al. 2005] is used. A robust community detection method should
be able to correctly identify communities even when 𝑍𝑜𝑢𝑡/⟨𝑘⟩ is high, and communities are
highly mixed. Other parameters are kept fixed as 𝑉 = 128 nodes, ⟨𝑘⟩= 16 degree and 𝑀 = 4

communities, thus the networks contains communities with 32 nodes each.

As can be observed in Fig. 15, which shows the community detection accuracy (Ψ)
for different levels of community mixture (𝑍𝑜𝑢𝑡/⟨𝑘⟩), the proposed method is able to correctly
identify the communities of the networks even when 𝑍𝑜𝑢𝑡/⟨𝑘⟩ is close to 0.5, when the commu-
nities are barely defined. Not only that, but the method is also able to obtain good results when
𝑍𝑜𝑢𝑡/⟨𝑘⟩> 0.5. Because there are 𝑀 = 4 communities in the network, even though most of the
links of a given node are going to nodes outside the community, the number of communities still
makes the frequency of internal links higher than outside links (this would not be the case with
𝑀 = 2). Therefore, the network still has a community structure to some degree.

Furthermore, by comparing the results obtained in Figure 15 with [Quiles et al. 2008,
Fig .8] as well as [Silva and Zhao 2012, Fig. 8], it can be observed that the proposed method
excels the results obtained in both previous versions of the Particle Competition algorithm.
Additionally, by comparing Fig. 15 to [Danon et al. 2005, Fig. 2], it is possible to verify that the
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Figure 15 – Community detection accuracy of the proposed method on the GN benchmark network [Danon
et al. 2005], averaged over 100 attempts. After 𝑍𝑜𝑢𝑡/⟨𝑘⟩= 0.5, the communities are no longer
strongly defined. However, because there are 𝑀 = 4 communities, the proposed method is
still able to identify the communities with certain accuracy, as the number of inner community
links are higher than the amount of links to vertex of other communities.

proposed method also obtains excellent accuracy when compared to other robust methods for
community detection.

Next, to evaluate the ability of the proposed method on unbalanced community detection,
the Normalized Mutual Information value (NMI) is used to test the models’ performance [Danon
et al. 2005]. For this set of tests, besides the average NMI, we also plot the best and worst
results obtained in the 100 attempts. Additionally, the proposed model is compared to a set of
related community detection techniques. The first technique is [Gao et al. 2019], which employs
the original Particle Competition mechanism proposed in [Silva and Zhao 2012] and that the
proposed method uses as the first stage. We also test the original Label Propagation technique
[Raghavan, Albert and Kumara 2007], which employs a propagation concept that also takes
into consideration the neighborhood information of the nodes, but with a different propagation
mechanism. Finally, we also test a more recent Label Propagation-based approach [Zhu and Xia
2018], which employs an Adaptive H-index rank to order the nodes of the network in an attempt
to provide more stable results in comparison to the original LPA.

Figure 16 measures the performance of the models in terms of different sizes only. The
network is built with two communities, the first containing 50 nodes, while the other varies
between 50 and 5050 nodes. As can be observed, the proposed technique can consistently identify
the correct community structure. The LPA technique can also recover the correct result most
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Figure 16 – Unbalanced community in terms of size by varying the size of the second community between
50 and 5050 nodes. The plotted line is the NMI, while the error bars shows the best and worst
NMI obtained in 100 attempts.

of the time, however the model is sometimes prone to fail. The original Particle Competition is
unable to identify communities with different sizes. The AHLPA technique can also consistently
recover the correct partition.

Next, we test the models’ ability to recover community structure with different densities.
The networks are built with two 100 nodes communities. The first of which has an inner average
degree of 6 and the second varies between 6 and 60. As can be observed in Figure 17, the
proposed model, as well as the Particle Competition, can correctly identify the community
structure of the networks. The LPA-based models, however, seem to struggle in producing
correct results consistently.

Finally, Figure 18 combines density and size changes: the networks are generated with
one community having 50 nodes with an average degree of 6. In contrast, the other community
varies between 50 to 5050 nodes and an average degree between 6 and 60. As can be observed,
the proposed method can consistently identify the correct community structure of the network.
On the other hand, [Gao et al. 2019] is unable to identify communities with different sizes. The
label propagation-based techniques, even though they are able sometimes to recover the correct
community, are unable to provide consistent results.

In conclusion, the proposed model provides a robust approach to unbalanced community
detection. Moreover, the proposed technique can achieve not only high unbalanced community
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Unbalanced community in terms of density
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Figure 17 – Unbalanced community in terms of density by varying the inner degree of the first community.
The plotted line is the NMI, while the error bars shows the best and worst NMI obtained in
100 attempts.

detection precision but also present high stability with minimal oscillation of detection results.

5.2 Simulations on Real World Data
Now the proposed method is applied to a set of real-world networks to study its’ perfor-

mance and accuracy. The first network used is the famous Zachery’s Karate Club, first introduced
in [Zachary 1977]. It models the friendship between students of a karate club in the early 1970s
by using the social interactions between students inside and outside the club environment. During
the data collection, an internal dispute between the teacher and the administration divided the
students into two groups. Figure 19 shows the clustering result of the proposed method, which
is indeed the correct community result for this network. None of the previous versions of this
technique [Quiles et al. 2008, Silva and Zhao 2012] were able to identify the community of all
nodes correctly.

In order to further test the proposed method as a data clustering technique, the proposed
method is applied to 12 well known real-world data sets from the UCI machine learning
repository [Asuncion and Newman 2007]. The data set metadata is available in table 2, which
reports the number of instances, the data dimension, the number of classes and the size of the
first 3 biggest classes in the data set. Although the class label of the data is available, its only
used to verify each method’s result (data clustering accuracy). The method is compared to 7
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Figure 18 – Unbalanced community detection accuracy averaged over 100 executions with comparison to
other three methods. All the methods are applied to a sequence of networks each containing
two communities, the first of which containing 50 nodes and the second community varying
from 50 to 5050 nodes. Since the first community has fixed size (50 nodes), the networks
become more unbalance as the size of the second community increases (shown by x-axis).
When 𝑥 = 0.010, the second community is 100 times larger than the first one, i.e., 50 nodes
vs. 5050 nodes.
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Figure 19 – Community detection result of the proposed method with 𝐾 = 2 on the famous Zachery’s
karate club network. The proposed method is able to correctly identify the community
structure of the network. Previously no Particle Competition model were able to correctly
identify node 9.
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well-know and established techniques: the Fast Greedy Modularity algorithm [Clauset, Newman
and Moore 2004], Fuzzy C-Means [Bezdek 2013], expectation-maximization algorithm [Gupta,
Chen et al. 2011], K-Means++ [Arthur and Vassilvitskii 2007], the Particle Competition [Silva
and Zhao 2012] and the Label Propagation algorithm [Raghavan, Albert and Kumara 2007]. The
Fast Greedy Modularity, Label Propagation, and Particle Competition algorithm [Silva and Zhao
2012] are all graph-based techniques and thus have been adapted to generate a graph from the
given data set. For this task, the 𝑘-nearest neighbor graph formation technique was used with an
optimized 𝑘 for each data set.

Table 2 – UCI data set meta data

Instances Dimension Classes Class ratio
Iris 150 4 3 0.33, 0.33, 0.33
Breast Cancer 569 30 2 0.63, 0.37
Wine 178 13 3 0.40, 0.33, 0.27
Glass 214 10 6 0.36, 0.33, 0.14, ..
Ionosphere 351 34 2 0.64, 0.36
Vowel 990 13 11 0.09, 0.09, 0.09, ..
Yeast 1484 8 10 0.31, 0.29, 0.16, ..
Vertebral 310 6 3 0.48, 0.32, 0.19
Arrhythmia 452 279 13 0.54, 0.11, 0.10, ..
Parkinson 195 21 2 0.75, 0.25
Heart Disease 294 13 5 0.64, 0.13, 0.10, ..
E. Coli 336 7 8 0.43, 0.23, 0.15, ..

The proposed method parameters were optimized over the following parameters using a
grid-search algorithm: 0≤ 𝜇≤ 10 and 0≤𝐾 ≤ 30 to identify the appropriate combination of
parameters of each data set, resulting in the best accuracy. The results in terms of accuracy and
standard deviation, are presented in Table 3, which are the average of 20 independent runs on
each data set.

Additionally, the Table 3 also includes the average rank of each technique: this value is
obtained by raking the technique average data clustering accuracy for each data set, i.e., the most
accurate algorithm gets rank 1, the second most gets rank 2. The average rank is an indicator of
the algorithm performance on the selected data sets. The proposed method has the highest rank,
which indicates it performed better than others most of the time, and it is followed by the Silva
& Zhao, 2012 [Silva and Zhao 2012].

To conclude this section and properly compare the techniques, we submit the empirical
results reported on Table 3 to a statistical validation, in order to identify whether or not it is fair
to state the proposed method performs better in terms of accuracy than the others. For this task of
comparing multiple classifiers over several data sets, we employ the Friedman Test for hypothesis
validation and later, Bonferroni-Dunn as a post-hoc test, with a fixed significance level of 5%,
widely used in the literature [Demšar 2006]. However, as per [Demšar 2006], we also apply the



Table 3 – Comparison between data clusterization methods and the proposed algorithm in 20 independent runs

Modularity Fuzzy C-Means Exp-Max K-Means++ Silva & Zhao, 2012 LP Proposed Method
Iris 85.92 ±0.00 87.97 ±0.00 77.58 ±0.13 83.62 ±0.60 83.38 ±0.46 86.95 ±8.97 90.13 ±7.60
Breast Cancer 60.26 ±0.00 75.04 ±0.00 54.02 ±0.00 82.91 ±0.27 89.04 ±0.33 84.72 ±5.00 88.13 ±0.00
Wine 81.08 ±0.00 71.38 ±0.00 69.83 ±0.00 96.20 ±0.00 94.20 ±1.22 81.05 ±2.96 96.17 ±0.15
Glass 77.61 ±0.00 84.33 ±0.00 73.35 ±0.00 74.81 ±3.28 79.01 ±2.33 76.51 ±5.94 79.37 ±2.03
Ionosphere 55.39 ±0.00 58.65 ±0.00 53.85 ±0.00 58.88 ±0.05 57.83 ±4.83 55.67 ±1.28 59.47 ±3.28
Vowel 88.37 ±0.00 83.94 ±0.12 77.73 ±3.14 84.65 ±0.37 90.31 ±0.16 90.86 ±0.07 90.32 ±0.08
Yeast 75.64 ±0.00 71.87 ±0.18 51.59 ±15.39 76.23 ±0.12 76.26 ±0.17 75.92 ±1.14 76.20 ±0.27
Vertebral 68.82 ±0.00 67.22 ±0.00 71.13 ±1.58 67.32 ±0.41 68.20 ±1.23 65.42 ±4.67 69.96 ±2.39
Arrhythmia 64.55 ±0.00 50.24 ±0.00 55.79 ±5.62 65.11 ±0.72 65.92 ±0.16 65.57 ±0.32 65.89 ±0.09
Parkinson 45.97 ±0.00 59.75 ±0.00 59.75 ±0.00 51.96 ±0.00 58.07 ±1.10 45.39 ±1.76 58.16 ±1.50
Heart Disease 56.93 ±0.00 53.72 ±0.00 57.38 ±6.09 57.32 ±0.60 57.78 ±1.67 56.01 ±0.79 57.98 ±1.67
E. Coli 79.90 ±0.00 79.12 ±0.19 57.60 ±20.75 80.52 ±1.14 80.31 ±2.09 81.36 ±3.76 85.98 ±0.24
Average Rank 4.75 4.66 5.58 3.83 2.75 4.5 1.83
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approximation proposed on [Iman and Davenport 1980]. The Friedman Test’s null-hypothesis is
that all the techniques tested are equivalent and, therefore, their ranks should be the same. In
order to verify such claim (null-hypothesis), we first find that we have 𝑁 = 11 and 𝑘 = 12, as we
are testing 11 techniques over 12 data sets. The next step is to identify our critical value, which
indicates the minimum value required on the F-distribution to reject the null hypothesis, with
𝑘− 1 and (𝑘− 1)(𝑁 − 1) degrees of freedom. The critical value is 𝐹 (6,66) = 2.23, with the
parameters being the degrees of freedom previously described. Finally, by applying the results
obtained, we find that 𝐹𝐹 = 5.54. With 𝐹𝐹 > 𝐹 (6,66), the null hypothesis is rejected with a 5%

significance level. We may proceed to the post-hoc tests.

The post-hoc test compares how the proposed algorithm performs in comparison to others
and allows us to identify whether or not the performance, in terms of accuracy, is significantly
different. As previously stated, the Bonferroni-Dunn is chosen with the proposed method as the
control technique, as it can correctly compare the performance of two or more methods [Demšar
2006]. In essence, the idea is to identify a critical difference (CD) in the ranking of methods.
Should the distance between the rank of the proposed method and the rank of other techniques
be higher than said CD, then we may say the proposed technique is statistically superior to such
techniques. Otherwise, they do not present a significant difference, and the results presented at
Table 3 is not enough to prove if the proposed method performs better than the techniques in
comparison.

1 2 3 4 5 6 7

Proposed Method
Silva & Zhao, 2012

K-Means++
Label Propagation

Fuzzy C-Means
Modularity
Exp-Max

CD

Figure 20 – Visualization of the results of the Bonferroni-Dunn test. The methods outside of the CD range
from the proposed technique are said to be significantly different from the proposed method.

The results of the Bonferroni-Dunn are presented in Fig. 20. With CD=2.32, it is possible
to verify that the model performs better than Label Propagation, Fuzzy C-Means, Modularity,
and Expectation Maximization at a statistically significant level. However, for Silva & Zhao,
2012, and K-Means, the differences are statistically insignificant.

Nevertheless, it should be noted that the technique presented in [Silva and Zhao 2012]
still has a few disadvantages, mainly the inability to accurately cluster unbalanced communities.
Moreover, as previously stated, the proposed method require fewer iterations in comparison to
the original Particle Competition method, which improves its running times. The running times
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Table 4 – Proposed Method and Silva & Zhao, 2012 average running time in seconds

Proposed Method Silva & Zhao, 2012
Iris 6.06s ±2.12s 23.40s ±2.43s
Breast Cancer 8.60s ±1.75s 63.00s ±5.16s
Wine 3.82s ±1.45s 21.05s ±1.36s
Glass 6.66s ±2.42s 37.03s ±3.57s
Ionosphere 7.15s ±1.74s 39.86s ±3.37s
Vowel 155.91s ±52.84s 637.16s ±18.25s
Yeast 78.62s ±24.62s 319.17s ±50.17s
Vertebral 23.68s ±8.76s 61.01s ±4.35s
Arrhythmia 71.26s ±22.64s 113.78s ±7.54s
Parkinson 2.68s ±0.55s 20.69s ±1.62s
Heart Disease 11.53s ±4.18s 51.36s ±4.80s
E. Coli 9.44s ±3.45s 57.27s ±1.93s

required to execute the set of tests that composes Table 3 is available in Table 4 – the tests were
executed on a personal computer with a Core i7 8550U with 1.80GHz. The lower running time
of the proposed method makes it more appropriate for larger networks.
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CHAPTER

6
CONCLUSIONS

This document presents a new stochastic learning model for community detection and
graph-based data-clustering consisting of two interacting learning steps: Competition and Reg-
ularization. Competition is a nature-inspired behavior which occurs when there is a lack of
resources such as food or water. In a network, the particles compete with each other to try to
dominate as many nodes as they possibly can. The Regularization step provides a guide for those
particles: it introduces a parallel and diffusive mechanism into the model. This mechanism takes
into account the domination-level presented in the neighborhood of each node to create a guide
for each particle, tailored for the community it is currently trying to detect. The preference-level
matrix, or guide, then helps the next execution of the Competition until a consensus is reached.
The first step of the system is stochastic and thrives in exploring the unknown and trying new
things – indeed, a necessary step for learning. The second step, however, builds upon the knowl-
edge and experience obtained over time from the “unknown” stage to guide the learning process.
The following epoch then combines both visions using the 𝜆 parameter, allowing for knowledge
to be built.

Additionally, the proposed method employs a novelty combination of sequential and
parallel diffusion of information. Such a mechanism is crucial to the obtain good community
detection results in unbalanced networks and may be further improved or applied in other
problems.

6.1 Conclusions

The computer simulations in this document show that the proposed method can achieve
quite good results in data-clustering and community detection tasks. Furthermore, it shows that
the proposed method improves previous Particle Competition models’ results in terms of running
time and, more importantly, in the ability to identify the community structure of networks with
unbalanced communities. Indeed, the proposed method can obtain good community detection
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accuracy when faced with networks with an unbalanced community structure, regardless of the
unbalance ratio.

6.2 Limitations
In some cases, to correctly classify all the members of a community, it is not enough

to execute the Regularization function only once. To correctly identify the “borders” of the
community, the second stage must be repeatedly executed to propagate the labels and fix
misclassifications. The proposed model uses a user-defined 𝜇 parameter in an attempt to satisfy
such a necessity. However, the 𝜇 parameter has a significant impact on the model’s performance,
and it is usually hard to define. Although the proposed method provides excellent results and
excels the original Particle Competition method in many tasks, its usage may be more difficult
due to the selection of the appropriate value for the 𝜇 parameter.

6.3 Submissions during Master Period
The research project reported in this document resulted in the following submissions:

1. Luan Martins and Liang Zhao (2020), “A Competitive and Diffusive Learning Model
for Unbalanced Network Community Detection,” IEEE Transactions on Knowledge and

Data Engineering

2. Luan Martins and Liang Zhao (2020), “Particle Competition for Unbalanced Com-
munity Detection in Complex Networks,” BRACIS 2020 (IX Brazilian Conference on

Intelligent Systems)

6.4 Future work
The usage of both stages has provided great results in community detection tasks and

improved previous Particle Competition models both in terms of accuracy and running time.
However, the proposed model may also be extended and modified so it can improve or work in
the following set of problems:

• Theoretical analysis: although the proposed method has been empirically tested, a theo-
retical analysis of the model is still lacking.

• Improved Regularization Equation: the model’s biggest limitation steams from the 𝜇

parameter, whose appropriate selection is crucial for the best clustering accuracy, especially
in networks with very unbalanced community structure. One desirable improvement over
the proposed technique is to replace the Regularization equation with a mechanism capable
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of identifying when it is no longer necessary to continue iterating, thus, removing the 𝜇

parameter.

• Semi-supervised classification: the Particle Competition family of algorithms also has
models for semi-supervised learning, in which a few of the node’s labels (communities) are
known before-hand and the model must use this information to identify which nodes share
the same label. It would be interesting to see if the proposed model, working together with
the semi-supervised version of the Particle Competition, can improve the results obtained
by the Particle Competition alone, in terms of accuracy and computational speed.

• One-class classification: one can describe the stages of the proposed model as the Com-
petition being the exploratory behavior of a particle in a network, which allows it to be
creative and avoid pit-falls. In contrast, the Regularization stage is responsible for its
decision making and constraint, which allows it to focus and defend a region. Perhaps,
with some modifications, the combination of a set of cooperating particles and a modified
Regularization mechanism (which would consider that there is only one type of particle
cooperating) would accurately make graph-based one-class classifications by identifying
only the community (label) of the given class.
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