
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

A compositional approach for Systems-of-Systems safety
analysis

Samuel de Souza Lopes
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Samuel de Souza Lopes

A compositional approach for Systems-of-Systems safety
analysis

Master dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-
USP, in partial fulfillment of the requirements for the
degree of the Master Program in Computer Science
and Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Rosana Teresinha Vaccare Braga

USP – São Carlos
January 2023

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

L864c
Lopes, Samuel de Souza
 A compositional approach for Systems-of-Systems
safety analysis / Samuel de Souza Lopes;
orientadora Rosana Teresinha Vaccare Braga. -- São
Carlos, 2023.
 123 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2023.

 1. Software Engineering. 2. System-of-Systems.
3. Model-Based Systems Engineering. 4. Safety
Analysis. I. Braga, Rosana Teresinha Vaccare,
orient. II. Título.

Samuel de Souza Lopes

Uma abordagem composicional para análise de segurança
de Sistemas-de-Sistemas

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientadora: Prof. Dra. Rosana Teresinha
Vaccare Braga

USP – São Carlos
Janeiro de 2023

For God, my parents, my girlfriend, my family, and my friends.

ACKNOWLEDGEMENTS

Throughout my life, several people make the paths I follow less torturous. Some were
with me during some stages of my life, while others remain forever. In this context, God has
always been with me and all I have is thanks to Him. So, first of all, I want to thank God for
being directly responsible for all my joys, as well as for giving me enough energy and wisdom to
overcome all the obstacles that have appeared in my life.

Concerning the people who are with me always, I thank my parents for all the care and
dedication provided throughout my life. I also thank the dear members of my family and my
special friends, with an emphasis on my girlfriend and my sisters, for their unconditional care
and support.

Regarding my academic development, I would like to thank my master’s advisor, Prof.
Dr. Rosana Teresinha Vaccare Braga, as well as my supervisor Prof. Dr. Andre Luiz de Oliveira
for contributing directly to my evolution as a professional, to express constructive criticism and
praise for the research developed during my master’s degree. In addition, I would like to thank
my graduation advisor, Prof. Dr. Rogéria Cristiane Gratão de Souza, for having contributed to
my academic development. All the support provided by both was crucial and I will always be
grateful for that.

I want to thank my friends from Software Engineering Lab (LaBES), especially those
who helped me during my master’s degree. I also thank the University of São Paulo (USP) and
its employees for providing me with the opportunity to study at a university of great national
and international prestige. I thank the academy jury members for making constructive criticisms
about this research. This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

“Tudo é possível para quem tem fé.”

(Marcos 9:23)

ABSTRACT

LOPES, S. S. A compositional approach for Systems-of-Systems safety analysis. 2023. 123
p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

The Systems-of-Systems life cycle is challenging due to inherent System-of-Systems characteris-
tics, such as autonomy, belonging, connectivity, diversity, and emergency. Different hazardous
behaviors may arise from these characteristics, preventing the System-of-Systems from per-
forming its mission. A hazard is a potential condition that can cause injury, illness, or death to
personnel, damage to or loss of a system, equipment, or property, or damage to the environment.
At the System-of-Systems-level, hazards can emerge from interactions between Constituent
Systems and inside a given system. System-of-Systems hazardous behaviors can propagate
throughout the Constituent Systems, and managing them is complex, time-consuming, and error-
prone. Performing System-of-Systems safety analysis is still challenging since existing safety
analysis techniques and tools do not consider the its inherent characteristics that can emerge
throughout the System-of-Systems life cycle. In this context, this work intends to support safety
analysis at the System-of-Systems-level to define which Constituent Systems meet the systems’
safety properties to be incorporated into the System-of-Systems operation. This objective has
been reached by proposing an approach that intends to adapt existing compositional techniques to
enable semi-automated support for System-of-Systems safety analysis, as well as a meta-model
to support System-of-Systems design and safety analysis, which consists of a structured way
to model the information regarding System-of-Systems and its Constituent Systems to perform
systems safety analysis. The approach was evaluated through an illustrative study of a System-of-
Systems from the automotive domain, which provided evidence that System-of-Systems safety
analysis can be performed at the System-of-Systems-level.

Keywords: Software Engineering, System-of-Systems, Model-Based Systems Engineering,
Safety Analysis.

RESUMO

LOPES, S. S. Uma abordagem composicional para análise de segurança de Sistemas-de-
Sistemas. 2023. 123 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Mate-
mática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2023.

O ciclo de vida dos Sistemas-de-Sistemas é desafiador devido às características inerentes do
Sistema-de-Sistemas, como autonomia, pertencimento, conectividade, diversidade e emergência.
Diferentes comportamentos perigosos podem surgir dessas características, impedindo que o
Sistema-de-Sistemas cumpra sua missão. Um perigo é uma condição potencial que pode causar
ferimentos, doenças ou morte de pessoas, danos ou perda de um sistema, equipamento ou
propriedade, ou danos ao meio ambiente. No nível do Sistema-de-Sistemas, os perigos podem
surgir das interações entre os Sistemas Constituintes e dentro de um determinado sistema.
Comportamentos perigosos do sistema de sistemas podem se propagar por todos os Sistemas
Constituintes, e gerenciá-los é complexo, demorado e propenso a erros. Realizar a análise de
segurança de Sistemas-de-Sistemas ainda é um desafio, pois as técnicas e ferramentas de análise
de segurança existentes não consideram as características inerentes do Sistema-de-Sistemas que
podem surgir ao longo do ciclo de vida do Sistemas-de-Sistemas. Neste contexto, o objetivo do
presente trabalho é apoiar analise de segurança no nivel de Sistemas-de-Sistemas para definir
quais Sistemas Constituintes atendem os critérios de propriedade de segurança de sistemas para
serem incorporados a operação de Sistemas-de-Sistemas Este objetivo foi alcançado através da
proposta de uma abordagem com a intenção de adaptar as técnicas de composição existentes para
permitir suporte semi-automatizado para análise de segurança de Sistemas-de-Sistemas, bem
como um meta-modelo para apoiar o projeto e análise de segurança de Sistemas de Sistemas, que
consiste em uma forma estruturada de modelar as informações referentes ao Sistema-de-Sistemas
e seus Sistemas Constituintes para realizar a análise de segurança dos sistemas. A abordagem foi
avaliada através de um estudo ilustrativo de um Sistema-de-Sistemas do domínio automotivo,
que forneceu evidências de que a análise de segurança do Sistema-de-Sistemas pode ser realizada
no nível do Sistema-de-Sistemas.

Palavras-chave: Engenharia de Software, Sistema-de-Sistemas, Engenharia de Sistemas Base-
ado em Modelos, Análise de Perigos.

LIST OF FIGURES

Figure 1 – SoS characteristics. 34
Figure 2 – Differences between the terms failure, error, and fault. 35
Figure 3 – Relationship between the terms hazard, harm, and risk. 36
Figure 4 – V-model with safety-related work products. 38
Figure 5 – Example of fault tree for the railway level crossing. 43
Figure 6 – FPTN combination of the modules. 47
Figure 7 – FPTN notation of each module. 47
Figure 8 – Systematic Mapping Process. 51
Figure 9 – Conducting Phase. 55
Figure 10 – Word Cloud. 56
Figure 11 – Base Package. 68
Figure 12 – SoS Package. 69
Figure 13 – SoS Base Element and sub-types. 70
Figure 14 – HARA Package. 72
Figure 15 – Dependability Package. 74
Figure 16 – FailureLogic Package. 76
Figure 17 – FTA Package. 78
Figure 18 – FMEA Package. 78
Figure 19 – SoSSafe phases and their relationships. 82
Figure 20 – AFS Functional Application Design. 83
Figure 21 – AFS Internal Block Diagram. 85
Figure 22 – HARA Activities. 86
Figure 23 – Anti-Flood System Local Failure Data. 89
Figure 24 – Traffic Light Assistant Overview. 91
Figure 25 – Traffic Light Assistant Functional Application Design. 93
Figure 26 – Traffic Light Assistant Component Diagram. 94
Figure 27 – Traffic Light Assistant Internal Block Diagram. 96
Figure 28 – H1 Fault Tree – Part 1. 102
Figure 29 – H1 Fault Tree – Part 2. 104
Figure 30 – H1 Fault Tree – Part 3. 105

LIST OF TABLES

Table 1 – Generic guide words for programmable electronics. 42
Table 2 – Example of FMEA table. 44
Table 3 – example of ratings for the occurrence of a failure mode. 45
Table 4 – Primary studies selected in the Conducting phase. 58
Table 5 – Differences between risk management for CSs and SoS. 60
Table 6 – Comparison between PMBOK risk management processes (PMI, 2017) and

SoS risk management processes exposed in Conrow (CONROW, 2005). . . . 60
Table 7 – AFS Components Description. 84
Table 8 – Hazard Example. 88
Table 9 – Severity Classes. 99
Table 10 – Probability of Exposure Classes. 99
Table 11 – Controllability Classes. 99
Table 12 – Hazardous Events Classification and SIL results. 100
Table 13 – ASIL Determination. 101
Table 14 – H1 FMEA Table. 103
Table 15 – CS Local Failure Data – Part 1. 120
Table 16 – CS Local Failure Data – Part 2. 121
Table 17 – Component Local Failure Data – Part 1. 122
Table 18 – Component Local Failure Data – Part 2. 123

LIST OF ABBREVIATIONS AND ACRONYMS

SoSSafe SoS Safety Analysis

AADL Architecture Analysis and Design Language

ADAS Advanced Driver-Assistance System

AFS Anti-Flood System

AMADEOS Architecture for Multi-criticality Agile Dependable Evolutionary Open System-
of-Systems

ASIL Automotive Safety Integrity Level

BBN Bayesian Belief Network

CA Criticality Analysis

CAS Cooperative Autonomous System

CCF Common Cause Failure

CoS Coalition of Systems

CPS Cyber-Physical System

CS Constituent System

DAL Development Assurance Level

DEIS Dependability Engineering Innovation for cyber-physical Systems

E/E Electrical and Electronic

EC Exlusion Criteria

EMF Eclipse Modeling Framework

EMV2 Error Model Annex, Version 2

ESP Electronic Stability Program

EUROCAE European Organisation for Civil Aviation Equipment

EV Ego Vehicle

FHA Functional Hazard Assessment

FLA Failure Logic Analysis

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects, and Criticality Analysis

FPTN Failure Propagation and Transformation Calculus

FPTN Failure Propagation and Transformation Notation

FTA Fault Tree Analysis

HARA Hazard Analysis and Risk Assessment

HAZOP HAZard and OPerability Studies

Hip-HOPS Hierarchically Performed Hazard Origin and Propagation Studies

HISoS Hazards In Systems-of-Systems

IC Inclusion Criteria

ICSA-C IEEE International Conference on Software Architecture Companion

IDS Integrated Deep Water System

ISO International Organization for Standardization

kg kilogram

MOF Meta-Object Facility

NEC Network Enabled Capability

ODE Open Dependability Exchange

PSSA Preliminary System Safety Analysis

QC Quality Criteria

QM Quality Management

RPN Risk Priority Number

RQs Research Questions

SMRQ Systematic Mapping Research Question

SOA-ML Service-Oriented Architecture Modeling Language

SoS System-of-Systems

SoSE System-of-Systems Engineering

STAMP Systems-Theoretic Accident Model and Processes

SysML Systems Modeling Language

TLA Traffic Light Assistant

UML Unified Modelling Language

V2V Vehicle-to-Vehicle

CONTENTS

1 INTRODUCTION . 25
1.1 Context . 25
1.2 Motivation, Problem, and Justification 27
1.3 Objective . 29
1.4 Organization . 29

2 BACKGROUND . 31
2.1 Initial Considerations . 31
2.2 System-of-Systems (SoS) . 31
2.2.1 SoS Characteristics . 32
2.2.2 SoS Classification . 33
2.3 Safety Analysis . 35
2.3.1 Safety Terminology . 35
2.3.1.1 Error, Fault, Failure and Hazard-related Concepts 35
2.3.1.2 Dependability . 37
2.3.2 Safety Life-cycle . 37
2.3.3 Hazard Analysis and Risk Assessment (HARA) 39
2.3.4 Safety Analysis Techniques and Tools 41
2.3.4.1 Traditional Safety Analysis Techniques . 41
2.3.4.1.1 HAZard and OPerability Studies (HAZOP) 41
2.3.4.1.2 Fault Tree Analysis (FTA) . 42
2.3.4.1.3 Failure Modes and Effects Analysis (FMEA) 43
2.3.4.2 Compositional Safety Analysis Techniques 46
2.3.4.2.1 Failure Propagation and Transformation Notation (FPTN) 46
2.3.4.2.2 Fault Propagation and Transformation Calculus (FPTC) 46
2.3.4.2.3 Compositional Safety Analysis Tools and Meta-Models 48
2.4 Final considerations . 49

3 SYSTEMATIC MAPPING . 51
3.1 Initial Considerations . 51
3.2 Planning . 52
3.2.1 Research Objectives and Research Questions 52
3.2.2 Search Strategy . 52

3.2.3 Selection Criteria . 53
3.2.4 Quality Criteria . 53
3.2.5 Data Extraction Form . 54
3.3 Conducting . 54
3.3.1 First Selection . 55
3.3.2 Second Selection . 56
3.3.3 Quality Assessment . 56
3.3.4 Data Extraction . 57
3.4 Reporting . 57
3.4.1 Answer to SMRQ1 . 57
3.4.2 Answer to SMRQ2 and its Sub SMRQs 61
3.4.2.1 SoS Risks Found in the Primary Studies Analyzed 61
3.4.2.2 Approaches Identified in the Primary Studies to Support Risk Management 62
3.5 Threats to Validity . 66
3.6 Final Considerations . 66

4 SOSSAFE META-MODEL . 67
4.1 Initial Considerations . 67
4.2 Base Package . 68
4.3 SoS Design Package . 69
4.4 HARA Package . 71
4.5 Dependability::Requirements Package 73
4.6 FailureLogic Package . 75
4.7 FailureLogic Sub-packages . 77
4.8 Final Considerations . 79

5 SOSSAFE: COMPOSITIONAL SYSTEMS-OF-SYSTEMS SAFETY
ANALYSIS . 81

5.1 Initial Considerations . 81
5.2 SoSSafe Input . 83
5.3 Phase 1 – SoS Scenarios Definition 85
5.4 Phase 2 – Hazard Analysis and Risk Assessment 86
5.4.1 Situation Analysis . 87
5.4.2 Hazard Identification . 87
5.4.3 Hazardous Events Classification . 88
5.4.4 SIL and Safety Goals Definition . 88
5.4.5 Local Failure Data Definition . 89
5.5 Phase 3 – Synthesis and Analysis . 90
5.6 Final Considerations . 90

6 SOSSAFE ILLUSTRATIVE CASE 91
6.1 Initial Considerations . 91
6.2 Traffic Light Assistant Illustrative Study Description 92
6.2.1 Traffic Light Assistant Functional Application Design 92
6.2.2 TLA Architecture and Data Flow . 93
6.3 Phase 1 – Scenarios Definition . 95
6.4 Phase 2 – SoS HARA . 97
6.4.1 Situation Analysis . 97
6.4.2 Hazard Identification . 97
6.4.3 Hazardous Events Classification . 99
6.4.4 SIL and Safety Goals Definition . 100
6.4.5 Local Failure Data Definition . 101
6.5 Phase 3 – Synthesis and Analysis . 101
6.6 Final Considerations . 104

7 CONCLUSIONS AND FUTURE WORK 107
7.1 Initial Considerations . 107
7.2 Contributions . 107
7.3 Limitations . 108
7.4 Future Research . 108

BIBLIOGRAPHY . 109

APPENDIX A TRAFFIC LIGHT ASSISTANT LOCAL FAILURE DATA119

25

CHAPTER

1
INTRODUCTION

1.1 Context

System-of-Systems (SoS) is a set of operational and managerial independent systems
in which each system is called Constituent System (CS). CSs work together to achieve a
behavior at the SoS-level that any CS cannot provide in isolation (MAIER, 1998). Due to
operational and managerial characteristics, CSs have their own development, management goals,
and resources and may be situated in different geographical locations around the globe (LOPEZ,
2006; WOJCIK; HOFFMAN, 2006). SoSs have been used in different application domains,
such as intelligent transportation (MATHEW, 2020), aerospace (GUARINIELLO et al., 2019),
energy (GUNAWAN et al., 2017), healthcare (LEITE; SCHNEIDER; ADLER, 2018), and
military (CHEN; UNEWISSE, 2017). A smart city is a typical application domain where SoS
concepts have been applied. In smart cities, citizens consume energy, materials, and services to
catalyze economic development and improve their quality of life through government services,
transportation, healthcare, energy, and water systems that interact to achieve effectiveness and
efficiency for citizens (ELSHENAWY; ABDULHAI; EL-DARIEBY, 2018; CAVALCANTE et

al., 2017).

There has been an increasing role of safety concepts in the context of SoS applications.
Smart cities can be considered safety-critical systems since government or healthcare systems
failures may lead to catastrophic damages at the SoS-level, such as loss of human life or
environmental damage. One failure example of these CSs could be due to a lack of oxygen in
hospitals in the city, causing human injuries or even human deaths. Such failure can be caused
by a technical failure from the healthcare system (SHABAN et al., 2022), or embezzlement of
health funds made illegally from the government system (MALTA; STRATHDEE; GARCIA,
2021). Therefore, approaches to support SoS safety analysis are necessary because of the critical
nature of SoS, in which SoS hazards caused by a combination of failures to at least one of its
CSs may lead to catastrophic damages to the property, environment, injuries, or loss of human

26 Chapter 1. Introduction

life (ALEXANDER; HALL-MAY; KELLY, 2004).

Safety analysis seeks to identify and address safety requirements to minimize or eliminate
safety risks during all phases of the development life cycle (DEZFULI et al., 2011). Besides
smart cities cited before, several application domains have SoS operating in safety-critical con-
texts can be mentioned. For example, there is the vehicle platooning system in the automotive
domain, in which a lead vehicle is followed by other vehicles that are driven semi-autonomously
at a very short distance between each other and possibly coordinated by a higher level controller
(KOBETSKI; AXELSSON, 2017). In the defense domain, there is the anti-missile system com-
posed of satellite, radar, warning center, brigade post, battalion post, and cannon company, which
intends to implement multiple functions such as warning detection, intelligence reconnaissance,
command/control, fire fighting, and communication (MENGMENG et al., 2018).

Safety analysis approaches can be used to support safety life-cycle activities. Such tech-
niques are divided into two categories: traditional and model-based. Fault Tree Analysis (FTA)
and Failure Modes and Effects Analysis (FMEA) are well-established traditional techniques
that can be used to identify potential faults in a system. FTA is a deductive technique because
it considers an analysis from a top event (typically a system failure) and then deducts the com-
ponent failure events which caused the top event. In contrast, FMEA is an inductive technique
since the analysis starts from component failure events and identifies their potential effects on
the system. The output of both techniques helps correct or prevent the analyzed failures. FTA
output is fault trees, whereas FMEA tables are FMEA output. Fault trees are suitable to identify
how SoS hazard effects propagate throughout CSs. FMEA tables are derived from the fault
trees. They help to identify how CSs can fail directly, i.e., when a failure in a CS will lead to
the occurrence of an SoS hazard, or indirectly, i.e., when a CS failure, in conjunction with one
or more failures in other CSs, will cause an SoS hazard (PAPADOPOULOS et al., 2011). An
issue with traditional safety analysis approaches is that most existent ones are manual to be
performed even with the support of existing tools to guide the analysis. To support the automation
of traditional safety analysis techniques and enable automatic synthesis of fault trees and FMEA
tables, compositional safety analysis techniques and tools have been proposed to integrate safety
analysis with the system design process (DELANGE; FEILER, 2014; PAPADOPOULOS et al.,
2011).

Compositional safety analysis techniques are a category of model-based safety analysis
approaches which provide formal and semi-formal languages to support specification, compo-
sition, and analysis of component failure behavior based on safety information regarding its
components (SHARVIA et al., 2016). Failure Propagation and Transformation Notation (FPTN)
is a classic compositional safety analysis technique and probably the first one which describes
the failure behavior of a given system graphically by describing the generation and propagation
of component failures in the system. These component modules are connected via inputs and out-
puts to other modules, allowing the combination and propagation of failures from one module to

1.2. Motivation, Problem, and Justification 27

another. They can be composed into subsystems used to build a system hierarchy. In turn, Failure
Propagation and Transformation Calculus (FPTN) is an extension of FPTN, which intends to link
the failure model to the architectural model so that all dependencies are identified and maintained.
FPTC defines different failure classes (like omission, commission, and value errors), which are
directly specified in annotations in the system model’s components. The inputs and outputs of
those components are then used to transmit failure information to the rest of the system by using
a set of expressions that detail how failures are transformed and propagated from input to output
(PAPADOPOULOS et al., 2011). To support both techniques, compositional safety analysis
tools have been proposed, such as Hierarchically Performed Hazard Origin and Propagation
Studies (Hip-HOPS) (PAPADOPOULOS et al., 2011; PAPADOPOULOS; MCDERMID, 1999),
Error Model Annex, Version 2 (EMV2) specified in Architecture Analysis and Design Language
(AADL) (DELANGE; FEILER, 2014), and CHESS (MAZZINI et al., 2016b).

HiP-HOPS is a compositional safety analysis tool that takes a set of local component
failure data, which describes how output failures of those components are generated from combi-
nations of internal failure modes and deviations received at the components’ inputs, and then fault
tree analysis and FMEA tables synthesis that reflect the propagation of failures throughout the
whole system. In turn, AADL EMV2 intends to automate safety analysis methods by supporting
them through analyzable architecture fault models and uses the system and software architecture
specified in AADL to define hazards, fault propagation, failure modes, and effects associated
with components. Finally, CHESS is an open-source methodology and tool whose objective
is to improve model-based practices to better address safety, reliability, and performance by
guaranteeing the correctness of component development and composition for critical embed-
ded systems. Besides such tools, meta-models have been proposed to support SoS design and
safety analysis, such as Architecture for Multi-criticality Agile Dependable Evolutionary Open
System-of-Systems (AMADEOS) (LOLLINI et al., 2016) and Open Dependability Exchange
(ODE) meta-model from Dependability Engineering Innovation for cyber-physical Systems
(DEIS) project (WEI et al., 2017). The ODE meta-model enables Cyber-Physical System (CPS)
developers to capture various aspects of CPS, including architecture models, Hazard Analysis and
Risk Assessment (HARA) models, failure logic models as well as assurance case models. In turn,
AMADEOS is a common language allowing experts to collaborate on modeling, engineering,
and analyzing SoSs. AMADEOS includes the SoS dependability package in which systems
dependability attributes are modeled, such as systems safety, and safety data is modeled through
the Unified Modelling Language (UML) concept of stereotype.

1.2 Motivation, Problem, and Justification

SoS differs from CSs due to its inherent characteristics: autonomy (the ability of a CS to
make independent choices); belonging (CSs have the right and ability to decide if they belong or
not to the SoS); connectivity (the ability to stay connected to other CSs and potential additions of

28 Chapter 1. Introduction

new CSs to the SoS); diversity (the SoS should be composed by CSs with visible heterogeneity);
and emergence (formation of new properties as a result of developmental or evolutionary process,
since the SoS development and operation are evolutionary) (BOARDMAN; SAUSER, 2006).
Such characteristics and the desire for dynamic reconfiguration present severe difficulties for
the traditional safety analysis approach. SoS characteristics make conventional safety analysis
impractical because it is almost impossible to exhaustively enumerate all the possible interactions
that might take place in an SoS of any considerable complexity. In this scenario, understanding
the SoS failure modes can serve as a basis for improved identification and understanding of
hazards at the SoS-level to avoid accidents, and mishaps not covered in safety analysis at the CS
level (ALEXANDER; HALL-MAY; KELLY, 2004).

Unlike single systems, it is not yet clear how to analyze hazards and provide the required
information for SoSs (BAUMGART; FRÖBERG; PUNNEKKAT, 2020). One reason is the
system boundary. In single systems, the boundary is well-defined, and the components under the
system can be enumerated. In SoSs, it is the opposite because the boundary can vary over time as
part of a regular operation (e.g., a new vehicle can join the vehicle platooning system at any time
during its operation) or an evolutionary development (e.g., a new type of truck is allowed to join
the vehicle platooning system). Traditional safety analysis techniques are unsuitable for SoSs
because they deal with only one failure at a time, and coincident failures are rarely considered
(ALEXANDER; KELLY, 2006). Besides, safety-critical SoSs are complex systems with many
failure modes and thus challenging to perform manual analysis (ALEXANDER; HALL-MAY;
KELLY, 2004). Therefore, computational techniques are recommended to support the analysis.

As discussed, SoSs have inherent characteristics that differ from single systems, such
as defined by Boardman and Sauser (2006), mainly regarding the boundary. Although existing
compositional techniques and tools support safety analysis for complex systems, none of them
considers SoS characteristics. Moreover, existent compositional meta-models have their limi-
tations regarding SoS safety analysis. The ODE meta-model focuses on CPS, and it does not
consider inherent characteristics of hazards at the SoS-level, such as the taxonomy to document
and classify SoS hazards defined by (REDMOND, 2007). Finally, the AMADEOS meta-model
focuses on SoS design modeling, not on modeling and analyzing SoS safety.

Therefore, this creates a need for safety approaches applicable for analyzing SoS
(SABERI et al., 2018). Novel safety analysis approaches at the SoS level are justified since
automated safety analysis may benefit the industry to better execute the safety analysis on SoSs
and, consequently, lead to safer SoSs (PAIGE et al., 2008). In this context, existent compositional
safety analysis approaches can be extended to the SoS-level, considering that SoS failures can be
composed of the characterizations of individual CSs. This way flows of failure modes between
CSs are identified and analyzed to define the SoS failure model (LISAGOR; MCDERMID;
PUMFREY, 2006). This failure model can automate the generation the artifacts to perform tradi-
tional safety analysis, such as fault trees and FMEA tables, and hence help the SoS development

1.3. Objective 29

team to assure the safety of the whole system.

1.3 Objective
This work intends to answer the following Research Questions (RQs):

RQ1 What are the models, methodologies, techniques, and tools to support safety analysis in
SoS-based architectures available in the literature?

For answering RQ1, this work presents the background concepts needed to understand
the subject of this research, and a systematic mapping is performed to understand
risk management practices in the context of SoS deeply. With this, the SoS safety
analysis gaps can raise the research proposal.

RQ2 How to support the design and safety analysis of SoSs?

For answering RQ2, a meta-model to support SoS design and safety analysis is proposed,
which consists of a structured way to model the information regarding SoS and its
CSs to perform systems safety analysis. The SoS Safety Analysis (SoSSafe) meta-
model has been built upon and extends the ODE meta-model from the DEIS Project.
This work proposes extending the ODE meta-model by adding SoS concepts, hence
considering SoS characteristics needed to perform SoS safety analysis.

RQ3 How to conduct SoS safety analysis through compositional approaches?

For answering RQ3, this work proposes a compositional approach to support SoS safety
analysis named SoSSafe. SoSSafe is based on safety life-cycles widely used in the in-
dustry through safety standards, such as that proposed by International Organization
for Standardization (ISO) 26262 (ISO, 2011) from the automotive domain and the
Guideline for Development of Civil Aircraft and Systems ED-79A/SAE ARP 4754A
(EUROCAE, 2010) from the aerospace domain, as well as compositional techniques.
This approach encompasses the scope of SoS safety analysis, identifying combina-
tions among system failure events that may lead the SoS to fail and classifying their
risks to the overall SoS safety. The safety assets generated at the end of the approach
are the synthesis of fault trees to analyze how system failures propagate throughout
the CSs and FMEA tables to identify the most critical components. An illustrative
case from the automotive domain has been proposed to demonstrate the applicability
of SoSSafe.

1.4 Organization
The remainder of this document is organized into the following chapters:

30 Chapter 1. Introduction

Chapter 2 – Background: It presents the SoS, Systems Safety, and other concepts necessary
for the reader to understand this work;

Chapter 3 – Systematic Mapping: It presents the results of a systematic mapping on risk
management for SoS conducted to support this work;

Chapter 4 – SoSSafe Meta-model: It presents a structured way to model the information re-
garding SoS and its CSs to perform systems safety analysis;

Chapter 5 – SoSSafe: Compositional Systems-of-Systems Safety Analysis: It presents a com-
positional approach to support SoS safety analysis;

Chapter 6 – SoSSafe Illustrative Case: It presents the validation process of the proposed com-
positional approach;

Chapter 7 – Conclusions and Future Work: It presents a summary of the work contributions,
as well as their limitations and future directions.

31

CHAPTER

2
BACKGROUND

2.1 Initial Considerations
To answer part of RQ1, this chapter provides the background concepts needed for the

reader to understand the subject of this research. In this context, Section 2.2 presents SoS
concepts and definitions. Section 2.3 presents an overview of the safety analysis process. Finally
Section 2.4 presents the final considerations.

2.2 System-of-Systems (SoS)
There is no precise and widely accepted characterization of SoS as an emerging field. The

literature is diverse, and many attempts have defined and characterized SoS. In the SoS literature,
the definition of SoS exposed by Maier (1998) has been widely cited, which considers SoS as
a set of CSs with operational and managerial independence that cooperate to achieve a goal
through emerging behavior that cannot be achieved considering each CS in isolation (NIELSEN
et al., 2015). In this context, the CSs have operational independence "if the SoS is disassembled
into its CSs, the CSs must be able to operate independently usefully. That is, the components
fulfill customer-operator purposes on their own". On the other hand, the CSs have managerial
independence if "the CSs not only can operate independently, they do operate independently.
The CSs are separately acquired and integrated but maintain a continuing operational existence
independent of the SoS" (MAIER, 1998).

One of the main attributes of an SoS is its composition by CSs, in which each CS that
composes the SoS may be situated in different geographical locations around the globe (LOPEZ,
2006; WOJCIK; HOFFMAN, 2006). CSs are standalone systems since there are independent
development, management goals, and resources. Thus, CSs can provide one or more capabilities
to one or more SoSs, in which capability can be defined as "the ability to achieve overall user
objectives in a mission or business context" (ISO, 2019).

32 Chapter 2. Background

The concepts of SoS have been applied in a variety of domains, e.g., intelligent trans-
portation (MATHEW, 2020), aerospace (GUARINIELLO et al., 2019), energy (GUNAWAN et

al., 2017), healthcare (LEITE; SCHNEIDER; ADLER, 2018), military (CHEN; UNEWISSE,
2017), smart cities (ELSHENAWY; ABDULHAI; EL-DARIEBY, 2018), etc. In the current
literature, it is possible to find several definitions focused on classifying and characterizing SoS
(BOURQUE; FAIRLEY, 2014; JAMSHIDI, 2008). The main SoS characteristics are presented
in Section 2.2.1 and an SoS classification is presented in Section 2.2.2.

2.2.1 SoS Characteristics

SoS characteristics are important because they can help to recognize or realize an
SoS. Thus, some researchers have proposed distinct SoS definitions over time by focusing on
distinguishing characteristics rather than presenting a single abstract description of it (GANDHI;
GOROD; SAUSER, 2011). Of all, the most cited in the literature are proposed by Maier (1998),
Boardman and Sauser (2006).

The taxonomy proposed by Maier (1998) proposes defining an SoS through the following
characteristics:

Operational independence: The CSs of an SoS are independent and can operate in a useful
way without depending on the SoS;

Managerial independence: Even collaborating with other CSs, CSs are self-governing and
individually managed;

Geographical distribution: CSs are distributed over a large geographical area to exchange data
with each other through communication networks;

Evolutionary development: The development of an SoS is evolutionary because the objectives
and functionality can constantly be changing. In this way, CSs and capabilities can be
added, modified, or removed anytime;

Emergent behavior: Through the collaboration between CSs, the objectives of an SoS cannot
be achieved by or assigned to any of the CSs.

In turn, the taxonomy considered in this work has been proposed by Boardman and Sauser
(2006). It is based on a review of over 40 definitions of SoS from the literature. In this taxonomy,
an SoS may be classified into five characteristics: autonomy, belonging, connectivity, diversity,
and emergence. A description of each characteristic is exposed as follows (BOARDMAN;
SAUSER, 2006; GOROD; SAUSER; BOARDMAN, 2008):

2.2. System-of-Systems (SoS) 33

Autonomy: The ability of a CS to make independent choices. Such independence can be both
operational and managerial. Thus, a CS is free to reach its purpose. Any CS may fail to
fulfill its purpose, but not because of autonomy;

Belonging: CSs have the right and ability to decide if they belong or not to SoS. Such choice is
based on necessities, beliefs, or fulfillment of each CS;

Connectivity: The ability to stay connected to other CSs and potential additions of new CSs to
the SoS. Therefore, CSs should be autonomous to make real-time connections to achieve
and sustain their capabilities;

Diversity: The SoS should be composed of CSs with visible heterogeneity. By necessity, an
SoS must be quite diverse in its capabilities compared to the limited functionality of a
CS since the design of an SoS and its CSs are distinct. While CSs have defined and static
scope, SoS must be open to diversity because of its uncertainty, persistent surprise, and
disruptive innovation;

Emergence: SoSs can form new properties due to a developmental or evolutionary process
since the development and operation of the SoS are evolutionary. Therefore, functions and
capabilities are added, removed, or modified according to SoS needs.

2.2.2 SoS Classification

In the current literature, there are several kinds of SoS classification. The most known
classification describes different types of SoS based on the relationships among the CSs in the
SoS. Thus, the SoS can be classified into four types as follows (MAIER, 1998; DAHMANN;
BALDWIN, 2008; DAHMANN; JR; LANE, 2008):

Virtual: In Virtual SoS, there is no central management authority and a centrally agreed upon
objective for the SoS. Virtual SoS must entrust with invisible mechanisms to maintain
it (see Figure 1). National economies have been seen as Virtual SoSs since there are
conscious attempts to architect these SoSs through politics. However, the long-term nature
is determined by highly distributed, partially invisible mechanisms because the purposes
expressed by the SoS emerge only through the collective actions of the CSs;

Collaborative: In Collaborative SoS, the central management organization does not have coer-
cive power to run the system. Thus, the systems must, more or less, voluntarily collaborate
to fulfill the agreed-upon central objectives (see Figure 1). The Internet is an example of
Collaborative SoS because the Internet Engineering Task Force works out standards but
has no power to enforce them. The physical elements of the Internet, such as routers, back-
bones, and nodes, are operational and managerial independent systems, as they operate

34 Chapter 2. Background

Figure 1 – SoS characteristics.

Source: Adapted from Lane (2013).

primarily for the benefit of each physical element. However, such elements interact with
each other to yield emergent properties of large scale and complexity;

Acknowledged: Acknowledged SoS has recognized objectives, a designated manager, and
resources for the SoS. However, the systems keep their independent ownership, objectives,
funding, development, and maintenance approaches. Thus, changes in the SoS are based
on cooperative agreements between the System-of-Systems Engineering (SoSE) Team and
the CSs (see Figure 1). Acknowledged SoS can be used in commercial products or services
in user-specific applications. This type of SoS has particular objectives the majority may
not fully support by the commercial product or system, which has its own objectives and
development path. Therefore, this situation characterizes what is being faced by a variety
of organizations today as they cope with addressing changes in their business objectives
and environment, including relationships, but without the time or resources to replace their
systems supporting persistent aspects of their business but now in a new context;

Directed: Directed SoS is a type of SoS built and managed to perform specific objectives. The
coordinator centrally defines its management to fulfill the established objectives or any

2.3. Safety Analysis 35

new ones the system owners may wish to address. The systems can operate independently,
but their operational mode is subordinated to the SoS objectives (see Figure 1). An
example of Acknowledged SoS is the integrated air defense networks because they are
centrally managed to defend a region against enemy systems, although its CSs can operate
independently.

2.3 Safety Analysis
This section provides the background for the reader to understand SoS safety analysis.

Section 2.3.1 presents the safety terminology adopted in this document. Section 2.3.2 presents
the generic safety life-cycle. Section 2.3.3 presents HARA. Finally, Section 2.3.4 presents the
safety analysis techniques and tools.

2.3.1 Safety Terminology

The following terms related to safety used in this document are explained to support the
reader in understanding this work.

Figure 2 – Differences between the terms failure, error, and fault.

Source: Elaborated by the author.

2.3.1.1 Error, Fault, Failure and Hazard-related Concepts

A system is an entity that communicates with other entities. Examples of entities are
other systems, such as hardware, software, humans, and the physical world with its natural

36 Chapter 2. Background

Figure 3 – Relationship between the terms hazard, harm, and risk.

Source: Elaborated by the author.

phenomena. As shown in Figure 2, a system performs a system function throughout its operation,
namely service. A correct service is delivered when the service implements the expected system
function, whereas a service outage is the opposite since it implements an incorrect system
function. In this context, a failure is "an event that occurs when the delivered service deviates
from correct service". In other words, it is a transition from a correct service to a service outage.
An example of failure is when the airbag does not work during a strong car collision. The
opposite of the failure, i.e., the transition from incorrect service to correct service, is a service
restoration (AVIZIENIS et al., 2004a). A failure may assume different forms that are called
failure modes (AVIZIENIS et al., 2004a).

As depicted in Figure 2, a service assumes a sequence of the system’s external states
during its operation. An error is the part of the entire state of the system that may lead to its
subsequent failure, and its adjudged or hypothesized cause is called a fault. Some errors do not
reach the system’s external state and cause failure. A fault is active when it causes an error,
otherwise it is dormant (AVIZIENIS et al., 2004a). An example of fault is a buffer overflow,
which occurs when a system tries to store more data in a fixed block of memory than the allocated
block supports.

Depending on how the system fails, its failures can cause harm which is a physical injury
or damage to the health of persons. A hazard is "a real or potential condition that can cause
human injury, damage to health, property, or the environment, or damage to or loss of a system".
When a hazard is combined with an operational situation ("scenario that can occur during a
vehicle’s life", (e.g., driving or parking), a hazardous event occurs. A risk is associated with
harm, which is the combination of the probability of occurrence and impact of harm. Analyzing
Figure 3, a hazard may be the source of one or more harms. One or more hazards may contribute
to a catastrophic incident or accident. A risk is unreasonable or unacceptable when it is "judged
to be unacceptable in a certain context according to valid societal moral concepts" (ISO, 2011).

2.3. Safety Analysis 37

2.3.1.2 Dependability

Dependability of a system is "the ability to avoid service failures that are more frequent
and more severe than is acceptable". Dependability is an integrating concept that wraps the
following properties (AVIZIENIS et al., 2004a):

Availability: Readiness for correct service;

Reliability Continuity of correct service;

Safety: Absence of catastrophic consequences on the user(s) and the environment;

Integrity: Absence of improper system alterations;

Maintainability: Ability to undergo modifications and repairs.

In this work, the focus is on the safety attribute. Regarding risk assessment, safety means
"absence from unacceptable risk" (ISO, 2011). The concept of safety is similar to the concept of
reliability, which is defined as "the probability that a system will perform its intended function
for a specified time under a set of specified environmental conditions". However, the definitions
of safety and reliability are distinct because reliability is concerned with keeping the system away
from all types of failures, whereas safety is only concerned with hazardous failures (LEVESON,
1986).

Safety requirements is defined as the necessary risk reduction measures associated with
a given hazard or failure component (MOD, 2007). There are three types of safety requirements:
(i) System Safety Requirements, which is "the risk reduction measure to mitigate hazard
effects" (MOD, 2007); (ii) Functional (or derived) Safety Requirement is the "specification
of implementation-independent safety behaviour, or implementation-independent safety measure,
including its safety-related attributes" (ISO, 2011); and (iii) Safety Integrity Requirement,
which represents the reliability, e.g., in terms of probability and severity attributes, associated
with a given component failure/fault, hazard, or functional safety requirement" (OLIVEIRA et

al., 2019). The artifacts produced throughout the safety life-cycle are called safety assets, which
include safety requirements as well as a safety plan and HARA report (ISO, 2011).

2.3.2 Safety Life-cycle

Standards establish that the dependability properties of a critical system should be
analyzed and demonstrated at different levels of abstraction before its release for operation, as
illustrated in Figure 4. During hazard analysis, the potential threats and risks posed to overall
system safety are identified and determined at the requirements level. At the design level, the
propagation of system failures throughout architectural subsystems should be analyzed during
component fault modeling, using Failure Logic Analysis (FLA) or FTA techniques. Finally,

38 Chapter 2. Background

Figure 4 – V-model with safety-related work products.

Source: Käßmeyer, Schulze and Schurius (2015).

at the component level, it is necessary to identify how components can contribute, directly or
indirectly, to the occurrence of system failures (named hazards) using FMEA or Failure Modes,
Effects, and Criticality Analysis (FMECA) techniques.

Several safety standards have been proposed to cover a range of domains, such as
aerospace and automotive. In the aerospace domain, there is the Guideline for Development
of Civil Aircraft and Systems ED-79A/SAE ARP 4754A from the European Organisation for
Civil Aviation Equipment (EUROCAE) which covers the development of aircraft systems taking
into account the overall aircraft operating environment and functions. ARP 4754A includes
validation of requirements and verification of the design implementation for certification and
product assurance. EUROCAE ED-79A/SAE ARP 4754A guides demonstrating compliance
with regulations, supporting companies in developing and meeting their internal standards by
considering standard guidelines (EUROCAE, 2010). In turn, ISO 26262-1 Road vehicles —
Functional Safety applies in the automotive domain to safety-related systems that include one or
more Electrical and Electronic (E/E) systems and that are installed in series production passenger
cars with a maximum gross vehicle mass up to 3,500 kilogram (kg). ISO 26262-1 does not
address unique E/E systems in special purpose vehicles, such as vehicles designed for drivers
with disabilities (ISO, 2011). HARA has preliminary activities of safety life-cycle in both safety
standards, as illustrated in Figure 4, which is denominated Hazard & Risk Analysis. HARA aims
to identify hazardous functional failure conditions, determine the risks associated with each
identified hazard, and establish safety requirements to minimize or eliminate hazard effects. In

2.3. Safety Analysis 39

ISO 26262-1, this activity is named HARA, whereas in EUROCAE ED-79A/SAE ARP 4754A,
this activity is named Functional Hazard Assessment (FHA) in both aircraft and system levels
(EUROCAE, 2010; ISO, 2011). The sub-activities of HARA and FHA are further detailed in the
following.

2.3.3 Hazard Analysis and Risk Assessment (HARA)

In the context of safety standards, there is no consensus on a universal approach. Thus,
safety standards may vary according to industry, domain, or region (MOD, 2007). However,
most safety standards cover basic engineering activities, such as Hazard and Risk Assessment.
As described earlier, each safety standard has a specific name for this activity (e.g., HARA and
FHA). However, both have similar sub-activities as follows (OLIVEIRA, 2016):

1. Hazard Identification: In this sub-activity, hazardous functional failure conditions that
can lead the system to an unsafe state are identified. First, it is necessary to specify and
understand the system and its target operating environment to define the scope of the
analysis. Hazard Identification can be performed through checklists, "what-IF" analysis,
Functional Failure Assessment (SAE, 1996), or HAZard and OPerability Studies (HAZOP)
(DUNJÓ et al., 2010). Hazards are identified iteratively, and then the information of hazards
identified is updated during the safety life-cycle in order to improve the knowledge about
the system hazards (HABLI, 2009);

2. Risk Assessment: It relates to the classification of the risk posed by each identified
hazard. Standards use different attributes for classifying the risk posed by system hazards.
In ISO 26262-1, the risk of a hazard is classified based on: (i) Severity (how severe a
potential accident is); (ii) Probability of Exposure (how often this situation occurs); and
(iii) Controllability (if the critical situation can be controlled by an operator or educated
personal). Through these parameters, each hazardous event shall determine an Automotive
Safety Integrity Level (ASIL). ASIL refers to an abstract classification of inherent safety
risk in an automotive system or elements of such a system (ISO, 2011). In EUROCAE
ED-79A/SAE ARP 4754A, each Failure Condition is classified based on its severity (i.e.,
Catastrophic, Hazardous/Severe-Major, Major, Minor, or No Safety Effect) and probability
of occurrence (EUROCAE, 2010);

3. Allocation of Safety Requirements: Finally, from the analysis of the outputs provided
by the HARA, safety requirements are assigned to mitigate hazards and component
failure effects. Safety requirements can be stated as functional safety or safety integrity
requirements. In ISO 26262-1, safety goals "are top-level safety requirements assigned
for an item in the form of ASIL, and a safety goal shall be defined for each hazardous
event. Safety goals define the safety requirements necessary to avoid an unreasonable risk
for each hazardous event (ISO, 2011). In EUROCAE ED-79A/SAE ARP 4754A, a set

40 Chapter 2. Background

of Development Assurance Level (DAL) are assigned to mitigate the effects of failure
conditions on the overall safety (EUROCAE, 2010).

Whereas HARA has been used in the automotive domain, FHA is used in the aircraft
domain. Still, the activity performed by FHA is similar to HARA (ISO, 2011; EUROCAE, 2010).
The main difference between HARA and FHA is that HARA is performed only at one level
(vehicle), while FHA is performed at two levels (systems and aircraft) (ISO, 2011; EUROCAE,
2010).

Regarding SoS hazards, the study proposed by Baumgart, Fröberg and Punnekkat (2017)
presents a structured process for identifying potential hazards in SoS, exemplified in a quarry
site automation context. To organize the hazards identified by the proposed process, Redmond
taxonomy is used (REDMOND, 2007). Such taxonomy classifies SoS hazards through the five
categories:

Interface Hazards: These hazards are caused by sharing faulty data through a defined channel.
The hazard occurs in the receiving system, which relies on the received data. It is necessary
to define which channels shall be used and which kind of data shall be exchanged between
CSs in SoS;

Proximity Hazards: It may occur if different CSs operate within a short physical distance. A
failure in one CS may lead to hazards in the other CS. Characteristics of the site may cause
unintended behavior, such as electromagnetic compatibility interference from high-voltage
charging equipment;

Resource Hazards: They result from insufficient shared resources or resource conflicts. Lim-
ited shared communication channels or limited electric charging possibilities are examples
of unintended behavior of the SoS;

Reconfiguration Hazards: They are related to changes in the configuration of the SoS, which
may depend on operational demands or replacement of CSs;

Interoperability Hazards: They result from interpreting the information from one CS by
a second CS in a way that the first CS did not intend. If, for example, an autonomous
system is sending a status of not being shut down properly and the site management CS
misunderstands this status, approval for safe entering the autonomous operating area might
be provided.

The following section presents safety analysis techniques and tools to support hazard
identification and analysis, as well as the identification of its causes.

2.3. Safety Analysis 41

2.3.4 Safety Analysis Techniques and Tools

A set of techniques available in the literature can be used to support safety life-cycle activ-
ities. These techniques are classified into traditional and model-based. Model-based techniques
are split into two categories: compositional and extensions of formal verification techniques. In
this section, it is presented an overview of both traditional (Section 2.3.4.1) and model-based
safety analysis techniques (Section 2.3.4.2).

2.3.4.1 Traditional Safety Analysis Techniques

The following presents an overview of traditional safety analysis techniques, namely
HAZOP, FTA, and FMEA. These techniques are used to identify potential failures in a system so
that the generated information can be used to correct or prevent the identified faults. HAZOP
(Section 2.3.4.1.1), FTA (Section 2.3.4.1.2), and FMEA (Section 2.3.4.1.3) are well-established
safety analysis methods primarily used in the engineering of safety-critical systems in aerospace,
automotive, railway, and nuclear power plant domains.

2.3.4.1.1 HAZard and OPerability Studies (HAZOP)

HAZOP study is a structured and semi-formalized team-based procedure focused on the
study of a system under design to identify and evaluate potential hazards that may constitute
risks to personnel or equipment or prevent the efficient operation of the system (DARAMOLA et

al., 2011). The first application of HAZOP was in the chemical industry (KLETZ, 1997). Over
time, HAZOP has been applied in other areas, such as avionics systems and computer-assisted
braking systems, being valuable and essential for the safety assurance of computer-based systems
(MCDERMID et al., 1995).

HAZOP relies on guide words, as shown in Table 1, which are combined with process
parameters (e.g., value and flow) in order to reveal deviations from normal process intent or
operation. For example, applying the guide words ’before’ and ’after’ to the timing of a message
in a sequence diagram can instigate designers to consider whether or not hazards can occur if the
message is sent earlier or later within the sequence of messages (HANSEN; WELLS; MAIER,
2004). After determining the deviations, experts explore each deviation’s possible causes and
consequences to generate pairs of cause-consequence. For each pair, safeguards are identified
whose purpose is to prevent, detect, control, or mitigate the hazardous situation (DUNJÓ et al.,
2010; WINTHER; JOHNSEN; GRAN, 2001). HAZOP studies are based on examining design
representations of a system. The recommended steps in a HAZOP study are (HANSEN; WELLS;
MAIER, 2004):

1. Identify each system in the design representation;

2. Identify attributes, i.e., physical or logical properties, for each system;

42 Chapter 2. Background

3. Investigate deviations from design intent by applying guide words to attributes;

4. Investigate, for each deviation, the causes and consequences.

Table 1 – Generic guide words for programmable electronics.

Guide Word Interpretation

No This is the complete negation of the design intention. No part of the intention
is achieved, and nothing else happens.

More This is a quantitative increase.

Less This is a quantitative decrease.

As well as All the design intention is achieved together with additions.

Part of Only some of the design intention is achieved.

Reverse The logical opposite of the intention is achieved.

Other than Complete substitution, where no part of the original intention is achieved,
but something quite different happens

Early Something happens earlier than expected relative to clock time

Late Something happens later than expected relative to clock time.

Before Something happens before it is expected, relating to order or sequence.

After Something happens after it is expected, relating to order or sequence
Source: Ministry of Defence (2000).

2.3.4.1.2 Fault Tree Analysis (FTA)

FTA (VESELY et al., 2002) is a deductive technique that considers the analysis of a
top-event, typically a system-level failure identified during hazard analysis, and then deduces its
causes. A top event of a fault tree can be an identified hazard using functional failure assessment
or HAZOP. Fault tree analysis is performed based on the preliminary design of the system
architecture to identify failures on components named basic events, leading to the occurrence of
the top-level event.

FTA can be performed qualitatively via logical analysis of the relations between the top
and basic events or quantitatively via probabilistic analysis. The qualitative analysis considers
basic events, their relationships, and contributions to the occurrence of a top event. The quantita-
tive analysis calculates the probability of occurrence of a given top event based on the analysis
of the probability of occurrence of each basic event.

A fault tree provides a graphical representation of combinations of component failures
that contribute to the occurrence of the top event connected to one or more basic events via

2.3. Safety Analysis 43

Figure 5 – Example of fault tree for the railway level crossing.

Source: Thapaliya and Kwon (2017).

logical gates, such as AND, OR, or NOT. Figure 5 illustrates an example of a fault tree for the
railway level crossing. The collision between car and train top-event is represented in level 0.
Analyzing the fault tree, the top event can be triggered if both car and train cross the railway.
Analyzing a top-down way makes it possible to determine the failure caused by leaf nodes.

FTA can be used to support the Preliminary System Safety Analysis (PSSA) phase from
EUROCAE ED-79A/SAE ARP 4754A safety process (EUROCAE, 2010) and ISO 26262-1
Safety Validation. Fault tree analysis allows refining high-level safety requirements assigned to
system hazards during HARA to derive safety requirements to be assigned to system components,
thus supporting the decomposition of safety requirements required in both automotive ISO 26262-
1 Functional Safety Concept and EUROCAE ED-79A/SAE ARP 4754A PSSA.

2.3.4.1.3 Failure Modes and Effects Analysis (FMEA)

Unlike FTA, FMEA is an inductive technique that infers the potential effects of knowing
component failures on the overall system safety (PUMFREY, 1999). Its objectives are providing
a systematic examination of possible system single failure, analyzing the effects of each failure
mode on system operation, recording the causes of the failure modes, and specifying appropriate
detection procedures and corrective actions for each failure mode (SEVCIK, 1981). As shown in

44 Chapter 2. Background

Table 2 – Example of FMEA table.

Component failure
Direct effects

on the system

Effects caused in conjuntion

with other events

C1 F1 –

C2 F1 –

C3 – F1 (C4)

C4 – F1 (C3)

C5 F1, F2 –

C6 – F1, F2 (C7)

C7 – F1, F2 (C6)

C8 F2 –

C9 F2 –
Source: Papadopoulos (2013).

Table 2, the results obtained by FMEA can be represented in the form of a table listing the effects
of each component failure on the rest of the system, in which F1 and F2 are system failures, and
C1—C9 are component failures. There are no direct effects on the system for C3, C4, C6, and
C7. However, they have further effects as, for example, C3 and C4 both occurring in conjunction
will cause F1.

FMEA can be extended through a Criticality Analysis (CA) procedure, in which failure
modes are rated by assessing their criticalities. The combination between FMEA and CA
procedures corresponds to FMECA (BOUTI; KADI, 1994). The first step of FMECA is to
identify all possible potential failure modes of the system through systematic brainstorming.
After that, criticality analysis is performed on each potential failure mode taking into account the
risk factors (LIU; LIU; LIU, 2013):

∙ Occurrence (O): the probability of the failure;

∙ Severity (S): the severity of the failure;

∙ Detection (D): how easy it is to detect the failure.

In order to prioritize the failure modes for corrective actions, the Risk Priority Number
(RPN) is calculated for each failure mode. First of all, each risk factor is evaluated using a
10-point scale, where each risk factor has its scale. In Table 3, it is shown an example of a
10-point scale for the risk factor Occurrence. In this way, the RPN is calculated through the
equation RPN=O.S.D. The higher the RPN of a failure mode, the greater the risk is for system

2.3. Safety Analysis 45

safety. For example, a failure mode x with values O = 5, S = 4 and D = 3 has a higher priority
than a failure mode y with values O = 2, S = 3 and D = 5 because RPNx = 60 > RPNy = 30.

After applying corrective actions, all RPNs should be calculated again to check if the
risks have gone down and verify the efficiency of the corrections for each failure mode (LIU;
LIU; LIU, 2013).

Table 3 – example of ratings for the occurrence of a failure mode.

Probability of failure Possible failure rates Rank

Extremely high: failure almost inevitable ≥ in 2 10

Very high 1 in 3 9

Repeated failures 1 in 8 8

High 1 in 20 7

Moderately high 1 in 80 6

Moderate 1 in 400 5

Relatively low 1 in 2000 4

Low 1 in 15,000 3

Remote 1 in 150,000 2

Nearly impossible ≤1 in 1,500,000 1
Source: Liu, Liu and Liu (2013).

Although there are similarities in the structure and analysis process of component
FMEA/FMECA and HAZOP, the latter is a predictive technique commonly used early on the
safety life-cycle to identify potential threats to system safety and assign safety requirements. On
the other hand, FMEA and FMECA are used later in the safety life-cycle to demonstrate that
the system addressed the safety requirements (PUMFREY, 1999). FMEA technique supports
EUROCAE ED-79A/SAE ARP 4754A System Safety Analysis process, and automotive ISO
26262-1 Functional Safety Analysis activity (ISO, 2011).

HAZOP, FTA, and FMEA/FMECA provide valuable information about the system’s
faulty behavior, complementing each other. HAZOP provides information about the potential
system failures that can arise from the system architecture, their risks, and assigned safety
requirements. FTAs provide the causal information for system failures, and FMEA provides
a view of the impact of component failures on overall safety. However, both techniques are
primarily manual methods. Applying these methods to larger and complex systems can be a
laborious and error-prone task (PAPADOPOULOS et al., 2011).

Researchers and aircraft manufacturers have recognized the limitations of traditional
safety analysis techniques with the revision of the SAE ARP 4761 (COMMITTEE et al., 1996)

46 Chapter 2. Background

document that includes a specific section dedicated to model-based automated safety analysis.
Therefore, some tools and techniques have been developed to automate the system safety process.
Such tools are exposed as follows.

2.3.4.2 Compositional Safety Analysis Techniques

Modern safety analysis techniques have been proposed to address the limitations of
traditional techniques related to the lack of automated support. These techniques are categorized
into compositional and formal verification approaches to support system safety analysis. Compo-
sitional approaches are built upon the failure logic model that characterizes the failure behaviors
of individual components by connecting output failure modes of components to input failure
modes of other components (LISAGOR; MCDERMID; PUMFREY, 2006). FPTN (Section
2.3.4.2.1) and FPTC (Section 2.3.4.2.2) are well-known safety analysis techniques used in an
extensive range of applications. The main compositional safety analysis techniques are presented
in Section 2.3.4.2.3.

2.3.4.2.1 Failure Propagation and Transformation Notation (FPTN)

One of the earliest compositional safety analysis techniques is FPTN, which provides a
graphical notation for expressing the failure behavior of systems with complex internal structures.
FPTN is based on the idea of component modules that describe the generation and propagation of
system component failures, which are connected via inputs and outputs to other modules to allow
the combination and propagation of faults between system modules. These component modules
can be composed into subsystems to build a system hierarchy (FENELON; MCDERMID, 1993).
FPTN is a bridge between FTA and FMEA since the cause and effect of the failures can be
studied (PAPADOPOULOS et al., 2011). A deficiency of FPTN is that the system failure model
is separate from the system architectural model, so any changes to the system model can lead to
being out of sync with the system failure models (WALLACE, 2005). As illustrated in Figure 6,
the system comprises modules connected via inputs and outputs to other modules, allowing
the combination and propagation of failures between the modules. In Figure 7, modules have
standardized attributes; a name, a criticality level, and (where applicable) an indication of any
recovery mechanisms which might exist in that module (FENELON; MCDERMID, 1992).

2.3.4.2.2 Fault Propagation and Transformation Calculus (FPTC)

FPTC has been proposed to address the FPTN limitations. Unlike FPTN, FPTC com-
bines the fault model with the system architectural model, in which any changes made in the
architectural model do not require a new failure model to be built. Thus, only a part of the failure
model needs updating.

FPTC defines failure classes, such as omission, commission, and value failures, which
are directly specified by annotations in the system model’s components. Input and output ports

2.3. Safety Analysis 47

Figure 6 – FPTN combination of the modules.

Source: Fenelon and McDermid (1992).

Figure 7 – FPTN notation of each module.

Source: Fenelon and McDermid (1992).

from system components transmit fault information to other system components through logical
expressions that detail the system’s faulty behaviors. Therefore, such expressions and the system
architectural model can be evaluated as a token-passing network, identifying the effects of each
component failure on the system as a whole (WALLACE, 2005; PAPADOPOULOS et al., 2011).

An extension to FPTC proposed by Ge, Paige and McDermid (2009) supports quantitative
analysis by including probabilistic values for each failure expression. A disadvantage of FPTC
over FPTN is that while FPTN supports deductive and inductive analysis, FPTC only supports
inductive analysis. Thus, the information provided by an FTA is more challenging to obtain
with FPTC. Moreover, systems with many failure modes are prone to combinatorial explosion
(PAPADOPOULOS et al., 2011).

48 Chapter 2. Background

2.3.4.2.3 Compositional Safety Analysis Tools and Meta-Models

In the current literature, tools are available to provide automated support for FPTN and
FPTC compositional safety analysis techniques. Hip-HOPS (PAPADOPOULOS et al., 2011),
AADL EMV2 (DELANGE; FEILER, 2014), and CHESS (MAZZINI et al., 2016b) are important
tools and they are described as follows:

∙ Hip-HOPS: it is a toolset that supports the description of the failure logic of components
and automatic synthesis of component failure data into fault trees that reflect the propa-
gation of failures throughout the whole system architecture. From the synthesized fault
trees, Hip-HOPS generates both quantitative and qualitative results into FMEA tables
(PAPADOPOULOS et al., 2011; PAPADOPOULOS; MCDERMID, 1999);

∙ AADL EMV2: this tool is an extension to the AADL standard, which aims to "automate
safety analysis methods by supporting them through analyzable architecture fault models".
It uses the system and software architecture specified in AADL to define hazards, fault
propagation, failure modes, and effects associated with components. In order to facilitate
incremental and scalable automated safety analysis, the compositional fault behavior
specifications are defined as annotations in the system model (DELANGE; FEILER,
2014).

∙ CHESS: it is an open source methodology and tool whose objective is to improve model-
based practices to address safety, reliability, and performance. It guarantees the correctness
of component development and composition for critical embedded systems. It helps system
architects interpret human, organizational, and technological entities through components
and model their behaviors concerning erroneous and fault-tolerance (MAZZINI et al.,
2016b).

A common characteristic of Hip-HOPS, AADL EMV2, and CHESS is that the failure
model is integrated into the system architectural model. However, these tools do not take into
account the inherent SoS characteristics. Besides such tools, similar works present meta-models
in the context of SoS dependability and safety analysis. ODE meta-model enables CPS developers
to capture various aspects of CPS, including architecture, HARA, failure logic, and assurance
case models. In turn, AMADEOS is a common language allowing experts to collaborate on
modeling, engineering, and analyzing SoSs. AMADEOS includes the SoS dependability package
in which systems dependability attributes are modeled, such as systems safety, and safety data is
modeled through the UML concept of stereotype. Existent compositional meta-models have their
limitations regarding SoS safety analysis. ODE meta-model focuses on CPS since it does not
consider inherent characteristics of hazards at the SoS-level, such as the taxonomy to document
and classify SoS hazards defined by (REDMOND, 2007). Finally, the AMADEOS meta-model
focuses on SoS design modeling, not on modeling and analyzing SoS safety.

2.4. Final considerations 49

2.4 Final considerations
This chapter presented the concepts of SoS and safety analysis to provide the theoretical

foundation for this research. To contribute to answering RQ1, Chapter 3 presents a systematic
mapping conducted in this work which intends to identify the state-of-the-art of SoS safety
analysis, particularly SoS risk management techniques. Such systematic mapping is related to
SoS risks and approaches and tools to manage the risks exposed in the SoS literature.

51

CHAPTER

3
SYSTEMATIC MAPPING

3.1 Initial Considerations

To answer part of RQ1, this chapter provides a systematic mapping to identify the state-
of-the-art of SoS safety analysis with a focus on SoS risk management techniques. Systematic
mapping is a broad review of primary studies on a specific topic to identify what evidence is
available on the topic (KITCHENHAM; CHARTERS, 2007). This chapter presents a systematic
mapping to identify existing primary studies related to risk management practices for SoS. This
systematic mapping follows the process proposed by Kitchenham and Charters (2007) that
comprises planning, conducting, and reporting phases, as shown in Figure 8. This systematic
mapping identified SoS risks, SoS risk management approaches, tools, and their differences to
system-level risk management approaches and tools.

The systematic mapping exposed as follows has also been described in a paper published
at the 2020 IEEE International Conference on Software Architecture Companion (ICSA-C)
(LOPES et al., 2020).

Figure 8 – Systematic Mapping Process.

Source: Adapted from Kitchenham and Charters (2007).

The remainder of this chapter is organized as follows. Section 3.2 describes the planning
phase. Section 3.3 presents the conducting phase. Section 3.4 presents the reporting phase.
Section 3.5 presents the threats to validity. Finally, Section 3.6 presents the final considerations.

52 Chapter 3. Systematic Mapping

3.2 Planning

In this phase, the research objectives and the systematic mapping protocol were estab-
lished. For this research, the protocol contains the following items:

∙ Research objectives and research questions;

∙ Search strategy;

∙ Selection criteria (i.e., inclusion and exclusion criteria);

∙ Quality Assessment;

∙ Data extraction and synthesis method.

3.2.1 Research Objectives and Research Questions

The main goal of this systematic mapping is to obtain state of the art on risk management
practices and techniques for SoS focused on identifying the differences between risk management
for SoS and CSs and the key SoS risks. From this objective, the following Systematic Mapping
Research Question (SMRQ) were derived:

SMRQ1: Which are the differences between risk management for SoS and risk management
for CSs?

SMRQ2: Which are the key SoS risks?

SMRQ2.1: Which are the approaches used to manage risks at the SoS level, their strengths
and weaknesses?

SMRQ2.2: In which domains have these risks occurred?

3.2.2 Search Strategy

The following relevant keywords were identified from the analysis of the research
questions to be further considered in search strings: System of Systems and risk. Combining these
terms using logical operators (AND, OR, NOT), it was obtained the following general search
string:

(“System of Systems” OR “Systems of Systems” OR “System-of-Systems” OR

“Systems-of-Systems” OR “SoS”)

AND

(“risk” OR “risks”)

3.2. Planning 53

The search string was validated by defining a control group (CONROW, 2005; HAIMES,
2012b; PINTO; MCSHANE; BOZKURT, 2012), with the support of an SoS expert. Through the
primary studies of the control group, it was verified that the search string was properly defined to
find primary studies relevant to this systematic mapping.

This search string was applied to identify primary studies in the following five databases:
ACM Digital Library, IEEE Xplore, ScienceDirect, Scopus and Web of Science. The Springer

database was not used because this database does not have the function of searching studies
only by metadata, i.e., searching only by the title text, abstract, and keywords. The function of
searching metadata is important to prevent irrelevant articles from being selected. The criteria
established by Dieste and Padua (2007) were considered in selecting the databases for this
systematic mapping.

3.2.3 Selection Criteria

The selection criteria were used to evaluate the studies obtained in each database to
include the relevant primary studies to answer the research questions and exclude the primary
studies that do not add knowledge to this systematic mapping. The Inclusion Criteria (IC) and
Exlusion Criteria (EC) used were:

IC1: Primary study that addresses risk management processes for SoS;

IC2: Primary study that addresses the key risks or challenges for SoS;

EC1: Primary study not written in English;

EC2: Primary study that only addresses the risk management process for CSs;

EC3: Primary study that only addresses the key risks or challenges for CSs;

EC4: Primary study not available for online reading or download.

3.2.4 Quality Criteria

It was defined and used a checklist with seven Quality Criteria (QC), based on the quality
assessment criteria proposed by Kitchenham and Charters (2007), to analyze the quality of the
selected primary studies:

QC1: Is there a rationale for why the primary study was undertaken?

QC2: Is an overview of the state of the art of the area in which the primary study is developed
presented?

QC3: Is there an adequate description of the context in which the work was carried out?

54 Chapter 3. Systematic Mapping

QC4: Is a clear justification for the methods used during the primary study provided?

QC5: Is there a clear statement of the contributions and sufficient data to support them?

QC6: Are the credibility and limitations of their findings explicitly discussed?

QC7: Are the perspectives of future works discussed?

3.2.5 Data Extraction Form

In order to answer the SMRQs, it was defined a data extraction form to extract the
following information from the identified primary studies:

F1: Does the primary study address the risk management processes for SoS? If so, what are
they?

F2: Does the primary study take a comparative study between risk management for SoS and
risk management for CSs? If so, what are they?

F3: Does the primary study discuss the advantages or disadvantages of managing risks for SoS?
If so, what are they?

F4: Does the primary study propose any approach to manage risks for SoS? If so, describe the
approach advantages, difficulties, limitations, or challenges;

F5: What is the application domain targeted by the primary study?

F6: Does the primary study mention risks that may arise in SoS? If so, what are they?

F7: Is the primary study restricted to any type of SoS?

3.3 Conducting

This systematic mapping was conducted from March 2019 to September 2019. It is
important to observe that a formal update of this mapping would be required to include more
recent works. However, such an update is left as future work due to timing restrictions. The
mapping accomplished its primary goal of obtaining state of art to allow the definition of the
present proposal. Nevertheless, recent works were found and studied after the publication of this
systematic mapping and are referenced along the text.

In the conduction phase, primary studies were selected and evaluated by considering the
following procedure for the study selection: First Selection (Section 3.3.1); Second Selection
(Section 3.3.2); Quality Assessment (Section 3.3.3) and Data Extraction (Section 3.3.4).

3.3. Conducting 55

3.3.1 First Selection

The defined search string was adapted for each search database to obtain the primary
studies related to the research topic, resulting in 1387 studies. After removing duplicate studies
(i.e., 498 studies), 889 were analyzed by reading their titles, abstracts, and keywords and
considering the inclusion and exclusion criteria. At the end of this stage, 102 primary studies
that were further analyzed in the Second Selection were selected, as illustrated in Figure 9.

Figure 9 – Conducting Phase.

Source: Elaborated by the author.

56 Chapter 3. Systematic Mapping

Figure 10 – Word Cloud.

Source: Elaborated by the author.

3.3.2 Second Selection

Here, the full reading of each primary study obtained in the First Selection was performed,
and it was analyzed, one by one, by considering the defined inclusion and exclusion criteria.
Before reading each primary study, a word cloud shown in Figure 10 was created with the
keywords of these primary studies to verify whether they correspond to the terms used in the
search string. From the analysis of Figure 10, it was verified that the words risk and SoS from
the search string appear in the majority of the analyzed primary studies. After that, each primary
study was thoroughly read. In parallel, the related works were analyzed and selected based on
the inclusion and exclusion criteria. Finally, it was selected 41 primary studies for the Quality
Assessment stage (see Figure 9).

3.3.3 Quality Assessment

The checklist with seven QC exposed in Section 3.2.4 was used to analyze the quality of
the primary studies selected in the Second Selection. Each QC was analyzed according to the
following point scale:

∙ The primary study does not meet these quality criteria (0 point).

3.4. Reporting 57

∙ The primary study meets the quality criteria to some extent (0.5 point);

∙ The primary study fully meets a given quality criterion (1 point);

It was obtained the total quality score of each primary study based on the following
classification: 0 - 1.0 (very poor); 1.1 - 2.0 (poor); 2.1 - 3.0 (fair); 3.1 - 4.0 (average), 4.1 - 5.0
(good), 5.1 - 6.0 (very good), and 6.1 - 7.0 (excellent). In the end, it was selected 22 selected
primary studies with a score greater than or equal to 3.0 for filling out the Data Extraction Form.

3.3.4 Data Extraction

In this stage, the relevant data from each primary study accepted in the Quality Assess-
ment was extracted by filling the Data Extract Form presented in Section 3.2.5.

3.4 Reporting

To answer the SMRQs, 22 selected primary studies exposed in Table 4 during the Data
Extraction stage were fully read. The Data Extraction Forms were analyzed to answer each
SMRQ qualitatively. Thus, the answers for each SMRQ are described in the following.

3.4.1 Answer to SMRQ1

According to Shah, Davendralingam and DeLaurentis (2015), Baumgart, Fröberg and
Punnekkat (2017), existing risk management approaches at the CS level are ineffective in the
context of SoS due to the high complexity, evolutionary nature, and SoS level interactions.
Concerning risk management at the CS level, Pinto, McShane and Bozkurt (2012) argue that,
when designing CSs, tools and methodologies are available to solve defined problems and, as
system boundaries are fixed, and expected behavior is known, the scope of these problems and
their associated risks are relatively straightforward. However, the SoS boundary is not necessarily
static, CSs may not have been identified, and behavior is emergent. Gandhi, Gorod and Sauser
(2012) argues that in the traditional approach to risk management focused on managing risks for
CSs, there is a tendency to analyze risks individually without taking into account the holistic
view of interactions between the potential risks at the CS level and their consequences to the SoS.
In addition, risk management approaches at the CS level do not consider the influence of external
factors and constraints that may affect the overall risk associated with SoS (CONROW, 2005).
An example that risk management at the CS level is incompatible with the risk management at
the SoS level is the Integrated Deep Water System (IDS) presented in Gandhi, Gorod and Sauser
(2012). The IDS is an SoS that applies traditional risk management practices. The IDS was
broken down into “manageable parts” to facilitate the risk management of each part. However,
the interdependence between IDS parts and the factors were not considered. As a result, the IDS

58 Chapter 3. Systematic Mapping

Table 4 – Primary studies selected in the Conducting phase.

ID Title and Reference Year
1 Abandonment: A natural consequence of autonomy and belonging in systems-

of-systems (SALADO, 2015)
2015

2 A case for dynamic risk assessment in NEC Systems of Systems (AITKEN;
ALEXANDER; KELLY, 2010)

2010

3 A conditional value-at-risk approach to risk management in system-of-systems
architectures (SHAH; DAVENDRALINGAM; DELAURENTIS, 2015)

2015

4 A model based approach to system of systems risk management (KINDER;
HENSHAW; SIEMIENIUCH, 2015)

2015

5 Analyzing hazards in System-of-Systems: Described in a quarry site automation
context (BAUMGART; FRÖBERG; PUNNEKKAT, 2017)

2017

6 A risk and threat assessment approaches overview in autonomous Systems of
Systems (ČAUŠEVIĆ, 2017)

2017

7 A risk modelling approach for a communicating system of systems (AITKEN;
ALEXANDER; KELLY, 2011)

2011

8 Assessing System of Systems security risk and requirements with OASoSIS
(KI-ARIES et al., 2018)

2018

9 A systemic approach to managing risks of SoS (GANDHI; GOROD; SAUSER,
2012)

2012

10 Developing a methodology to support the evolution of System of Systems using
risk analysis (LOCK, 2012)

2012

11 Dynamic risk management for cooperative autonomous medical cyber-physical
systems (LEITE; SCHNEIDER; ADLER, 2018)

2018

12 Exile: A natural consequence of autonomy and belonging in Systems-of-Systems
(SALADO, 2016)

2016

13 Identification and management of risks of system of systems (PROCHAZKOVA,
2013)

2013

14 Modeling complex systems of systems with Phantom System Models (HAIMES,
2012a)

2012

15 Responsibility modeling for identifying sociotechnical threats to the dependabil-
ity of Coalitions of Systems (GREENWOOD; SOMMERVILLE, 2011a)

2011

16 Responsibility modeling for the sociotechnical risk analysis of Coalitions of
Systems (GREENWOOD; SOMMERVILLE, 2011b)

2011

17 Risk management for systems of systems (CONROW, 2005) 2005
18 Risk modeling of interdependent complex Systems of Systems: Theory and

practice (HAIMES, 2017)
2017

19 System of systems perspective on risk: Towards a unified concept (PINTO;
MCSHANE; BOZKURT, 2012)

2012

20 Systems-based guiding principles for risk modeling, planning, assessment, man-
agement, and communication (HAIMES, 2012b)

2012

21 Systems engineering guide for Systems of Systems version 1.0 (KRISTEN,
2008)

2008

22 Towards a risk analysis method for systems-of-systems based on systems think-
ing (AXELSSON; KOBETSKI, 2018a)

2018

Source: Elaborated by the author.

3.4. Reporting 59

project exceeded the budget by US$ 7 billion. Therefore, SoS-level risk management approaches
are needed and essential to the success of an SoS.

One of the essential characteristics of SoS level risk management is holism because
SoS takes into account the interactions and interdependence between CSs and external factors
(HAIMES, 2012b). According to the DoD SoSE Guide (KRISTEN, 2008), managing CS risks
does not guarantee that SoS risks are effectively managed. So, it is necessary to use both risk
management at the CS level to manage risks specific to CSs and risk management at the SoS level
to manage risks specific to SoS (KINDER; HENSHAW; SIEMIENIUCH, 2015). Thus, SoS risks
should be managed holistically and not only considered risk management in the context of CSs.
Pinto, McShane and Bozkurt (2012) mention that CS level risks tend to be managed qualitatively,
while SoS level risks must be quantitatively managed due to their inherent complexity. Some
primary studies present quantitative approaches in the context of SoS (KINDER; HENSHAW;
SIEMIENIUCH, 2015; SHAH; DAVENDRALINGAM; DELAURENTIS, 2015; LOCK, 2012).

Another feature that SoS level risk management must take into account is the dynamics
associated with the process. In project management of CSs, a CS takes months or years to
complete, whereas SoS can be quickly deployed to meet an emergent requirement (KINDER;
HENSHAW; SIEMIENIUCH, 2015; GANDHI; GOROD; SAUSER, 2012). Therefore, SoS
risks should be managed in real-time, and SoS level risk management should be part of the SoS
life-cycle decision-making process (HAIMES, 2012a). In Aitken, Alexander and Kelly (2010),
they investigate the dynamic risk assessment in a Network Enabled Capability (NEC) SoS, and
the authors concluded that such assessment could generate crucial information for accurate
real-time decision making. However, this may also pose additional risks to operation, i.e., if the
information is not presented effectively to the user, it may lead to ambiguity in the SoS.

Regarding the framework of risk management processes, there are differences between
CSs and SoS. In CSs, there are risk management process frameworks defined in the literature,
such as the one proposed by the PMBOK Guide (PMI, 2017), which defines a framework of seven
processes (Plan Risk Management, Identify Risks, Perform Qualitative Risk Analysis, Perform
Quantitative Risk Analysis, Plan Risk Responses, Implement Risk Responses, and Monitor
Risks). In turn, ISO 31000 standard (ISO, 2009) also comprises seven processes (Communication
and Consultation, Establishing the context, Risk identification, Risk analysis, Risk assessment,
Risk treatment, and Monitoring and Review). In the context of SoS, Conrow (2005) presents an
overview of risk management processes comprising: (i) Risk Planning; (ii) Risk Assessment; (iii)
Risk Handling; (iv) Risk Monitoring; and (v) Risk Documentation. According to Prochazkova
(2013), there are many classic methods, tools, and techniques for identifying, analyzing, and
assessing risks at the CS level. However, the tools, methods, and techniques for identifying,
analyzing, and managing the risks that cause or may cause different cascading failures in SoS
functionality are unknown.

In order to assist with SoS risk management, some primary studies suggest a set of

60 Chapter 3. Systematic Mapping

questions to be answered throughout the project. In Haimes (2017), the following questions
must be answered: (i) What can be done, and what options are available?; (ii) What are the
compensations for all associated costs, benefits, and risks?; and (iii) What are the impacts of
current decisions on future options? In Pinto, McShane and Bozkurt (2012), the following
questions should guide the risk management: (i) What are the desirable events at a given time?;
(ii) What can go wrong?; (iii) What are the consequences?; (iv) What is the chance of occurrence?;
(v) What can be done to manage them?; and (vi) What are the alternatives?. From the differences
between risk management for CSs and SoS shown in Table 5 and the comparison between
PMBOK risk management processes presented in Table 6, it is concluded that although there are
distinct characteristics between risk management for SoS and CSs, risk management processes
for both CSs and SoS are similar.

Table 5 – Differences between risk management for CSs and SoS.

Characteristic CS SoS

Existing Approaches Well established Not well established

Scope Static Dynamic

Risk Analysis Qualitative Quantitative

Risk Monitoring Along the project Real time
Source: Elaborated by the author.

Table 6 – Comparison between PMBOK risk management processes (PMI, 2017) and SoS risk manage-
ment processes exposed in Conrow (CONROW, 2005).

PMBOK processes Processes from Conrow’s work equivalent to PMBOK
processes

Plan Risk Management Risk Planning

Identify Risks Risk Assessment

Qualitative Risk Analysis Risk Assessment

Quantitative Risk Analysis Risk Assessment

Plan Risk Responses Risk Handling

Implement Risk Responses Risk Handling

Risk Monitoring Risk Documentation
Source: Elaborated by the author.

3.4. Reporting 61

3.4.2 Answer to SMRQ2 and its Sub SMRQs

The answer to the SMRQ2 (which are the key SoS risks?) as well as SMRQ2.1 (which are

the approaches used to manage these risks and their strengths and weaknesses?) and SMRQ2.2

(in which domains have these risks occurred?) was divided into two parts exposed as follows.

3.4.2.1 SoS Risks Found in the Primary Studies Analyzed

The question, “Does the primary study mention risks that may arise in SoS projects? If
so, what are they?” was answered from the analysis of the data extraction form from the primary
studies analyzed. Thus, the following SoS-specific risks were identified:

Abandonment: the risk of abandonment relates to the possibility of one or more CSs stop
providing their services to the SoS. Abandonment is a natural and necessary consequence
of the inherent characteristics of SoS autonomy, and belonging (SALADO, 2015);

Exile: the risk of exile is similar to the risk of abandonment, consisting of the probability of
the SoS expelling one or more CSs. Similarly to the risk of abandonment, the risk of exile
is a natural and necessary consequence of the inherent characteristics of autonomy and
belonging of an SoS (SALADO, 2016);

Sociotechnical Risks: sociotechnical risks are important factors in the analysis of the risks
associated with Coalition of Systems (CoS), as personal interests that hold the systems
together can be fragile. For example, a CoS formed around the use of a commercial and
public cloud infrastructure may be sensitive to changes in pricing or service offerings.
Therefore, in addition to understanding the technical risks, it is important to understand
the sociotechnical dependencies between the parts, the types of changes that may disrupt
the coalition and the liabilities that may be incurred. Responsibility modeling for the
Sociotechnical Risk Analysis of CoSs is a tactical level risk analysis approach that uses the
concept of responsible agents (Human/organizational) and their interactions to represent a
situation and identify risks in terms of a failure of agents to fulfill their responsibilities
(GREENWOOD; SOMMERVILLE, 2011a);

Risks related to Dependability: according to Sommerville et al. (2006), dependability is a
property of the system in which trust is justified by its provided services. The concept
of dependability encompasses: availability, i.e., readiness for correct service, reliability,
i.e., continuity of correct service, safety, i.e., absence of catastrophic consequences on the
user(s) and the environment, integrity, i.e., absence of improper system alterations, main-
tainability, i.e., the ability to undergo modifications and repairs, and security, which is a
composite of confidentiality (i.e., the absence of unauthorized disclosure of information),
integrity, and availability (AVIZIENIS et al., 2004b). Addressing security demands the
concurrent co-existence of i) availability for authorized actions only, ii) confidentiality, and

62 Chapter 3. Systematic Mapping

iii) integrity with “improper” meaning “unauthorized”. Dependability threats are events or
conditions that affect the CoS, such as availability, maintainability, safety, integrity, and
maintainability (SOMMERVILLE et al., 2006; AVIZIENIS et al., 2004b). In the context of
dependability, sociotechnical threats are important factors in analyzing CoS dependability
because the overlapping of self-interests that hold the system together could be fragile
(GREENWOOD; SOMMERVILLE, 2011a);

Evolutionary Risks: the evolution of an SoS involves continually modifying CSs in the light
of business opportunities, changing circumstances, and continuous optimization. This
evolution can coincide at multiple levels and areas of the SoS. The evolution of any part of
an SoS may lead to undesirable emergent behavior that needs to be identified, analyzed,
and mitigated (LOCK, 2012);

Hazards: hazards can lead to catastrophic consequences, such as injury, illness, or death of per-
sonnel; damage or loss to a system, equipment, or property; or damage to the environment.
Hazards should be managed to ensure the safety and security of the SoS (BAUMGART;
FRÖBERG; PUNNEKKAT, 2017; ČAUŠEVIĆ, 2017; AITKEN; ALEXANDER; KELLY,
2011; KI-ARIES et al., 2018). HISoS is a structured process for identifying system haz-
ards and illustrating the process in the industrial context. HISoS was applied in a quarry
automation context (BAUMGART; FRÖBERG; PUNNEKKAT, 2017). Regarding other
key risks mentioned, hazards are more generic because risks related to abandonment or
exile can generate hazards that can lead to failures during SoS execution (BAUMGART;
FRÖBERG; PUNNEKKAT, 2017; ČAUŠEVIĆ, 2017; AITKEN; ALEXANDER; KELLY,
2011; KI-ARIES et al., 2018).

The risks related to evolution, abandonment, exile, sociotechnical, and dependability
may raise in SoSs from automotive (AXELSSON; KOBETSKI, 2018a), aerospace (KINDER;
HENSHAW; SIEMIENIUCH, 2015; AITKEN; ALEXANDER; KELLY, 2010; LOCK, 2012;
HAIMES, 2017), defense (CONROW, 2005; GOROD; SAUSER; BOARDMAN, 2008; DAH-
MANN; JR; LANE, 2008; SIMPLEMAN et al., 1998; HAIMES, 2012a; HAIMES, 2012b;
AITKEN; ALEXANDER; KELLY, 2011; GANDHI; GOROD; SAUSER, 2012; HAIMES,
2017; REDMOND, 2007), mining and quarry site automation (BAUMGART; FRÖBERG;
PUNNEKKAT, 2017; ČAUŠEVIĆ, 2017), medical cyber-physical systems(LEITE; SCHNEI-
DER; ADLER, 2018), and cloud IT infrastructure(GREENWOOD; SOMMERVILLE, 2011a;
GREENWOOD; SOMMERVILLE, 2011b).

3.4.2.2 Approaches Identified in the Primary Studies to Support Risk Management

In order to manage the SoS-specific risks, these risks need to be appropriately identified
and modeled to support a better understanding of their impacts on the SoS life cycle (HAIMES,
2017). Aitken, Alexander and Kelly (2011) proposed a risk modeling approach to support the

3.4. Reporting 63

identification of threats to the safety of communication in the SoS. In this approach, risks are
represented through a standard fault tree. Therefore, fault trees are used to support risk analysis.
A disadvantage of this technique is that it is restricted to static analysis of SoS since such an
approach does not consider the dynamic nature of an SoS. Gandhi, Gorod and Sauser (2012)
have proposed an approach to support the modeling of systemic SoS risks. Systemic risk may be
greater than the sum of the individual constituent risks (Schedule Risk, Technical Risks, Vendor
Risk, Culture Risk, Reputation Risk, Intellectual Property Risk, Flexibility Risk, Compliance
Risk, and Quality Risk). The constituent risks are thought to be interconnected, and none of them
are mutually exclusive.

Concerning primary studies that encompass the risk management processes proposed
in Conrow (2005), some primary studies focus on more than one risk management process,
such as in Kinder, Henshaw and Siemieniuch (2015). In contrast, other primary studies focus
on specific processes, such as risk identification processes (PROCHAZKOVA, 2013; GREEN-
WOOD; SOMMERVILLE, 2011a), risk analysis (BAUMGART; FRÖBERG; PUNNEKKAT,
2017; AXELSSON; KOBETSKI, 2018b) and risk assessment (KI-ARIES et al., 2018; LEITE;
SCHNEIDER; ADLER, 2018). The key features of such approaches and the risks that such
approaches are intended to manage are outlined in the following.

Responsibility modeling for identifying socio-technical threats to the dependability of COSs:
The responsibility modeling approach aims to identify socio-technical threats, which is
seen as complementary to the earlier approaches discussed and more general approaches
to risk analysis. Responsibility modeling uses the concept of responsible agents (Hu-
man/Organizational agents) and their interactions to represent a situation and identify risks
(GREENWOOD; SOMMERVILLE, 2011a);

Responsibility Modeling for the Sociotechnical Risk Analysis of CoSs: It is a tactical level
risk analysis method to use the concept of responsible agents and their interactions to
represent a situation and identify risks in terms of agents failing to fulfill responsibilities.
Currently, the authors seek to extend the approach to the scope of analysis to include
stakeholder views and values that the migration to a systems coalition will impact. Thus,
including an additional dimension to risk analysis beyond risk analysis from a mechanis-
tic means perspective, where human agents are assumed to be passive and compatible.
Instead, it also takes into account factors that make stakeholders resist and conflict with
change, which represents an important class of risk that is missing from this analysis
(GREENWOOD; SOMMERVILLE, 2011b);

OASoSIS: This approach aims to align appropriate SoS factors and concepts to obtain, analyze,
and validate security risks using tool support in the context of SoS. OASoSIS aims to
provide a simple, repeatable, and reusable process for identifying security risks in an
SoS. However, due to independent SoS collaborations, there will always be an element

64 Chapter 3. Systematic Mapping

of information based on unknown or unavailable risks to be assessed. Interoperability
between dependent systems is difficult to achieve on an SoS without understanding the
SoS. Therefore, it is important to understand the minimum level of information required
to make a satisfactory assessment of security risks, certainly when converting them to
security requirements (KI-ARIES et al., 2018);

Hazards In Systems-of-Systems (HISoS): HISoS is a structured process for identifying SoS
hazards and illustrating the process in the context of the industrial example provided (quarry
automation context). The authors have used the Redmond classification (REDMOND,
2007) to categorize the identified hazards. However, such classification is insufficient to
deal with the example used in their work (BAUMGART; FRÖBERG; PUNNEKKAT,
2017);

A methodology to support the evolution of SoS using risk analysis: it is a decentralized SoS
methodology that explores the types of information that need to be collected and discussed
at the meta-level to analyze SoS risks, along with the development process, to assist end
users in managing generic evolution. SoS evolution life-cycle is designed to describe
how this information can be used. The present methodology uses a modified form of the
HAZOP to analyze the risks associated with evolution (LOCK, 2012). The author suggests
that appropriate tools should be developed to collect, model, manage and disseminate SoS
information at the meta-level, as this is important for integrating different modeling and
risk analysis tools into the overall methodology for analyzing SoS evolution;

Risk Management Approach for Autonomous and Cooperative Medical CPSs: It supports
the management of run-time risks for standalone and cooperative Cooperative Medical
CPSs. The approach consists of a holistic risk assessment model that considers relevant
safety parameters with a syntax based on Bayesian probability networks. This risk model
supports a complete risk assessment and classification of hazardous situations, enhancing
standalone decisions and the reconfiguration process in run-time security certification.
Therefore, the presented solution considers the guarantees of a configuration in the risk
assessment, thus improving the detection of risk situations. In contrast, the system avail-
ability is improved due to the identification of adequate system guarantees appropriate to
the risk of the situation. According to the authors, it is still needed to refine the risk model
and expand it for use in other types of hazards (LEITE; SCHNEIDER; ADLER, 2018);

Model based approach to SoS risk management: A model-based approach built upon a cen-
tral Bayesian Belief Network (BBN) to represent risks and contributing factors. In order
to allow probabilities within BBN to be filled objectively rather than subjectively, the
authors propose the usage of supporting models, which are executed using a Monte Carlo
model-simulation approach, thus generating results that can be ’learned’ by the BBN. The
present approach is still in the conceptual modeling phase, and it needs to be validated in

3.4. Reporting 65

other contexts to verify its generic applicability (KINDER; HENSHAW; SIEMIENIUCH,
2015);

SoS CVaR Optimization: It is a conditional value-at-risk approach for managing a systems
portfolio in an SoS context. The framework can potentially be adapted to a tool that
allows decision-makers at various levels of the SoS hierarchy to mitigate extreme risks
that result from complicated interdependence between CSs. The approach considers the
complexity of potentially nonlinear behaviors through an approximation-based structure
that results in a linear system. Another attractive feature of the author’s approach is that
the formulation can be adapted to use direct simulation or observed data. The application
of such portfolio-based approaches to the SoS domain is limited, but this primary study
illustrates the versatility of the method (SHAH; DAVENDRALINGAM; DELAURENTIS,
2015);

Identification and Management of Risks of SoS: It is a method for identifying, analyzing,
assessing, and managing cross-cutting risks based on experience and principles of good
engineering practice. According to the author, although the approach does not extensively
use highly sophisticated application methods, it can be time-consuming due to the high-
quality data requirements, which are always challenging to collect and experience. The
author’s approach is pragmatic and transparent, and it provides good results that practice
the object management needs of SoS (PROCHAZKOVA, 2013);

Towards a risk analysis method for SoSs based on systems thinking: This method extends
the existing Systems-Theoretic Accident Model and Processes (STAMP) (LEVESON,
2004) safety analysis method based on systems thinking. STAMP is intended to deal with
risks other than safety, and it was adapted to SoS. The method aims to derive requirements
from CSs to reduce emerging risks in the SoS. According to the authors, the present method
is still under development, so it needs to be applied in other contexts. In addition, the
method does not support quantitative analysis and does not deal with the dynamic evolution
of an SoS, besides lacking automated tooling support (AXELSSON; KOBETSKI, 2018b).

The majority of the identified SoS risk management approaches focuses in the defense
domain (CONROW, 2005; GOROD; SAUSER; BOARDMAN, 2008; DAHMANN; JR; LANE,
2008; SIMPLEMAN et al., 1998; HAIMES, 2012a; HAIMES, 2012b; AITKEN; ALEXAN-
DER; KELLY, 2011; GANDHI; GOROD; SAUSER, 2012; HAIMES, 2017; REDMOND,
2007). It was also identified SoS risk management approaches validated in the automotive
(AXELSSON; KOBETSKI, 2018a), aerospace (KINDER; HENSHAW; SIEMIENIUCH, 2015;
AITKEN; ALEXANDER; KELLY, 2010; LOCK, 2012; HAIMES, 2017), mining and quarry
site autonomous systems(BAUMGART; FRÖBERG; PUNNEKKAT, 2017; ČAUŠEVIĆ, 2017),
cooperative medical cyber-physical systems(LEITE; SCHNEIDER; ADLER, 2018), and cloud

66 Chapter 3. Systematic Mapping

IT infrastructure(GREENWOOD; SOMMERVILLE, 2011a; GREENWOOD; SOMMERVILLE,
2011b) domains.

3.5 Threats to Validity
The main threats identified to the validity of this systematic mapping were:

Study Selection: From the six databases selected based on recommendations of Dyba, Dingsoyr
and Hanssen (2007), Kitchenham and Charters (2007), Springer was not used because
it does not have the function of searching studies only by metadata. In order to improve
the quality of the study selection, the Related Works Review was performed. However, it
could be possible that important primary studies can be missed;

Data extraction: The extracted data from the primary studies using the Data Extraction Form,
and the reviewer’s personal opinion might influence such extraction. Thus, any doubts
regarding data extraction were discussed with an SoS expert. However, this discussion
may not have been sufficient;

Quality Assessment: The primary studies were assessed through seven QCs. However, the
reviewers’ opinions may have influenced the assignment of scores.

3.6 Final Considerations
During the project or operation of any SoS, risks may arise and lead to catastrophic

consequences causing failures in the project. Therefore, it is essential to manage such risks
correctly. In this context, a systematic mapping was performed to identify the principal risks
related to SoS and the main approaches used to manage SoS risks. By providing answers to
the SMRQs, it is clear that there are different types of SoS risks, such as abandonment or
risks related to dependability. However, the existing approaches to managing SoS-specific risks
are not well established because they were not applied in several domains and are still under
development. Even though risks can lead to catastrophic consequences to the SoS, no approaches
and tools are available to support identifying, analyzing, and managing such risks. The same
scenario was described in Chapter 2, since existing compositional techniques and tools that
support safety analysis for complex systems do not consider SoS characteristics. Therefore,
existent compositional safety analysis approaches can be extended to the SoS-level, considering
that SoS failures can be composed of the characterizations of individual CSs. Chapter 4 and
Chapter 5 seek to cover the gap identified by proposing a novel approach to performing SoS
safety analysis.

67

CHAPTER

4
SOSSAFE META-MODEL

4.1 Initial Considerations

To answer RQ2, this chapter presents the SoSSafe meta-model, which was proposed in
this work to support SoS architectural design and safety analysis. The SoSSafe meta-model was
built upon the analysis of: i) existing Systems of Systems safety analysis and risk assessment
processes, e.g. Redmond SoS safety analysis methodology (REDMOND, 2007; REDMOND;
MICHAEL; SHEBALIN, 2008); ii) the systematic mapping study presented in Chapter 3 (LOPES
et al., 2020); iii) state-of-the-art Model-Based Design techniques, such as UML version 2.5
(OMG, 2017b), System Modeling Language (SysML) version 1.6 (OMG, 2017a) Object Man-
agement Group specifications, Papyrus UML (Eclipse Foundation, 2017), MATLAB Simulink
(MathWorks, 2021), and AADL (SAE, 2017); and iv) safety models provided by state-of-the-art
model-based safety analysis frameworks, such as HiP-HOPS (PAPADOPOULOS et al., 2011),
AADL Error Annex, CHESS Failure Logic Analysis (GALLINA; SEFER; REFSDAL, 2014),
CHESS State-Based Analysis (MONTECCHI; GALLINA, 2017), and the ODE meta-model
(DEIS, 2020).

The proposed meta-model extends the ODE meta-model with modeling concepts to
support SoS architectural design and safety analysis. These models can be specified with
the support of state-of-the-art model-based software engineering and systems safety analysis
(PAPADOPOULOS et al., 2011; CMU, 2020; MAZZINI et al., 2016a). In the same way, the
proposed meta-model is an exchange format for SoS design and dependability models produced
by different tools to support different engineering stories. The proposed meta-model supports
developers in capturing various aspects of SoSs, including architecture, HARA, failure logic,
FTA, and FMEA.

The SoSSafe meta-model packages are described in this chapter. Section 4.2 presents the
Base package. Section 4.3 describes the Design package. The HARA package is presented in Sec-

68 Chapter 4. SoSSafe Meta-model

tion 4.4. Section 4.5 presents the Dependability package. Section 4.6 describes the FailureLogic

package. Section 4.7 presents the FTA, FMEA, and Markov failure logic sub-packages. Finally,
Section 4.8 presents the final considerations.

4.2 Base Package

The Base package (Figure 11), built upon ODE::Base package, encapsulates BaseEle-

ment, KeyValueMap, and Value classes, as well as their relationships, representing Element,
NamedElement, and Property Meta-Object Facility (MOF) (OMG, 2019) base classes and their
implementations in the Eclipse Modeling Framework (EMF) (Eclipse Foundation, 2022). The
BaseElement is the common base class of all ODE classes and Element is the common base class
of all MOF metaclasses. A BaseElement may own properties, operations, and other elements.
A BaseElement has a unique id, name, description, and a set of KeyValueMap elements. In the
same way in ODE meta-model, each KeyValueMap in SoSSafe meta-model is used to associate a
particular element with user-defined properties (key), whose values are retrievable through Value

elements. For properties composed by sets of Value elements, tag can be used to further specify
which Value element is required.

Figure 11 – Base Package.

Source: Elaborated by the author.

The KeyValueMap allows extending the meta-model with system information. If a system
or component provider or user agrees on a specific protocol to describe system or component
information not formally defined yet in the meta-model, they can enrich the meta-model with
such information. The Base package also includes the TimeUnit enumeration commonly used in
other packages. TimeUnit enumeration defines the timing properties of an SoS, CS, or component
to consider their worst-case execution time. The elements from other SoSSafe meta-model
packages inherit BaseElement properties.

4.3. SoS Design Package 69

4.3 SoS Design Package
Dependability can only be demonstrated in the context of structural and behavioral

models of a particular system or SoS. The concepts needed to model structural and behavioral
aspects of SoSs and CSs architectures are encapsulated into the SoS Design package. This
package extends the ODE::Design package with SoS, ConstituentSystem, and SafetyRelatedCS

elements to represent SoS, its non-safety and safety-related CSs, and their relationships as
illustrated in Figure 12.

Figure 12 – SoS Package.

Source: Elaborated by the author.

A System or ConstituentSystem can be a logical (software) or physical (hardware) rep-
resentation of the system, and a Function is used for representing a system behavior. The
ConstituentSystem is the root element from SoS design package, in the same way System is
the root element from ODE::Design package. A SoS-Safe::ConstituentSystem is a composite
element that may comprise other subsystems, logical and physical components, and their ports
and connections (represented by Signal elements). Ports are explicitly defined interfaces from
which the ConstituentSystem communicates with external systems, sub-systems, and components
via signals.

A Signal represents a connection between ports through which the information flows
(data, energy, or material) from a source to a destination system. A Port has an assigned direction
(PortDirection enumeration) according to the direction of the signal, which can be incoming (IN),
outgoing (OUT), or both (INOUT). The boundaries of an SoS, CS, or component is determined
by their ports, which means they interface with other SoSs, CSs, components, or the environment

and their boundaries are represented by the SystemBoundary metaclass.

70 Chapter 4. SoSSafe Meta-model

Different phases of a system engineering lifecycle focus on different aspects of the
system under design or the coalition of independent systems in an SoS, such as logical, physical,
and safety, which demand the analysis of different attributes. We used the LogicalComponent,
PhysicalComponent, and SafetyRelatedSystem ODE design package elements to support the
specification and analysis of different SoS and CS attributes. Independent from the modeling
aspect, a CS is a hierarchical representation of the architecture and has a set of Function elements
representing the behavior a ConstituentSystem should realize, or the emergent behavior provided
by a coalition of independent CSs in an SOS. A set of performance characteristics (PerfCharac-

teristic), i.e., non-functional requirements, can emerge from CS or SoS functional requirements
and be attached to a function or emergent function (in the case of an SoS) to be realized. A
PhysicalComponent can have several maintenance procedures (MaintenanceProcedure), e.g., a
sensor can be repaired or replaced by another.

A ConstituentSystem can be a SafetyRelatedCS if the occurrence of a failure may lead to
catastrophic damage to people, environment, or property. A SoS element extends ConstituentSys-

tem to represent the coalition of a set of independent systems in a SoS. The SoS types are stored
into the SoSType enumeration Figure 12. SoS, ConstituentSystem, and all design package ele-
ments inherit all basic attributes and relationships from BaseElement class from the ODE::Base

package as illustrated in Figure 13.

Figure 13 – SoS Base Element and sub-types.

Source: Elaborated by the author.

An SoS, CS, or component can operate within one or more contexts. Each Context

contains relevant information about the SoS or CS component operation, usage, or environment.
An SoS or CS can be present in zero or multiple configurations. A Configuration may contain
one or more SoS or ConstituentSystem elements. Due to the open and adaptive nature of SoSs,
different configurations, which cannot be predicted at design time, can dynamically emerge and
dissolve in response to environmental changes.

SoSs, CSs, components, and functions can fail and their failure behavior are captured
in FailureModel from FailureLogic package. A Function can have malfunctions that describe
safety-critical deviations from the intended behavior. In the same way, an SoS or CS may have
different failure models (FailureLogic::FailureModel), their ports, and may have related interface

4.4. HARA Package 71

failure modes (FailureLogic::Failure) describing the failure propagation interface of a given
CS that implements a Function. Associations between ConstituentSystem, Function elements,
and FailureLogic::FailureModels and associations between ODE::FailureLogic::Failure and
Port elements make more explicit the relationship between SoS and CS failure analysis, and
individual failure behaviors at function, system, and component levels. SoS and CSs may raise
different failures that can lead to the occurrence of hazards (HARA::Hazard) with different
consequences to people, environment, or property in different configurations. Each SoS or CS
configuration may have different failure models and failure propagation interfaces, i.e., failure
modes.

In a SoS, accidents do not occur due to the propagation of a failure to an actuator
output, but due to failures in interactions between different constituent systems performing a
collaborative function (emergent behavior) together that cannot be provided by any system in
isolation. For example, a Traffic Light Assistant SoS is a location and map-based service that
provides traffic light information to the user based on the vehicle position and driving direction
to help the user to reduce both time and CO2 emissions to reach a destination. A failure in this
SoS may lead to an increase in the time to reach a destination and an increase in CO2 emissions.

CSs should be developed in compliance with safety and security standards Depend-
ability::Domain::Standards. A dependability Standard provides a safety/security lifecycle to
develop systems in a given application domain, a risk-based approach for determining risk
classes for classifying the risk posed by each hazard during risk assessment, and requirements
for validation and confirmation measures to ensure that an acceptable level of safety/security
is achieved. A CS or SoS can have an assurance level, which assigns a set of Dependabil-

ity::Requirements::DependabilityRequirement elements to be addressed to achieve the given
assurance Level. Standards define dependability requirements of different stringencies to be
addressed to reduce the effects of hazards or interface failure modes according to the criticality
of the targeted assurance level.

4.4 HARA Package

The HARA package extends the ODE::HARA package (DEIS, 2020) with Emergent-

Hazard and IntegrationHazard modeling concepts and RedmondTaxonomy and IntegrationRed-

mondTaxonomy hazard enumeration types to support HARA at SoS CS levels as illustrated
in Figure 14. HARA is the starting point for SoS and system dependability analysis where
malfunctions (Malfunction) on the intended SoS or CS behaviors specified as Function elements
are identified, resulting in hazards (Hazard). Hazard risks are estimated via levels of likelihood

(Situation metaclass), severity (Accident metaclass), and controllability (OperatorMeasure meta-
class), or other risk parameters associated with the risk assessment process (RiskAssessment) of
the targeting safety standard (Dependability::Domain::Standard). RiskParameter elements and

72 Chapter 4. SoSSafe Meta-model

their values and assurance levels may vary from one standard to another.

Figure 14 – HARA Package.

Source: Elaborated by the author.

Exposure (likelihood), severity, and controllability risk parameters, and their possible
values defined in ISO 26262 automotive safety standard were considered in this meta-model.
For the likelihood parameter from Situation metaclass, ISO 26262 defines E1 – Very Low, E2

– Low, E3 – Medium, E4 – High for classifying the probability of occurrence of a hazard or a
component failure mode. For the severity attribute from Accident metaclass, ISO 26262 defines:
S1 - Light and Moderate Injuries, S2 - Severe and Life-Threatening Injuries - Survival Probable,
and S3 - Life-Threatening Injuries - Fatal Injuries severity levels to determine the impact of
the occurrence of a hazard or a component failure in terms of the damage to people, property,
or environment. Finally, for the controllability attribute from OperatorMeasure metaclass, ISO
26262 defines three possible levels concerning the extent in which the operator or any other
occupants can take actions to minimize hazard or component failure effects: C1 - Normal, C2 -

Simple, and C3 - Difficult - Uncontrollable. The risk posed by a Hazard or a component failure

4.5. Dependability::Requirements Package 73

(FailureLogic::Failure) can be classified into: ASIL QM (Quality Management), ASIL A, ASIL
B, ASIL C, or ASIL D based on levels of exposure, severity, and controllability. Mitigating
a hazard or failure with higher severity, exposure, and controllability demands a higher ASIL,
which implies higher development and validation (Dependability::Measures) efforts and costs.

The Hazard metaclass represents a combination of failure conditions (FailureLogic::Failure
elements) at the Systems of Systems or Constituent System level with potential to cause harm
(damage or loss) to people, property, or environment. SoS-level hazards are represented by
EmergentHazard and IntegrationHazard metaclasses. An emergent hazard can be classified as
Reconfiguration, Integration, or Interoperability according its source in conformance with Red-
mond Taxonomy (REDMOND, 2007) (RedmondTaxonomy enumeration type). An integration

hazard can be classified into: Interface, Resource, or Proximity hazard according to its source
(IntegrationRedmondTaxonomy enumeration).

Different Dependability::Measures can be assigned to eliminate or minimize the effects
of an SoS or a CS Hazard according to its risk. A Hazard is referenced by a RiskAssessment

element for conducting a probabilistic risk assessment for classifying the risk posed by that
hazard to the overall safety. A Hazard is also referenced by a Function due to the data exchange
between them. Hazard is also referenced by a Design::SafetyFunction for the derivation of a
safety function (see Figure 12), and by a Dependability::Requirements::SafetyRequirement for
deriving the safety goals and safety requirements. In IEC 61508 (IEC, 2010), a safety requirement
is a requirement for a Safety Function and its associated safety integrity (assurance) level. A
safety function is a function to be implemented by a safety-related system intended to achieve
or maintain the safe state for an electronic unit control for a specific hazardous event. A safety-
related system aims to implement safety functions to ensure the safe state of an electronic
unit.

4.5 Dependability::Requirements Package

The Dependability::Requirements package (Figure 15), reused from ODE meta-model
(DEIS, 2020), contains the elements to model dependability requirements and their relationships
with their requirement sources (Dependability::RequirementSource), e.g., product-specific goals
and requirements, product and process requirements from relevant safety and security standards,
and domain-specific regulations to achieve a given assurance level. A dependability requirement
is a requirement for a CS or SoS to deal with the avoidance of service failures more frequently
and severely than acceptable. SoS and CS failure elements and their associated attributes are
handled by Dependability::HARA and FailureLogic packages.

A dependability requirement can be assigned to reduce the effects of one or more failures
(FailureLogic::Failure). An assigned dependability requirement may require applicable measures
(Dependability::Measure or maintenance procedures (Dependability::MaintenanceProcedure)

74 Chapter 4. SoSSafe Meta-model

Figure 15 – Dependability Package.

Source: Elaborated by the author.

4.6. FailureLogic Package 75

to address a specific assurance level (Dependability::AssuranceLevel). A safety requirement is a
sub-type of dependability requirement derived from hazards (HARA::Hazard) to mitigate their
effects on the overall system safety.

A Measure is an appropriate action or mechanism, e.g., fault avoidance and removal, to
reduce safety and security risks to system dependability to an acceptable level. A fault tolerance
measure is a risk reduction measure identified during functional hazard analysis and used to
derive safety goals and requirements. A maintenance procedure is an applicable measure to
reduce the risks of failures in physical (hardware) components. Fault prevention, fault detection
and correction, fault tolerance, and fault forecasting are dependability measures to address
safety requirements associated with assurance levels with different stringencies. Fault tolerance
measures are required to reduce hazard and component failure effects, identified during HARA
and fault tree analysis, with higher assurance levels, e.g., ASIL C and ASIL D. Performing the
walk-through of the design is an example of a fault prevention measure recommended by ISO
26262 Part 6-7.4.8.1: System design and verification methods (ISO, 2011) for verifying the
system design to achieve ASIL A. On the other hand, performing control flow and data flow
analysis is fault detection and fault removal mechanisms required by ISO 26262 for verifying
the design of system functions classified as ASIL C or ASIL D assurance levels.

Failure elements and associated attributes are handled by HARA and FailureLogic pack-
ages. The DependabilityRequirement element references a FailureLogic::Failure and a Measure

in the HARA package. A dependability requirement can also be modeled as a safety (Dependabil-

ity::SafetyRequirement element) requirement. In SoSs, we can have emergent SoS dependability
requirements assigned to emergent functions, CS requirements, functional (subsystem), and
technical safety requirements.

4.6 FailureLogic Package

SoS and CS safety analysis is performed based on the top-level dependability require-
ments derived from hazards identified during HARA, describing the potential causes of failures
in an SoS, CS, or function leading to hazards to be mitigated. The ODE FailureLogic package
and its sub-packages contain the elements to model the potential system and systems of systems
failures and their causes using existing safety analysis techniques such as FTA, FMEA, and
probabilistic Markov modeling (RABINER; JUANG, 1986).

The ODE::FailureLogic package (Figure 16) and its sub-packages provide the elements
to support modular and hierarchical failure analysis based on the system design using analysis
techniques such as CHESS Failure Logic Analysis (GALLINA et al., 2012), HiP-HOPS (PA-
PADOPOULOS et al., 2011), and AADL Error Annex (DELANGE, 2016). The Failure element
abstracts common characteristics of failures within functions, systems, or components. The
ODE::FailureLogic package (Figure 16) was extended with Fault, InternalFault, ExternalFault,

76 Chapter 4. SoSSafe Meta-model

and Error metaclasses to support specification of failure data at SoS and CS levels using Failure
Logic Modeling techniques during SoS safety analysis.

Figure 16 – FailureLogic Package.

Source: Elaborated by the author.

Failures in architectural elements, e.g., SoS, CS, and components, can be categorized
into input, output, or internal according to its origin as illustrated in Figure 16. The FailureL-

ogic::Failure element is useful for composing failure analysis results of hierarchical models.
An SoS, CS, or component’s failure behaviors are encapsulated into one or more FailureModel

elements. A Failure can be a Common Cause Failure (CCF), when its occurrence can trigger
other failures. A probabilistic value for a failure rate can be assigned to hardware failures. A
probability distribution (ProbDist) model can be used to calculate the unavailability of a hard-
ware element for a given failure. There are some probability distribution failure models, e.g.,
Constant Failure and Repair Rate, Mean Time to Failure and Repair, with different formulas and
parameters to calculate the unavailability of a component for a given basic event. Basic event is
a failure that is not further propagated, being the root cause of a top-event. A top event can be
a failure or combination of failures leading to the occurrence of a hazard with the potential of
causing harm to people, property, or the environment.

A Failure is characterized by its origin type (input, output, or internal), class, which
describes its nature, e.g., data omission or commission, incorrect value, data sent too early or
too late, and common cause failure (isCCF) attributes. A hardware Failure has a probabilistic

4.7. FailureLogic Sub-packages 77

failure rate specified using a probability distribution. A Fault is a condition leading a logical
component to fail during its execution. An InternalFault condition is a deviation in the component
specification accidentally introduced in the source code by an incorrect human action. The
introduction of an incorrect logic operator in the source code by a human mistake is an example
of InternalFault. A Fault introduced in a logical component does not necessary leads to an
Error. An Error is any incorrect intermediate state of a component that violates its specification.
An error is an undesirable difference between desired and obtained output. An Error does not
necessarily leads to the occurrence of a Failure. There exist two possible error types: computing
and domain errors. A computing error is a difference between desired and obtained output. A
domain error is a difference between a program’s executed and expected execution path. An
ExternalFault is an accidental or deliberated malicious action (i.e., a cyberattack) in SoS, or
CS (asset) performed by an external agent with potential to cause harm or loss. A Fault can be
the root cause of failures. The occurrence of an Error, by executing a faulty code accidentally
introduced by a human mistake, may lead to another Error or directly cause a Failure.

An assurance level can be assigned to classify the risk posed by a software failure to
system dependability. A component FailureModel may have a set of minimal cut-sets. A minimal
cut-set represents the smallest possible combinations of Failures leading to the occurrence
of a top-event, i.e., an output failure mode. Minimal cut-sets are used as the basis for failure
propagation and probabilistic analyses. An input or output failure is associated with a system or
component port. A hazard can be associated with several output failures combined using logical
operators (AND, OR, NOT).

4.7 FailureLogic Sub-packages

The ODE::FailureLogic::FTA sub-package (Figure 17) captures the information pro-
duced during Fault Tree Analysis. FaulTree is a FailureModel subtype comprising a set of Cause

elements. A Cause element can be an input, output, or a basic event, or a fault tree Gate. Cause

references a Failure. A Gate is a Boolean logic event connector, which is a subtype of Cause,
used to chain hierarchies of causes in a fault tree.

The ODE::FailureLogic::FMEA sub-package (Figure 18) captures the information
produced during Failure Modes and Effects Analysis (FMEA). The FMEA element is a Failure

Model comprising a set of entries (FMEAEntry). Each FMEAEntry relates an output failure

from the SoS or CS elements under analysis with its SoS or component level effects. The
FMEA element can be an FMEA or an FMEDA element. An FMEDA element has a set
of FMEDAEntries. FMEDAEntry specializes FMEAEntry with a diagnosisRate double typed
attribute, and a relationship with ODE::FailureLogic::ProbDist, used for calculating the SoS or
CS unavailability for the referenced failure mode.

The ODE::FailureLogic::Markov sub-package provides the elements to support the

78 Chapter 4. SoSSafe Meta-model

Figure 17 – FTA Package.

Source: Elaborated by the author.

Figure 18 – FMEA Package.

Source: Elaborated by the author.

4.8. Final Considerations 79

analysis of dynamic and temporal aspects of the system/systems of systems behavior from the
Markov analysis technique. A Markov model comprises a set of normal and failing states, one
set as the initial state, and probabilistic transitions between states. A State references a Failure

element from ODE::FailureLogic package. A Transition element represents a transition from a
source state to a destination state. Each state Transition has a probabilistic attribute, calculated
using a probability distribution (ProbDist) model. The introduction of Fault, InternalFault,
ExternalFault, and Error failure subtypes and their relationships to the ODE::FailureLogic

package may contribute the detail the causal relationships between failures and their origin into
SoS and systems FTA, FMEA, and Markov models.

4.8 Final Considerations
This chapter introduced the extensions to the ODE meta-model to guide practitioners

to perform Systems of Systems architectural design and safety analysis using state-of-the-art
Model-Based Design languages like UML (OMG, 2017b), SysML (OMG, 2017a), MATLAB
Simulink (MathWorks, 2021), CHESSML (MAZZINI et al., 2016a), AADL (SAE, 2017), and
EAST-ADL (EAST-ADL Association, 2013), and Model-Based Safety Assessment frameworks,
including HiP-HOPS (PAPADOPOULOS et al., 2011), CHESS-FLA (GALLINA; SEFER;
REFSDAL, 2014), CHESS-SBA (MONTECCHI; GALLINA, 2017), AADL Error Annex (SAE,
2017), and AltaRica (BATTEUX; PROSVIRNOVA; RAUZY, 2018). In this thesis, the proposed
meta-model was instantiated using MATLAB Simulink to support the model-based design of a
Traffic Light Assistant Systems of Systems (KURAL et al., 2014), and the HiP-HOPS integration
with Simulink was used to support safety analysis (see Chapter 6). The proposed meta-model
provides the basis for structuring a Systems of Systems model-based safety analysis process
introduced in the next chapter

81

CHAPTER

5
SOSSAFE: COMPOSITIONAL

SYSTEMS-OF-SYSTEMS SAFETY ANALYSIS

5.1 Initial Considerations

To answer RQ3, this chapter introduces SoSSafe, a compositional approach to support
safety analysis in SoS architectures. SoSSafe encompasses the definition of SoS safety analysis
scope, the identification of combinations among system failure events that may lead the SoS to
fail and the classification of their risks to the overall SoS safety, and the synthesis of fault trees
to analyze how system failures propagate throughout the CSs and FMEA tables to identify the
most critical components.

SoSSafe covers the whole safety life-cycle (see Section 2.3.2). The SoS preliminary
architecture is the input to SoSSafe. Figure 19 depicts the approach phases and their relationships.
The phases are as follows:

Phase 1 – Scenarios Definition: Definition of scenarios to be considered during SoS safety
analysis;

Phase 2 – SoS HARA: It supports identifying combinations of CSs that may lead the SoS to
fail and classifying the associated risks. It also defines CS and component level Failure
Analysis to identify how CSs and components can fail and contribute to the occurrence of
SoS hazards that could result in some harm to the SoS environment;

Phase 3 – Synthesis and Analysis: The safety assets (fault trees and FMEA tables) are gener-
ated for the SoS hazards identified.

SoSSafe phases can be performed iteratively and incrementally as long as additional
information about the SoS architecture becomes available. SoS-level fault trees and FMEA

82 Chapter 5. SoSSafe: Compositional Systems-of-Systems Safety Analysis

Figure 19 – SoSSafe phases and their relationships.

Source: Elaborated by the author.

tables are outputs of SoSSafe to provide feedback information to the SoS Modeling phase. The
analysis of fault trees and FMEA tables makes it possible to determine the changes needed in the
SoS architectural design to address SoS safety goals and requirements. Fault trees are suitable to
identify how SoS hazard effects propagate throughout CSs. FMEA tables are derived from the
fault trees and help identify how CSs can fail directly, i.e., when a failure in a CS will lead to the
occurrence of an SoS hazard, or indirectly, i.e., when a failure CS, in conjunction with one or
more failures in other CSs, will cause an SoS hazard. Therefore, FTA and FMEA results can
support SoS designers in identifying highly critical CSs or components that contribute to the
occurrence of one or more hazardous events that may cause harm to the SoS environment and
hence taking architectural decisions concerning the most suitable CSs to be incorporated into the
SoS.

This chapter is organized as follows: Section 5.2 characterizes the SoS architecture,
which is the input to SoSSafe. The following sections present the SoSSafe phases: Section
5.3 describes the SoS Scenarios Definition phase, Section 5.4 illustrates the Hazard Analysis

and Risk Assessment phase, and Section 5.5 presents the Synthesis and Analysis phase. Finally,
Section 5.6 highlights the final considerations.

5.2. SoSSafe Input 83

5.2 SoSSafe Input

The SoS architectural model is the input of SoSSafe, represented, in this work, by an
internal block diagram. This diagram captures block elements’ internal structure in terms of their
properties (Ports and Parts) and the connections between those properties. In this work, a block
can be a system or a component. It is important to highlight that this work is not focused on
proposing a novel approach to model system architectures. Other existing modeling techniques,
such as UML Component Diagram (OMG, 2017b), Systems Modeling Language (SysML)
(OMG, 2017a) and Service-Oriented Architecture Modeling Language (SOA-ML) (OMG, 2012)
can be used to support the design of SoS architectures.

Figure 20 – AFS Functional Application Design.

Source: Elaborated by the author.

An SoS architecture model example from the hydroelectric power plant domain, called
Anti-Flood System (AFS), is used throughout this chapter to describe the SoSSafe phases. The
AFS architecture model is described through an UML Internal Block Diagram, as shown in
Figure 21. AFS supports planning and controlling the spillway of a hydroelectric reservoir built
upon a dam, which opens the spillway when the reservoir is almost complete (dam unsafe state).
Otherwise, AFS keeps the spillway closed (safe dam state). AFS is considered a safety-critical
system since potential failures related to AFS may cause a dam crash leading to catastrophic
consequences, such as electricity shortage or even floods in cities around.

Figure 20 shows a high-level description of AFS components and their relationships and
provided services through a component diagram, whereas Table 7 describes such components. In

84 Chapter 5. SoSSafe: Compositional Systems-of-Systems Safety Analysis

Table 7 – AFS Components Description.

ID Component Description Parameters Return

1 Water Level Sen-
sor

Provide the reservoir
level: it returns the
reservoir level in me-
ters

float reservoirLevel

2 Anti-Flood Con-
troller

Provide the dam state:
it returns true if the
dam is safe and false
if it is unsafe (immi-
nent flooding)

float reservoirLevel bool damState

3 Spillway Con-
troller

Provide the spillway
state: it returns "true"
if the spillway is open
and "false" if it is
closed

bool spillwayState bool spillwayState

4 Spillway Con-
troller

Provide the control
of the spillway: it is
open if the dam state
is unsafe and closed
when it is safe

bool damState bool spillwayState

5 Spillway Opener/-
Closer

Provide the spillway
gate opening or clos-
ing: it is provided
when requested

bool spillwayState

Source: Elaborated by the author.

this example, components are described as nouns (e.g., anti-flood controller), and the services
implemented by such components are described as actions (e.g., provide the spillway state). AFS
comprises four components: (i) Water Level Sensor; (ii) Anti-Flood Controller; (iii) Spillway

Controller; and (iv) Spillway Opener/Closer. Water Level Sensor sends the reservoir level through
the Provide the reservoir level service to the Anti-Flood Controller. Anti-Flood Controller

determines the dam state through the Provide the dam state, and it sends the data to the Spillway

Controller. The Spillway Opener/Closer provides the Spillway gate opening or closing service to
the Spillway Controller. This service is activated by the Spillway Controller to open the spillway
when the dam is in an unsafe state, and the spillway is closed to avoid the dam crash or to close
the spillway when the dam is in a safe state, and the spillway is still opened.

After defining the components and their relationships, they must be allocated to AFS CSs.
The AFS components have been allocated into three CSs, as shown in Figure 21 that presents the
AFS architecture. Such CSs are:

5.3. Phase 1 – SoS Scenarios Definition 85

Figure 21 – AFS Internal Block Diagram.

Source: Elaborated by the author.

Reservoir System: It returns the value of the reservoir water level;

Spillway System: It controls the spillway opening or closing

Anti-Flood System: It unifies the two CSs presented before since it is responsible for the
spillway planning and controlling.

After defining the SoS architecture, the first phase of SoSSafe can be started.

5.3 Phase 1 – SoS Scenarios Definition

The SoS Scenarios Definition phase intends to define the scenarios at the SoS-level. This
phase is important because defining the SoS scenarios provides the scope of SoSSafe to identify
the potential threats to the SoS safety, classify the associated risks, establish the safety goals, and
allocate them to the CSs. The input of this phase is the SoS architecture defined before.

To define the scenarios, reliable information about the application domain is needed. For
each project, domain experts discuss the possible scenarios to reach a consensus. To facilitate the
scenario documentation and its dissemination throughout the project team, SoSSafe proposes

86 Chapter 5. SoSSafe: Compositional Systems-of-Systems Safety Analysis

a template that could be followed to document each scenario. This template comprises the
following fields:

Scenario ID - Scenario Name: a unique identifier and a title that briefly describes the scenario
are provided;

Description: Brief description of the scenario in terms of the interactions between CSs that
provide a given emergent behavior or behaviors to be further considered during the
remainder of the SoSSafe. For instance, in AFS, this scenario is identified: "the scenario
where the spillway is opened to preserve the structure of the damn" (MORI et al., 2018).

Based on the SoS scenarios, the next phase can be started.

5.4 Phase 2 – Hazard Analysis and Risk Assessment

Figure 22 – HARA Activities.

Source: Elaborated by the author.

In this phase, the input is the SoS architecture and the SoS scenarios. SoS HARA intends
to identify and analyze the SoS hazards and their associated risks and annotate the CSs and
components with local failure data. This phase is important because SoS hazards identification
and analysis, as well as annotations of the CSs and components with local failure data provides
relevant information to automate the generation of safety work products, such as fault trees and
FMEA tables. These can lead the project team to make decisions concerning the SoS architecture
and, hence, achieve an acceptable SoS safety level. As shown in Figure 22, this phase is divided
into the following activities:

5.4. Phase 2 – Hazard Analysis and Risk Assessment 87

Activity 1 – Situation Analysis: It aims to define the SoS operational situations. The input is
the SoS scenarios, and the output is the SoS operational situations;

Activity 2 – Hazard Identification: It aims to identify the SoS hazards. The input is the SoS
architecture and the SoS scenarios and the output is the SoS hazards classified through the
Redmond taxonomy;

Activity 3 – Hazardous Events Classification: It aims to classify hazardous events. The input
is the SoS architecture, SoS hazards, and the operational situations. The output is the risk
attributes for each hazardous event;

Activity 4 – SIL and Safety Goals Definition: It aims to define the SILs for each hazardous
event. The input is the SoS architecture, SoS hazards, and the operational situations. The
output is the SILs for each hazardous event;

Activity 5 – Local Failure Data Definition: Finally, the CSs and components are annotated
with local failure data definition. The input is the SoS architecture, SoS hazards, and the
operational situations. The output is the CSs and components local failure data.

These activities, together with examples, are described in more detail as follows.

5.4.1 Situation Analysis

Before starting the hazard identification, the operation situations in which SoS malfunc-
tioning behaviour will result in a hazardous event shall be determined. The operation situations
must be described, both for cases where the SoS is correctly used and others where it is incor-
rectly used in a foreseeable way. In AFS, the operation situations considered are low energy

generation and high energy generation.

5.4.2 Hazard Identification

In this activity, the hazards at the SoS-level are identified. Considering the SoS scenarios,
the SoS architecture is analyzed to identify possible combinations of failures in different CSs
that can lead to a failure in providing emerging behavior and, consequently, any damages to the
SoS environment that includes property, people, or organizations.

The SoS hazards are represented through the logical combination of CS outputs failures
(output deviations). The generic syntax adopted to represent output deviations is the following:
GuideWord-ConstituentSystem.PortName. Such syntax consists of three parts. The first part
(GuideWord) is the HAZOP guide word described in Chapter 2, the second part (ConstituentSys-

tem) is the CS name, and the third one (PortName) is the port where the failure will be propagated.
The first line of Table 8 is an example of an SoS hazard. In this case, the hazard occurs due to
an omission of the Anti-Flood System CS. Otherwise, the hazard could occur because of the

88 Chapter 5. SoSSafe: Compositional Systems-of-Systems Safety Analysis

Table 8 – Hazard Example.

Failure Expression Omission-ReservoirSystem.spillwayState

Hazard Type Interface

Likelihood S3

Severity L3

SIL D

Safety Goal The spillway must be open when the dam state is unsafe
Source: Elaborated by the author.

omission of two or more services, in which the failure expressions are combined through logical
operators, such as AND, OR, or NOT. One example is the following hazard that occurs when the
Anti-Flood System does not provide at least one of its outputs (damState and spillwayState) when
requested: Omission-AntiFloodSystem.damState OR Omission-AntiFloodSystem.spillwayState.
Besides that, the Redmond taxonomy must be considered to assess the Hazard Type attribute. In
the hazard example shown in Table 8, the hazard type defined is Interface. After defining the
SoS hazards, the hazardous events are classified in the next activity.

5.4.3 Hazardous Events Classification

In this activity, the hazardous events are classified through risk attributes. This activity
relies on the safety standards under consideration to define the risk attributes and the ways to
assess them. Regarding the hazard example shown in Table 8, the columns likelihood and severity

represent the standard-related attributes. It is important to highlight that the same hazard has
different risk attributes values, since each hazard may be associated with one or more operational
situations. Therefore, the risk attribute values of Table 8 are from the hazardous event with
the most stringent SIL associated with this hazard. The next activity defines the most stringent
hazardous event for each hazard.

5.4.4 SIL and Safety Goals Definition

This activity determines a SIL for each hazardous event using the risk parameters. The
way to assess the SIL relies on the safety standard. About the hazard in Table 8, there are two
hazardous events associated since there are two operational situations (low and high energy
generation). The risk attributes of the first hazardous event have the values S2 and L2, and the
second one has the values S3 and L3 for the attributes severity and likelihood, respectively. Using
a safety standard, the hazardous events have SIL B and D, respectively. Since SIL D is more
stringent than SIL B, the SIL of the hazard in Table 8 is B, and the risk attributes are S3 and L3.
Besides, the SIL definition is also needed to define the safety goal for the SoS hazard. In the

5.4. Phase 2 – Hazard Analysis and Risk Assessment 89

example, the safety goal is the spillway must be open when the dam state is unsafe. The next
activity defines the local failure data for each CS and component.

5.4.5 Local Failure Data Definition

Figure 23 – Anti-Flood System Local Failure Data.

Source: Elaborated by the author.

In this activity, each CS and component in the SoS architecture is annotated with its local
failure data that describes how that CS or component can fail and how it responds to failures
propagated from other CS or components in the SoS. The local failure data takes the form of
a set of failure expressions relating failures at a CS’s outputs (output deviations) to a logical
combination of internal failure modes (basic events) and failures received at the CS’s inputs
(input deviations). The syntax and set of HAZOP guide words for input and output deviations
specification are the same used to describe SoS hazards. Figure 23 shows an example of local
failure data for the CS Anti-Flood System with the following data:

90 Chapter 5. SoSSafe: Compositional Systems-of-Systems Safety Analysis

∙ CS Name and ID: It identifies the CS through its name and unique identification. In the
example, the CS name is Anti-Flood System and the CS ID is equal to 10;

∙ Input/Output Ports: The CS ports are named to define the failure expressions. In the
example, the input ports are spillwayState and reservoirLevel and the output ones are
spillwayState and damState;

∙ Basic Events: Here, the failure modes’ names, description, and probability are described.
In the example, the basic events are internal failure (InternalFailure) and electromagnetic
interference (EMI);

∙ Output Deviation and its Failure Expression: Finally, it describes the output deviation
and the logical combination of one more or input deviations that may cause the output devia-
tion. In the example, there are two output deviations: Omission-spillwayState, whose cause
is an internal failure (InternalFailure), and Omission-damState, whose cause is an omission
of reservoirLevel input port or electromagnetic interference (Omission-reservoirLevel OR

EMI).

The FTA and FMEA are performed in the next phase after all failures have been analyzed.
If all failures have not been analyzed yet, SoS modeling should be reviewed, as shown in
Figure 19.

5.5 Phase 3 – Synthesis and Analysis
In this phase, the inputs are the SoS hazard info and the CS local failure data. Such input

is used to generate a network of interconnected fault trees defining the relationships between
failures of system outputs and their root causes in the failure modes of individual CSs. After that,
the minimal cut sets are obtained and used as a basis to perform FMEA, which directly relates
individual CS failures to their effects on the rest of the SoS. This phase is performed automatically
through safety analysis tools. The output of this phase is the fault trees, the respective minimal
cut sets, and the FMEA tables. In the next chapter, a fault tree example is presented.

5.6 Final Considerations
This chapter presented the process that intends to help SoS practitioners to assure SoS

safety. To demonstrate its efficacy, SoSSafe was performed in a real illustrative case from the
automotive domain, and the results obtained are exposed in the next chapter.

91

CHAPTER

6
SOSSAFE ILLUSTRATIVE CASE

6.1 Initial Considerations

To answer RQ3, this chapter presents the SoSSafe application through an illustrative
study from the automotive domain. Section 6.2 describes the SoS considered in the illustrative
study. Section 6.3, Section 6.4 and Section 6.5 illustrate the application of SoSSafe. Finally,
Section 6.6 presents the final considerations.

Figure 24 – Traffic Light Assistant Overview.

Source: Reich et al. (2020).

92 Chapter 6. SoSSafe Illustrative Case

6.2 Traffic Light Assistant Illustrative Study Description

This section presents the SoS that has been considered to evaluate the applicability
of SoSSafe. The SoS used in this work is a Traffic Light Assistant (TLA), a Cooperative
Autonomous System (CAS) that automatically optimizes the longitudinal vehicle speed with
the SoS (named Ego Vehicle (EV)) to avoid unnecessary stops at red traffic lights, as depicted
in Figure 24. TLA decreases the number of times the EV should be accelerated or decelerated,
thus minimizing energy loss due to unnecessary braking at red lights. Besides, by reducing
waiting time and introducing smoother speed profiles, significant improvements can occur, such
as an increased lifetime of components, relaxed production quality requirements, and improved
mobility (REICH; SCHNEIDER, 2018; KURAL et al., 2014).

TLA is a safety-critical SoS since catastrophic failures can occur, such as vehicle crashes
or vehicle collisions with pedestrians. For instance, complete knowledge about the road con-
ditions and traffic light signal phasing to perform its mission may not be accessible in some
scenarios. If the current state of a traffic light or a pedestrian at the side of a crossing is ob-
served by an onboard camera, the information would only be available to a vehicle close by
the pedestrian. If such a vehicle is equipped with automated driving functions, it will adapt
its velocity accordingly to stop in front of the traffic light or to let the pedestrian pass safely.
However, the following vehicle might not directly see the pedestrian and, therefore, would be
unable to anticipate the behavior of the preceding vehicle (Digital Dependability Identities and
the Open Dependability Exchange Meta-Model). In this scenario, people may get hurt or even
die in severe situations. Therefore, systems safety analysis can help avoid hazardous situations.
Before starting SoSSafe application, TLA architecture has been proposed in the following since
it is the input of the approach.

6.2.1 Traffic Light Assistant Functional Application Design

Figure 25 shows the functional application design of the TLA that describes its services
and the relationship between them. Such services have been grouped into five types of service:

Perception Service: It measures environment and infrastructure data. The Determine traffic

light state service uses a V2I technology to determine the traffic light state and an onboard
satellite navigation system with relatively good data quality to determine the traffic light
position. The Determine ego vehicle state service provides relevant EV data, such as its
speed, acceleration, and position. The Determine front obstacles service uses Vehicle-to-
Vehicle (V2V) technology and onboard radar to define front vehicles;

Planning Service: In the planning service, an energy-optimal profile speed to the next traffic
light is provided by the Determine energy-optimal ego vehicle speed profile to TL service.

6.2. Traffic Light Assistant Illustrative Study Description 93

Figure 25 – Traffic Light Assistant Functional Application Design.

Source: Reich and Schneider (2018).

In addition, the optimal safe speed profile that ensures a safe distance between the EV and
the front vehicle is provided by the Determine safe ego vehicle speed profile service;

Application Service: It is the set of services delivered to the EV. Here, the Plan and control

safe ego vehicle de-/acceleration energy-efficiently service provides the automated control
of longitudinal movement to cross intersections efficiently;

Arbitration Service: Through the speed profile obtained by the planning services, the Control

vehicle speed service determines if the EV needs to increase or decrease its speed;

Actuation Service: Finally, the EV is accelerated or decelerated by its actuators. If the EV
needs to be accelerated, the Accelerate ego vehicle service is responsible for soliciting
the actuator to accelerate the car from the current speed to x Km/h. In turn, the Brake ego

vehicle service sends a requisition to the actuator to brake the car from the current speed
to x Km/h.

6.2.2 TLA Architecture and Data Flow

After defining the services and the relationship between them, the services exposed in
Figure 25 have been associated with the CSs that compose the SoS. As shown in Figure 26, a
component diagram has been proposed, where the light blue boxes represent the components
and the white ones, that represent the CSs, end with the word system. The components and CSs
of the TLA component diagram are responsible for implementing the services described in the
TLA functional application design. The CSs and their components are described as follows:

94 Chapter 6. SoSSafe Illustrative Case

Figure 26 – Traffic Light Assistant Component Diagram.

Source: Elaborated by the author.

6.3. Phase 1 – Scenarios Definition 95

Intersection Control System: It intends to determine the traffic light states of each intersection
through V2I communication;

Front Vehicle System: It intends to detect vehicles that can be in front of the EV. Here, the EV
perceives front vehicles through V2V communication since the EV receives data emitted
by a sensor from the front vehicle;

EV System: On-boarding the EV, it intends to determine the ideal vehicle state to minimize EV
energy consumption. EV system has been broken down into four CSs as follows:

Traffic Light Assistant System: Here, EV acceleration and deceleration regarding safe
driving and energy-saving are defined. This CSs is composed of three components:
EO-EV Speed Profile to TL Calculator (it computes the energy-optimal speed profile
to the next traffic light), Safe EV Speed Profile Calculator (it computes maximum
EV speed profile, ensuring a minimum distance of x meters to next obstacle), and EV

Speed Calculator (it plans and controls EV acceleration or deceleration regarding the
safety and the EV energy-saving);

ADAS Basis System: This CS is based on Advanced Driver-Assistance System (ADAS)
that intends to detect objects (including vehicles) that can be in front of the EV, as
well as to define if the EV should be accelerated or not through the EV Acceleration

Controller component. The Environment Perception System CS has the same goal of
the Front Vehicle System CS. However, front obstacles are perceived through an EV
onboard radar;

Electric Drive System and Electronic Stability Program (ESP) System: Here, the EV
is accelerated through the Gas Pedal from the Electric Drive System CS or deceler-
ated as a result of the Brake Pedal component from the ESP System CS. The decision
of accelerating or braking the vehicle is provided by the Acceleration Control CS
from the ADAS Basis System CS.

To define the hazards and failure modes in the next phase, the TLA internal block diagram
that defines the data flow between the CSs and components of the SoS is presented in Figure 27.
Based on the TLA internal block diagram, which can be used as input, the SoSSafe application
is started.

6.3 Phase 1 – Scenarios Definition

In this illustrative study, the following scenario has been considered:

Scenario Title: Driving EV Towards Intersections.

96 Chapter 6. SoSSafe Illustrative Case

Figure 27 – Traffic Light Assistant Internal Block Diagram.

Source: Elaborated by the author.

6.4. Phase 2 – SoS HARA 97

Scenario Description: In the Driving EV Towards Intersections scenario, TLA conducts the
EV to the next traffic light to cross the intersection.

When the EV crosses intersections at the traffic light red phase, hazardous events can
occur, since TLA failures can hurt or even kill people or cause financial damage to the environ-
ment, such as car crashes and infrastructure damage to the city. Therefore, this scenario must be
considered to be analyzed in the following phases. To restrict the scope of this illustrative study,
only hazards that could cause damage to citizens have been considered in the analysis.

6.4 Phase 2 – SoS HARA
In this section, SoS HARA applied to TLA is described.

6.4.1 Situation Analysis

In this illustrative study, TLA hazards were analyzed under three operational situations:

Low-Speed : Situation in which TLA is operated under EV low speed (less than 30 Km/h);

Medium Speed: Situation in which TLA is operated under EV medium speed (more than 30
Km/h and less than 60 Km/h);

High-Speed : Situation in which TLA is operated under EV high speed (more than 60 Km/h).

Hazards can occur in both operational situations, but they could occur under other ones
regarding nature conditions, such as foggy days and snowfall, or traffic conditions, such as low
traffic, medium traffic, and high traffic. The following activity identifies and analyzes potential
hazards at the SoS level taking into account the operational situations defined.

6.4.2 Hazard Identification

Analyzing TLA architecture and the scenario considered in this illustrative case, hazards
can occur due to the combination of EV System failures. An output failure of the EV System
can cause hazards. If omission output failures occur, EV can be accelerated or decelerated and
then cross the intersection when the traffic light is in a red phase. The same can occur in the
case of early, late, and incorrect output failures since the vehicle can accelerate or decelerate
earlier (early output failure) or later (late output failure) than expected more or less than needed
(incorrect output failure). The hazards identified are described as follows:

Hazard Name (H1): EV is not accelerated when expected

Failure Expression: Omission-EVSystem.ElecDriveSystem.acc

98 Chapter 6. SoSSafe Illustrative Case

Context: The EV is crossing the intersection, but it needs to be accelerated. In case of accelera-
tion omission, the EV can get stopped in the intersection during the red phase

Hazard Name (H2): EV is not decelerated when expected

Failure Expression: Omission-EVSystem.ESPSystem.dec

Context: If this situation occurs, the EV will not stop at a red phase when reaching the traffic
light and then cross the intersection

Hazard Name (H3): EV is accelerated too early

Failure Expression: Early-EVSystem.ElecDriveSystem.acc

Context: The EV is stopped at the intersection, and the next command is to accelerate the EV
three seconds after the next green phase. If the command is executed too early (before the
next green phase), the EV can cross the intersection at the red phase

Hazard Name (H4): EV is accelerated too late

Failure Expression: Early-EVSystem.ESPSystem.dec

Context: The EV is stopped at the intersection, and the next command is to accelerate the EV
three seconds after the next green phase, and the next red phase will be in 10 seconds. If the
command is executed too late (more than 13 seconds), the EV will cross the intersection at
the red phase

Hazard Name (H5): EV is decelerated too late

Failure Expression: Late-EVSystem.ESPSystem.dec

Context: The EV is being conducted between two intersections, and there is a front obstacle.
TLA calculates that the EV should be decelerated in 3 seconds. However, the command
starts after the recommended time. If it occurs, a collision with the front obstacle can
occur.

Besides hazards described before, others could be considered, such as incorrect values in
which the EV is accelerated or decelerated more or less than the needed, or commission failures.
Only the hazards defined before have been considered in the next activity to restrict the scope of
this illustrative study.

6.4. Phase 2 – SoS HARA 99

Table 9 – Severity Classes.

Severity S0 S1 S2 S3

Description No injuries Light and Moder-
ate Injuries

Severe and
life-threatening
injuries (survival
is probable)

Life-threatening
injuries (survival
is uncertain),
fatal injuries

Source: ISO (2011).

Table 10 – Probability of Exposure Classes.

Severity E0 E1 E2 E3 E4

Description Incredible Very low
probability

Low proba-
bility

Medium
probability

High proba-
bility

Source: ISO (2011).

Table 11 – Controllability Classes.

Severity C0 C1 C2 C3

Description Controllable in
general

Simply control-
lable

Normally control-
lable

Difficult to con-
trol or uncontrol-
lable

Source: ISO (2011).

6.4.3 Hazardous Events Classification

To proceed with hazardous events classification, ISO 26262 has been used because the
industry has adopted this standard to develop automotive electric systems like TLA (ISO, 2011).
The hazardous events have been classified through the following attributes:

Type: Defined through Redmond taxonomy to classify SoS hazards;

Severity: Table 9 depicts the classes of severity proposed in ISO 26262;

Probability of Exposure: Table 10 shows the probability of exposure regarding operational
situations proposed in ISO 26262;

Controllability: Table 11 describes the classes of controllability proposed in ISO 26262.

The results are exposed in Table 12. Regarding the type, all hazards have been considered
as interface hazards in the Redmond taxonomy since they are caused by sharing faulty data
between the CSs and components through a defined channel.

100 Chapter 6. SoSSafe Illustrative Case

Regarding severity, all hazards have been considered as S3 severity. H1 because fatal
injuries can occur in case of the vehicle is at high speed and suddenly get stuck on the road.
Therefore, a car crash between the EV and the vehicle behind it can occur. H2 because if the
EV crosses the intersection at high speed, a fatal crash can occur. H3 and H4 because if the EV
crosses the intersection and the vehicle crossing the same intersection at the same time are on
high speed, a fatal crash can occur. Finally, H5 because car crashes involving vehicles on high
speed can cause fatal injuries.

Regarding the probability of exposure, E4 has been considered because the EV stops in
more than 10% of the operation time (ISO, 2011). For controllability, C3 has been considered
for all hazards because TLA is an autonomous system. Therefore, humans do not have control of
TLA and then cannot do anything to avoid hazards. From severity, probability of exposure, and
controllability attributes, SILs have been defined as follows.

Table 12 – Hazardous Events Classification and SIL results.

Hazard Type Severity Probability of Exposure Controllability ASIL

H1 Resource S3 E0 C3 D

H2 Resource S3 E0 C3 D

H3 Resource S3 E0 C3 D

H4 Resource S3 E0 C3 D

H5 Resource S3 E0 C3 D
Source: Elaborated by the author.

6.4.4 SIL and Safety Goals Definition

As explained in Chapter 2, SIL is known as ASIL in ISO 26262. Table 13 depicts all
ASILs defined in ISO 26262 in which each hazardous event can be classified into five ASILs:
Quality Management (QM), A, B, C, or D. QM refers to the standard’s consideration that it
is below ASIL A in which there is no safety relevance, and only standard QM processes are
required to fulfill any relevant requirements. In turn, ASIL A indicates the least critical level,
and D indicates the most critical level (ISO, 2011). As can be seen in Table 13, all hazards can
be considered as ASIL D. The results are shown in the sixth column of Table 12. Regarding
the safety goals, they are defined through the safety goal for each hazard identified. The way
to define is the same as for CS hazards. In the next phase, CS and component local failure
data definition are described, since it is important to determine the causes of each SoS hazard
identified.

6.5. Phase 3 – Synthesis and Analysis 101

Table 13 – ASIL Determination.

Severity Probability Controllability Class

Class Class C1 C2 C3

S1 E1 QM QM QM

S1 E2 QM QM QM

S1 E3 QM QM A

S1 E4 QM A B

S2 E1 QM QM QM

S2 E2 QM QM A

S2 E3 QM A B

S2 E4 A B C

S3 E1 QM QM A

S3 E2 QM A B

S3 E3 A B C

S3 E4 B C D
Source: ISO (2011).

6.4.5 Local Failure Data Definition

In this phase, CS and component local failure data are defined. As SoSSafe is a top-down
approach, the analysis begins at the CS level and then at the component level. To simplify the
illustration of SoSSafe applicability, only the hazards caused by omission output failures will be
considered in this activity and in the next phase. The output deviation for each CS and component
output port are shown in Appendix A. In this illustrative study, the cause of each output deviation
is the combination of omission of input ports or internal failure. In the next phase, all data
gathered in this phase will be synthesized to generate the SoSSafe outputs for H1 hazard.

6.5 Phase 3 – Synthesis and Analysis
Finally, FTA can be performed to generate the fault tree for the H1 hazard. Figure 28,

Figure 29, and Figure 30 show the fault trees generated. The triangle is used as a matter of
convenience to avoid extensive duplication in a fault tree or to allow a large tree to be represented
on a number or smaller trees for clarity. In this case, the fault tree flow has been broken into more
parts to be represented in another fault tree (in this case, such parts are represented in Figure 29
and Figure 30). The circles with an arrow denote an input deviation where the arrow enters the
circle and an output deviation where the arrow leaves the circle. The green boxes with a circle

102 Chapter 6. SoSSafe Illustrative Case

Figure 28 – H1 Fault Tree – Part 1.

Source: Elaborated by the author.

6.5. Phase 3 – Synthesis and Analysis 103

Table 14 – H1 FMEA Table.

Component/System

failure

Direct effects

on the system

Effects caused in

conjunction with other events

1 ElecDriveSystem –

2 ElecDriveSystem –

3 ElecDriveSystem –

4 ElecDriveSystem –

5 ElecDriveSystem –

6 ElecDriveSystem –

7 ElecDriveSystem –

8 ElecDriveSystem –

9 ElecDriveSystem –

10 ElecDriveSystem –

11 ElecDriveSystem –

12 ElecDriveSystem –

13 ElecDriveSystem –

14 ElecDriveSystem –

15 ElecDriveSystem –

16 ElecDriveSystem –

17 ElecDriveSystem –

18 ElecDriveSystem –

19 ElecDriveSystem –
Source: Elaborated by the author.

104 Chapter 6. SoSSafe Illustrative Case

Figure 29 – H1 Fault Tree – Part 2.

Source: Elaborated by the author.

represent basic initiating fault event that requires no further development, and the numbers inside
the circles under the green boxes are basic events’ unique identifiers used to generate the FMEA
table.

Table 14 presents the FMEA table generated from H1 fault tree. The first column
represents the basic events’ unique identifiers. The second column indicates if such failures
directly affect the system. As the fault tree generated is composed of only OR operators, all
component or system failures can trigger Elec.DriveSystem failures without the necessity of
occurring in conjunction with other basic events.

6.6 Final Considerations
As described in this chapter, the SoSSafe approach helps manage SoS hazards since

the outputs generated by the approach help to decide which CSs should integrate the SoS. The
illustrative case shown in this chapter can be considered a preliminary evaluation of SoSSafe,
and a complete validation is left as future work. The next chapter presents the conclusions of this
work.

6.6. Final Considerations 105

Figure 30 – H1 Fault Tree – Part 3.

Source: Elaborated by the author.

107

CHAPTER

7
CONCLUSIONS AND FUTURE WORK

7.1 Initial Considerations

This chapter presents a summary of contributions obtained from the research conducted
in this work (Section 7.2), the limitations found throughout the development of this work (Section
7.3), and, finally, the future research suggestions to extend the SoS safety analysis state-of-art
(Section 7.4).

7.2 Contributions

In this work, the general contribution is to support SoS safety analysis to define which CSs
meet the systems’ safety properties to be incorporated into the SoS operation. Such contribution
can be divided into the following specific contributions:

Systematic Mapping: In this contribution, a systematic mapping was conducted in which
several studies regarding risk management practices were analyzed. The mapping results
identified system safety gaps in the current state-of-art literature focusing on SoS. The full
version of this systematic mapping has been published in ICSA-C (LOPES et al., 2020);

SoSSafe Meta-Model: SoSSafe meta-model intends to support SoS design and safety analysis.
SoSSafe meta-model proposes a structured way to model the information regarding SoS
and its CSs to perform safety analysis at SoS and CS levels at design time to avoid hazards
during SoS operation. Such meta-model supports the identification and analysis of SoS
hazards by incorporating a specific taxonomy to classify them proposed by Redmond,
Michael and Shebalin (2008), as well as the identification and analysis of output deviations
and their causes that can be failure modes or input deviations at the CS level;

108 Chapter 7. Conclusions and Future Work

SoSSafe Approach: This approach intends to semi-automate the process of analyzing SoS
safety properties and estimating the effects of CSs failures in SoS architectures. The output
of SoSSafe can be helpful to guide safety analysts and the whole team to define which CSs
should incorporate the SoS and hence decrease the number of system failures during SoS
operation.

7.3 Limitations
The most significant limitation faced in this work is the difficulty of applying SoSSafe

on a realistic SoS. The illustrative study exposed in this work has been based on a real SoS from
the automotive domain. However, the data gathered is from a few papers published. Therefore,
relevant information regarding the SoS could not be found since the papers found do not have
in-depth information, and the authors of the papers are not available to provide more information
about the SoS.

Still, regarding the validation process, this work has not followed a structured way to
validate the SoSSafe such as a case study validation process. Besides that, SoSSafe approach has
not been compared with other works that address safety in complex systems. Finally, SoSSafe
has not been validated in different application domains to guarantee that the approach can be
helpful for different application domains.

7.4 Future Research
The following areas have been identified as a subject of future research:

Systematic Mapping: An update of the systematic mapping performed in this work intends to
define new SoS safety gaps;

SoSSafe Validation: Regarding the validation limitations, further efforts intend to validate the
SoSSafe approach and meta-model in other realistic case studies from different application
domains, with the support of domain experts. Besides that, it is intended to compare
SoSSafe approach and meta-model with related works to support systems safety analysis;

SoSSafe Extension: Since safety and cybersecurity are related dependability attributes, cyber-
security threats can trigger hazards. Therefore, it is recommended that both properties
should be analyzed together. In this context, it is intended to extend the SoSSafe approach
and meta-model to support cybersecurity threats.

109

BIBLIOGRAPHY

AITKEN, J. M.; ALEXANDER, R.; KELLY, T. A case for dynamic risk assessment in nec
systems of systems. In: IEEE. 2010 5th International Conference on System of Systems
Engineering. [S.l.], 2010. p. 1–6. Citations on pages 58, 59, 62, and 65.

. A risk modelling approach for a communicating system of systems. In: IEEE. 2011 IEEE
International Systems Conference. [S.l.], 2011. p. 442–447. Citations on pages 58, 62, and 65.

ALEXANDER, R.; HALL-MAY, M.; KELLY, T. Characterisation of systems of systems failures.
In: CITESEER. Proceedings of the 22nd International System Safety Conference. [S.l.],
2004. Citations on pages 26 and 28.

ALEXANDER, R.; KELLY, T. Hazard analysis through simulation for systems of systems. In:
Proceedings of the 24th International Systems Safety Conference. [S.l.: s.n.], 2006. Citation
on page 28.

AVIZIENIS, A.; LAPRIE, J.; RANDELL, B.; LANDWEHR, C. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, v. 1, n. 1, p. 11–33, Jan 2004. Citations on pages 36 and 37.

AVIZIENIS, A.; LAPRIE, J.-C.; RANDELL, B.; LANDWEHR, C. Basic concepts and tax-
onomy of dependable and secure computing. IEEE transactions on dependable and secure
computing, IEEE, v. 1, n. 1, p. 11–33, 2004. Citations on pages 61 and 62.

AXELSSON, J.; KOBETSKI, A. Towards a risk analysis method for systems-of-systems based on
systems thinking. In: IEEE. 2018 Annual IEEE International Systems Conference (SysCon).
[S.l.], 2018. p. 1–8. Citations on pages 58, 62, and 65.

. Towards a risk analysis method for systems-of-systems based on systems thinking. In:
2018 Annual IEEE International Systems Conference (SysCon). [S.l.: s.n.], 2018. p. 1–8.
ISSN 2472-9647. Citations on pages 63 and 65.

BATTEUX, M.; PROSVIRNOVA, T.; RAUZY, A. Enhancement of the altarica 3.0 stepwise
simulator by introducing an abstract notion of time. In: Safety and Reliability–Safe Societies
in a Changing World. [S.l.]: CRC Press, 2018. p. 915–921. Citation on page 79.

BAUMGART, S.; FRÖBERG, J.; PUNNEKKAT, S. Analyzing hazards in system-of-systems:
Described in a quarry site automation context. In: IEEE. 2017 Annual IEEE International
Systems Conference (SysCon). [S.l.], 2017. p. 1–8. Citations on pages 40, 57, 58, 62, 63, 64,
and 65.

. A process to support safety analysis for a system-of-systems. In: IEEE. 2020 IEEE In-
ternational Symposium on Software Reliability Engineering Workshops (ISSREW). [S.l.],
2020. p. 61–66. Citation on page 28.

BOARDMAN, J.; SAUSER, B. System of systems - the meaning of of. In: 2006 IEEE/SMC
International Conference on System of Systems Engineering. [S.l.: s.n.], 2006. p. 6 pp.–.
Citations on pages 28 and 32.

110 Bibliography

BOURQUE, P.; FAIRLEY, R. E. Guide to the software engineering body of knowledge
(SWEBOK (R)): Version 3.0. [S.l.]: IEEE Computer Society Press, 2014. Citation on page 32.

BOUTI, A.; KADI, D. A. A state-of-the-art review of fmea/fmeca. International Journal of
reliability, quality and safety engineering, World Scientific, v. 1, n. 04, p. 515–543, 1994.
Citation on page 44.

ČAUŠEVIĆ, A. A risk and threat assessment approaches overview in autonomous systems of
systems. In: IEEE. 2017 XXVI International Conference on Information, Communication
and Automation Technologies (ICAT). [S.l.], 2017. p. 1–6. Citations on pages 58, 62, and 65.

CAVALCANTE, E.; CACHO, N.; LOPES, F.; BATISTA, T. Challenges to the development of
smart city systems: A system-of-systems view. In: Proceedings of the 31st Brazilian Sympo-
sium on Software Engineering. [S.l.: s.n.], 2017. p. 244–249. Citation on page 25.

CHEN, P.; UNEWISSE, M. Sos thinking: an approach to conceptualising and understanding
military systems-of-systems. International Journal of System of Systems Engineering, v. 8,
p. 74, 01 2017. Citations on pages 25 and 32.

CMU. Open Source AADL Tool Environment (OSATE). 2020. Accessed on 19.01.2021.
Available: <osate.org>. Citation on page 67.

COMMITTEE, S. I. S.-. et al. Arp4761 guidelines and methods for conducting the safety assess-
ment process on civil airborne system and equipment. Warrendale, Pennsylvania: Society of
Automotive Engineers, 1996. Citation on page 45.

CONROW, E. H. Risk management for systems of systems. CrossTalk, v. 18, n. 2, p. 8–12,
2005. Citations on pages 17, 53, 57, 58, 59, 60, 62, 63, and 65.

DAHMANN, J. S.; BALDWIN, K. J. Understanding the current state of us defense systems
of systems and the implications for systems engineering. In: IEEE. 2008 2nd Annual IEEE
Systems Conference. [S.l.], 2008. p. 1–7. Citation on page 33.

DAHMANN, J. S.; JR, G. R.; LANE, J. Systems engineering for capabilities. [S.l.], 2008.
Citations on pages 33, 62, and 65.

DARAMOLA, O.; STåLHANE, T.; SINDRE, G.; OMORONYIA, I. Enabling hazard iden-
tification from requirements and reuse-oriented hazop analysis. In: 2011 4th International
Workshop on Managing Requirements Knowledge. [S.l.: s.n.], 2011. p. 3–11. ISSN null.
Citation on page 41.

DEIS. Open Dependability Exchange (ODE) Profile V2. [S.l.], 2020. Available: <https://
www.deis-project.eu>. Citations on pages 67, 71, and 73.

DELANGE, J. Architecture Analysis and Design Language. Number SAE AS5506C. SAE
International. 2016. Accessed on 12.09.2021. Available: <https://www.sae.org/standards/
content/as5506/>. Citation on page 75.

DELANGE, J.; FEILER, P. Architecture fault modeling with the aadl error-model annex. In:
2014 40th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions. [S.l.: s.n.], 2014. p. 361–368. Citations on pages 26, 27, and 48.

osate.org
https://www.deis-project.eu
https://www.deis-project.eu
https://www.sae.org/standards/content/as5506/
https://www.sae.org/standards/content/as5506/

Bibliography 111

DEZFULI, H.; BENJAMIN, A.; EVERETT, C.; SMITH, C.; STAMATELATOS, M.; YOUNG-
BLOOD, R. Nasa system safety handbook. NASA/SP-2010–580, Washington, DC: NASA,
v. 1, 2011. Citation on page 26.

DIESTE, O.; PADUA, A. G. Developing search strategies for detecting relevant experiments
for systematic reviews. In: IEEE. First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). [S.l.], 2007. p. 215–224. Citation on page 53.

DUNJÓ, J.; FTHENAKIS, V.; VÍLCHEZ, J. A.; ARNALDOS, J. Hazard and operability (hazop)
analysis. a literature review. Journal of hazardous materials, Elsevier, v. 173, n. 1-3, p. 19–32,
2010. Citations on pages 39 and 41.

DYBA, T.; DINGSOYR, T.; HANSSEN, G. K. Applying systematic reviews to diverse study
types: An experience report. In: IEEE. First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). [S.l.], 2007. p. 225–234. Citation on page 66.

EAST-ADL Association. EAST-ADL Domain Model Specification version V2.1.12. 2013.
Available: <https://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.
12.pdf>. Citation on page 79.

Eclipse Foundation. Eclipse Papyrus Modeling environment. 2017. Available: <https://www.
eclipse.org/papyrus/>. Citation on page 67.

. Eclipse Modeling Framework platform. 2022. Available: <https://www.eclipse.org/
modeling/emf/>. Citation on page 68.

ELSHENAWY, M.; ABDULHAI, B.; EL-DARIEBY, M. Towards a service-oriented cy-
ber–physical systems of systems for smart city mobility applications. Future Generation
Computer Systems, v. 79, p. 575 – 587, 2018. ISSN 0167-739X. Available: <http://www.
sciencedirect.com/science/article/pii/S0167739X17307471>. Citations on pages 25 and 32.

EUROCAE. Arp4754 – guidelines for development of civil aircraft and systems. SAE Interna-
tional, 2010. Citations on pages 29, 38, 39, 40, and 43.

FENELON, P.; MCDERMID, J. A. New directions in software safety: Causal modelling as
an aid to integration. In: Workshop on Safety Case Construction, York (March 1994). [S.l.:
s.n.], 1992. Citations on pages 46 and 47.

. An integrated tool set for software safety analysis. Journal of Systems and Software,
v. 21, n. 3, p. 279 – 290, 1993. ISSN 0164-1212. Applying Specification, Verification, and
Validation Techniques to Industrial Software Systems. Available: <http://www.sciencedirect.
com/science/article/pii/016412129390029W>. Citation on page 46.

GALLINA, B.; JAVED, M. A.; MURAM, F. U.; PUNNEKKAT, S. A model-driven dependability
analysis method for component-based architectures. In: Proceedings - 38th EUROMICRO
Conference on Software Engineering and Advanced Applications, SEAA 2012. [S.l.: s.n.],
2012. p. 233–240. ISBN 9780769547909. Citation on page 75.

GALLINA, B.; SEFER, E.; REFSDAL, A. Towards safety risk assessment of socio-technical
systems via failure logic analysis. In: IEEE. International Symposium on Software Reliability
Engineering Workshops (ISSRE). [S.l.], 2014. p. 287–292. Citations on pages 67 and 79.

https://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
https://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://www.sciencedirect.com/science/article/pii/S0167739X17307471
http://www.sciencedirect.com/science/article/pii/S0167739X17307471
http://www.sciencedirect.com/science/article/pii/016412129390029W
http://www.sciencedirect.com/science/article/pii/016412129390029W

112 Bibliography

GANDHI, S. J.; GOROD, A.; SAUSER, B. A systemic approach to managing risks of sos. In:
2011 IEEE International Systems Conference. [S.l.: s.n.], 2011. p. 412–416. Citation on
page 32.

. A systemic approach to managing risks of sos. IEEE Aerospace and Electronic Systems
Magazine, IEEE, v. 27, n. 5, p. 23–27, 2012. Citations on pages 57, 58, 59, 62, 63, and 65.

GE, X.; PAIGE, R. F.; MCDERMID, J. A. Probabilistic failure propagation and transformation
analysis. In: SPRINGER. International Conference on Computer Safety, Reliability, and
Security. [S.l.], 2009. p. 215–228. Citation on page 47.

GOROD, A.; SAUSER, B.; BOARDMAN, J. System-of-systems engineering management:
A review of modern history and a path forward. IEEE Systems Journal, IEEE, v. 2, n. 4, p.
484–499, 2008. Citations on pages 32, 62, and 65.

GREENWOOD, D.; SOMMERVILLE, I. Responsibility modeling for identifying sociotechnical
threats to the dependability of coalitions of systems. In: IEEE. 2011 6th International Confer-
ence on System of Systems Engineering. [S.l.], 2011. p. 173–178. Citations on pages 58, 61,
62, 63, and 66.

. Responsibility modeling for the sociotechnical risk analysis of coalitions of systems. In:
IEEE. 2011 IEEE International Conference on Systems, Man, and Cybernetics. [S.l.], 2011.
p. 1256–1261. Citations on pages 58, 62, 63, and 66.

GUARINIELLO, C.; MOCKUS, L.; RAZ, A. K.; DELAURENTIS, D. A. Towards intelligent
architecting of aerospace system-of-systems. In: 2019 IEEE Aerospace Conference. [S.l.: s.n.],
2019. p. 1–11. Citations on pages 25 and 32.

GUNAWAN, I.; GOROD, A.; HALLO, L.; NGUYEN, T. Developing a system of systems
management framework for the fukushima daiichi nuclear disaster recovery. In: 2017 Interna-
tional Conference on System Science and Engineering (ICSSE). [S.l.: s.n.], 2017. p. 563–568.
Citations on pages 25 and 32.

HABLI, I. Model-based assurance of safety-critical product lines. Phd Thesis (PhD Thesis)
— University of York, 2009. Citation on page 39.

HAIMES, Y. Y. Modeling complex systems of systems with phantom system models. Systems
Engineering, Wiley Online Library, v. 15, n. 3, p. 333–346, 2012. Citations on pages 58, 59,
62, and 65.

. Systems-based guiding principles for risk modeling, planning, assessment, management,
and communication. Risk Analysis: An International Journal, Wiley Online Library, v. 32,
n. 9, p. 1451–1467, 2012. Citations on pages 53, 58, 59, 62, and 65.

. Risk modeling of interdependent complex systems of systems: Theory and practice. Risk
Analysis, Wiley Online Library, v. 38, n. 1, p. 84–98, 2017. Citations on pages 58, 60, 62,
and 65.

HANSEN, K. M.; WELLS, L.; MAIER, T. Hazop analysis of uml-based software architecture
descriptions of safety-critical systems. Proceedings of NWUML, p. 59–78, 2004. Citation on
page 41.

IEC. IEC 61508 - Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related System. In: . [S.l.: s.n.], 2010. Citation on page 73.

Bibliography 113

ISO. Iso 31000: Risk management–principles and guidelines. International Organization for
Standardization, 2009. Citation on page 59.

. Iso 26262: Road vehicles-functional safety. International Standard ISO/FDIS, 2011.
Citations on pages 29, 36, 37, 38, 39, 40, 45, 75, 99, 100, and 101.

. Iso/iec/ieee international standard – systems and software engineering – system of systems
(sos) considerations in life cycle stages of a system. ISO/IEC/IEEE 21839:2019(E), p. 1–40,
2019. Citation on page 31.

JAMSHIDI, M. System of systems - innovations for 21st century. In: Industrial and Informa-
tion Systems. IEEE the Third international Conference on. [S.l.: s.n.], 2008. p. 6–7. Citation
on page 32.

KÄSSMEYER, M.; SCHULZE, M.; SCHURIUS, M. A process to support a systematic change
impact analysis of variability and safety in automotive functions. In: ACM. Proceedings of the
19th International Conference on Software Product Line. [S.l.], 2015. p. 235–244. Citation
on page 38.

KI-ARIES, D.; FAILY, S.; DOGAN, H.; WILLIAMS, C. Assessing system of systems security
risk and requirements with oasosis. In: IEEE. 2018 IEEE 5th International Workshop on
Evolving Security & Privacy Requirements Engineering (ESPRE). [S.l.], 2018. p. 14–20.
Citations on pages 58, 62, 63, and 64.

KINDER, A.; HENSHAW, M.; SIEMIENIUCH, C. A model based approach to system of
systems risk management. In: IEEE. 2015 10th System of Systems Engineering Conference
(SoSE). [S.l.], 2015. p. 122–127. Citations on pages 58, 59, 62, 63, and 65.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Re-
views in Software Engineering. [S.l.], 2007. Citations on pages 51, 53, and 66.

KLETZ, T. A. Hazop—past and future. Reliability Engineering & System Safety, Elsevier,
v. 55, n. 3, p. 263–266, 1997. Citation on page 41.

KOBETSKI, A.; AXELSSON, J. Towards safe and secure systems of systems: Challenges and
opportunities. In: Proceedings of the Symposium on Applied Computing. [S.l.: s.n.], 2017. p.
1803–1806. Citation on page 26.

KRISTEN, J. Systems engineering guide for systems of systems (version 1.0). Systems and
Software Engineering, Office of the Deputy Under Secretary of Defense for Acquisition
and Technology, 2008. Citations on pages 58 and 59.

KURAL, E.; JONES, S.; PARRILLA, A. F.; GRAUERS, A. Traffic light assistant system for
optimized energy consumption in an electric vehicle. In: IEEE. 2014 International Conference
on Connected Vehicles and Expo (ICCVE). [S.l.], 2014. p. 604–611. Citations on pages 79
and 92.

LANE, J. A. What is a System of Systems and Why Should I Care? 2013. Tecnical Report,
University of Southern California. Citation on page 34.

LEITE, F. L.; SCHNEIDER, D.; ADLER, R. Dynamic risk management for cooperative au-
tonomous medical cyber-physical systems. In: SPRINGER. International Conference on Com-
puter Safety, Reliability, and Security. [S.l.], 2018. p. 126–138. Citations on pages 25, 32,
58, 62, 63, 64, and 65.

114 Bibliography

LEVESON, N. A new accident model for engineering safer systems. Safety science, Elsevier,
v. 42, n. 4, p. 237–270, 2004. Citation on page 65.

LEVESON, N. G. Software safety: Why, what, and how. ACM Comput. Surv., ACM, New
York, NY, USA, v. 18, n. 2, p. 125–163, Jun. 1986. ISSN 0360-0300. Available: <http://doi.acm.
org/10.1145/7474.7528>. Citation on page 37.

LISAGOR, O.; MCDERMID, J.; PUMFREY, D. Towards a practicable process for automated
safety analysis. In: CITESEER. 24th International system safety conference. [S.l.], 2006.
v. 596, p. 607. Citations on pages 28 and 46.

LIU, H.-C.; LIU, L.; LIU, N. Risk evaluation approaches in failure mode and effects analysis:
A literature review. Expert Systems with Applications, v. 40, n. 2, p. 828 – 838, 2013. ISSN
0957-4174. Available: <http://www.sciencedirect.com/science/article/pii/S0957417412009712>.
Citations on pages 44 and 45.

LOCK, R. Developing a methodology to support the evolution of system of systems using risk
analysis. Systems Engineering, Wiley Online Library, v. 15, n. 1, p. 62–73, 2012. Citations on
pages 58, 59, 62, 64, and 65.

LOLLINI, P.; MORI, M.; BABU, A.; BOUCHENAK, S. Amadeos sysml profile for sos con-
ceptual modeling. In: Cyber-Physical Systems of Systems. [S.l.]: Springer, 2016. p. 97–127.
Citation on page 27.

LOPES, S. d. S.; VARGAS, I. G.; OLIVEIRA, A. L. de; BRAGA, R. T. V. Risk management for
system of systems: A systematic mapping study. In: IEEE. 2020 IEEE International Confer-
ence on Software Architecture Companion (ICSA-C). [S.l.], 2020. p. 258–265. Citations on
pages 51, 67, and 107.

LOPEZ, D. Lessons learned from the front lines of the aerospace industry - balancing complexity
and risk. In: Conference on System of Systems Engineering, IEEE/SMC International. [S.l.:
s.n.], 2006. p. 5–14. Citations on pages 25 and 31.

MAIER, M. W. Architecting principles for systems-of-systems. Systems Engineering: The
Journal of the International Council on Systems Engineering, Wiley Online Library, v. 1,
n. 4, p. 267–284, 1998. Citations on pages 25, 31, 32, and 33.

MALTA, M.; STRATHDEE, S. A.; GARCIA, P. J. The brazilian tragedy: Where patients
living at the ‘earth’s lungs’ die of asphyxia, and the fallacy of herd immunity is killing people.
EClinicalMedicine, Elsevier, v. 32, 2021. Citation on page 25.

MATHEW, E. Intelligent transport systems and its challenges. In: HASSANIEN, A. E.;
SHAALAN, K.; TOLBA, M. F. (Ed.). Proceedings of the International Conference on Ad-
vanced Intelligent Systems and Informatics 2019. Cham: Springer International Publishing,
2020. p. 663–672. Citations on pages 25 and 32.

MathWorks. Simulink - Simulation and Model-Based Design. 2021. Available: <https://www.
mathworks.com/products/simulink.html>. Citations on pages 67 and 79.

MAZZINI, S.; FAVARO, J.; PURI, S.; BARACCHI, L. CHESS: An open source methodology
and toolset for the development of critical systems. CEUR Workshop Proceedings, v. 1835, p.
59–66, 2016. ISSN 16130073. Citations on pages 67 and 79.

http://doi.acm.org/10.1145/7474.7528
http://doi.acm.org/10.1145/7474.7528
http://www.sciencedirect.com/science/article/pii/S0957417412009712
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

Bibliography 115

MAZZINI, S.; FAVARO, J. M.; PURI, S.; BARACCHI, L. Chess: an open source methodology
and toolset for the development of critical systems. In: EduSymp/OSS4MDE@ MoDELS. [S.l.:
s.n.], 2016. p. 59–66. Citations on pages 27 and 48.

MCDERMID, J. A.; NICHOLSON, M.; PUMFREY, D. J.; FENELON, P. Experience with
the application of hazop to computer-based systems. In: IEEE. COMPASS’95 Proceedings of
the Tenth Annual Conference on Computer Assurance Systems Integrity, Software Safety
and Process Security’. [S.l.], 1995. p. 37–48. Citation on page 41.

MENGMENG, Z.; HONGHUI, C.; XIAOXUE, Z.; AIMIN, L.; JUNXIAN, L. Functionality
evaluation of system of systems architecture based on extended influence diagrams. Journal of
Systems Engineering and Electronics, v. 29, n. 3, p. 510–518, 2018. Citation on page 26.

Ministry of Defence. Hazop studies on systems containing programmable electronics. Defence
Standard 00-58 Issues 1 and 2, v. 2, 2000. Citation on page 42.

MOD. DEF-STAN 00-56 Issue 4 Part 1: Safety management requirements for defence
systems. [S.l.], 2007. Citations on pages 37 and 39.

MONTECCHI, L.; GALLINA, B. SafeConcert: a Metamodel for a Concerted Safety Modeling
of Socio-Technical Systems. In: 5th International Symposium on Model-Based Safety and
Assessment (IMBSA 2017). Trento, Italy: [s.n.], 2017. (LNCS, v. 10437), p. 129–144. Citations
on pages 67 and 79.

MORI, M.; CECCARELLI, A.; LOLLINI, P.; FRÖMEL, B.; BRANCATI, F.; BONDAVALLI, A.
Systems-of-systems modeling using a comprehensive viewpoint-based sysml profile. Journal of
Software: Evolution and Process, Wiley Online Library, v. 30, n. 3, p. e1878, 2018. Citation
on page 86.

NIELSEN, C. B.; LARSEN, P. G.; FITZGERALD, J.; WOODCOCK, J.; PELESKA, J. Systems
of systems engineering: Basic concepts, model-based techniques, and research directions. ACM
Comput. Surv., Association for Computing Machinery, New York, NY, USA, v. 48, n. 2, Sep.
2015. ISSN 0360-0300. Available: <https://doi.org/10.1145/2794381>. Citation on page 31.

OLIVEIRA, A. L. d. A model-based approach to support the systematic reuse and genera-
tion of safety artefacts in safety-critical software product line engineering. Phd Thesis (PhD
Thesis) — Universidade de São Paulo, 2016. Citation on page 39.

OLIVEIRA, A. L. de; BRAGA, R.; MASIERO, P.; PARKER, D.; PAPADOPOULOS, Y.; HABLI,
I.; KELLY, T. Variability management in safety-critical systems design and dependability analysis.
Journal of Software: Evolution and Process, v. 31, n. 8, p. e2202, 2019. E2202 smr.2202.
Available: <https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2202>. Citation on page 37.

OMG. Service oriented architecture modeling language (soaml) specification. Object Manage-
ment Group, 2012. Citation on page 83.

OMG. OMG Systems Modeling Language SysML. 2017. Available: <https://www.omg.org/
spec/SysML/1.6/PDF>. Citations on pages 67, 79, and 83.

. Unified Modeling Language (UML) 2.5. 2017. Available: <https://www.omg.org/spec/
UML/2.5.1/PDF>. Citations on pages 67, 79, and 83.

. Meta-Object Facility. 2019. Available: <http://https//www.omg.org/mof/,last>. Citation
on page 68.

https://doi.org/10.1145/2794381
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2202
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
http://https//www.omg.org/mof/,last

116 Bibliography

PAIGE, R. F.; ROSE, L. M.; GE, X.; KOLOVOS, D. S.; BROOKE, P. J. Fptc: automated safety
analysis for domain-specific languages. In: SPRINGER. International Conference on Model
Driven Engineering Languages and Systems. [S.l.], 2008. p. 229–242. Citation on page 28.

PAPADOPOULOS, Y. HIP-HOPS Manual. [S.l.], 2013. Citation on page 44.

PAPADOPOULOS, Y.; MCDERMID, J. A. Hierarchically performed hazard origin and prop-
agation studies. In: SPRINGER. International Conference on Computer Safety, Reliability,
and Security. [S.l.], 1999. p. 139–152. Citations on pages 27 and 48.

PAPADOPOULOS, Y.; WALKER, M.; PARKER, D.; RÜDE, E.; HAMANN, R.; UHLIG, A.;
GRÄTZ, U.; LIEN, R. Engineering failure analysis and design optimisation with hip-hops.
Engineering Failure Analysis, v. 18, n. 2, p. 590–608, 2011. ISSN 1350-6307. Citations on
pages 26, 27, 45, 46, 47, 48, 67, 75, and 79.

PINTO, C. A.; MCSHANE, M. K.; BOZKURT, I. System of systems perspective on risk: towards
a unified concept. International Journal System of Systems Engineering, v. 3, n. 1, p. 33–46,
2012. Citations on pages 53, 57, 58, 59, and 60.

PMI (Ed.). A Guide to the Project Management Body of Knowledge (PMBOK Guide). 6.
ed. Newtown Square, PA: Project Management Institute, 2017. Citations on pages 17, 59,
and 60.

PROCHAZKOVA, D. Identification and management of risks of system of systems. Inter-
national Journal of Computer an Information Technology, Citeseer, p. 2279–0764, 2013.
Citations on pages 58, 59, 63, and 65.

PUMFREY, D. J. The principled design of computer system safety analyses. Phd Thesis
(PhD Thesis) — University of York, 1999. Citations on pages 43 and 45.

RABINER, L.; JUANG, B. An introduction to hidden markov models. IEEE ASSP Magazine,
v. 3, n. 1, p. 4–16, 1986. Citation on page 75.

REDMOND, P. A system of systems interface hazard analysis technique. [S.l.], 2007. Cita-
tions on pages 28, 40, 48, 62, 64, 65, 67, and 73.

REDMOND, P. J.; MICHAEL, J. B.; SHEBALIN, P. V. Interface hazard analysis for system of
systems. In: IEEE. 2008 IEEE International Conference on System of Systems Engineering.
[S.l.], 2008. p. 1–8. Citations on pages 67 and 107.

REICH, J.; SCHNEIDER, D. Towards (semi-) automated synthesis of runtime safety models: A
safety-oriented design approach for service architectures of cooperative autonomous systems.
In: SPRINGER. International Conference on Computer Safety, Reliability, and Security.
[S.l.], 2018. p. 139–150. Citations on pages 92 and 93.

REICH, J.; SCHNEIDER, D.; ADLER, R.; WEI, R.; KELLY, T.; SOROKOS, I.; ZELLER,
M.; GUO, J.; KAUKEWITSCH, C.; MACHER, G.; ARMENGAUD, E. Digital dependability
identities and the open dependability exchange meta-model. DEIS Project, 2020. Citation on
page 91.

SABERI, A. K.; BARBIER, E.; BENDERS, F.; BRAND, M. V. D. On functional safety meth-
ods: A system of systems approach. In: IEEE. 2018 Annual IEEE International Systems
Conference (SysCon). [S.l.], 2018. p. 1–6. Citation on page 28.

Bibliography 117

SAE. Architecture Analysis and Design Language (AADL). [S.l.], 2017. Available: <https:
//www.sae.org/standards/content/as5506c/>. Citations on pages 67 and 79.

SAE, A. 4761: Guidelines and methods for conducting the safety assessment process on civil
airborne systems and equipment. Society of Automotive Engineers, Inc, 1996. Citation on
page 39.

SALADO, A. Abandonment: A natural consequence of autonomy and belonging in systems-
of-systems. In: IEEE. 2015 10th System of Systems Engineering Conference (SoSE). [S.l.],
2015. p. 352–357. Citations on pages 58 and 61.

. Exile: A natural consequence of autonomy and belonging in systems-of-systems. In: IEEE.
2016 Annual IEEE Systems Conference (SysCon). [S.l.], 2016. p. 1–5. Citations on pages
58 and 61.

SEVCIK, F. Current and future concepts in fmea (failure modes and effects analysis). In: Annual
Reliability and Maintainability Symposium, Philadelphia, Pa. [S.l.: s.n.], 1981. p. 414–421.
Citation on page 43.

SHABAN, A.; ABDELWAHED, A.; Di Gravio, G.; AFEFY, I. H.; PATRIARCA, R. A systems-
theoretic hazard analysis for safety-critical medical gas pipeline and oxygen supply systems.
Journal of Loss Prevention in the Process Industries, v. 77, p. 104782, 2022. ISSN 0950-4230.
Available: <https://www.sciencedirect.com/science/article/pii/S0950423022000596>. Citation
on page 25.

SHAH, P.; DAVENDRALINGAM, N.; DELAURENTIS, D. A. A conditional value-at-risk
approach to risk management in system-of-systems architectures. In: IEEE. 2015 10th System
of Systems Engineering Conference (SoSE). [S.l.], 2015. p. 457–462. Citations on pages 57,
58, 59, and 65.

SHARVIA, S.; KABIR, S.; WALKER, M.; PAPADOPOULOS, Y. Chapter 12 - model-based
dependability analysis: State-of-the-art, challenges, and future outlook. In: MISTRIK, I.; SOLEY,
R.; ALI, N.; GRUNDY, J.; TEKINERDOGAN, B. (Ed.). Software Quality Assurance. Boston:
Morgan Kaufmann, 2016. p. 251–278. ISBN 978-0-12-802301-3. Available: <https://www.
sciencedirect.com/science/article/pii/B9780128023013000120>. Citation on page 26.

SIMPLEMAN, L.; MCMAHON, P.; BAHNMAIER, B.; EVANS, K.; LLOYD, J. Risk manage-
ment guide for DOD acquisition. [S.l.], 1998. Citations on pages 62 and 65.

SOMMERVILLE, I.; DEWSBURY, G.; CLARKE, K.; ROUNCEFIELD, M. Dependability
and trust in organisational and domestic computer systems. In: . Trust in Technology: A
Socio-Technical Perspective. [S.l.]: Springer Netherlands, 2006. p. 169–193. Citations on
pages 61 and 62.

THAPALIYA, A.; KWON, G. A unified approach for uml based safety oriented level crossing
using fta and model checking. In: Proceedings of the 19th Korea Conference on Software
Engineering (KCSE 2017). [S.l.: s.n.], 2017. v. 19, p. 89–90. Citation on page 43.

VESELY, W.; DUGAN, J.; FRAGOLA, J.; MINARICK, J.; RAILSBACK, J. Fault tree handbook
with aerospace applications. NASA Office of Safety and Mission Assurance, 2002. Citation
on page 42.

https://www.sae.org/standards/content/as5506c/
https://www.sae.org/standards/content/as5506c/
https://www.sciencedirect.com/science/article/pii/S0950423022000596
https://www.sciencedirect.com/science/article/pii/B9780128023013000120
https://www.sciencedirect.com/science/article/pii/B9780128023013000120

118 Bibliography

WALLACE, M. Modular architectural representation and analysis of fault propagation and trans-
formation. Electronic Notes in Theoretical Computer Science, v. 141, n. 3, p. 53 – 71, 2005.
ISSN 1571-0661. Proceedings of the Second International Workshop on Formal Foundations of
Embedded Software and Component-based Software Architectures (FESCA 2005). Available:
<http://www.sciencedirect.com/science/article/pii/S1571066105051650>. Citations on pages 46
and 47.

WEI, R.; KELLY, T. P.; HAWKINS, R.; ARMENGAUD, E. Deis: Dependability engineering in-
novation for cyber-physical systems. In: SPRINGER. Federation of International Conferences
on software technologies: applications and foundations. [S.l.], 2017. p. 409–416. Citation
on page 27.

WINTHER, R.; JOHNSEN, O.-A.; GRAN, B. A. Security assessments of safety critical systems
using hazops. In: SPRINGER. International Conference on Computer Safety, Reliability,
and Security. [S.l.], 2001. p. 14–24. Citation on page 41.

WOJCIK, L.; HOFFMAN, K. Systems of systems engineering in the enterprise context: a
unifying framework for dynamics. In: System of Systems Engineering, 2006 IEEE/SMC
International Conference on. [S.l.: s.n.], 2006. p. 8 pp.–. Citations on pages 25 and 31.

http://www.sciencedirect.com/science/article/pii/S1571066105051650

119

APPENDIX

A
TRAFFIC LIGHT ASSISTANT LOCAL

FAILURE DATA

In this appendix, CS and component local failure data are defined. Table 15 and Table 16
show the output deviation for each CS output port, whereas Table 17 and Table 18 show the
output deviation for each component output port.

120 APPENDIX A. Traffic Light Assistant Local Failure Data

Table 15 – CS Local Failure Data – Part 1.

System Output Deviation Causes

Elec. Drive System

Omission-

ElecDriveSystem.

acc

Omission-

GasPedal.acc

OR InternalFailure

ADAS Basis System

Omission-

ADASBasisSystem.

gas

Omission-

EVAccelerationController.

gas OR InternalFailure

ADAS Basis System

Omission-

ADASBasisSystem.

brake

Omission-

EVAccelerationController.

brake OR InternalFailure

ADAS Basis System

Omission-

ADASBasisSystem.

obstacles2

Omission-

EnvPerceptionSystem.

obstacles2

OR InternalFailure

Env. Perception System

Omission-

EnvPerceptionSystem.

obstacles2

Omission-

Radar.obstacles2

OR InternalFailure
Source: Elaborated by the author.

121

Table 16 – CS Local Failure Data – Part 2.

System Output Deviation Causes

Traffic Light

Assistant System

Omission-

TrafficLightAssistantSystem.

optimalAcc

Omission-

EVSpeedCalculator.

optimalAcc

OR InternalFailure

Front Vehicle System

Omission-

FrontVehicleSystem.

obstacles1

Omission-Sensor.

obstacles1

OR InternalFailure

Intersection Control

System

Omission-

IntersectionControlSystem.

timeUNRedTL

InternalFailure

Intersection Control

System

Omission-

IntersectionControlSystem.

durationNRedTL

InternalFailure

Intersection Control

System

Omission-

IntersectionControlSystem.

posNextTL

InternalFailure

Source: Elaborated by the author.

122 APPENDIX A. Traffic Light Assistant Local Failure Data

Table 17 – Component Local Failure Data – Part 1.

Component Output Deviation Causes

Gas Pedal Omission-GasPedal.acc
Omission-GasPedal.gas

OR InternalFailure

EV Acceleration

Controller

Omission-

EVAccelerationController.

gas

Omission-

EVAccelerationController.

optimalAcc

OR InternalFailure

EV Acceleration

Controller

Omission-

EVAccelerationController.

brake

Omission-

EVAccelerationController.

optimalAcc

OR InternalFailure

Radar Omission-Radar.obstacles2
Omission-Radar.env

OR InternalFailure

EV Speed Calculator

Omission-

EVSpeedCalculator.

optimalAcc

Omission-

EVSpeedCalculator.

evEOSpeed

OR Omission-

EVSpeedCalculator.

evSafeSpeed

OR InternalFailure
Source: Elaborated by the author.

123

Table 18 – Component Local Failure Data – Part 2.

Component Output Deviation Causes

Safe EV

Speed Profile

Calculator

Omission-

SafeEVSpeedProfileCalculator.

evSafeSpeed

Omission-

SafeEVSpeedProfileCalculator.

obstacles1

OR Omission-

SafeEVSpeedProfileCalculator.

evState

OR Omission-

SafeEVSpeedProfileCalculator.

obstacles2

OR InternalFailure

EV Localization

Sensor

Omission-EVLocalizationSensor.

evState
InternalFailure

Sensor Omission-Sensor.obstacles1
Omission-Sensor.env

OR InternalFailure

EO-EV Speed

Profile to TL

Calculator

Omission-

EOEVSpeedProfileToTLCalculator.

evEOSpeed

Omission-

EOEVSpeedProfileToTLCalculator.

timeUNRedTL

OR Omission-

EOEVSpeedProfileToTLCalculator.

durationNRedTL

OR Omission-

EOEVSpeedProfileToTLCalculator.

posNextTL

OR Omission-

EOEVSpeedProfileToTLCalculator.

evState

OR InternalFailure
Source: Elaborated by the author.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Motivation, Problem, and Justification
	Objective
	Organization

	Background
	Initial Considerations
	System-of-Systems (SoS)
	SoS Characteristics
	SoS Classification

	Safety Analysis
	Safety Terminology
	Error, Fault, Failure and Hazard-related Concepts
	Dependability

	Safety Life-cycle
	Hazard Analysis and Risk Assessment (HARA)
	Safety Analysis Techniques and Tools
	Traditional Safety Analysis Techniques
	HAZard and OPerability Studies (HAZOP)
	Fault Tree Analysis (FTA)
	Failure Modes and Effects Analysis (FMEA)

	Compositional Safety Analysis Techniques
	Failure Propagation and Transformation Notation (FPTN)
	Fault Propagation and Transformation Calculus (FPTC)
	Compositional Safety Analysis Tools and Meta-Models

	Final considerations

	Systematic Mapping
	Initial Considerations
	Planning
	Research Objectives and Research Questions
	Search Strategy
	Selection Criteria
	Quality Criteria
	Data Extraction Form

	Conducting
	First Selection
	Second Selection
	Quality Assessment
	Data Extraction

	Reporting
	Answer to SMRQ1
	Answer to SMRQ2 and its Sub SMRQs
	SoS Risks Found in the Primary Studies Analyzed
	Approaches Identified in the Primary Studies to Support Risk Management

	Threats to Validity
	Final Considerations

	SoSSafe Meta-model
	Initial Considerations
	Base Package
	SoS Design Package
	HARA Package
	Dependability::Requirements Package
	FailureLogic Package
	FailureLogic Sub-packages
	Final Considerations

	SoSSafe: Compositional Systems-of-Systems Safety Analysis
	Initial Considerations
	SoSSafe Input
	Phase 1 – SoS Scenarios Definition
	Phase 2 – Hazard Analysis and Risk Assessment
	Situation Analysis
	Hazard Identification
	Hazardous Events Classification
	SIL and Safety Goals Definition
	Local Failure Data Definition

	Phase 3 – Synthesis and Analysis
	Final Considerations

	SoSSafe Illustrative Case
	Initial Considerations
	Traffic Light Assistant Illustrative Study Description
	Traffic Light Assistant Functional Application Design
	TLA Architecture and Data Flow

	Phase 1 – Scenarios Definition
	Phase 2 – SoS HARA
	Situation Analysis
	Hazard Identification
	Hazardous Events Classification
	SIL and Safety Goals Definition
	Local Failure Data Definition

	Phase 3 – Synthesis and Analysis
	Final Considerations

	Conclusions and Future Work
	Initial Considerations
	Contributions
	Limitations
	Future Research

	Bibliography
	Traffic Light Assistant Local Failure Data

