• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2018.tde-20032018-141939
Documento
Autor
Nombre completo
Patrícia Rufino Oliveira
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1997
Director
Tribunal
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Meneguette Junior, Messias
Traina, Agma Juci Machado
Título en portugués
Redes Neurais Artificiais para Extração de Características
Palabras clave en portugués
Não disponível
Resumen en portugués
Métodos para extração de características têm como objetivo selecionar, a partir de um conjunto de dados, características que representem informações relevantes ou que sejam básicas para diferenciar uma classe de objetos de outras. Neste trabalho, são apresentadas duas metodologias que podem ser usadas para extração de características. A primeira utiliza métodos estatísticos clássicos como Análise de Componentes Principais (PCA), Análise Discriminante Linear (LDA) e Análise de Cluster. A segunda consiste na utilização de arquiteturas de Redes Neurais Artificiais (RNA) que implementam os mesmos métodos estatísticos. O desempenho dos modelos de RNA apresentados são avaliados, considerando-se a utilização destes na extração de características de um pequeno conjunto de dados e, para investigar a aplicabilidade desses modelos na área de processamento de imagens, uma das redes que implementa PCA é utilizada na tarefa de compressão de algumas imagens médicas. Os resultados obtidos pela rede PCA são comparados com outros provenientes da aplicação da análise PCA clássica e do padrão JPEG (Joint Photographic Experts Group) para o mesmo conjunto de imagens.
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
Methods for feature extraction are used to select from an initial data set, some features that represent the most important information of this set or that are essential to differentiate one class of objects from other. In this work, two methodologies that can be used for feature extraction are presented. The first uses classical statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Cluster Analysis. The other approach is based on Artificial Neural Networks architectures that implement the same statistical methods. The performance of the presented neural network models is appraised considering the use of these in the feature extraction of a small data set. Also, to investigate the usability of these models in applications of image processing, one of the neural networks that implements PCA is used for compressing some medical images. The results obtained by the PCA network are compared with others obtained by applying classical PCA and JPEG compression standard to the same group of images.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-03-20
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.