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RESUMO

OLIVEIRA, J. J. M. Redução de Dimensionalidade Não-Supervisionada em Big Data utili-
zando Processamento Paralelo com MapReduce e Resilient Distributed Datasets. 2021. 81
p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2021.

O volume e a complexidade dos dados gerados em aplicações científicas e comerciais vêm cres-
cendo exponencialmente em diversas áreas. Hoje, é comum a necessidade de encontrar padrões
em Terabytes ou até mesmo em Petabytes de dados complexos, como em coleções de imagens,
medições climáticas, impressões digitais e grandes grafos extraídos da Web ou de Redes Sociais.
Por exemplo, como analisar Terabytes de dados oriundos de décadas de medições climáticas
frequentes, compostos por dezenas de atributos climáticos como temperaturas, precipitação de
chuva e umidade do ar, a fim de identificar padrões que antecedam eventos climáticos extremos
para uso em sistemas de alerta? Um fato bem conhecido em análise de dados complexos é
que a busca por padrões requer pré-processamento por redução de dimensionalidade, devido a
um problema conhecido como “maldição da alta dimensionalidade”. Hoje, poucos trabalhos
permitem reduzir, de forma eficaz, a dimensionalidade de tais dados em escala de Terabytes e
Petabytes – referenciados nesta monografia como Big Data – visto que é extremamente desejável
processamento paralelo em massa, escalabilidade linear em relação ao número de objetos, e capa-
cidade para detectar os mais diversos tipos de correlações entre os atributos do conjunto de dados.
Este trabalho de mestrado apresenta um estudo aprofundado, comparando duas abordagens
distintas para redução de dimensionalidade em Big Data: ( a ) uma abordagem padrão, baseada
na preservação da variância dos dados, e; ( b ) uma alternativa, baseada na Teoria de Fractais,
que é raramente explorada na literatura. Para esta última nós propomos um algoritmo rápido
e escalável baseado no modelo MapReduce e na estrutura de Resilient Distributed Datasets,
utilizando uma nova estratégia de particionamento no conjunto de atributos que nos habilita
a processar dados de alta dimensionalidade. Ambas as estratégias foram avaliadas a partir da
inserção de atributos redundantes formados por correlações de diversos tipos, tais como linear,
quadrática, logarítmica e exponencial, em 11 conjuntos de dados reais, e verificando a habilidade
dessas abordagens em detectar tais redundâncias. Os resultados indicam que, pelo menos para
grandes conjuntos de dados com dimensionalidade de até∼1.000 atributos, nossa técnica baseada
em fractais é a melhor opção, visto que ela removeu com alta precisão os atributos redundantes
em quase todos os casos, ao contrário das abordagens baseadas em variância, mesmo quando
utilizada a técnica KPCA que é feita para detectar correlações não lineares.

Palavras-chave: Redução de Dimensionalidade Não-Supervisionada, Mineração de Dados Des-
critiva, Big Data, Teoria de Fractais.





ABSTRACT

OLIVEIRA, J. J. M. Unsupervised Dimensionality Reduction in Big Data via Massive Pa-
rallel Processing with MapReduce and Resilient Distributed Datasets. 2021. 81 p. Disserta-
ção (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

The volume and complexity of data generated in scientific and commercial applications have
been growing exponentially in many areas. Nowadays, it is common the need for finding patterns
in Terabytes or even Petabytes of complex data, such as image collections, climate measurements,
fingerprints and large graphs extracted from the Web or from Social Networks. For example,
how to analyze Terabytes of data from decades of frequent climate measurements comprised of
dozens of climatic features, such as temperatures, rainfall and air humidity, so to identify patterns
that precede extreme weather events for use in alert systems? A well-known fact in complex
data analysis is that the search for patterns requires preprocessing by means of dimensionality
reduction, due to a problem known as the “curse of high-dimensionality”. Nowadays, few
techniques have been able to effectively reduce the dimensionality of such data in the scale of
Terabytes or even Petabytes, which are referred to in this monograph as Big Data. In this context,
massively parallel processing, linear scalability to the number of objects, and the ability to detect
the most diverse types of correlations among the attributes are exceptionally desirable. This
MSc work presents an in-depth study comparing two distinct approaches for dimensionality
reduction in Big Data: ( a ) a standard approach based on data variance preservation, and; ( b )
an alternative, Fractal-based solution that is rarely explored, for which we propose a fast and
scalable algorithm based on MapReduce and concepts from Resilient Distributed Datasets, using
a new attribute-set-partitioning strategy that enables us to process datasets of high dimensionality.
We evaluated both strategies by inserting into 11 real-world datasets, redundant attributes formed
by correlations of various types, such as linear, quadratic, logarithmic and exponential, and
verifying the ability of these approaches to detect such redundancies. The results indicate that,
at least for large datasets with up to ∼1,000 attributes, our fractal-based technique is the best
option. It removed redundant attributes in nearly all cases with high precision, as opposed to the
standard variance-preservation approaches that presented considerably worse results even when
applying the KPCA technique that is made to detect nonlinear correlations.

Keywords: Unsupervised Dimensionality Reduction, Descriptive Data Mining, Big Data, Fractal
Theory.
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CHAPTER

1
INTRODUCTION

The volume and the complexity of data generated in scientific and commercial applica-
tions have been increasing in multiple domains, such as Biology, Physics, Medicine, Astronomy,
among others. A study presented by Dobre and Xhafa (2014) reports that in 2014, the world
was producing around 2.5 quintillions of bytes growing data every day. Additionally, Gantz and
Reinsel (2012) states that by the year 2020, more than 40 Zettabytes of data will be generated and
collected. This panorama has motivated the development of techniques that can automatically
help users to analyze, understand and extract knowledge from large datasets, especially from
complex data, such as collections of images, audio, data streams, social network graphs, DNA
sequences and many others (CORDEIRO; FALOUTSOS; TRAINA JR, 2013).

1.1 Problem Definition, Hypothesis and Main Objectives

Although many real applications depend on the analysis of large datasets – for example, to
process billions of images from Flickr1 or Facebook2 aimed at the support of targeted marketing
– the best current algorithms tend to be inefficient or ineffective in data with many attributes (Sun;
Li, 2014). The main challenge in analyzing data with many attributes is a phenomenon known as
the “curse of high dimensionality”, which states that increasing the number of attributes in data
objects leads to fast degradation in the performance and accuracy of many analytical algorithms
(GOLAY; KANEVSKI, 2017; FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016). The
preprocessing by dimensionality reduction is the primary technique applied in these cases. It
aims to decrease the number of attributes, thus reducing the effects of the high dimensionality
and also the amount of data to be analyzed and stored, which is feasible because real-world data
usually present non-uniform distributions and attribute correlations (TUNG; XU; OOI, 2005;
FALOUTSOS; KAMEL, 1994). The existing methods are: supervised or unsupervised.

1 <https://www.flickr.com>
2 <https://www.facebook.com>

https://www.flickr.com
https://www.facebook.com
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Supervised dimensionality reduction uses external knowledge, e.g., label information,
and aims at getting a subset of non-redundant attributes that are relevant to a very specific
mining task, such as classification or regression (GOLAY; KANEVSKI, 2017). Unsupervised
methods, by contrast, do not make use of a priori knowledge about the output and aim at
removing all the redundant attributes. They can be used as preprocessing tools in a wide variety
of descriptive data mining and machine learning tasks, such as clustering and outlier detection
(GOLAY; KANEVSKI, 2017; CHENG; LI; LIU, 2017). The state-of-the-art methods often aim
at preserving most of the data variance, using well-known strategies such as Principal Component
Analysis (PCA), Kernel PCA (KPCA) and Singular Value Decomposition (SVD). Unfortunately,
these techniques present a central drawback: they are either unable to identify and eliminate
non-linear attribute correlations – PCA-based and SVD-based approaches – or they cannot
process data of high cardinality with a reasonable computational cost – KPCA-based ones. Since
correlations of these types are very likely to exist in real data – for example, in Biology, it is
known that the co-expression patterns of genes in a gene network can be non-linear; in Physics,
the pressure, volume and temperature of one ideal gas exhibit non-linear relationships (TUNG;
XU; OOI, 2005) – and the amount of data has been increasing, this drawback compromises the
usability of unsupervised dimensionality reduction as a whole. Thus, the central question to be
answered in this work is: how to effectively reduce the dimensionality of very large collections of

complex data – hereafter referred to as Big Data – using massively parallel processing on large

clusters of computers, by detecting both linear and non-linear correlations among the attributes?

It is noteworthy that, in a previous work guided by the same advisor of this work, concepts
from the Fractal Theory and massively parallel processing were applied in the development of a
novel dimensionality reduction algorithm. The algorithm was able to obtain superior accuracy
of results when compared to the other existing techniques studied until that moment. However,
that algorithm has limited performance concerning computational processing efficiency. We
identified that the main bottleneck of the algorithm is in disk writing and subsequent reading of
large temporary files, performing in the worst case scenario, several complete readings of the
analyzed dataset. Such a fact leads to the central hypothesis of this MSc work:

Hypothesis: the application of concepts from the Fractal Theory in dimensionality
reduction tasks, using massively parallel processing via Apache Spark, and maximizing
the use of main memory instead of secondary memory allows the development of
an effective and efficient technique that is capable of reducing the dimensionality of
Terabytes or even Petabytes of complex data.

To validate this hypothesis, we conducted an in-depth exploratory study comparing two
distinct unsupervised dimensionality reduction approaches: ( a ) a well-known approach in the
literature, based on data variance preservation, and; ( b ) an approach based on concepts from the
Fractal Theory that is rarely explored in the literature to dimensionality reduction tasks. We also
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developed a fast and scalable dimensionality reduction algorithm using Fractal Theory concepts
and massively parallel processing with Apache Spark to make it feasible the analysis of very
large datasets of high dimensionality.

1.2 Main Contributions
In summary, the main contributions of this MSc work are:

C1 – Extensive exploratory evaluation: we report the results of a detailed exploratory study,
using 11 large datasets from physics, finance, transportation, energy, electricity, image,
audio and climatic domains, systematically evaluating and validating the ability of the
variance preservation and the fractal-based approaches to remove many types of attribute
correlations. We show that, at least for large datasets of dimensionality with up to ∼1,000
attributes, our proposed fractal-based algorithm is the best option, being fast, scalable and
more accurate to eliminate linear and non-linear correlations. To the best of our knowl-
edge, this is the first work to present a comparative study between variance-preservation
techniques and those that are based on the Fractal Theory, by systematically exploring
their limitations to remove different correlation types under a variety of circumstances;

C2 – Novel algorithm: we propose the new algorithm FReE, a parallel and distributed dimen-
sionality reduction algorithm that uses concepts from the Fractal Theory and Apache Spark
to deal with data of high cardinality. FReE implements a novel feature-partitioning strategy
that we carefully developed to make it suited for high-dimensionality data processing.
To the best of our knowledge, this is the first fractal-based algorithm that is capable of
processing billion-scale-elements datasets with hundreds or even thousands of attributes.

1.3 Final Considerations
This chapter presented an overview of our work with a brief description on the facts that

motivated it, the problem definition, and our main objectives and contributions. The remaining
chapters are organized as follows. Chapter 2 describes the concepts and techniques that are
fundamental to our targeted problem. Chapter 3 exposes the main works related to this MSc
project. Chapter 4 presents our proposed method FReE, while the methodology used to evaluate
the compared dimensionality reduction approaches is given in Chapter 5. Chapter 6 reports the
experimental results. Finally, the conclusions and ideas for future works are given in Chapter 7.
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CHAPTER

2
BACKGROUND CONCEPTS

This chapter presents fundamental concepts and techniques related to this MSc work. It
begins by describing the process of Knowledge Discovery in Databases (KDD) and the relevance
of the preprocessing step in that context. Section 2.2 introduces the dimensionality reduction
task with a review of the traditional approaches explored in literature, followed by its use on the
context of Big Data. Section 2.3 discusses the distributed processing and some currently related
technologies, such as the MapReduce programming model and the Resilient Distributed
Datasets (RDD) data structure. The last section presents the final considerations of the chapter.

2.1 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) aims to obtain highly semantic information
from raw data (CORDEIRO; FALOUTSOS; TRAINA JR, 2013). Thus, KDD can be defined
as “the process of identifying valid, novel and potentially useful patterns embedded in the

data”(FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996). In this process, three significant
steps are identified: preprocessing, data mining, and the evaluation and interpretation of results.
The preprocessing step can be subdivided into three sub-tasks, as it is illustrated in Figure 1: data
selection, cleansing and transformation. During the data selection phase, specific and attractive
items from a database are separated for further processing. The cleansing step, also known in
some studies simply as preprocessing (ROCHA et al., 2018), aims to correct some inconsistencies
found, providing guarantees of reliability in the data that is going to be used for knowledge
discovery. After the selection and cleansing steps, the data goes through a transformation step, a
process in which the data is usually formatted, reduced or summarized. The data mining stage is
responsible for extracting useful and valid patterns, enabling the generation of the knowledge
itself. Finally, the last step of the KDD cycle aims to evaluate and perform the interpretation
of the patterns obtained through the previous steps, and, if the patterns found have satisfactory
results, the knowledge is consolidated. Otherwise, the process returns to previous steps aiming at



30 Chapter 2. Background Concepts

Figure 1 – Process of Knowledge Discovery in Databases.
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Source: Adapted from Fayyad, Piatetsky-Shapiro and Smyth (1996).

improving the results (CORDEIRO; FALOUTSOS; TRAINA JR, 2013).

Among the different steps of the KDD process, we highlight the data mining step, which
is commonly considered as the core activity of the knowledge discovery process. It involves
the application of algorithms that analyze data for the extraction of useful and valid patterns, as
mentioned before, following the characteristics of the task to be performed. Those algorithms
are classified as: (a) predictive tasks, which aim to find, through the generalization of known
examples, a model capable of predicting the value of an attribute, based on the values of other
attributes, or; (b) descriptive tasks, which seek patterns that describe intrinsic behaviors of the
data (CLARK; PROVOST, 2019; LESKOVEC; RAJARAMAN; ULLMAN, 2014).

Classification is one of the primary predictive tasks. It considers the existence of a
training dataset with objects that were previously classified according to the value of an attribute
(target attribute) and a testing dataset to be classified, where the class of each object is still
unknown (CLARK; PROVOST, 2019; CORDEIRO; FALOUTSOS; TRAINA JR, 2013). On
those data, algorithms based on decision trees, neural networks, bayesian networks, genetic
algorithms, among others, are commonly applied to define rules that represent the relationships
between the class attribute and the others. The primary purpose of this task is to predict the target
values (the class) of the objects to be classified (ZAKI; MEIRA; MEIRA, 2014).

Clustering is one of the primary descriptive tasks. It can be defined as “the process

of splitting objects into clusters so that objects in the same cluster show high similarity to

each other, and as little as possible similarity to each object in other clusters” (HAN; PEI;
KAMBER, 2011a, p. 443). There is no training dataset; the objects are usually represented
in a multidimensional space and a distance function measures the similarity between pairs of
objects. Common examples of clustering algorithms are: (a) hierarchical algorithms, which
define a hierarchy structure for the data, and it can be started by a single recursive partitioning
clustering (top-down), or initially considering that each data object belongs to a distinct cluster,
joining each one later (bottom-up), and; (b) partitioning algorithms, which divide n objects into
k groups (k ≤ n), such that each object belongs to a single cluster, and each cluster has at least
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one object (LESKOVEC; RAJARAMAN; ULLMAN, 2014; CORDEIRO et al., 2013; HAN;
PEI; KAMBER, 2011a; BRYANT; CIOS, 2018).

The KKD process has two significant characteristics: interactiveness and iterativeness. It
is interactive because it usually needs user intervention during the sequence of steps to assess
the quality and the impact of the patterns encountered in the data mining step, and it is iterative
because it is formed by a finite sequence of operations in which each state is dependent on
the previous ones (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996). In this setting, the
preprocessing step has become essential to the KDD process as a whole. At this stage, data is
reduced and prepared by cleanse, integration, selection and transformation, directly impacting the
quality and performance of later steps, which aim to find patterns. The main problem addressed is
the so-called “curse of high dimensionality”, which refers to the fact that increasing the number
of data attributes leads to significant performance and accuracy degradation of the existing
techniques for manipulation, storage and process of complex data in general, including those
that are used in data mining (CHENG; LI; LIU, 2017; GOLAY; KANEVSKI, 2017; ZHANG et

al., 2016; FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016).

The most successful technique used to minimize the aforementioned problem is dimen-
sionality reduction. It aims to obtain a new set of attributes to represent the data, which should
be free of irrelevant, correlated or redundant attributes.

2.2 Dimensionality Reduction in Very Large Datasets

During the preprocessing phase, data is prepared for the pattern extraction step. One of
the main problems addressed is the “curse of high dimensionality”, where the number of attributes
degrades the performance of algorithms both in runtime and in the quality of results. In data
mining and machine learning areas, high dimensionality is a problem faced by both predictive
and descriptive tasks (CHENG; LI; LIU, 2017; GOLAY; KANEVSKI, 2017; ZHANG et al.,
2016; FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016). For example, in predictive tasks,
the large amount of attributes increases the search space for the definition of classification models,
reducing the accuracy of the discrimination of objects into distinct classes. For descriptive tasks,
objects in a high dimensionality space tend to be more sparse, and the distances between any
pair of objects tend to be very close, so the objects in the dataset all seem very similar to each
other, which makes the aggregation step inefficient and ineffective (CORDEIRO et al., 2013).

The primary technique used to address this problem is dimensionality reduction, which
aims to remove redundant information by mapping the original data space into other space of
lower dimensionality (GOLAY; KANEVSKI, 2017). In general, the use of a dimensionality
reduction method is feasible, because real-world datasets are usually characterized by non-
uniform distributions and there exist correlations between the attributes that form the dataset
(FALOUTSOS; KAMEL, 1994). In this context, it is essential to note that if two or more
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attributes are correlated, there is a mapping capable of determining the value of one of the
attributes based on the others, or there is a small number of values that it can assume (SOUSA;
AL., 2007). Dimensionality reduction techniques are subdivided into two categories: feature
selection and feature extraction. While the former selects the most relevant attributes among the
original ones, thus preserving the semantics of the data, the latter creates a reduced set of new
attributes to better represent the data by a combination of the original ones, however, losing the
original meaning of the attributes (FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016).

Figure 2 – Points over a line with their embedded and intrinsic dimensionalities.

(a) E = 2 and D = 1. (b) E = 3 and D = 1.

Source: Elaborated by the author.

Here, two concepts are fundamentals (TRAINA JR et al., 2010; FRAIDEINBERZE;
RODRIGUES; CORDEIRO, 2016): the Embedded Dimensionality E, which is the total number
of attributes, and; the Intrinsic Dimensionality D, which is the minimum number of attributes
required to lossless represent a dataset, regardless of the space in which it is embedded. For
example, Figure 2 shows that points over a line have an intrinsic dimensionality D = 1, regardless
of their embedded dimensionality E. Note that the new attribute Z in Figure 2b does not alter the
intrinsic dimensionality, as it does not add extra information by being correlated with X and Y .

Although there exist many works in the literature covering dimensionality reduction, there
are still a few algorithms that enable large-scale data analysis in an effective way (FRAIDEIN-
BERZE; RODRIGUES; CORDEIRO, 2016). Due to the exponential growth in the amount of data
generated in the era of Big Data, the scalability of most algorithms is inadequate (LI et al., 2017).
In many scientific and commercial applications, the amount of data is measured in the scale
of Terabytes or even Petabytes. In this context, to enable Big Data analysis, massively parallel
processing has been used in recent dimensionality reduction algorithms, such as (BALCAN et al.,
2016; FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016; ELGAMAL et al., 2015). Besides,
another fact that makes dimensionality reduction in Big Data attractive is that, in addition to
providing improvements in the effectiveness and efficiency of data mining activities, it reduces
the amount of data that needs to be manipulated (LI; LIU, 2017). The following subsections
present the main approaches to dimensionality reduction that are explored in the literature, and
also describe concepts of the Fractal Theory applied to that context.
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2.2.1 Dimensionality Reduction based on Data Variance

Variance is a measure that denotes the dispersion of one data distribution of interest.
Thus, a small variance indicates that the data tends to be very close to the mean, while a large
variance indicates that the data tends to be spread out over a wide range of values (HAN; PEI;
KAMBER, 2011b). Many dimensionality reduction techniques use this concept to quantify
the capability of attributes to represent information (HAUSER; EFTEKHARI; MATZINGER,
2018; BALCAN et al., 2016). PCA, SVD and KPCA are the most popular ones, being largely
used in image processing, data visualization, information retrieval and the like (ELGAMAL et

al., 2015; HAUSER; EFTEKHARI; MATZINGER, 2018; FRAIDEINBERZE; RODRIGUES;
CORDEIRO, 2016; BALCAN et al., 2016; DING et al., 2011). In general, these approaches
aim at projecting the data into one space of lower dimensionality by finding axes that maximize
the data variance. See Figure 3 for an example, where one new axis is initially defined so that
it has the most variance of the points, i.e., it is responsible for the maximum variability of the
data; then, other axes are adjusted with the restrictions of maximizing the remaining variance
and being orthogonal with those axes that were previously defined. Unfortunately, PCA and
SVD are limited to the extraction of information based only on linear projections of the original
space (ELGAMAL et al., 2015; HAUSER; EFTEKHARI; MATZINGER, 2018; DING et al.,
2011). Thus, other variance-preservation methods have been developed to remove non-linear
correlations (BALCAN et al., 2016).

Figure 3 – Example of variance-based feature extraction: 3-dimensional points are projected into a 2-
dimensional, newly transformed feature space that maximizes variance.

Source: Elaborated by the author.

The state-of-the-art one is KPCA (BALCAN et al., 2016). It aims at removing non-linear
correlations through a non-linear transformation of the original space with kernel methods,
by extracting the axes that maximize the data variance. It is unfortunate, however, that KPCA
requires prior information about the non-linear mapping of the data; it forces the user to choose
a kernel method that is appropriate to detect the existing correlations. Since there are several
options, e.g., polynomial kernels, Gaussian kernels and cosine kernels, the challenge is to find the
appropriate kernel for each dataset. For low dimensional problems, it might not be challenging,
but the task becomes harder as the dimensionality increases. This fact limits KPCA’s usability
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for many real-world applications.

In fact, some datasets require more than one kernel configuration, which can be either
with regard to the kernel type or even regarding variations of the kernel’s parameters; so, it is then
necessary to run KPCA many times with different kernel configurations to detect all correlations.
Equation 2.1 describes this process, where f ( ) is a dimensionality reduction function, kernels is
an array of kernel functions and κ is the number of kernels. Note that we consider variations
of the same kernel’s parameters as new functions; for example, for a polynomial kernel we can
have a new kernel with degree 2, another one with degree 3, and so on.

f (data,κ) =

 f (KPCA(data,kernels[κ]),κ−1) if κ > 1

KPCA(data,kernels[1]) if κ = 1
(2.1)

Although KPCA has distributed implementations (BALCAN et al., 2016), it still has a
high computational cost due to a quadratic space complexity and cubic time complexity regarding
the number of objects. When processing datasets of high cardinality, it is therefore common
to sample points rather than to build the kernel matrix from the whole dataset. Nevertheless,
statistical principles indicate that the sample size must grow together with the size of the full
dataset, so the use of KPCA in sets of millions or billions of objects tends to be impractical, even
when only one kernel configuration is enough to spot all correlations.

2.2.2 Fractal-based Dimensionality Reduction

A Fractal is an object that presents exact or statistically approximated similarity when
analyzed in different resolutions (SCHROEDER, 1991). Figure 4 shows well-known examples of
synthetic and real fractals with exact and statistical self-similarity, such as the Sierpinski triangle
and the Peano-Gosper curves. The Sierpinski triangle, for example, is constructed by employing
a recursive process that is theoretically infinite; its structure is repeated in different scales.

In the context of data management, Faloutsos and Kamel (FALOUTSOS; KAMEL, 1994)
and several subsequent studies (TRAINA JR et al., 2010; FRAIDEINBERZE; RODRIGUES;
CORDEIRO, 2016; ZHANG et al., 2016) show that real-world datasets commonly behave
like fractals, i.e., the spatial object formed by all data points exhibits exact or statistical self-
similarity. These works use the concept of Correlation Fractal Dimensionality D2 to estimate
the intrinsic dimensionality of the data, taking into account the effects of any polynomial or even
non-polynomial correlation that may exist among the attributes.

Observation 1. Fractals commonly have unusual and paradoxical properties, which determine
that they cannot be considered Euclidean objects with discrete dimensionality. Thus, it is feasible
to consider a fractional dimensionality (MANDELBROT; FREEMAN; COMPANY, 1983).

The Box-Counting approach allows computing D2 with linear complexity on the data
size (TRAINA JR et al., 2010; MANDELBROT; FREEMAN; COMPANY, 1983). Following
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Figure 4 – Synthetic and real-world fractals with exact or statistical self-similarity.

Source: Elaborated by the author.

Definition 1 and Figure 5, it lays hyper-grids with different side sizes over the dataset’s feature
space; then, it counts the number of points in each grid. In Equation 2.2, [r1,r2] is a range of
distances that is representative for the data, r is the side size of the cells in a hyper-grid and Cr,i

is the count of points in the ith cell of size r. The fractal dimensionality D2 is the derivative of
log(∑iC2

r,i) with respect to log(r). As we assume self-similar datasets, this derivative results in a
constant value. Thus, the dataset’s D2 is obtained by plotting the sum of squared occupancies in
log-log scales for distinct values of r, and capturing the slope of the resulting line.

Definition 1 (Correlation Fractal Dimensionality D2). Given a dataset that exhibits fractal
behaviour, i.e., presents self-similarity in the range of scales [r1,r2], its Correlation Fractal
Dimensionality D2 is defined as:

D2 ≡
∂ log(∑iC2

r,i)

∂ log(r)
r ∈ [r1,r2]. (2.2)

Figure 5 – Ten points in a two-dimensional dataset divided by hyper-grids, and the corresponding hyper-
quad-tree-like structure with two resolution levels.

Source: Adapted from Fraideinberze, Rodrigues and Cordeiro (2016).
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For example, let us consider a dataset with two uncorrelated features: F1 and F2. Its
fractal dimensionality is therefore D2 ' 2. If we insert one new feature F3 = F1 +F2, the value
of D2 will remain close to 2, since F3 is correlated with the other features.

Concepts from the Fractal Theory have been successfully applied to overcome many
problems in data analysis and knowledge discovery. For example, they have been used in
join selectivity estimation (FALOUTSOS et al., 2000; BöHM, 2000; BAIOCO; TRAINA;
TRAINA JR, 2007), clustering and classification (BARBARÁ; CHEN, 2000; CORDEIRO et al.,
2013), time series forecast (CHAKRABARTI; FALOUTSOS, 2002), data stream forecast and
analysis (NUNES et al., 2013; BONES; ROMANI; SOUSA, 2016), dimensionality reduction
(FRAIDEINBERZE; RODRIGUES; CORDEIRO, 2016; GOLAY; KANEVSKI, 2017; TRAINA
JR et al., 2010; ZHANG et al., 2016) and the like.

2.2.3 Other Dimensionality Reduction Approaches

Among the unsupervised dimensionality reduction approaches, there are also those ones
based on AutoEncoders. As it is depicted in Figure 6, an AutoEncoder is a trained neural network
that attempts to reconstruct the input data after undergoing a compression process. It is divided
into two steps: encoder and decoder. The encoder is responsible for compressing the input
information in a different latent space by using one specific activation function. The decoder, in
turn, does the reverse work and reconstructs the original information, by transforming the latent
space created by the encoder into the original information space (FOURNIER; ALOISE, 2019;
PETSCHARNIG; LUX; CHATZICHRISTOFIS, 2017).

Figure 6 – Traditional AutoEncoder representation.
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Source: Elaborated by the author.

For dimensionality reduction, AutoEncoders are trained with both the encoder and
decoder processes, but the output layer is discarded and the encoder output, represented by
the “bottleneck” in Figure 6, is treated as the data projection (FOURNIER; ALOISE, 2019;
PETSCHARNIG; LUX; CHATZICHRISTOFIS, 2017). For example, in Figure 6 the input layer
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receives features F1, F2, F3 and F4, and after the encoder process, two new features G1 and
G2 compose the newly transformed space. This approach, although being capable of detecting
non-linear correlations among the attributes, has some disadvantages: (a) it requires the user
to set a specific number of dimensions for the final output, which is unfeasible in most of the
real-world cases; (b) it is specialized only for the dataset that it was trained, i.e., for each dataset
it must go through the whole training process again (FOURNIER; ALOISE, 2019), and (c) it
is unable to process large datasets, since, to the best of our knowledge, it has no distributed
implementation.

In addition to the approaches detailed in the previous subsections, other dimensionality
reduction approaches can be found in the literature, such as those based on the Rough-Set
Theory, which generally deal with the manipulation of uncertain information and missing data
(CHEN et al., 2016). Also, some strategies rely entirely on machine learning algorithms, such
as genetic algorithms, random forests, decision trees and so on (SAYED et al., 2019; SAIDI;
NCIR; ESSOUSSI, 2018). However, despite the qualities of those strategies, they are based
on supervised learning and consequently require interaction with users, which makes their use
unfeasible in most real contexts. For this reason, we consider that these works are outside of the
scope of this MSc work, which focuses on unsupervised dimensionality reduction, and therefore,
their concepts are not deeply explored here.

2.3 Distributed Processing

The need to process large amounts of data, in the scale of Terabytes or even Petabytes,
has encouraged the use of parallel and distributed applications to maximize the efficiency and
competitiveness of solutions designed for data analysis (LI et al., 2017). In the dimensionality
reduction context, there is a need to develop efficient solutions that handle large amounts of data.
As a consequence, distributed processing has become a viable alternative to meet such needs.

The evolution of computer architecture has led to the development of machines capable
of processing data very quickly. However, such evolution has a physical limit on the increase
of resources that provide, for example, runtime processing. Moore’s Law affirms that there is
a limit to the development of computer processors (MOORE, 1998). Vertical scaling consists
of the improvement of individual machines, aiming at the optimization of resources such as
memory, processing power and storage (ERL; PUTTINI; MAHMOOD, 2013). This procedure,
as mentioned before, has physical limitations and is commonly expensive, resulting in the need
to build systems that work in a distributed manner, a.k.a., horizontal scaling, using the resources
of several cheaper and conventional machines (RAO et al., 2019; SINGH; REDDY, 2015).

Distributed computing benefits from the use of several independent devices, which are
interconnected through a computer network, allowing the share of resources to use them optimally
for the tasks to which they are associated. Therefore, for processing large volumes of data, as it
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Figure 7 – Serial Processing versus Distributed Processing.
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Source: Elaborated by the author.

is illustrated in Figure 7, distributed computing is more efficient, thus reducing/eliminating the
aforementioned limitations. Several tools use distributed and parallel processing for extensive
data analysis, such as Graphics Processing Unit (GPU) (GUILLÉN et al., 2014) and parallel
programming models, like Message Passing Interface (MPI) (ASFOOR et al., 2014). However,
most existing tools require the programmer to implement complex parallelism-related procedures.
In this setting, the MapReduce programming model has emerged to make the task easier.

2.3.1 MapReduce Programming Model

MapReduce is a parallel programming model that was initially adopted by Google1, being
introduced to the community in 2004 by researchers Jeffrey Dean and Sanjay Ghemawat (DEAN;
GHEMAWAT, 2008) for processing large amounts of data in an “uncomplicated way”. The model
provides solutions that hide from the programmer the complexity related to several aspects of
parallelism, such as data storage, distribution, replication, fault tolerance, load balancing, among
others. It consists of basically three processing stages: ( i ) Map stage, which is responsible
for transforming input data into {key, value} pairs; ( ii ) Shuffling stage, which is responsible
for transferring the output generated by the mappers to key-based reducers, and; ( iii ) Reduce
stage, which is responsible for receiving the pairs emitted by mappers, processing the data and
generating a final output.

Figure 8 illustrates a typical MapReduce job, where a dataset is stored in a distributed
file system, divided into parts, in such a way that there is no overlap of data. These parts are
commonly known as chunks of data. The Map function takes each chunk of data as input,
generates intermediate data with the format {key, value}, and stores it on the local machine. The
process code of the Map must be specified by the programmer, as well as how each data item

1 www.google.com
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Figure 8 – Couting words example in MapReduce model.
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Source: Elaborated by the author.

will be represented in the key and value model. Figure 8 demonstrates a classic text-processing
example of the model, in which the Map step is responsible for separating each word, producing
data where the key is the word and the integer 1 is the value. In the Reduce step, the programmer
is also responsible for the implementation code that processes the data. The input of this step is
the intermediate data sent in the previous step, and through the key, a grouping is performed,
transforming the received dataset into a smaller one, depending on the implementation made
by the programmer. Following the example illustrated in Figure 8, the key pairs and values
generated by the Map process are grouped by summing the values with corresponding keys,
which results in the count of the words present in the original dataset.

In 2003, Google presented the Google File System (GFS), a distributed and scalable
file system for large amounts of data that provides fault tolerance while running on low-cost
hardware. In the year 2006, the Apache community developed the framework Apache Hadoop2,
an open-source tool whose purpose is to facilitate distributed processing through the MapReduce
model (NANDIMATH et al., 2013; WHITE, 2012). Apache Hadoop provides the Hadoop
Distributed File System (HDFS) and HBase, which are tools for storage and manipulation of
semi-structured data, and PIG, a high-level language for data analysis.

Although it is a widely used tool in the literature with good results, as in (RADENSKI;
EHWERHEMUEPHA, 2014; CORDEIRO; FALOUTSOS; TRAINA JR, 2013), the Apache
Hadoop implementation of the MapReduce model has a main drawback: slow processing of
tasks that need to perform various Map and Reduce steps, due to disk manipulation for large
temporary files after each step performed, which is intrinsic to the tool. In this sense, the concept
of Resilient Distributed Datasets was introduced to reduce this limitation. It is described in the
next subsection.

2 <http://hadoop.apache.org>

http://hadoop.apache.org


40 Chapter 2. Background Concepts

2.3.2 Resilient Distributed Datasets

According to Zaharia et al. (2012), a Resilient Distributed Dataset (RDD) is a data
structure used in the Apache Spark3 framework, whose central focus is to give preference to
store data in RAM and to postpone the execution of operations, a.k.a., lazy evaluation, until the
data produced by them is needed. Intuitively, an RDD can be viewed as a database composed of
any data, i.e., structured, semi-structured or even fully unstructured data.

The concept of RDD emerged from the Apache Spark framework, which extends the
MapReduce programming model, popularized through Apache Hadoop. It minimizes some
limitations identified in Apache Hadoop, such as storing large temporary files on disk, thus
delivering better performance when compared through some analysis and processing tasks, as in
Gu and Li (2013), and more efficiently supporting other kinds of computation, including data
stream processing and iterative dataset queries (KARAU et al., 2015).

RDDs are immutable, and while it is supposedly possible to modify an RDD with
a transformation, the result of this transformation is a new RDD; the original one remains
unchanged. An RDD supports two types of operations:

• Transformation - It returns not a single value but a new RDD. Nothing is actually executed
when the transform function is called; it only indicates how to transform a received RDD
as input to generate a new output RDD. Examples of transform functions are map, filter,
flatMap, groupByKey, reduceByKey, aggregateByKey, pipe and coalesce;

• Action - An operation to perform immediately on an incoming RDD to get values. When
an action function is called on an RDD object, all the transformations required to generate
the RDD are effectively executed, and the value is returned. Some of the operations are:
reduce, collect, count, first, take, countByKey and foreach.

Apache Spark is resilient to failures due to its system called lineage graph, which is
exemplified in Figure 9. It stores the dependencies of each action and transformation to compute
a particular on-demand RDD and to retrieve lost data if any part of RDD is lost.

As noted earlier, transformations in Spark are lazy-evaluated and therefore are not
immediately executed until an action is requested. The framework uses such behavior to reduce
the amount of data sent by the grouping operations. Figure 9 illustrates how lazy-evaluation
works through an example for ERROR and WARN message filtering in a log dataset. Circles,
that represent transformations, take effect only after an action is performed, in this case, the
union of two RDDs. By definition, each transformation to an RDD will be performed whenever
an action operation is requested on the transformation, but there is a possibility of persisting
temporary data in both main memory and disk to speed up data access time if the same RDD
needs to be used several times.
3 <https://spark.apache.org>

https://spark.apache.org
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Figure 9 – Lineage graph example: Log files filtering.
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Source: Elaborated by the author.

Due to its simplicity, scalability and efficient operations, Apache Spark is an auspicious
tool for large-scale data analysis and processing (GU; LI, 2013; ZAHARIA et al., 2012). Also, it
has been used to good effect in a variety of applications (RATHORE; AHMAD; PAUL, 2016;
ALSHEIKH et al., 2016), many of them perform better, according to the tool’s official website
reaching workloads up to 100x faster when compared with similar tasks using Apache Hadoop.

2.4 Final Considerations
This chapter presented several fundamental concepts and techniques related to the

problem explored in the MSc work. The KDD process was described, focusing on the importance
of the preprocessing step for the results’ quality obtained in the process as a whole. A specific
problem that was explored in the preprocessing step is the “curse of high-dimensionality”,
which is usually minimized through dimensionality reduction techniques. Unfortunately, the
existing techniques are often ineffective as they fail to detect non-linear correlations or even
linear correlations in Big Data, mainly due to substantial scalability limitations. For this reason,
concepts of Fractal Theory applied to data analysis can reduce both problems presented. Besides,
it has been reported that due to the increasing amount of data generated, efficient-distributed-
processing demands arise for data analysis through massively parallel processing programming
models and resilient and distributed datasets (RDDs) through Apache Spark. In this way, it is
possible to give preference to the storage of data in main memory instead of the hard disk, besides
delaying the effective execution of operations, aiming at agility in processing and minimizing
the communication of data packets in the network.
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3
RELATED WORKS

In the previous chapter, we presented concepts that are essential for this work, such
as variance preservation approach to dimensionality reduction, concepts of the Fractal Theory,
the parallel programming model MapReduce and Resilient Distributed Datasets from Apache
Spark that support the development and deployment of complex algorithms for large clusters
of computers. This chapter presents relevant works found in the literature for dimensionality
reduction tasks; it is subdivided into two main sections, the first one describes techniques to
dimensionality reduction that use the approaches explored in this work and the last one describes
works focused in comparative exploration on different approaches.

3.1 Unsupervised Dimensionality Reduction
In this section, recent works designed to analyze large volumes of data are described;

many of them are based on algorithms described in the classic approaches already described in
the background chapter, such as techniques based on PCA and SVD. Besides, as presented in
the background chapter, in the literature, there are other unsupervised dimensionality reduction
works, which are based on techniques such as genetic algorithms and neural networks. How-
ever, the scope of this MSc project is aimed at comparing techniques based on data variance
and techniques based on the Fractal Theory. Therefore, these other dimensionality reduction
approaches are not explored in-depth in this work. In this sense, this section is divided into two
parts, the first, subsection 3.1.1, describes related works based on data variance, and the second,
subsection 3.1.2, describes related works that are based on the Fractal Theory.

3.1.1 Approaches based on Data Variance

The PCA and SVD techniques are prevalent in the literature for attribute extraction
based on data variance, and they are considered valuable tools in several areas, such as image
processing, data visualization, information retrieval and dimensionality reduction (ELGAMAL
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et al., 2015; HAUSER; EFTEKHARI; MATZINGER, 2018). They are statistical procedures
that aim to find a new coordinate system, based on the linear transformation of the original
coordinate system formed by the dataset to find orthogonal directions of maximum variance.
There is a vast amount of work that is based on these two techniques. For example, the SVD
technique is the basis for the work of Ding et al. (2011), which uses Message Passing Interface

and the ARPACK library; unfortunately, the technique has cubic complexity concerning the
required data dimensionality. For PCA, there is a Spark library MLlib1 which implements the
algorithm on the MapReduce model and takes advantages of RDDs concepts. However, the
methods only eliminate linear correlations between attributes, and therefore, they are ineffective
in reducing dimensionality in datasets characterized by many non-linear correlations. Also, as
they are feature extractors, the algorithms do not preserve the original meaning of the attributes.

Ordozgoiti, Canaval and Mozo (2015) proposed the Parallel Unsupervised Feature
Selection (PUFS) algorithm that is based on the Column Subset Selection Problem (CSSP),
which selects the attributes incrementally following their relevance by verifying the variance of
the data, using the SVD technique, when considered distinct subsets of attributes. Unfortunately,
the algorithm can only detect linear correlations between attributes and requires the user to
enter/guess the k amount of relevant attributes to keep, which may make the use of this technique
unfeasible as such information is generally unknown for most real datasets. Also, the algorithm
has cubic complexity concerning the k number of attributes and therefore tends to be unable to
process a dataset of high-dimensionality.

Mahout-PCA 2 is a technique based on a variant of SVD called Stochastic Singular Value
Decomposition (SSVD). Mahout-PCA uses a modular framework that finds an approximate
version of SVD in a distributed way to compute PCA (HALKO, 2012). The technique was
designed in Mahout, which is a collection of machine learning algorithms implemented on
top of Apache Hadoop. SSVD uses a random sampling approach to compute an approximated
factorization matrix, indicating that there may be variances in the result extracted by the PCA.
Also, because it is a technique for extracting attributes, the new extracted set does not retain the
original meaning of the attributes that are part of the input dataset.

Scalable Principal Component Analysis (sPCA) (ELGAMAL et al., 2015) is a technique
based on the Probabilistic Principal Component Analysis (PPCA) (TIPPING; BISHOP, 1999),
designed in the MapReduce model and implemented using the Apache Spark tool. sPCA imple-
ments optimizations to perform operations on large arrays efficiently, taking advantage of array
sparsity, and minimizing the volume of intermediate data created. Unfortunately, both sPCA and
PPCA are limited to detecting only linear correlations, apart from the fact that they are extracting
methods and eliminate the original meaning of the attributes.

There is also a variation of PCA, called Kernel Principal Component Analysis (KPCA)

1 <https://spark.apache.org/docs/2.3.1/ml-guide.html>
2 <http://mahout.apache.org>

https://spark.apache.org/docs/2.3.1/ml-guide.html
http://mahout.apache.org
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(SCHÖLKOPF; SMOLA; MÜLLER, 1998), which allows detecting nonlinear correlations
between attributes through kernel functions. Balcan et al. (2016) proposed a version of KPCA
capable of analyzing multidimensional data in a distributed model running on multiple machines
through sampling techniques. The method includes different heuristics that aim to reduce the cost
of communication between cluster machines, such as running PCA locally on each slave machine
before sending the results to the master machine. Fraideinberze, Rodrigues and Cordeiro (2016)
performed a series of experiments using the aforementioned distributed version of KPCA, which
was unable to analyze databases with millions of elements in a viable time, exceeding a threshold
of 3 days of analysis in a cluster composed of 20 nodes, each containing 8 cores, 14GB of RAM
and 600GB of the disk, without response. In this sense, the algorithm proved to be unfeasible to
process data with high cardinality, for example, billions of elements.

In spite of the many qualities present in the aforementioned algorithms, most of them have
the following limitations: (i) they find only linear correlations between the attributes, or; (ii) they
have superlinear scalability regarding the data dimensionality or cardinality. Additionally, except
for PUFS, all the other algorithms are feature extraction methods; they create new attributes
based on the combination of the original attributes and thus return attributes that do not have the
original meaning of the analyzed dataset.

3.1.2 Approaches based on the Fractal Theory

In (TRAINA JR et al., 2000; TRAINA JR et al., 2010), the algorithm for feature selection
Fractal Dimensionality Reduction - FDR is proposed. Using a differentiated approach, it takes
advantage of concepts from the Fractal Theory. The technique uses the Fractal Dimensionality D2

to infer the intrinsic dimensionality of the dataset and remove the least relevant attributes, which,
when eliminated, cause less impact on the fractal dimensionality. Because it is based on the
Fractal Theory, FDR can detect and eliminate attributes with linear and non-linear correlations
in an unsupervised way, that is, in multidimensional datasets with or without class information.
To the best of our knowledge, FDR was the first feature selection algorithm based on fractals
presented in the literature; after its proposal, other variations of algorithms appeared, such
as (ZHANG et al., 2016; GOLAY; KANEVSKI, 2017). Although those techniques provide
excellent results, being able to detect linear and non-linear correlations with linear scalability
regarding the number of points in the dataset, they were designed to work on a single computer
core, and are therefore are unable to process large volumes of data.

Fraideinberze, Rodrigues and Cordeiro (2016) proposed the CurlRemover algorithm for
feature selection using concepts from the Fractal Theory. It works through a parallel approach
under the MapReduce programming model in Apache Hadoop. It is important to emphasize that,
as it happens with the FDR algorithm, CurlRemover is also seen as a relevant precursor to the
present MSc work, since it uses several techniques that were explored and improved in this new
proposal. Therefore, it is described with greater emphasis in the following.
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Figure 10 – General pipeline of CurlRemover.

Source: Fraideinberze, Rodrigues and Cordeiro (2016).

As it is illustrated in Figure 10, the algorithm has two main steps: Sample and Shrink.
The first step, Sample, is responsible for analyzing a small data sample extracted from the
input dataset aimed at obtaining a rough estimate of the relevance of its attributes. The second
step, Shrink, computes the final set of relevant attributes from the complete analysis of the input
dataset, using the attributes obtained in the first step to minimize the computation, disk access and
data traffic on the network between cluster machines, in addition to providing better workload
balancing between these machines.

The second step of the algorithm is supported by concepts from the Fractal Theory to
search for one irrelevant attribute at a time, in ascending order of relevance, until the E−dD2e
least relevant attributes are identified. As it is described in section 2.2, E represents the embedded
dimensionality of the dataset while D2 is the corresponding Correlation Fractal Dimensionality.
As it happens in algorithm FDR, a multidimensional quad-tree data structure – see illustration
in Figure 5 – is used to implement the BoxCounting approach, enabling the computation of D2

with linear scalability regarding the cardinality of the dataset. Specifically, the feature space is
recursively divided into cells of different side sizes, each storing one ID, the count of points
that are in the space of that cell, and a pointer to the next level of the tree (FRAIDEINBERZE;
RODRIGUES; CORDEIRO, 2016).

The tree-based data structure is built in the main memory. Each node is implemented
through a linked-list or a structure of type {key-value}, like a red-black tree, using the ID as the
key and counts of points as the values. Each level of the tree has at least one point per cell and
represents the value of r, which is the size of the box defined in Equation 2.2 of subsection 2.2.2.
It is worth noting that, although the memory usage is linear on the data cardinality, the amount
of memory available for each mapper is usually very limited, and generally, it is not enough to
build the entire tree. Therefore, the authors address this problem by creating partial trees in the
map step and finish building the tree in the reduce step.

Algorithm CurlRemover achieved excellent results in terms of accuracy in the experi-
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ments reported in its original publication, being superior to state-of-the-art techniques, such as
sPCA and the distributed version of KPCA, described in subsection 3.1.1. In spite of this fact,
unfortunately, the technique is not capable of working with large volumes of data, for example,
data on the scale of Terabytes. As is was described previously, CurlRemover eliminates one
irrelevant dimension at a time, writing and retrieving large temporary files to/from the hard
drives. Despite having an internal heuristic that speeds up the process of removing each irrelevant
attribute, in the worst case scenario, the dataset is read numerous times during the process,
once for each attribute removed. Additionally, CurlRemover was designed to process datasets
of medium dimensionality, being unable to process datasets of high dimensionality in a viable
runtime and with accurate results.

After systematically reviewing the literature, we conclude that it is possible to find several
studies for unsupervised dimensionality reduction based on data variance or on concepts of the
Fractal Theory. However, the existing approaches have relevant limitations, whether regarding
the inability to analyze large volumes of data, i.e., Terabytes or Petabytes, or with regard to the
inability to detect non-linear attribute correlations, among other minor limitations. Figure 11
summarizes the main characteristics of the algorithms described in this chapter, where the red
color symbolizes non-satisfiability of the given algorithm concerning the condition imposed
in the column and the green color symbolizes the opposite of the red color, that is, the proper
functioning of the algorithm under the imposed condition.

Figure 11 – Summary of algorithms.

Technique Process 
Terabytes of data

Detect linear and 
non-linear 

correlations

Process high 
dimensionality

Maintains the 
original meaning 

of the features

PCA-MLlib
SVD-MPI
PCA-Mahout
sPCA
PUFS
KPCA

FDR
CurlRemover

Source: Elaborated by the author.

The characteristics of each technique are summarized in the form of answers to four
questions that are essential to data analysis in the context of Big Data. As it can be seen, despite
the various qualities present in the existing works, to the best of our knowledge, there is no
algorithm capable of analyzing Terabytes of high-dimensionality data in an efficient and effective
way, thus detecting and removing linear and non-linear correlations.
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3.2 Comparative Studies

Popular algorithms that attempt to maximize the data variance are the basis for most
state-of-the-art methods in unsupervised dimensionality reduction. On the other hand, there are
other promising but less explored techniques, like those based on fractals. From this perspective,
the need for comparative studies by evaluating their effectiveness and efficiency arises.

In the current literature, there exist such kind of work. Examples are: (GISBRECHT;
HAMMER, 2015; YEH et al., 2005; MEIER; KRAMER, 2017; DU, 2018; GOLAY; KANEVSKI,
2017). Despite their many qualities, to the best of our knowledge, no one presents a comparative
study between variance-preservation techniques and those that are based on the Fractal Theory,
by analyzing their abilities to detect several types of correlations from large amounts of data.
For example, Du (2018) presents a comparative study of dimensionality reduction techniques
over morphometric data by comparing PCA with four other non-linear approaches. The results
show that the non-linear approaches are superior to PCA regarding the preservation of essential
information of the dataset analyzed. However, this work does not evaluate any approach based
on the Fractal Theory. Also, it only considers a very particular domain and does not test methods
well-suited to process very large datasets.

In Golay and Kanevski (2017), a new unsupervised feature selection technique is pro-
posed, and it is compared with state-of-the-art feature selection techniques, including FDR.
The algorithms were evaluated with real and simulated datasets, considering their abilities to
detect non-linear correlations and the quality of the selected features using the Random Forests
classification algorithm (BREIMAN, 2001). Unfortunately, the aforementioned work made a
comparison on feature selection techniques according to the results obtained with a machine
learning algorithm, which can add bias to the process. Besides, the authors used only small
datasets and did not test any feature extraction algorithm.

In this MSc work, we contribute to the state-of-the-art by comparing the variance-
preservation approach for unsupervised dimensionality reduction with the fractal-based one,
mainly focused on large datasets of high-dimensionality, i.e., data with millions of objects and
up to ∼1000 axes. We systematically explore their limitations to remove different types of
correlations, under a variety of circumstances.

3.3 Final Considerations

This chapter described state-of-the-art techniques used for the task of dimensionality
reduction in an unsupervised way, divided into two categories: (i) based on data variance, and;
(ii) based on the Fractal Theory. Additionally, some works that compare dimensionality reduction
techniques have been described, concluding that, to the best of our knowledge, this MSc work is
the first one that performs an in-depth comparison between the two aforementioned approaches.
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The next chapter describes the method that we propose, based on Fractal Theory concepts, which
meets all the conditions listed in Figure 11.
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CHAPTER

4
PROPOSED METHOD

4.1 Proposed Method
Fractal-based techniques assume that the intrinsic dimensionality of the object described

by the dataset is smaller, generally much smaller than that of the space where the object is
represented, i.e., the embedded dimensionality. Since this assumption has been valid in the vast
majority of real situations, these techniques are useful to indicate a target dimensionality to
which the dataset can be reduced, using Fractal Theory techniques or not, thereby diminishing
the dimensionality curse. However, as it was described in the previous chapters, the existing
approaches for dimensionality reduction have two main limitations:

• Dimensionality limitation: they can only process data of medium dimensionality with at
most a few tens of attributes;

• Cardinality limitation: they are unable to process very large datasets with millions or
even billions of objects.

This chapter presents the new algorithm Fractal Redundancy Elimination (FReE). It
tackles the dimensionality limitation with a novel feature set partitioning approach that iteratively
eliminates redundant features by processing them in separate, small blocks of features, thus
making it feasible to work with hundreds or even thousands of them. FReE also takes advantage
of the MapReduce model through Apache Spark1 to efficiently process hundreds of millions or
even billions of objects in a resilient and distributed way, so tackling the cardinality limitation.

4.1.1 Dimensionality Limitation

Let us first focus on how to shrink the dimensionality limitation. It happens because the
estimation of intrinsic dimensionality is based on numerical processes that measure the slope of
1 <spark.apache.org>

spark.apache.org
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the cumulative distribution curve of the number of object pairs that are at progressively longer
distances from each other, as it was described in Section 2.2.2 from Chapter 2. For real datasets,
this curve may be suitably approximated by a line, and its slope is assumed to be the intrinsic
dimensionality of the data. When the value of this measurement is small, say less than 6, the
error introduced by the numerical slope measurement process is usually negligible. Note that a
slope equal to 6 corresponds to more than 80 degrees. However, as the intrinsic dimensionality
increases, thus bringing the inclination angle to near 90 degrees, small errors in fitting the line to
the distance distribution curve lead to significant errors in the measured value. This characteristic
makes the process unstable and reduces the reliability of the result.

The existing techniques significantly reduce the original data dimensionality. However,
they are still limited to the fact that each new attribute added, even if it is highly correlated
to the others, causes a small increase in the intrinsic dimensionality. When the embedded
dimensionality of a dataset is on the order of dozens of attributes, these techniques allow
reducing the dimensionality to values typically smaller than 10. However, when the number of
attributes rises to the hundreds or thousands, the contributions of the attributes to the intrinsic
dimensionality, even if individually small, accumulate to raise it to the tens, thus causing the
aforementioned instability in the numerical slope measurement process. As a consequence,
techniques like FDR and its sequels are only suited to process data with intrinsic dimensionality
up to nearly 10 attributes, which usually corresponds to embedded dimensionalities on the order
of dozens of attributes.

With that in mind, we propose to shrink the dimensionality limitation by using a novel
feature set partitioning approach. It is a simple, yet powerful strategy that allows the analysis of
hundreds or even thousands of features by iteratively processing k-dimensional data projections,
where k represents the maximal embedded dimensionality that can be handled by the existing
techniques; so, k is on the order of dozens. Instead of processing all attributes together as the
previous works do, we only process at most k attributes at a time, thus iteratively removing
redundant attributes until obtaining a single set with less than k attributes to be processed together,
so the numerical slope measurement process is always stable and the reliability of the results
increases. The user must previously define this parameter k; we used k = 30 in all experiments
that we performed, obtaining very good results. Thus, we believe that tuning this parameter
according to the dataset is not a problem. In this way, we shrink the dimensionality limitation by
being suited to process data with intrinsic dimensionality up to nearly k attributes, i.e., dozens of
attributes, which usually corresponds to embedded dimensionalities on the order of hundreds
or thousands. Experimental results from 11 real-world datasets with up to ∼1,000 attributes
corroborate this fact; see Section 6.1 from the upcoming Chapter 6 for details.

Figure 12 illustrates our proposed feature set partitioning for one example 8-dimensional
dataset with intrinsic dimensionality D = 3 and cardinality n. Let us consider k = 4. Note that
we use very low dimensional data in this example to avoid cluttering the illustration; in practice,
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data of much larger dimensionality are processed with k on the order of dozens. At first, our
algorithm FReE processes in separate two 4-dimensional data projections. Let us name them
as block1 and block2. Each block contains k sequential features considering the same order of
storage observed in the original data file; for example, block1 is initially composed of features
F1 to F4 and block2 is composed of features F5 to F8. This process allows FReE to find out that
block1 contains one single relevant feature, F3. It means that F3 is correlated with features F1,
F2 and F4, so the latter ones are discarded. The same process is used to reveal that block2 has
three relevant features: F5, F6 and F8. Once the two blocks are processed, a new partitioning
round is performed on the remaining features following an iterative process that always analyzes
blocks with at most k sequential features each, until one single block remains. In our example,
the second partitioning round is the last one, since only four features are remaining from the
previous round, i.e., block1′ with features F3, F5, F6 and F8. Then, block1′ is processed to reveal
that feature F6 is correlated with F3, so it is discarded from the final result.

Figure 12 – Example feature set partitioning with embedded dimensionality E = 8, intrinsic dimensional-
ity D = 3, cardinality n and block size k = 4.
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4.1.2 Cardinality Limitation

Now, let us focus on how to shrink the cardinality limitation. It happens because the
existing fractal-based approaches for dimensionality reduction were either designed for single-
core processing or they perform too many disk accesses to process the data in parallel using
a cluster of computers. As a consequence, techniques like FDR and its sequels are unable to
process very large datasets with millions or even billions of objects in feasible runtime. With that
in mind, we propose to shrink the cardinality limitation by taking advantage of the MapReduce
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model through Apache Spark2, and carefully designing one solution that prioritizes the use of
the cluster’s main memory over the secondary memory. It allows our proposed algorithm FReE
to process Big Data in a resilient and distributed way efficiently.

Algorithm 1 – Fractal Redundancy Elimination (FReE)
Require: Dataset A, blockSize k, threshold t
Ensure: Dataset A without redundant attributes

1: Read dataset A from the distributed file system and normalize it;
2: existsRedundancy = True;
3: while existsRedundancy do
4: Split A into blocks of at most k sequential features each;
5: for each block blocki do
6: blocki = remove_redundancy(blocki, t); // from Algorithm 2
7: end for
8: A = all blocks merged;
9: if there was no change in A then

10: existsRedundancy = False;
11: end if
12: end while
13: return A;

Algorithm 2 – remove_redundancy( )
Require: Block block, threshold t
Ensure: Block block without redundant attributes

1: E = number of attributes in block;
2: D2 = fractal dimensionality of block;
3: currentD2 = D2;
4: existsRedundancy = True;
5: while existsRedundancy do
6: for every attribute Fi in block do
7: partialD2,{block−Fi} = fractal dimensionality of block without attribute Fi;
8: end for
9: Let Fa be the attribute that leads to the smallest difference |currentD2 −

partialD2,{block−Fa}|;

10: if partialD2,{block−Fa} ≤ E ∧ |D2 − partialD2,{block−Fa}| × 100
D2

< t then
11: Remove attribute Fa from block;
12: currentD2 = partialD2,{block−Fa};
13: else
14: existsRedundancy = False;
15: end if
16: end while
17: return block;

Algorithm 1 provides the pseudo-code of FReE. It receives as input one dataset A, the
block size k and one additional parameter t. Intuitively, t defines the maximum loss of information
2 <spark.apache.org>

spark.apache.org
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that is acceptable after reducing the dimensionality of dataset A. Note that we used fixed values
k = 30 and t = 0.5% in every single experiment reported in this monograph, so we believe that
tuning these parameters should not a problem for the user. At first, FReE splits the feature set
by assigning at most k sequential features to independent blocks; see Line 4. The blocks are
then processed separately in Lines 5 to 8 using the fractal dimensionality D2 as a tool to select
the relevant features within each block, and all relevant features are merged. The algorithm
is iterative; that is, it repeats the splitting and processing steps using as input the resulting set
of features from the previous iteration until there are no more features to be removed without
changing the fractal dimensionality more than threshold t.

Algorithm 2 details our proposed strategy to process each block. At first, FReE computes
the fractal dimensionality D2 of the block; see Line 2. Then, Lines 6 to 8 calculate partial fractal
dimensionalities partialD2,{block−Fi} by ignoring one attribute Fi at a time from the block. The
attribute Fa leading to the smallest difference between the block’s current fractal dimensionality
and partialD2,{block−Fa} is then removed in Line 11 because this attribute is the one that adds the
least amount of information to the data. This process is repeated until reaching the loss threshold
t, and then the set of relevant features is returned in Line 17.

FReE uses the BoxCounting strategy described in Section 2.2.2 from Chapter 2 to
compute the fractal dimensionality D2 and the partial fractal dimensionalities partialD2,{block−Fi}.
A hyper-quad-tree-like data structure is employed to speed up the process; see Figure 5. We
map the dataset points in a {key,value} format, where the key is the cell ID, and the value
is the number of points in that cell. In this step, for each worker of the cluster, the Map and
Reduce processes are performed together through an Apache Spark’s hashmap data structure,
thus ensuring that there is at most one {key,value} pair for each cell in the same worker. Also,
the data storage process prioritizes the use of the cluster’s main memory over the secondary
memory. Those mapped data then go through a global Reduce process, where summations are
performed to obtain a single pair for each tree level, with the logarithm of the side size of the
cells and the logarithm of the sum of the squared number of points in each cell corresponding to
the level.

4.1.3 Computational Complexity Analysis

As is was mentioned before, one of the most significant challenges in the era of Big
Data for dimensionality reduction algorithms is having the ability to handle large datasets with
appropriate scalability concerning their cardinality. Our algorithm has linear scalability on the
number of data objects, being able to process millions or even billions of objects effectively.
Here, we analyze the computational complexity of its most computationally intensive steps.

FReE uses the fractal dimensionality D2 as intrinsic dimensionality information to
support the feature selection step, eliminating those attributes that least impact the fractal
behavior of the analyzed dataset. This characteristic generates the need to perform the fractal
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dimensionality calculation several times for the analyzed dataset, making this a computationally
intensive step for the algorithm as a whole. FReE implements the Box-Counting approach to
support the fractal dimensionality calculation, which uses a hyper-quad-tree-based data structure
as represented in Figure 5 and Equation 2.2 from Chapter 2. In our work, the Box-Counting
method took advantage of a HashMap structure with lazy-evaluation operations, which is
provided natively by the Apache Spark framework. In its worst-case scenario, the computational
complexity is O(N), where N is the number of objects in the dataset. For memory utilization,
the maximum amount required to store this structure is reached when only one point occupies
each cell on each tree level; therefore, it is also linear to the number of objects on a dataset. For a
more detailed analysis, see the works of TRAINA JR et al. (2010), TRAINA JR et al. (2000),
and Fraideinberze, Rodrigues and Cordeiro (2016).

Algorithm FReE uses a backward elimination strategy to perform feature selection, as is
is explained in Algorithms 1 and 2. A partitioning methodology composes this method, which
splits the attribute space into blocks of maximum size k, where k is a predefined value and
represents the maximum embedded dimensionality that can be handled by the existing fractal-
based techniques; this value is on the order of the dozens. As it was explained in the previous
section, while redundancy exists in each block of size k, one irrelevant attribute is removed at
a time, which is the attribute that least interferes with the fractal dimensionality of the dataset.
After removing all redundancies from each block, the blocks are merged and then subdivided
into blocks with up to k features again, until there is no more redundancy in the entire dataset.

This strategy benefits not only the quality of the results obtained in high dimensional
datasets, since the numerical slope measurement process is always stable, but it also reduces
the computational complexity found in state-of-the-art algorithms that are based on the Fractal
Theory, such as TRAINA JR et al. (2010) and Fraideinberze, Rodrigues and Cordeiro (2016). For
example, considering the worst case scenario of the aforementioned state-of-the-art algorithms,
for a dataset with an intrinsic dimensionality equals to 1, the algorithms process it with runtime
O(N× (d×(d−1)

2 )), where N is the number of points in the set and d is the number of features.
This complexity is the result of the process in which, for each feature to be removed, the fractal
dimensionality of the entire set of features is calculated to delete the one that has the least impact
on the fractal dimensionality. To calculate the fractal dimensionality D2 we have a complexity of
O(N) and to test all the feature relevance we have the complexity O(d×(d−1)

2 ).

When using our proposed partitioning strategy, the set of features to be processed
is divided into smaller parts with up to k features each, which can be processed in parallel,
with l merging operations until there is no redundancy in the set, thus transforming the runtime
complexity into O(N×((l× k×(k−1)

2 ))). Here, l is at most the value of the intrinsic dimensionality
of the analyzed dataset and k can be adjusted to a value close to that number.

To summarize the time complexity analysis of algorithm FReE, it is linear on the number
of objects N and O((l× k×(k−1)

2 )) on the number of features, where k and l tends to be close to
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the intrinsic dimensionality.

4.1.4 Final Considerations

This chapter introduced Fractal Redundancy Elimination - FReE, a new algorithm for
selecting features in very large datasets in an unsupervised way. The main innovations in the
technique are the proposal of a new feature partitioning approach that is well-suited to deal with
high-dimensional data sets, and the use of RDD concepts to take advantage of the speed of data
processing in main memory. In the next chapters, we show through an evaluation methodology
and results of comparative experiments, that the proposed technique is suitable for many real
datasets, obtaining better results than state-of-the-art techniques.
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CHAPTER

5
PROPOSED EVALUATION

5.1 Proposed Evaluation

This chapter describes the methodology that we propose to evaluate dimensionality
reduction techniques. It includes the materials used and details about the systematic evaluation
performed to answer the following questions:

Q1 In practice, what types of attribute correlations is our fractal-based algorithm capable of
removing? What about PCA, SVD and KPCA?

Q2 What is the influence of increasing the number of redundant attributes regarding the
techniques studied?

Q3 Are the techniques capable of removing redundant attributes that are correlated with more
than one other attribute?

Q4 What is the effectiveness of the techniques when applied to data with different types of
correlations, altogether?

For an in-depth evaluation, we studied 11 real datasets from distinct domains. They are
summarized in Table 1, and detailed descriptions are found at their original sources; see footnotes
at the table. For reproducibility, all codes, detailed results and datasets used in this work are
freely available for download at: <http://bit.ly/2k5QiQH>.

5.1.1 Evaluation

To perform the evaluation, we initially determined a set of correlation types to be studied,
among them: linear, polynomial and non-polynomial correlations. Table 2 lists the correlations
used to generate new redundant attributes, including their corresponding equations, where Fβ

http://bit.ly/2k5QiQH
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Table 1 – Summary of datasets used to evaluate the techniques studied.

Dataset # Points # Attributes Domain

Airlinea 123.5M 21 Transportation
Forexb 60.6M 17 Finance
Higgsc 11.0M 28 Physics
Hepmassc 10.5M 28 Physics
WeatherBRb 9.4M 24 Climate
Susyc 5.0M 18 Physics
NaturalGasd 2.1M 4 Energy
Householdc 2.1M 13 Electricity
Fontsc 0.7M 409 Image
YearPredMSDc 0.5M 90 Audio
FMAc 0.1M 518 Audio

a <stat-computing.org/dataexpo/2009/the-data.html>
b <www.kaggle.com/datasets>
c <archive.ics.uci.edu>
d <dataverse.harvard.edu/dataverse/harvard>

is the new attribute to be generated, C1 and C2 are randomly predefined constants and Fα is an
existing attribute to be randomly chosen from the original dataset.

Table 2 – Equations used to generate redundant attributes.

Correlations Equations

Linear Fβ ≈ Fα ×C1 +C2

Logarithmic Fβ ≈ logFα ×C1

Quadratic Fβ ≈ F2
α ×C1 +C2

Cubic Fβ ≈ F3
α ×C1 +C2

Exponential Fβ ≈CFα

1

Tenth power Fβ ≈ F10
α ×C1 +C2

Hundredth power Fβ ≈ F100
α ×C1 +C2

Sinusoidal Fβ ≈ sinFα ×C1

Increasing the number of redundant attributes: We evaluated the techniques by
adding m new attributes in each dataset studied, where m ∈ {1,5,10,20,50,100,500}. Each new
attribute is correlated with a single original attribute employing a specific type of correlation,
among those in Table 2. Considering that a good technique should also be robust to the presence
of noise, since we assume that real-world datasets commonly have this characteristic – for
example, maximum and minimum weather temperatures in a period of time are nearly linearly

stat-computing.org/dataexpo/2009/the-data.html
www.kaggle.com/datasets
archive.ics.uci.edu
dataverse.harvard.edu/dataverse/harvard
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correlated, but not exactly correlated – we also evaluated the behavior of the techniques by adding
noise in the correlations, and by increasing the amount of noise present in the new redundant at-
tributes. In order to simulate non-exact correlations, each new redundant attribute was “corrupted”
with Gaussian noise, where the mean of the noise was fixed at 0, and the standard deviation was
progressively set to 0.2%, 1%, 2%, 5% and 10% of the standard deviation of the original feature.
For example, suppose we have a dataset with an attribute F1. One attribute F2 linearly correlated
with F1 would be formed from the following equation: F2 = (F1 +noise( ))×C1 +C2, where
noise( ) can be a negative or positive value within the established percentage of the standard
deviation of F1.

Increasing the number of attributes per correlation: We also evaluated the techniques
regarding the number of attributes used to generate each new redundant attribute. For example,
given a dataset with attributes F1 and F2, a new redundant attribute F3 could be formed from the
two original ones, e.g., F3 ≈ F2

1 +F2
2 . Here, we considered all types of correlations from Table 2,

and for each of them, 5 new redundant attributes were added to each dataset that we studied.
Each redundant attribute is correlated with n distinct original attributes, where n ranges from
2 up to the original embedded dimensionality E of the dataset, or up to 50 when E > 50. We
also included noise in the new redundant attributes, where the standard deviation of the noise
was progressively set to 1%, 2%, 5%, 7% and 10% of the standard deviation of each original
attribute used in each correlation.

Mixed correlations: So far, we focused on evaluating the techniques using a single type
of correlation at a time. Nevertheless, real data are likely to present several types of correlations,
all together. With that in mind, we repeated the procedures described in the last two paragraphs,
but in this time, randomizing the correlation used to generate each new attribute, still keeping
the variations in the amount of noise to simulate inexact correlations.

5.1.2 Algorithm settings

The variance-preservation techniques studied are PCA, SVD, PUFS and KPCA with a
polynomial kernel function of degree 2, which is one of the most used kernels. Note that PCA
and SVD work differently, but they return the same eigenvectors and eigenvalues. Therefore,
we refer to them as PCA/SVD in the quality results reported. For these techniques, we used
the MLlib implementation1. Due to the high computational cost of KPCA, we used a kernel
matrix approximation obtained from an adaptive sampling technique based on centroid points
extracted with the k-means clustering algorithm. The value of k was set to E× logE, where E is
the embedded dimensionality of the dataset; this value was defined according to a suggestion
from Balcan et al. (2016). As the algorithms are sensitive to data variance, it was also necessary
to normalize the datasets. On the other hand, the fractal-based approach used in the evaluation is
our algorithm FReE with fixed parameter values, k = 30 and t = 0.5%.

1 <https://spark.apache.org/docs/2.3.1/mllib-dimensionality-reduction.html>

https://spark.apache.org/docs/2.3.1/mllib-dimensionality-reduction.html
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5.1.3 Final Considerations

This chapter described our proposed evaluation for unsupervised dimensionality re-
duction algorithms. The proposal consists of the evaluation of such algorithms through the
insertion of redundant attributes in real-world datasets generated from linear, polynomial and
non-polynomial correlations. For this study, we used 11 real datasets from different domains. It
is noteworthy that the proposed methodology can be used to evaluate any other unsupervised
dimensionality reduction algorithm, without the risk of adding bias to the final result, unlike
other evaluation methodologies that use the results of machine learning algorithms to evaluate the
effectiveness of the dimensionality reduction task. The next chapter presents the results obtained
by the approaches studied when submitted to the methodology described in this chapter.
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CHAPTER

6
EXPERIMENTAL RESULTS

6.1 Experimental results

In this chapter, we discuss the experiments performed to answer the questions posed at
the beginning of Chapter 5. The experiments used a Microsoft Azure cluster with 8 machines:
two masters, each one with 4 cores, 14GB of RAM and 200GB of disk, and; 6 workers, each one
with 8 cores, 28GB of RAM and 600GB of disk. We configured the machines with GNU/Linux
Ubuntu 16.04 server x64. We also used 6 machines from Amazon Web Services (r5a.4xlarge),
each one with 16 cores, 128GB of RAM and 100GB of disk. We thank both Microsoft and
Amazon for providing us with free access to these resources.

It is important to note that we evaluated the techniques PCA, SVD, PUFS, KPCA and
FReE by performing all experiments described in Section 5.1 from Chapter 5 on every one
of the 11 real datasets listed in Table 1. Similar patterns were observed in the results obtained
from each dataset. Due to this fact, we report in the upcoming Sections 6.1.1 and 6.1.2 detailed
results obtained from one of the datasets, i.e., Susy, and summarize for brevity in the upcoming
Section 6.1.3 the results obtained from the other 10 datasets. Note, however, that the full results
obtained from all 11 datasets are freely available for download in the repository mentioned at the
beginning of Section 5.1 from Chapter 5.

6.1.1 Increasing the number of redundant attributes

At first, we evaluated the ability of the techniques to detect several types of correlations
with increasing numbers of redundant attributes, aimed at answering questions Q1, Q2 and Q4
from Section 5.1 of Chapter 5. To make it possible, let us explain how we quantified the accuracy
of the variance-preservation techniques using dataset Susy as an example. Figure 13a reports
the cumulative sum of the explained variance obtained after running PCA/SVD in the original
dataset. Note that, according to PCA/SVD, to obtain a total explained variance of 95%, one needs
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to use the first 11 principal components, i.e., attributes, thus discarding the other 7 components as
irrelevant ones. By contrast, under the same conditions, Figure 13c reports that KPCA suggested
to maintain its first 13 principal components and to discard the other 5 components. By adding
new redundant attributes in the dataset, we do not add extra information, and therefore the
explained variance for each principal component should not be abruptly changed. With that in
mind, when evaluating PCA, SVD and KPCA in any dataset with inserted redundant attributes,
we quantified the estimated error as the number of additional components needed to explain 95%
of the data variance, compared with the result obtained from the original dataset. In this sense, as
the PUFS technique is based on the extraction of singular values through the SVD algorithm, and
because it requires the user to inform the number of features that must be maintained, we also
used as a basis the number of features necessary to maintain 95% of variance in the analyzed set,
as well as PCA, SVD and KPCA. For example, Figure 13b reports that after inserting 500 new
attributes in Susy with mixed correlations, PCA/SVD required 23 more components to explain
95% of the data variance, i.e, Error = 23. Under the same conditions, KPCA’s error was 60; see
Figure 13d.

Figure 13 – The cumulative explained variance of PCA, SVD and KPCA techniques. (a) and (b) re-
spectively show the values obtained by PCA/SVD when applied on Susy original dataset,
and Susy dataset with 500 additional redundant attributes formed by mixed correlations; (c)
and (d) show the values obtained by KPCA under the same datasets. Note: similar results
were obtained from the other 10 real datasets studied; they are summarized in Figure 16 and
Figure 17 for brevity, but the full results are freely available in the repository mentioned at
the beginning of Section 5.1 from Chapter 5.

Cumulative explained variance
Number of essential attributes

Number of original attributes
~95% of explained variance

c d

13 13 73

60 more 
attributes!

Susy original dataset Susy | mixed +500 / 10%
Kernel PCA

PCA / SVD

a b

11 11 34

23 more 
attributes!

Susy original dataset Susy | mixed +500 / 10%

Source: Elaborated by the author.

As it is described in Section 5.1.1 from Chapter 5, we added several redundant attributes
to each of the 11 datasets studied, where each attribute is generated from one original attribute
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employing a specific type of correlation with noise. Similar results were obtained from all
datasets, so we detail in the following the results for one of them and summarize in the upcoming
Section 6.1.3 the remaining results. Note, however, that the full results for all 11 datasets are
freely available in the repository mentioned at the beginning of Section 5.1 from Chapter 5.

Figure 14 reports the results obtained by PCA, SVD and KPCA from dataset Susy. The
header +m / γ% represents the m redundant attributes added with γ percentage of noise used.
Dout means the number of attributes that the techniques suggest must be maintained to explain
at least 95% of the variance contained in the data, and Error means the absolute difference of
the required quantity of attributes when compared with the result obtained from the original
dataset. As it can be seen, for linear, logarithmic and sinusoidal correlations, PCA and SVD
obtained relevant results. In the logarithmic and sinusoidal curves generated from the dataset, the
techniques succeeded in obtaining an appropriate linear approximation, and consequently, they
were able to detect such correlations. On the other hand, PCA and SVD presented poor results
when applied to correlations of the types: quadratic, cubic, exponential, tenth power, hundredth
power and mixed. For instance, when 500 new redundant attributes of mixed correlations were
added with 5% of noise on the original data, to obtain a cumulative explained variance of 95%,
as illustrated in Figure 13b, it would be necessary to use the first 34 principal components, more
than 3 times what is required when compared with the result obtained from the original data.

In turn, KPCA obtained poor results for most cases; even for quadratic correlations,
considering that its kernel is polynomial with a degree 2, KPCA performed much worse than PCA
and SVD. For example, as it is illustrated in Figure 13d and Figure 14, using mixed correlations
KPCA required up to 73 principal components to explain 95% of the data variance, which is
more than 4 times the number of attributes contained in the original dataset.

Now, let us focus on the results of FReE and PUFS as they are feature selectors. To
calculate their error, we obtained the absolute difference of the number of attributes selected as
relevant from each one of the 11 datasets studied and its counterpart in a dataset with inserted
redundant attributes. Additionally, because they are feature selectors, we verified the correctness
of the attributes selected, i.e., those that differ from the originally selected attributes and do not
have any correlation with them are considered to be errors. The final Error of FReE and PUFS
is, therefore, the number of attributes incorrectly selected plus the aforementioned absolute
difference. Dout is the dimensionality of the final result.

For example, FReE automatically selected 7 relevant attributes from Susy while PUFS
selected 11. When adding redundant attributes in the original data, this output must have a
minimal change, since the new attributes do not add extra information. Figure 14 reports the
results obtained by FReE and PUFS. Note that PUFS had quality results similar to those of
PCA and SVD, while the output of our algorithm FReE had minimal variation, even after the
insertion of up to 500 redundant attributes with noise, regardless of the type of correlation used.
It demonstrates that our algorithm was able to correctly detect the existence of correlations. Let
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Figure 14 – Experimental results of PCA, SVD, PUFS, KPCA and FReE when increasing the number of
redundant attributes inserted in dataset Susy. Note: similar results were obtained from the
other 10 real datasets studied; they are summarized in Figure 16 and Figure 17 for brevity, but
the full results are freely available in the repository mentioned at the beginning of Section 5.1
from Chapter 5.

PCA and SVD results
Correlation +1 / 0.2% +5 / 1.0% +10 / 2.0% +20 / 5.0% +50 / 7.0% +100 / 10.0% +500 / 5.0%

Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 11 0,0% (0/1) 11 0,0% (0/5) 11 0,0% (0/10) 11 0,0% (0/20) 11 0,0% (0/50) 11 0,0% (0/100) 11 0,0% (0/100)
Logarithmic 11 0,0% (0/1) 11 0,0% (0/5) 11 0,0% (0/10) 11 0,0% (0/20) 11 0,0% (0/50) 11 0,0% (0/100) 11 0,0% (0/100)
Quadratic 11 0,0% (0/1) 13 40,0% (2/5) 16 50,0% (5/10) 17 30,0% (6/20) 17 12,0% (6/50) 17 6,0% (6/100) 17 1,2% (6/500)
Cubic 12 100,0% (1/1) 12 20,0% (1/5) 14 30,0% (3/10) 15 20,0% (4/20) 17 12,0% (6/50) 16 5,0% (5/100) 17 1,2% (6/500)
Exponential 12 100,0% (1/1) 14 60,0% (3/5) 17 60,0% (6/10) 18 35,0% (7/20) 19 16,0% (8/50) 17 6,0% (6/100) 18 1,4% (7/500)
Tenth 12 100,0% (1/1) 14 60,0% (3/5) 18 70,0% (7/10) 21 50,0% (10/20) 23 24,0% (12/50) 21 10,0% (10/100) 22 2,2% (11/500
Hundredth 12 100,0% (1/1) 15 80,0% (4/5) 15 40,0% (4/10) 18 35,0% (7/20) 29 36,0% (18/50) 41 30,0% (30/100) 50 7,8% (39/500)
Sinusoidal 11 0,0% (0/1) 11 0,0% (0/5) 11 0,0% (0/10) 11 0,0% (0/20) 11 0,0% (0/50) 11 0,0% (0/100) 11 0,0% (0/500)
Mixed 12 100,0% (1/1) 14 60,0% (3/5) 17 60,0% (6/10) 20 45,0% (9/20) 28 34,0% (17/50) 27 16,0% (16/100) 34 4,6% (23/500)

KPCA results
Correlation +1 / 0.2% +5 / 1.0% +10 / 2.0% +20 / 5.0% +50 / 7.0% +100 / 10.0% +500 / 5.0%

Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 14 100,0% (1/1) 15 40,0% (2/5) 16 30,0% (3/10) 17 20,0% (4/20) 19 12,0% (6/50) 29 16,0% (16/100) 37 4,8% (24/500)
Logarithmic 12 100,0% (1/1) 12 20,0% (1/5) 11 20,0% (2/10) 11 10,0% (2/50) 11 4,0% (2/50) 11 2,0% (2/100) 11 0,0% (0/500)
Quadratic 12 100,0% (1/1) 17 80,0% (4/5) 17 40,0% (4/10) 21 40,0% (8/20) 18 10,0% (5/50) 30 17,0% (17/100) 45 6,6% (33/500)
Cubic 13 0,0% (0/1) 13 0,0% (0/5) 16 30,0% (3/10) 28 75,0% (15/20) 38 50,0% (25/50) 73 60,0% (60/100) 87 14,8% (74/500)
Exponential 14 100,0% (1/1) 14 20,0% (1/5) 18 50,0% (5/10) 25 60,0% (12/20) 46 66,0% (33/50) 37 24,0% (24/100) 48 7,0% (35/500)
Tenth 12 100,0% (1/1) 18 100,0% (5/5) 12 10,0% (1/10) 23 50,0% (10/20) 38 50,0% (25/50) 11 2,0% (2/100) 43 6,0% (30/500)
Hundredth 14 100,0% (1/1) 16 60,0% (3/5) 18 50,0% (5/10) 18 25,0% (5/20) 28 30,0% (15/50) 39 26,0% (26/100) 52 7,8% (39/500)
Sinusoidal 12 100,0% (1/1) 14 20,0% (1/5) 15 20,0% (2/10) 11 10,0% (2/20) 11 4,0% (2/50) 24 11,0% (11/100) 31 3,6% (18/500)
Mixed 14 100,0% (1/1) 15 40,0% (2/5) 20 70,0% (7/10) 22 45,0% (9/20) 28 30,0% (15/50) 60 47,0% (47/100) 73 12,0% (60/500)

PUFS results
Correlation +1 / 0.2% +5 / 1.0% +10 / 2.0% +20 / 5.0% +50 / 7.0% +100 / 10.0% +500 / 5.0%

Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 11 0,0% (0/1) 12 20,0% (1/5) 12 10,0% (1/10) 11 0,0% (0/20) 11 0,0% (0/50) 12 0,0% (1/100) 11 0,0% (0/100)
Logarithmic 12 100,0% (1/1) 12 20,0% (1/5) 17 60,0% (6/10) 11 0,0% (0/20) 11 0,0% (0/50) 12 0,0% (1/100) 11 0,0% (0/100)
Quadratic 11 0,0% (0/1) 14 60,0% (3/5) 17 60,0% (6/10) 19 40,0% (8/20) 21 20,0% (10/50) 21 6,0% (10/100) 22 1,2% (11/500)
Cubic 13 200,0% (1/1) 13 40,0% (1/5) 15 40,0% (3/10) 16 25,0% (4/20) 18 14,0% (6/50) 18 5,0% (6/100) 21 1,2% (9/500)
Exponential 12 100,0% (0/1) 15 80,0% (3/5) 15 40,0% (3/10) 19 40,0% (7/20) 21 20,0% (11/50) 20 6,0% (10/100) 23 1,4% (13/500)
Tenth 13 200,0% (1/1) 15 80,0% (3/5) 18 70,0% (6/10) 22 55,0% (10/20) 25 28,0% (13/50) 30 10,0% (18/100) 35 2,2% (23/500
Hundredth 12 100,0% (1/1) 16 100,0% (5/5) 16 50,0% (5/10) 19 40,0% (8/20) 32 42,0% (31/50) 45 30,0% (44/100) 50 7,8% (49/500)
Sinusoidal 12 100,0% (0/1) 12 20,0% (0/5) 12 10,0% (0/10) 12 5,0% (0/20) 11 0,0% (1/50) 11 0,0% (1/100) 12 0,0% (0/500)
Mixed 12 100,0% (1/1) 14 60,0% (3/5) 19 80,0% (8/10) 22 55,0% (11/20) 30 38,0% (19/50) 28 16,0% (17/100) 36 4,6% (35/500)

FReE results
Correlation +1 / 0.2% +5 / 1.0% +10 / 2.0% +20 / 5.0% +50 / 7.0% +100 / 10.0% +500 / 5.0%

Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 7 0,0% (0/1) 7 0,0% (0/5) 7 10,0% (1/10) 7 5,0% (1/20) 7 4,0% (2/50) 8 3,0% (3/100) 8 0,6% (3/500)
Logarithmic 7 0,0% (0/1) 7 0,0% (0/5) 7 0,0% (0/10) 7 5,0% (1/20) 7 2,0% (1/50) 8 3,0% (3/100) 7 0,4% (2/500)
Quadratic 7 0,0% (0/1) 6 40,0% (2/5) 8 20,0% (2/10) 9 10,0% (2/20) 10 6,0% (3/50) 11 5,0% (5/100) 9 0,6% (3/500)
Cubic 7 0,0% (0/1) 7 60,0% (3/5) 8 30,0% (3/10) 8 15,0% (3/20) 8 6,0% (3/50) 9 3,0% (3/100) 6 0,6% (3/500)
Exponential 7 0,0% (0/1) 7 0,0% (0/5) 7 0,0% (0/10) 7 5,0% (1/20) 7 6,0% (3/50) 8 2,0% (2/100) 7 0,2% (1/500)
Tenth 7 0,0% (0/1) 7 0,0% (0/5) 7 10,0% (1/10) 7 0,0% (0/20) 8 6,0% (3/50) 8 4,0% (4/100) 8 0,8% (4/500)
Hundredth 7 0,0% (0/1) 7 0,0% (0/5) 7 0,0% (0/10) 7 0,0% (0/20) 7 0,0% (0/50) 7 0,0% (0/100) 8 0,4% (2/500)
Sinusoidal 7 0,0% (0/1) 7 0,0% (0/5) 7 0,0% (0/10) 7 5,0% (1/20) 8 4,0% (2/50) 8 3,0% (3/100) 6 0,4% (2/500)
Mixed 6 100,0% (1/1) 7 0,0% (0/5) 8 20,0% (2/10) 7 5,0% (1/20) 8 4,0% (2/50) 9 4,0% (4/100) 6 0,6% (3/500)

Error

Source: Elaborated by the author.

us emphasize, as an example, the case illustrated in Figure 13, where PCA and SVD needed
to use 23 more attributes, PUFS needed to use 35 more attributes and KPCA needed 60 more
attributes to maintain 95% of the explained variance, while FReE incorrectly selected only 3
attributes among the total 518 attributes of the whole dataset. Similar results were obtained from
the other 10 real datasets studied; see Figure 16 and Figure 17, and the repository mentioned at
the beginning of Section 5.1 from Chapter 5.

6.1.2 Increasing the number of attributes per correlation

The previous section evaluated the ability of the techniques to remove redundant attributes
formed by correlations that refer to only one original attribute each. Now, we focus on answering
questions Q3 and Q4 from Section 5.1 of Chapter 5, by testing the ability of each technique to
detect correlations referring to two or more original attributes.



6.1. Experimental results 67

Figure 15 – Experimental results of PCA, SVD, PUFS, KPCA and FReE when increasing the number of
attributes per correlation in dataset Susy. Note: similar results were obtained from the other
10 real datasets studied; they are summarized in Figure 16 and Figure 17 for brevity, but the
full results are freely available in the repository mentioned at the beginning of Section 5.1
from Chapter 5.

PCA and SVD results
Correlation +2 / 1.0% +6 / 2.0% +10 / 5.0% +14 / 7.0% +18 / 10.0%

Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5)
Logarithmic 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5)
Quadratic 13 40,0% (2/5) 13 40,0% (2/5) 12 20,0% (1/5) 12 20,0% (1/5) 12 20,0% (1/5)
Cubic 14 60,0% (3/5) 13 40,0% (2/5) 13 40,0% (2/5) 13 40,0% (2/5) 13 40,0% (2/5)
Exponential 14 60,0% (3/5) 12 20,0% (1/5) 13 40,0% (2/5) 13 40,0% (2/5) 12 20,0% (1/5)
Tenth 15 80,0% (4/5) 12 20,0% (1/5) 15 80,0% (4/5) 12 20,0% (1/5) 13 40,0% (2/5)
Hundredth 15 80,0% (4/5) 12 20,0% (1/5) 12 20,0% (1/5) 13 40,0% (2/5) 14 60,0% (3/5)
Sinusoidal 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5)
Mixed 14 60,0% (3/5) 15 80,0% (4/5) 13 40,0% (2/5) 14 60,0% (3/5) 14 60,0% (3/5)

KPCA results
Correlation +2 / 1.0% +6 / 2.0% +10 / 5.0% +14 / 7.0% +18 / 10.0%

Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 14 20,0% (1/5) 13 0,0% (0/5) 14 20,0% (1/5) 13 0,0% (0/5) 13 0,0% (0/5)
Logarithmic 11 40,0% (2/5) 11 40,0% (2/5) 11 40,0% (2/5) 11 40,0% (2/5) 11 40,0% (2/5)
Quadratic 14 20,0% (1/5) 15 40,0% (2/5) 15 40,0% (2/5) 13 0,0% (0/5) 14 20,0% (1/5)
Cubic 12 20,0% (1/5) 16 60,0% (3/5) 12 20,0% (1/5) 13 0,0% (0/5) 13 0,0% (0/5)
Exponential 14 20,0% (1/5) 14 20,0% (1/5) 14 20,0% (1/5) 14 20,0% (1/5) 14 20,0% (1/5)
Tenth 19 120,0% (6/5) 18 100,0% (5/5) 13 0,0% (0/5) 18 100,0% (5/5) 17 80,0% (4/5)
Hundredth 17 80,0% (4/5) 15 40,0% (2/5) 14 20,0% (1/5) 14 20,0% (1/5) 14 20,0% (1/5)
Sinusoidal 14 20,0% (1/5) 14 20,0% (1/5) 13 0,0% (0/5) 13 0,0% (0/5) 13 0,0% (0/5)
Mixed 16 60,0% (3/5) 18 100,0% (5/5) 16 60,0% (3/5) 14 20,0% (1/5) 16 60,0% (3/5)

PUFS results

Correlation +2 / 1.0% +6 / 2.0% +10 / 5.0% +14 / 7.0% +18 / 10.0%
Dout Error Dout Error Dout Error Dout Error Dout Error

Linear 12 20,0% (1/5) 11 0,0% (0/5) 12 20,0% (1/5) 12 20,0% (1/5) 12 20,0% (1/5)
Logarithmic 12 20,0% (1/5) 11 0,0% (0/5) 12 20,0% (1/5) 12 20,0% (1/5) 11 0,0% (0/5)
Quadratic 13 40,0% (2/5) 14 60,0% (3/5) 13 40,0% (2/5) 12 20,0% (1/5) 13 40,0% (2/5)
Cubic 14 60,0% (3/5) 14 60,0% (3/5) 14 60,0% (3/5) 14 60,0% (3/5) 13 40,0% (2/5)
Exponential 15 80,0% (4/5) 13 40,0% (2/5) 14 60,0% (3/5) 14 60,0% (3/5) 13 40,0% (2/5)
Tenth 15 80,0% (4/5) 12 20,0% (1/5) 15 80,0% (4/5) 13 40,0% (2/5) 14 60,0% (3/5)
Hundredth 15 80,0% (4/5) 13 40,0% (2/5) 13 40,0% (2/5) 13 40,0% (2/5) 14 60,0% (3/5)
Sinusoidal 12 20,0% (1/5) 12 20,0% (1/5) 11 0,0% (0/5) 11 0,0% (0/5) 11 0,0% (0/5)
Mixed 15 80,0% (4/5) 17 120,0% (6/5) 13 40,0% (2/5) 14 60,0% (3/5) 14 60,0% (3/5)

FReE results
Correlation +2 / 1.0% +6 / 2.0% +10 / 5.0% +14 / 7.0% +18 / 10.0%

Dout Error Dout Error Dout Error Dout Error Dout Error
Linear 7 0,0% (0/5) 8 20,0% (1/5) 8 40,0% (2/5) 8 20,0% (1/5) 9 60,0% (3/5)
Logarithmic 6 20,0% (1/5) 9 60,0% (3/5) 8 60,0% (3/5) 7 0,0% (0/5) 8 40,0% (2/5)
Quadratic 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5)
Cubic 7 20,0% (1/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5)
Exponential 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5)
Tenth 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5)
Hundredth 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5)
Sinusoidal 7 20,0% (1/5) 7 20,0% (1/5) 9 60,0% (3/5) 8 20,0% (1/5) 8 20,0% (1/5)
Mixed 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5) 7 0,0% (0/5)

Error

Source: Elaborated by the author.

Figure 15 details the results obtained from dataset Susy. The header +n / γ% represents
that n original attributes chosen randomly were used to form each of the 5 new redundant
attributes inserted in the dataset, considering γ% of noise. Similar to the previous experiments,
in the case of PCA, SVD and KPCA, Dout means the number of principal components that
need to be maintained to explain at least 95% of the variance. Error is the absolute difference
between the number of components needed in the original dataset and its counterpart in a dataset
with redundant attributes. For PUFS, Dout is the number of features that it needs to maintain to
explain at least 95% of the variance; and for FReE, Dout is the number of attributes considered
to be relevant in the dataset. For the feature selectors, Error is the number of attributes selected
incorrectly, i.e., those that differ from the originally selected attributes, and are not correlated
with them, plus the absolute difference between the number of attributes selected in the original
dataset and its counterpart in a dataset with redundancies.
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Following the same behavior presented in the previous experiment, PCA, SVD and PUFS
obtained good results when applied to the datasets that include linear, logarithmic and sinusoidal
correlations, and yet obtained poor results in the datasets with quadratic, cubic, tenth power,
hundredth power, exponential and mixed correlations. KPCA obtained poor results in most cases,
even when using quadratic correlations. Observe that, for PCA, SVD, PUFS and KPCA, the
number of attributes involved in each correlation did not have much relevance, since poor results
were obtained even when the correlations involved only two original attributes each. On the other
hand, our FReE obtained excellent results in most of the cases evaluated, with few exceptions.
Even when applied to redundancies formed from 10 or more original attributes, the final quantity
of dimensions had few changes, and FReE presented few errors by selecting barely the same
attributes selected from the original dataset, thus reinforcing the stability and usability of the
Fractal Theory for unsupervised dimensionality reduction tasks. Similar results were obtained
from the other 10 real datasets studied; they are summarized in Figure 16 and Figure 17 for
brevity, but the full results are freely available in the repository mentioned at the beginning of
Section 5.1 from Chapter 5.

6.1.3 Summary of results from the other 10 real datasets

As it was described before, we performed the very same experiments on all of the
11 datasets studied and obtained similar results. For brevity, we detailed in the previous two
sections, the results that refer to one of these datasets, i.e., Susy, and summarize in the following
the results obtained from the other ones. The full results from all 11 datasets are in the repository
mentioned at the beginning of Section 5.1 from Chapter 5. Figure 16 and Figure 17 report the
results obtained with mixed correlations added to the other 10 datasets; we chose to report this
particular set of results since it is the case that we consider to be the closest to the behavior
of real-world data. Let us emphasize that KPCA had unfeasibly high runtime requirements to
process datasets Forex and Airline with more than 5 redundant attributes inserted. Thus, we
processed 10 uniform samples of 10% of the total points and reported the average of the results
obtained. For PCA, SVD, PUFS and FReE, we still used the whole datasets.

Figure 16 reports the results obtained when adding up to 500 redundant attributes in
the datasets; each redundant attribute is correlated with one randomly-chosen original attribute.
Note that the case with the highest dimensionality is when we add 500 new attributes to dataset
FMA, thus leading to 1,018 attributes in total. As it can be seen, our proposed FReE consistently
outperformed PCA, SVD, PUFS and KPCA in every single dataset. For example, when adding
more than 20 redundant attributes in datasets Hepmass, Airline and Higgs, the variance-
preservation techniques needed more components than the embedded dimensionality E of the
original datasets, i.e., the total number of attributes; in some cases, they failed 24 times more
than FReE. Figure 17 reports the results obtained when increasing the number of attributes per
correlation. As it was done with dataset Susy, we inserted 5 redundant attributes in each dataset
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Figure 16 – Experimental results on increasing the number of redundant attributes for other 10 real-world
datasets from different domains. Note: these results are presented in a summarized form for
brevity, since they are similar to those obtained from dataset Susy that were already detailed.
The full results regarding these 10 datasets are freely available in the repository mentioned at
the beginning of Section 5.1 from Chapter 5.

Technique Datasets +1 / 0.2% +5 / 1.0% +10 / 2.0% +20 / 5.0% +50 / 7.0% +100 / 10.0% +500 / 5.0%
Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error
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WeatherBR 12 0,0% (0/1) 14 40,0% (2/5) 16 40,0% (4/10) 16 20,0% (4/20) 18 12,0% (6/50) 19 7,0% (7/100) 24 2,4% (12/500)
Hepmass 23 100,0% (1/1) 24 40,0% (2/5) 25 30,0% (3/10) 32 50,0% (10/20) 34 24,0% (12/50) 46 24,0% (24/100) 56 6,8% (34/500)
Forex 8 200,0% (2/1) 10 0,0% (0/5) 10 0,0% (0/10) 12 10,0% (2/20) 18 16,0% (8/50) 18 8,0% (8/100) 21 2,2% (11/500)
NaturalGas 4 0,0% (0/1) 5 20,0% (1/5) 6 20,0% (2/10) 4 0,0% (0/20) 6 4,0% (2/50) 5 1,0% (1/100) 7 0,6% (3/500)
Airline 15 100,0% (1/1) 15 20,0% (1/5) 16 20,0% (2/10) 20 30,0% (6/20) 23 18,0% (9/50) 26 12,0% (12/100) 33 3,8% (19/500)
Household 10 0,0% (0/1) 10 0,0% (0/5) 10 0,0% (0/10) 13 15,0% (3/20) 12 4,0% (2/50) 15 5,0% (5/100) 18 1,6% (8/500)
Higgs 24 100,0% (1/1) 25 40,0% (2/5) 29 60,0% (6/10) 30 35,0% (7/20) 34 22,0% (11/50) 45 22,0% (22/100) 51 5,6% (28/500)
YearPredMSD 68 100,0% (1/1) 69 40,0% (2/5) 69 20,0% (2/10) 70 15,0% (3/20) 73 12,0% (6/50) 76 9,0% (9/100) 84 3,2% (16/500)
Fonts 41 100,0% (1/1) 41 20,0% (1/5) 43 30,0% (3/10) 43 15,0% (3/20) 45 10,0% (5/50) 51 11,0% (11/100) 53 2,6% (13/500)
FMA 81 100,0% (1/1) 81 20,0% (1/5) 82 20,0% (2/10) 83 15,0% (3/20) 84 8,0% (4/50) 89 9,0% (9/100) 91 2,2% (11/500)

K
P

C
A

WeatherBR 13 0,0% (0/1) 15 40,0% (2/5) 17 40,0% (4/10) 17 20,0% (4/20) 17 8,0% (4/50) 21 8,0% (8/100) 20 1,4% (7/500)
Hepmass 24 100,0% (1/1) 26 60,0% (3/5) 24 10,0% (1/10) 36 65,0% (13/20) 45 44,0% (22/50) 53 30,0% (30/100) 61 7,6% (38/500)
Forex 7 0,0% (0/1) 10 60,0% (3/5) 11 40,0% (4/10) 13 30,0% (6/20) 21 28,0% (14/50) 27 20,0% (20/100) 31 4,8% (24/500)
NaturalGas 4 100,0% (1/1) 5 40,0% (2/5) 6 30,0% (3/10) 4 5,0% (1/20) 5 4,0% (2/50) 4 1,0% (1/100) 4 0,2% (1/500)
Airline 17 10,0% (1/1) 17 10,0% (1/5) 19 30,0% (3/10) 20 20,0% (4/20) 25 18,0% (9/50) 29 1,3 (13/100) 32 0,032 (16/500)
Household 10 0,0% (0/1) 10 0,0% (0/5) 11 10,0% (1/10) 14 20,0% (4/20) 12 4,0% (2/50) 16 6,0% (6/100) 15 2,0% (10/500)
Higgs 24 100,0% (1/1) 22 20,0% (1/5) 29 60,0% (6/10) 34 55,0% (11/20) 36 26,0% (13/50) 46 23,0% (23/100) 49 5,2% (26/500)
YearPredMSD 75 100,0% (1/1) 75 20,0% (1/5) 77 30,0% (3/10) 80 30,0% (6/20) 83 18,0% (9/50) 87 13,0% (13/100) 92 3,6% (18/500)
Fonts 44 100,0% (1/1) 45 40,0% (2/5) 47 40,0% (4/10) 49 30,0% (6/20) 52 18,0% (9/50) 58 15,0% (15/100) 62 3,8% (19/500)
FMA 83 100,0% (1/1) 83 20,0% (1/5) 85 30,0% (3/10) 85 15,0% (3/20) 87 10,0% (5/50) 93 11,0% (11/100) 94 2,4% (12/500)
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WeatherBR 13 100,0% (1/1) 15 60,0% (3/5) 17 50,0% (5/10) 17 25,0% (5/20) 19 14,0% (7/50) 20 8,0% (8/100) 24 2,4% (12/500)
Hepmass 23 100,0% (1/1) 26 80,0% (4/5) 26 40,0% (4/10) 34 60,0% (12/20) 37 20,0% (15/50) 49 27,0% (27/100) 60 7,6% (38/500)
Forex 8 200,0% (2/1) 11 100,0% (5/5) 10 40,0% (4/10) 13 35,0% (7/20) 20 28,0% (14/50) 19 13,0% (13/100) 22 3,2% (16/500)
NaturalGas 4 0,0% (0/1) 5 20,0% (1/5) 7 30,0% (3/10) 4 10,0% (2/20) 6 8,0% (4/50) 5 3,0% (3/100) 8 1,2% (6/500)
Airline 15 100,0% (1/1) 17 60,0% (3/5) 17 30,0% (3/10) 21 35,0% (7/20) 25 22,0% (11/50) 28 14,0% (14/100) 36 4,4% (22/500)
Household 10 0,0% (0/1) 11 20,0% (1/5) 10 0,0% (0/10) 13 15,0% (3/20) 13 6,0% (3/50) 17 7,0% (7/100) 19 1,8% (9/500)
Higgs 26 100,0% (1/1) 27 40,0% (2/5) 31 60,0% (6/10) 32 35,0% (7/20) 36 22,0% (11/50) 49 24,0% (24/100) 51 5,2% (26/500)
YearPredMSD 68 100,0% (1/1) 73 120,0% (6/5) 75 80,0% (8/10) 75 40,0% (8/20) 74 14,0% (7/50) 76 9,0% (9/100) 91 4,8% (24/500)
Fonts 43 100,0% (1/1) 43 20,0% (1/5) 44 20,0% (2/10) 46 20,0% (4/20) 49 14,0% (7/50) 51 9,0% (9/100) 55 2,6% (13/500)
FMA 81 100,0% (1/1) 81 20,0% (1/5) 84 40,0% (4/10) 85 25,0% (5/20) 92 20,0% (10/50) 90 8,0% (8/100) 96 2,8% (14/500)

FR
eE

WeatherBR 8 0,0% (0/1) 7 40,0% (2/5) 7 10,0% (1/10) 8 5,0% (1/20) 5 8,0% (4/50) 5 3,0% (3/100) 5 0,6% (3/500)
Hepmass 14 0,0% (0/1) 14 0,0% (0/5) 14 0,0% (0/10) 15 5,0% (1/20) 14 4,0% (2/50) 16 2,0% (2/100) 14 0,6% (3/500)
Forex 8 0,0% (0/1) 9 20,0% (1/5) 9 40,0% (4/10) 9 5,0% (1/20) 12 14,0% (7/50) 12 6,0% (6/100) 11 1,0% (5/500)
NaturalGas 2 100,0% (1/1) 2 20,0% (1/5) 2 10,0% (1/10) 2 5,0% (1/20) 2 2,0% (1/50) 2 2,0% (2/100) 2 0,4% (2/500)
Airline 6 100,0% (1/1) 6 20,0% (1/5) 6 20,0% (2/10) 6 5,0% (1/20) 6 5,0% (1/50) 6 5,0% (1/100) 6 0,2% (1/500)
Household 6 0,0% (0/1) 6 20,0% (1/5) 6 0,0% (0/10) 6 5,0% (1/20) 5 6,0% (3/50) 6 2,0% (2/100) 6 0,4% (2/500)
Higgs 9 100,0% (1/1) 9 0,0% (0/5) 9 10,0% (1/10) 9 5,0% (1/20) 9 2,0% (1/50) 10 4,0% (4/100) 9 0,2% (1/500)
YearPredMSD 7 100,0% (1/1) 4 80,0% (4/5) 4 40,0% (4/10) 6 15,0% (3/20) 7 4,0% (2/50) 5 4,0% (4/100) 6 0,6% (3/500)
Fonts 4 0,0% (0/1) 3 20,0% (1/5) 5 10,0% (1/10) 4 0,0% (0/20) 4 2,0% (1/50) 3 1,0% (1/100) 4 0,2% (1/500)
FMA 7 200,0% (2/1) 7 40,0% (2/5) 4 10,0% (1/10) 7 10,0% (2/20) 7 6,0% (3/50) 8 4,0% (4/100) 4 0,4% (2/500)

Source: Elaborated by the author.

in such a way that each new attribute is correlated with two or more original ones. The maximum
number of original attributes per correlation is the embedded dimensionality E of each dataset,
or it is 50 when E > 50. As it can be seen, our algorithm FReE accurately removed almost all
redundancies, consistently outperforming PCA, SVD, PUFS and KPCA, which again obtained
poor results in many cases, even when each redundant attribute was formed from only 2 original
ones. Considering the aforementioned results, we conclude that the patterns reported in this
chapter may represent a variety of real-world scenarios since they were observed in 11 datasets
from distinct domains.

6.1.4 Scalability comparison between the approaches studied

Our proposed FReE method showed to be effective in removing redundant attributes from
all 11 datasets studied, detecting both linear and non-linear correlations, unlike the compared
methods that are based on variance preservation, PCA, SVD, PUFS and KPCA.

However, in addition to result quality experiments, we decided to perform a comparative
analysis between the complexity of the algorithms and to present such nature in scalability
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Figure 17 – Experimental results on increasing the number of original attributes per correlation for
other 10 real-world datasets from different domains. Note: these results are presented in a
summarized form for brevity, as they are similar to those obtained from dataset Susy that
were already detailed. The full results for these 10 real datasets are freely available in the
repository mentioned at the beginning of Section 5.1 from Chapter 5.

Technique Datasets +2 / 0.2% +4 / 1.0% +8 / 2.0% +12 / 5.0% +20 / 7.0% +28 / 10.0% +50 / 10.0%
Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error Dout Error
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WeatherBR 13 20,0% (1/5) 14 40,0% (2/5) 15 60,0% (3/5) 15 60,0% (3/5) 13 20,0% (1/5) - -
Hepmass 26 80,0% (4/5) 26 80,0% (4/5) 26 80,0% (4/5) 26 80,0% (4/5) 24 40,0% (2/5) 25 60,0% (3/5) -
Forex 9 20,0% (1/5) 10 0,0% (0/5) 10 0,0% (0/5) 10 0,0% (0/5) - - -
NaturalGas 5 40,0% (1/5) 5 40,0% (1/5) - - - - -
Airline 18 80,0% (4/5) 18 80,0% (4/5) 18 80,0% (4/5) 18 80,0% (4/5) 16 40,0% (2/5) - -
Household 10 0,0% (0/5) 12 40,0% (2/5) 11 20,0% (1/5) 10 0,0% (0/5) - - -
Higgs 24 20,0% (1/5) 25 40,0% (2/5) 26 60,0% (3/5) 27 80,0% (4/5) 27 80,0% (4/5) 26 60,0% (3/5) -
YearPredMSD 68 20,0% (1/5) 69 40,0% (2/5) 70 60,0% (3/5) 70 60,0% (3/5) 71 80,0% (4/5) 71 80,0% (4/5) 71 80,0% (4/5)
Fonts 41 20,0% (1/5) 42 40,0% (2/5) 43 60,0% (3/5) 44 80,0% (4/5) 43 60,0% (3/5) 44 80,0% (4/5) 44 80,0% (4/5)
FMA 81 20,0% (1/5) 83 60,0% (3/5) 83 60,0% (3/5) 83 60,0% (3/5) 83 60,0% (3/5) 84 80,0% (4/5) 84 80,0% (4/5)
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WeatherBR 12 20,0% (1/5) 14 20,0% (1/5) 14 20,0% (1/5) 16 40,0% (2/5) 14 20,0% (1/5) - -
Hepmass 21 40,0% (2/5) 24 20,0% (1/5) 22 20,0% (1/5) 19 80,0% (4/5) 15 240,0% (8/5) 11 240,0% (12/5) -
Forex 14 140,0% (7/5) 14 140,0% (7/5) 13 120,0% (6/5) 15 160,0% (8/5) - - -
NaturalGas 5 40,0% (2/5) 5 40,0% (2/5) - - - - -
Airline 19 60,0% (3/5) 19 60,0% (3/5) 18 40,0% (2/5) 19 60,0% (3/5) 19 60,0% (3/5) - -
Household 11 20,0% (1/5) 12 40,0% (2/5) 12 40,0% (2/5) 10 0,0% (0/5) - - -
Higgs 25 40,0% (2/5) 24 20,0% (1/5) 25 40,0% (2/5) 28 100,0% (5/5) 22 20,0% (1/5) 27 80,0% (4/5) -
YearPredMSD 76 40,0% (2/5) 76 40,0% (2/5) 77 60,0% (3/5) 76 40,0% (2/5) 78 80,0% (4/5) 78 80,0% (4/5) 79 100,0% (5/5)
Fonts 44 40,0% (1/5) 45 40,0% (2/5) 45 40,0% (2/5) 46 60,0% (3/5) 47 80,0% (4/5) 48 100,0% (5/5) 48 100,0% (5/5)
FMA 84 60,0% (2/5) 85 60,0% (3/5) 85 60,0% (3/5) 86 80,0% (4/5) 86 80,0% (4/5) 88 120,0% (6/5) 87 100,0% (5/5)
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WeatherBR 14 40,0% (2/5) 15 40,0% (3/5) 15 60,0% (3/5) 16 60,0% (3/5) 14 20,0% (1/5) - -
Hepmass 27 100,0% (5/5) 27 80,0% (5/5) 29 80,0% (7/5) 28 80,0% (4/5) 25 40,0% (2/5) 26 60,0% (3/5) -
Forex 10 40,0% (2/5) 11 0,0% (3/5) 10 0,0% (2/5) 11 0,0% (3/5) - - -
NaturalGas 5 20,0% (1/5) 5 20,0% (1/5) - - - - -
Airline 18 80,0% (4/5) 19 80,0% (5/5) 18 80,0% (4/5) 20 80,0% (6/5) 17 40,0% (3/5) - -
Household 10 0,0% (0/5) 13 40,0% (3/5) 12 20,0% (2/5) 11 0,0% (1/5) - - -
Higgs 26 60,0% (3/5) 25 40,0% (2/5) 28 60,0% (5/5) 29 80,0% (6/5) 29 80,0% (6/5) 27 60,0% (4/5) -
YearPredMSD 68 20,0% (1/5) 75 40,0% (7/5) 77 60,0% (9/5) 74 60,0% (6/5) 71 80,0% (3/5) 75 80,0% (7/5) 74 80,0% (6/5)
Fonts 45 100,0% (5/5) 43 40,0% (3/5) 45 60,0% (3/5) 47 80,0% (5/5) 46 60,0% (4/5) 48 80,0% (6/5) 44 80,0% (2/5)
FMA 82 40,0% (2/5) 90 60,0% (10/5) 85 60,0% (5/5) 90 60,0% (10/5) 85 60,0% (5/5) 90 80,0% (10/5) 89 80,0% (9/5)
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WeatherBR 8 0,0% (0/5) 9 20,0% (2/5) 7 40,0% (2/5) 7 40,0% (2/5) 7 40,0% (2/5) - -
Hepmass 13 20,0% (1/5) 14 0,0% (0/5) 14 0,0% (0/5) 14 0,0% (0/5) 13 20,0% (1/5) 13 20,0% (1/5) -
Forex 8 0,0% (0/5) 8 0,0% (0/5) 8 0,0% (0/5) 8 0,0% (0/5) - - -
NaturalGas 2 40,0% (2/5) 2 20,0% (1/5) - - - -
Airline 6 20,0% (1/5) 6 0,0% (0/5) 6 0,0% (0/5) 6 0,0% (0/5) 6 0,0% (0/5) - -
Household 5 20,0% (1/5) 5 20,0% (1/5) 6 20,0% (1/5) 7 20,0% (1/5) - - -
Higgs 9 40,0% (2/5) 9 40,0% (1/5) 9 20,0% (1/5) 9 20,0% (1/5) 9 20,0% (1/5) 9 20,0% (1/5) -
YearPredMSD 7 0,2 (1/5) 8 0,0% (0/5) 8 0,0% (0/5) 9 20,0% (1/5) 9 20,0% (1/5) 9 20,0% (1/5) 9 20,0% (1/5)
Fonts 4 0,0% (0/5) 4 0,0% (0/5) 4 0,0% (0/5) 4 0,0% (0/5) 4 0,0% (0/5 5 20,0% (1/5) 5 20,0% (1/5)
FMA 6 20,0% (1/5) 6 20,0% (1/5) 7 60,0% (2/5) 6 20,0% (1/5) 6 20,0% (1/5) 6 20,0% (1/5) 6 20,0% (1/5)

Error

Source: Elaborated by the author.

experiments by increasing the number of data points. Figure 18 reports runtime results in seconds
obtained by processing random samples with increasing sizes from Susy and from the dataset
with the highest dimensionality, i.e., FMA, up to the full datasets. The results are the average over
ten distinct runs; standard deviation values are too small to be shown; besides that, note that the
plot’s axes are in log-scale.

As it was previously described in this monograph, PCA and SVD are algorithms popu-
larly used to support several data analysis tasks, one of which is the dimensionality reduction.
Algorithm PCA has two computationally intensive steps, which is the computation of the co-
variance matrix, and the eigenvalues decomposition of the covariance matrix. This fact results
in a complexity O(N×d×min(N,d)+d3), where N is the number of points in a dataset and
d is the number of features. Whereas algorithm SVD obtains the same quality results, but it
differs by making the step of singular values decomposition from a mean-centered matrix, which
leaves the complexity of the algorithm to O(N×d2 +d3). In general, when dealing with Big
Data, the number of points in the dataset is much higher than the number of dimensions. In
Figure 18, the results of the scalability experiments regarding the number of points show that
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Figure 18 – Runtime of PCA, SVD, PUFS, KPCA and FReE in seconds when selecting features from
random samples of Susy and FMA (highest dimensionality), up to the full datasets. Our
proposed FReE scales linearly on the data size.
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Source: Elaborated by the author.

PCA and SVD reveal this linear behavior for the number of points. Algorithm KPCA, in turn,
is capable of detecting non-linear correlations from the kernel functions used. However, this
algorithm has some issues about computational complexity, which limits its use in practical
applications. KPCA has a major bottleneck when it needs to compute the eigenvector of a N×N

kernel matrix, where N is the number of points in the dataset analyzed. This computation results
in a complexity of O(N2) for storing the kernel matrix and O(N3) in processing time. As it is
shown in Figure 18, KPCA had the worst performance among the analyzed methods, being able
to process only a small part of the datasets within a limit of up to 48 hours of processing.

PUFS is a feature selector that works in an unsupervised and distributed way; it is a
technique based on data variance, using the SVD as a basis, being limited to detecting only
linear correlations. The complexity of the PUFS is O(N×d×min(N,d)) to compute the singular
vectors, and O(d3× log(d)) for the deterministic phase in which the feature set is reorganized in
order of importance. Consequently, it has cubic complexity regarding the number of features in
the dataset. Figure 18 illustrates its scalability results, showing that PUFS has better performance
when compared to KPCA, but it is slower than the other algorithms, PCA, SVD and FReE.

In turn, our proposed algorithm FReE has the complexity described in Section 4.1 from
Chapter 4. It presents linear scalability regarding the data cardinality. In Figure 18, it shows worse
results when compared to the PCA and SVD algorithms, which detect only linear correlations,
but it was shown to be faster than the PUFS and KPCA algorithms which also seek to find
non-linear correlations.

6.1.5 Final Considerations

This chapter presented the results obtained from the comparison between the unsu-
pervised dimensionality reduction algorithms based on variance preservation and our newly
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proposed technique that is based on the Fractal Theory. The results show that the fractal-based
technique, FReE, was able to accurately detect the various types of correlations, unlike algorithms
PCA, SVD and PUFS, or even algorithm KPCA that proposes to detect non-linear correlations.
Also, our new algorithm proved to be scalable on the number of points in the dataset, being faster
than algorithms PUFS and KPCA. The next chapter presents the conclusions of this MSc work.



73

CHAPTER

7
CONCLUSION

This MSc work investigated the following hypothesis: “the application of concepts
from the Fractal Theory in dimensionality reduction tasks, using massively parallel processing
via Apache Spark, and maximizing the use of main memory instead of secondary memory
allows the development of an effective and efficient technique that is capable of reducing
the dimensionality of Terabytes or even Petabytes of complex data”. We corroborated it by
performing an extensive exploratory study through 11 real-world datasets from multiple domains,
and comparing two distinct approaches for unsupervised dimensionality reduction: (a) the
standard variance preservation, and; (b) one alternative, fractal-based solution for which we
proposed one new, fast and scalable Spark-based algorithm named FReE. Our main contributions
are presented in the following.

7.1 Main Contributions of this MSc Work

The main contributions accomplished in this MSc work are:

C1 – Extensive exploratory evaluation: We reported results of a detailed exploratory
study, using 11 datasets with up to 123.5 million elements and 518 attributes from physics,
finance, transportation, energy, electricity, image, audio and climatic domains, systemati-
cally evaluating and validating the ability of the variance preservation and the fractal-based
approaches to remove many types of attribute correlations. To the best of our knowledge,
this is the first work to present a comparative study between variance-preservation tech-
niques and those that are based on the Fractal Theory, by systematically exploring their
limitations to remove different correlation types under a variety of circumstances;

C2 – Novel algorithm: We proposed the new algorithm Fractal Redundancy Elimination –
FReE, a parallel and distributed dimensionality reduction algorithm that uses concepts
from the Fractal Theory and Apache Spark to deal with data of high cardinality. FReE also
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implements a novel feature partitioning strategy that we carefully developed to make it
suited for high-dimensionality data processing. To the best of our knowledge, this is the
first fractal-based algorithm that is is capable of processing billion-scale-elements datasets
with hundreds or even thousands of attributes.

7.2 Discussion and Future Work
We showed that, at least for large datasets of dimensionality with up to∼1,000 attributes,

our new fractal-based algorithm FReE is the best option, being scalable to process millions or
even billions of objects and more accurate to eliminate correlations of many kinds, such as linear,
quadratic, logarithmic and exponential, even when there are up to 500 redundant attributes in a
dataset, or correlations that depend on up to dozens of the original attributes. Indeed, it is also
important to emphasize that our proposal has some limitations. Its first requirement is to process
large volumes of data, since the number of objects required to enable the analysis of a dataset
increases together with its intrinsic dimensionality. Fortunately, large datasets abound nowadays.
As a consequence, we point out that the increasing volume of data available in the current era
of Big Data enables the use of the Fractal Theory to spot relevant attributes in data of high
dimensionality. Besides, it is also required that the datasets to be processed exhibit self-similarity
properties. Fortunately, it is well-known in the literature that most real-world datasets present
statistical self-similarity, such as the 11 datasets from distinct domains that we investigated.

With regard to future work, the contributions resulting from this MSc project support
some studies on dimensionality reduction for Big Data. As an example, one in-depth evaluation of
strategies for partitioning the input dataset could be performed, aiming to assess the relevance of
partitions and their selected features. In this work, we explored an approach that uses the original
sequence of the set of features to partition the data into blocks of fixed size. Other strategies
can be studied to improve the performance of the algorithm in detecting correlations in each
block, possibly including the use of feature reordering and blocks with distinct sizes. Besides
that, as it was detailed throughout this monograph, we explored the context of dimensionality
reduction in an unsupervised way, so to support activities such as clustering and outlier detection.
For the supervised context, an interesting idea would be to use the Theory of Fractals in
regression problems, so to maximize the information gain of independent variables concerning
the dependent variable. That is, in addition of using the Fractal Theory to remove linear and
non-linear correlations from the dataset, one could use the variable information that is provided
for the training set to maximize the importance of the non-redundant features of the set.

Finally, let us highlight that this MSc work generated the following publications:

1. P1 – Jadson J. M. Oliveira, Robson L. F. Cordeiro: Unsupervised Dimensionality Re-
duction: are we going to the right direction?. In: Knowledge-based Systems, Elsevier,
196:105777, 2020, 14 pages, DOI:10.1016/j.knosys.2020.105777, Journal Qualis A1;
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2. P2 – Lucas F. Kunze, Thábata Amaral, Leonardo M. P. Morais, Jadson J. M. Oliveira,
Altamir G. Bispo Junior, Elaine P. M. de Sousa, Robson L. F. Cordeiro: Classification
Analysis of NDVI Time Series in Metric Spaces for Sugarcane Identification. In: 20th Inter-
national Conference on Enterprise Information Systems — ICEIS, 2018, Funchal, Portugal.
p. 162-169, DOI:10.5220/0006709401620169, International Conference Qualis A3.





77

BIBLIOGRAPHY

ALSHEIKH, M. A.; NIYATO, D.; LIN, S.; TAN, H.-P.; HAN, Z. Mobile big data analytics using
deep learning and apache spark. IEEE network, IEEE, v. 30, n. 3, p. 22–29, 2016. Citation on
page 41.

ASFOOR, H.; SRINIVASAN, R.; VASUDEVAN, G.; VERBIEST, N.; CORNELLS, C.; TO-
LENTINO, M.; TEREDESAI, A.; COCK, M. D. Computing fuzzy rough approximations in
large scale information systems. In: IEEE. Big Data (Big Data), 2014 IEEE International
Conference on. [S.l.], 2014. p. 9–16. Citation on page 38.

BAIOCO, G. B.; TRAINA, A. J. M.; TRAINA JR, C. Mamcost: Global and local estimates
leading to robust cost estimation of similarity queries. In: SSDBM. [S.l.: s.n.], 2007. p. 6–16.
Citation on page 36.

BALCAN, M. F.; LIANG, Y.; SONG, L.; WOODRUFF, D.; XIE, B. Communication efficient
distributed kernel principal component analysis. In: KDD. [S.l.: s.n.], 2016. p. 725–734. Citations
on pages 32, 33, 34, 45, and 61.

BARBARÁ, D.; CHEN, P. Using the fractal dimension to cluster datasets. In: ACM SIGKDD.
Boston, MA: [s.n.], 2000. p. 260–264. Citation on page 36.

BONES, C. C.; ROMANI, L. A. S.; SOUSA, E. P. M. de. Improving multivariate data streams
clustering. Procedia Computer Science, v. 80, p. 461–471, 2016. ICCS. Citation on page 36.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001. Citation
on page 48.

BRYANT, A.; CIOS, K. Rnn-dbscan: A density-based clustering algorithm using reverse nearest
neighbor density estimates. IEEE Transactions on Knowledge and Data Engineering, v. 30,
n. 6, p. 1109–1121, 2018. Citation on page 31.

BöHM, C. A cost model for query processing in high dimensional data spaces. ACM TODS,
v. 25, n. 2, p. 129–178, 2000. Citation on page 36.

CHAKRABARTI, D.; FALOUTSOS, C. F4: large-scale automated forecasting using fractals. In:
CIKM. [S.l.: s.n.], 2002. v. 1, p. 2–9. Citation on page 36.

CHEN, H.; LI, T.; CAI, Y.; LUO, C.; FUJITA, H. Parallel attribute reduction in dominance-based
neighborhood rough set. Inf. Sci., v. 373, p. 351–368, 2016. ISSN 0020-0255. Citation on page
37.

CHENG, K.; LI, J.; LIU, H. Unsupervised feature selection in signed social networks. In: KDD.
[S.l.: s.n.], 2017. p. 777–786. Citations on pages 26 and 31.

CLARK, J.; PROVOST, F. Unsupervised dimensionality reduction versus supervised regulariza-
tion for classification from sparse data. Data Mining and Knowledge Discovery, v. 33, n. 4, p.
871–916, 2019. Citation on page 30.



78 Bibliography

CORDEIRO, R. L. F.; FALOUTSOS, C.; TRAINA JR, C. Data mining in large sets of complex
data. [S.l.]: Springer-Verlag New York Incorporated, 2013. Citations on pages 25, 29, 30, and 39.

CORDEIRO, R. L. F.; TRAINA, A. J. M.; FALOUTSOS, C.; TRAINA JR, C. Halite: fast and
scalable multiresolution local-correlation clustering. IEEE TKDE, v. 25, n. 2, p. 387–401, 2013.
Citations on pages 31 and 36.

DEAN, J.; GHEMAWAT, S. Mapreduce: simplified data processing on large clusters. Commu-
nications of the ACM, ACM, v. 51, n. 1, p. 107–113, 2008. Citation on page 38.

DING, Y.; ZHU, G.; CUI, C.; ZHOU, J.; TAO, L. A parallel implementation of singular value
decomposition based on map-reduce and parpack. In: International Conference on Computer
Science and Network Technology. [S.l.: s.n.], 2011. v. 2, p. 739–741. Citations on pages 33
and 44.

DOBRE, C.; XHAFA, F. Intelligent services for big data science. Future Generation Computer
Systems, v. 37, p. 267 – 281, 2014. ISSN 0167-739X. Special Section: Innovative Methods and
Algorithms for Advanced Data-Intensive Computing Special Section: Semantics, Intelligent
processing and services for big data Special Section: Advances in Data-Intensive Modelling
and Simulation Special Section: Hybrid Intelligence for Growing Internet and its Applications.
Available: <http://www.sciencedirect.com/science/article/pii/S0167739X13001593>. Citation
on page 25.

DU, T. Y. Dimensionality reduction techniques for visualizing morphometric data: Comparing
principal component analysis to nonlinear methods. Evolutionary Biology, 2018. Citation on
page 48.

ELGAMAL, T.; YABANDEH, M.; ABOULNAGA, A.; MUSTAFA, W.; HEFEEDA, M. spca:
Scalable principal component analysis for big data on distributed platforms. In: SIGMOD. [S.l.:
s.n.], 2015. p. 79–91. Citations on pages 32, 33, and 44.

ERL, T.; PUTTINI, R.; MAHMOOD, Z. Cloud computing: concepts, technology & architec-
ture. [S.l.]: Pearson Education, 2013. Citation on page 37.

FALOUTSOS, C.; KAMEL, I. Beyond uniformity and independence: Analysis of r-trees using
the concept of fractal dimension. In: PODS. [S.l.]: ACM, 1994. p. 4–13. Citations on pages 25,
31, and 34.

FALOUTSOS, C.; SEEGER, B.; TRAINA, A. J. M.; TRAINA JR, C. Spatial join selectivity
using power laws. In: SIGMOD. [S.l.: s.n.], 2000. p. 177–188. Citation on page 36.

FAYYAD, U. M.; PIATETSKY-SHAPIRO, G.; SMYTH, P. Advances in knowledge discov-
ery and data mining. In: FAYYAD, U. M.; PIATETSKY-SHAPIRO, G.; SMYTH, P.; UTHU-
RUSAMY, R. (Ed.). Menlo Park, CA, USA: American Association for Artificial Intelligence,
1996. chap. From Data Mining to Knowledge Discovery: An Overview, p. 1–34. ISBN 0-262-
56097-6. Available: <http://dl.acm.org/citation.cfm?id=257938.257942>. Citations on pages
29, 30, and 31.

FOURNIER, Q.; ALOISE, D. Empirical comparison between autoencoders and traditional
dimensionality reduction methods. In: 2019 IEEE Second International Conference on Artifi-
cial Intelligence and Knowledge Engineering (AIKE). [S.l.: s.n.], 2019. p. 211–214. Citations
on pages 36 and 37.

http://www.sciencedirect.com/science/article/pii/S0167739X13001593
http://dl.acm.org/citation.cfm?id=257938.257942


Bibliography 79

FRAIDEINBERZE, A. C.; RODRIGUES, J. F.; CORDEIRO, R. L. F. Effective and unsupervised
fractal-based feature selection for very large datasets: Removing linear and non-linear attribute
correlations. In: ICDMW. [S.l.: s.n.], 2016. p. 615–622. ISSN 2375-9259. Citations on pages
25, 31, 32, 33, 34, 35, 36, 45, 46, and 56.

GANTZ, J.; REINSEL, D. The digital universe in 2020: Big data, bigger digital shadows, and
biggest growth in the far east. IDC iView: IDC Analyze the future, v. 2007, n. 2012, p. 1–16,
2012. Citation on page 25.

GISBRECHT, A.; HAMMER, B. Data visualization by nonlinear dimensionality reduction.
Wiley Int. Rev. Data Min. and Knowl. Disc., v. 5, n. 2, p. 51–73, 2015. Citation on page 48.

GOLAY, J.; KANEVSKI, M. Unsupervised feature selection based on the morisita estimator of
intrinsic dimension. Knowledge-Based Systems, v. 135, p. 125–134, 2017. ISSN 0950-7051.
Citations on pages 25, 26, 31, 36, 45, and 48.

GU, L.; LI, H. Memory or time: Performance evaluation for iterative operation on hadoop
and spark. In: IEEE. High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing (HPCC_EUC), 2013
IEEE 10th International Conference on. [S.l.], 2013. p. 721–727. Citations on pages 40
and 41.

GUILLÉN, A.; ARENAS, M. I. G.; HEESWIJK, M. van; SOVILJ, D.; LENDASSE, A.; HER-
RERA, L. J.; POMARES, H.; ROJAS, I. Fast feature selection in a gpu cluster using the delta test.
Entropy, Multidisciplinary Digital Publishing Institute, v. 16, n. 2, p. 854–869, 2014. Citation
on page 38.

HALKO, N. P. Randomized methods for computing low-rank approximations of matrices. 2012.
Citation on page 44.

HAN, J.; PEI, J.; KAMBER, M. Data Mining: Concepts and Techniques. [S.l.]: Else-
vier Science, 2011. (The Morgan Kaufmann Series in Data Management Systems). ISBN
9780123814807. Citations on pages 30 and 31.

. Data Mining: Concepts and Techniques. [S.l.]: Elsevier Science, 2011. (The Morgan
Kaufmann Series in Data Management Systems). Citation on page 33.

HAUSER, R. A.; EFTEKHARI, A.; MATZINGER, H. F. Pca by determinant optimisation has no
spurious local optima. In: KDD. [S.l.: s.n.], 2018. p. 1504–1511. Citations on pages 33 and 44.

KARAU, H.; KONWINSKI, A.; WENDELL, P.; ZAHARIA, M. Learning spark: lightning-
fast big data analysis. [S.l.]: " O’Reilly Media, Inc.", 2015. Citation on page 40.

LESKOVEC, J.; RAJARAMAN, A.; ULLMAN, J. Mining of Massive Datasets. [S.l.]: Cam-
bridge University Press, 2014. ISBN 9781107077232. Citations on pages 30 and 31.

LI, J.; CHENG, K.; WANG, S.; MORSTATTER, F.; TREVINO, R. P.; TANG, J.; LIU, H.
Feature selection: A data perspective. ACM Computing Surveys, v. 50, n. 6, p. 94:1–94:45,
2017. Citations on pages 32 and 37.

LI, J.; LIU, H. Challenges of feature selection for big data analytics. IEEE Intelligent Systems,
v. 32, n. 2, p. 9–15, 2017. Citation on page 32.



80 Bibliography

MANDELBROT, B. B.; FREEMAN, W. H.; COMPANY. The Fractal Geometry of Nature.
[S.l.: s.n.], 1983. (Einaudi paperbacks). Citation on page 34.

MEIER, A.; KRAMER, O. An experimental study of dimensionality reduction methods. In: KI
2017: Advances in Artificial Intelligence. [S.l.: s.n.], 2017. p. 178–192. Citation on page 48.

MOORE, G. E. Cramming more components onto integrated circuits. Proceedings of the IEEE,
IEEE, v. 86, n. 1, p. 82–85, 1998. Citation on page 37.

NANDIMATH, J.; BANERJEE, E.; PATIL, A.; KAKADE, P.; VAIDYA, S.; CHATURVEDI, D.
Big data analysis using apache hadoop. In: IEEE. Information Reuse and Integration (IRI),
2013 IEEE 14th International Conference on. [S.l.], 2013. p. 700–703. Citation on page 39.

NUNES, S. A.; ROMANI, L. A.; AVILA, A. M.; COLTRI, P. P.; TRAINA JR., C.; CORDEIRO,
R. L.; SOUSA, E. P. de; TRAINA, A. J. Analysis of large scale climate data: How well cli-
mate change models and data from real sensor networks agree? In: Proceedings of the 22Nd
International Conference on World Wide Web Companion. [S.l.: s.n.], 2013. (WWW ’13
Companion), p. 517–526. Citation on page 36.

ORDOZGOITI, B.; CANAVAL, S. G.; MOZO, A. Massively parallel unsupervised feature
selection on spark. In: New Trends in Databases and Inf. Sys. [S.l.: s.n.], 2015. p. 186–196.
Citation on page 44.

PETSCHARNIG, S.; LUX, M.; CHATZICHRISTOFIS, S. Dimensionality reduction for image
features using deep learning and autoencoders. In: Proceedings of the 15th International
Workshop on Content-Based Multimedia Indexing. [S.l.: s.n.], 2017. (CBMI ’17), p. 23:1–
23:6. Citation on page 36.

RADENSKI, A.; EHWERHEMUEPHA, L. Speeding-up codon analysis on the cloud with local
mapreduce aggregation. Information Sciences, v. 263, n. 0, p. 175 – 185, 2014. Citation on
page 39.

RAO, T. R.; MITRA, P.; BHATT, R.; GOSWAMI, A. The big data system, components, tools,
and technologies: a survey. Knowledge and Information Systems, v. 60, n. 3, p. 1165–1245,
2019. Citation on page 37.

RATHORE, M. M.; AHMAD, A.; PAUL, A. Iot-based smart city development using big data
analytical approach. In: IEEE. Automatica (ICA-ACCA), IEEE International Conference
on. [S.l.], 2016. p. 1–8. Citation on page 41.

ROCHA, Á.; ADELI, H.; REIS, L.; COSTANZO, S. Trends and Advances in Information Sys-
tems and Technologies. [S.l.]: Springer International Publishing, 2018. (Advances in Intelligent
Systems and Computing, v. 2). ISBN 9783319777122. Citation on page 29.

SAIDI, R.; NCIR, W. B.; ESSOUSSI, N. Feature selection using genetic algorithm for big
data. In: HASSANIEN, A. E.; TOLBA, M. F.; ELHOSENY, M.; MOSTAFA, M. (Ed.). The
International Conference on Advanced Machine Learning Technologies and Applications
(AMLTA2018). Cham: Springer International Publishing, 2018. p. 352–361. ISBN 978-3-319-
74690-6. Citation on page 37.

SAYED, S.; NASSEF, M.; BADR, A.; FARAG, I. A nested genetic algorithm for feature selection
in high-dimensional cancer microarray datasets. Expert Systems with Applications, v. 121, p.
233 – 243, 2019. Citation on page 37.



Bibliography 81

SCHÖLKOPF, B.; SMOLA, A.; MÜLLER, K. R. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, v. 10, n. 5, p. 1299–1319, 1998. Citation on page
45.

SCHROEDER, M. Fractals, Chaos, Power Laws. 6. ed. [S.l.]: W.H. Freeman, 1991. Citation
on page 34.

SINGH, D.; REDDY, C. K. A survey on platforms for big data analytics. Journal of Big Data,
Springer, v. 2, n. 1, p. 8, 2015. Citation on page 37.

SOUSA, E. P. M.; AL. et. A fast and effective method to find correlations among attributes in
databases. Data Min. and Knowl. Disc., v. 14, n. 3, p. 367–407, 2007. Citation on page 32.

Sun, Z.; Li, Z. Data intensive parallel feature selection method study. In: International Joint
Conference on Neural Networks (IJCNN). [S.l.: s.n.], 2014. p. 2256–2262. Citation on page
25.

TIPPING, M. E.; BISHOP, C. M. Probabilistic principal component analysis. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), Wiley Online Library, v. 61,
n. 3, p. 611–622, 1999. Citation on page 44.

TRAINA JR, C.; TRAINA, A. J. M.; WU, L.; FALOUTSOS, C. Fast feature selection using
fractal dimension. In: SBBD. [S.l.: s.n.], 2000. p. 158–171. Citations on pages 45 and 56.

. Fast feature selection using fractal dimension. JIDM, v. 1, n. 1, p. 3–16, 2010. Citations
on pages 32, 34, 36, 45, and 56.

TUNG, A. K. H.; XU, X.; OOI, B. C. Curler: Finding and visualizing nonlinear correlation
clusters. In: SIGMOD. [S.l.: s.n.], 2005. p. 467–478. Citations on pages 25 and 26.

WHITE, T. Hadoop: The definitive guide. [S.l.]: " O’Reilly Media, Inc.", 2012. Citation on
page 39.

YEH, M. C.; LEE, I. H.; WU, G.; WU, Y.; CHANG, E. Y. Manifold learning, a promised land or
work in progress? In: IEEE ICME. [S.l.: s.n.], 2005. Citation on page 48.

ZAHARIA, M.; CHOWDHURY, M.; DAS, T.; DAVE, A.; MA, J.; MCCAULEY, M.;
FRANKLIN, M. J.; SHENKER, S.; STOICA, I. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In: USENIX ASSOCIATION. Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation. [S.l.], 2012.
p. 2–2. Citations on pages 40 and 41.

ZAKI, M.; MEIRA, W.; MEIRA, W. Data Mining and Analysis: Fundamental Concepts and
Algorithms. [S.l.]: Cambridge University Press, 2014. ISBN 9780521766333. Citation on page
30.

ZHANG, C.; NI, Z.; NI, L.; TANG, N. Feature selection method based on multi-fractal dimension
and harmony search algorithm and its application. International Journal of Systems Science,
v. 47, n. 14, p. 3476–3486, 2016. Citations on pages 31, 34, 36, and 45.



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Problem Definition, Hypothesis and Main Objectives
	Main Contributions
	Final Considerations

	Background Concepts
	Knowledge Discovery in Databases
	Dimensionality Reduction in Very Large Datasets
	Dimensionality Reduction based on Data Variance
	Fractal-based Dimensionality Reduction
	Other Dimensionality Reduction Approaches

	Distributed Processing
	MapReduce Programming Model
	Resilient Distributed Datasets

	Final Considerations

	Related Works
	Unsupervised Dimensionality Reduction
	Approaches based on Data Variance
	Approaches based on the Fractal Theory

	Comparative Studies
	Final Considerations

	Proposed Method
	Proposed Method
	Dimensionality Limitation
	Cardinality Limitation
	Computational Complexity Analysis
	Final Considerations


	Proposed Evaluation
	Proposed Evaluation
	Evaluation
	Algorithm settings
	Final Considerations


	Experimental Results
	Experimental results
	Increasing the number of redundant attributes
	Increasing the number of attributes per correlation
	Summary of results from the other 10 real datasets
	Scalability comparison between the approaches studied
	Final Considerations


	Conclusion
	Main Contributions of this MSc Work
	Discussion and Future Work

	Bibliography

