• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.55.2004.tde-19082004-092311
Document
Author
Full name
Edson Takashi Matsubara
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2004
Supervisor
Committee
Monard, Maria Carolina (President)
Ferneda, Edilson
Nunes, Maria das Graças Volpe
 
Title in Portuguese
O algoritmo de aprendizado semi-supervisionado co-training e sua aplicação na rotulação de documentos
Keywords in Portuguese
aprendizado de máquina
aprendizado multi-visão
aprendizado semi-supervisionado
co-training
mineração de textos
pré-processamento de textos
Abstract in Portuguese
Em Aprendizado de Máquina, a abordagem supervisionada normalmente necessita de um número significativo de exemplos de treinamento para a indução de classificadores precisos. Entretanto, a rotulação de dados é freqüentemente realizada manualmente, o que torna esse processo demorado e caro. Por outro lado, exemplos não-rotulados são facilmente obtidos se comparados a exemplos rotulados. Isso é particularmente verdade para tarefas de classificação de textos que envolvem fontes de dados on-line tais como páginas de internet, email e artigos científicos. A classificação de textos tem grande importância dado o grande volume de textos disponível on-line. Aprendizado semi-supervisionado, uma área de pesquisa relativamente nova em Aprendizado de Máquina, representa a junção do aprendizado supervisionado e não-supervisionado, e tem o potencial de reduzir a necessidade de dados rotulados quando somente um pequeno conjunto de exemplos rotulados está disponível. Este trabalho descreve o algoritmo de aprendizado semi-supervisionado co-training, que necessita de duas descrições de cada exemplo. Deve ser observado que as duas descrições necessárias para co-training podem ser facilmente obtidas de documentos textuais por meio de pré-processamento. Neste trabalho, várias extensões do algoritmo co-training foram implementadas. Ainda mais, foi implementado um ambiente computacional para o pré-processamento de textos, denominado PreTexT, com o objetivo de utilizar co-training em problemas de classificação de textos. Os resultados experimentais foram obtidos utilizando três conjuntos de dados. Dois conjuntos de dados estão relacionados com classificação de textos e o outro com classificação de páginas de internet. Os resultados, que variam de excelentes a ruins, mostram que co-training, similarmente a outros algoritmos de aprendizado semi-supervisionado, é afetado de maneira bastante complexa pelos diferentes aspectos na indução dos modelos.
 
Title in English
The semi-supervised learning algorithm co-training applied to label text documents
Keywords in English
co-training
machine learning
multi-view learning
semi-supervised learning
text mining
text pre-processing
Abstract in English
In Machine Learning, the supervised approach usually requires a large number of labeled training examples to learn accurately. However, labeling is often manually performed, making this process costly and time-consuming. By contrast, unlabeled examples are often inexpensive and easier to obtain than labeled examples. This is especially true for text classification tasks involving on-line data sources, such as web pages, email and scientific papers. Text classification is of great practical importance today given the massive volume of online text available. Semi-supervised learning, a relatively new area in Machine Learning, represents a blend of supervised and unsupervised learning, and has the potential of reducing the need of expensive labeled data whenever only a small set of labeled examples is available. This work describes the semi-supervised learning algorithm co-training, which requires a partitioned description of each example into two distinct views. It should be observed that the two different views required by co-training can be easily obtained from textual documents through pre-processing. In this works, several extensions of co-training algorithm have been implemented. Furthermore, we have also implemented a computational environment for text pre-processing, called PreTexT, in order to apply the co-training algorithm to text classification problems. Experimental results using co-training on three data sets are described. Two data sets are related to text classification and the other one to web-page classification. Results, which range from excellent to poor, show that co-training, similarly to other semi-supervised learning algorithms, is affected by modelling assumptions in a rather complicated way.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2004-08-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.