
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Orchestrating and Adapting of Dungeon Levels, Locked-door
Missions, and Enemies

Breno Maurício de Freitas Viana
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Breno Maurício de Freitas Viana

Orchestrating and Adapting of Dungeon Levels, Locked-door
Missions, and Enemies

Dissertation submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Master in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Claudio Fabiano Motta Toledo

USP – São Carlos
May 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

V614o
Viana, Breno Maurício de Freitas
 Orchestrating and Adapting of Dungeon Levels,
Locked-door Missions, and Enemies / Breno Maurício
de Freitas Viana; orientador Claudio Fabiano Motta
Toledo. -- São Carlos, 2022.
 101 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2022.

 1. Orquestração de Conteúdo. 2. Geração de Níveis.
3. Geração de Inimigos. 4. Geração Adaptativa. 5. MAP-
Elites. I. Toledo, Claudio Fabiano Motta, orient.
II. Título.

Breno Maurício de Freitas Viana

Orquestrando e Adaptando Níveis de Calabouço, Missões
de Portas Fechadas e Inimigos

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Claudio Fabiano Motta Toledo

USP – São Carlos
Maio de 2022

I dedicate this work to my family and friends, who always give me the support I need.

ACKNOWLEDGEMENTS

First, I thank God for the strength to overcome the difficulties during the master’s degree.
Second, to my parents, Solange Freitas and Aurélio Viana, sister, Larissa Viana, and girlfriend,
Raymara Almeida, for their care, support, concern for my well-being, and faith in me.

I also thank to my old pals from Universidade Federal do Rio Grande do Norte (UFRN),
Débora Oliveira, Gustavo Alves (Koruja), Gustavo Silvino, Felipe Barbalho, Murilo Bento, Raul
Silveira, and Patrícia Cruz. To my new ones from Universidade de São Paulo (USP), Marcos
Gôlo and Adailton Araujo. Thank my other friends, Victor Lael, Allan Freitas, and Selan dos
Santos. I also thank my therapist. Thank you all for the talks, advices, moments of relaxation,
and your friendship. You were crucial to helping me face the challenge of completing a master’s
degree at home during the COVID-19 pandemic.

I acknowledge my fellow post-graduate Leonardo Tórtoro Pereira for discussing and
helping me during the development of the algorithms of this work. And my advisor Prof. Dr.
Claudio Fabiano Motta Toledo, for guiding me during this research. Finally, I acknowledge
the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

“So why we try so hard in this place?

When pain and suffering is a guarantee and happiness is a phase”

When We Were Younger, SOJA

RESUMO
VIANA, B. M. F. Orquestrando e Adaptando Níveis de Calabouço, Missões de Portas Fe-
chadas e Inimigos. 2022. 101 p. Dissertação (Mestrado em Ciências – Ciências de Computação
e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2022.

Técnicas de Geração Procedural de Conteúdo, ou Procedural Content Generation (PCG), podem
ser usadas para gerar automaticamente o conteúdo de jogos ou aumentar a criatividade e a
produtividade dos designers. Além disso, PCG pode funcionar como um recurso de jogo,
fornecendo conteúdo diversificado e direcionado aos jogadores. Nesse contexto, abordamos o
problema da orquestração de conteúdo adaptativo, especificamente explorando como coordenar
a geração de níveis, missões e inimigos para um jogo de ação-aventura e diferentes tipos
de jogadores. Assim, a presente dissertação de mestrado propõe um sistema de PCG para
experiências de jogo com diferentes jogadores. Nosso sistema é focado em três diferentes facetas
do jogo, níveis de masmorras, narrativas (missões) e regras (inimigos), e composto por três
módulos, orquestrador, classificador e protótipo de jogo. O módulo orquestrador coordena dois
algoritmos para gerar níveis e inimigos; ambos aplicam MAP-Elites para manter uma variedade
de soluções sem perder qualidade. A abordagem de geração de níveis cria masmorras com
inimigos (faceta de níveis) e missões de portas trancadas (faceta de narrativas). Por sua vez, a
abordagem de geração de inimigos cria inimigos com diferentes atributos e comportamentos
(faceta de regras). Em seguida, o módulo classificador recebe as respostas dos jogadores dadas
a um breve questionário sobre suas preferências de jogo para categorizar seus perfis. Para
adaptar os conteúdos, definimos objetivos diferentes de cada gerador para cada tipo de jogador.
Em seguida, com base no tipo de jogador, o módulo orquestrador combina adequadamente os
níveis e inimigos gerados anteriormente. Para isso, projetamos o orquestrador para filtrar e
selecionar inimigos coerentes colocados nas salas dos níveis. O módulo de protótipo de jogo
é onde validamos os conteúdos gerados pelo nosso sistema e coletamos dados dos jogadores.
Nossos resultados mostram que os dois algoritmos MAP-Elites convergem com precisão quase
toda a população na maioria das execuções e maioria dos casos. Os feedbacks dos jogadores
mostram que gostaram dos níveis que jogaram e dos inimigos que enfrentaram. Além disso,
a maioria deles não poderia indicar que um algoritmo criou os níveis ou os inimigos. Nosso
sistema apresentou resultados positivos para entregar conteúdo adaptável de forma adequada
para diferentes tipos de jogadores, por meio de um processo simples de criação de perfil de
jogadores. Assim, podemos concluir que nosso sistema PCG pode gerar níveis e inimigos
capazes de entreter diferentes jogadores.

Palavras-chave: Orquestração de Conteúdo, Geração de Níveis, Geração de Inimigos, Geração
Adaptativa, MAP-Elites.

ABSTRACT

VIANA, B. M. F. Orchestrating and Adapting of Dungeon Levels, Locked-door Missions,
and Enemies. 2022. 101 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Ma-
temática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2022.

Procedural Content Generation (PCG) techniques can be used to automatically generate game
content or increase the designers’ creativity and productivity. Besides, PCG can work as a
game feature by providing diverse and targeted content for players. In this context, we tackle
the problem of adaptive content orchestration, specifically by exploring how coordinate the
generation of levels, missions, and enemies for an Action-Adventure game and different types
of players. Thus, the present master’s thesis proposes a PCG system to provide adaptive
gameplay experiences for different players. Our system is focused on three different game facets,
dungeon levels, narratives (missions), and rules (enemies), and it comprises three modules,
orchestrator, classifier, and game prototype. The orchestrator module coordinates two algorithms
for generating levels and enemies; both apply MAP-Elites to maintain a variety of solutions
without losing quality. The level generation approach creates dungeons with enemies (levels
facet) and locked-door missions (narratives facet). Next, the enemy generation approach creates
enemies with different attributes and behaviors (rules facet). The classifier module receives the
players’ answers to a brief questionnaire regarding their gameplay preferences to categorize
players’ profiles. To adapt the contents, we defined different goals of each generator for each
player type. Based on the player type, the orchestrator module appropriately combines the
previously generated levels and enemies. We designed the orchestrator to filter and select
coherent and good enemies to place in the levels’ rooms. The game prototype module is where
we validate the contents generated by our system and collect data from the players. Our results
show that the two MAP-Elites algorithms accurately converge almost the whole population with
many executions and cases. The players’ feedbacks show that they enjoyed the levels played and
the enemies faced. Besides, most of them could not indicate that an algorithm created the levels
or the enemies. Our system presented positive results for delivering adaptive content properly
for different types of players through a simple player profiling process. Thus, we can conclude
that our PCG system can generate levels and enemies to entertain different players.

Keywords: Content Orchestration, Level Generation, Enemy Generation, Adaptive Generation,
MAP-Elites.

LIST OF FIGURES

Figure 1 – Screenshots of dungeons of Action-Adventure games. 32

Figure 2 – Barriers of Pokémon franchise (Nintendo, 1996). 33

Figure 3 – The MAP-Elites algorithm tries to find the best solution (or performance)
for each map’s point (i.e., low-dimensional feature space) searching in the
high-dimensional space.The user chooses two features to define the interested
space dimensions, which discretizes the search space. 38

Figure 4 – Bartle’s player types chart. 42

Figure 5 – PCG System Diagram. The red arrows represent the communication between
modules. First, the Player Profile classifies the player type from the pre-
questionnaire answers and then sends it to the Orchestrator. Based on the
player type, the orchestrator coordinates the creation of levels and enemies
and returns a list of levels populated by enemies to the Game Prototype. . . 56

Figure 6 – PCG System usage flowchart. The gray rectangles and the red arrows repre-
sent the player usage flow. The player can play several levels; thus, they may
loop between game and post-questionnaire (the dotted red arrow). The light
gray rectangles and the dotted blue arrows represent the game prototype’s
background tasks: identifying the player type and sending adapted content to
the game prototype. 56

Figure 7 – Screenshot from the game prototype. The player is the yellow robot. The
other characters are the enemies. The orange sprites are the enemies’ projec-
tiles they shoot and bombs they throw towards the player. 57

Figure 8 – List of enemies of our game prototype. Slimes have no weapon. Swordsmans
use swords. Bower mages shoot arrows. Bomber mages throw bombs.
Shieldsmans hold shields. Healers use cure spell to heal other enemies. . . . 58

Figure 9 – The main interactive objects of the levels of our game prototype. 59

Figure 10 – Handcrafted example of a genotype-phenotype level translation. (a) presents
the level genotype and (b) presents the resulting phenotype. The root node S

represents the starting room. Nodes with R (Right), D (Down), and L (Left)
represent the direction the parent node connects with them. The numbers
in the nodes are keys. The numbers in the dashed edges are locks. Rooms
are always placed in even values of the x and y coordinates, while corridors
are placed in coordinates with different parities. By comparing the node
colors with the wind rose, we see that a parent room is considered in the
north direction regarding any of its child rooms. 62

Figure 11 – The map of MAP-Elites population. The red cell represents a dungeon with
leniency between 0.4 and 0.5 and an exploration coefficient between 0.6 and
0.7. The blue cell represents a dungeon with leniency between 0.2 and 0.3
and an exploration coefficient between 0.8 and 0.9. Thus, the blue level has
more reference rooms further to each other than the red one, and it also has
more rooms with enemies. 63

Figure 12 – The map of MAP-Elites population. The red cell represents a melee enemy
that follows the player to hit with a sword. The blue cell represents a ranged
enemy that flees from the player while throwing bombs towards them. . . . 68

Figure 13 – Example of a MAP-Elites population of levels with 20 rooms, 4 keys, 4 locks,
30 enemies, and linear coefficient equal to 2. Each table cell corresponds
to an Elite. The small squares represent corridors, and the bigger squares
represent rooms. The white room with a purple square within it is the start
room. The purple room with a white square within it is the goal room. White
rooms have no enemies while red rooms have enemies within, the more
intense the shade of red, the more enemies there are. Colored corridors are
locked, and their keys are colored circles within rooms. 76

Figure 14 – The volunteer players’ experience (90 out of 96). Six of them did not answer
the questions. 79

Figure 15 – Bar charts of answers of the 74 players for 121 levels. Each bar corresponds
to the number of levels evaluated for the respective value of the five-point
Likert scale. 80

Figure 16 – Bar charts of answers for question Q5 (“I liked the challenge of finding the
keys to this level”) of 57 players for 93 levels. These players answered,
through a pre-questionnaire, they enjoy exploring. Each bar corresponds to
the number of levels evaluated for the respective value of the five-point Likert
scale. Each figure correspond to a descriptor of exploration coefficient. . . . 81

Figure 17 – Bar charts of answers for question Q3 (“The challenge was just right”) of 43
players for 74 levels. These players answered, through a pre-questionnaire,
they enjoy battles. Each bar corresponds to the number of levels evaluated
for the respective value of the five-point Likert scale. Each figure correspond
to a descriptor of leniency. 82

Figure 18 – Bar charts of answers of the 75 players after playing 124 levels. Each bar
corresponds to the number of levels evaluated for the respective value of the
five-point Likert scale. 83

Figure 19 – Bar charts of answers for question Q1 (“The level was fun to play”). Each
bar corresponds to the number of levels evaluated for the respective value of
the five-point Likert scale. 83

Figure 20 – Bar charts of answers for question Q9 (“The enemies of this level were
difficult to defeat”). Each bar corresponds to the number of levels evaluated
for the respective value of the five-point Likert scale. 83

Figure 21 – Bar charts of answers for question Q3 (“The challenge was just right”). Each
bar corresponds to the number of levels evaluated for the respective value of
the five-point Likert scale. 84

Figure 22 – Bar charts of answers for question Q3 (“The challenge was just right”) of 43
players for 74 levels. These players answered they enjoy battles. Each bar
corresponds to the number of levels evaluated for the respective value of the
five-point Likert scale. 84

Figure 23 – Bar charts of answers for question Q10 (“The enemies I faced were created
by humans”). Each bar corresponds to the number of levels evaluated for the
respective value of the five-point Likert scale. 84

Figure 24 – Bar chart grouping the count of answers for each point in the 5-point Likert
scale for all questions in the pre-questionnaire (Table 5). Strongly Disagree
responses are in red, Disagree in yellow, Neutral in green, Agree in blue, and
Strongly Agree in purple. 85

Figure 25 – Bar chart of answers by profile. Since players could answer after each
playthrough (i.e., playing each level), there are more answers than the num-
ber of total players. From left to right: Achievement (A), Creativity (C),
Immersion (I), and Mastery (M). 86

Figure 26 – Box plot charts, grouping the answers for each post-questionnaire question
by the player’s actual profile. The dark lines highlight the median, and the
triangles mark the average. From left to right: Achievement (A), Creativity
(C), Immersion (I), and Mastery (M). 86

Figure 27 – Bar chart of answers by Actual Profile and Given Profile. The dark colors are
the answers of players who were classified as their actual profile. The light
colors are the answers of players who were given other profiles. 87

Figure 28 – Box plot charts, grouping the answers for each post-questionnaire question
by the pair of player’s actual profile and given profile. The dark lines high-
light the median, and the triangles mark the average. From left to right:
Achievement (A), Creativity (C), Immersion (I), and Mastery (M). 88

LIST OF ALGORITHMS

Algorithm 1 – Basic Evolutionary Algorithm. Adapted from (EIBEN; SMITH et al.,
2003). 37

Algorithm 2 – Enemy Selection Process. 72

LIST OF TABLES

Table 1 – Player profiling and content adaptation literature summarizing and comparison
with our work. 45

Table 2 – Level generation literature summarizing and comparison with our work. . . . 49
Table 3 – Enemy generation literature summarizing and comparison with our work. ‘P’

defines the partially generated enemy features. 51
Table 4 – Multiple content generation system literature summarizing and comparison

with our work. The letters abbreviates the creative facets: Visuals, Audio,
Narrative, Level, Rules, and Gameplay. ‘P’ defines the partially generated
creative facets. 54

Table 5 – Player preferences pre-questionnaire on a 5-point Likert scale, designed to un-
derstand each player’s profile and experience. The player types are abbreviated
as follows: Mastery (M), Achievement (A), Creativity (C), and Immersion (I).
‘*’ means that the 5-point Likert answer is converted to [-2, 2] interval. 60

Table 6 – List of attributes of the enemy’s genotype. The line between attributes repre-
sents the crossover point. 66

Table 7 – Results of fitness obtained after 30 executions of our level generation approach.
Each table caption represents a set of parameters: (number of rooms)-(number
of keys)-(number of locks)-(number of enemies)-(linear coefficient). Each
table cell corresponds to an Elite. Descriptors of leniency are the rows. De-
scriptors of exploration coefficient are the columns. 74

Table 8 – Results of fitness obtained after 100 executions of our enemy generation
approach. 77

Table 9 – Results of time in seconds obtained after 100 executions of our enemy genera-
tion approach. 78

Table 10 – Average (AVG) and Standard Deviation (STD) of answers of the 74 players
for 121 levels. 81

LIST OF ABBREVIATIONS AND ACRONYMS

D Down

KR Key Room

L Left

LR Locked Room

NR Normal Room

R Right

AI Artificial Intelligence

ANN Artificial Neural Network

ASP Answer Set Programming

AVG Average

BDI Belief-Desire-Intention

BLX-α Blended Crossover α

CA Cellular Automata

CME Constrained MAP-Elites

CNN Convolutional Neural Network

CoG Conference on Games

D-NSLC Deluged Novelty Search Local Competition

EA Evolutionary Algorithm

EC Evolutionary Computation

EDD Evolutionary Dungeon Designer

FDG Foundations of Digital Games

FI2Pop Feasible-Infeasible Two Population

FPS First-Person Shooter

GA Genetic Algorithm

GG Generative Grammar

GP Genetic Programming

GVG-AI General Video Game Artificial Intelligence

HCI Human-Computer Interaction

ICME Interactive Constrained MAP-Elites

MAP-Elites Multi-dimensional Archive of Phenotypic Elites

MCNS Minimal Criteria Novelty Search

ME MAP-Elites

MMO Massive Multi-Player Online

MMORPG Massive Multi-Player Online Role-Playing Game

MUD Multi-User Dungeon

NPCs Non-Playable Characters

NS Novelty Search

NSLC Novelty Search Local Competition

PAE Parallel Evolutionary Algorithm

PCG Procedural Content Generation

PDG Procedural Dungeon Generation

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PvE Player versus Environment

PvP Player versus Player

QD Quality Diversity

STD Standard Deviation

UPEQ Ubisoft Perceived Experience Questionnaire

CONTENTS

1 INTRODUCTION . 27

2 BACKGROUND . 31
2.1 Action-Adventure Games . 31
2.2 Game Features . 32
2.3 Procedural Content Generation . 33
2.4 Evolutionary Computation . 36
2.5 Player Profiling and Content Adaptation 38

3 LITERATURE REVIEW . 41
3.1 Player Profiling and Content Adaptation 41
3.2 Level Generation . 45
3.3 Enemy Generation . 49
3.4 Generation of Multiple Content . 52

4 METHODOLOGY . 55
4.1 PCG system Overview . 55
4.2 Game Prototype . 56
4.3 Player Profiling . 59
4.4 Level Generator . 61
4.4.1 Level Representation . 61
4.4.2 Level Generation Process . 62
4.5 Enemy Generator . 65
4.5.1 Enemy Representation . 65
4.5.2 Enemy Generation Process . 67
4.6 Orchestrating Adaptive Content . 70

5 RESULTS . 73
5.1 Level Generation . 73
5.2 Enemy Generation . 76
5.3 Gameplay Feedback . 79
5.3.1 Feedback of Levels . 79
5.3.2 Feedback of Enemies . 82
5.4 Player Profiling . 85

6 FINAL REMARKS . 91

BIBLIOGRAPHY . 93

27

CHAPTER

1
INTRODUCTION

The game industry has become the most popular and profitable entertainment industry in
the world (Game Terra, 2018; RICHTER, 2020). This industry reached U$139.9 billion in 2020,
and it still presents a growth projection for the following years (TAKAHASHI, 2021). Newzoo
forecasts the game market will surpass U$200 billion in 2023 (WIJMAN, 2021). The Brazilian
game market is the world’s 13th most extensive and Latin America’s second one, and it had a
revenue of about U$1.5 billion in 2019 (Koema, 2019; Statista, 2019).

The game industry’s growth has encouraged the increase of investment in game develop-
ment. For instance, Grand Theft Auto V (Rockstar Games, 2013), a.k.a. GTA V, is both the most
expensive game (costing about $265 million) and the most profitable entertainment product ever
made (reaching $ 6 billion in 2018 and remains increasing) (VALENTE, 2019; DONNELLY,
2018). GTA V, as well as other AAA games, has a vast map that required several game designers
to develop it, and this justifies a big part of the investment of this game. However, new games tend
to feature larger maps and more content that requires more game designers, and, consequently,
it increases the development time and reduces the profit. Furthermore, indie game developers
struggle to develop high-quality games due to limited investment. To solve these problems,
both AAA and indie game developers use Procedural Content Generation (PCG) techniques to
automatically generate game content to increase the designers’ creativity and productivity and
provide procedural generation as a game feature for their games.

The gaming audience has been interested in the procedural generation as a game feature
since the release of the game Rogue (TOY; WICHMAN, 1980) that generated its levels aiming to
save memory. After that, PCG become a game feature not only for level generation but also for
other types of game content, e.g. weapons in Borderlands franchise (Gearbox Software, 2009)
and in Galactic Arms Race (Evolutionary Games, 2014). The Rogue’s success also started two
new game genres, the Rogue-like and the Rogue-lite genres. The main common feature of both
Rogue derived genres is the dungeon generation. Moonlighter (Digital Sun, 2018) and Dead

Cells (Motion Twin, 2018) are two recent examples of successful Rogue-like games.

28 Chapter 1. Introduction

Eventually, academic researchers started to explore PCG problems due to the challenges
in content generation, e.g., the feasibility assurance of peculiar content features. Moreover,
research is not restricted to game-related content, but there is also the generation of realistic
environments in computer graphics research (HEWGILL; ROSS, 2004). Nevertheless, the
research on procedural game content generation explores several contents, e.g., maps, levels,
missions, items, weapons, stories, among others (TOGELIUS; SHAKER; NELSON, 2016).
Newly, researchers are exploring the creation of multiple contents (facets) aiming to compose
a whole game (LIAPIS et al., 2019). These methods use algorithms to orchestrate (control)
generative processes and create coherent combinations of such contents (LIAPIS et al., 2019).

In level generation research, the Procedural Dungeon Generation (PDG) is one of the
most commonly explored topics of research on PCG without signs of a downward trend (LIAPIS,
2020; VIANA; SANTOS, 2021). It is not a surprise since dungeons are very common scenarios
of several game genres, e.g., Action, Adventure, Platform, Role-Playing, Rogue-like, Rogue-lite,
among others. Linden, Lopes and Bidarra (2014) define dungeons as labyrinth environments that
interrelate game features and affect the players’ progression both in time and space. Besides,
dungeons are composed of puzzles, rewards, and challenges (most battles with enemies). The
enemies’ goal is to hinder the players’ progression by killing them. The way they hinder this
progress is distinct and hence may require players to use specific strategies to defeat them.

In this context, our research tackles the problem of adaptive content orchestration. The
PCG research literature presents some works on content orchestration; however, they did not
orchestrate the generation of dungeon levels, missions, and enemies nor adapt them for players
(see details in Chapter 3). Thus, to fill such a gap in, the present master’s thesis proposes a PCG
system to provide adaptive gameplay experiences for different players concerning their profiles.
This master’s project is part of a wider one of our research group, led by the Ph.D. candidate
Pereira (2021). Thus, our PCG system is actually part of a bigger PCG system.

Following, we state the research question which guided us in this master’s research:

How can a system orchestrate the generation of levels, narratives, and rules facets and

adapt them to provide coherent combinations of contents for different types of players?

To answer this question, we contributed to the PCG system in three modules: orchestrator,
classifier, and game prototype. Our part of the system is focused on two different game facets:
levels, narratives, and rules – see Section 2.3 for more details. The orchestrator module holds
two procedural generation algorithms for levels and enemies. The level generation approach
creates dungeons with enemies (levels facet) and locked-door missions (narratives facet) – see
Section 2.2 for more details. Next, the enemy generation approach creates enemies with different
attributes and behaviors (rules facet). Both algorithms apply MAP-Elites, a Quality Diversity
(QD) approach that, like others, maintains a variety of solutions without losing quality. The
use of such a Evolutionary Algorithm (EA) class is highly recommended for PCG systems

29

(GRAVINA et al., 2019). In the classifier module, we define player types from answers given to
a brief questionnaire regarding their gameplay preferences. To adapt the contents, we defined
different goals of each generator for each player type. With such a classification, we appropriately
combine the previously generated levels and enemies in the orchestrator module. To combine
these contents, we designed the orchestrator to filter and select coherent and good enemies to
place in the levels’ rooms. The game prototype module is where we validate the algorithms
developed and collect data from the players.

The results of our computational experiments show that the two of our algorithms
accurately converge almost the whole population within executions for different cases. Regarding
the players’ feedback, our results show that most of the players enjoyed the levels played and
enemies faced. We also successfully created enemies ranked as easy, medium, or hard to face.
Besides, most players could not indicate that an algorithm created the levels or the enemies.
Through a simple player profiling process, our system presented positive results for delivering
adaptive content properly for different types of players. Thus, we conclude that our PCG system
can generate levels and enemies to entertain players.

The remaining of this document is structured as follows. Chapter 2 presents the back-
ground concepts related to our research: procedural generation in games, evolutionary techniques
of PCG, the game genre and its most common features in which we are interested, and how
we can adapt content from players’ data. Chapter 3 details the most important works in the
literature related to this research. In Chapter 4, we present our PCG system and how their
modules work and communicate. Furthermore, we describe the game prototype in which we
intend to run experiments to validate our approach. Chapter 5 presents the results obtained in our
computational experiments and the experiments with human players. Finally, in Chapter 6, we
present our final remarks on our master’s dissertation.

31

CHAPTER

2
BACKGROUND

This chapter presents the main concepts present in our research. Section 2.1 introduces
the Action-Adventure game genre since it is the genre of our game prototype. Next, Section 2.2
presents the definitions of game features that are present in our game. Then, Section 2.3 briefly
describes the history of PCG, the most accepted definition of PCG in the scientific community,
the concepts related to the generation of multiple contents, and the PCG taxonomy. In Section 2.4,
we overview the evolutionary algorithms, especially the ones applied on PCG, and we present
the one we applied in our algorithms. Finally, Section 2.5 introduces the concepts of user
classification; then, we describe how it can be applied in the game context to adapt content.

2.1 Action-Adventure Games

As we can assume by its name, an Action-Adventure game is a game genre that combines
elements from Action and Adventure games (Video Game History Wiki, 2009), i.e., they feature
combat, skill, and other physical challenges together with space exploration and item gathering.
These games usually present an elaborated story around a character controlled by the player in a
big world. Moreover, Action-Adventure games present non-trivial puzzles that are intrinsically
related to the level map and, sometimes, also to their story. This genre presents various types of
puzzles, e.g., temporal, cognitive, or dexterity puzzles.

There are several examples of successful Action-Adventure games, some of them are:
The Legend of Zelda franchise (Nintendo, 1986) from which we highlight The Legend of Zelda:

Link’s Awakening (Figure 1a) and The Legend of Zelda: Breath of the Wild (the winner of The
Game of the Year in The Game Awards 2017); Uncharted franchise (Naughty Dog, 2007) – from
which we stand out Uncharted: The Lost Legacy; and, Horizon Zero Dawn (Guerrilla Games,
2017) (Figure 1b). The massive success of Action-Adventure games in the industry had reflected
in the academy. Several researchers developed games of this genre to test their PCG algorithms
for both level and puzzle generation (DORMANS, 2010; VALTCHANOV; BROWN, 2012;

32 Chapter 2. Background

SUMMERVILLE et al., 2015; SUMMERVILLE; MATEAS, 2015; LIAPIS, 2017; LAVENDER;
THOMPSON, 2017; SMITH; PADGET; VIDLER, 2018; PEREIRA; PRADO; TOLEDO, 2018).

Figure 1 – Screenshots of dungeons of Action-Adventure games.

(a) Link’s Awakening (YU, 2008).

Source: Unity Forum1.

(b) Horizon Zero Dawn (Guerrilla Games, 2017).

Source: MoGaming (YouTube Channel)2.

2.2 Game Features

Although the differences between game genres, they share several types of game content.
Game content refers to any features contained in games: levels, maps, textures, stories, items,
missions, music, weapons, characters, among others (TOGELIUS; SHAKER; NELSON, 2016).
Thus, to better understand game features, we present some basic concepts of some game contents
related to Action-Adventure games.

A level is the playable space where the game happens. It can be represented in several
ways depending on the game genre. Regarding games that try to reproduce natural environments
or buildings, levels may be composed of continuous areas or discretized through rooms. Levels
may present various features according to their types of scenarios, e.g., they may be represented
as dungeons. According to Linden, Lopes and Bidarra (2014), dungeons are labyrinth envi-
ronments composed of challenges, rewards, and puzzles interrelated with the play-space and
time. Dungeons, therefore, provide highly structured gameplay experience (LINDEN; LOPES;
BIDARRA, 2014). The dungeon topology presents an entrance, a goal that may be an exit or a
final challenge, and a labyrinth as an intermediate area.

Furthermore, levels are composed of obstacles that try to prevent the player’s progression;
therefore, they must be beaten or solved by the player. These obstacles may be enemies, traps

or puzzles. Enemies hinder the player’s progression through actions, mainly by damaging the
players’ life points. These actions may be different for different enemies and may require specific
strategies to defeat them. Puzzles usually require thinking, sorting, or searching for items in the

1 Unity Forum: https://forum.unity.com/threads/new-links-awakening-level-design-tools.694978/.
2 MoGaming (YouTube Channel): https://youtu.be/ioIBi6E2i10.

https://forum.unity.com/threads/new-links-awakening-level-design-tools.694978/
https://i.ytimg.com/vi/ioIBi6E2i10/maxresdefault.jpg
https://forum.unity.com/threads/new-links-awakening-level-design-tools.694978/
https://youtu.be/ioIBi6E2i10

2.3. Procedural Content Generation 33

level’s space to be solved. They typically do not have enemies, e.g., spatial puzzles3. Barriers

are a particular type of obstacle because they temporarily block the player from reaching some
game area. Barriers may be treated as puzzles once they usually require similar features to be
unblocked (solved). The most common type of barrier in games is locked doors that are open
by key items. However, as Figure 2 shows, a barrier may be the sea or a giant sleeping monster
blocking a route that requires, respectively, the swimming/surfing skills or only a specific key
item that makes such monster get out of the way to unlock other regions in the game. Thus, items

are game features that allow the player to perform some temporary or permanent effects, leading
to changes in the game state whether or not beneficial for gameplay, e.g., keys that unlock doors.
A mission may be a single task, or it may be composed of a series of multiple tasks (or sub-goals).
There are several types of missions, e.g., escort missions and collection missions. Therefore,
we consider the collection of keys to unlock barriers as missions. Enemies, traps, puzzles, and
missions provide different gameplay challenges, e.g., dexterity or cognitive challenges. These
challenges must provide rewards for the player, such as coins, items, or skills.

Figure 2 – Barriers of Pokémon franchise (Nintendo, 1996).

(a) The Snorlax (a Pokémon) is sleeping and
blocking the route, and it only can be woken
up and unblock the route with a PokéFlute.

Source: Bulbapedia4.

(b) The sea is not a passable area until players
have a Pokémon with the surf skill, i.e., it
prevents players from reaching another area.

Source: Bulbapedia5.

2.3 Procedural Content Generation

In the 80s, neither personal computers nor consoles did not have a billion bytes available
as they have nowadays. Therefore, software developers had to deal with this problem by providing
robust functionalities through simple codes. This problem was more severe in games than other
software since they could have several levels and other game features. To avoid this problem,
Rogue (TOY; WICHMAN, 1980), a dungeon crawler game, and Elite (BELL; BRABEN, 1984),

3 Spatial puzzles are solved by organizing spread blocks in specific places, for instance, Sokoban puzzles.
4 PokéFlute: https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9_Flute.
5 Surf (move): https://bulbapedia.bulbagarden.net/wiki/Cerulean_Cave.

https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9_Flute
https://bulbapedia.bulbagarden.net/wiki/Cerulean_Cave
https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9_Flute
https://bulbapedia.bulbagarden.net/wiki/Cerulean_Cave

34 Chapter 2. Background

space exploration and combat game, introduced algorithms capable of dynamically creating
dungeon levels and planets, respectively. That was the rising of Procedural Content Generation.

The increase of computer capacities of data processing and graphic processing allows
adding more content in games, e.g., creating bigger maps, and improving content quality. Thereby,
the game development started to sophisticate, demanding new and more specialized professionals,
and, consequently, it became increasingly expensive and required more development time. In
this context, PCG can help to solve these issues since it can:

∙ decrease the need for human designers to generate content;

∙ increase both productivity and creativity of human designers through design suggestions;

∙ provide both control and balancing of the game difficulty or other features;

∙ act as a game feature by increasing the game replayability once it provides content variety.

Examples of games that use PCG as feature are: Civilization VI, which procedurally generates
maps (Firaxis Games, 2016); Moonlighter, which generates dungeon levels (Digital Sun, 2018);
No Man’s Sky, which generates whole worlds, animals, among others (Hello Games, 2018).

So far, we have described the PCG history and the advantages of using it, especially in
games. Nevertheless, we still did not define it properly, nor how its methods can be classified.
Several researchers have defined Procedural Content Generation (PCG); however, the most
accepted definition was proposed by Togelius, Shaker and Nelson (2016). According to them,
PCG is a method of game content creation fully performed by computers or associated with
human designers or gamers. Therefore, we can classify as PCG programs both an automatic
generation library and software that provides suggestions of changes in human designers’ levels.

PCG research has been growing in recent years (LIAPIS, 2020). Several research groups
worldwide explore different generation approaches for creating different game content. Most of
the recent works explore the generation of narratives, levels, rooms, among others (ONO; OGATA,
2018; PEREIRA et al., 2021; GUTIERREZ; SCHRUM, 2020). Moreover, PCG approaches may
generate multiple contents at the same time, such as levels with missions (SMITH; PADGET;
VIDLER, 2018; PEREIRA et al., 2021; GELLEL; SWEETSER, 2020). The works generating
multiple contents are not new; however, the concept of coordinating multiple PCG systems is.
Such a concept was introduced by Liapis et al. (2019), where they analyzed works that somehow
create multiple contents, introducing the concepts of creative facets of games and orchestration.
Creative facets, or just facets, regards what can be procedurally generated. A total of six different
creative facets is defined:

Visuals determines the visual representation of the game in terms of rendering; the visuals of
games range from photo-realistic to abstract.

2.3. Procedural Content Generation 35

Audio defines the feel and mood of the game through background music and sounds.

Narrative defines the main motivation to play games. They do not need highly elaborated stories
and lengthy dialogues; they may have a simple sequence of events and missions.

Levels are the virtual space where the game takes place. They may be simple, as in Pong (Atari,
1972), or complex spaces, as labyrinths. Furthermore, games may have several short levels
or just a single colossal level.

Rules define what a player can or cannot do in the game by determining the transition between
game states after players use a mechanic. These mechanics allow players to interact with
the play-space of the game.

Gameplay regards simulated experiencing games, i.e., is the process by which an agent interacts
with a game. To better simulate, agents should mimic different types of players.

The game design process may require coordinating such facets. The authors defined
orchestration as “the collaboration of multiple computational designers, each focusing on the
creation of content primarily for one facet”. Orchestration is a metaphor that came from music
orchestration for the generative process of game design. The content orchestration process can
be performed in two ways: top-down or bottom-up. In the former way, the compositions must
provide as much detail as possible to the generators that work independently. In the latter way,
the generators have individual responsibility (one facet) for the content they create and must
evaluate how their content matches other generators’ content to reach consensus (i.e., generate a
coherent and playable combination of the contents they generated).

Furthermore, there are four intermediate approaches. Liapis et al. (2019) named these
approaches based on terms of music. The first is the Creative Maestro, which is a flexible top-
down approach. The maestro commands the generators to create content, but they can reinterpret
these commands to generate better content. In this case, the modification propagates to the
maestro and the other generators to ensure feasibility when combining the contents. The second
approach is the Jamming with Fake Sheets, which consists in defining the necessary elements
that compose the game structure and letting the generators build on and expand it without
restriction regarding content. This one is the approach where our research fits in. In third, we
have the approach of Vertical Slices, where contents are generated and may be upgraded through
interactions to add a new game mechanic. However, when an iteration generates content that
under-performs regarding the previous one, the previous version prevails while the new one is
discarded. Finally, the fourth approach is Post-production. This approach evaluates the generated
content and applies some repairs to smooth out errors or dissonances and incoherence among
contents. The post-production can be performed together with the other approaches.

Besides the classification of creative facets and orchestration processes, PCG methods
also have their taxonomy, defined by Togelius, Shaker and Nelson (2016). This taxonomy

36 Chapter 2. Background

has seven classifications of PCG approaches: Content Requirement, Outcome Randomness,
Generation Time, Generation Control, Generality, Generation Method, and Content Audience –
we entitled these classes in a published paper (VIANA; SANTOS, 2021).

Content Requirement classifies a game content as necessary or as optional, i.e., it defines the
content is needed to finalize the game and the content that can be ignored by the player
without penalization, respectively.

Outcome Randomness defines if a technique is deterministic, i.e., when a software generates
the same content for the same parameters; or it is stochastic, i.e., when it always generates
different contents even with the same parameters.

Generation Time determines if the content is generated offline, i.e., before the gameplay, or
online, i.e., during the gameplay (i.e., while the player is playing the game).

Generation Control classifies the method regarding its degrees of control provided; it can be
provided by a single random seed (a single dimension of control) or by a set of parameters
(several dimensions of control).

Generality defines the target audience for which the content was generated; it is categorized
as an adaptive generation when the generator can learn the gamers’ tastes and use it to
generate targeted content; otherwise, it is generic generation.

Generation Method determines how the generation is carried out; a method is constructive if it
generates the content at once in a single execution, or generate-and-test if it performs tests
to validate the content feasibility.

Content Authorship classifies as an automatic generation if the content is generated only by
computers or as mixed-initiative if generated with human support.

Independently of the PCG classification, there are several ways of generating content.
For instance, some constructive approaches are usually specially designed according to the
type of content they intend to generate. Nevertheless, search-based approaches, especially the
evolutionary ones, are widely used to develop PCG methods to provide feasibility and variety.

2.4 Evolutionary Computation

This section presents an overview of Evolutionary Computation (EC) approaches usually
applied to PCG methods. EC is a family of stochastic metaheuristic algorithms for search, and
global optimization inspired by theories evolution from biology (EIBEN; SMITH et al., 2003).
These algorithms present the same structure:

2.4. Evolutionary Computation 37

population corresponds to a set of individuals that represent the solutions for the tackled problem
(an evolutionary algorithm may have multiple populations);

fitness function evaluates the individuals’ quality (or capacity of survival);

selection operator selects the parent individuals that will reproduce to generate new individuals
(it may be random or based on their qualities);

reproduction operator breeds an offspring of new individuals;

survival operator selects the individuals that will survive based on their qualities (i.e., the fittest
individuals will remain in the population for the next generation); and,

stop criterion defines when the evolutionary process stops (the most common stop criterion is
set with a fixed number of generations).

Algorithm 1 presents the basic evolutionary process: a stochastic method creates the initial
population; this population reproduces through the reproduction operators (recombination and
mutation) after selecting individuals as parents; then the survival criteria filter the individuals
that will stay alive in the population; the reproduction and survival processes repeat until the stop
criterion is reached. One of the most known EC approach is the Genetic Algorithm (GA), which
is inspired by the natural selection, mutation and crossover over chromosomes (individuals)
from the neo-Darwinian theory of evolution (REEVES, 2010).

Algorithm 1 – Basic Evolutionary Algorithm. Adapted from (EIBEN; SMITH et al., 2003).
1: procedure EVOLUTIONARYPROCESS

2: INITIALIZE population with random individuals;
3: EVALUATE each individual of the population;
4: while STOP CRITERION not satisfied do
5: SELECT parents from the population;
6: RECOMBINE pairs of parents;
7: MUTATE the resulting offspring;
8: EVALUATE the new individuals;
9: SELECT individuals for the new generation;

10: end while
11: return the best individual;
12: end procedure

The first EC approaches intend to find the single best individual in the search spaces.
Thus, the individuals’ similarity is intensified, hindering searching for the best global individual.
One solution for this problem is the Feasible-Infeasible Two Population (FI2Pop), which evolves
two populations of feasible and infeasible individuals and allows interbreeding between them
(KIMBROUGH et al., 2005). Besides, researchers found that different return solutions could
also be attractive for some problems. For instance, it is especially interesting for procedural
generation methods (GRAVINA et al., 2019). Therefore, to solve this problem, Pugh, Soros and

38 Chapter 2. Background

Stanley (2016) introduced a new class of algorithms called Quality Diversity, aiming to maintain
the diversity of solutions without losing quality. They introduced a function to calculate the
distance of similarity of the solutions, which measures the population diversity.

Mouret and Clune (2015) introduced the Multi-dimensional Archive of Phenotypic Elites
(MAP-Elites), or just MAP-Elites (ME), the method we applied for our PCG approaches. The
MAP-Elites approach discretizes the search space into a matrix (feature map), where each
matrix’s cell corresponds to the best individual (elite) of the mapped features, such characteristic
was named as illumination. To discretize the search space, the authors introduced the concept
of feature descriptors. Feature descriptors are lists of values corresponding to an individual’s
attribute or calculated property. Figure 3 shows a visual example of the MAP-Elites population;
in this case, the performance ax refers to the solutions’ quality. The initial population is usually
created by generating random solutions. If the cell is empty, the individual is stored in the cell.
Otherwise, there is a local competition between the individuals and the best one stored in the cell.
The elite individuals are selected as parents of the recombination and or mutation operations
in the offspring process. Inspired by the FI2Pop approach, Khalifa et al. (2018) introduced the
Constrained MAP-Elites (CME), a variation of ME that evolves two populations of feasible and
infeasible individuals for each cell.

Figure 3 – The MAP-Elites algorithm tries to find the best solution (or performance) for each map’s point
(i.e., low-dimensional feature space) searching in the high-dimensional space.The user chooses
two features to define the interested space dimensions, which discretizes the search space.

Source: Mouret and Clune (2015).

2.5 Player Profiling and Content Adaptation

So far, we have explained game features, content generation, and methods of generating
content. However, we need to understand their preferences independently of the method to adapt
content for players. Thus, this section describes how to classify players and how it could be
applied in content adaptation.

2.5. Player Profiling and Content Adaptation 39

Regarding general systems, Jameson (2008) established some ideas about understanding
systems’ usability and adapting these systems to their users. There are two methods of data
collection: explicit input via self-reports and self-assessments; and non-explicit input. Self-
reports aim to objectively collect users’ personal properties (e.g., age, profession, and state).
Self-assessments aim to collect general data to obtain insight into the users’ interest in a topic and
knowledge about it. Finally, non-explicit inputs can be collected from users’ experiences while
using systems for the long run, e.g., using sensors to measure their reactions. These methods are
widely applied by Human-Computer Interaction (HCI) field (JAMESON, 2008). For instance,
Orji, Nacke and Marco (2017) conducted experiments with 660 people based on both implicit
and explicit input and identified personality traces that can define if users would keep using
health games or gamified systems.

In the game context, explicit input can be applied to external or in-game questionnaires,
and the implicit input is the gameplay data. However, in-game questionnaires and gameplay
data are more suitable for content adaptation of digital games. The data gathered can be used to,
for instance, classify players’ preferences regarding battling, explore and provide more (fewer)
harder (easier) enemies, as well as levels with higher (lesser) degrees of exploration, (BARTLE,
2004; VAHLO et al., 2017). In the next chapter, we describe the related works of literature that
somehow tried to classify players and or tried to provide adapted content.

41

CHAPTER

3
LITERATURE REVIEW

This chapter presents the literature review. First, in Section 3.1, we present the works
on player profiling and adaptive content generation. Next, we describe works that focused on
generating levels and enemies, respectively, in sections 3.2 and 3.3. Finally, in Section 3.4, we
review works applying PCG to generate multiple contents. The related works were found in
Google Scholar without applying systematic review criteria.

3.1 Player Profiling and Content Adaptation

To provide adaptive content for players, we need to identify what they enjoy while
playing games. To do so, we need ways to collect data from players and gather information from
them. Therefore, this section presents works that somehow classified players and some works
that used such classification to provide adapted content for players.

Bartle (2004) attempted to identify personality traces and profiles from Multi-User
Dungeon (MUD) and Massive Multi-Player Online Role-Playing Game (MMORPG). The work
defined four categories of players based on two axes (Figure 4). One from interacting to acting,
and the another from players to world, i.e., players may prefer to interact with or act on the
game world or other players. Each quadrant corresponds to one player type: achievers, explorers,
socializers, and killers. Achievers prefer acting in the game world to achieve goals, e.g., gain
points, equipment, and other measurable things. Explorers prefer interacting with the game world
by discovering areas and immersing themselves in the world. Socializers also prefer interacting,
but with other players or Non-Playable Characters (NPCs), i.e., they like the social aspect instead
of the game world. Finally, killers prefer competing and combating other players.

However, some researches contradicted the results of Bartle (2004). For instance, Yee
(2006) created similar categories for Massive Multi-Player Online (MMO) players’ motivations
through explicit data collection. They performed an online survey with a questionnaire composed

42 Chapter 3. Literature Review

Figure 4 – Bartle’s player types chart.

Acting

Interacting

WorldPlayers

Killers Achievers

Socializers Explorers

Source: Adapted from Bartle (2004).

of 40 questions based on Bartle (2004). The authors describe three primary motivations:

Achievement derived from advancement, mechanics, and competition;

Social derived from socializing, relationship and teamwork;

Immersion derived from discovery, role-play, customization and escapism.

The results showed that grouping players by their motivations were better than dividing them
into exclusive categories. One of their main findings is that these motivations are not only, i.e., a
player could also be motivated simultaneously and equally by achievement and immersion.

Vahlo et al. (2017) developed a new player classification based on thousands of player
preferences. They identified the contents and keywords from a qualitative analysis of 700 written
reviews on digital games. Next, all findings are divided into 33 core game dynamics, from which
they created a 7-point Likert questionnaire of 33 items, and the user had to answer how pleasant
they found each game dynamic. A total of 2594 volunteers attended the experiment, and factor
analysis was applied over the results to group the dynamics into five preference factors:

Assault killing, destroying, shooting, running, and others;

Manage acquiring and managing resources, expanding buildings, upgrading items, and others;

Journey exploring, uncovering secrets, making decisions, making in-game friends, and others;

Care taking care of pets and having romantic relationships with characters;

Coordinate puzzle-solving, precise platforming, rhythmic actions, and music-related features.

These factors allowed clustering seven different players’ groups, where four of these groups were
interested mainly in only one factor (except Journey). The remaining groups preferred mixes of
two factors, which corroborates with the results found by Yee (2006).

3.1. Player Profiling and Content Adaptation 43

Melhart et al. (2019), differently from the previous works, collected in-game data to
empirically validate the Ubisoft Perceived Experience Questionnaire (UPEQ), developed by
Azadvar and Canossa (2018) and composed of 21 4-point Likert questions. They collected data
from 298 anonymous players that played Tom Clancy’s The Division (Massive Entertainment,
2016) from 2016 to 2018. Data analysis was carried on to predict the players’ motivations and
feelings. After the implicit data collection, UPEQ is sent to the players to apply the k-means
clustering algorithm identifying Four players types:

Adventurers did not find their preferred niche of play because they are still figuring out the
game’s systems (i.e., new players);

PvE All-Rounders like cooperative Player versus Environment (PvE) missions;

Social DarkZoners prefer to interact and battle with other players – i.e., they prefer Player
versus Player (PvP);

Elites have vast preferences in the game.

Aiming to learn the players’ tastes and behaviors, the authors used the collected data to feed an
Artificial Neural Network (ANN) combined with Radial Basis Function kernels. Nevertheless,
some players diverged their reported tastes from the actual gameplay data. Their approach pre-
sented issues on classifying some characteristics and did not accurately predict some subjective
elements. They concluded that, although it is a challenging task, it is possible to group players
and forecast their preferences, and it should be necessary to model the players directly.

We have described just ways of gathering data from players so far. However, some
researchers used the collected information to provide adaptive content for players. Bicho and
Martinho (2018) developed a PCG approach capable of generating levels online for Infinite
Runner games with adaptive difficulty. The concept of game flow supports their approach
to provide challenges increasingly hard for the players. Instead of collecting data to identify
players’ types, they collect gameplay data to better adapt the game difficulty to the players’ skills.
Obstacles control the game’s difficulty, and there are two ways to avoid them: jumping over them
or using the dash skill to traverse objects. Since they were not trying to identify the player type,
their profiling approach was simple. When the players use one way to overcome an obstacle
using the same strategy, it will be more challenging to avoid the next one. Thus, their approach
was capable of generating adaptive content according to the identified favorite mechanics of
players. Moreover, they found that the players usually apply their favorite mechanics, even it
would be easier to change them. These results encourage the research for more types and more
complex procedurally generated game contents based on the players’ preference.

Heijne (2016) also collected explicit and implicit data for player profiling and used
it in the adaptive content generation process. The players played a clone of The Legend of

Zelda: a Link to the Past (Nintendo, 1986) they developed (HEIJNE; BAKKES, 2017), which

44 Chapter 3. Literature Review

is called Procedural Zelda. This game can generate levels, puzzles, and place enemies based
on the players’ performance. Nevertheless, the generation processes are limited in terms of
diversity and difficulty adjustment. The Procedural Zelda presents two pre-questionnaires, one
for demography (composed of eight questions) and the other for personality testing (consisting
of 120 questions), both in the format of self-report about objective personal characteristics. The
players’ interaction with NPCs, exploration of levels, puzzle-solving, and fights with enemies
are recorded implicitly. After the gameplay, the game presents a post-questionnaire composed
of 41 questions: game difficulty, the difficulty of each component, the player’s behavior, and
preferences regarding each element. Heijne (2016) gathered data from 25 players and classified
them into three groups:

Hardcore spend many hours a week playing in harder difficulties;

Casual do not spend much time playing in easier difficulties;

Ambiguous fit in the middle of both categories mentioned above.

They analyzed the correlations among classifications, personalities, and the players’ performances
with four main findings:

1. overall game experience correlates with the understanding of using the mechanics;

2. performance metrics do not correlate with explicitly provided preferences on mechanics;

3. the best indicators for performance where the players’ previous experience in similar
games and preferring for harder difficulties;

4. players who start exploring a lot tend to eventually lose interest in exploration and focus
only on the main path.

Although the satisfactory reported results, the personality questionnaire they applied presented
120 questions that could not accurately identify the players’ preferences in terms of game content
and difficulty. The respondents may answer inaccurately huge questionnaires or even give up on
them (JAMESON, 2008).

Therefore, when we use questionnaires to define the players’ profiles, we have to provide
little questions to gather high-quality data. For instance, aiming to simulate players’ behaviors,
Rivera-Villicana et al. (2018) create the Belief-Desire-Intention (BDI) model, which is composed
of a questionnaire with ten questions, semi-structured interviews, and gameplay data. They first
collected data from 23 players to create models to simulate their behaviors. Next, to evaluate
their models, they ran them in a Point-and-Click interactive fiction and compared them with
an uninformed player model, which did not mimic any player style. The implicitly gathered
gameplay data was more accurate than the explicitly collected data, which may mean that the

3.2. Level Generation 45

implicit data gathering can be more reliable. Their questionnaire is still a sub-optimal way to
measure the players’ styles. The latter finding of Rivera-Villicana et al. (2018) is interesting
because other works on profile identification, through short questionnaires and in-game data,
often present indecisive results (KONERT et al., 2014; LORIA; MARCONI, 2018).

Bontchev and Georgieva (2018) showed that it is possible to develop an approach capable
of creating adaptive content according to the players’ emotions and gameplay data. Their method
applies multiple linear regression for estimating player styles. However, modeling players from
their feelings, personality, and in-game activity is not a simple task since external sensors are
necessary to measure their sensations, e.g., cameras filming their faces and heart rate sensors.
The sensors like those present theoretical potential for player profiling and content adaptation
purposes, but there is still no evidence that they work. Moreover, these sensors are based on
techniques from psychology and demand help from a specialist to develop the models of players
(COWLEY; CHARLES, 2016).

Table 1 summarizes the reviewed works of this section regarding the use of questionnaires,
gameplay input, emotions, and if they adapted content for players. As we observe, most of them
did not try to adapt content; however, they focused on player type classification. Note that we
disregard the work of Bontchev and Georgieva (2018) in the table since they did not perform
classification from players’ emotions nor content adaptation; they only showed that it is possible.
Thus, in this section, we have pieces of evidence that robust player profiling approaches may
provide the information needed to offer customized content for players. Inspired by these works,
our work applies a pre-gameplay questionnaire to classify players and, then, at finishing each
level, the players are reclassified. In this way, we believe we can provide target-designed and
customized content for the players.

Table 1 – Player profiling and content adaptation literature summarizing and comparison with our work.

Work Questionnaire Gameplay Emotions Adapt Content

Bartle (2004) - X - -
Yee (2006) X - - -
Vahlo et al. (2017) X - - -
Melhart et al. (2019) X X - -
Bicho and Martinho (2018) - X - X
Heijne (2016) X X - X
Rivera-Villicana et al. (2018) X X - -

This work X - - X

Source: Elaborated by the author.

3.2 Level Generation
Several works dealt with level generation (LIAPIS, 2020), but we are particularly in-

terested in those which dealt with dungeons. Thus, in this section, we focus on PDG works.

46 Chapter 3. Literature Review

Here, we present some of the works found in our survey (VIANA; SANTOS, 2021) and also
some other related works. We carried out the survey based on the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model (MOHER et al.,
2009; LIBERATI et al., 2009) - See (VIANA; SANTOS, 2021) for details of the survey process.

Dormans (2010) developed a two-step method with a constructive approach that uses
Generative Grammar (GG). The solution creates a graph of missions and applies it to generate
the play-space for Action-Adventure games. This approach generated two kinds of missions:
defeating enemies and locked-door missions. Inspired by Dormans (2010), Lavender and Thomp-
son (2017) applied the Dormans’ approach to creating mission graphs and turn them into levels.
They used the generated levels as dungeons in the open-source 2D game The Legend of Zelda:

The Mystery of the Solarus (Solarus, 1986).

Similar to Dormans (2010), Linden, Lopes and Bidarra (2013) presented a GG-based
solution for level generation. The work uses gameplay as a vocabulary to control the generative
process. The player’s gameplay actions are described semantically, e.g., “fight melee enemy”
and “pickup health potion”. The nodes of their graphs express player actions as gameplay design
constraints. Thus, the gameplay grammar allows designers to specify their expected gameplay.
This grammar generates graphs of player actions used as a base to create levels for Dwarf Quest

game (Wild Card Games, 2012). This work inspired Karavolos, Liapis and Yannakakis (2016)
that introduced a search-based algorithm capable of evolving gameplay graphs. In their work,
the graphs are also translated to Dwarf Quest’s levels.

Smith, Padget and Vidler (2018) also introduced a solution for dungeon generation and
locked-door missions with enemies as challenges, but their solution also presents placement of
weapons. Similar to the previous works, their dungeon levels are also represented by graphs.
However, they modeled the graph generation problem as an Answer Set Programming (ASP)
problem formulation to produce dungeon level.

Pereira, Prado and Toledo (2018) presented a search-based algorithm focused on generat-
ing dungeon levels with locked-door missions for Action-Adventure games. The missions’ goals
are to collect keys to open locked doors in the levels and find a symbol (the levels’ goals), similar
to Zelda’s triforce. Unlike the previous works, tree structures represent dungeon levels to ensure
feasibility, and Genetic Programming (GP) approach evolves such levels and missions. The keys
are in the tree’s nodes (rooms), and the doors are in the tree’s edges (corridors). Although the
tree structure ensures the generation of feasible levels, it cannot generate some level structures,
e.g., cycles. Furthermore, their dungeon representation also has semantic information for mission
purposes. Later, the authors improved this approach by updating their fitness to maximize the
visited rooms and unlocked doors (PEREIRA et al., 2021).

Gellel and Sweetser (2020) hybridize generative grammars, inspired by Dormans (2010),
and a non-traditional Cellular Automata (CA) approach based on random neighbor selection to
generate dungeon levels for Rogue-like games. First, the GG generates the locked-door missions

3.2. Level Generation 47

and various types of rooms codified as a string. After that, they applied the CA-inspired method
to generate the play-space. The play-space, represented as a grid, is divided into regions (or
subsections as they called them) based on the locked doors. This method is composed of two
rules that place the rooms for each character of the mission string. The first rule places one room
at a time by moving randomly in the grid, while the second one calculates which neighbor of the
active room is the closest (based on the Manhattan distance) to the region center point. The latter
rule allows the level to appear growing around a natural cluster. They proposed two different
ways of searching for these connections; one always uses the second rule, and the other applies
the first rule until finding a dead-end room.

Differently from the previous works that performed mission generation, Baldwin et al.

(2017a) developed the Evolutionary Dungeon Designer (EDD) to assist game designers in their
creative process. The EDD generates dungeon rooms with enemies and rewards through a FI2Pop
GA approach. Their rooms are represented as grids and are generated to match the micro-game
patterns regarding levels’ structure defined by users in the approach’s input. To do so, EDD
provides to the user control of frequency, shape, and type over the generated design patterns and
the placement of enemies, treasures, doors, and walls.

Works like those of Dormans (2010), Lavender and Thompson (2017), Linden, Lopes
and Bidarra (2013), Karavolos, Liapis and Yannakakis (2016), Smith, Padget and Vidler (2018),
Gellel and Sweetser (2020), and Baldwin et al. (2017a) introduced approaches that generate
levels and also perform the placement of enemies. Besides them, Baldwin et al. (2017b) and
Liapis (2017) presented more sophisticated methods for enemy placement.

Baldwin et al. (2017b) extended the EDD to evolve the placement of enemies and rewards
based on patterns. To do so, they introduced meso-game patterns that consider enemies and
rewards besides the level structure. These meso-patterns represent four types of rooms: guard
chamber, a room with only enemies; ambush, a room with enemies and an entrance; treasure
chamber, a room with only a treasure; and guarded treasure, a room with enemies and a treasure.

Liapis (2017) introduced a two-step automatic evolutionary process for dungeon gener-
ation. Similar to the previous work, this approach applies FI2Pop GA, in both steps. The first
stage generates dungeon sketches by strategically placing eight segments representing dungeon
rooms, which describe impassable (wall), passable rooms and define the number of enemies and
rewards in each room. In the second step, each segment becomes a room. Each room evolves
independently to create a cavern environment, following connections between the segments and
their types. For instance, the enemies are strategically placed around a reward. The solution is
very interesting because it returned a wide variety of levels. The rooms in the levels had several
combinations from seven types of rooms and four connections to other rooms.

So far, we described works on PDG that focused on generating the best dungeon levels,
where some of them could have missions and or enemies. Therefore, we present works that
applied QD approaches to generate dungeons.

48 Chapter 3. Literature Review

Melotti and Moraes (2018) introduced a new QD approach by combining the Novelty
Search Local Competition (NSLC) and Minimal Criteria Novelty Search (MCNS). Novelty
Search (NS) introduced the concept of niches (sub-populations) and the diversity measurement
to ensure the diversity of solutions; the competition between the solutions is global. Therefore,
NSLC introduced the local competition to limit it between the solutions in their respective niches.
On the other hand, MCNS introduced the minimum criterion dependent on the fitness score. The
solutions that meet this criterion receive the novelty score usually, whereas the others receive
zero. The solutions with zero can only reproduce if no other solution reaches the minimum
criteria. Their approach combines the local competition of NSLC and the minimum criteria of
MCNS to eliminate entire niches instead of only some solutions. This approach also adds new
niches, and they found new types of solutions. Their new approach is named as Deluged Novelty
Search Local Competition (D-NSLC). To validate it, they evolved simple dungeon levels with
four different EAs: a usual GA, NS, NSLC, and D-NSLC.

Alvarez et al. (2019) extended the EDD and the evolutionary algorithm by providing
several suggestions of changes to the user as a matrix of rooms. This feature was possible due
to the Interactive Constrained MAP-Elites (ICME), which they introduced. This method can
generate suggestions based on the room during the edition process. Each user modification leads
to the generation of new suggestions, and it is possible to map the matrix of suggestions into
linearity, symmetry, and other specific metrics of the EDD. In this version, the designers can
change the population’s levels and activate the evolutionary process to generate new levels.

Charity et al. (2020) introduced an automatic method to generate rooms for general
games. Their method applies Constrained MAP-Elites to illuminate the rooms regarding the
mechanics of a game. They do this by mapping the game mechanics into the CME’s matrix. For
instance, in a matrix with four elements, one of the matrix’s axis may be labeled with “no ‘get
key”’ and “get key” and the other one with “no ‘kill enemy”’ and “kill enemy”, then the matrix
is composed of four different cells as follows:

∙ “no ‘get key”’ and “no ‘kill enemy”’;

∙ “no ‘get key”’ and “kill enemy”;

∙ “get key” and “no ‘kill enemy”’, and;

∙ “get key” and “kill enemy”.

They applied this approach in four different games inspired by successful industry games: Zelda,
Solarfox, Plants, and RealPortals. This mapping of different mechanics for different games is
possible due to the use of General Video Game Artificial Intelligence (GVG-AI) framework since
it allows their approach to deal with all the games’ mechanics. They also use the GVG-AI to
generate the initial population and to calculate the fitness functions with the framework’s agents.

3.3. Enemy Generation 49

The fitness functions are based on the survival and conclusion time of agents. They claim that
the generated rooms can be used as tutorials to teach players how to use the game mechanics.

Before the applying ICME in EDD (ALVAREZ et al., 2019), Alvarez et al. (2018)
extended the tool and the evolutionary algorithm to maintain the designers’ aesthetics. They
introduced functionality to “freeze” some of the levels’ tiles, i.e., the selected tiles cannot change
during the evolution. Besides tiles, users also could freeze shapes, patterns, routes, and meso-
game patterns. Furthermore, this approach also measures similarity and symmetric to learn the
design aesthetics and provide adaptive suggestions.

Table 2 summarizes the reviewed works on level generation methods and compares them
with our level generation approach. Our method extends the algorithm introduced by Pereira
et al. (2021) by applying MAP-Elites to illuminate the dungeons. Besides generating levels
with locked-door missions, we place enemies within the levels’ rooms (the number of enemies
is given as input). Thus, we can generate multiple and diverse levels with different degrees of
exploration coefficient and leniency in a single execution. Moreover, differently from the works
described in this section, we also adapt the levels to different types of players.

Table 2 – Level generation literature summarizing and comparison with our work.

Work Level/Room Missions Enemies Adaptive QD

Heijne (2016) Level - X X -
Dormans (2010) Level X X - -
Lavender and Thompson (2017) Level X X - -
Linden, Lopes and Bidarra (2013) Level X X - -
Karavolos, Liapis and Yannakakis (2016) Level X X - -
Smith, Padget and Vidler (2018) Level X X - -
Pereira, Prado and Toledo (2018) Level X - - -
Pereira et al. (2021) Level X - - -
Gellel and Sweetser (2020) Level X X - -
Baldwin et al. (2017a) Room - X - -
Baldwin et al. (2017b) Room - X - -
Liapis (2017) Level - X - -
Melotti and Moraes (2018) Level - - - X
Alvarez et al. (2019) Room - X - X
Charity et al. (2020) Room - X - X
Alvarez et al. (2018) Room - X X -

This work Level X X X X

Source: Elaborated by the author.

3.3 Enemy Generation
Enemies in PCG research focus mainly on the placement of enemies with different

amounts, difficulties, and types. In the previous section, we described some works that per-
formed such enemy placement (DORMANS, 2010; LAVENDER; THOMPSON, 2017; LIN-
DEN; LOPES; BIDARRA, 2013; KARAVOLOS; LIAPIS; YANNAKAKIS, 2016; SMITH;

50 Chapter 3. Literature Review

PADGET; VIDLER, 2018; GELLEL; SWEETSER, 2020; BALDWIN et al., 2017a; BALDWIN
et al., 2017b; LIAPIS, 2017; ALVAREZ et al., 2019; ALVAREZ et al., 2018). However, the
research on procedural enemy generation is recent, with few papers introducing approaches of
such kind (KHALIFA et al., 2018; PEREIRA; VIANA; TOLEDO, 2021). Thus, this section
describes enemy generation methods from academic papers and industry games regarding any
stage of their generative processes and gameplay progress.

Khalifa et al. (2018) were pioneers in such an area by introducing an evolutionary
approach to evolve Bullet Hell games’ levels. These games consist of bullets (enemies) with
different damage values, speed, and movement patterns. To create the levels, they evolved Talakat
scripts, a language they created to describe their levels, through Constrained MAP-Elites. These
scripts have sections for spawners and the boss. The former section defines spawn points to
spawn bullets or create new spawners, while the latter defines the boss’s health, position, and
behavior. The spawners have sets of parameters to determine the bullet it spawns, i.e., its speed,
angle, size, and the angle rotation and speed of spawners. Therefore, they generate enemies that
players face besides placing them in their levels. Moreover, the authors generated, in a single
execution, a variety of levels without losing quality by using a QD approach.

Nevertheless, enemies are more than the place they are and their behavior. As far as we
know, The first work that generated enemies for Action-Adventure games was developed by our
research group (PEREIRA; VIANA; TOLEDO, 2021) by introducing the Parallel Evolutionary
Algorithm (PAE) for enemy generation in a rogue-like game prototype. The authors extracted the
most common variables from enemies in different Action-Adventure games to build our enemy’s
genotype: health, damage, attack speed, movement speed, active time, rest time, movement type,
weapon type, and projectile speed. PEA evolves enemies matching their difficulty degrees with
the difficulty goal given by the user as an input.

Regarding the industry games, the creation of NPCs is present in Spore (MaxisTM, 2008)
and No Man’s Sky (Hello Games, 2018). These NPCs may be confronted by players, just like
enemies. The creatures of these games are created by randomly assigning different body parts.
Their algorithms have some constraints for body parts. They do not put together parts that cannot
match another already selected. This strategy ensures the feasibility of procedural animations of
the NPCs. An older game series used an extended version of this concept. Creatures (Creature
Labs, 1996) generated NPCs by evolving them physically and making them learn. These NPCs
learn about the environment, and the player’s actions via a neural network that receives simulated
senses using semi-symbolic approximation techniques as input (GRAND; CLIFF, 1998).

Regarding the generation of actual enemies, i.e., NPCs that actively look for fighting
players, Diablo 3 (Blizzard, 2012) and Shadow of Mordor (Monolith Productions, 2014) created
their enemies by changing some predefined characteristics. This approach allowed these games
to make more diverse and unique challenges. In Left 4 Dead 2 (Valve, 2009) and State of Decay

2 (Undead Labs, 2018), the enemies can adapt to the players. However, instead of changing

3.3. Enemy Generation 51

their features, like in the previous two games, Left 4 Dead 2 (Valve, 2009) and State of Decay 2

(Undead Labs, 2018) decide how many and where to place enemies. They make such decisions
accordingly to the players’ performance. If the player is doing well, new enemies are spawned,
else the games spawn fewer enemies1 2.

Table 3 summarizes the reviewed scientific works and commercial games in this section,
according to the generated features, and compares them with our enemy generation method.
Besides placing a certain amount of enemies in our level generation approach, the enemy
generation method extends our first contribution in such research area (PEREIRA; VIANA;
TOLEDO, 2021). We apply MAP-Elites in this approach to illuminate enemies; thus, we can
generate enemies with different movement and weapon types. Furthermore, we also adapt them
for players providing enemies with different difficulties.

Table 3 – Enemy generation literature summarizing and comparison with our work. ‘P’ defines the partially
generated enemy features.

Work Placement Amount Status Visuals Adaptive QD

Heijne (2016) X - - - X -
Dormans (2010) X - - - - -
Lavender and Thompson (2017) X - - - - -
Linden, Lopes and Bidarra (2013) X - - - - -
Karavolos, Liapis and Yannakakis (2016) X - - - - -
Smith, Padget and Vidler (2018) X - - - - -
Gellel and Sweetser (2020) X - - - - -
Baldwin et al. (2017a) X X - - - -
Baldwin et al. (2017b) X X - - - -
Liapis (2017) X - - - - -
Alvarez et al. (2019) X X - - - -
Charity et al. (2020) X X - - - -
Alvarez et al. (2018) X X - - X -
Khalifa et al. (2018) X X P P - X
Pereira, Viana and Toledo (2021) - X X P X -

Spore (MaxisTM, 2008) - - P P - -
No Man’s Sky (Hello Games, 2018) - - P P - -
Creatures (Creature Labs, 1996) - - X P X -
Diablo 3 (Blizzard, 2012) - - P - - -
Middle Earth: Shadow of Mordor
(Monolith Productions, 2014) - - P - - -

Left 4 Dead 2 (Valve, 2009) X X - - X -
State of Decay 2 (Undead Labs, 2018) X X - - X -

This work X X X P X X

Source: Elaborated by the author.

1 The AI Systems of Left 4 Dead (<https://steamcdn-a.akamaihd.net/apps/valve/2009/
ai_systems_of_l4d_mike_booth.pdf>).

2 Procedurally generating enemies, places, and loot in State of Decay 2 (<https:
//www.gamedeveloper.com/design/procedurally-generating-enemies-places-and-loot-in-i-state-of-
decay-2-i->).

https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://www.gamedeveloper.com/design/procedurally-generating-enemies-places-and-loot-in-i-state-of-decay-2-i-
https://www.gamedeveloper.com/design/procedurally-generating-enemies-places-and-loot-in-i-state-of-decay-2-i-
https://www.gamedeveloper.com/design/procedurally-generating-enemies-places-and-loot-in-i-state-of-decay-2-i-

52 Chapter 3. Literature Review

3.4 Generation of Multiple Content

We have described some dungeon and enemy generation works in the previous sections.
The PDG works obviously fit in the levels facet orchestration, and the enemy generation works
fit in the rules facet orchestration since they define enemies’ behavior. The PDG works that
places enemies in their levels are not classified as rules facet orchestration; the enemy placement
fits in levels facet orchestration (LIAPIS et al., 2019). However, some of them also perform the
generation of multiple contents by creating levels and narrative facets through the generation of
dungeons with locked-door missions (DORMANS, 2010; LAVENDER; THOMPSON, 2017;
LINDEN; LOPES; BIDARRA, 2013; KARAVOLOS; LIAPIS; YANNAKAKIS, 2016; SMITH;
PADGET; VIDLER, 2018; PEREIRA; PRADO; TOLEDO, 2018; PEREIRA et al., 2021;
GELLEL; SWEETSER, 2020), with mechanics (CHARITY et al., 2020). In this section, we
present the works that somehow introduced multi-faceted content generation systems; some of
the works were described first for Liapis et al. (2019).

All creative facets were found in PCG systems; however, none combined all facets.
Accordingly to Liapis et al. (2019). The first PCG system known in the literature is Ludi, and
it was developed by Browne and Maire (2010). This system defines the board layout (levels
facet) and rules of different pieces (rules facet) for combinatorial games applying an evolutionary
algorithm. The quality of the games the tool creates is measured by simulating playthroughs with
artificial agents (gameplay facet). Similarly, Mechanic Miner, a PCG tool introduced by Cook
et al. (2013), generates simple game mechanics (rules facet) and levels (levels facet) that have
such mechanics, both through search-based approaches. The quality of the generated levels is
evaluated regarding gameplay by random agents (gameplay facet). Rules were also orchestrated
together with visuals and audio by Hoover et al. (2015) in the AudioInSpace game. In the game,
players can control the evolution of their favorite weapons interactively, controlling their bullets’
trajectory, speed, and color (rules and visuals facet). Furthermore, bullets and players’ firing
actions affect the audio in the game (audio facet).

Orchestrating applications have also generated narratives. Hartsook et al. (2011) intro-
duced the GAME FORGE, a PCG tool that orchestrates narratives (through missions) and levels
facets. Narratives are represented by sequences of actions made by the game hero and NPCs;
once created, they guide the generation of levels. The system carries out the generation process
through two search-based approaches to evolve both narratives and levels. In Game-O-Matic,
a tool developed by Treanor et al. (2012), users can build narratives with graphs (narrative
facet). With the narrative, the tool then generates rules, objects, and the game world (visuals,
rules, and levels facets), in which their visual forms are taken from online sources. Another
tool that generates the game world from narratives is Angelina introduced by Cook, Colton and
Pease (2012). This tool is capable of orchestrating visuals and audio from articles that work as
narratives (visuals, audio, and narrative facet). Moreover, Angelina also has an independent level
generator that creates platforming stages (levels facet). The game A Rogue Dream, developed

3.4. Generation of Multiple Content 53

by Cook and Colton (2014), receives as input the players’ name as the seed of its generation
process. Next, it selects the names and visuals for enemies, items, and goals and the name and
mechanic of the players’ special ability (narrative, visuals, and rules facets). In the end, the game
generates its whole levels. Sonancia is a game that creates their levels (levels facet) accordingly
with the tension progression in the narrative facet, which can be authored or procedurally created
(LOPES; LIAPIS; YANNAKAKIS, 2016). Furthermore, the progression of levels influence
sounds (audio facet). Finally, Data Adventures is a game that gathers Wikipedia articles and
links them to generate plots (narrative facet) and searches for visuals with their titles (visuals
facet) (GREEN et al., 2018). Next, the game creates levels (levels facet) from the layout of the
real world’s cities gathered from OpenStreetMap.

Recent works also tackled the orchestration of multiple contents. Prager et al. (2019)
developed a maze game where visual and audio style can change the environment feel, e.g.,
from a dark and tense to a soothing and joyful setting. They experimented with 20 players
their reactions to visual and audio compositions. The players answered if they considered the
compositions usual (if audio and visuals were matching) or unusual (if audio and visuals were
from different settings), applying a machine learning model to predict users’ reactions. As they
expected, the results showed that players perceived the homogeneous settings as funnier and
less difficult than the heterogeneous ones. The authors also found that players self-reported
arousal when playing with homogeneous settings. The game orchestrated only two facets and
experimented with a small sample of users; however, this research shows the importance of an
orchestration system to create fun games.

Liapis et al. (2019) generated levels and characters (rules facet) for a shooter game. Then,
they simulated real players through artificial agents to play the game and collect the gameplay
outcomes. Next, they train a Convolutional Neural Network (CNN) with levels, class parameters
of characters, and the gameplay outcomes. CNN was designed to predict the kill ratio between
two players, the time of the match, and two entropy scores (all death locations and the players’
positions). Their experiment showed that the most critical parameters for correct predictions were
related to the rules facet; however, the data from the level facet improved the CNN’s accuracy.
Besides the relevant results, regarding the prediction of the outcome of the gameplay facet from
two others (level and rules facets), the results also show that the data of multiple facets can be
used to create more accurate models for player profiling. Moreover, machine learning models
could be used to generate customized content for different players.

Similarly, Karavolos, Liapis and Yannakakis (2019) introduced a framework for gen-
erating level and ruleset components of games, which consists of a surrogate model and a
search-based approach. The surrogate model is a deep learning model trained with large sets of
procedurally generated levels, character classes, and simulations from the gameplay of agents.
This model combines the facets of level and rules as input and gameplay outcomes as output.
Then, they applied a search-based approach to generate adapted content towards a target game-

54 Chapter 3. Literature Review

play outcome. The results show that the framework can adapt levels and rules accordingly to the
designer-specified targets.

Finally, Migkotzidis and Liapis (2021) applied the previous framework to a mixed-
initiative tool called SuSketch, a design tool for First-Person Shooter (FPS) levels. Besides
providing suggestions of changes, like other co-creation applications, the tool offers designers
varied types of feedback such as path information, predicted balance between players in a
complete playthrough, and a predicted heatmap of the locations of player deaths. Concerning
creative facets, this tool orchestrates levels, rules and gameplay facets, like Liapis et al. (2019)
and Karavolos, Liapis and Yannakakis (2019).

Table 4 summarizes the reviewed works on PCG systems regarding the orchestration
of creative facets and technique, comparing them with our work. We designed a PCG system
to orchestrate level, narrative, and rules facets and adapt them to different players. In the next
chapter, we describe all the modules of our PCG system.

Table 4 – Multiple content generation system literature summarizing and comparison with our work. The
letters abbreviates the creative facets: Visuals, Audio, Narrative, Level, Rules, and Gameplay.
‘P’ defines the partially generated creative facets.

Work V A N L R G Adaptive Profiling

Dormans (2010) - - X X - - - -
Lavender and Thompson (2017) - - X X - - - -
Linden, Lopes and Bidarra (2013) - - X X - - - -
Karavolos, Liapis and Yannakakis (2016) - - X X - - - -
Smith, Padget and Vidler (2018) - - X X - - - -
Pereira, Prado and Toledo (2018) - - X X - - - -
Pereira et al. (2021) - - X X - - - -
Gellel and Sweetser (2020) - - X X - - - -
Charity et al. (2020) - - - X X - - -
Ludi, Browne and Maire (2010) - - - P X X - -
Mechanic Miner, Cook et al. (2013) - - - X X P - -
AudioInSpace, Hoover et al. (2015) P X - - P - P -
GAME FORGE, Hartsook et al. (2011) - - X X - - - -
Game-O-Matic, Treanor et al. (2012) X - P P X - - -
Angelina, Cook, Colton and Pease (2012) X X P X - - - -
A Rogue Dream Cook and Colton (2014) X - X X P - - -
Sonancia, Lopes, Liapis and Yannakakis (2016) - X P X - - - -
Data Adventures, Green et al. (2018) X - X P - - - -
Prager et al. (2019) X X - - - - - X
Liapis et al. (2019) - - - X X X - X
Karavolos, Liapis and Yannakakis (2019) - - - X X X X -
Migkotzidis and Liapis (2021) - - - X X X X -

This work - - X X X - X X

Source: Elaborated by the author.

55

CHAPTER

4
METHODOLOGY

In this chapter, we describe our PCG system and each one of its modules. First, in
Section 4.1, we overview our PCG system by describing its modules and how they communicate
with each other. Next, Section 4.2 describes the game prototype where our experiments were
carried out. Then, in Section 4.3, we detail how we classify players. Finally, we describe how
we generate the levels with missions and enemies as well how we orchestrate them to provide
adapted content, respectively, in sections 4.4, 4.5, and 4.6.

4.1 PCG system Overview

Our PCG system consists of three modules: Game Prototype, Player Profile, and Orches-
trator. Figure 5 presents the PCG system diagram of how is the communication between the
modules. The Game Prototype gathers the player information through in-game questionnaires
and runs the game with the generated content. The game of our system is a 2D dungeon-based
and Action-Adventure game inspired on The Legend of Zelda and The Binding of Isaac series
(Nintendo, 1986; MCMILLEN; HIMSL, 2011). The Player Profile module receives the first
questionnaire’s answers (the pre-questionnaire) and classifies the player type. The player type
classification is sent to the Orchestrator module that coordinates the generation of the aimed
sets of levels and enemies according to the received classification – this is what makes our
system adaptive. These sets of levels and enemies are generated at once by two independent PCG
algorithms. Next, the orchestrator combines the contents by distributing the generated enemies
through the generated levels, ignoring the unfitted contents. Finally, the generated and populated
levels go to the Game Prototype to set the game. As we mentioned in Chapter 1, our PCG
system is part of a major PCG system, called Overlord. The info that guides our level and enemy
orchestration comes from narratives generated by the Overlord (more details in Section 4.6).

After playing all levels, the player must answer the post-questionnaire (also in the
Game Prototype module) to evaluate their gameplay experience. The post-questionnaire gives

56 Chapter 4. Methodology

us the results indicating how players perceived the levels they played and the enemies they
faced. Figure 6 presents the flowchart of a new player’s interaction with the system. Therefore,
Following the definition of game facets introduced by Liapis et al. (2019), our PCG system fits
in orchestrating of levels, narrative (as lock and key missions), and rules (enemies), totaling
three creative facets orchestrated concurrently. We present the methodology behind the system’s
modules in the following sections.

Figure 5 – PCG System Diagram. The red arrows represent the communication between modules. First,
the Player Profile classifies the player type from the pre-questionnaire answers and then sends
it to the Orchestrator. Based on the player type, the orchestrator coordinates the creation of
levels and enemies and returns a list of levels populated by enemies to the Game Prototype.

Game Prototype

Questionnaire

Game

Player Profile

Classify

Orchestrator

Level Generator

Enemy Generator
CoordinateFilter and Select

Source: Elaborated by the author.

Figure 6 – PCG System usage flowchart. The gray rectangles and the red arrows represent the player
usage flow. The player can play several levels; thus, they may loop between game and post-
questionnaire (the dotted red arrow). The light gray rectangles and the dotted blue arrows
represent the game prototype’s background tasks: identifying the player type and sending
adapted content to the game prototype.

New User

Pre-Questionnaire Game Post-Questionnaire

Finish

Player Profiling Orchestrator

Source: Elaborated by the author.

4.2 Game Prototype
Our game prototype is an improved and adapted version of the one developed by Pereira

et al. (2021). The game is an Action-Adventure game inspired on The Legend of Zelda and The

4.2. Game Prototype 57

Binding of Isaac games (Nintendo, 1986; MCMILLEN; HIMSL, 2011). The inspired elements
are the dungeon exploration from the former and the combat mechanics from the latter. In the
game, the player must control a yellow robot (the protagonist of the game) to explore the levels’
rooms, collect items (e.g., keys and treasures), open doors and find the levels’ goals (a green
triangle). Besides the locked-doors puzzle challenges, the player must defeat enemies (slimes,
robots, and mages) by shooting green projectiles. Enemies fill some of the levels’ rooms, but
never the starting and final rooms, and the player must defeat them to proceed to other rooms.
After the player wins or loses a level, a score screen is shown to give feedback about: the victory
or failure, the highest combo reached, the amount of treasure collected, and the number of visited
rooms. The players can only progress in the game if they win the levels. Figure 7 presents a
screenshot from our game prototype. As we observe in the figure, all doors are locked, the health
points are full (the hearts at the top-right), and, in the mini-map, the neighboring rooms of each
room and the visited rooms are highlighted (at the bottom-right). Below we list the main game
features that are present in our prototype.

Figure 7 – Screenshot from the game prototype. The player is the yellow robot. The other characters are
the enemies. The orange sprites are the enemies’ projectiles they shoot and bombs they throw
towards the player.

Source: Elaborated by the author.

Enemies. They are obstacles to hinder the players’ progression by decreasing their health
points (more details in the next bullet). The enemies have difficulty degrees, which define
their stats, i.e., powers and behavior. In the prototype, they are controlled by Artificial
Intelligence (AI) agents and cannot respawn after being defeated. Figure 8 shows our six
enemies;

Health. The players start each level with ten hearts, which corresponds to their health. There
is no way to recover the hearts during the gameplay. If the players lose all their hearts in

58 Chapter 4. Methodology

a level, they must choose to retry the level or give up the rest of the game. Enemies also
have health points, so, to defeat them, the player must attack with some weapon;

Weapons. The players must use weapons to shoot projectiles at the enemies to defeat them.
They can choose a weapon before entering a dungeon. They cannot change the weapons
during gameplay. There are currently four weapons: the normal gun (the initial weapon),
which shoots with default speed and damage; machine gun, which shoots faster but weaker
projectiles; triple-shot gun, which shoots three weaker projectiles in three directions; and
cannon, which the strongest and slowest projectile;

Locked doors and keys. Some of the levels’ doors are locked even after the player defeats the
room’s enemies (Figure 9b). These doors can be opened if the player finds the respective
keys (Figure 9a). In the game, the doors’ and keys’ colors identify which key opens which
door, i.e., a blue door must be opened by a blue key;

Treasure. The game rewards the players with treasures that are randomly distributed in the
levels after every locked door and dead-end rooms without keys. This treasure distribution
intends to reward explorer players. Figure 9c presents an example of treasure in the game;

Combo system. The combo system is a feature to provide engagement for players who prefer
combat rather than explore. The combo system counts each shot that hits an enemy.
However, if an enemy hits players, they lose the combos. Section 4.2 shows the combo
counter without hits (“No Combo”). These words update with better combos as long as
players keep hitting enemies and reaching their thresholds;

Map system. To help the players to orient themselves while exploring the levels, we provide
a map system. This system shows a mini-map that corresponds to the whole level. The
system also highlights the visited rooms and centralizes the map to allow the player to
identify which rooms are neighboring.

Figure 8 – List of enemies of our game prototype. Slimes have no weapon. Swordsmans use swords.
Bower mages shoot arrows. Bomber mages throw bombs. Shieldsmans hold shields. Healers
use cure spell to heal other enemies.

(a) Slime (no weapon). (b) Swordsman. (c) Bower mage.

(d) Bomber mage. (e) Shieldsman. (f) Healer (Cure Spell).

Source: Elaborated by the author.

4.3. Player Profiling 59

Figure 9 – The main interactive objects of the levels of our game prototype.

(a) A blue key, required to open
a blue door.

(b) A blue door, which requires
a blue key to be opened.

(c) A treasure, a reward for ex-
plorer players.

Source: Elaborated by the author.

Before the gameplay section, the players must answer a questionnaire about their interests
in games. Then, the Player Profile module, fed with these answers, classifies the players’ profiles.
We detail the classification process in the following section.

4.3 Player Profiling
The Player Profile is the module responsible for classifying players. In this work, we are

interested in four types of players adapted from Yee and Ducheneaut (2018). Besides, since our
game does not focus on action or socialization, we excluded both classes from our PCG system.
We classify players into the following types:

Achievement Those who want to complete and collect everything;

Creativity Those who enjoy exploring vast and complex dungeons;

Immersion Those who like to take part in the lore of the game game, and;

Mastery Those who prefer combat and display their skills.

Although our game prototype has no dialogue or NPCs, we kept the Immersion class for further
use in the major PCG system (PEREIRA, 2021).

To carry this classification out, we calculate players through a weighted rule based on
the explicitly gathered data from the pre-questionnaire shown in Table 5. This questionnaire
consists of 12 questions regarding the players’ preferences in games (i.e., the game features they
prefer), and they answer only once when starting the game1,2. This questionnaire combines some
questions from three different questionnaires of Heijne (2016), Vahlo et al. (2017), and Rivera-
Villicana et al. (2018), all of them on a 5-point Likert scale. We did not choose all questions
1 The game was in Portuguese, so we translated such questions from English into Portuguese.
2 We did not collect demographic data in this questionnaire.

60 Chapter 4. Methodology

to provide a short questionnaire to minimize bias in mind (JAMESON, 2008). Thus, our pre-
questionnaire is classified as a self-assessment with respect to general dimensions according to
the definition proposed by Jameson (2008). As advised by Jameson (2008), we also allow the
players, if they wish, to ignore all the questionnaires and only play the game. Moreover, we let
clear to the players that we are not evaluating their skills but the system.

Table 5 – Player preferences pre-questionnaire on a 5-point Likert scale, designed to understand each
player’s profile and experience. The player types are abbreviated as follows: Mastery (M),
Achievement (A), Creativity (C), and Immersion (I). ‘*’ means that the 5-point Likert answer is
converted to [-2, 2] interval.

Question Profile Affected Weight

1 - I am an experienced player. - 0
2 - I am an experienced player in the Action-Adventure genre. - 0
3 - In which difficulty do you usually play? (There are many naming standards.
Try to select the one closest to what you are used to).

M [-2, 2]*

4 - I like playing games where I can explode, crush, destroy, shoot and kill. M [1, 5]
5 - I like playing games where I can fight using close combat skills and evade
fast attacks.

M [1, 5]

6 - I like playing games where I can explore the game world and uncover secrets
and mysteries.

C [1, 5]

7 - I explore all the places, elements and characters of the virtual world. C
8 - I complete all quests, including those that aren’t necessary to finish the game. A [1, 5]
9 - I like playing games where I can collect rare items and hidden treasures. A [1, 5]
10 - I like playing games where I can build friendships between game characters
and work toward a common goal.

I [1, 5]

11 - I like playing games where I can immerse myself in the role of the character
and make meaningful decisions.

I [1, 5]

12 - I usually only do what is necessary to pass a level or complete a quest. ACI [-2, 2]*

Source: Elaborated by the author.

Table 5 shows the questions and how their weights influence the player profiling. After
answering the pre-questionnaire, Equations 4.1, 4.2, 4.3, and 4.4 calculate the player compatibility
for each category. Next, we rank them in descending order, where the higher value corresponds
to the most compatible class and the lesser value to the less compatible one. We set weights
to each profile regarding their preference order: the most preferred profile weights 7, and the
remaining weights 5, 3, and 1, respectively. Such values fed the narrative generator of Overlord,
which defines the parameters for generating levels and enemies. Thus, the narrative defines how
much content appears in the game, respecting the players’ preference. We present more details
about it in Section 4.6.

CAchievement = Q8 +Q9 +Q12−3 (4.1)

CCreativity = Q6 +Q7 +Q12−3 (4.2)

CImmersion = Q10 +Q11 +Q12−3 (4.3)

4.4. Level Generator 61

CMastery = Q3−3+Q4 +Q5 (4.4)

Before the gameplay section, the player type is sent to the Orchestrator module. This
module generates sets of levels and enemies, selecting those with the most relevant content based
on the player’s profile. Next, we describe the processes of level and enemy generation algorithms,
as well as their orchestration.

4.4 Level Generator
In this section, we present an approach that generates dungeon levels with locked-door

missions by extending the EA introduced by Pereira et al. (2021). The said work presented
an EA capable of generating levels with locked-door missions that match the game designer
parameters for levels and missions. Our extended version offers two main contributions from
Pereira et al. (2021) and procedure dungeons generation (PDG) related works. The first one is
to advance from the previous EA by also evolving the enemies distribution through the levels’
rooms. The second contribution is the application of a MAP-Elites algorithm for enhancing
Quality Diversity in content generation, taking into account the level design with lock, keys, and
enemies placement. Besides, this algorithm itself fits in orchestrating of levels and narratives,
as lock and key missions (LIAPIS et al., 2019). Our approach was submitted to Foundations of
Digital Games (FDG) 2022 (VIANA et al., 2022a).

4.4.1 Level Representation

One individual in our evolutionary algorithm states a dungeon level, where a tree structure
represents such an individual, as shown in Figure 10a. Each node defines a room that encodes
its type and position in the dungeon. We have a Key Room (KR), which indicates an available
key to open a locked door, a Locked Room (LR) with a locked door, and a Normal Room (NR)
that has nothing special. The node also encodes the number of enemies in that room and the
room position concerning the parent node: Right (R), Down (D), and Left (L). We place the room
assuming that its parent room (node) is in the north, positioning it (R, D, and L) correctly when
decoding the individual into a dungeon level.

To ensure no room overlaps the level, we decode the tree representation (genotype) to
a 2D grid (phenotype). If there are overlapping rooms, the branch that causes the overlap is
removed from the tree. Thus, we ensure that no level is infeasible following the process of branch
removal detailed in Pereira et al. (2021). A single key can open a locked door; therefore, the
keys are bound with their locks through a shared ID. Rooms can have only a key, only a locker,
or none of them; they can never have only one of each or multiples of a kind at the same time.
Moreover, our representation does not require keys to be collected and unlocked in a specific
sequence; they are placed without further control.

62 Chapter 4. Methodology

Figure 10 – Handcrafted example of a genotype-phenotype level translation. (a) presents the level geno-
type and (b) presents the resulting phenotype. The root node S represents the starting room.
Nodes with R (Right), D (Down), and L (Left) represent the direction the parent node connects
with them. The numbers in the nodes are keys. The numbers in the dashed edges are locks.
Rooms are always placed in even values of the x and y coordinates, while corridors are placed
in coordinates with different parities. By comparing the node colors with the wind rose, we
see that a parent room is considered in the north direction regarding any of its child rooms.

(a) Dungeon level genotype.

S

D LR

D LR1 D 0R2

0R

0 L

1

2

(b) Dungeon level phenotype.

−4 −3 −2 −1 0 1 2

−2 R1

−1

0 D R S L

1

2 L D R2

3

4 R D

5

6 L

1

2

N

W

S

E

Source: Elaborated by the author.

4.4.2 Level Generation Process

Our dungeon generation process evolves tree structures of feasible levels. The parameters
that our algorithm receives are the number of rooms, number of keys, number of locks, number
of enemies, and linear coefficient (linearity). We designed our approach to evolve dungeons
by preserving diversity and optimizing quality. To do so, we applied a MAP-Elites approach
for variety by mapping the feature descriptors (or dimensions) of the leniency of enemies
and exploration coefficient. To measure the leniency of enemies in our levels, we apply the
Equation 4.5 presented by Smith, Padget and Vidler (2018). The leniency is calculated by the
number of safe rooms, i.e., without enemies, divided by the total number of rooms.

Dleniency =
Number of Safe Rooms

Total Rooms
(4.5)

Equation 4.6 measures our exploration coefficient, inspired by the exploration measure introduced
by Liapis, Yannakakis and Togelius (2013). We run a flood fill algorithm between rooms to
simulate the map coverage, where the reached rooms represent the required exploration from
each starting room and its corresponding goal room.

Dexploration =
1

#RR ∑
(rs,rg)∈RR

Coverage(rs,rg)

Total Rooms
(4.6)

where RR is the set of pairs of reference rooms containing the pair of starting and goal rooms
and all pairs of key and locked rooms; #RR is the size of RR; rs is the room where the flood fill
starts, and; rg is the goal room where the algorithm ends.

4.4. Level Generator 63

Since our equations result in values between 0 and 1, we discretized such dimensions.
For the leniency dimension, the intervals are (0.5, 0.6), (0.4, 0.5), (0.3, 0.4), (0.2, 0.3), and (0.2,
0.1). Levels with greater leniency values have most rooms without enemies or some of them with
several enemies. For exploration coefficient, the intervals are (0.5, 0.6), (0.6, 0.7), (0.7, 0.8), (0.8,
0.9), and (1.0, 0.9). Levels with exploration coefficient values lesser than these lead to rooms
much closer to each other. Figure 11 presents our approach’s map.

Figure 11 – The map of MAP-Elites population. The red cell represents a dungeon with leniency between
0.4 and 0.5 and an exploration coefficient between 0.6 and 0.7. The blue cell represents a
dungeon with leniency between 0.2 and 0.3 and an exploration coefficient between 0.8 and
0.9. Thus, the blue level has more reference rooms further to each other than the red one, and
it also has more rooms with enemies.

L
en

ie
nc

y

(0.5,0.6)

(0.4,0.5)

(0.3,0.4)

(0.2,0.3)

(0.1,0.2)

Exploration Coefficient

(0.5,0.6) (0.6,0.7) (0.7,0.8) (0.8,0.9) (0.9,1.0)

Source: Elaborated by the author.

Our MAP-Elites for levels maps 25 individuals based on the defined intervals. When the
map receives a new individual, we must calculate the feature descriptors to place it in the correct
entry of the MAP-Elites table. If an individual fills a map cell and a new one hits the same cell,
the latter replaces the former if it has a better fitness; otherwise, we discard the new individual.

The evolutionary process starts generating individuals for the initial population by
following the initialization algorithm described in their work to create rooms, keys, and lockers.
However, we introduced two changes in the initialization procedure. First, we are dealing with
the placement of enemies in our approach; therefore, after generating each dungeon, we place
enemies in random rooms, one by one, except by the starting and goal rooms. Besides, if the
created level has no locker, we add one with a key to ensure that we can calculate the goal room.
If this level also has keys, we first remove one of them. Second, we add individuals to the initial
population until it reaches n individuals (obviously, 25 is the max value). Since the initialized
individuals may hit the same entry in the MAP-Elites table, it can take a while. In this case, the
population size does not change once the best individual is always kept for that entry.

Next, we evolve the population using the time-limit stopping criterion. Pereira et al.

64 Chapter 4. Methodology

(2021) create an intermediate population that always replaces the current one, except by the best
individual found so far. In our case, after stating the intermediate population, we try to insert
its individuals in the MAP-Elites population. Our intermediate population has new individuals
created from two parents, which are chosen using tournament selection with two competitors.

The crossover randomly selects one parent node as the cut point to swap the selected
nodes. After the swap, we remove all overlaps and rebuild the grid. We try to preserve the locks
and keys of the original branches in the new individual by applying the repair algorithm described
in Pereira et al. (2021). We always apply crossover, while mutation has a chance of 15% to
be applied, where a pair of a lock and key has 50% chance to be added or removed from the
tree structure. We visit the tree structure through a breadth-first order to add a pair and convert
a random NR into a KR. Next, we do the same to convert a random NR into a LR among the
non-visited rooms. To remove a pair, we randomly select a KR, and its related LR, converting
both into NR nodes. After this, we perform an enemy transfer operation. To do so, we select
two rooms to transfer and to receive them. If both rooms have no enemies, nothing is done. If
the receiver has enemies and the transferer does not have them, we swap the rooms. Then, we
randomly chose from 1 to the transferer’s number of enemies to move to the receiver room.

After the crossover and mutation operators, we repair the new individuals regarding the
distribution of enemies. The crossover may generate levels that have more or fewer than the
associated input parameter. On the other hand, the mutation may transfer enemies to rooms that
cannot have them, i.e., the goal room. If there are enemies in this room, we remove them. When
the number of enemies is higher, we remove them, prioritizing the rooms with more of them.
Otherwise, when the number of enemies is lesser, we add them, prioritizing the non-empty rooms
with fewer enemies.

Finally, the new individuals in the intermediate population are evaluated using an ex-
tended version of the fitness function in Pereira et al. (2021). Our function calculates three fitness
factors. First, we measure the distance of the input parameters and the generated level:

fgoal = abs(Grooms−Lrooms) +

abs(Gkeys−Lkeys) +

abs(Glocks−Llocks) +

abs(Glinear_coefficient−Llinear_coefficient) +

Lrooms−Lneeded_rooms +

Llocks−Lneeded_locks

(4.7)

where G is the set of goals and L is the set of the level’s attributes (number of rooms, number of
keys, number of locks, and linear coefficient); needed_rooms is calculated by an adaptation of a
Depth-First Search algorithm, and; needed_locks calculated by an adaptation of an A* algorithm,
both algorithms are described in Pereira et al. (2021).

The second factor is an extension of the enemy sparsity equation introduced by Sum-

4.5. Enemy Generator 65

merville et al. (2017) to evaluate the distribution of enemies in the 2D maps:

fes =
∑e∈E(ex−µx)

2 +(ey−µy)
2

Number of Enemies
(4.8)

where ex and ey are the x-position and y-position of an enemy e, µx and µy are the average
x-position and y-position of all enemies, and E is the set of enemies. In the third term, we
calculate the standard deviation of enemies in the rooms:

fstd =

√
1

N−2 ∑
r∈R

(renemies−µenemies)2 (4.9)

where r is a room in the set of rooms R, renemies is the number of enemies of a room, µenemies is
the average number of enemies in the rooms, and N is the number of rooms. We subtract the
starting and the goal rooms since they cannot have enemies. The final fitness expression follows:

Lfitness = fgoal− fes + fstd (4.10)

We subtract the enemy sparsity fes because higher values are better for such metric, and we aim
to minimize fgoal and fstd as well as our fitness function as a whole.

4.5 Enemy Generator

In this section, we present our enemy generation algorithm, which is an extension of
the parallel EA introduced by Pereira, Viana and Toledo (2021). This work evolved enemies
represented by common features of Action-Adventure games. Our approach advances this EA by
applying MAP-Elites population to illuminate enemies’ space, and we did not evolve the enemies
through parallel evolution. Besides, we submitted this algorithm to Conference on Games (CoG)
2022 (VIANA et al., 2022b).

4.5.1 Enemy Representation

As mentioned, our enemy genotype comes from the one presented in the previous work.
Such representation extracts common attributes of enemies in Action-Adventure games to
build the enemy’s genotype. These attributes are the following: health, damage, attack speed,
movement speed, active time, rest time, movement type, weapon type, and projectile speed.
Table 6 describes these attributes and shows their respective ranges of values. Our only change
in the numerical values was the max movement speed value; we decreased it slightly because the
max value was too fast.

Again in Table 6, movement type and weapon type are nominal attributes representing
more complex behaviors and objects that enemies may have. Following, we list the types of
movements:

66 Chapter 4. Methodology

Table 6 – List of attributes of the enemy’s genotype. The line between attributes represents the crossover
point.

Attribute Type Range Details (the attribute defines...)

Health Integer 1-5 How many hits an enemy endures.
Damage Integer 1-4 How many life points an enemy takes from the player.
Attack Speed Float 0.75-4.0 How frequent projectiles are shot (1/Attack Speed).
Movement Type Nominal - How the enemy moves during gameplay.
Movement Speed Float 0.8-2.8 How faster the enemy moves.
Active Time Float 1.5-10.0 The time in seconds that the enemy moves before resting.
Rest Time Float 0.3-1.5 The time in seconds that the enemy rests before moving.

Weapon Type Nominal - The weapon gameplay properties.
Projectile Speed Float 1.0-4.0 How faster the projectile moves towards the player.

Source: Adapted from Pereira, Viana and Toledo (2021).

None the enemy stays still.

Random the enemy’s movement is defined by a random direction 2D vector.

Random 1D the enemy’s movement is determined by a random direction 1D vector (i.e., hori-
zontal or vertical).

Flee the enemy’s movement is calculated by the opposite of the player’s direction vector.

Flee 1D the enemy’s movement is calculated by the opposite of a single ax of the player’s
direction vector (i.e., horizontal or vertical).

Follow the enemy’s movement is determined by the direction vector that points towards the
player.

Follow 1D the enemy’s movement is defined by a single ax of the direction vector that points
towards the player (i.e., horizontal or vertical).

All these movements occur during the active time. Regarding weapon types, we list their types
and describe how they work:

Barehand (None) deals damage on contact.

Sword deals damage on contact with a higher reach regarding the barehand.

Bow shoots bullets towards the player, and they deal damage when hit the player.

Bomb-Thrower shoots a bomb towards the player; they explode in 2 seconds and deal damage
in a limited area.

Shield protects the enemy from frontal attacks.

4.5. Enemy Generator 67

Cure Spell cures one health point of all enemies in a circular area.

We add the cure spell to generate healer enemies, and our melee enemies use the
following weapons: barehand, sword, and shield. Furthermore, our ranged enemies use a bow
and bomb-thrower. We discarded the weights of the movement and weapon types and dealt with
these attributes in dedicated equations to calculate the enemies’ difficulty.

4.5.2 Enemy Generation Process

The input for the generation process is only the goal difficulty of enemies. The fitness
function measures the distance between aimed difficulty and the difficulty encoded in the enemy
stated as an individual (representation of solution) of the evolutionary algorithm. Therefore, our
approach minimizes such fitness. We designed a MAP-Elites approach to preserve diversity while
optimizing the quality of enemies. We discretized our map regarding movement and weapon
types; thus, we have nominal values as feature descriptors (dimensions). Since we do not need to
calculate numerical equations, our mapping functions are straightforward:

Dmovement = emovement_type (4.11)

Dweapon = eweapon_type (4.12)

where, e is the enemy. Figure 12 presents our approach’s map. The cell highlighted in red
represents an enemy that follows the player to hit with a sword, while in blue represents an
enemy that flees from the player while throwing bombs towards them.

The proposed MAP-Elites approach maps 42 enemies in terms of the defined dimensions.
When the population receives a new individual, we calculate its feature descriptors to place it in
the correct map entry. If a new enemy hits a filled cell, we apply elitism, i.e., the best enemy fills
the cell, discarding the other one.

The evolutionary process starts by generating the initial population thought filling the
attributes of n enemies randomly. Since the initialized enemies may hit the same map entry, the
initial population generation may take a while. Besides, since we discretized the population in a
map, its size does not change. Thus, the best individual is always kept.

Next, we evolve the population using the generation-limit stopping criterion. Pereira,
Viana and Toledo (2021) replace all the population in each generation by the intermediate
population generated. We also have an intermediate population; however, we try to add its
individuals in the MAP-Elites population. The reproduction operators create new individuals
from two parents, chosen using tournament selection with two competitors.

We first perform a crossover with a 100% rate to generate two new individuals when
reproducing enemies. Our crossover is a combination of a fixed-single-point crossover and a

68 Chapter 4. Methodology

Figure 12 – The map of MAP-Elites population. The red cell represents a melee enemy that follows the
player to hit with a sword. The blue cell represents a ranged enemy that flees from the player
while throwing bombs towards them.

M
ov

em
en

tT
yp

e

None

Random

Random 1D

Flee

Flee 1D

Follow

Follow 1D

Weapon Type

Barehand Sword Bow Bomb Thrower Shield Cure Spell

Source: Elaborated by the author.

Blended Crossover α (BLX-α) (ESHELMAN; SCHAFFER, 1993). We first cross the parents in
the fixed point as shown in Table 6. We designed the crossover to fill our map faster once new
individuals may hit new cells. For instance, if the elites Bow-Flee and Sword-Follow cross, we
generate two individuals mapped in Bow-Follow and Sword-Flee cells. After this, we perform
the BLX-α crossover for each numerical attribute (ESHELMAN; SCHAFFER, 1993).

After the crossover, we have a chance to mutate both resulting enemies and, when a
mutation happens, we apply a multi-gene mutation (KANAGAL-SHAMANNA et al., 2014). To
do so, we calculate the chance of mutating each gene. This mutation means that our mutation
operator can change all the enemy’s attributes. We set a new random value for each gene that
mutates, respecting the limited range and the list of nominal values of the attributes.

Our difficulty function has four factors: health, movement, strength, and gameplay. The
enemies’ life points determine how many hits they endure.

dhealth = 2× ehealth (4.13)

Regarding the movement factor, we consider three attributes of our individuals: movement
speed, active time, and rest time.

dmovement = emv_spd + eact_tm/3+1/erst_tm (4.14)

where, mv_spd is the movement speed, act_tm is the active time, and rst_tm is the rest time. The
faster the enemy, the more difficult it will be for the player to defend the enemy’s tackles. The

4.5. Enemy Generator 69

more time active moving, the more difficult the enemy is. We weighed this term with 1/3 to
balance its influence in this equation. Finally, the more time resting, the more easily it will be to
defeat; thus, we calculate its inverse.

The strength factor is more complex than the previous difficulty factors; it depends on
the types of enemies and, therefore, we multiply three different equations.

dstrength = ds1×ds2×ds3 (4.15)

For melee enemies, we multiply damage by movement speed.

ds1 =

edmg× emv_spd, ISMELEE(e)

1, otherwise
(4.16)

where, dmg is the damage. We multiply attack speed by projectile speed for ranged enemies and
weigh the result by three.

ds2 =

3× (eatk_spd× eprjct_spd), ISRANGED(e)

1, otherwise
(4.17)

where, atk_spd is the attack speed, and prjct_spd is the projectile speed. We consider only the
attack speed for healer enemies since they always heal a single life point of all enemies in their
heal area range.

ds3 =

2× eatk_spd, ISHEALER(e)

1, otherwise
(4.18)

We also calculate the gameplay factor considering the enemies’ weapons and our game
prototype, where we experimented with the generated enemies. Here we also increase the
difficulty of incoherent enemies; thus, discarding them based on a threshold defined by the user.

dgameplay = dg1×dg2×dg3×dg4×dg5 (4.19)

Melee enemies that follow the player are more dangerous, thus, more challenging to
defeat. Moreover, melee enemies that flee from the player or stay still are less risky and easier to
defeat. Therefore, we weigh the difficulty as follows.

dg1 =

1.25, ISMELEE(e) and ISFOLLOW(e)

0.5, ISMELEE(e) and

(ISANYFLEE(e) or HASNOMOVE(e))

1, otherwise

(4.20)

Since ranged enemies perform distance attacks, those that flee from the player present
more risk. When ranged enemies stay still, players can defeat them easier since they are static

70 Chapter 4. Methodology

targets. Ranged enemies that follow the player may have the projectile speed faster than their
movement speed, or else they will not behave as rangers since their projectiles will be slower
than they own. This behavior did not occur in enemies with the movement Follow1D. Thus, we
weigh the difficulty as follows.

dg2 =

1.25, ISRANGED(e) and ISFLEE(e)

1.15, ISRANGED(e) and ISFLEE1D(e)

0.5, ISRANGED(e) and HASNOMOVE(e)

1, otherwise

(4.21)

dg3 =

0.5/(2× emv_spd), ISRANGED(e) and

ISFOLLOW(e)

1, otherwise

(4.22)

Healers must protect themselves while keeping healing other enemies. Thus, they should
not follow players but avoid them. Besides, healers that move faster are more difficult to defeat;
thus, we also weighed this factor by their movement speed. Therefore, we weigh the enemy’s
difficulty as follows.

dg4 =

1, ISHEALER(e) and

(ISANYRANDOM(e) or

ISANYFLEE(e))

0.5, otherwise

(4.23)

dg5 =

1.15× emv_spd, ISHEALER(e)

1, otherwise
(4.24)

All the numeric weights in the equations were chosen empirically through gameplay
experiments. Finally, we defined the final difficulty equation as follows.

d = dgameplay× (dhealth +dmovement +dstrength) (4.25)

4.6 Orchestrating Adaptive Content

Our orchestrator filters and selects the generated levels and enemies to send to the
Game Prototype. Thus, our PCG system is hybrid regarding generation time. We coordinate the
generation of dungeon levels and enemies offline before the experiments with players. In the
online step, we classified players and selected the appropriate content previously created for their
profiles. In this section, we describe how our orchestrator coordinates the described generators,
and how it filters and selects the generated contents for players.

4.6. Orchestrating Adaptive Content 71

As we mentioned earlier, our PCG system is part of a major PCG system (PEREIRA,
2021). Such a system generates narratives based on player types that define the levels and enemy
types within these levels. This definition is made by setting values for the parameters of both our
evolutionary generators to create levels and enemies. Such information guides our orchestrator
to coordinate the level and enemy generators and perform the post-processing.

With the contents ready, the orchestrator starts filtering and selecting levels. Our level
filter discards levels with fitness values higher than 2. These levels did not reach the aimed
features of our level generation approach since they, for instance, did not generate the intended
number of keys. The level selection process is simple; we draw a level with the appropriate
features for players according to their types.

Next, we filter the enemies by discarding all the bad ones from the pool of enemies. Bad
enemies are those that are melee and cannot move or have a sword as a weapon and flee from the
player. We designed such a filter after playing and observing the bad behaviors of the enemies.
Finally, we populate the enemies in the chosen level’s rooms accordingly to the following rules:

1. If the room has only an enemy, we select an enemy randomly;

2. If the room has at least two enemies, we try to place different types of enemies;

3. Repeat until there are no more enemies to place.

Since the narrative defines the number of enemies by type, we must be careful when placing
enemies. We control melee, ranged, and healer enemies with lists and transfer them one by one
to the rooms as shown in pseudo-code Algorithm 2. We only place a healer in a room that must
have a single enemy if no more melees or rangers remain. We place a healer in a room if the
room must have at least two enemies in it. If the room already has a healer, we only add another
healer if there is no other type of enemy.

72 Chapter 4. Methodology

Algorithm 2 – Enemy Selection Process.
1: procedure ENEMYSELECTOR(room: Room, enemies: Enemies)
2: melees← enemies.GETMELEES();
3: rangers← enemies.GETRANGERS();
4: healers← enemies.GETHEALERS();
5: amount← room.total_enemies;
6: healer← False;
7: while amount > 0 do
8: hasMelees← melees.SIZE()> 0;
9: hasRangers← rangers.SIZE()> 0;

10: hasHealers← healers.SIZE()> 0;
11: if amount == 1 then
12: if hasHealers and not hasMelees and not hasRangers then
13: room.ADDRANDOMENEMY(healers)
14: else
15: room.ADDRANDOMENEMY(melees,rangers)
16: end if
17: amount← amount−1
18: else if amount >= 2 then
19: if (not healer and hasHealers) or (not hasMelees and not hasRangers) then
20: room.ADDRANDOMENEMY(healers);
21: amount← amount−1
22: healer← True;
23: else if (melees,rangers).SIZE()> 1 then
24: room.ADDRANDOMENEMY(melees,rangers)
25: room.ADDRANDOMENEMY(melees,rangers)
26: amount← amount−2
27: else
28: room.ADDRANDOMENEMY(melees,rangers)
29: amount← amount−1
30: end if
31: end if
32: end while
33: end procedure

73

CHAPTER

5
RESULTS

In this chapter, we present the results of our PCG system. We present the computational
results of our level generation algorithm and our enemy generation algorithm, respectively, in
sections 5.1 and 5.2. Then, in Section 5.3, we present the results regarding the gameplay feedback
from players regarding levels, enemies, and the combination of both.

5.1 Level Generation
This section reports the computational results achieved by our level generation approach

and some of the levels generated by it. We defined the evolutionary parameters empirically after
comparing some range of values. The results comparing different configurations are available in
a Google Sheets spreadsheet1. After such evaluation, we set the following method’s parameters:
20 individuals for initial population, 15% for mutation rate, 100 individuals for intermediate
population, 2-size for tournament selection, and 60 seconds as stop-criterion.

Next, we collected data from 30 executions of our method for six different sets of
parameters to evaluate the algorithm performance. Table 7 shows the average and standard
deviation of the fitness for each Elite (entry) of our MAP-Elites population. We observe that the
fitness values tend to decrease as leniency decreases, which is expected because there are more
safe rooms in L1 levels (50% to 60%) than L2 levels (40% to 50%), less in L3 levels, and so on.
Moreover, L2 naturally presents their enemies distributed in more rooms than L1 levels; thus,
increasing the enemy sparsity and decreasing the standard deviation of enemies. By comparing
tables 7b and 7c, we observe that increasing the linear coefficient decreases the dungeons’ fitness.
That means that our algorithm works slightly better for lower linear coefficients.

E5 column in Table 7d presents only subpar fitness values, and these results happen
mainly due to the high number of locks at such a small level. To be mapped in E5, the map
1 Link to the spreadsheet: https://docs.google.com/spreadsheets/d/1Rx79rBWl3gHE0KSU7AuZ8VKVw

B047yrKrZ0041SLIE8.

https://docs.google.com/spreadsheets/d/1Rx79rBWl3gHE0KSU7AuZ8VKVwB047yrKrZ0041SLIE8
https://docs.google.com/spreadsheets/d/1Rx79rBWl3gHE0KSU7AuZ8VKVwB047yrKrZ0041SLIE8

74 Chapter 5. Results

Table 7 – Results of fitness obtained after 30 executions of our level generation approach. Each table
caption represents a set of parameters: (number of rooms)-(number of keys)-(number of locks)-
(number of enemies)-(linear coefficient). Each table cell corresponds to an Elite. Descriptors of
leniency are the rows. Descriptors of exploration coefficient are the columns.

(a) 15-3-2-20-2.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

L1 (0.5,0.6) 0.53±0.39 0.45±0.35 0.50±0.40 0.45±0.36 0.59±0.41
L2 (0.4,0.5) -0.04±0.37 -0.12±0.38 -0.12±0.36 -0.12±0.36 0.01±0.40
L3 (0.3,0.4) -0.29±0.37 -0.37±0.38 -0.36±0.36 -0.36±0.36 -0.23±0.41
L4 (0.2,0.3) -0.53±0.36 -0.61±0.37 -0.59±0.36 -0.59±0.36 -0.45±0.42
L5 (0.1,0.2) -0.50±0.54 -0.63±0.48 -0.61±0.46 -0.52±0.60 -0.25±0.89

(b) 20-4-4-30-1.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

L1 (0.5,0.6) 0.03±0.41 -0.05±0.46 -0.09±0.41 -0.08±0.37 0.31±0.99
L2 (0.4,0.5) -0.59±0.41 -0.63±0.40 -0.63±0.37 -0.61±0.37 -0.32±0.80
L3 (0.3,0.4) -0.95±0.42 -0.99±0.40 -0.98±0.38 -0.97±0.37 -0.70±0.76
L4 (0.2,0.3) -1.18±0.40 -1.24±0.40 -1.21±0.39 -1.20±0.38 -0.92±0.79
L5 (0.1,0.2) -1.23±0.38 -1.32±0.40 -1.31±0.39 -1.31±0.39 -0.74±1.24

(c) 20-4-4-30-2.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

L1 (0.5,0.6) 0.24±0.36 0.20±0.34 0.16±0.26 0.29±0.33 0.76±0.85
L2 (0.4,0.5) -0.33±0.27 -0.34±0.28 -0.36±0.23 -0.27±0.27 0.00±0.60
L3 (0.3,0.4) -0.69±0.26 -0.69±0.26 -0.71±0.23 -0.65±0.25 -0.38±0.58
L4 (0.2,0.3) -0.93±0.25 -0.93±0.25 -0.94±0.22 -0.90±0.22 -0.63±0.55
L5 (0.1,0.2) -0.92±0.42 -0.92±0.43 -0.94±0.40 -0.86±0.45 -0.29±1.01

(d) 25-8-8-30-2.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

L1 (0.5,0.6) -0.14±0.55 -0.32±0.42 -0.36±0.34 -0.03±0.93 8.97±5.89
L2 (0.4,0.5) -0.92±0.28 -1.02±0.31 -1.00±0.30 -0.73±0.79 6.46±4.88
L3 (0.3,0.4) -1.23±0.31 -1.29±0.32 -1.27±0.31 -1.02±0.80 5.94±4.72
L4 (0.2,0.3) -1.57±0.32 -1.64±0.33 -1.63±0.32 -1.38±0.82 5.33±4.53
L5 (0.1,0.2) -1.55±0.70 -1.71±0.45 -1.73±0.34 -1.49±0.83 5.90±4.74

(e) 30-4-4-50-2.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

L1 (0.5,0.6) 1.33±1.43 0.55±0.67 0.69±0.68 1.20±1.41 4.22±2.70
L2 (0.4,0.5) -0.16±0.31 -0.17±0.49 -0.21±0.26 -0.18±0.24 0.54±1.38
L3 (0.3,0.4) -0.68±0.25 -0.70±0.37 -0.75±0.21 -0.69±0.21 -0.34±0.86
L4 (0.2,0.3) -1.08±0.21 -1.07±0.32 -1.11±0.19 -1.06±0.20 -0.78±0.58
L5 (0.1,0.2) -1.21±0.25 -1.19±0.34 -1.25±0.22 -1.19±0.22 -0.80±0.69

(f) 30-6-6-50-1.5.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

L1 (0.5,0.6) 0.23±1.51 -0.37±0.76 -0.17±0.90 0.61±1.58 7.96±17.62
L2 (0.4,0.5) -0.92±0.63 -1.13±0.19 -1.11±0.20 -1.08±0.15 0.02±1.58
L3 (0.3,0.4) -1.53±0.21 -1.60±0.17 -1.58±0.18 -1.55±0.18 -1.12±0.75
L4 (0.2,0.3) -1.90±0.17 -1.96±0.16 -1.94±0.18 -1.91±0.16 -1.63±0.67
L5 (0.1,0.2) -2.06±0.17 -2.12±0.16 -2.09±0.18 -2.08±0.18 -1.79±0.69

Source: Elaborated by the author.

coverage must fill 90% to 100% of the level’s rooms. Nevertheless, the keys are usually closer
to their locks; thus, they cannot be mapped. We believe this result is caused mainly due to the

5.1. Level Generation 75

crossover operation, which must ensure that both lock and key must be in the swapped branch.
Once lock and key are in the same branch, the coverage cannot fill 90% of the level’s rooms.
Thus, the levels found in the E5 column in Table 7d have fewer locks than required by the input.

Finally, the Elite L1-E5 presents the worst fitness value in all the tables. In this case, our
algorithm should fill enemies in levels with 50% up to 60% safe rooms and ensure they present
90% up to 100% of exploration coefficient. Our algorithm struggled to find good results for
such Elites. Besides, this Elite has poor fitness values, particularly in the tables 7e and 7f. Such
a result is an accumulation of bad values of the factors of fgoal , in which the main one is the
number of rooms. Since our levels are randomly generated in the initial population, the difficulty
of generating levels with a higher number of rooms is somewhat expected.

Figure 13 shows the result of an execution of our method. The figure shows the mapping
performed by our algorithm, where we can see that the lower the leniency in the levels, the
more the number of rooms with enemies (represented by squares with shades of red). The empty
rooms (white squares) tend to be closer to each other, while rooms with enemies tend to be closer
to the edges of the levels. We believe this behavior occurs due to the enemy sparsity since it
encourages the distribution of enemies regarding their position on the map. Besides, there are
stronger shades of red in the rooms with lesser leniency values, which is an expected result since
we maintain the number of enemies in the whole level. The levels with high leniency degrees
present more rooms with more enemies.

Regarding exploration coefficient, levels with lesser values for such metric present some
keys closer to their locks; some are just in front of the lock they should open. Hence, as expected,
the levels with higher exploration coefficients present a higher distance between the keys and
their locks. For instance, the closer distance between a key and its lock in E5 levels is four rooms
(e.g., in L1-E5 level). Nonetheless, there is at least a key in all the levels, far from its lock. In E1
levels, this key is the one that opens the goal room.

Moreover, considering only the positions of the rooms, the structure of most levels is
very similar. Some similar levels differ only in terms of the enemies’ position, such as L4-E3 and
L5-E3. Locks and keys may also appear in the same positions (rooms), but they may change the
required gameplay significantly. For instance, in level L2-E2, the player must collect the yellow
key and open the yellow lock to collect the green key and open the goal room. In L2-E2, however,
the player can access all the keys without unlocking any door. Nonetheless, this particular feature
of chained locked-door missions is rare to appear in our approach; in Figure 13 there are 7 out of
25 levels with this feature.

Although some of the levels are similar in terms of room placement, we can observe
that the algorithm worked as intended: a level with a set of rooms different in both exploration
and leniency was created, with most of them converging very close to the designer’s needs and
having interesting contents.

76 Chapter 5. Results

Figure 13 – Example of a MAP-Elites population of levels with 20 rooms, 4 keys, 4 locks, 30 enemies,
and linear coefficient equal to 2. Each table cell corresponds to an Elite. The small squares
represent corridors, and the bigger squares represent rooms. The white room with a purple
square within it is the start room. The purple room with a white square within it is the goal
room. White rooms have no enemies while red rooms have enemies within, the more intense
the shade of red, the more enemies there are. Colored corridors are locked, and their keys are
colored circles within rooms.

E1 (0.5,0.6) E2 (0.6,0.7) E3 (0.7,0.8) E4 (0.8,0.9) E5 (0.9,1.0)

Exploration Coefficient

L1 (0.5,0.6)

L2 (0.4,0.5)

L3 (0.3,0.4)

L4 (0.2,0.3)

L5 (0.1,0.2)

L
en

ie
nc

y

Source: Elaborated by the author.

5.2 Enemy Generation

This section reports the computational results achieved by our enemy generation ap-
proach. We defined the parameters of our approach empirically after comparing some range of
values. The results comparing different sets of evolutionary parameters are available in a Google
Sheets spreadsheet2. After this comparison, we defined the following parameters: 500 gener-
ations as stop-criterion, 35 individuals for initial population, 100 individuals for intermediate
population, 20% for mutation rate, 30% for gene mutation rate, 2-size for tournament selection.
2 Link to the spreadsheet: https://docs.google.com/spreadsheets/d/19SMHZYT_pfniZDuNS0BOYMt1

kWyBOlvqFq_Y7vBNrS4.

https://docs.google.com/spreadsheets/d/19SMHZYT_pfniZDuNS0BOYMt1kWyBOlvqFq_Y7vBNrS4
https://docs.google.com/spreadsheets/d/19SMHZYT_pfniZDuNS0BOYMt1kWyBOlvqFq_Y7vBNrS4

5.2. Enemy Generation 77

Table 8 – Results of fitness obtained after 100 executions of our enemy generation approach.

(a) Very Easy Difficulty = 11.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.01 0.00+-0.00 0.01+-0.01
Random 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.01 0.00+-0.00 0.01+-0.01
Random1D 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.01 0.00+-0.00 0.01+-0.01
Flee 0.00+-0.00 0.00+-0.00 0.16+-0.23 0.21+-0.38 0.00+-0.00 0.03+-0.03
Flee1D 0.00+-0.00 0.00+-0.00 0.06+-0.10 0.07+-0.12 0.00+-0.00 0.03+-0.04
Follow 0.01+-0.01 0.01+-0.01 0.43+-0.58 0.43+-0.53 0.01+-0.02 0.02+-0.02
Follow1D 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.01 0.00+-0.00 0.01+-0.01

(b) Easy Difficulty = 13.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 0.00+-0.01 0.00+-0.00 0.01+-0.02 0.01+-0.02 0.00+-0.00 0.01+-0.01
Random 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.03 0.00+-0.00 0.01+-0.01
Random1D 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.01 0.00+-0.00 0.01+-0.01
Flee 0.00+-0.02 0.00+-0.01 0.12+-0.22 0.09+-0.20 0.00+-0.01 0.03+-0.03
Flee1D 0.00+-0.01 0.00+-0.01 0.04+-0.05 0.04+-0.05 0.00+-0.01 0.03+-0.03
Follow 0.01+-0.01 0.01+-0.01 1.07+-1.12 1.06+-0.97 0.01+-0.01 0.02+-0.02
Follow1D 0.00+-0.00 0.00+-0.00 0.01+-0.01 0.01+-0.01 0.00+-0.00 0.01+-0.01

(c) Medium Difficulty = 15.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 0.07+-0.14 0.06+-0.14 0.02+-0.03 0.02+-0.03 0.08+-0.18 0.02+-0.02
Random 0.00+-0.00 0.00+-0.00 0.00+-0.01 0.00+-0.01 0.00+-0.00 0.01+-0.01
Random1D 0.00+-0.00 0.00+-0.00 0.00+-0.01 0.00+-0.01 0.00+-0.00 0.01+-0.02
Flee 0.07+-0.14 0.08+-0.23 0.03+-0.04 0.03+-0.04 0.08+-0.22 0.03+-0.03
Flee1D 0.05+-0.11 0.06+-0.13 0.02+-0.02 0.02+-0.03 0.07+-0.14 0.02+-0.03
Follow 0.01+-0.01 0.01+-0.01 1.70+-1.47 2.15+-1.82 0.01+-0.01 0.02+-0.02
Follow1D 0.00+-0.00 0.00+-0.00 0.00+-0.01 0.00+-0.00 0.00+-0.00 0.01+-0.01

(d) Hard Difficulty = 17.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 1.91+-0.25 1.90+-0.20 0.03+-0.03 0.03+-0.03 1.91+-0.21 0.02+-0.02
Random 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.01+-0.01
Random1D 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.01+-0.01
Flee 1.96+-0.27 1.94+-0.27 0.02+-0.03 0.02+-0.01 1.96+-0.27 0.02+-0.02
Flee1D 1.98+-0.27 1.94+-0.24 0.01+-0.01 0.01+-0.01 1.95+-0.26 0.02+-0.02
Follow 0.01+-0.01 0.01+-0.01 2.32+-2.07 2.29+-2.16 0.01+-0.01 0.01+-0.01
Follow1D 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.01+-0.01

(e) Very Hard Difficulty = 19.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 3.91+-0.23 3.93+-0.24 0.04+-0.04 0.03+-0.04 3.93+-0.27 0.02+-0.02
Random 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.01+-0.01
Random1D 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.01+-0.01
Flee 3.95+-0.27 3.99+-0.32 0.02+-0.02 0.01+-0.02 3.94+-0.29 0.02+-0.02
Flee1D 3.90+-0.18 3.89+-0.17 0.01+-0.01 0.01+-0.01 3.91+-0.18 0.02+-0.02
Follow 0.01+-0.01 0.01+-0.01 3.14+-2.39 3.35+-2.63 0.01+-0.01 0.01+-0.01
Follow1D 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.00+-0.00 0.01+-0.01

Source: Elaborated by the author.

Next, we collected data from 100 executions of our method for three different difficulty
goals to evaluate its performance. Table 8 shows the average and standard deviation of the fitness
for each Elite (entry) of our MAP-Elites population.

78 Chapter 5. Results

In Table 8, we observe that most solutions converged to zero, which is the best value
since we are using a distance fitness. This result is expected because lower difficulty values are
somewhat easy to reach. However, in Table 8, Bow and Bomb Thrower enemies with movements
of Flee and Follow presented higher values. For ranged enemies with Flee movement, is expected
since this movement makes this ranged enemies more dangerous. This Elite gets closer to zero
in the remaining tables, which means the respective Elite is reaching the aimed difficulty. On the
other hand, regarding the ranged enemies with the movement Follow, their distance is a little
high due to a lack of balance between projectile and movement speed attributes. This result is
analogous in the remaining test cases.

In tables 8d and 8e, we observe that new Elites in both tables have significantly higher
distance values than the others. These Elites are the enemies with the Barehand, Sword, and
Shield as weapons and None, Flee, and Flee1D as movements. We expected such results since
these values are the ones we set with lesser values for their weights in the gameplay factor of our
difficulty function. Besides, we also observe a difficulty limit in these enemies in both tables.
These values vary between 15 and 16 since the distance between them and the difficulties 17 and
19 are, respectively, 2 and 4 approximately.

Regarding the approach execution time, Table 9 presents the average, minimum, maxi-
mum, and standard deviation values for duration time, in seconds, of the 100 executions. The
experiments were carried out in a PC with the following setup: Intel Core i7-7700HQ 2.80GHz
Processor (8 cores), 16 GB DDR4 RAM, 236GB SSD memory, NVIDIA GeForce GTX 1050 Ti
4GB graphics card. The results show that different values of difficulty goals do not impact the
execution time of our approach. Therefore, our approach can generate enemies of any difficulty
without performance loss.

Table 9 – Results of time in seconds obtained after 100 executions of our enemy generation approach.

Difficulty Average Minimum Maximum Standard Deviation

11 0.1608 0.1510 0.2345 0.0126
13 0.1609 0.1521 0.2255 0.0115
15 0.1597 0.1508 0.2474 0.0145
17 0.1621 0.1509 0.2000 0.0106
19 0.1581 0.1512 0.1970 0.0072

Source: Elaborated by the author.

The Evolutionary Algorithm presented by Pereira, Viana and Toledo (2021) can generate
a huge number of enemies in a single execution. Although our approach generates significantly
fewer enemies, it ensures their diversity. Our approach was slightly faster regarding average
execution time since their lower average time was 0.168 seconds.

5.3. Gameplay Feedback 79

5.3 Gameplay Feedback

This section reports the results of volunteer players’ feedback regarding the levels, locked-
door missions, and enemies generated by our approaches and put together by our orchestrator.
The players answered a post-questionnaire for each level played, and they were identified with
a unique ID, but we cannot ensure that the same player played more than once playthrough.
Figure 14 presents the distribution of the volunteer players regarding their experience with
general games and with Action-Adventure games. Most volunteers are experienced in both.

Figure 14 – The volunteer players’ experience (90 out of 96). Six of them did not answer the questions.

(a) Q1 - I am an experienced player.

1 2 3 4 5
0

10
20
30
40
50

17

38
25

4 6

5-point Likert Scale

A
ns

w
er

s

(b) Q2 - Experience in Action-Adventure games.

1 2 3 4 5
0

10
20
30
40
50

27 30
20

5 8

5-point Likert Scale
A

ns
w

er
s

Source: Elaborated by the author.

5.3.1 Feedback of Levels

Finally, we asked people to play a game prototype with the generated levels, and the
players had to answer a questionnaire about each played level. The game prototype is the same
introduced by Pereira et al. (2021), but our locked-door missions are not generic, which means a
key can open only a specific locked door. Also, in our gameplay, the players must defeat enemies
to progress, and our rooms may also have blocks that players can use to protect themselves from
enemies. Thus, the gameplay in the game prototype, using levels procedurally generated by our
MAP-Elites approach, advances from the original one in Pereira et al. (2021).

A total of 96 people played the levels, where 74 answered all the questions. They played
121 levels, selected by our orchestrator to feed the game prototype. After finishing a level, the
players answered how much they agree or not, on a five-point Likert scale, with the following
statements, which were adapted from (HEIJNE, 2016; FERREIRA; TOLEDO, 2017)3:

Q1 The level was fun to play;

Q2 The level was difficult to complete;

Q3 The challenge was just right (balanced);

Q4 I liked the amount of exploration available on this level;
3 The game was in Portuguese, so we translated such questions from English into Portuguese.

80 Chapter 5. Results

Q5 I liked the challenge of finding the keys to this level;

Q6 It was difficult to find the exit/goal of this level;

Q7 The rewards were on the right amount;

Q8 The levels I played were created by humans.

Figure 15 presents seven bar charts, each one with the answers to a question. Table 10
summarizes these answers by presenting the Average (AVG) and Standard Deviation (STD)
of each question. The low SD (∼= 1) shows that the responses vary slightly. In Figure 15a, the
players had fun while playing 80 out of 121 levels, and only 20 did not enjoy it. Figure 15b
shows that most players did not have difficulty completing most of our levels (73 out of 121) and
Figure 15c shows the players felt that the challenge of 61 levels was just right, it was not good
for 37 levels, and they felt neutral for 23 levels.

Figure 15 – Bar charts of answers of the 74 players for 121 levels. Each bar corresponds to the number of
levels evaluated for the respective value of the five-point Likert scale.

(a) Q1 (Level was fun).

1 2 3 4 5
0

10
20
30
40
50

34
46

21

2

18

5-point Likert Scale

A
ns

w
er

s

(b) Q2 (Level was difficult).

1 2 3 4 5
0

10
20
30
40
50

26 22
32

22 19

5-point Likert Scale

A
ns

w
er

s

(c) Q3 (Balance was right).

1 2 3 4 5
0

10
20
30
40
50 38

2323
15

22

5-point Likert Scale

A
ns

w
er

s

(d) Q4 (Liked the exploration).

1 2 3 4 5
0

10
20
30
40
50 38 44

23

5 11

5-point Likert Scale

A
ns

w
er

s

(e) Q5 (Liked key-lock puzzles).

1 2 3 4 5
0

10
20
30
40
50

28
3832

7
16

5-point Likert Scale

A
ns

w
er

s

(f) Q6 (Difficult to find exit).

1 2 3 4 5
0

10
20
30
40
50

13
222731 28

5-point Likert Scale

A
ns

w
er

s

(g) Q7 (Reward amount was right).

1 2 3 4 5
0

10
20
30
40
50 38

2223
14

22

5-point Likert Scale

A
ns

w
er

s

(h) Q8 (Level was made by humans).

1 2 3 4 5
0

10
20
30
40
50

18 24
33

17
29

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Players liked the exploration of 82 levels, as shown in Figure 15d, they did not enjoy
only 16 levels, and they were neutral for 23 levels. We observe in Figure 15e that the players
liked the locked-doors puzzles in 66 levels; they did not like it in 23 levels and were neutral
about it in 32 levels. The players easily found the goal room in 59 levels in Figure 15f; the goal

5.3. Gameplay Feedback 81

Table 10 – Average (AVG) and Standard Deviation (STD) of answers of the 74 players for 121 levels.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

AVG 3.85 3.05 3.26 3.86 3.61 2.72 3.12 3.02
STD 1.13 1.35 1.30 1.13 1.22 1.42 1.24 1.32

Source: Elaborated by the author.

room was difficult to find in only 35 levels. Figure 15g shows that the number of rewards was
enough for 60 players, neutral for 23, and not enough for 36. Finally, Figure 15h shows that the
players believed that humans created 42 levels, 46 levels were generated by a PCG algorithm,
and 33 had no sure.

Therefore, even while playing different levels, most players felt that playing the generated
content was fun, with a balanced difficulty that brought a good challenge in combat against
enemies and a good feeling of exploration in the dungeons. They liked the locked-doors puzzles
while not finding it very difficult to find the exit. Thus, our algorithm was able to bring quality
and diversity to the solutions while also creating the content so that players could not accurately
point out if an algorithm made it.

Figure 16 – Bar charts of answers for question Q5 (“I liked the challenge of finding the keys to this level”)
of 57 players for 93 levels. These players answered, through a pre-questionnaire, they enjoy
exploring. Each bar corresponds to the number of levels evaluated for the respective value of
the five-point Likert scale. Each figure correspond to a descriptor of exploration coefficient.

(a) E1 (0.5,0.6).

1 2 3 4 5
0
5

10
15
20
25 19 21

9
3 4

5-point Likert Scale

A
ns

w
er

s

(b) E2 (0.6,0.7).

1 2 3 4 5
0
5

10
15
20
25

1
5

2

5-point Likert Scale

A
ns

w
er

s

(c) E3 (0.7,0.8).

1 2 3 4 5
0
5

10
15
20
25

5 6
21

5-point Likert Scale

A
ns

w
er

s

(d) E4 (0.8,0.9).

1 2 3 4 5
0
5

10
15
20
25

2
6

1

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Besides the questionnaire to evaluate levels, we also asked the players if they enjoyed
exploring and battling during their gameplay. Figure 16 shows the feedback of the exploration of
levels that were played by players that enjoy exploring by class of exploration coefficient. Most
players played E1 levels, and no one played E5 levels; however, most enjoyed playing all the
levels independent of the value of the exploration coefficient. Figure 17 shows the feedback of
levels of the players that enjoy battling. The results vary more in these charts, with most players
playing L4 levels and agreeing with the challenge in the levels they played. Regarding the levels
with the remaining leniency values, we cannot declare if they presented the just right amount of
challenge since the number of players who agreed and disagreed with that is too close.

82 Chapter 5. Results

Figure 17 – Bar charts of answers for question Q3 (“The challenge was just right”) of 43 players for 74
levels. These players answered, through a pre-questionnaire, they enjoy battles. Each bar
corresponds to the number of levels evaluated for the respective value of the five-point Likert
scale. Each figure correspond to a descriptor of leniency.

(a) L1 (0.5,0.6).

1 2 3 4 5
0
5

10
4

1 3

5-point Likert Scale

A
ns

w
er

s

(b) L2 (0.4,0.5).

1 2 3 4 5
0
5

10
311 1

5-point Likert Scale
A

ns
w

er
s

(c) L3 (0.3,0.4).

1 2 3 4 5
0
5

10
4 57

3 4

5-point Likert Scale

A
ns

w
er

s

(d) L4 (0.2,0.3).

1 2 3 4 5
0
5

10
10

654 3

5-point Likert Scale

A
ns

w
er

s

(e) L5 (0.1,0.2).

1 2 3 4 5
0
5

10
4

12 2

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

5.3.2 Feedback of Enemies

A total of 96 people faced our enemies in the game; 75 of them answered all the two
following questions. They played 124 levels with enemies placed in rooms by our orchestrator.
Regarding difficulty, they played 31 levels with easy enemies, 35 with medium enemies, and
58 with hard enemies. After playing the levels, the players answered how much they agree or
disagree, on a five-point Likert scale, with the following statements, which were adapted from
(HEIJNE, 2016; FERREIRA; TOLEDO, 2017)4:

Q9 The enemies of this level were difficult to defeat;

Q10 The enemies I faced were created by humans.

Figure 18 shows the overall results of players’ feedback from our enemies for each
question in the questionnaire. Figure 18b shows the players felt the enemies in 80 levels were
not difficult to defeat. However, in terms of the challenge suitability (Figure 15c), they answered
that the challenge presented was just right in half of the levels (61 out of 121), and they were
neutral for 23 of the levels. Finally, in Figure 18b, we observe that the players felt that humans
created our enemies in 58 of the levels, and they were neutral for enemies in 25 levels.

Figure 19 shows results of question Q1 for each difficulty. We observe that the players
enjoyed most levels they played regardless of the difficulty of the enemies. However, it is clear
that they preferred medium and hard levels since the negative answers decreases while the
positive answers increases.

4 The game was in Portuguese, so we translated such questions from English into Portuguese.

5.3. Gameplay Feedback 83

Figure 18 – Bar charts of answers of the 75 players after playing 124 levels. Each bar corresponds to the
number of levels evaluated for the respective value of the five-point Likert scale.

(a) Q9 (Enemies were difficult).

1 2 3 4 5
0

10
20
30
40
50

24 20
34

25 21

5-point Likert Scale

A
ns

w
er

s

(b) Q10 (Enemies were made by humans).

1 2 3 4 5
0

10
20
30
40
50

29 292521 20

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Figure 20 shows results of question Q2 for each difficulty. In Figure 20a, our expectations
were confirmed since the players felt that the enemies in 20 out of 31 easy levels were not difficult
to defeat. Only in 4 levels, the enemies were perceived as hard to overcome. The results for
medium levels show that the players felt enemies easy to defeat in 15 levels, hard in 11 levels,
and they were neutral in 9 levels (Figure 20b). Finally, from 58 hard levels, Figure 20c shows
that the players felt the enemies hard to defeat in 29 levels. They perceived enemies as easy to
defeat in only 10 levels and neutral in 18 levels. The results of feedback for the difficulty of our
enemies are good enough to corroborate our choices of difficulty values.

Figure 19 – Bar charts of answers for question Q1 (“The level was fun to play”). Each bar corresponds to
the number of levels evaluated for the respective value of the five-point Likert scale.

(a) Easy.

1 2 3 4 5
0

10
20
30

7 11
31

9

5-point Likert Scale

A
ns

w
er

s

(b) Medium.

1 2 3 4 5
0

10
20
30

8 14
71 5

5-point Likert Scale

A
ns

w
er

s

(c) Hard.

1 2 3 4 5
0

10
20
30 21 21

12
4

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Figure 20 – Bar charts of answers for question Q9 (“The enemies of this level were difficult to defeat”).
Each bar corresponds to the number of levels evaluated for the respective value of the
five-point Likert scale.

(a) Easy.

1 2 3 4 5
0

10
20
30

2 27
14

6

5-point Likert Scale

A
ns

w
er

s

(b) Medium.

1 2 3 4 5
0

10
20
30

5 699 6

5-point Likert Scale

A
ns

w
er

s

(c) Hard.

1 2 3 4 5
0

10
20
30 17 12

18

2
9

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Figure 21 shows results of question Q3 for each difficulty. Figures 21a and 21b show
that approximately half of the players agree and half disagree that easy and medium levels1

84 Chapter 5. Results

challenges were just right. In contrast, Figure 21c shows that the players perceived the challenge
as just right in most hard levels (39 out of 58). Besides the questionnaire to evaluate levels, we
also asked the players if they enjoyed battling during their gameplay. Figure 22 shows the results
of the players who confirmed such question. The results are analogous to Figure 21, and these
players also preferred the levels with the harder enemies, as shown in Figure 22c. Considering
such results, we believe our levels probably could present better challenges if we mix up some
enemies with different difficulty degrees.

Figure 21 – Bar charts of answers for question Q3 (“The challenge was just right”). Each bar corresponds
to the number of levels evaluated for the respective value of the five-point Likert scale.

(a) Easy.

1 2 3 4 5
0

10
20
30

7 457 8

5-point Likert Scale

A
ns

w
er

s

(b) Medium.

1 2 3 4 5
0

10
20
30

9 3
106 7

5-point Likert Scale

A
ns

w
er

s

(c) Hard.

1 2 3 4 5
0

10
20
30 23

1610
2 7

5-point Likert Scale

A
ns

w
er

s
Source: Elaborated by the author.

Figure 22 – Bar charts of answers for question Q3 (“The challenge was just right”) of 43 players for 74
levels. These players answered they enjoy battles. Each bar corresponds to the number of
levels evaluated for the respective value of the five-point Likert scale.

(a) Easy.

1 2 3 4 5
0

10
20

5
125 5

5-point Likert Scale

A
ns

w
er

s

(b) Medium.

1 2 3 4 5
0

10
20

544 4

5-point Likert Scale

A
ns

w
er

s

(c) Hard.

1 2 3 4 5
0

10
20 15

117
2 4

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Figure 23 – Bar charts of answers for question Q10 (“The enemies I faced were created by humans”). Each
bar corresponds to the number of levels evaluated for the respective value of the five-point
Likert scale.

(a) Easy.

1 2 3 4 5
0

10
20
30

2
1095 5

5-point Likert Scale

A
ns

w
er

s

(b) Medium.

1 2 3 4 5
0

10
20
30

11 659 4

5-point Likert Scale

A
ns

w
er

s

(c) Hard.

1 2 3 4 5
0

10
20
30

16 13117 11

5-point Likert Scale

A
ns

w
er

s

Source: Elaborated by the author.

Figure 23 shows results of question Q4 for each difficulty. The results show that the
players perceived the enemies as human-made in most levels regardless of the difficulty degree
of the enemies. Besides, this perception is more visible for medium and hard enemies than easy

5.4. Player Profiling 85

ones. These results mean that the harder the enemy to be overcome, the more players felt they
were more carefully designed.

5.4 Player Profiling

In this section, we present the results regarding player profiling. As in feedback of levels,
we only considered the answers from 74 players since they answered all the questions of our
post-questionnaire. Figure 24 shows the bar plot for each question, counting the responses of
each item in the 5-point Likert scale for each question. We observe that most volunteers classify
themselves as experient players in both general games and Action-Adventure ones (Q1 and Q2).

Questions from 3 to 12 are used to classify players. The players prefer medium difficulty
when playing games and slightly prefer harder difficulties than easier ones (Q3). They were
mostly neutral or enjoyed a little the action elements on games (Q4 and Q5). Positive answers
to such questions can lead players to the Mastery profile. In contrast, the volunteers generally
presented a greater tendency for exploration (Q6 and Q7); such preference defines them as
Creativity profile. The majority of players also answered positively for questions Q9 and Q10,
showing they enjoy collecting items and finishing quests (Achievement profile), and for Q10
and Q11, indicating they like interacting with the game story and NPCs. Finally, the volunteers
answered negatively last question (Q12), which shows that most players prefer to have free time
to experience the game instead of rushing to look for action.

Figure 24 – Bar chart grouping the count of answers for each point in the 5-point Likert scale for all
questions in the pre-questionnaire (Table 5). Strongly Disagree responses are in red, Disagree
in yellow, Neutral in green, Agree in blue, and Strongly Agree in purple.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
0

10

20

30

40

50

60

Questions

A
ns

w
er

s

Source: Elaborated by the author.

Figure 25 presents the distribution of answers of our post-questionnaire grouped regarding
the player profiles. The pre-questionnaire answers indicated that our levels were played by
Creativity-oriented players. However, Figure 25 shows that most players classified as Immersion
profile played more levels (97), followed by Mastery players (48). Few players were classified as
Achievement and Creativity; hence we had fewer answers, 30 and 29, respectively.

86 Chapter 5. Results

Figure 25 – Bar chart of answers by profile. Since players could answer after each playthrough (i.e.,
playing each level), there are more answers than the number of total players. From left to
right: Achievement (A), Creativity (C), Immersion (I), and Mastery (M).

A C I M
0

20
40
60
80

100
120

48

97

2930

Player Profiles

A
ns

w
er

s
Source: Elaborated by the author.

Figure 26 – Box plot charts, grouping the answers for each post-questionnaire question by the player’s
actual profile. The dark lines highlight the median, and the triangles mark the average. From
left to right: Achievement (A), Creativity (C), Immersion (I), and Mastery (M).

(a) Q1 (Level was fun).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(b) Q2 (Level was difficult).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(c) Q3 (Balance was right).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(d) Q4 (Liked the exploration).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(e) Q5 (Liked key-lock puzzles).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(f) Q6 (Difficult to find exit).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(g) Q7 (Reward amount was right).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

(h) Q9 (Enemies were difficult).

A C I M

1
2
3
4
5

Player Profiles

A
ns

w
er

s

Source: Elaborated by the author.

Figure 26 presents the box plot charts of answers for each post-questionnaire question,
which show the difference in the player profiles’ answers. First, we can observe that, in general,
most answers’ average and standard deviations are slightly distinct for different profiles. Fig-
ure 26a shows that, regarding average, Creativity-oriented players had less fun when playing our
levels than the remaining group of players. The Immersion players perceived the level difficulty
as slightly harder, while the Creativity ones perceived it as a little easier (Figure 26b). Regarding
the difficulty of enemies (Figure 26h), the Mastery players felt them easier, in general, than the

5.4. Player Profiling 87

remaining groups. Such a result is expected since these players enjoy combat over the other
motivations.

The players of Creativity and Mastery groups felt the balance slightly better than those
of Achievement and Immersion groups (Figure 26c). Regarding rewards Figure 26g, they were
perceived as not enough for Mastery players. Creativity and Immersion players felt, on average,
neutral about rewards. In contrast, the Achievement players found rewards enough for them. We
believe such a result is a consequence of their motivation to collect items, such as rewards.

Regarding exploration (Figure 26d), all groups but the Creativity one enjoyed the ex-
ploration of our levels. This result is similar for the answers of Q5 regarding the challenge of
finding locks and keys (Figure 26e), except for Achievement players that found it slightly less
challenging than the players of Mastery and Immersion. Achievement players found to find the
levels’ exit (Figure 26f) easier than the remaining groups, followed by the Creativity group. The
Immersion and Mastery players felt like an average difficulty.

However, we divided the players into the test and the control groups. We delivered the
appropriate content for the players in the test group, and for the players in the control group,
we delivered the content of other groups. We made this to analyze if our PCG system could
deliver better entertainment and challenge to the test group when compared to this control group.
Figure 27 presents the distribution of players grouped by their actual and given profile. The
players in the given profile are those in the control group. There are few Achievement and
Creativity players; thus, we do not have enough data to make a comparative analysis for these
groups. Therefore, we analyzed the answers of Mastery and Immersion profiles from groups that
presented at least 10 answers.

Figure 27 – Bar chart of answers by Actual Profile and Given Profile. The dark colors are the answers of
players who were classified as their actual profile. The light colors are the answers of players
who were given other profiles.

(A,A) (A,C) (A,I) (A,M) (C,A) (C,C) (C,I) (C,M) (I,A) (I,C) (I,I) (I,M) (M,A) (M,C) (M,I) (M,M)
0

10

20

30

40

50

60

11
3

34

6
13

55

23

5 5

17

21
7

20

2

(Actual Profile, Given Profile)

A
ns

w
er

s

Source: Elaborated by the author.

Such grouping resulted in the charts of Figure 28. It shows similar box plots to those
of Figure 26. Thus, the figure shows the distribution of answers to each question of the post-
questionnaire; however, it now groups the actual player profile and the given profile. The
Immersion profile is in green and Mastery profile is in yellow. The lighter hue represents the

88 Chapter 5. Results

group of players with different profiles from the actual one. The darker hue is for those who
played with content matching their actual profile.

Figure 28 – Box plot charts, grouping the answers for each post-questionnaire question by the pair of
player’s actual profile and given profile. The dark lines highlight the median, and the triangles
mark the average. From left to right: Achievement (A), Creativity (C), Immersion (I), and
Mastery (M).

(a) Q1 (Level was fun).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

(b) Q2 (Level was difficult).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s
(c) Q3 (Balance was right).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

(d) Q4 (Liked the exploration).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

(e) Q5 (Liked key-lock puzzles).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

(f) Q6 (Difficult to find exit).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

(g) Q7 (Reward amount was right).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

(h) Q9 (Enemies were difficult).

(I,C) (I,I) (I,M) (M,A) (M,M)

1
2
3
4
5

(Actual Profile, Given Profile)

A
ns

w
er

s

Source: Elaborated by the author.

In Figure 28, we can observe differences between both test and control groups. Partic-
ularly, Figure 28a shows very interesting results for Q1: the players in the test group enjoyed,
on average, more playing the game than those in the control group. The test group also found
the levels and the enemies more difficult, as shown in Figure 28b and Figure 28h, respectively.
However, regarding the challenge to find the levels’ exit was felt somewhat the same between all
the groups (Figure 28f). Although perceiving the levels and enemies more difficult (Figure 28c),
both the test and control groups of Immersion had a similar positive opinion regarding the game
balance. The Mastery test group found the game more balanced in contrast to the remaining

5.4. Player Profiling 89

groups. Both groups felt similarly about the rewards for the same profile (Figure 28g). Besides,
both groups had a somewhat similar opinion regarding rewards (Figure 28g) and also regarding
exploration (Figure 28d), the latter with slightly more positive answers. Finally, all the test
groups enjoyed the challenge of locked-door missions (Figure 28e).

91

CHAPTER

6
FINAL REMARKS

The present dissertation described how we solved the problem of adaptive content
orchestration regards the coordination of levels, missions, and enemies for an Action-Adventure
game and players of different profiles. We also described the contributions achieved by a PCG
system that integrates the so-called Overlord project (PEREIRA, 2021). We designed such a
system to generate multiple contents customized to entertain different types of players aiming to
answer the following research question:

How can a system orchestrate the generation of levels, narratives, and rules facets and

adapt them to provide coherent combinations of contents for different types of players?

Our system consisted of three modules: Game Prototype, Orchestrator, and Player Profile.
The Game Prototype module was responsible for providing the game for players and collecting
data from them. The Orchestrator coordinated two generators, one for levels and the other
for enemies, and then performed a post-processing process to combine levels and enemies
accordingly to the player profile. Such profile was classified by our Player Profile module, which
is based on four equations and weights from our player preferences questionnaire questions.

Thus, our work contributed to PCG research by advancing two PCG algorithms. The first
one generates levels with locked-door missions while placing enemies in the levels’ rooms; such
an enemy placement is an advance the method of Pereira et al. (2021). Another advancement
in such an algorithm was the application of a MAP-Elites population to evolve diverse levels
without losing quality. The second algorithm is the enemy generator; we advanced it from
Pereira, Viana and Toledo (2021) also by applying a MAP-Elites approach to illuminate the space
and, thus, generating diverse enemies. Our PCG system is a relevant contribution concerning
content orchestration since it can coordinate three creative facets (levels, narrative, and rules)
by generating levels with locked-door missions and enemies. Furthermore, our system can also
adapt this content to provide different experiences to different players based on their profiles.

92 Chapter 6. Final Remarks

Our computational results corroborate such contributions. The experiments showed that
both level and enemy generation algorithms accurately converged almost the entire population
for most executions and cases. Our experiments with volunteer players indicated that most
of them liked the levels and the enemies. We also successfully created enemies that could be
distinguished as easy, medium, or hard to face. Besides, most players could not identify if
algorithms or humans created the levels and enemies. Our experiments with players also showed
that our PCG system presented positive results in terms of content adaptation since the players of
Mastery and Immersion enjoyed the content we delivered for them. Therefore, we can conclude
that our PCG system can create levels, missions, and enemies capable of entertaining players.

As future works, we intend to improve our player profiling by using a gamified version
of our pre-questionnaire to provide a funnier way of classifying players. Thus, we could collect
more meaningful data and reduce bias, turning our classification more trustworthy. We believe
that such an alternative could improve our results regarding the players’ feedback. For instance,
we could provide options of playable characters with descriptions: warrior (players who prefer
close combat), hunter (for players who prefer ranged combat), diplomat (for players who prefer
interacting with the world), among others. Besides, we could improve adapted content by
classifying players with gameplay data, which can allow us to perform online classification
without using multiple times (boring) questionnaires and, hence, online orchestration.

Regarding our level generation approach, its main limitation is that its levels present
similar tree structures. Therefore, to allow more distinct levels in the population, we intend to
add a novelty score as proposed in (CONTI et al., 2017). Another way is to explore how our level
generator can be integrated into an interactive evolution in a game designer tool. In this way, this
tool could improve the productivity of game designers by providing suggestions for changes in
levels created by them, like in EDD (ALVAREZ et al., 2019). Concerning our enemy generation
approach, we aim to extend our work with the Constrained MAP-Elites approach (GRAVINA et

al., 2019). With this approach, we can generate multiple enemies and avoid incoherent enemies.
The main limitation of our enemy generator is the fitness function that is strongly related to our
game prototype. To overcome such a limitation, we intend to apply simulation-based fitness,
like in Khalifa et al. (2018). Finally, regarding our orchestration process, we aim to explore
how could we add new creative facets, e.g., NPCs, music, among others, and how other types of
orchestrators could improve our PCG system.

Furthermore, in our next steps, we intend to contact specialists in game designing to
cooperate with us to design better the game rhythm, fitness functions, and MAP-Elites mapping,
hopefully, for all the creative facets that we will be working on. Thus, we better attend to the
expectations of the industry’s game designers when using PCG methods for automatizing the
creative process of creating content.

93

BIBLIOGRAPHY

ALVAREZ, A.; DAHLSKOG, S.; FONT, J.; HOLMBERG, J.; JOHANSSON, S. Assessing
aesthetic criteria in the evolutionary dungeon designer. In: ACM. Proceedings of the 13th
International Conference on the Foundations of Digital Games. [S.l.], 2018. p. 44. Citations
on pages 49, 50, and 51.

ALVAREZ, A.; DAHLSKOG, S.; FONT, J.; TOGELIUS, J. Empowering quality diversity in
dungeon design with interactive constrained map-elites. In: IEEE. 2019 IEEE Conference on
Games (CoG). [S.l.], 2019. p. 1–8. Citations on pages 48, 49, 50, 51, and 92.

Atari. Pong. 1972. Accessed in: 2022-01-28. Available: <https://www.ponggame.org/.> Cita-
tion on page 35.

AZADVAR, A.; CANOSSA, A. Upeq: ubisoft perceived experience questionnaire: a self-
determination evaluation tool for video games. In: Proceedings of the 13th international
conference on the foundations of digital games. [S.l.: s.n.], 2018. p. 1–7. Citation on page
43.

BALDWIN, A.; DAHLSKOG, S.; FONT, J. M.; HOLMBERG, J. Mixed-initiative procedural
generation of dungeons using game design patterns. In: IEEE. Computational Intelligence and
Games (CIG), 2017 IEEE Conference on. [S.l.], 2017. p. 25–32. Citations on pages 47, 49,
50, and 51.

. Towards pattern-based mixed-initiative dungeon generation. In: ACM. Proceedings of
the 12th International Conference on the Foundations of Digital Games. [S.l.], 2017. p. 74.
Citations on pages 47, 49, 50, and 51.

BARTLE, R. A. Designing virtual worlds. [S.l.]: New Riders, 2004. Citations on pages 39, 41,
42, and 45.

BELL, I.; BRABEN, D. Elite. 1984. Accessed in: 2020-09-11. Available: <https://
www.mobygames.com/game/elite.> Citation on page 33.

BICHO, F.; MARTINHO, C. Multi-dimensional player skill progression modelling for procedural
content generation. In: Proceedings of the 13th International Conference on the Foundations
of Digital Games. [S.l.: s.n.], 2018. p. 1–10. Citations on pages 43 and 45.

Blizzard. Diablo III. 2012. Acessado em: 2021-02-11. Available: <https://us.diablo3.com/en/.>
Citations on pages 50 and 51.

BONTCHEV, B.; GEORGIEVA, O. Playing style recognition through an adaptive video game.
Computers in Human Behavior, Elsevier, v. 82, p. 136–147, 2018. Citation on page 45.

BROWNE, C.; MAIRE, F. Evolutionary game design. IEEE Transactions on Computational
Intelligence and AI in Games, IEEE, v. 2, n. 1, p. 1–16, 2010. Citations on pages 52 and 54.

https://www.ponggame.org/.
https://www.mobygames.com/game/elite.
https://www.mobygames.com/game/elite.
https://us.diablo3.com/en/.

94 Bibliography

CHARITY, M.; GREEN, M. C.; KHALIFA, A.; TOGELIUS, J. Mech-elites: Illuminating the
mechanic space of gvgai. arXiv preprint arXiv:2002.04733, 2020. Citations on pages 48, 49,
51, 52, and 54.

CONTI, E.; MADHAVAN, V.; SUCH, F. P.; LEHMAN, J.; STANLEY, K. O.; CLUNE, J.
Improving exploration in evolution strategies for deep reinforcement learning via a population of
novelty-seeking agents. arXiv preprint arXiv:1712.06560, 2017. Citation on page 92.

COOK, M.; COLTON, S. A rogue dream: Automatically generating meaningful content for
games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. [S.l.: s.n.], 2014. v. 10, n. 1. Citations on pages 53 and 54.

COOK, M.; COLTON, S.; PEASE, A. Aesthetic considerations for automated platformer design.
In: Eighth Artificial Intelligence and Interactive Digital Entertainment Conference. [S.l.:
s.n.], 2012. Citations on pages 52 and 54.

COOK, M.; COLTON, S.; RAAD, A.; GOW, J. Mechanic miner: Reflection-driven game me-
chanic discovery and level design. In: SPRINGER. European Conference on the Applications
of Evolutionary Computation. [S.l.], 2013. p. 284–293. Citations on pages 52 and 54.

COWLEY, B.; CHARLES, D. Behavlets: a method for practical player modelling using
psychology-based player traits and domain specific features. User Modeling and User-Adapted
Interaction, Springer, v. 26, n. 2, p. 257–306, 2016. Citation on page 45.

Creature Labs. Creatures. 1996. Accessed in: 2021-02-11. Available: <https:
//creatures.fandom.com/wiki/Creatures.> Citations on pages 50 and 51.

Digital Sun. Moonlighter. 2018. Accessed in: 2020-07-25. Available: <http:
//moonlighterthegame.com/.> Citations on pages 27 and 34.

DONNELLY, J. GTA 5 estimated to be the most profitable entertainment product of all
time. 2018. Accessed in: 2020-08-15. Available: <https://www.pcgamer.com/gta-5-estimated-
to-be-the-most-profitable-entertainment-product-of-all-time/.> Citation on page 27.

DORMANS, J. Adventures in level design: generating missions and spaces for action adventure
games. In: ACM. Proceedings of the 2010 workshop on procedural content generation in
games. [S.l.], 2010. p. 1. Citations on pages 31, 32, 46, 47, 49, 50, 51, 52, and 54.

EIBEN, A. E.; SMITH, J. E. et al. Introduction to evolutionary computing. [S.l.]: Springer,
2003. Citations on pages 19, 36, and 37.

ESHELMAN, L. J.; SCHAFFER, J. D. Real-coded genetic algorithms and interval-schemata. In:
Foundations of genetic algorithms. [S.l.]: Elsevier, 1993. v. 2, p. 187–202. Citation on page
68.

Evolutionary Games. Galact Arms Race. 2014. Accessed in: 2020-09-10. Available: <http:
//galacticarmsrace.blogspot.com/.> Citation on page 27.

FERREIRA, L. N.; TOLEDO, C. F. M. Tanager: A generator of feasible and engaging levels for
angry birds. IEEE Transactions on Games, IEEE, v. 10, n. 3, p. 304–316, 2017. Citations on
pages 79 and 82.

Firaxis Games. Civilization VI. 2016. Accessed in: 2020-09-11. Available: <https://
civilization.com.> Citation on page 34.

https://creatures.fandom.com/wiki/Creatures.
https://creatures.fandom.com/wiki/Creatures.
http://moonlighterthegame.com/.
http://moonlighterthegame.com/.
https://www.pcgamer.com/gta-5-estimated-to-be-the-most-profitable-entertainment-product-of-all-time/.
https://www.pcgamer.com/gta-5-estimated-to-be-the-most-profitable-entertainment-product-of-all-time/.
http://galacticarmsrace.blogspot.com/.
http://galacticarmsrace.blogspot.com/.
https://civilization.com.
https://civilization.com.

Bibliography 95

Game Terra. Statistically, video games are now the most popular and profitable form of
entertainment. 2018. Available: <https://www.gamerterra.com/news/statistically-video-games-
are-now-most-popular-and-profitable-form-entertainment/>. Citation on page 27.

Gearbox Software. Borderlands. 2009. Accessed in: 2020-09-10. Available: <https://
borderlands.com/.> Citation on page 27.

GELLEL, A.; SWEETSER, P. A hybrid approach to procedural generation of roguelike video
game levels. In: International Conference on the Foundations of Digital Games. [S.l.: s.n.],
2020. p. 1–10. Citations on pages 34, 46, 47, 49, 50, 51, 52, and 54.

GRAND, S.; CLIFF, D. Creatures: Entertainment software agents with artificial life. Au-
tonomous Agents and Multi-Agent Systems, Springer, v. 1, n. 1, p. 39–57, 1998. Citation on
page 50.

GRAVINA, D.; KHALIFA, A.; LIAPIS, A.; TOGELIUS, J.; YANNAKAKIS, G. N. Procedural
content generation through quality diversity. In: IEEE. 2019 IEEE Conference on Games
(CoG). [S.l.], 2019. p. 1–8. Citations on pages 29, 37, and 92.

GREEN, M. C.; BARROS, G. A. B.; LIAPIS, A.; TOGELIUS, J. Data agent. In: Proceedings
of the 13th International Conference on the Foundations of Digital Games. New York, NY,
USA: Association for Computing Machinery, 2018. (FDG ’18). ISBN 9781450365710. Available:
<https://doi.org/10.1145/3235765.3235792>. Citations on pages 53 and 54.

Guerrilla Games. Horizon Zero Dawn. 2017. Accessed in: 2020-08-10. Available: <https:
//store.playstation.com/pt-br/product/UP9000-CUSA10237_00-HRZCE00000000000?smcid=
en%3Apage%20name%3A%3AHorizon%20Zero%20Dawn%E2%84%A2%20Complete%
20Edition.> Citations on pages 31 and 32.

GUTIERREZ, J.; SCHRUM, J. Generative adversarial network rooms in generative graph
grammar dungeons for the legend of zelda. arXiv preprint arXiv:2001.05065, 2020. Citation
on page 34.

HARTSOOK, K.; ZOOK, A.; DAS, S.; RIEDL, M. O. Toward supporting stories with procedu-
rally generated game worlds. In: IEEE. 2011 IEEE Conference on Computational Intelligence
and Games (CIG’11). [S.l.], 2011. p. 297–304. Citations on pages 52 and 54.

HEIJNE, N. Investigating the Relationship between FFM, Game Literacy, Con-
tent Generation and Game-play Preference. Phd Thesis (PhD Thesis) — Dissertação
(Mestrado)—University of Amsterdam, 2016. Disponível em:< https . . . , 2016. Citations
on pages 43, 44, 45, 49, 51, 59, 79, and 82.

HEIJNE, N.; BAKKES, S. Procedural zelda: A pcg environment for player experience research.
In: Proceedings of the 12th International Conference on the Foundations of Digital Games.
[S.l.: s.n.], 2017. p. 1–10. Citation on page 43.

Hello Games. No Man’s Sky. 2018. Accessed in: 2020-09-11. Available: <https://
www.nomanssky.com.> Citations on pages 34, 50, and 51.

HEWGILL, A.; ROSS, B. J. Procedural 3d texture synthesis using genetic programming. Com-
puters & Graphics, Elsevier, v. 28, n. 4, p. 569–584, 2004. Citation on page 28.

https://www.gamerterra.com/news/statistically-video-games-are-now-most-popular-and-profitable-form-entertainment/
https://www.gamerterra.com/news/statistically-video-games-are-now-most-popular-and-profitable-form-entertainment/
https://borderlands.com/.
https://borderlands.com/.
https://doi.org/10.1145/3235765.3235792
https://store.playstation.com/pt-br/product/UP9000-CUSA10237_00-HRZCE00000000000?smcid=en%3Apage%20name%3A%3AHorizon%20Zero%20Dawn%E2%84%A2%20Complete%20Edition.
https://store.playstation.com/pt-br/product/UP9000-CUSA10237_00-HRZCE00000000000?smcid=en%3Apage%20name%3A%3AHorizon%20Zero%20Dawn%E2%84%A2%20Complete%20Edition.
https://store.playstation.com/pt-br/product/UP9000-CUSA10237_00-HRZCE00000000000?smcid=en%3Apage%20name%3A%3AHorizon%20Zero%20Dawn%E2%84%A2%20Complete%20Edition.
https://store.playstation.com/pt-br/product/UP9000-CUSA10237_00-HRZCE00000000000?smcid=en%3Apage%20name%3A%3AHorizon%20Zero%20Dawn%E2%84%A2%20Complete%20Edition.
https://www.nomanssky.com.
https://www.nomanssky.com.

96 Bibliography

HOOVER, A. K.; CACHIA, W.; LIAPIS, A.; YANNAKAKIS, G. N. Audioinspace: Exploring
the creative fusion of generative audio, visuals and gameplay. In: SPRINGER. International
Conference on Evolutionary and Biologically Inspired Music and Art. [S.l.], 2015. p. 101–
112. Citations on pages 52 and 54.

JAMESON, A. Adaptive interfaces and agents. The human-computer interaction handbook:
Fundamentals, evolving technologies and emerging applications, CRC Press, Boca Raton,
FL, p. 305–330, 2008. Citations on pages 39, 44, and 60.

KANAGAL-SHAMANNA, R.; PORTIER, B. P.; SINGH, R. R.; ROUTBORT, M. J.; ALDAPE,
K. D.; HANDAL, B. A.; RAHIMI, H.; REDDY, N. G.; BARKOH, B. A.; MISHRA, B. M. et
al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine
needle aspiration samples: promises and challenges for routine clinical diagnostics. Modern
pathology, Nature Publishing Group, v. 27, n. 2, p. 314–327, 2014. Citation on page 68.

KARAVOLOS, D.; LIAPIS, A.; YANNAKAKIS, G. N. Evolving missions for dwarf quest
dungeons. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG).
[S.l.: s.n.], 2016. p. 1–2. ISSN 2325-4289. Citations on pages 46, 47, 49, 50, 51, 52, and 54.

. A multi-faceted surrogate model for search-based procedural content generation. IEEE
Transactions on Games, IEEE, 2019. Citations on pages 53 and 54.

KHALIFA, A.; LEE, S.; NEALEN, A.; TOGELIUS, J. Talakat: Bullet hell generation through
constrained map-elites. In: Proceedings of The Genetic and Evolutionary Computation Con-
ference. [S.l.: s.n.], 2018. p. 1047–1054. Citations on pages 38, 50, 51, and 92.

KIMBROUGH, S. O.; KOEHLER, G. J.; LU, M.; WOOD, D. H. Introducing a feasible-infeasible
two-population (fi-2pop) genetic algorithm for constrained optimization: Distance tracing and
no free lunch. European Journal of Operational Research, Citeseer, v. 190, 2005. Citation
on page 37.

Koema. Top 100 Countries by Game Revenues. 2019. Available: <https://knoema.com/
infographics/tqldbq/top-100-countries-by-game-revenues>. Citation on page 27.

KONERT, J.; GUTJAHR, M.; GÖBEL, S.; STEINMETZ, R. Modeling the player: Predictability
of the models of bartle and kolb based on neo-ffi (big5) and the implications for game based
learning. International Journal of Game-Based Learning (IJGBL), IGI Global, v. 4, n. 2, p.
36–50, 2014. Citation on page 45.

LAVENDER, B.; THOMPSON, T. A generative grammar approach for action-adventure map
generation in the legend of zelda. 2017. Citations on pages 31, 32, 46, 47, 49, 50, 51, 52, and 54.

LIAPIS, A. Multi-segment evolution of dungeon game levels. In: ACM. Proceedings of the
Genetic and Evolutionary Computation Conference. [S.l.], 2017. p. 203–210. Citations on
pages 31, 32, 47, 49, 50, and 51.

. 10 years of the pcg workshop: Past and future trends. In: International Conference on
the Foundations of Digital Games. [S.l.: s.n.], 2020. p. 1–10. Citations on pages 28, 34,
and 45.

LIAPIS, A.; KARAVOLOS, D.; MAKANTASIS, K.; SFIKAS, K.; YANNAKAKIS, G. N.
Fusing level and ruleset features for multimodal learning of gameplay outcomes. In: IEEE. 2019
IEEE Conference on Games (CoG). [S.l.], 2019. p. 1–8. Citations on pages 53 and 54.

https://knoema.com/infographics/tqldbq/top-100-countries-by-game-revenues
https://knoema.com/infographics/tqldbq/top-100-countries-by-game-revenues

Bibliography 97

LIAPIS, A.; YANNAKAKIS, G.; TOGELIUS, J. Towards a generic method of evaluating game
levels. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. [S.l.: s.n.], 2013. v. 9, n. 1. Citation on page 62.

LIAPIS, A.; YANNAKAKIS, G. N.; NELSON, M. J.; PREUSS, M.; BIDARRA, R. Orchestrating
game generation. IEEE Transactions on Games, v. 11, n. 1, p. 48–68, March 2019. ISSN 2475-
1502. Citations on pages 28, 34, 35, 52, 56, and 61.

LIBERATI, A.; ALTMAN, D. G.; TETZLAFF, J.; MULROW, C.; GØTZSCHE, P. C.; IOAN-
NIDIS, J. P.; CLARKE, M.; DEVEREAUX, P. J.; KLEIJNEN, J.; MOHER, D. The prisma
statement for reporting systematic reviews and meta-analyses of studies that evaluate health care
interventions: explanation and elaboration. Journal of clinical epidemiology, Elsevier, v. 62,
n. 10, p. e1–e34, 2009. Citation on page 46.

LINDEN, R. van der; LOPES, R.; BIDARRA, R. Designing procedurally generated levels.
In: Proceedings of the the second workshop on Artificial Intelligence in the Game Design
Process. [S.l.: s.n.], 2013. Citations on pages 46, 47, 49, 50, 51, 52, and 54.

. Procedural generation of dungeons. IEEE Transactions on Computational Intelligence
and AI in Games, IEEE, v. 6, n. 1, p. 78–89, 2014. Citations on pages 28 and 32.

LOPES, P.; LIAPIS, A.; YANNAKAKIS, G. N. Framing tension for game generation. In: ICCC.
[S.l.], 2016. Citations on pages 53 and 54.

LORIA, E.; MARCONI, A. Player types and player behaviors: analyzing correlations in an
on-the-field gamified system. In: Proceedings of the 2018 Annual Symposium on Computer-
Human Interaction in Play Companion Extended Abstracts. [S.l.: s.n.], 2018. p. 531–538.
Citation on page 45.

Massive Entertainment. Tom Clancy’s The Division. 2016. Accessed in: 2021-02-19. Available:
<https://thedivision.fandom.com/wiki/Tom_Clancy%27s_The_Division.> Citation on page 43.

MaxisTM. Spore. 2008. Accessed in: 2021-02-11. Available: <http://www.spore.com/.> Cita-
tions on pages 50 and 51.

MCMILLEN, E.; HIMSL, F. The Binding of Isaac. 2011. Accessed in: 2020-07-25. Available:
<https://bindingofisaac.com/.> Citations on pages 55 and 57.

MELHART, D.; AZADVAR, A.; CANOSSA, A.; LIAPIS, A.; YANNAKAKIS, G. N. Your
gameplay says it all: modelling motivation in tom clancy’s the division. In: IEEE. 2019 IEEE
Conference on Games (CoG). [S.l.], 2019. p. 1–8. Citations on pages 43 and 45.

MELOTTI, A. S.; MORAES, C. H. V. de. Evolving roguelike dungeons with deluged novelty
search local competition. IEEE Transactions on Games, IEEE, v. 11, n. 2, p. 173–182, 2018.
Citations on pages 48 and 49.

MIGKOTZIDIS, P.; LIAPIS, A. Susketch: Surrogate models of gameplay as a design assistant.
IEEE Transactions on Games, IEEE, 2021. Citation on page 54.

MOHER, D.; LIBERATI, A.; TETZLAFF, J.; ALTMAN, D. G. Preferred reporting items for
systematic reviews and meta-analyses: the prisma statement. Annals of internal medicine, Am
Coll Physicians, v. 151, n. 4, p. 264–269, 2009. Citation on page 46.

https://thedivision.fandom.com/wiki/Tom_Clancy%27s_The_Division.
http://www.spore.com/.
https://bindingofisaac.com/.

98 Bibliography

Monolith Productions. Middle-earth: Shadow of Mordor. 2014. Acessado em: 2021-02-11.
Available: <https://store.steampowered.com/app/241930/Middleearth_Shadow_of_Mordor/.>
Citations on pages 50 and 51.

Motion Twin. Dead Cells. 2018. Accessed in: 2020-07-25. Available: <https://dead-cells.com/.>
Citation on page 27.

MOURET, J.-B.; CLUNE, J. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015. Citation on page 38.

Naughty Dog. Uncharted. 2007. Accessed in: 2020-09-11. Available: <https:
//www.unchartedthegame.com/en-us/.> Citation on page 31.

Nintendo. The Legend of Zelda - Franchise. 1986. Accessed in: 2020-09-04. Available: <https:
//www.zelda.com/.> Citations on pages 31, 43, 55, and 57.

. Pokémon - Franchise. 1996. Accessed in: 2020-09-10. Available: <https://
www.pokemon.com/us/.> Citations on pages 15 and 33.

ONO, J.; OGATA, T. Surprise-based narrative generation in an automatic narrative generation
game. In: Content generation through narrative communication and simulation. [S.l.]: IGI
Global, 2018. p. 162–185. Citation on page 34.

ORJI, R.; NACKE, L. E.; MARCO, C. D. Towards personality-driven persuasive health games
and gamified systems. In: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. [S.l.: s.n.], 2017. p. 1015–1027. Citation on page 39.

PEREIRA, L. T. Adaptative Procedural Generation of Multiple Creative Facets in Video
Games by Modeling Player’s Profiles and Performance. Phd Thesis (PhD Thesis) — Univer-
sidade de São Paulo, 2021. Citations on pages 28, 59, 71, and 91.

PEREIRA, L. T.; PRADO, P. V.; TOLEDO, C. Evolving dungeon maps with locked door
missions. In: IEEE. 2018 IEEE Congress on Evolutionary Computation (CEC). [S.l.], 2018.
p. 1–8. Citations on pages 31, 32, 46, 49, 52, and 54.

PEREIRA, L. T.; PRADO, P. V. de S.; LOPES, R. M.; TOLEDO, C. F. M. Procedural generation
of dungeons’ maps and locked-door missions through an evolutionary algorithm validated with
players. Expert Systems with Applications, Elsevier, v. 180, p. 115009, 2021. Citations on
pages 34, 46, 49, 52, 54, 56, 61, 64, 79, and 91.

PEREIRA, L. T.; VIANA, B. M. F.; TOLEDO, C. F. M. Procedural enemy generation through
parallel evolutionary algorithm. In: IEEE. 2021 20th Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames). [S.l.], 2021. p. 126–135. Citations on pages
50, 51, 65, 66, 67, 78, and 91.

PRAGER, R. P.; TROOST, L.; BRÜGGENJÜRGEN, S.; MELHART, D.; YANNAKAKIS, G.;
PREUSS, M. An experiment on game facet combination∖. In: IEEE. 2019 IEEE Conference
on Games (CoG). [S.l.], 2019. p. 1–8. Citations on pages 53 and 54.

PUGH, J. K.; SOROS, L. B.; STANLEY, K. O. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, Frontiers, v. 3, p. 40, 2016. Citation on page 38.

https://store.steampowered.com/app/241930/Middleearth_Shadow_of_Mordor/.
https://dead-cells.com/.
https://www.unchartedthegame.com/en-us/.
https://www.unchartedthegame.com/en-us/.
https://www.zelda.com/.
https://www.zelda.com/.
https://www.pokemon.com/us/.
https://www.pokemon.com/us/.

Bibliography 99

REEVES, C. R. Genetic algorithms. In: . Handbook of Metaheuristics. Boston, MA:
Springer US, 2010. p. 109–139. ISBN 978-1-4419-1665-5. Available: <https://doi.org/10.1007/
978-1-4419-1665-5_5>. Citation on page 37.

RICHTER, F. Gaming: The Most Lucrative Entertainment Industry By Far. 2020. Avail-
able: <https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-
sectors/>. Citation on page 27.

RIVERA-VILLICANA, J.; ZAMBETTA, F.; HARLAND, J.; BERRY, M. Informing a bdi
player model for an interactive narrative. In: Proceedings of the 2018 Annual Symposium on
Computer-Human Interaction in Play. [S.l.: s.n.], 2018. p. 417–428. Citations on pages 44,
45, and 59.

Rockstar Games. Grand Theft Auto V. 2013. Accessed in: 2020-08-15. Avail-
able: <https://www.rockstargames.com/V/restricted-content/agegate/form?redirect=https%3A%
2F%2Fwww.rockstargames.com%2FV%2F&options=&locale=en_us>. Citation on page 27.

SMITH, T.; PADGET, J.; VIDLER, A. Graph-based generation of action-adventure dungeon
levels using answer set programming. In: ACM. Proceedings of the 13th International Con-
ference on the Foundations of Digital Games. [S.l.], 2018. p. 52. Citations on pages 31, 32,
34, 46, 47, 49, 50, 51, 52, 54, and 62.

Solarus. The Legend of Zelda: Mystery of Solarus DX. 1986. Accessed in: 2020-07-25.
Available: <https://www.solarus-games.org/en/games/the-legend-of-zelda-mystery-of-solarus-
dx.> Citation on page 46.

Statista. Leading gaming markets in Latin America as of June 2019, by gaming revenue.
2019. Available: <https://www.statista.com/statistics/500035/gaming-revenue-countries-latin-
america/>. Citation on page 27.

SUMMERVILLE, A.; MARIÑO, J. R.; SNODGRASS, S.; ONTAÑÓN, S.; LELIS, L. H.
Understanding mario: an evaluation of design metrics for platformers. In: Proceedings of the
12th international conference on the foundations of digital games. [S.l.: s.n.], 2017. p. 1–10.
Citation on page 65.

SUMMERVILLE, A. J.; BEHROOZ, M.; MATEAS, M.; JHALA, A. The learning of zelda:
Data-driven learning of level topology. In: Proceedings of the FDG workshop on Procedural
Content Generation in Games. [S.l.: s.n.], 2015. Citations on pages 31 and 32.

SUMMERVILLE, A. J.; MATEAS, M. Sampling hyrule: Multi-technique probabilistic level
generation for action role playing games. In: Eleventh Artificial Intelligence and Interactive
Digital Entertainment Conference. [S.l.: s.n.], 2015. Citations on pages 31 and 32.

TAKAHASHI, D. SuperData: Games grew 12% to $139.9 billion in 2020 amid pan-
demic. 2021. Available: <https://venturebeat.com/2021/01/06/superdata-games-grew-12-to-
139-9-billion-in-2020-amid-pandemic/>. Citation on page 27.

TOGELIUS, J.; SHAKER, N.; NELSON, M. J. Introduction. In: SHAKER, N.; TOGELIUS,
J.; NELSON, M. J. (Ed.). Procedural Content Generation in Games: A Textbook and an
Overview of Current Research. [S.l.]: Springer, 2016. p. 1–15. Citations on pages 28, 32, 34,
and 35.

https://doi.org/10.1007/978-1-4419-1665-5_5
https://doi.org/10.1007/978-1-4419-1665-5_5
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors/
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors/
https://www.rockstargames.com/V/restricted-content/agegate/form?redirect=https%3A%2F%2Fwww.rockstargames.com%2FV%2F&options=&locale=en_us
https://www.rockstargames.com/V/restricted-content/agegate/form?redirect=https%3A%2F%2Fwww.rockstargames.com%2FV%2F&options=&locale=en_us
https://www.solarus-games.org/en/games/the-legend-of-zelda-mystery-of-solarus-dx.
https://www.solarus-games.org/en/games/the-legend-of-zelda-mystery-of-solarus-dx.
https://www.statista.com/statistics/500035/gaming-revenue-countries-latin-america/
https://www.statista.com/statistics/500035/gaming-revenue-countries-latin-america/
https://venturebeat.com/2021/01/06/superdata-games-grew-12-to-139-9-billion-in-2020-amid-pandemic/
https://venturebeat.com/2021/01/06/superdata-games-grew-12-to-139-9-billion-in-2020-amid-pandemic/

100 Bibliography

TOY, M.; WICHMAN, G. Rogue. 1980. Accessed in: 2020-07-25. Available: <https://
www.mobygames.com/game/rogue.> Citations on pages 27 and 33.

TREANOR, M.; SCHWEIZER, B.; BOGOST, I.; MATEAS, M. The micro-rhetorics of game-
o-matic. In: Proceedings of the International Conference on the Foundations of Digital
Games. [S.l.: s.n.], 2012. p. 18–25. Citations on pages 52 and 54.

Undead Labs. State of Decay. 2018. Accessed in: 2021-02-11. Available: <https://state-of-
decay-2.fandom.com/wiki/State_of_Decay_2_Wiki.> Citations on pages 50 and 51.

VAHLO, J.; KAAKINEN, J. K.; HOLM, S. K.; KOPONEN, A. Digital game dynamics prefer-
ences and player types. Journal of Computer-Mediated Communication, Oxford University
Press Oxford, UK, v. 22, n. 2, p. 88–103, 2017. Citations on pages 39, 42, 45, and 59.

VALENTE, A. The 10 Most Expensive Games Ever Made, Ranked. 2019. Accessed in: 2020-
08-15. Available: <https://www.thegamer.com/most-expensive-games-ever-made/.> Citation
on page 27.

VALTCHANOV, V.; BROWN, J. A. Evolving dungeon crawler levels with relative placement.
In: ACM. Proceedings of the Fifth International C* Conference on Computer Science and
Software Engineering. [S.l.], 2012. p. 27–35. Citations on pages 31 and 32.

Valve. Left 4 Dead 2. 2009. Accessed in: 2021-02-11. Available: <https:
//store.steampowered.com/app/550/Left_4_Dead_2/.> Citations on pages 50 and 51.

VIANA, B. M.; SANTOS, S. R. dos. Procedural dungeon generation: A survey. Journal on
Interactive Systems, v. 12, n. 1, p. 83–101, 2021. Citations on pages 28, 36, and 46.

VIANA, B. M. F.; PEREIRA, L. T.; ; TOLEDO, C. F. M. Illuminating the space of dungeon maps,
locked-door missions and enemy placement through map-elites. Submitted. 2022. Citation on
page 61.

. Illuminating the space of enemies through map-elites. Submitted. 2022. Citation on page
65.

Video Game History Wiki. Action-adventure game. 2009. Acessado em: 2020-09-11. Available:
<https://videogamehistory.fandom.com/wiki/Action-adventure_game.> Citation on page 31.

WIJMAN, T. Global Games Market to Generate $175.8 Billion in 2021; Despite a
Slight Decline, the Market Is on Track to Surpass $200 Billion in 2023. 2021. Avail-
able: <https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-
2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/>. Cita-
tion on page 27.

Wild Card Games. Dwarf Quest. 2012. Accessed in: 2020-07-25. Available: <https://
steamcommunity.com/sharedfiles/filedetails/?id=114241031.> Citation on page 46.

YEE, N. Motivations for play in online games. CyberPsychology & behavior, Mary Ann
Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA, v. 9, n. 6, p. 772–775, 2006.
Citations on pages 41, 42, and 45.

YEE, N.; DUCHENEAUT, N. Gamer motivation profiling: Uses and applications. Games User
Research, Oxford University Press, Oxford, UK, p. 485–490, 2018. Citation on page 59.

https://www.mobygames.com/game/rogue.
https://www.mobygames.com/game/rogue.
https://state-of-decay-2.fandom.com/wiki/State_of_Decay_2_Wiki.
https://state-of-decay-2.fandom.com/wiki/State_of_Decay_2_Wiki.
https://www.thegamer.com/most-expensive-games-ever-made/.
https://store.steampowered.com/app/550/Left_4_Dead_2/.
https://store.steampowered.com/app/550/Left_4_Dead_2/.
https://videogamehistory.fandom.com/wiki/Action-adventure_game.
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/
https://steamcommunity.com/sharedfiles/filedetails/?id=114241031.
https://steamcommunity.com/sharedfiles/filedetails/?id=114241031.

Bibliography 101

YU, D. Spelunky. 2008. Accessed in: 2020-08-10. Available: <https://spelunkyworld.com/.>
Citation on page 32.

https://spelunkyworld.com/.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title Page
	Title Page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Algorithms
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	Introduction
	Background
	Action-Adventure Games
	Game Features
	Procedural Content Generation
	Evolutionary Computation
	Player Profiling and Content Adaptation

	Literature Review
	Player Profiling and Content Adaptation
	Level Generation
	Enemy Generation
	Generation of Multiple Content

	Methodology
	PCG system Overview
	Game Prototype
	Player Profiling
	Level Generator
	Level Representation
	Level Generation Process

	Enemy Generator
	Enemy Representation
	Enemy Generation Process

	Orchestrating Adaptive Content

	Results
	Level Generation
	Enemy Generation
	Gameplay Feedback
	Feedback of Levels
	Feedback of Enemies

	Player Profiling

	Final Remarks
	Bibliography

