Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.55.2002.tde-19062015-113225
Documento
Autor
Nome completo
José Flavio Vicentini
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2002
Orientador
Banca examinadora
Romero, Roseli Aparecida Francelin (Presidente)
Traina, Agma Juci Machado
Zuben, Fernando José von
Título em português
Indexação e recuperação de informações utilizando redes neurais da família ART
Palavras-chave em português
Não disponível
Resumo em português
Os Sistemas de Gerenciamento de Banco de Dados (SGBDs) existentes são muito sofisticados, eficientes e rápidos na recuperação de informações envolvendo dados de tipos tradicionais, tais como números, texto, etc., mas existem muitas limitações em se tratando de recuperar informações quando os tipos de dados são mais complexos, isto é, dados multi-dimensionais. Considerando os problemas existentes com a indexação e recuperação de dados multi-dimensionais, este trabalho propõe um sistema híbrido que combina um modelo de Redes Neurais da família ART, ART2-A, com uma estrutura de dados, Slim-Tree, que é um método de acesso a dados no espaço métrico. Esta proposta é uma alternativa para realizar o processo de agrupamento de dados de forma "inteligente" tal que os dados pertencentes aos agrupamentos (clusters) possam ser recuperados a partir da Slim-Tree correspondente. O sistema híbrido proposto é capaz de realizar consultas do tipo: busca por abrangência e dos k-vizinhos mais próximos, o que não é característica comum das redes neurais artificiais. Além disto, os experimentos realizados mostram que o desempenho do sistema foi igual ou superior ao desempenho obtido pela Slim-Tree.
Título em inglês
Indexing and recovering of information throug ART family neural networks
Palavras-chave em inglês
Not available
Resumo em inglês
Database Management System (DBMS) are very sophisticated, efficient and fast in the information retrieval involving traditional data sets such as numbers, strings, etc., but there are many limitations in the information retrieval when the data are more complex, i.e., high-dimensional data. Considering some existing problems in the information retrieval, this work proposes a hybrid system that combines an ART family neural network, ART2-A, with a data structure, Slim-Tree, that is a metric access method. This proposal is an alternative to perform the clustering process of data in a "intelligent" way in order the data can be recovered from the corresponding Slim-Tree. The proposed hybrid system is able to perform range queries and k nearest neighbor queries, that is not a inherent characteristic of artificial neural networks. Furthermore, in experiments show that the performance system was equal or superior to Slim-Tree performance.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-06-19