• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.55.2002.tde-19062015-113225
Document
Author
Full name
José Flavio Vicentini
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2002
Supervisor
Committee
Romero, Roseli Aparecida Francelin (President)
Traina, Agma Juci Machado
Zuben, Fernando José von
 
Title in Portuguese
Indexação e recuperação de informações utilizando redes neurais da família ART
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Os Sistemas de Gerenciamento de Banco de Dados (SGBDs) existentes são muito sofisticados, eficientes e rápidos na recuperação de informações envolvendo dados de tipos tradicionais, tais como números, texto, etc., mas existem muitas limitações em se tratando de recuperar informações quando os tipos de dados são mais complexos, isto é, dados multi-dimensionais. Considerando os problemas existentes com a indexação e recuperação de dados multi-dimensionais, este trabalho propõe um sistema híbrido que combina um modelo de Redes Neurais da família ART, ART2-A, com uma estrutura de dados, Slim-Tree, que é um método de acesso a dados no espaço métrico. Esta proposta é uma alternativa para realizar o processo de agrupamento de dados de forma "inteligente" tal que os dados pertencentes aos agrupamentos (clusters) possam ser recuperados a partir da Slim-Tree correspondente. O sistema híbrido proposto é capaz de realizar consultas do tipo: busca por abrangência e dos k-vizinhos mais próximos, o que não é característica comum das redes neurais artificiais. Além disto, os experimentos realizados mostram que o desempenho do sistema foi igual ou superior ao desempenho obtido pela Slim-Tree.
 
Title in English
Indexing and recovering of information throug ART family neural networks
Keywords in English
Not available
Abstract in English
Database Management System (DBMS) are very sophisticated, efficient and fast in the information retrieval involving traditional data sets such as numbers, strings, etc., but there are many limitations in the information retrieval when the data are more complex, i.e., high-dimensional data. Considering some existing problems in the information retrieval, this work proposes a hybrid system that combines an ART family neural network, ART2-A, with a data structure, Slim-Tree, that is a metric access method. This proposal is an alternative to perform the clustering process of data in a "intelligent" way in order the data can be recovered from the corresponding Slim-Tree. The proposed hybrid system is able to perform range queries and k nearest neighbor queries, that is not a inherent characteristic of artificial neural networks. Furthermore, in experiments show that the performance system was equal or superior to Slim-Tree performance.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-06-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.