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RESUMO

SANTOS, F. P. Aprendizado de características e sua transferência entre domínios em tare-
fas de reconhecimento em imagens e vídeos. 2020. 99 p. Tese (Doutorado em Ciências – Ciên-
cias de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Com-
putação, Universidade de São Paulo, São Carlos – SP, 2020.

A transferência de aprendizado de características objetiva reaproveitar o conhecimento adquirido
previamente em um conjunto de dados de origem para aplicá-lo em outro domínio ou tarefa
alvo. Um requerimento para a transferência de conhecimento é a qualidade dos espaços de
características obtidos, em que métodos de aprendizado profundo são altamente aplicados por
proverem descritores discriminativos e generalizáveis, em particular para imagens e vídeos, que
são o foco desse trabalho. Neste contexto, as principais questões incluem: o que transferir —
alinhando as distribuições dos dados de origem e alvo, e ajustando os parâmetros para aumentar
a capacidade de generalização dos modelos; como transferir — investigando métodos que
trabalham tanto sobre os espaços de características quanto sobre os modelos aprendidos; e
quando transferir — estudando quais dados são mais adequados para transferência, considerando
discrepâncias entre os dados origem e alvo, como diferentes meios de aquisição, presença de
objetos confusos e iluminação, entre outros. Esse trabalho defende o foco na transferência
dos espaços de características aprendidos por redes neurais convolucionais, em particular na
investigação do potencial descritivo das camadas iniciais e internas das redes convolucionais
profundas e a aproximação dos espaços de características antes do alinhamento das distribuições
de dados para disponibilizar melhores soluções, e no uso de dados rotulados e não rotulados
para aprendizado de características. Além dos métodos de transferência de aprendizado, como
fine-tuning e manifold alignment com uso de medidas clássicas de avaliação de performance de
reconhecimento, uma métrica de generalização entre domínios foi também proposta para avaliar
a transferência de aprendizado. Esta tese contribui com: uma análise de múltiplos descritores
contidos em redes profundas supervisionadas; uma nova arquitetura com função de perda para
redes profundas semi-supervisionadas (Weighted Label Loss), em que todos os dados disponíveis,
rotulados ou não, são incorporados para prover aprendizado; e uma nova medida de generalização
(Cross-domain Feature Space Generalization Measure) que pode ser aplicada para qualquer
modelo e sistema de avaliação.

Palavras-chave: transferência de aprendizado de características; aprendizado profundo; medidas
de generalização; cruzamento de domínios; alinhamento de variedades.





ABSTRACT

SANTOS, F. P. Features transfer learning between domains for image and video recogni-
tion tasks. 2020. 99 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2020.

Feature transfer learning aims to reuse knowledge previously acquired in some source dataset to
apply it in another target data and/or task. A requirement for the transfer of knowledge is the
quality of feature spaces obtained, in which deep learning methods are widely applied since those
provide discriminative and general descriptors. In this context, the main questions include: what
to transfer — align the data distribution from source and target, and adjusting the parameters
to increase the model’s generalization capability; how to transfer — investigating methods that
work on the features spaces or also on the learned models; and when to transfer — studying
which datasets are mode adequate for transferring, considering discrepancies between source and
target data, such as they different acquisition settings, clutter and illumination variation, among
others. This thesis advocates that the focus should be in transferring feature spaces, learned
by convolutional neural networks, in particular investigating the descriptive potential of inner
and initial layers of such deep convolutional networks, and the approximation of feature spaces
before aligning the data distribution in order to allow for better solutions, as well as the use of
both labeled and unlabeled for feature learning. Besides the transfer learning methods, such
as fine-tuning and manifold alignment, with use of classical evaluation metrics for recognition
performance, a generalization metric between domains is also proposed to evaluate transfer
learning. This thesis contributes with: an analysis of multiple descriptors contained in supervised
deep networks; a new architecture with a loss function for semi-supervised deep networks
(Weighted Label Loss), in which all available data, labeled or unlabeled, are incorporated to
provide learning; and a new generalization metric (Cross-domain Feature Space Generalization
Measure) that can be applied to any model and evaluation system.

Keywords: features transfer learning; deep learning; generalization measures; cross-domain;
manifold alignment.
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CHAPTER

1
INTRODUCTION

In recent years, machine learning has collaborated in computer vision area with mech-
anisms that offer high performances for pattern recognition tasks. For these cases, a learning
task involves absorbing instances, each example that constitutes a database, and adjusting their
descriptors to provide a feature space, a set of attributes that describes each instance, which
should be descriptive enough for all provided data. Such learning approaches rely mainly in
availability of data for which training sets, used to infer the models, and target sets, e.g. the test
set or any unseen data, are assumed to be represented by the same feature space or share the
same data distribution. However, this assumption is not always true in real-world applications.
In this sense, the study of how such models generalize is one of the main issues. When the
target set differs from the training set, one may need to consider to fully reconstruct the original
model from scratch, retraining it with new data. This approach can be expensive and sometimes
impossible (LU et al., 2015), in particular when considering the high human cost to collect and
annotate large databases (SHAO; ZHU; LI, 2015). In this scenario, the possibility of reusing
similar and large datasets would guarantee the reduction in effort to recollect new data (PAN;
YANG et al., 2010). For this purpose, there is an immense incentive to leverage previous learning
in order to obtain Transfer Learning (TL), which can be defined as follows:

“Transfer learning and domain adaptation refer to the situation where what has been learned in
one setting can be exploited to improve generalization in another setting” (GOODFELLOW;

BENGIO; COURVILLE, 2016).

Consequently, TL takes advantage of concepts already learned, for example as a clas-
sifier or detector, and apply those to facilitate the search of parameters for new classifiers or
detectors (LU et al., 2015). The premise is that some source domain or task1 can provide useful
knowledge for some target domain or task (YOSINSKI et al., 2014). If the source and the target

1 See definition of domain and task in Chapter 2 (State-of-the-art Context).
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datasets are sufficiently similar, it is expected that the model has acceptable performance between
those datasets (TZENG et al., 2015). Since this is not always the case, the main challenge in
TL is to correlate the source training data distribution to the target test data distribution (HU;
LU; TAN, 2015). Based on this definition, TL should be analyzed in three perspectives: what
to transfer by investigating the similarity between domains in which common peculiarities
must be highlighted and discrepancies must be minimized, for example using supervised and/or
unsupervised models, learned features, and parameters; how to transfer the knowledge, such as
exploring machine learning techniques and pattern recognition; and when to transfer the knowl-
edge detecting scenarios where transfer is useful and avoiding negative transfer (PAN; YANG et

al., 2010), that occurs when the acquired knowledge worsens the model performance (TORREY;
SHAVLIK, 2010). In this thesis, we addressed some of these questions by studying scenarios
of Inductive TL and Transductive TL. Inductive TL occurs when there are differences in the
target task when compared to the one already learned so that it needs labeled examples from the
target domain in order to adapt the knowledge. On the other hand, Transductive TL does not
require target domain information during the transfer task, only the availability of source domain
labels (RIBANI; MARENGONI, 2019).

The meaning of TL changes accordingly with the assigned task: in classification tasks
one desires that a classifier, trained with some existing data, is sufficiently representative to allow
distinguishing coexisting labels in both domains, or even to adapt itself in order to predict new
labels which do not exist in the source (see Figure 1). Considering the task of anomaly detection,
TL should be used to enhance the similarity between normal instances and abnormal instances,
so the main objective is to learn a general concept of normality, as illustrated in Figure 2. In such
tasks, although the aim and meaning of the methods is different, there is a common underlying
task: to make sure the feature space of source and target data are compatible. This can be seen
as a transfer of the learned features, in which both representations (source and target) are
transformed to emphasize the similarity to the detriment of discrepancies.

A remarkable application of TL of feature spaces is in computer vision, in particular
image classification and video recognition tasks. In both scenarios, TL has the potential to be
applied to various problems, such as for example traffic control (WANG et al., 2017), facial
attribute classification (ZHUANG et al., 2018), video classification (WU et al., 2015), and
anomaly detection in surveillance videos (XU et al., 2017). As it is the current standard in
computer vision (PONTI et al., 2017), all the aforementioned studies applied Deep Learning
(DL) as a tool (see more details in section 2.1), exploring TL via architecture retraining or
feature extraction. Because of the hierarchical structure of Deep Neural Networks (DNN), such
methods are able to represent both low-level (shapes, borders, and colors) and high-level (texture
and semantics) visual features (YOSINSKI et al., 2014; PONTI et al., 2017). In Convolutional
Neural Networks (CNNs), different processing layers can be incorporated, where convolutional,
dense, and pooling are the most relevant ones. These layers, depending on the purpose of the
task, are set so that the output of one layer is the input of the next one. When the parameters
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Figure 1 – Expected scenario in feature TL for classification tasks. Green arrows represent correct classifi-
cation and red arrow identifies incorrect pattern recognition from two distinct datasets (A and
B). However, when applying some TL method between them, it is expected that classification
will be improved. Samples on (tr) represent training sets and samples on (te) indicate the test
set. When applying TL, Btr is influenced by information contained in Atr, approaching the data
distributions. Although the two training domains have the same classes (triangles and circles),
they may have discrepancies due to irregularities in acquisition and other particularities.

Figure 2 – Expected scenario in feature TL for anomaly detection tasks. Green arrows represent normal
events detection and red arrows identify anomalous occurrences from two distinct datasets (A
and B). However, when applying some TL method between them, it is expected that normal
events detection will be improved (dashed flows). Frames on the left represent training sets (tr)
and right frames indicate the test set (te). When applying TL, B is influenced by information
contained in A, approaching the data distributions. From (SANTOS; RIBEIRO; PONTI, 2019).

of such models are learned, it is possible to map some input data, e.g. image or video, into a
subspace that represents this instance. We call this a feature embedding. In the case of DNNs,
multiple feature embeddings are available at the different network layers.

The optimization of the model is guided via a loss function that measures the efficiency of
the current parameter settings. Examples of such functions are the cross-entropy and Mean Square
Error (MSE). These loss functions can be applied distinctly considering different paradigms
of supervision. In supervised learning, loss functions are applied to verify if the predictive
model has learned to distinguish different labels for all instances used in its training. The most
likely label in the last layer is then compared to the label provided in the input for all examples.
Consequently, supervised learning requires that all data be labeled (PONTI et al., 2017). In
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contrast, unsupervised learning does not require any label. In this structure, the network processes
the image provided in the input and verifies its ability to reconstruct the data, comparing the
output with its respective input (PONTI et al., 2017). Semi-supervised learning are models that
consider partially labeled data, where we can leverage all existing instances and make use of
correct labeling measurement and data reconstruction. Consequently, hybrid networks can be
used to absorb both paradigms of learning with different purposes (SANTOS et al., 2020).

In this context, two main approaches are commonly employed, both use CNNs that are
trained in a source domain, often referred to as pre-trained networks: feature extraction; and fine-
tuning (KORNBLITH; SHLENS; LE, 2019). The first consists in performing feature extraction
using the pre-trained network by obtaining the outputs of some layer of the network, forming a
feature space for the target task, as we show later (SANTOS; PONTI, 2018; SANTOS; RIBEIRO;
PONTI, 2019). The second approach is to train the network by initializing its parameters with
those from a pre-trained network (instead of random initialization), then re-designing some
layers according to the target task (the last layer, responsible for prediction is often redefined as a
new layer depending on the classes of the target problem), or even training it from scratch, as we
demonstrated in (SANTOS et al., 2020). During fine-tuning, specific properties from the target
domain are incorporated into the network, promoting adaptability from one domain to another
and increasing the learning (KORNBLITH; SHLENS; LE, 2019). This has the advantage of
allowing the use of state-of-the-art CNNs that can be tailored to the target task. In such cases, it
is possible to obtain a combination of different feature embedding, e.g. coming from different
layers, in order to improve feature TL, as we show in (SANTOS; PONTI, 2019a).

One of the main advantages presented by feature learning methods in relation to hand-
crafted extraction is the feature space generalization. In terms of supervised learning, generaliza-
tion is a divergence measure of how a classifier or detector performance with unseen data (test)
is consistent with its performance on seen data (training) (MELLO; PONTI, 2018). In several
scenarios, CNN shows good generalization capacity for unseen data within the same visual
domain (SHI et al., 2018). In a comparison among few models, Sengupta and Friston (2018)
demonstrate empirically that studies must be concerned not only with performance metrics,
but also with the generalization capacity of one solution, proposing an investigation of highly
detailed stability. Evidently, the degree of similarity between data distribution determines the
degree of semantics maintained. However, a generalization measure for the purpose of consis-
tently evaluate the level of knowledge transferred between two data distributions is still to be
investigated. In this regard, we are concerned with “when to transfer”.

This study investigates how to manage previously acquired knowledge and how to evalu-
ate its generalization in image and video recognition tasks. Two distinct approaches are explored,
although they may be used in the same framework: network fine-tuning (see section 2.2 for more
details); and manifold alignment (described in section 2.3). When using supervised pre-trained
networks, it is common to study latter layers (BAHETI; GAJRE; TALBAR, 2018; SADIGH;
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SEN, 2018) as potential feature extractors. Due to the scarcity of in-depth studies with initial
and inner layers, this research aimed at a more concise analysis of the descriptive capacity
contained in these layers, applying feature extraction and fine-tuning (SANTOS; PONTI, 2018)
and exploring feature spaces fused from multiple layers for adaptation with manifold alignment
methods (SANTOS; PONTI, 2019a). In addition, in order to leverage unlabeled data, we also
investigated a novel semi-supervised network, showing that such model can provide discrimi-
native embedding for several domains in different proportions of labeled examples (SANTOS
et al., 2020). Also, we propose a new generalization metric. Although many studies involving
images or videos employed feature TL techniques, they are not evaluated in their generaliza-
tion capacity. Because of this, our generalization measure may be used to distinguish which
datasets and models provide the highest learning transfer rate for a selected domain (SANTOS;
RIBEIRO; PONTI, 2019). Such proposed method is used for evaluating transfer of learning
in video anomaly detection (SANTOS; RIBEIRO; PONTI, 2019) and semi-supervised image
classification (SANTOS et al., 2020). Consequently, we studied what to transfer using pre-trained
model parameters and feature spaces learned in deep networks. Additionally, we investigated
how to use the knowledge acquired in different paradigms of learning by identifying when to
apply the transfer through generalization metrics.

1.1 Motivation and Objectives

Many studies propose specific solutions to a given dataset, in which the model offers
suitable feature spaces and high accuracies (or other measures related to the task). Meantime,
if another dataset (same domain) was applied to this model, the performance may be lower,
not being fully adaptable to this new dataset. In this case, changes in the model are required to
improve the performance. Consequently, this approach is adequate only for restrictive scenarios
or particular cases. For generic scenarios, the contradiction between models and similar domains
must be investigated more deeply to provide one single solution for the same task. It would
be unproductive to have specific models for each dataset of same domain, making it almost
impossible to implement systems for the purpose of solving real-world problems. For those
cases, the generalization of solutions is paramount, in which the number of models proposed
should be smaller, although more robust. One of the alternatives is to apply feature embedding
adaptation by TL techniques, in which feature spaces become more correlated among involved
domains, increasing the feature generalization.

As listed earlier, to implement generalizable models we need to be aware of what to
transfer and how to transfer (PAN; YANG et al., 2010). Additionally, one of reasons for a model
not to be completely adaptable to several domains is the absence of generalization measures
evaluation. In order to guarantee all these requirements, our models were evaluated with classical
and generalizable measures in different scenarios, trying to provide the best feature spaces
and making the model more embracing for distinct datasets. Hence, this research aimed at
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investigating feature TL in terms of deep network representations, considering visual attributes,
to find methods which generate feature embedding that generalize for unseen data. In particular,
the following topics for transferring representation learning were pursuit:

∙ generate discriminative, compact, and generalized feature spaces for different domains;

∙ investigate network fine-tuning as well as manifold alignment methods and their impact
on obtaining better representations for target datasets;

∙ integrate supervised and unsupervised architectures to improve feature space generaliza-
tion;

∙ propose and evaluate the architectures via generalization metrics and divergences.

These topics were thoroughly explored in investigations involving initial and inner layers
from CNNs, semi-supervised learning, and evaluation of generalization capacity with anomaly
detection.

1.2 Hypotheses

Based on the wide variety of possible applications for feature TL and the existing gaps,
this research aims to investigate several points related to this theme. Our premise is that, although
it requires a lot of processing and memory space to provide high performance solutions (MELLO;
FERREIRA; PONTI, 2017), the CNN is a consolidated deep network architecture, providing
different feature spaces transformations via non-linear functions. The general hypothesis relates
multiple levels of representations (layers) in deep networks for different paradigms of learning
(supervised, semi-supervised, and unsupervised) in which classic and generalization metrics are
applied to assess the learning ability of predictive models. Consequently, the following general
hypothesis is:

“Deep networks for feature transfer learning tasks should be properly analyzed at different
hierarchical levels of representations and paradigms of learning, considering both classical

and generalization measures.”

This hypothesis is divided into three statements specific to each investigated point. First,
there is sufficient empirical evidence to say that the layers in the beginning of the network
provide low-level features while last layers contain semantic context (YOSINSKI et al., 2014).
However, it is unclear which of the different layers provide the best discriminative capability,
and whether those are complementary and if so, how those can be combined. Therefore, the first
specific hypothesis is that:
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(i) Different inner layers of supervised deep networks should be considered, and potentially
combined, when obtaining feature spaces in order to improve image and video recognition

in transfer learning scenarios.

Despite the high performance of TL methods and DL architectures, generally, studies
have focused only on classical metrics of classification or anomaly detection to measure the
performances. Due to this convention, the models have refrained to prove their generalization
capability with respect to other datasets. Consequently, the applicability of these models has
remained specific for some datasets. However, concern about domain generalization has current
evidence (SENGUPTA; FRISTON, 2018). In this context, the basic foundation of TL is to be able
to leverage only aspects that provide increased of performance, avoiding negative transfer (LU
et al., 2015). In these cases, the need to investigate which dataset can provide better previous
knowledge, or even indicate which model is most suitable for a task, is essential. Based on these
requirements, the second specific hypothesis states that:

(ii) The descriptive capacity of a model to transfer the acquired learning should be
measured by metrics of each task and by different levels of divergence.

Due to the cost and difficulty of annotating data from different domains (SHAO; ZHU;
LI, 2015), some databases are found partially labeled. In these scenarios, we may consider
a supervised model that leverages only data with labels or incorporate all examples into an
unsupervised prediction. However, semi-supervised models can be developed to absorb all data
in its natural form (REN et al., 2019). Considering that both unlabeled and labeled instances
contain important information for the learning of a predictive model, and consequently impacting
its ability to describe the feature representation, our third specific hypothesis states that:

(iii) In partially labeled data transfer learning scenarios, labeled and unlabeled examples
should be used jointly to increase the performance of the feature space.

Through extensive experiments, these statements are highlighted over the next chapters,
using several domains, networks, tasks, and paradigms of learning.

1.3 Outline

The following chapters of this document include: State-of-the-art Context; Features
Transfer Learning using Multiple CNN Layers; Feature Transfer Learning in One-class Scenarios
with a Generalization Analysis; Feature Transfer Learning in Semi-supervised Settings; and
Conclusions. Aiming at a broader view of the literature, State-of-the-art Context (Chapter 2)
presents the concepts that involve features TL, such as deep learning, network fine-tuning, and
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manifold alignment, as well as a more in-depth context on the research subject. The models and
techniques developed during this research to confirm the hypotheses are described in Features
Transfer Learning using Multiple CNN Layers (Chapter 3), Feature Transfer Learning
in One-class Scenarios with a Generalization Analysis (Chapter 4), and Feature Transfer
Learning in Semi-supervised Settings (Chapter 5). Finally, Conclusions (Chapter 6) report
the contributions, publications, future directions, and final considerations.
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CHAPTER

2
STATE-OF-THE-ART CONTEXT

Domain discrepancy is the biggest obstacle to existing predictive models (LONG et al.,
2015). A domain D = {X ,P(X)} consists of a feature space X = {x1, ...,xn} and a probabilistic
distribution P(X). A task T = {Y, f (.)} consists of a label space Y = {y1, ..,ym} and a prediction
function f (.), which models P(y|x) for all y ∈Y and x ∈ X (XIE et al., 2016). Therefore, given a
source domain Ds and a learning task Ts, a target domain Dt and a learning task Tt , TL aims to
improve the function learning of the target prediction in Dt using the knowledge in Ds and Ts,
where Ds ̸= Dt or Ts ̸= Tt (PAN; YANG et al., 2010). Specifically, feature TL is a particular case
where the dissimilarity between data distributions from the source feature space in relation to the
target feature space is minimized, regardless of the feature extraction method used (handcrafted
or DL) (SHAO; ZHU; LI, 2015; PAN; YANG et al., 2010). Consequently, data distribution must
be generated by smooth functions, e.g without appearance of large discrepancies. Furthermore,
the learning process must have high generalization capacity, in which the input-output mapping
of the model should be equivalent for unseen data (test sets) during the training phase (HAYKIN,
2001; SANTOS; RIBEIRO; PONTI, 2019).

Defining appropriate features to categorize a set of images or videos is a costly task
due to analyze which attributes are relevant. Additionally, in view of the variation of poses,
illumination, or shadows, the process of recognizing an object may not be generalized (SANTOS;
RIBEIRO; PONTI, 2019). As a result of these drawbacks, the development of efficient algorithms
to reduce classification or detection costs from different domains are encouraged. Because of
that, feature mapping preceded by feature learning has shown to be a pertinent subject with good
results. In addition to greater accuracy (BENGIO; COURVILLE; VINCENT, 2013), feature
learning has the generalization property for different applications. All these happen because
of their ability to adapt to new tasks and domains, requiring less human intervention in the
process (GOODFELLOW; BENGIO; COURVILLE, 2016). Into feature embedding adaptation
context, many DL techniques present themselves with high performance and flexibility, ensuring
a wide range of applications.
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2.1 Deep Learning

According to Deng, Yu et al. (2014), DL can be defined as a machine learning technique
that exploits many layers of non-linear information processing. This technique aims the extraction
and transformation of supervised or unsupervised features for pattern recognition and other
tasks. Therefore, deep neural networks are considered intelligent feature extraction modules
that offer great flexibility and high levels of cross-domain TL (LU et al., 2015). In these
architectures, the number of layers is defined by the need to represent feature levels, where each
successive layer uses the output data from previous one as input. Hence, higher-level features
are derived from lower-level features in a hierarchical representation form defined by simpler
relationships, allowing the computer to learn through experiments (GOODFELLOW; BENGIO;
COURVILLE, 2016). A fundamental requirement to guarantee that deep networks are able to
learn concepts of one domain is the amount of data (RAVISHANKAR et al., 2016), which can
be very expensive (DUAN et al., 2012). Consequently, one domain rarely have representation
enough to learn its own concepts, and the higher the number of parameters in hidden layers, the
greater the amount of examples required (MELLO; FERREIRA; PONTI, 2017).

Among many layers contained in a deep neural network, three types stand out with great
relevance: convolutional; pooling; and dense. Composed by a filters set of fixed size, convolu-
tional layers generate a new space representation to the next layer applying an affine transforma-
tion of linear combination in all pixels concentrated inside of filter neighborhood (SANTOS;
PONTI, 2018). Each filter produces a new feature map, increasing quickly the amount of param-
eters accumulated during successive layers. Consequently, pooling layers operate dimensionality
reduction, mainly considering the maximum value of the defined patch (GUO et al., 2016).
Dense layers aim to vectorize feature maps, converting data to classes probabilities contained in
the training dataset for supervised networks (PONTI et al., 2017). Often, the activation func-
tion Rectified Linear Function (ReLU) is applied in hidden layers to cancel all negative values
and maintaining all positive values linearly (max[0,x]) (NAIR; HINTON, 2010). Additionally,
normalization is employed as the last step in each hidden layer to preserve consistency (common
issue in image processing, whose RGB values must range in [0,1]).

Mainly, the deep neural networks differentiate among themselves due to the loss function
in their last layer. Convolutional Neural Network (CNN) relates its performance in the comparison
between the input label and the output label for each sample. Therefore, in this learning context,
CNNs are supervised networks (PONTI et al., 2017). Through those hierarchical structure,
CNNs have shown to be effective descriptors for low-level (shapes and edges) and high-level
(textures and semantics) features, presumably due to high abstraction capacity codified in their
many layers (RAZAVIAN et al., 2014). Furthermore, low error rates using raw RGB images
enable bypass pre-processing steps from standard pipelines in several applications (MISHKIN;
SERGIEVSKIY; MATAS, 2017; SANTOS; PONTI, 2018). Therefore, as the image proceeds
through the first layers, the built-in feature map adds both shape, border, and color information.
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Since all CNN models incorporate the same concept, the aspect of these layers refers almost
exclusively to Gabor filters and color blobs (YOSINSKI et al., 2014). This important property
allows networks pre-trained in large datasets from different domains to be used as feature
descriptors for small target domain. Accordingly, the hierarchical function fl(.) related to some
layer l considers a parameters set Wl for an input image x1. Hence, an input x will produce an
output f (x), as described:

f (x) = fL(... f2( f1(x1,W1),W2), ...WL) (2.1)

As an example, considering an hypothetical CNN model as illustrated on Figure 3, an
input image provides three maps (RGB) into the first layer. In each convolutional layer, the depth
of each filter is equivalent to the output from the previous layer. For each filter, an activation
function f is placed to generate a single resulting map. Consequently, the amount of maps is
equal to the amount of filters. In pooling layers, each region (represented by a same color) will
result in a single corresponding value as output. This occurrence is for each map coming from
previous convolutional layer. For the first dense layer, also called as Fully Connected Layer,
there is only an input vectorization. However, the last one provides probabilities of each class. In
this illustration, five categories were considered and, for an image containing a kangaroo, the
prediction indicates the class A as more representative.

Figure 3 – Example of a CNN architecture containing convolutional (orange), pooling (purple), and dense
(green) layers. On the left, an input image is provided to the first layer by its three RGB
channels. To the right, resulting probabilities of each class. Below, details of each internal
procedure of the three types of layers.

CNNs also have a high degree of invariance in translation, scaling, and other forms of
distortions. After processing a layer, the exact location of one feature is not relevant, as long as
its relative position to the rest was preserved. In addition, each layer generates distinct feature
maps, but respective weights are shared between them, providing displacement invariance and
parameters reduction (HAYKIN, 2001). However, small variations, as color quantization or
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noisy perturbations, can lead to a significant decrease in testing error of feature space general-
ity (NAZARE et al., 2017; SANTOS; PONTI, 2018). Derived from the training accuracy, some
models are able to memorise the dataset, resulting in overtraining (PONTI et al., 2017). Also,
CNNs suffer from overparametrization and high parameters correlation (BAGHERINEZHAD;
RASTEGARI; FARHADI, 2017)1. Several CNN architectures have been developed in recent
years, with VGG-19 (SIMONYAN; ZISSERMAN, 2014), ResNet50 (HE et al., 2016), and
MobileNet (HOWARD et al., 2017) being the most consolidated in this field.

VGG-19 was developed applying 19 weight layers, in which most of filters in convolu-
tional layers are 3×3 size. The almost exclusive use of this shape is based on the concept that
two consecutive 3×3 filters have an effective receptive field equivalent to one 5×5 filter, and
three 3× 3 filters can be used as one 7× 7 filter. Additionally, this structure reflects in fewer
parameters, even increasing the amount of layers to supply the filter size reduction. Filters 1×1
are applied only to perform linear projection of a position across all feature maps from one layer.
After an intercalated sequence of convolutional layers with pooling (maximum value), the top
of VGG is composed of three consecutive dense layers, being the last one for probabilities of
trained classes (SIMONYAN; ZISSERMAN, 2014).

ResNet50 applies the residual blocks concept to train a CNN with a greater number of
layers. Using sequential regular convolution layers, residual blocks aim to preserve features from
the input vector before its transformation, adding to the output after some layers of delimited
block. Another interesting property of ResNet50 is the absence of dense layers: a pooling is put
after the last convolution layer to compute predictions in output layer (HE et al., 2016).

MobileNet is a compact CNN which uses the concept of depthwise separable convolu-
tions. A standard convolutional layer joins inputs and filters into an output set in a single step.
However, depthwise convolution maintains the data separated, one layer for filtering (depthwise
convolution) and another one for combining them (pointwise convolution). A sequence of N

regular convolutional layers of dimensions D×D×M are replaced by M depthwise layers of
D×D×1 and N pointwise layers of 1×1×M, where D is the height and width of the input and
M is the amount of maps. Hence, pointwise convolution performs linear combination among
filters applied to input (single filter per channel). This factorization allows a model size reduction
and less computation cost (HOWARD et al., 2017).

In contrast to supervised learning, unsupervised networks, such as AutoEncoder (AE),
aim to learn an approximate identity function between the data contained in the input and out-
put layers, which parameters in hidden layers are representations of intrinsic properties from
these images (GUO et al., 2016). Accordingly, an image x provided as input will result in a
new image x̂, as similar as possible to x. The idea is not to generate an identical image, but
learning parameters to represent the same class. The internal structure is composed by encoder

and decoder modules, where each one can have several layers (convolutional, transpose convolu-

1 More details in section 2.2 (Network Fine-tuning).
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tional, pooling, unpooling, and normalization among others) with its own function (BENGIO;
COURVILLE; VINCENT, 2013). An image passed as input x is processed by the encoder and
generates a constrained representation of the data, called code. Sequentially, this representation
is reconstructed by the decoder, x̂. Because the code is limited to data representation, AEs avoid
performing a perfect copy of input image (PONTI et al., 2017). To this purpose, some obstacles
are put to hamper the construction, such as dimensionality reduction, as shown in Figure 4, noise
injection, or regularization term.

Figure 4 – Generic architecture of AEs, being a feed-forward unsupervised network. An image x composed
of p pixels is passed to the encoder E. In this module, a function f (x) operates the image
coding in a new representation. In the decoder D, a function g reconstructs the “code” into a
new image x̂. The code size varies according to the architecture specification.

In this architecture, encoder maps the input x applying a non-linear activation function Φ

in a weight matrix W and a bias vector b: f (x) = Φ(Wx+be). Using a similar function, decoder
reconstructs the code by just changing the input: g( f (x)) = Φ(W f (x)+bd) (PATHIRAGE et

al., 2018). Inside the encoder, the latent representation h of a layer k is described by hk =

σ(x *W k + bk), where the bias b is shared across the whole feature map, σ is an activation
function, and * denotes the convolution between the input x and weights matrix W . Weights are
shared across all locations, preserving local aspects provided by images (MASCI et al., 2011).
Consequently, the reconstruction x̂ is performed by linear combinations of several image patches
generated in the code:

x̂ = Φ

(
∑

k∈H
hk *W̃ k +b

)
(2.2)

Both structures (CNNs and AEs) can be trained from scratch, fine-tuned after a previous
trained, or provide feature spaces to be improved using manifold alignment methods. The
network fine-tuning approach is based on the generalization capability that DL models offer
to other domains. Considering a pre-trained deep network with a large dataset, these models
can be modified by incorporating the knowledge acquired and suppressing a possible lack of
representativeness from new domains. The second approach, manifold alignment aims to provide
a new feature space by aligning data distributions in a new latent space.
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2.2 Network Fine-tuning

One of techniques addressed on this research to achieve feature embedding adaptation
was network fine-tuning. It consists of reusing weights from pre-trained deep networks with large
datasets, e.g ImageNet (RUSSAKOVSKY et al., 2015), and refining the solution by retraining
layers with the dataset of current task domain (PONTI et al., 2017). Despite the great potential,
several difficulties are directly related to its practical application: image resolution; overtraining,
overfitting, and overparametrization; and amount of examples required.

First, architectures have a fixed resolution due to a predefined input. Even by varying the
input size, the architecture is not fully adaptable to some domains, which may have different
shapes. Therefore, a pre-processing step must be applied to reduce or increase resolutions,
impacting on loss of information or noisy addition. Second, a major concern is defining accu-
rately when to stop the training. Overtraining provides to the network a memorization of data
distribution, resulting in poor performance with test examples and avoids generalization to other
similar domains (HAYKIN, 2001), called of overfitting. Due to current complexity networks, they
provide an enormous amount of parameters (overparametrization) in which computational costs
(hardware and process time) are excessive (BAGHERINEZHAD; RASTEGARI; FARHADI,
2017). Despite the high number of descriptors, many of them have the same activation value in
all samples, indicating absence of representativeness. Therefore, eliminating attributes without
variance implies in reducing costs of processing in the predictive model. In this context, more
compact models, e.g. MobileNet (HOWARD et al., 2017), may offer adaptable solutions for
scenarios which require lower processing. Third, to train a deep network is necessary plenty
of examples from all classes belonging to the domain. The training set size is defined by three
aspects: sample representativeness; depth of architecture network; and complexity of the task.
However, the architecture is fixed and the task difficulty is not measurable (HAYKIN, 2001).
Hence, to ensure representativity of the domain is required a large set of instances (SRIVAS-
TAVA et al., 2014). In this scenario, if a dataset has few examples for network training, data
augmentation is an option that has excellent benefits for increasing representativeness, including
variations of original data with noise injection, image composition, and rotations.

All these aspects should be considered to fine-tune efficiently a model. Generally, CNNs
are pre-trained with ImageNet dataset (RUSSAKOVSKY et al., 2015) which is composed of
1000 classes (see Figure 5-a). Accordingly, the last layer provides a vector with 1000 probabilities.
However, other datasets can be used as source domain. Hence, to operate fine-tuning is necessary
to adapt the prediction layer to have outputs equivalent to the number of classes n contained
in the task domain (Figure 5-b). In this context, the model top undergoes changes, not only in
the last layer, but in some previous ones. The number and which layers to change depend on
the model structure and the purpose of the task (Figure 5-c). Therefore, to train an architecture
is required to choose the method: frozen layers; or propagation. Accordingly, the first layers
provide low-level features, regardless of the domain used. Hence, the frozen approach maintains
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weights of the already trained layers unchanged. In this situation, only a few layers are refined
without changing the initial structure of the network. The propagation is similar to frozen layers,
except that weights of the already training layers can be influenced by the new domain. In
addition to the training mode, it is necessary to define weights initialization of each layer in the
new architecture: original ones; or randomly. Initialization with original weights is only possible
on unmodified layers. The random approach is theoretically applied across all layers, been more
common in new layers (YOSINSKI et al., 2014).

Figure 5 – Fine-tuning: (a) an example of network model to be used in a fine-tuning task, where the red
block is the prediction layer and green blocks are regular layers; (b) only the prediction layer is
modified, copying all regular ones; and (c) in addition to the prediction layer, the second last
layer was also modified or copied without respective weights. All layers copied integrally can
be frozen or are prone to be influenced by the new training.

In the example illustrated in Figure 5, it was presented fine-tuning applied only to
supervised network (CNN). However, fine-tuning can also be applied to unsupervised and
semi-supervised networks. Considering AEs, additional layers can be added next to the code
generation to further refine the solution or even remove some layers in an attempt to generalize
the model to more domains. In the semi-supervised learning, the maintained layers from CNN
can be transformed into an encoder and by adding extra layers, without prior training, to form
the decoder in a hybrid model (SANTOS et al., 2020).

To measure the progress of supervised network training, considering instances provided
so far, a loss function in the prediction layer is applied. This function will express the penalty for
predicting a label ŷ in which should be y. Cross-entropy loss l(ce) is often applied, minimizing
the estimation between class probabilities e fy and output probabilities e fk of a sample j (PONTI
et al., 2017):

l(ce)
j =− log

(
e fy j

∑k e fk

)
(2.3)
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With two probability vectors containing values in [0,1], the cross-entropy loss function
can be seen as a divergence measure between two distributions. However, the full loss function
L (with finite amount of samples N) is the average of all inputs x j, given the current set of all
parameters W and label vectors y j (PONTI et al., 2017):

L(W ) =
1
N

N

∑
j=1

l(y j, f (x j;W ))+λ ·∑
k

∑
l

W 2
k,l (2.4)

The sum regularized the loss function to undesired solutions (e.g. many similar W ) and
does not hamper the discovery of good parameters in training. However, the training of an AE
is measured by the reconstruction error, defined by ε = x− x̂. In case of the activation function
was linear, the reconstruction error will have only a single local and global minimum (BALDI;
HORNIK, 1989), being described by Principal Component Analysis (PCA) (JOLLIFFE, 1986).

To adjust parameters and minimize the loss function an optimization algorithm is applied,
among them Stochastic Gradient Descent (SGD). By random selection samples of size B, SGD
operates approximations to calculate new parameters, which η is the learning rate. Commonly, η

is initialized by high values and it goes exponentially decreasing (weight decay) during iterations.
Consequently, large values of η will indicate small time to convergence. However, the ideal
point may be located between intervals, requiring that the value be reduced so that convergence
being possible (PONTI et al., 2017), which ▽ indicates the gradient:

Wt+1 =Wt −η

B

∑
j=1

▽L(W ;xB
j ) (2.5)

Adaptive Moment Estimation (Adam) is also a widely optimization algorithm applied
to minimize the loss function. Differently from SGD, Adam verifies which parameters are less
frequent, assigning more weight to them. Another important concept in deep networks training
is the batch size, which defines the amount of instances loaded in memory. Evidently, it is not
possible to load all examples at once, hence it is feasible to indicate blocks that are compatible
with the task or the processing capacity. Some studies suggest that batch size should be as
large as possible, occupying all memory (GOYAL et al., 2017). Other studies contradict this
hypothesis, showing that small batches allow greater precision in minimizing loss (LI et al.,
2014). Being even more rigid, a batch size with 32 examples should be the ideal, independent
of the task (MASTERS; LUSCHI, 2018). After to pass all instances through the network, an
epoch is completed. This whole process must be repeated a number of epochs until the network
converges, measured by the applied loss function.
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2.3 Manifold Alignment
Manifold alignment methods present a framework to strengthen relationships from

different feature spaces into a new unified latent space by aligning underlying manifolds. In
this new joint feature space, the similarity among domains is emphasized and attributes that
represent distancing are softened (KOUW; LOOG, 2019). Hence, dimensionality reduction
operates a vital role in eliminating attributes that produce folds misalignment. However, only
space reduction is insufficient, the development of an organized arrangement of feature maps
is also required to highlight the alignment that will provide the highest performance (WANG;
KRAFFT; MAHADEVAN, 2011). Therefore, considering two datasets X = {x1,x2, ..,xn} and
Y = {y1,y2, ..,ym}, with n and m being the amount of examples, functions f and g provide
the alignment to map X and Y into a same feature space Z (WANG; MAHADEVAN, 2009).
In this scenario, each domain (dataset) represents a manifold in which properties, such as the
neighborhood relationship and categorization of instances, must be preserved in the latent space.
Consequently, instances with same label remain mapped in close locations, distancing them from
different classes, as shown in Figure 6.

Figure 6 – Manifold Alignment. The latent space Z is generated by functions f and g that map features
from X and Y , finding similarity between them. An instance x1 is correctly mapped in both X
and Z spaces. An unknown instance y1 must be labeled in both Y and Z spaces.

Learning in manifold alignment methods can occur in two circumstances: semi-supervised
or unsupervised. The first one is rarer to apply due to the required knowledge of correspondence
pairs of samples (CUI et al., 2014). In this approach, the unified manifold is created and then
mapped to a latent space of lower dimensionality, where the local properties of each dataset
were preserved (WANG; MAHADEVAN, 2009). Accordingly, this scenario makes it difficult
to generalize solutions, even in almost identical tasks because different domains have different
correspondence pairs. Contrarily, in the unsupervised approach this knowledge is not required
and learning occurs directly from the manifold structure (CUI et al., 2014).

One of the widely techniques used in unsupervised manifold alignment is Transfer
Component Analysis (TCA) (PAN et al., 2011). This technique attempts to learn a common
set of underlying transferable components from two domains, source and target, in which the
dissimilarity in data distributions must be reduced, maintaining the properties preserved in a latent
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subspace projection. Considering that P(Ys|Xs) and P(Yt |Xt) are two probability distributions
that shape domains X and Y from a source s and a target t, there is a transformation Φ which
P(Φ(Xs))≈ P(Φ(Xt)). Therefore, TCA proposes to find the Φ using two pre-definitions: (i) the
distance between the generated distributions P(Φ(Xs)) and P(Φ(Xt)) is relatively small; and (ii)
the transformation Φ preserves important properties of Xs and Xt . With these pre-definitions, Φ

ensures P(Ys|Φ(Xs))≈ P(Yt |Φ(Xt)):

D(X ′
s,X

′
t ) =

∣∣∣∣∣∣∣∣1n n

∑
i=1

Φ(xsi)−
1
m

m

∑
i=1

Φ(xti)

∣∣∣∣∣∣∣∣2
H

(2.6)

Operating in Reproducing Kernel Hilbert Space (RKHS) ||.||H , the distance between
feature spaces is the norm between averages of instances in each distribution. Because it is highly
nonlinear, Φ is generally not optimized directly due to not achieving the optimum local minimum.
As a result, Maximum Mean Discrepancy Embedding (MMDE) (PAN; KWOK; YANG, 2008) is
applied to embed both domains (source and target) into a low-dimensional shared feature space
K̃. To achieve this space, in the kernel K the distance of domains (Ks,t and Kt,s) is minimized
and the data variance (Ks,s and Kt,t) is maximized, being Ks,s = XsXT

s :

K =

[
Ks,s Ks,t

Kt,s Kt,t

]
∈ ℜ

(n+m).(n+m) (2.7)

By definition D can be rewritten in terms of kernel matrices as D = tr(KL) (PAN;
KWOK; YANG, 2008), in which tr is the matrix trace (sum of elements on the main diagonal
from the upper left to the lower right):

Li, j =


1
n2 : {xi,x j} ∈ Xs

1
m2 : {xi,x j} ∈ Xt

− 1
n.m : otherwise

(2.8)

However, dimensionality reduction has not yet been applied. Using empirical kernel
map (SCHÖLKOPF; SMOLA; MÜLLER, 1998), K can be decomposed into (KK−1/2)(K−1/2K).
Consequently, if W̃ ∈ ℜ(n+m) d , which d ≪ n+m, reduces the dimensionality of the space to d,
the feature space becomes:

K̃ = (KK−1/2W̃ )(W̃ T K−1/2K) (2.9)

Therefore, K̃ = KWW T K considering W = K−1/2W̃ . Hence, replacing K by K̃, the
distance between X ′

s and X ′
t in lower dimensional space is:

D(X ′
s,X

′
t ) = tr((KWW T K)L) (2.10)
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To preserve important properties of each distribution, TCA adds a regularization term
to the final distance in the decomposition of eigenvalues, where the intensity is controlled by a
parameter µ (PAN et al., 2011):

D(X ′
s,X

′
t ) = tr((KWW T K)L)+µ tr(W TW ) (2.11)

In this new transformed space, a classifier/detector is trained in Φ(Xs) and applied in
the target feature space Φ(Xt) for predictions. To perform a viable analysis of the method, it is
required only training sets to generate the latent space. As a result, the matrix W̃ is then used to
reduce the test set space. Due to its theoretical basis being derived from the PCA, for the feature
space transformation to be performed it is necessary to define the amount of attributes desired
for the output (SANTOS; RIBEIRO; PONTI, 2019).
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CHAPTER

3
FEATURE TRANSFER LEARNING USING

MULTIPLE CNN LAYERS

Prior to feature learning methods for pattern recognition, the standard pipeline consisted
of filtering, segmentation, feature extraction, and classification (XIE et al., 2017). Some of these
steps were absorbed into the deep networks (MISHKIN; SERGIEVSKIY; MATAS, 2017) due
to the incorporation of successive convolutions in the grid-shaped neural architectures. This
absorption allowed the predictive models to be composed of different descriptors, including both
low and high level, making end-layers into receptive fields of previous layers (RAZAVIAN et

al., 2014).

Usually, models that involve feature extraction of CNN for pattern recognition only
use layers that are very close to prediction output. This behavior can be observed in several
studies, such as for skin lesions images (POMPONIU; NEJATI; CHEUNG, 2016; MAHBOD;
ECKER; ELLINGER, 2017; MAJTNER; YILDIRIM-YAYILGAN; HARDEBERG, 2016).
However, does this adopted convention indicate that previous (initial and inner) layers do not
offer good discriminative capacity? In situations where dissimilarity between the source and
target domain is evident, the semantic information contained in end-layers should be avoided or
minimized (YOSINSKI et al., 2014). Furthermore, the threshold among features level is still
uncertain, changing for each domain and requiring a crucial study to determine the best layer to
provide representativity for each problem (YOSINSKI et al., 2014). Hence, we should not assume
that only the pre-prediction layers provide representativeness for classification. Contrarily, as the
initial and inner layers offer a low-level description of shapes, borders, and colors, they may play
an important role in the task. Also, when feature extraction is performed on deep networks, the
feature maps obtained can be transformed using dimensionality reduction (SANTOS; PONTI,
2018; LIN; ROYCHOWDHURY; MAJI, 2015), concatenation (SADIGH; SEN, 2018; PAN et

al., 2017), or even alignment of the data distributions (WEN et al., 2018; SANTOS; RIBEIRO;
PONTI, 2019) for TL tasks.
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Due to the gap described here, we investigated whether these layers (initial and inner)
on CNNs actually provide representativeness in TL tasks for image domains. Hence, in this
chapter, the methods and techniques developed for feature TL using inner layers are presented.
Initially, CNNs were applied to provide feature spaces analysis of several end-layers, as detailed
in section 3.1. After, multi-layers feature spaces from one same CNN are fused and adapted by
TCA, as described in section 3.2.

3.1 End-layers features on skin lesion classification

Initially, considering only CNNs pre-trained with ImageNet dataset (RUSSAKOVSKY
et al., 2015), it was desirable to develop a structure to compare the abstraction of several
end-layers to evaluate the discriminative capacity, aiming to discuss feature generality and the
potential for TL. Intending to further analyze these layers, a detailed methodology was developed
to discuss distinct feature spaces provided from three different CNNs and their respective
hidden layers: MobileNet (HOWARD et al., 2017); VGG-19 (SIMONYAN; ZISSERMAN,
2014); and ResNet50 (HE et al., 2016)). Moreover, it was also investigated impacts caused
by distortions applied to the best feature space obtained, such as dimensionality reduction by
PCA (JOLLIFFE, 1986), color quantization, and noise injection. The behavior of the feature
spaces was also performed applying cross-domain and network fine-tuning. This methodology
structure is illustrated in Figure 7.

Figure 7 – Feature Extraction. From raw images using PH2 dataset, new sets were generated by color
quantization and noise injection (Gaussian and Salt & Pepper). Feature maps, extracted using a
pre-trained CNN, were used to evaluate skin lesion classification and generalization capacity
between raw and different levels of distortions. PCA was applied to raw set to measure space
reduction efficiency. From (SANTOS; PONTI, 2018).

The PH2 dataset (MENDONÇA et al., 2013) was employed for these experiments,
which is widely used as a benchmark for skin lesion classification. PH2 is composed of 200
dermoscopic images of two main categories: malignant (40 melanomas) and non-malignant
(80 common nevi and 80 dysplastic nevi), each class is represented in Figure 8. By the lesion
appearance, the categories differ in shapes, edges, colors, and texture. The adoption of this
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domain is due to its classification challenge, where the categorization of an image is made
difficult by many aspects: images are acquired under different conditions of illumination; may
have blur due to the focal field; and also present strong texture due to the appearance of skin
and other confusing components. Consequently, it is expected that the analyzed behavior can be
generalized to simpler domains.

(a) (b) (c)
Figure 8 – Skin lesions from PH2 dataset (MENDONÇA et al., 2013): (a) Common Nevus; (b) Displasic

Nevus; and (c) Melanoma. The preliminary diagnosis of skin cancer includes visual analysis
of low-level features, being that common nevi have more regular structures than melanomas.
Additionally, the presence of confusing objects is evident in these examples in the image
composition, such as the black circle on margins and some bubbles superimposed on the lesion
(see image c), increasing the challenge of finding an adequate feature space.

First, images were re-sized to 224×224 pixels of resolution (architectures restriction for
inputs) and feature spaces were extracted using activation values from the last seven layers in each
CNN. Commonly, the last layer of each CNN corresponds to probabilities of 1000 classes from
ImageNet (RUSSAKOVSKY et al., 2015). Each CNN has different structures and, consequently,
amount of attributes in each layer. Therefore, for MobileNet, layers output from 1000 to 50176
features, and for VGG-19 and ResNet50 from 1000 to 100352 features. After performing a
standard scale normalization, the balanced accuracy was computed using 20-folds cross validation
(each fold is class-balanced). Due to high dimensionality provided from CNN layers, the real
amount of features with variance was identified, removing all attributes which have equal value
assigned in all examples. These attributes only increase computational cost (BAGHERINEZHAD;
RASTEGARI; FARHADI, 2017). For evaluation, it was applied Support Vector Machine (SVM).
Intuitively, a more adequate feature map performs better with SVM because it is the simplest
classifier and it has stronger learning guarantees (VAPNIK, 1999). The next subsection presents
the results and discussion of robustness of feature spaces from CNN end-layers.

3.1.1 Robustness of feature spaces

Based on results shown in Table 1, the best performance was achieved in earlier layers:
MobileNet layer -3 (94%); VGG-19 layer -7 (91.5%); and ResNet50 layer -5 (91.5%)1. Con-

1 Layers are refer as -1 (last layer), then -2 (one before the last), and so on until -7. In bold, the best
result from each network. This notation is also valid for Table 2.
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trarily, prediction layers (-1) achieved significantly poorer results. MobileNet also provided
more compact and discriminative feature spaces than VGG-19 and ResNet50 for skin lesions
classification (using only 1024 features). These advantages are evidenced by the amount of
attributes with variance in each layer and respective high performance. In contrast, VGG-19
generates more attributes without variance (in all hidden layers), having its performance sur-
passed also by ResNet50 (on layers average). The best performance achieved in ResNet50 (layer
-5) demonstrates the space complexity: 100352 features. These performances corroborates the
concept that smaller datasets for specific applications do not need complex networks. Hence,
MobileNet (the lighter CNN) provides the best performance in accuracy, complexity, and space
dimensionality.

Table 1 – CNNs pre-trained with ImageNet: 20-folds Cross Validation by Balanced Accuracy (%).
Adapted from (SANTOS; PONTI, 2018)

CNN Layer Features Variance Linear SVM

MobileNet

-1 1000 100.0% 85.0 ± 12.04
-2 1000 100.0% 92.0 ± 8.72
-3 1024 100.0% 94.0 ± 6.63
-4 1024 100.0% 93.5 ± 7.26
-5 1024 100.0% 93.0 ± 8.43
-6 50176 90.2% 90.5 ± 8.65
-7 50176 100.0% 91.5 ± 7.26

VGG-19

-1 1000 100.0% 81.0 ± 12.61
-2 4096 93.7% 88.5 ± 6.54
-3 4096 93.7% 88.5 ± 8.53
-4 25088 86.8% 89.0 ± 6.24
-5 25088 86.8% 88.5 ± 7.26
-6 100352 75.2% 91.5 ± 7.92
-7 100352 92.8% 91.5 ± 6.54

ResNet50

-1 1000 100.0% 80.5 ± 11.17
-2 2048 100.0% 90.0 ± 7.75
-3 2048 100.0% 90.5 ± 7.4
-4 100352 96.3% 91.5 ± 7.92
-5 100352 100.0% 91.5 ± 7.26
-6 100352 100.0% 90.5 ± 7.4
-7 100352 100.0% 90.5 ± 9.73

To confirm high performance achieved using MobileNet pre-trained with ImageNet, a new
experiment with fine-tuning was performed employing the HAM10000 dataset (TSCHANDL;
ROSENDAHL; KITTLER, 2018) as source domain. HAM10000 is composed of approximately
10000 images split into seven classes (training set), two of them contained in PH2. Consequently,
we used a dataset from the same domain, however, with its own particularities. For this experi-
ment, all prediction layers were replaced by new ones to classify these seven classes. Network
fine-tuning experiments were carried out with 10, 25, 50, 100, and 500 epochs using 32 images
in batch size and Adam algorithm with Binary Cross-Entropy as loss function. Layers contained
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after the last pooling (four layers in VGG-19 and two in ResNet50) were randomly initialized,
except for MobileNet where it was selected only the last two layers, which are related to the
classifier. The remaining ones were maintained with their original ImageNet weights. However,
all last seven layers can adapt their weights, considering all previous ones frozen. The best results
in each adaptation are presented in Table 2, which MobileNet overcomes other approaches with
91.5% from layer -3. Although similar performance among fine-tuned CNNs, results shown to be
slightly below when comparing to the ones without fine-tuning. It is important to note that, both
VGG-19 and ResNet50 need more epochs to obtain best performances due to greater architecture
complexity. As well as MobileNet, ResNet50 quickly converged to perfect training accuracy (50
epochs). However, VGG-19 remains unchanged even after 500 epochs, saturating the loss and
not converging. This issue implies that the amount of examples from HAM10000 did not offer a
relevant gradient in fine-tuning to improve classification loss. Intuitively, MobileNet is smaller
allowing convergence, while ResNet50 convergences due to skipping layers on residual blocks.
Contrarily, VGG-19 is so deep for this amount of data, not converging properly. Therefore, all
further analysis were carried out on MobileNet layer -3 feature space with ImageNet weights.

Table 2 – Best results from fine-tuning with HAM10000 training dataset. Adapted from (SANTOS;
PONTI, 2018)

CNN Training Loss (%) Training Acc. (%) Epochs Layer Test Acc. (%)
MobileNet 0.7 100.0 10 -3 91.5 ± 9.1
VGG-19 147.7 90.7 50 -4 91.0 ± 8.89
ResNet50 0.0 100.0 50 -5 90.0 ± 7.75

Since CNN layers often output high-dimensional feature maps, dimensionality reduction
is an important projection to show attributes relevance in the final classification. The space was
gradually reduced from 128 features to only 1 feature by PCA, halving the size each step. PCA
imposes as rule for amount of components selection a minimum between samples (200 skin
lesions) and features (1024 in MobileNet layer -3). Therefore, as seen in Figure 9, Linear SVM
continues achieving high performance between 64 and 16 features (≈ 92% of balanced accuracy).
Furthermore, Linear SVM tends to show better performance overall, implying that reducing
dimensionality does not affect space linear separability. To complement the dimensionality
reduction discussion, also in Figure 9, the variance is presented for the amount of features,
showing that a 60.80% variance allows class separability (LSVM ≈ 92% using 16 features). As
expected, PCA variance decreases gradually as the space contraction increases. We can also note
that with just 1 feature is possible to correctly categorize 86.5% of the examples.

Feature spaces quality are significantly impacted by color quantization (PONTI; NAZARÉ;
THUMÉ, 2016). To measure this influence in skin lesions classification, news sets were gener-
ated by computing 64, 32, and 16 colors per channel. As demonstrated in Table 3, as the color
space contracted, performances become less linear, although not dramatically lower. Considering
noisy images, Gaussian sets were generated by variances of 0.008, 0.016, and 0.032, which
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the balanced accuracy of Linear SVM remains relatively constant with the progressive increase
of noise. However, with Salt & Pepper (probabilities were 0.005, 0.01, and 0.02) is detect an
initially positive impact (SP 0.005), but then results degrade.

Figure 9 – Dimensionality reduction and variance by PCA using MobileNet layer -3 feature space without
fine-tuning. Curves of the classifier have a lack of smoothing due to the small size of the
dataset. These dimensions were selected to show a gradual feature space reduction. Adapted
from (SANTOS; PONTI, 2018).

Table 3 – Quantized and noisy space of MobileNet layer -3 without fine-tuning: 20-folds Cross Validation
by Balanced Accuracy (%). Adapted from (SANTOS; PONTI, 2018)

Set Linear SVM
PH2 Quant 64 94.5 ± 4.97
PH2 Quant 32 92.5 ± 8.29
PH2 Quant 16 90.0 ± 9.49
PH2 G 0.008 93.0 ± 7.81
PH2 G 0.016 93.0 ± 6.4
PH2 G 0.032 94.5 ± 7.4
PH2 SP 0.005 95.0 ± 6.71
PH2 SP 0.01 91.5 ± 9.1
PH2 SP 0.02 90.5 ± 8.65

To study feature spaces generalization more deeply, Hold-out 50/50 experiments (bal-
anced classes) were performed using different versions of PH2 dataset to measure how well
features generalized for unseen color quantization and noisy levels. Results are divided in two
parts: without and with fine-tuning. Both were performed using MobileNet layer -3 (better
feature space). As expect for both color quantization and noisy addition, the generalization rate
reduces according the bigger distances among color spaces and increasing noisy levels. However,
additive noise causes a positive impact: the lowest average reached among Gaussian sets was
88.66% (for G 0.016); similarly for Salt & Pepper with a highest average of 90.83% (for SP
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Table 4 – Feature space generalization using MobileNet layer -3: Hold-out 50/50 by Balanced Accuracy
(%). Adapted from (SANTOS; PONTI, 2018).

Training Set Testing Set Without fine-tuning With fine-tuning Difference

Raw
Quant 64 91.5 83.0 8.5
Quant 32 90.0 84.0 6.0
Quant 16 86.5 84.5 2.0

Quant 64
Raw 91.0 90.0 1.0

Quant 32 90.5 84.5 6.0
Quant 16 87.0 83.0 4.0

Quant 32
Raw 90.0 90.5 -0.5

Quant 64 91.0 85.0 6.0
Quant 16 87.0 84.0 3.0

Quant 16
Raw 91.0 89.5 1.5

Quant 64 91.5 85.5 6.0
Quant 32 91.5 86.5 5.0

Raw
G 0.008 90.5 83.0 7.5
G 0.016 89.0 82.0 7.0
G 0.032 88.5 82.5 6.0

G 0.008
Raw 90.0 85.5 4.5

G 0.016 89.0 86.5 2.5
G 0.032 88.0 85.0 3.0

G 0.016
Raw 89.5 85.5 4.0

G 0.008 88.5 85.5 3.0
G 0.032 88.0 84.0 4.0

G 0.032
Raw 90.0 87.5 2.5

G 0.008 90.0 86.0 4.0
G 0.016 89.0 85.0 4.0

Raw
SP 0.005 89.5 82.0 7.5
SP 0.01 88.5 80.5 8.0
SP 0.02 88.5 79.5 9.0

SP 0.005
Raw 92.5 85.0 7.5

SP 0.01 89.0 83.5 5.5
SP 0.02 91.0 84.0 7.0

SP 0.01
Raw 88.0 83.0 5.0

SP 0.005 88.0 82.0 6.0
SP 0.02 89.5 82.5 7.0

SP 0.02
Raw 89.0 79.5 9.5

SP 0.005 89.5 80.0 9.5
SP 0.01 89.0 79.5 9.5

0.005). Noisy results indicated positive perturbations on data which CNN models produce a
more robust space, improving the classifier to find linearly separable hyper-planes for unseen
noisy/quantization levels. However, feature generalization from HAM10000 fine-tuned is lower
in comparison to ImageNet training parameters, being worse, mainly, with noise injection. This
peculiarity occurs due to the different data distributions between PH2 and HAM10000. Despite
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belonging to the same domain, these datasets have differences in the number of classes, image
resolution, and diversity of confused objects. These factors, in addition to the small training
set for fine-tuning, contribute to the superior performance of feature extraction with ImageNet
training. All results are shown in Table 4, where accuracies in bold are higher than competing
methods presented in Table 5.

Table 5 – Competing methods results versus MobileNet layer -3. Adapted from (SANTOS; PONTI, 2018).

Method Accuracy (%) Balanced Accuracy (%)
(BARATA; CELEBI; MARQUES, 2015) — 84.3

(BI et al., 2016) 92.0 90.31
(SALIDO; JR, 2018) 93.0 —

With Fine-tuning 84.0 91.5
Hold-out [Raw, SP 0.005] 89.5 92.5

Without Fine-tuning 95.0 94.0
SP 0.005 94.0 95.0

Comparing all the experiments with competing methods in PH2 dataset, CNN feature
extraction with MobileNet produces the highest result (94% of balanced accuracy) using only
raw images. ResNet50 and VGG-19 also presented higher performances (91.5%) than competing
methods, which comprised pre-processing steps to achieve at most 90.31%.

3.2 Alignment of multi-layers features fusion
In addition to the finding that end-layers provide robust feature spaces, an extra experi-

ment was designed to detect whether the initial layers of a CNN also provide representativeness
for image classification. Features fusion is widely applied for image classification (ZHENG et

al., 2019; YU et al., 2017) and it can be performed using distinct approaches, such as applying
a single CNN end-layer as global descriptor and handcrafted methods to describe low-level
features (CHEN et al., 2018b) or combine end-layers from different CNNs (GE et al., 2017).
However, considering the pre-trained ResNet50 (HE et al., 2016) and two domains (source and
target), we extracted features from the pre-prediction layer (as global descriptor) and from the
three first residual blocks (the output of each block represents the local descriptor) to merge
them in a single feature map (as fusion descriptor). Consequently, three scenarios are presented
for alignment of multi-layer features fusion: global descriptor with each individually local
descriptor. Previously of fusion step, the local features passed on a process of selection (three
different methods were performed) due to they are composed by larger amount of attributes. This
process is performed separated for the training set of the classifier (source) and for the test set
(target). Consequently, with the multi-layer features, the data distributions (source and target)
are transformed to increase the correlation between them using TCA (PAN et al., 2011). As
result, the source data is applied to SVM for training and the target data for tests, as illustrated
on Figure 10.
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Figure 10 – Feature extraction and manifold alignment structure for multi-layers features. Considering
two similar datasets, source and target, both are passed on to ResNet50 for feature extraction.
Initially, an initial layer (the red ones) provides local attributes (shape, border, and color)
and the pre-prediction layer (the blue one) provides global attributes (texture and semantics).
In the following, feature fusion is obtained through map concatenation using both feature
spaces. Using TCA, the resulting features fusion are transformed and assigned to train and test
the SVM classifier, source and target, respectively. The experiments were performed in two
scenarios: (i) using ResNet50 pre-trained with ImageNet; and (ii) performing fine-tuning with
the source dataset. Local (low-level) and global (high-level) feature maps are also transformed
and classified individually for comparison purposes. From (SANTOS; PONTI, 2019a).

The output from pre-prediction layer (average pooling) has 2048 attributes. The output
from the residual blocks has the same shape: 256 maps of 55 × 55 size, resulting in 774400
attributes. Due to the large number of attributes from local descriptors, feature selection was
applied to choose which ones will compose the fusion maps. Hence, three methodologies were
adopted, detailed on Figure 11, aiming a comparative analysis of performances: PCA; Flatten
Pooling; and Pooling 2D. PCA is applied only to the source dataset, choosing 256 components.
In sequence, the chosen components were applied to the target dataset. However, some datasets
do not have 256 examples in the test set. Hence, in these specific cases, it was determined 128
components. In Flatten Pooling, the feature maps are fully converted from matrix to vector
without any spatial relationship. In the following, a value x = 100 was adopted to split the
vector into small symmetric segments, in which the average is calculated, forming the 7744 final
attributes. For Pooling 2D was considered a square region in the attribute space to calculate the
average. The adopted region was 55 × 55, where each map provides only one attribute, i.e 256
features. After the feature selection, feature fusion is performed using the 2048 global attributes
with one of the local features selection method (256, 7744, or 256). The variation in the number
of attributes is suppressed due to TCA transformation with Radial Basis Function (RBF) kernel,
which defines the real amount of attributes for classification with Linear SVM. Consequently,
the resulting feature maps size are 256, 192, 128, 96, or 64.
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Figure 11 – Feature selection methods for local attributes: PCA considers all images to find the principal
components. In contrast, Flatten Pooling and Pooling 2D are performed in an individual
manner. From (SANTOS; PONTI, 2019a).

For the experiments, the pre-trained and fine-tuned ResNet50 were considered. The
fine-tuning setup applied is the original training (SGD with mini-batch size of 256, learning
rate of 0.1 with weight decay of 0.0001, and momentum of 0.9 (HE et al., 2016)) during 100
epochs. Aiming to maintain the initial layers frozen, only the last seven layers were allowed
to adapt with the new domain. This configuration offers a better observation of the global and
fusion performances. For both network weights, four sets of different image domains were tested:
fruits; objects; skin lesions; and photos. This diversity is extremely important to emphasize the
discriminative capacity of initial layers, due to variation of styles, scene composition, and degree
of task difficulty. All datasets are illustrated in the Figures 12-15, in which the first row from
each figure is considered as a source dataset and the other one as the target dataset. Also, all
images were resized to 224×224.

Figure 12 – Examples from: (top) Fruits-360 (MUREŞAN; OLTEAN, 2018); and (bottom) Supermarket
Produce (ROCHA et al., 2008). Fruits-360 is composed by, approximately, 53000 images of
100 × 100 pixels resolution (training set), divided in 103 classes. In contrast, Supermarket
Produce has only 2000 images of 1024 × 768 pixels of 11 categories. Although both datasets
belong to same domain, they differ in the number of elements in each image, background,
object size, and illumination. For this setup, only 9 common labels were used, reducing the
amount of images from both datasets. From the left to the right: red apple; green apple; kiwi;
lime; nectarine; orange; peach; pear; and plum.



3.2. Alignment of multi-layers features fusion 53

Figure 13 – Examples from: (top) Amazon (SAENKO et al., 2010); and (bottom) Webcam (SAENKO et
al., 2010). Amazon has 2817 images of 300 × 300 pixels resolution downloaded from the web
into 31 classes. Although Webcam has exactly the same categories, the 795 images vary from
one example to another in the resolution. Both sets contain device items, differentiating due
to the background, perspective, and presence of clutter. From the left to the right: backpack;
calculator; desk chair; desktop computer; keyboard; laptop; monitor; pen; and phone.

Figure 14 – Examples from: (top) HAM10000 (TSCHANDL; ROSENDAHL; KITTLER, 2018); and
(bottom) PH2 (MENDONÇA et al., 2013). HAM10000 contains images of 600 × 450 pixels
of 7 distinct classes. PH2 is a smaller dataset, which has only 200 images of 768 × 574 pixels
and 2 classes. The datasets differ due to margins composition and presence of clutter, such as
hair and bubbles. The malignancy of a lesion is defined by the uniformity of shapes, colors,
and texture. Despite the 7 categories from HAM10000, only two common were considered
(nevus and melanomas), reducing the number of images in HAM10000 to approximately
7800. The first four images on left indicate common nevus and the others on right represent
melanomas.

Figure 15 – Examples from Corel1000 (WANG; LI; WIEDERHOLD, 2001). This dataset is fully balanced,
comprising 10 classes of 100 examples. Each image has a resolution of 384 × 256 pixels. For
these experiments, the full set was splitted randomly, in proportion of 80/20, for training and
test sets. From the left to the right: food; native people; beach; architecture; bus; dinosaur;
elephant; flower; horse; and mountain.

3.2.1 Combination of different descriptors

Based on the described datasets, after feature extraction on ResNet50 (trained on Ima-
geNet or fine-tuned), Tables 6-9 show the feature TL results from one source dataset to another
target dataset on SVM classifier2. Specifically in Table 6 is highlighted that, on average, the
pre-prediction layer (global descriptor) offers better feature space when the network does not
incorporate the new semantics contained in Fruits-360, i.e using ImageNet weights, with 30.79%

2 Values in bold (fusion) represent higher accuracy when compared with global results (Glob.). Values
in italic (fusion) indicate when the fine-tuning performance overcomes its respective ImageNet result.
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versus 27.17% of accuracy. However, multi-layer fusion performances are highly applicable to
Supermarket Produce dataset, either with fine-tuning or without. Considering the three multi-
layer fusion methodologies on average, the fine-tuned performance increases 8.36% using the
first residual block. Individually, PCA has a larger variation in the first block (20.66%), reaching
its peak with network fine-tuning (41.46%), then the accuracy gradually decays. Flatten Pooling
(Flat.) has a small better performance in the second block. And, Pooling 2D is practically constant
in all blocks. All these results indicate that Fruits-360 and Supermarket Produce are datasets
with predominantly low-level features, such as shapes and edges, evidenced when the global
performance is reduced with network fine-tuning.

Table 6 – Classification accuracy (%) of Supermarket Produce comparing feature extraction (FE) from
ResNet50 pre-trained with ImageNet versus fine-tuned with Fruits-360. From (SANTOS;
PONTI, 2019a).

FE Feat. Glob. Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flat. 2D PCA Flat. 2D PCA Flat. 2D

Im
ag

eN
et

256 28.24 20.41 36.48 26.35 19.96 37.18 25.3 19.61 37.33 26.35
192 30.24 20.11 36.08 29.64 20.31 37.33 29.09 20.46 37.48 29.44
128 34.23 21.61 38.32 32.98 21.31 38.87 32.19 20.46 37.77 32.83
96 33.63 22.01 39.42 32.24 22.36 40.52 31.74 21.36 40.27 32.39
64 27.59 19.86 37.77 27.84 20.51 39.62 27.4 19.91 38.92 27.79

Avg. 30.79 20.8 37.61 29.81 20.89 38.7 29.14 20.36 38.35 29.76

Fi
ne

-t
un

in
g

256 23.75 41.37 36.33 35.73 37.97 36.98 35.83 33.63 37.18 35.83
192 25.65 41.22 36.48 36.48 38.37 36.93 36.58 30.44 36.58 36.58
128 31.39 41.47 38.87 38.82 37.48 39.27 38.77 32.58 37.43 38.77
96 29.74 41.37 39.97 39.52 38.42 40.67 39.47 29.14 39.52 39.52
64 25.3 41.87 37.97 39.87 38.62 39.37 39.92 31.59 38.37 39.92

Avg. 27.17 41.46 37.92 38.08 38.17 38.64 38.11 31.48 37.82 38.12

In Table 7 is noticed a decrease in the performance of multi-layer fusion features of
objects domain in relation to fruits domain. Considering Amazon (as source) and Webcam (as
target), fusion results are better at about 1.25% on average when compared with global results:
52.52% versus 51.25% using ImageNet weights and 51.58% versus 50.36% with network fine-
tuning. Despite this equivalence, multi-layer fusion features still offers significant improvement
using Flatten Pooling in the first block without fine-tuning, on average 55.75% versus 51.25%.
PCA has better performance in the second block when fine-tuning is applied and Pooling 2D
remains practically constant. These results confirm that Webcam is a dataset with greater variance,
requiring more semantics from the global descriptor.

Considering skin lesion images, different texture represents a decisive attribute to diag-
nose an injury as malignant or not. Hence, the semantic contained in the global descriptor is
more relevant for classification. Based on this requirement and evidenced by the results presented
in Table 8, the fusion features do not increase the accuracy, neither for ImageNet weights (85.7%
versus 85.62%) or for fine-tuning (86.0% versus 85.67%) on average. A few multi-layer fusion
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Table 7 – Classification accuracy (%) of Webcam comparing feature extraction (FE) from ResNet50
pre-trained with ImageNet versus fine-tuned with Amazon. From (SANTOS; PONTI, 2019a).

W Feat. Glob. Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flat. 2D PCA Flat. 2D PCA Flat. 2D

Im
ag

eN
et

256 40.63 42.01 47.04 42.01 40.25 47.17 42.14 41.64 45.79 41.89
192 48.18 46.67 52.08 48.81 45.79 51.95 48.81 46.16 50.69 48.3
128 51.95 51.45 56.86 53.08 48.55 53.58 53.46 52.7 53.58 53.46
96 55.35 54.47 59.37 55.22 53.46 58.99 55.72 53.21 55.85 55.6
64 60.13 59.12 63.4 62.01 58.99 65.53 61.64 60.0 63.14 61.64

Avg. 51.25 50.74 55.75 52.23 49.41 55.44 52.35 50.74 53.81 52.18

Fi
ne

-t
un

in
g

256 39.37 40.63 46.04 40.0 41.38 46.67 40.0 39.75 45.53 40.13
192 47.55 44.65 51.45 46.54 45.91 52.7 46.54 45.91 49.43 46.67
128 48.55 48.43 54.34 49.31 49.06 52.83 46.56 50.44 54.47 49.18
96 55.47 53.84 60.13 55.72 54.34 58.49 56.35 45.91 57.48 56.1
64 60.88 61.51 64.91 60.88 60.0 64.91 60.75 61.51 62.77 61.13

Avg. 50.36 49.81 55.37 50.49 50.14 55.12 50.04 48.7 53.94 50.64

Table 8 – Classification accuracy (%) of PH2 comparing feature extraction (FE) from ResNet50 pre-
trained with ImageNet versus fine-tuned with HAM10000. From (SANTOS; PONTI, 2019a).

W Feat. Glob. Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flat. 2D PCA Flat. 2D PCA Flat. 2D

Im
ag

eN
et

256 88.0 – 88.5 87.5 – 86.5 87.5 – 88.0 87.5
192 86.0 – 88.0 86.5 – 89.5 87.5 – 87.5 86.5
128 83.0 84.0 85.5 83.5 83.5 86.5 83.5 84.0 85.5 83.5
96 85.0 84.5 86.0 85.0 85.5 86.0 85.0 84.0 85.5 85.0
64 86.5 84.0 86.5 86.0 85.0 87.0 86.0 83.5 87.0 86.5

Avg. 85.7 84.17 86.9 85.7 84.67 87.1 85.9 83.83 86.5 85.8

Fi
ne

-t
un

in
g

256 87.5 – 88.0 87.0 – 89.0 87.0 – 89.0 87.0
192 86.5 – 89.0 87.5 – 88.0 87.5 – 86.5 87.5
128 85.0 84.5 87.5 83.5 83.5 85.5 83.5 84.5 84.0 83.5
96 86.0 84.5 84.0 85.5 84.5 84.0 85.0 85.0 84.0 85.0
64 85.0 85.5 87.5 85.5 84.5 86.0 85.5 84.5 87.0 85.5

Avg. 86.0 84.83 87.5 85.8 84.17 86.5 85.7 84.7 86.1 85.7

results present slight superiority to global results. In general, all of them presented themselves in
an equivalent form in all residual blocks.

In contrast with previous results, for Corel1000, PCA results stand out the global results
and Pooling approaches (see Table 9). Due to similar data distribution (both training and test sets
belong to the same dataset), the selected components from training set are, practically, the same
ones that should be selected in the test set, which leads to increased performance. Setting the
global performance, almost all fusion results excel them, except fine-tuned Pooling 2D when
the features are extracted using the second and third residual blocks, which maintains the same
result.
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Table 9 – Classification accuracy (%) of Corel1000 (test set) comparing feature extraction (FE) from
ResNet50 pre-trained with ImageNet versus fine-tuned with Corel1000 (training set). The
dataset was splitted in 80% for training and 20% for test. From (SANTOS; PONTI, 2019a).

W Feat. Glob. Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flat. 2D PCA Flat. 2D PCA Flat. 2D

Im
ag

eN
et

256 91.5 – 92.0 91.5 – 93.5 91.0 – 93.5 91.0
192 93.5 – 95.5 94.0 – 96.0 94.0 – 95.0 94.0
128 94.5 96.0 96.5 95.0 96.0 95.0 95.0 96.5 95.5 95.0
96 95.0 95.0 95.5 95.5 96.0 96.0 95.5 95.5 96.5 95.5
64 95.0 95.0 96.0 95.0 95.5 96.5 95.0 96.0 95.5 95.0

Avg. 93.9 95.33 95.1 94.2 95.83 95.4 94.1 96.0 95.2 94.1

Fi
ne

-t
un

in
g

256 92.5 – 93.5 92.0 – 95.0 92.0 – 92.5 92.0
192 94.0 – 95.5 94.5 – 95.5 94.5 – 96.5 94.5
128 95.5 96.0 96.5 96.0 96.0 94.5 95.5 96.5 95.5 95.5
96 95.0 95.5 95.5 95.0 95.5 96.0 95.0 95.5 96.5 95.0
64 95.0 95.5 95.5 95.0 95.5 95.5 95.0 96.5 95.5 95.0

Avg. 94.4 95.67 95.3 94.5 95.67 95.3 94.4 96.17 95.3 94.4

Figure 16 – Accuracy difference classification on average between local and global results of Supermarket
Produce using Fruits-360 to fine-tune the ResNet50. From (SANTOS; PONTI, 2019a).

Figure 16 shows the importance of initial layers from a CNN for image classification due
to relevant representativeness of the extracted feature spaces. The bars represent a comparative
of local and global descriptors, illustrating the difference of performances (average among TCA
performances) between them. It is interesting to note how the first block offers better performance
in relation to the others. Hence, as the layers become more internal, the accuracy decreases
gradually, confirming that end-layers are more representative when they are used alone. Evidently,
the performance gain of multi-layer fusion is achieved with increase of computational cost. Due
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to the requirement of evaluating the variance in all features, PCA presents greater computational
complexity. Flatten Pooling and Pooling 2D, however, only demand region delimitation and
average calculation. Therefore, the computational cost is more related to dataset size than to the
task complexity.

3.3 Final comments on multiple CNN layers
Based on the results from skin lesions classification (section 3.1), it is notable the discrim-

inative capacity contained in end-layers of CNNs, being reinforced by results of dimensionality
reduction and noise injection. Descriptors contained in these layers have the potential to provide
representative feature spaces, either for feature extraction using only the target domain or network
fine-tuning. Specifically in these experiments, fine-tuning did not offer better generalization,
indicating that the amount of examples was not sufficient to improve network convergence.
Additionally, in the experiments with multi-layers feature space combination (section 3.2), we
explored descriptors from low-level of a CNN to complement end-layers in scenarios of feature
TL. Different image domains were evaluated through fusion and data alignment, showing that
images with well behaved composition are better classified by merging features from multi-layers.
Global descriptors are more adequate to be used in domains with more clutter or composed of
larger intra-class variance.

In this sense, these results offered important guidelines for the use of pre-trained CNNs
and fine-tuning for feature extraction, considering multiple levels of descriptors from these
architectures. Researchers can leverage pre-trained CNNs with ImageNet and other very large
datasets to obtain feature spaces even for different image domains exploring more initial and inner
layers. The depth of the CNN must be considered when performing fine-tuning: architectures
with less capacity or employing skipping layers seem to converge better.
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CHAPTER

4
FEATURE TRANSFER LEARNING IN

ONE-CLASS SCENARIOS WITH A
GENERALIZATION ANALYSIS

One of the reasons for a model not to be completely adaptable to several domains is the
absence of evaluation by generalization measures. Often, studies are evaluated only by classical
measures of the assigned task. Consequently, the model is suitable only for a given dataset,
however, the behavior of this model in other datasets is rarely evaluated. In this sense, we noticed
the difficulty of comparing one methodology with another, or even verifying which dataset
offers the most representativeness in a given task for a determined model. This difficulty can be
observed in both video anomaly detection and image classification tasks.

In terms of anomaly detection videos, TL can be employed in different scenarios, such
as surveillance of human crowds (GUO et al., 2016; HU et al., 2016; CHAKER; AGHBARI;
JUNEJO, 2017), pedestrian detection (ROSHTKHARI; LEVINE, 2013; HASAN et al., 2016;
PONTI et al., 2017), and analysis of directions (human or vehicle motion) (EPAILLARD;
BOUGUILA, 2016). In this context, learning implies inferring a function f : X →Y from a train-
ing feature space X to find an output feature space Y = {−1,+1} (CHANDOLA; BANERJEE;
KUMAR, 2009), where the definition of anomaly differs for each context, containing everything
that is not in normal patterns (JIANG; WU; KATSAGGELOS, 2009), such as a clandestine boat
in the middle of the sea or a car in a pedestrian boardwalk for surveillance scenarios. This is
particularly challenging in typical anomaly detection scenarios, which only normal behavior
is available for training (WEN et al., 2015). Additionally, the similarity of data distribution
is affected due to the variation of illumination, camera perspective, and amount of clutter in
the scene (ROSHTKHARI; LEVINE, 2013; HAO et al., 2017). These factors contribute to the
distancing between the activities and visual content of different domains. Hence, a good measure
of domain generalization can indicate which dataset is more suitable to a target video.
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Aiming at greater assurance of robustness in feature TL methods, this chapter details
the theoretical foundation of the Cross-Domain Feature Space Generalization Measure (CDFG)
(see section 4.1) proposed to measure the domain generalization of feature spaces. This measure
was direct applied to one-class problem with surveillance video anomaly detection (detailed on
subsections 4.2.2 and 4.2.3) and to image classification networks in different levels of learning
(described on subsection 5.2.4).

4.1 Cross-Domain Feature Space Generalization Measure

Machine learning is a field that includes the idea of developing theoretical guarantees to
support what is called “learning” within the context of each algorithm. Consistently, the most
stable theory is Statistical Learning Theory (SLT) (VAPNIK, 1999; LUXBURG; SCHÖLKOPF,
2011). Since its introduction, SLT has been widely used to ensure the quality of machine learning
studies and, more specifically, to support the mathematical proofs that guarantee SVM generates
optimum classifiers (MELLO; PONTI, 2018). Hence, based on the SLT tools, we proposed a
new metric to evaluate cross-domain TL systems, asking: how can one measure generalization
of a feature space produced by some method?

One of the pertinent concepts in SLT is the generalization of a solution, which represents
a divergence that measures how well a classifier (or detector) performance with unseen (test)
data is consistent with its performance on seen (training) data. This concept is mathematically
expressed as:

|Remp( fn)−R( fn)|, (4.1)

where Remp( fn) is the risk of a classifier fn evaluated over the training set (the empirical risk) and
R( fn) is the true risk (expectancy of loss) of same fn over “all data” (called expected risk). The
idea of true risk is totally abstract because it is an intractable quantity. However, this concept high-
lights the importance of not losing ourselves only with classic metrics and training costs, which
may not completely represent the quality of a model (MELLO; PONTI, 2018). Consequently,
our view is that TL methodologies cannot be evaluated solely by performance metrics, such
as Receiver Operating Characteristic (ROC) for anomaly detection or accuracy for classification.
Indeed, if we aim to measure how well a system trained in a domain performs in a dissimilar
domain, the idea of generalization fits perfectly. Hence, two metrics were proposed: Partial
Cross-domain Feature Space Generalization (Gpart); and Complete Cross-domain Feature Space
Generalization (Gcomp):

Gpart( f A
n ) =

∣∣∣∣R( f A
n )

x∈X A
−R( f A

n )
x∈X B

∣∣∣∣ (4.2)
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Gcomp( f A
n , f B

n ) =
1
2

(∣∣∣∣R( f A
n )

x∈X A
−R( f A

n )
x∈X B

∣∣∣∣+ ∣∣∣∣R( f B
n )

x∈X B
−R( f B

n )
x∈X A

∣∣∣∣
)

(4.3)

Considering two domains (A and B) and their respective feature spaces (X A and X B),
the expression R( f A

n )
x∈X A

denotes the risk of classifier f A
n , trained using A, over the feature space

X A and R( f A
n )

x∈X B
denotes the risk of the same classifier f A

n over the feature space of the second

domain, X B; the mirrored definition is valid for R( f B
n )

x∈X B
and R( f B

n )
x∈X A

.

The two functions represent different levels of domain generalization, in which important
guidelines should be followed. Hence, Gpart and Gcomp are meaningful metrics if: (i) the set of
admissible functions from the classifier/detector are the same, e.g. same parameters on SVM
training setup; (ii) both feature spaces X A and X B are described by the same set of descriptors;
and (iii) the domain mapping method has no prior knowledge of unseen (test) data on either
domain. These constraints are fundamental to maintain consistency among TL models. Hence,
the first restriction assures the generalization reliability due to maintain the same comparative
measure and classifier configuration. Additionally, by the second restriction is guaranteed the
same amount of features and the same methodology for attributes generation. Finally, the
complete independence of training sets in relation to test sets attests the uniform evaluation of
the task.

Based on the Gpart and Gcomp definitions, we are going to introduce three particular
levels of analysis to measure domain generalization. Considering the pair results of two methods
α and β , composed of classification/detection algorithm and TL techniques to build the feature
space, the first level of the principle of empirical risk minimization for each methodology is
obtained by the expression:

Gpart( f A
α )< Gpart( f A

β
) (4.4)

With this inequality satisfied, one could claim that method α is capable of generalizing
well from domain A to domain B. One can also verify the Gpart measure from the “opposite
direction” and confirm if the α methodology is also better than β at generalizing from B to A, as
expressed by the inequality:

Gpart( f B
α )< Gpart( f B

β
) (4.5)

Grounded in these two expressions, Gpart provides an understanding of the first level of
domain generalization: how well the space obtained from one domain is applicable to another
and how this applicability is captured by the chosen methodology. Therefore, Gpart is a good
representation of how well the domain A offer well-suited learning to domain B with consistent
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performance. However, this level of generalization is “one-way” direction, i.e we are mapping
the feature transferred only in the A −→ B direction. To obtain a more precise and rigorous
analysis of the TL method itself, we should compare using the Gcomp measure:

Gcomp( f A
α , f B

α )< Gcomp( f A
β
, f B

β
) (4.6)

Using Gcomp a better measure of the quality of the transfer system is presented, testing
its robustness over different contexts and pairs of domains. However, the best use of CDFG
Measure is applying both Gpart and Gcomp at the same time, since the Gcomp can be influenced
by high discrepancy between the two Gpart that compose it. Hence, it is primordial that all
three comparisons are taken into account to compare any two competing methods. In all these
expressions, lower results imply less divergence, where the concept of generalization is more
substantial.

4.2 Features generalization for surveillance videos

To evaluate the practical scenario of CDFG Measure (SANTOS; RIBEIRO; PONTI,
2019) on one-class scenario, it was performed a cross-domain feature generalization experiment
extracting features via a pre-trained VGG-19 (SIMONYAN; ZISSERMAN, 2014) with ImageNet
dataset (RUSSAKOVSKY et al., 2015) to detect anomalous activity in video, as shown in
Figure 17. Experiments were designed on transferring knowledge by: (i) cross-feature embedding
using 4096 features from VGG-19 second last layer, which only relates one training set to another
test set. In this first scenario, considered the baseline, the detector is trained with the training
set of one video and tested with the test frames of another video, without any pre-processing or
TL techniques; (ii) cross-domain linear transformation with 80 features by PCA (JOLLIFFE,
1986), selecting the main components from training set and applying them to the test set; and
(iii) transformed space by TCA (PAN et al., 2011) with also 80 features, in which both training
sets were used to generate a new latent space.

Figure 17 – Experimental setup for features generalization on one-class scenario: both source and target
domains feature spaces embedding are independently computed via the same deep network
model, then the source A is used to train an One-Class SVM, while target B is tested on
this trained model. Transfer learning (TL) can be used to transform such spaces before
training/testing (indicated in dashed lines). From (SANTOS; RIBEIRO; PONTI, 2019).
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Seven anomaly detection videos/datasets were used in these experiments, which one dif-
fers from others in domains (natural and urban scenarios), frames resolution, amount of training
examples, illumination, perspectives, and presence of undesirable objects in the scene composi-
tion, as presented in Figure 18. For natural scenario, Canoe (JODOIN; KONRAD; SALIGRAMA,
2008), Boat-River (ZAHARESCU; WILDES, 2010), and Boat-Sea (ZAHARESCU; WILDES,
2010) are three distinct videos that show the presence (anomaly) or absence of boats from
different perspectives. Canoe consists of 1050 frames of 240×320 pixels in which the first 200
are intended for training. Boat-River has higher resolution (576× 740) with only 80 training
frames. With the presence of occlusion (bridge), Boat-Sea is a video less correlated with the
first two, with 100 frames for training of 576× 720 resolution. In urban scenario, Ped1 and
Ped2 (MAHADEVAN et al., 2010) are two datasets composed of several training and test videos
with the same concept of anomalies (cyclists, skaters, and others), however with different camera
positions. In contrast, Belleview (ZAHARESCU; WILDES, 2010) and Train (ZAHARESCU;
WILDES, 2010) characterize vehicle conversion and movement of people within the wagons
as anomaly, respectively. Therefore, the definition of what is anomaly is quite diverse in these
scenarios. All frames from Canoe, Boat-River, Boat-Sea, and Train videos were converted to
gray scale via: I = 0.299R+0.587G+0.114B.

Figure 18 – Samples of test frames from: (a) Canoe; (b) Boat-River; (c) Boat-Sea; (d) Ped1; (e) Ped2; (f)
Belleview; and (g) Train. Anomalous events are represented in red (boats, trucks, cyclists,
vehicle conversions, and passenger movement). Examples of normal events are in green
(pedestrians and straight-line pass). Adapted from (SANTOS; RIBEIRO; PONTI, 2019).

For evaluation, anomaly detection was performed in frame-level criterion, measur-
ing Area Under the Curve (AUC) and Equal Error Rate (EER). As a detector, One-Class
SVM (CHEN; ZHOU; HUANG, 2001) with linear kernel was used, allowing v = 0.25 as the
amount of outliers. With the CDFG Measure it is possible to quantify which dataset provides the
best learning rate for a target domain. Also, the results intensify the research for more robust
solutions, in which only classical evaluation metrics are insufficient to distinguish the real dis-
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criminative feature space. Hence, the CDFG Measures can be explored in the context of choosing
which feature extraction method better suits some task, or to merge different datasets in order
to accumulate a larger training set and, therefore, increase learning guarantees. The results are
divided into three subsections: anomaly detection evaluation (subsection 4.2.1); transfer learning
decomposition (subsection 4.2.2); and negative transfer learning analysis (subsection 4.2.3).

4.2.1 Anomaly detection evaluation

Table 10 presents the anomaly detection results for natural scenarios (Canoe, Boat-
River, and Boat-Sea) using: (i) the original VGG-19 feature embedding (Full VGG-19) with
4096 attributes; (ii) after transformation with PCA (reduction to 80 features); and (iii) applying
unsupervised TL by TCA (also with 80 features)1. Considering the metrics AUC and EER to
compare the three methodologies, it is observed that TCA is better in 66.6% of the pairs tested,
mainly when the source domain is Boat-River. Furthermore, the average AUC across all TCA sets
was 86.68%, meanwhile for Full VGG-19 was 70.47%. As expected, the PCA performance is
exceeded by TCA in all standpoint: number of pairs with higher result (1 versus 6); average AUC
(69.52% versus 86.88%); and average EER (33.3% versus 16.86%). Also, there are outstanding
results of TCA when compare to Full VGG-19 and PCA: Boat-Sea −→ Boat-River with an
improvement of 30.35% (in relation to Full VGG-19); and Boat-River −→ Boat-Sea in 31.41%
to PCA. Therefore, as expected, the feature space provided by TCA overcomes Full VGG-19
and PCA for natural scenarios2.

Table 10 – Anomaly detection in natural scenarios. From (SANTOS; RIBEIRO; PONTI, 2019).

Source −→ Target Full VGG-19 PCA TCA
AUC EER AUC EER AUC EER

Canoe −→ Canoe 92.63 12.65 63.97 39.66 71.66 32.49
Boat-River −→ Canoe 92.75 12.65 53.61 48.1 99.1 3.04
Boat-Sea −→ Canoe 92.75 12.65 85.44 18.56 97.5 4.64

Boat-River −→ Boat-River 63.24 36.75 74.35 25.64 90.59 9.4
Canoe −→ Boat-River 63.24 36.75 50.42 49.57 61.11 38.88

Boat-Sea −→ Boat-River 64.52 35.47 61.96 38.03 94.87 5.12
Boat-Sea −→ Boat-Sea 54.97 46.15 97.01 9.89 91.37 16.48

Canoe −→ Boat-Sea 55.0 46.15 83.39 26.37 86.99 19.79
Boat-River −→ Boat-Sea 55.2 46.15 55.54 43.96 86.95 21.91

Average 70.47 28.37 69.52 33.3 86.88 16.86

Considering only the urban scenarios (see Table 11), Full VGG-19 overcomes PCA
and TCA in number of pairs with better performances (7 of 16 pairs), especially when Ped2
or Belleview is the target domain. However, the variation between the Full VGG-19 and TCA
averages is practically negligible: 63.84% versus 62.8% for AUC; and 39.41% versus 40.51%
1 Due to restrict size of Boat-River training set, which contains only 80 examples.
2 In Tables 10-15, the best result from each row is in bold.
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for EER. Contrarily to the results with natural scenarios, PCA has positive results in urban
domains. It is important to emphasize that the concept of anomalies among the urban domains is
very dissimilar, implying that the feature learning should not be totally transferred, what causes
negative transfer. Hence, considering only domains with the same concept of anomalies (Ped1
and Ped2), TCA stands out when compare to Full VGG-19 and PCA in AUC and EER averages.

Table 11 – Anomaly detection in urban scenarios. From (SANTOS; RIBEIRO; PONTI, 2019).

Source −→ Target Full VGG-19 PCA TCA
AUC EER AUC EER AUC EER

Ped1 −→ Ped1 50.91 51.4 71.46 35.17 62.94 39.68
Ped2 −→ Ped1 50.82 51.46 64.01 39.13 60.39 41.7

Belleview −→ Ped1 51.77 50.75 76.12 30.56 58.86 45.89
Train −→ Ped1 53.42 51.75 60.65 39.72 71.02 33.66
Ped2 −→ Ped2 80.34 26.26 55.24 44.13 74.16 33.26
Ped1 −→ Ped2 80.18 26.25 56.95 46.14 67.06 38.54

Belleview −→ Ped2 80.88 26.26 69.46 34.63 65.16 38.01
Train −→ Ped2 81.81 25.69 61.77 41.89 50.11 52.51

Belleview −→ Belleview 68.91 33.47 50.54 51.38 72.63 32.24
Ped1 −→ Belleview 68.67 33.45 56.22 45.45 68.39 35.25
Ped2 −→ Belleview 68.73 33.47 60.42 40.63 65.24 39.12
Train −→ Belleview 69.1 32.92 54.36 49.31 68.65 34.35

Train −→ Train 53.97 47.2 57.67 42.84 51.88 51.47
Ped1 −→ Train 54.02 46.73 57.75 46.16 53.98 43.96
Ped2 −→ Train 54.13 46.67 55.47 49.0 55.56 42.68

Belleview −→ Train 53.85 46.84 50.63 51.46 58.86 45.89
Average 63.84 39.41 59.92 42.97 62.8 40.51

Although TCA is superior to Full VGG-19 and PCA, those classic metrics (AUC and
EER) are not enough to guarantee the feature space generalization. Analyzing those performances
in isolation gives an imprecision due to the great diversity of results achieved. For these reasons,
the CDFG Measure (SANTOS; RIBEIRO; PONTI, 2019) offers a more detailed and reliable
comparison if one methodology overcomes other.

4.2.2 Transfer learning decomposition

Using the anomaly detection metrics (AUC and EER), the CDFG Measure was evaluated
on features spaces from Full VGG-19 cross-domain, PCA cross-domain, and TL by TCA3. At
the first moment, it was applied exclusively the inequations (4.4) and (4.5) to obtain Gpart , in
which the results are presented in Table 12. In general, as it can observe, TL by TCA overcomes
the competing methods in both metrics. Hence, for Gp AUC averages, TCA was 8.47%, PCA
in 17.27%, and Full VGG-19 in 22.43%. This same behavior occurs with Gp EER, in which
TCA achieved the best rate with 8.1%. In view of similarity between domains, the natural videos
3 The closer to zero, the better
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of Boat-River and Boat-Sea are closer in the feature space mapping by TCA in both directions.
Moreover, in context of different concepts of anomalies, there are also great applicability of
TL in the features spaces generated by TCA, implying that the transfer rate is more relevant
from Ped1 to Belleview. As expected, Ped1 offers high learning rates for Ped2, however the
opposite direction does not occur in the same intensity. Another interesting highlight is the
PCA performance when compared to Full VGG-19, demonstrating that dimensionality reduction
increases the performance during cross-feature. This last remark contradicts the isolated analysis
from Table 11, implicating the importance of CDFG Measure.

Table 12 – Partial CDFG Measure. From (SANTOS; RIBEIRO; PONTI, 2019).

Source −→ Target Full VGG-19 PCA TCA
Gp AUC Gp EER Gp AUC Gp EER Gp AUC Gp EER

Boat-River −→ Canoe 29.51 24.1 20.74 22.46 8.51 6.36
Boat-Sea −→ Canoe 37.78 33.5 11.57 8.67 6.13 11.84

Canoe −→ Boat-River 29.39 24.1 13.55 9.91 10.55 6.39
Boat-Sea −→ Boat-River 9.55 10.68 35.05 28.14 3.5 11.36

Canoe −→ Boat-Sea 37.63 33.5 19.42 13.29 15.33 12.7
Boat-River −→ Boat-Sea 8.04 9.4 18.81 18.32 3.64 12.51

Ped2 −→ Ped1 29.52 25.2 8.77 5.0 13.77 8.44
Belleview −→ Ped1 17.14 17.28 25.58 20.82 14.27 10.47

Ped1 −→ Ped2 29.27 25.15 14.51 10.97 4.12 1.14
Belleview −→ Ped2 11.97 7.21 18.92 16.75 7.47 5.77
Ped1 −→ Belleview 17.76 17.95 15.24 10.28 5.45 4.43
Ped2 −→ Belleview 11.61 7.21 5.18 3.5 8.92 5.86

Average 22.43 19.6 17.27 14.0 8.47 8.10

Table 13 – Complete CDFG Measure. From (SANTOS; RIBEIRO; PONTI, 2019).

Datasets Full VGG-19 PCA TCA
Gc AUC Gc EER Gc AUC Gc EER Gc AUC Gc EER

(Canoe, Boat-River) 29.45 24.1 17.14 16.18 9.53 6.37
(Canoe, Boat-Sea) 37.70 33.5 15.49 10.98 10.73 12.27

(Boat-River, Boat-Sea) 8.79 10.04 26.93 23.23 3.57 11.93
(Ped1, Ped2) 29.4 25.2 11.6 7.99 8.95 4.79

(Ped1, Belleview) 17.5 17.6 20.4 15.6 9.86 7.45
(Ped2, Belleview) 11.79 7.21 12.05 10.12 8.19 5.82

The Partial CDFG Measure, Gpart , excludes more complex and pertinent aspects to the
feature spaces, except in cases where there will be only contribution from one domain to other.
This scenario is noticeable in cases where the domain source comprised large amounts of data
and, consequently, it is sufficient to provide information to itself, not requiring similar domains or
prior learning. However, in more complex and accurate scenarios, Gcomp offers a deeper analysis
of feature TL methodologies. For this transfer level, results in Table 13, TCA offers even more
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generalization in relation to the competing methods. Considering similar domains, the latent
space generated by TCA is highly applicable (all using Gc AUC): Boat-River and Boat-Sea
with 3.57%; Canoe and Boat-River with 9.53%; and Ped1 and Ped2 with 8.95%. Even when
the concept of anomalies is different, the performance gain with TCA is evidenced (Ped2 and
Belleview with 8.19%).

The last level of feature TL performance is to guarantee that the three inequalities
(4.4, 4.5, and 4.6) are satisfied simultaneously. In this scenario, we can ensure that Gcomp is
contemplated without one Gpart compensating the opposite direction. In view of the experiments
performed, it is noticed that Gcomp had compensation for TCA in (Ped1, Ped2) and (Belleview,
Ped2). Although Ped1 and Ped2 have the same concept of anomalies, the position of the cameras
hinders the direct TL, requiring pre-processing methods to facilitate the use of previously
acquired knowledge. In the second urban scenario, the anomaly concept of Belleview and Ped2
is very different, semantically and visually: Belleview targets vehicles conversion, while Ped2
anomalies are related to the presence of vehicles on the scene.

4.2.3 Negative transfer learning analysis

A major concern in feature TL is to apply only the acquired knowledge that favors
the improvement of the task for the new target domain. For this purpose, it is important to
evaluate if the source domain is sufficiently related to target domain to avoid the negative
transfer (TORREY; SHAVLIK, 2010). The negative transfer occurs when the TL method achieved
a lower performance when compared with a method which does not perform TL (PAN; YANG
et al., 2010). In this context, Gpart and Gcomp should be applied to measure if the source domain
or the methodology are suitable for a designated task.

Table 14 – Partial CDFG Measure: negative TL analysis. From (SANTOS; RIBEIRO; PONTI, 2019).

Source −→ Target Full VGG-19 PCA TCA
Gp AUC Gp EER Gp AUC Gp EER Gp AUC Gp EER

Train −→ Ped1 0.55 4.55 2.98 3.12 19.14 17.81
Train −→ Ped2 27.84 21.51 4.1 0.95 1.77 1.04

Train −→ Belleview 15.13 14.28 3.31 6.47 16.77 17.12
Ped1 −→ Train 3.11 4.67 13.71 10.99 8.96 4.28
Ped2 −→ Train 26.21 20.41 0.23 4.87 18.6 9.42

Belleview −→ Train 15.06 13.37 0.09 0.08 13.77 13.65

Tables 14 and 15 present correlation results between videos/datasets of urban scenarios
for Gpart and Gcomp, more specifically between the Train video and the other ones (Ped1, Ped2,
and Belleview). The Train video presents an anomaly concept distinct from the others, in which
the dissimilarity between them (background and objects) are highly perceivable. Considering
Gpart (detailed in Table 14), it is point out that Train only offers good levels of feature TL to
Ped2, due to Full VGG-19 and PCA had performed better than TCA, characterizing a negative
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transfer scenario. Consequently, Gcomp (see Table 15) implies that Train is not a suitable domain
for Ped1, Ped2, or Belleview.

Table 15 – Complete CDFG Measure: negative TL analysis. From (SANTOS; RIBEIRO; PONTI, 2019).

Datasets Full VGG-19 PCA TCA
Gc AUC Gc EER Gc AUC Gc EER Gc AUC Gc EER

(Train, Ped1) 1.83 4.61 8.35 7.06 14.1 11.0
(Train, Ped2) 27.0 21.0 2.17 2.91 10.2 5.23

(Train, Belleview) 15.1 13.8 1.7 3.28 15.3 15.4

4.3 Final comments on generalization analysis
The results achieved in these experiments express the applicability of CDFG Measure

to indicate which domains offer the most learning rate for a target domain in a given task. As
mentioned earlier, classic evaluation metrics do not provide a perform of model generalizability.
We can highlight this fact due to the wide variety of results (AUC and EER) achieved with Full
VGG-19, PCA, and TCA. With the CDFG Measure we confirmed that TCA (the only method
that applies TL) stands out from the others, indicating when the transfer should occur, avoiding
the negative transfer. Hence, CDFG Measure is an evaluation method that offers quantitative
analysis of learning guarantees from models built for transfer of knowledge.
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CHAPTER

5
FEATURE TRANSFER LEARNING IN

SEMI-SUPERVISED SETTINGS

In terms of image classification, when fine-tuning is applied in deep networks for TL,
one of the concerns is about how much data is required (SRIVASTAVA et al., 2014). Supervised
networks always will ask for annotate large databases, which is very expensive (SHAO; ZHU;
LI, 2015). In this context, if unlabeled data is available, how to use those to improve the final
learned representation? Unsupervised or, even more suitable to this scenario, semi-supervised
networks are architectures that do not require much labels (REN et al., 2019; LING et al., 2018).
Hence, a combination of CNN and AE provides a hybrid network that conciliates labeled and
unlabeled data simultaneously (KUZNIETSOV; STÜCKLER; LEIBE, 2017), even for feature
TL tasks.

Related to this topic, in this chapter, we introduce Weighted Label Loss (WLL) as a new
loss function for hybrid semi-supervised networks, which considers the available labeling rate
(described in section 5.1) to balance the individual CNN and AE loss functions. To evaluate WLL
and feature TL on different levels of learning (supervised, semi-supervised, and unsupervised),
experiments with image classification using different domains were performed with classical
metrics, detailed in subsections 5.2.1–5.2.3, and by CDFG Measure on subsection 5.2.4.

5.1 Weighted Label Loss

In scenarios with simultaneously labeled and unlabeled data, two approaches are often
presented in the literature: supervised learning where unlabeled data is discarded; or unsupervised
learning where labels are neglected. However, semi-supervised techniques have been presented as
an alternative to incorporate all available data, labeled or not, into the same learning model (REN
et al., 2019; LING et al., 2018; KUZNIETSOV; STÜCKLER; LEIBE, 2017). Generically,
our semi-supervised network ensemble method is modeled to learn labeled and unlabeled
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data in a hybrid architecture composed of a CNN and an AE. In this structure, intermediate
layers are shared between them and the proposed loss function (WLL) relates the amount of
labeled examples provided to optimize each branch of the network, as shown in Figure 19
(top). Therefore, the model applies supervised classification (see Figure 19 (bottom-left)) and
unsupervised reconstruction (see Figure 19 (bottom-right)) functions for learning representations,
combining them according to the percentage of existing labels to balance the individual loss.
Consequently, this structure can be adaptable to any amount of data: only labeled; only unlabeled;
or partially labeled.

Figure 19 – Overview of the generic semi-supervised architecture: (top) combination of supervised and
unsupervised networks and their losses (classification and reconstruction) to learn a feature
embedding from labeled and unlabeled data; (bottom-left) the supervised CNN is trained with
labels; and (bottom-right) the AE offers unsupervised training. From (SANTOS et al., 2020).

The semi-supervised network is trained in two steps: (i) the AE branch is trained using
only the unlabeled training data; and (ii) the hybrid network is fine-tuned using the remaining
labeled data. This order of training initializes the CNN/Encoder parameters and prepare them to
be adjusted during the second training (LING et al., 2018). Hence, given a percentage of labeled
data P from the training set, the first stage trains the AE from scratch using the 100%−P%
unlabeled examples. In the following, the whole network is fine-tuned using the remaining P%
of labeled examples. As the proportion of labeled data changes in different scenarios, WLL was
proposed to weight the individual losses according to the percentage of P.

The Equation 5.1 describes the respective weight of the loss function from supervised
branch wsup while Equation 5.2 defines the unsupervised branch weight wuns. Considering both
equations, we have 0.5 < wsup < 1.0 and 0 < wuns < 0.5 for WLL. Consequently, this balancing
ensures that wsup +wuns = 1. To apply these equations, the constraint 0 < P < 100 should occur;
otherwise, the semi-supervised learning is not characterized. Therefore, when P = 100 all data
are labeled and only the supervised branch must be considered; when P = 0 all data are unlabeled
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and only the unsupervised branch must be considered.

wsup = 0.5+0.5 · P
100

(5.1)

wuns = 0.5−0.5 · P
100

(5.2)

To measure the progress from the supervised network training is employed the Cross-
entropy loss l(ce). The unsupervised network training is measured via reconstruction error of
MSE (ε). Accordingly, the semi-supervised network loss function Weighted Label Loss is given
by:

WLL = wsup · l(ce)+wuns · ε (5.3)

5.2 Features embedding on semi-supervised learning

To apply the WLL for semi-supervised image classification tasks, it is required an
architecture that consists of three parts: (i) an encoder whose output forks to (ii) a CNN Top
with a classifier layer and (iii) a decoder with a reconstruction loss function. Hence, the flow
of encoder and CNN Top composes the supervised learning; the flow of encoder and decoder
composes the unsupervised learning. The proposed model ensemble is a general structure that
can be configured using different sequence of layers.

For the experiments, two types of architectures were investigated: sequential convolu-
tional and pooling layers forming the SmallNet (SN); and residual blocks for SmallResNet
(SRN). Inspired by ResNet, SRN has variants changing the amount of residual blocks: SRN-1
using 1 residual block; SRN-2 for 2 residual blocks; and SRN-4 when the network has 4 residual
blocks. All layers apply ReLu as activation function, except the dense layer on CNN Top with
softmax activation, as described in Figure 20. Detailing the networks, SN has three layers in
the encoder: a convolution of 8 filters of 3× 3 size and stride1 of 2× 2; another convolution
with 8 filters of 3×3 size, however, with stride of 1×1; and a max-pooling of 2×2. After the
flatten layer is put the prediction layer on the CNN Top. For SRN an initial convolution layer of
64 filters of 7×7 is followed by a max-pooling of 2×2 with stride 2×2. Then, each residual
block is composed of three convolutional layers of different sizes: 64 filters of 1×1, 3×3, and
1× 1. Before the flatten layer, the dimensionality is reduced via an average pooling of 7× 7.
All decoders have layers in reverse order in relation to the encoder. Consequently, the decoder
output has the same size of the encoder input. The number of parameters from each network is
shown in Table 16.

1 The stride indicates how the window will slide in the output; in small ones may occur overlapping.



72 Chapter 5. Feature transfer learning in semi-supervised settings

Figure 20 – Designed networks: (top) SmallNet; and (bottom) SmallResNet. Considering any image as
input, it proceeds through the encoder until it reaches the flatten layer (yellow block) to
generate the embedding; then, the feature map is sent to the CNN Top and to the decoder.
The residual blocks vary in number (always sequential) and they are highlighted to show
the internal composition of layers; the “+” represents the sum of the both flows. Adapted
from (SANTOS et al., 2020).

Table 16 – Number of weight parameters in each part of the networks, considering an input of 28×28
pixels resolution.

Model Code Encoder CNN Top Decoder Total
SN 288 664 2890 657 4211

SRN-1 64 49472 650 49409 99531
SRN-2 64 95488 650 95425 191563
SRN-4 64 187520 650 187457 375627

Although SN is a lighter network having less layers, it has more parameters on CNN Top
than SRNs due to the code size. The rationale of using such architectures is to explore networks
with different capacities, where the variation in the complexity allows to evaluate whether the
same behavior is identifiable in all of them. In all experiments, Adam (TZENG et al., 2017;
KINGMA; BA, 2014) was used as optimizer with batch size of 32 images (MASTERS; LUSCHI,
2018) during 10 epochs, defined empirically. The WLL and networks were tested using two
different domains: digit and natural images on supervised, unsupervised, and semi-supervised
learning.
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Three different digit image datasets were used in the experiments performing classi-
fication within the dataset and feature TL: MNIST (LECUN et al., 1998); SVHN (NETZER
et al., 2011); and USPS2. For this domain, the SN and SRNs networks receive an input of
28× 28× 1 (see Table 17 for specific details of each dataset). Hence, SVHN images were
cropped from the central pixels. Images from USPS were, first, scaled to 32×32×1 followed
by the same cropping of SVHN. Additionally, SVHN images were convert to gray scale using
I = 0.299R+0.587G+0.114B. Comparing visual aspects, MNIST and USPS are more similar
due to same background and centralized handwritten digits. However, SVHN has photographed
number of buildings, i.e it presented different colors and contrasts, non-centered digits, and
presence of more than one number in the same image, as shown in Figure 21.

Figure 21 – Digit datasets after the pre-processing: (top) MNIST; (center) SVHN; and (bottom) USPS.

Table 17 – Datasets description used in semi-supervised networks. Adapted from (SANTOS et al., 2020).

Dataset Original Final Training Testing ClassesResolution Resolution Examples Examples
MNIST 28 × 28 × 1 28 × 28 × 1 60000 10000 10
SVHN 32 × 32 × 3 28 × 28 × 1 73257 26032 10
USPS 16 × 16 × 1 28 × 28 × 1 7291 2007 10

CIFAR-10 32 × 32 × 3 32 × 32 × 3 50000 10000 10
STL-10 96 × 96 × 3 32 × 32 × 3 5000 (labeled) + 800 10

100000 (unlabeled)

In addition to digit image datasets, CIFAR-10 (KRIZHEVSKY; HINTON, 2009) and
STL-10 (COATES; NG; LEE, 2011) were also used as photographic natural images for semi-
supervised classification. Despite these two datasets have 10 classes, only 1 of them are not
presented in both datasets. Another interesting aspect of STL-10 is the unlabeled training images
available, being an adequate dataset for semi-supervised learning experiments. In particular,
when STL-10 is the training and the test set, the pixel resolution of 96×96×3 is held. Figure 22
shows examples from each dataset.
2 https://cs.nyu.edu/ roweis/data.html
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Figure 22 – Photographic natural datasets: (top) CIFAR-10; and (bottom) STL-10. These datasets have 9
classes in common, differentiating in one class: CIFAR-10 has the class “frog”; while STL-10
has the class “monkey”.

Focus on learning discriminative representations, the networks are used as feature extrac-
tion modules after the training, selecting the flatten layer to generate the feature maps. Hence,
a source dataset is used to train the network, which provides the weights for a feature target
dataset. With the feature vector, the SVM classifier is applied to perform a 5-fold cross validation,
resulting in a final accuracy and standard deviation. This setup is validated within the same
dataset, i.e training and testing with MNIST, and through feature TL, for example training the
network with MNIST and testing with SVHN. The experiments include different percentages
of labels provided: P = 100% for supervised learning using only the CNN branch; P = 0% for
unsupervised learning using only the AE branch; and P = 90%, 70%, 50%, 30%, and 10% for
semi-supervised learning using WLL as loss function.

5.2.1 Supervised and unsupervised feature transfer classification

First, Tables 18 and 19 present the results of supervised and unsupervised learning,
i.e P = 100% and P = 0%, when the training and test sets coming from the same dataset.
Accordingly, the supervised learning performances of SN and SRNs are compared with some
competing methods: CNN inter-class (FEI et al., 2018); supervised embedding function in AEs
(DAE) (PAUL; MAJUMDAR; MUKHERJEE, 2018); and dropout layers in a CNN (MCNN-
DS) (YANG; YANG, 2018). Comparing these models with SN and SRN architectures3, our
networks are simpler, involving only a few layers and a softmax loss function. Despite the
high performances from those, SRN-4 presents comparable (USPS) or better (MNIST and
SVHN) results. As expect, the performance is gradually increased with more residual blocks
on SRN architectures. Furthermore, analyzing the SN performance on MNIST, the result is
equivalent to competing methods. For unsupervised learning, the competing methods involve
clustering embedding (TZOREFF; KOGAN; CHOUKROUN, 2018) and Gaussian variational
AEs (DILOKTHANAKUL et al., 2016). Using only the AE branch, SRN-4 has its performance
only 1% lower than clustering embedding for MNIST. As expected, the unsupervised results are
lower than supervised learning, especially with SVHN (decrease of 82.17% to 56.58% on SN)
due to be a more challenging dataset. However, when the test is performed for MNIST (99.38%

3 For each column on Tables 18-21, results in bold indicate the highest performance.
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to 96.43% applying SRN-4) or USPS (91.43% to 88.19% at SRN-1) the results are closer.

Table 18 – Classification accuracy (%) on supervised feature learning. From (SANTOS et al., 2020).

Model MNIST SVHN USPS
CNN inter-class — 92.68 —

DAE 97.12 33.1 95.44
MCNN-DS 98.43 — —

SN 97.92 ± 0.42 82.17 ± 0.27 91.23 ± 1.42
SRN-1 99.17 ± 0.21 92.54 ± 0.25 91.43 ± 0.72
SRN-2 99.35 ± 0.16 93.78 ± 0.33 92.73 ± 1.52
SRN-4 99.38 ± 0.14 94.36 ± 0.27 93.42 ± 1.14

Table 19 – Classification accuracy (%) on unsupervised feature learning. From (SANTOS et al., 2020).

Model MNIST SVHN USPS
Clustering 97.4 — —

Gaussian VAE 92.77 ± 1.6 — —
SN 94.21 ± 0.5 56.58 ± 0.78 86.15 ± 2.83

SRN-1 92.32 ± 0.32 42.79 ± 0.32 88.19 ± 0.85
SRN-2 95.39 ± 0.41 44.83 ± 1.12 84.11 ± 1.16
SRN-4 96.43 ± 0.43 35.99 ± 0.68 77.08 ± 1.13

With feature TL, Table 20 shows the performances on supervised approach. Considering
MNIST and SVHN, the highest accuracies were on SN; considering MNIST and USPS, the
highest accuracies were on SRN-2. These results indicate that smaller networks may offer domain
generalization due to they provide a more general feature space. An interesting observation
occurs when MNIST is applied as source dataset: both accuracies of SVHN and USPS decay. As
described before, SVHN has plenty of image variance, making it a more challenging dataset to
classify; USPS has few training examples (only 12% of the total MNIST examples), reducing a
possible network overfitting.

Table 20 – Classification accuracy (%) on supervised feature TL from source training dataset (S) to a
target test dataset (T). From (SANTOS et al., 2020).

Model S: MNIST S: SVHN S: MNIST S: USPS
T: SVHN T: MNIST T: USPS T: MNIST

SN 74.28 ± 0.39 97.03 ± 0.58 85.15 ± 1.23 95.13 ± 0.38
SRN-1 50.8 ± 0.24 89.04 ± 0.54 89.74 ± 1.25 95.56 ± 0.31
SRN-2 45.5 ± 0.56 92.67 ± 0.55 90.78 ± 1.18 95.83 ± 0.38
SRN-4 47.5 ± 0.47 94.2 ± 0.55 89.44 ± 1.54 94.51 ± 0.5

The results of unsupervised feature TL in Table 21 were compared to competing methods,
which apply: adversarial function to align domains (ADDA) (TZENG et al., 2017); adversarial
function to train AE (RAAN) (CHEN et al., 2018a); geometrical and distribution shift reduced
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on sub-spaces (JGSA) (ZHANG; LI; OGUNBONA, 2017); marginal and class-conditional
distributions matching (DICD) (LI et al., 2018); pseudo-labels to unlabeled samples trained
using asymmetry (3AT) (SAITO; USHIKU; HARADA, 2017); and cross-domain transformation
with label inference (Label Inf.) (SENER et al., 2016). For this scenario, SN overcomes all
competing methods and SRN architectures. Comparing these results to the supervised feature
TL (in Table 20), to train the network with a different source dataset allows to generate a better
feature space for target datasets: SVHN is a remarkable case, in which the accuracy is improved
from 54.82% to 74.28%.

Table 21 – Classification accuracy (%) on unsupervised feature TL from source training dataset (S) to a
target test dataset (T). From (SANTOS et al., 2020).

Model S: MNIST S: SVHN S: MNIST S: USPS
T: SVHN T: MNIST T: USPS T: MNIST

ADDA — 76.0 ± 1.8 89.4 ± 0.2 90.1 ± 0.8
RAAN — 89.2 89.0 92.1
JGSA — — 80.44 68.15
DICD — — 77.83 65.2
3AT 52.8 86.0 — —

Label Inf. 40.3 78.8 — —
SN 54.82 ± 0.39 94.39 ± 0.52 90.68 ± 1.07 94.48 ± 0.37

SRN-1 32.27 ± 0.54 91.95 ± 0.58 89.24 ± 1.23 86.85 ± 0.54
SRN-2 39.44 ± 0.79 93.55 ± 0.46 89.39 ± 1.46 88.83 ± 0.75
SRN-4 48.01 ± 0.55 91.08 ± 0.76 89.19 ± 1.6 86.42 ± 0.73

Analyzing deeply the networks proposed for unsupervised feature TL, SN has only 1%
of the SRN-4 parameters and provides more significant performances for MNIST as source and
SVHN as target, 6.81%. In this set, MNIST and SVHN are not remarkably similar due to the
different acquisition, number of digits into the image, and background. Moreover, comparing
SN to SRN-2, there is an increase of 5.65% from USPS (source) to MNIST (target). Once more,
USPS has a very reduced training set, indicating that high performances in small networks may
occurs due to the parameters fluctuation.

5.2.2 Semi-supervised feature transfer learning on digit images

In the previous subsection, supervised and unsupervised learning employed training
using only the CNN or AE branchs. However, for the semi-supervised experiments, the networks
are trained using the WLL. Seeing Figure 23, the classification accuracies are illustrated within
the same dataset for MNIST, SVHN, and USPS (the first three graphs) and for feature TL on
the other four graphs (training set −→ test set). For each network was tested two balancing
in the same loss function: the first one employs the WLL directly; the second one does not
distinguish the weights, i.e the individual loss functions have the same importance. Therefore,
when the WLL is applied, the CNN loss function receives the weight of: 0.95 for 90% of labeled
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Figure 23 – Semi-supervised classification accuracies with different proportions of labels per training
data. The results include training and testing with the same dataset (MNIST, SVHN, and
USPS) as well as across datasets. From (SANTOS et al., 2020).
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examples; 0.85 for 70%; 0.75 for 50%; 0.65 for 30%; and 0.55 when it has only 10% of the
labeled examples.

Analyzing the overall results, the semi-supervised results using WLL are superior than
regular combination of individual losses. Furthermore, the standard deviations imply the con-
sistency of WLL. A few semi-supervised performances are even better than the supervised
approach for feature TL when there is 90% of labeled examples: MNIST −→ SVHN at 6.71%
(from 47.5% to 54.21%) and MNIST −→ USPS at 2.09% (from 89.44% to 91.53%) in SRN-4;
and SVHN −→ MNIST in all networks with approximately 1% increased. As expected, the
classification accuracy decreases as the proportion of labeled data to train the network, especially
for feature TL scenarios. Despite of that, WLL offers a slower decrease. Seeing more deeply,
USPS demonstrates more consistent performances on SRN networks. Contrarily, SVHN has a
broader variance in different architectures because it is a more complex dataset than USPS and
MNIST. When SVHN is employed with MNIST, either as source or as target, SN overcomes
the other networks results (74.06% on SN, 48.78% on SRN-1, 50.55% on SRN-2, and 52.84%
on SRN-4 for MNIST −→ SVHN with 70% of labelled examples). Still, considering SVHN as
source dataset for feature TL, SRNs have their performances improved due to greater parameters
fluctuation obtained during the first training (using only the AE branch).

Based on all results presented on supervised, semi-supervised, and unsupervised for digit
images domain, Tables 22 and 23 summarize all performances on SRN-4 using the same dataset
and on SN using feature TL. As mentioned before, the accuracies gradually decay according
to the proportion of labels employed during the training. However, it is interesting to observe
how a few proportion of labeled examples (only 10%) provides a high increased performances
from unsupervised approach: considering SVHN as source and target dataset there is an almost
51% of gain in accuracy (35.99% to 86.79%); and for MNIST as source and SVHN as target the
accuracy goes 54.82% to 72.63%, representing an increase of 17.81%.

Table 22 – Comparative of classification accuracy (%) using SRN-4. From (SANTOS et al., 2020).

Training Test Super. 90% 70% 50% 30% 10% Unsup.
MNIST MNIST 99.38 99.43 99.37 99.29 99.25 99.00 96.43
SVHN SVHN 94.36 94.76 94.18 93.32 91.54 86.79 35.99
USPS USPS 93.42 95.62 94.12 93.82 93.52 91.88 77.05

Table 23 – Comparative of feature TL classification accuracy (%) using SN. From (SANTOS et al., 2020).

Training Test Super. 90% 70% 50% 30% 10% Unsup.
MNIST SVHN 74.28 72.83 74.06 71.69 73.38 72.63 54.82
SVHN MNIST 97.03 97.19 97.16 97.02 97.28 97.08 94.39
MNIST USPS 85.15 81.02 86.7 84.85 85.55 85.95 90.68
USPS MNIST 95.13 95.39 95.94 95.27 95.54 96.04 94.48
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To measure the excellent results from semi-supervised SN using WLL, we compared
these performances with SDEC (REN et al., 2019), which integrates prior knowledge of pairwise
constraints to transform features. In particular, this model does not report the proportion of
labeled examples used, only the number of pairwise constraints. However, the comparison is
possible to be executed. Hence, considering MNIST, SDEC provides 86.11% of top accuracy in
semi-supervised learning while our worst unsupervised result achieved 92.32% of accuracy, i.e
an increase of 6.21%. In terms of semi-supervised, SN with 10% of labeled data achieved an
accuracy of 97.49%. This behavior extends to USPS, which SDEC reaches 76.39% while our
unsupervised approach achieves 77.08% and 90.04% using only 10% of labels.

In addition to the classification results, we discuss the training of the deep architecture
and its convergence. Since our focus is to evaluate the proposed WLL function, we show in
Figure 24 the loss values for each epoch. Generally, SRN-4 converges faster as more labeled
examples are available. Also, after some epochs, we may observe that the loss tends to zero
regardless of the amount of labels provided. In addition, SVHN is more challenging for this
architecture in relation to MNIST and USPS, requiring more epochs to reach the zero loss.

Figure 24 – WLL training loss according to the epochs on SRN-4. From (SANTOS et al., 2020).
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5.2.3 Semi-supervised feature transfer learning on natural images

Additionally to the digit images domain experiments, semi-supervised learning also was
performed with the photographic natural domain. Consequently, CIFAR-10 and STL-10 were
tested with our more complex architecture, SRN-4. First, using only labeled examples to train
the SRN-4, STL-10 was experimented at different proportion of labels, as detailed in Table 24.

Table 24 – Semi-supervised classification accuracy (%) on STL-10 using SRN-4. All unlabeled examples
from STL-10 were not considered in this experiment. The best result for each row is highlighted
in bold. From (SANTOS et al., 2020).

P (%) without WLL with WLL
90 50.36 ± 0.74 50.35 ± 1.36
70 48.43 ± 1.17 49.73 ± 0.59
50 46.99 ± 0.78 47.74 ± 1.19
30 45.66 ± 1.22 47.59 ± 0.72
10 44.04 ± 1.07 44.06 ± 1.06

Avg. 47.01 47.9

Table 25 – Photographic image domain semi-supervised accuracy (%) using SRN-4 in transferred features
embedding. In these experiments, the classification loss (CNN) had 0.525 of weight and the
reconstruction loss (AE) had 0.475 of weight. The best result for each row is highlighted in
bold. From (SANTOS et al., 2020).

Training set Testing set Labels without WLL with WLL
STL unlabeled + STL-10 STL-10 10 49.34 ± 1.24 51.95 ± 0.47
STL unlabeled + STL-9 CIFAR-9 9 40.57 ± 1.05 42.18 ± 0.6

STL unlabeled + STL-10 CIFAR-10 11 38.27 ± 0.69 40.11 ± 1.59

Considering the unlabeled and labeled examples for the STL-10 training set, three
additional experiments were performed using photographic natural domain for feature TL: the
first one classifies the STL-10 test set; during the second experiment, CIFAR-10 is tested using
only the common classes between the two datasets, i.e the “monkey” (STL-10) and “frog”
(CIFAR-10) examples were removed; and the last one maintains all classes from these two
datasets. In this setup, all unlabeled examples from STL-10 are used to train the AE and then
the labeled examples are used to fine-tune the hybrid network. Due to this setup, we adopted
P= 5% for WLL, which represents the amount of labeled data approximately. Given the obtained
accuracies, the network trained with WLL excels a better performance when compared to regular
balancing, reinforcing previous results with digit images domain, as detailed in Table 25. In
these results, it can be observed that the unlabeled examples during the training implied an 4%
increase in the accuracy, from 47.9% on average to 51.95% for STL-10. Moreover, the accuracy
from unlabeled examples in the training set (51.95%, where P = 5%) overcomes all variations
of P tested (see Table 24). Comparing both performances on CIFAR-10, it is interesting to note
that the accuracy remains equivalent (42.18% — 40.11%). The first result was obtained using
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only the common classes, however, in the second one the class “frog” was not learned during
the network training, which indicates that the architecture generalizes well to unknown classes.
Once more, we compared our worst result from STL-10 (44.06% using 10% of labeled data) to
SDEC (REN et al., 2019) with 38.66%, reinforcing the representative capacity of WLL.

Aiming to compare the performances achieved from unlabeled examples of STL-10,
we considered the employability of a pre-trained ResNet50 with ImageNet as an encoder. This
particular encoder is composed of the first four residual blocks and simulates the first step of
training, i.e only the AE branch with STL-10 unlabeled examples. In the following, for the
supervised branch was coupled the softmax prediction layer and for the unsupervised branch was
coupled the same SRN-4 decoder, changing only the number of filters to be equivalent to original
ResNet50 encoder. Due to the larger number of parameters in the encoder output, a pooling layer
of 14×14 was adopted. Also, to have the same number of features in comparison to SRN-4,
PCA is applied to reduce the dimensionality on the feature map extracted. And, WLL maintains
its P = 5%. For this structure, as it can be observed in Figure 25, even when the encoder does
not incorporate similarity from the source photographic domain, WLL offers greater domain
generalization capacity: for STL-10 the accuracy gain was 1.19%; for CIFAR-9 an increase of
2.53%; and for CIFAR-10 at 0.91%. Furthermore, comparing directly the ResNet50 encoder
pre-trained with ImageNet to the SRN-4 encoder trained with STL-10 unlabeled examples, the
performance drops approximately 8% on STL-10. This result is particularly important because
highlights the relevance of unlabeled images for network training. In contrast, the result of
CIFAR-10 increases by around 6%, indicating that the domain generalization is provided by
complex networks trained in large datasets.

Figure 25 – Classification accuracy (%) using the ResNet50 pre-trained with ImageNet as encoder for
SRN-4. From (SANTOS et al., 2020).
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5.2.4 Cross-domain generalization rate

A more detailed analysis of the SN and SRN networks can be performed to measure
domain generalization with CDFG Measure (see section 4.1). Tables 26 and 27 present the
Partial CDFG Measure for supervised and unsupervised approaches for digit images domain,
respectively. In both paradigms of learning, SN is more adaptable among these datasets than
SRNs. The divergence of feature TL is greater in supervised learning due to the low transfer
from MNIST to SVHN. Despite the overall superiority of SN, SRN-1 overcomes all results when
the network training is performed with MNIST to be tested with USPS. Consequently, the Partial
CDFG behavior reflects the Complete CDFG (described in Table 28), reinforcing that SN as the
network with highest rates of feature TL.

Table 26 – Partial CDFG Measure on supervised feature TL (%) from source training dataset (S) to a
target test dataset (T). From (SANTOS et al., 2020).

Model S: MNIST S: SVHN S: MNIST S: USPS Avg.T: SVHN T: MNIST T: USPS T: MNIST
SN 7.89 0.89 6.08 2.79 4.41

SRN-1 41.74 10.13 1.69 3.61 14.3
SRN-2 48.28 6.68 1.95 3.52 15.11
SRN-4 46.86 5.18 3.98 4.87 15.22

Table 27 – Partial CDFG Measure on unsupervised feature TL (%) from source training dataset (S) to a
target test dataset (T). From (SANTOS et al., 2020).

Model S: MNIST S: SVHN S: MNIST S: USPS Avg.T: SVHN T: MNIST T: USPS T: MNIST
SN 1.76 0.18 4.53 0.27 1.68

SRN-1 10.52 0.37 1.05 5.47 4.35
SRN-2 5.39 1.84 5.28 6.56 4.77
SRN-4 12.02 5.35 12.11 10.01 9.87

Table 28 – Complete CDFG Measure on feature TL (%). From (SANTOS et al., 2020).

Model MNIST and SVHN MNIST and USPS AvgSuperv. Unsuperv. Superv. Unsuperv.
SN 4.39 0.97 4.43 2.4 3.05

SRN-1 25.93 5.44 2.65 3.26 9.32
SRN-2 27.48 3.61 2.73 5.92 9.93
SRN-4 26.02 8.68 4.42 11.06 12.54

The semi-supervised domain generalization results are presented in Figure 26 for Com-
plete CDFG Measure. As expected, due to greater similarity, the domain generalization between
MNIST and USPS is highest than for MNIST and SVHN. Furthermore, SN generalizes better
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than all SRNs, repeating the same behavior from supervised and unsupervised approaches. Ob-
serving only the Partial CDFG, SVHN offers more learning to MNIST than the reverse direction.
Among the SRNs, domain generalization is improved with the addition of more residual blocks.
Consequently, these results corroborate the previous one, in which restricted AE have better
potential for cross-domain feature representation (CAVALLARI; RIBEIRO; PONTI, 2018).

Figure 26 – Complete CDFG Measure for semi-supervised classification: (top-left) SN; (top-right) SRN-
1; (bottom-left) SRN-2; and (bottom-right) SRN-4. The percentage indicates the labeled
examples rate during the network training. From (SANTOS et al., 2020).

5.3 Final comments on semi-supervised learning

In general, the designed architectures presented high performances than competing
methods, which apply more complex structures than only deep model training and feature
extraction, including in cross-dataset scenarios. In semi-supervised networks, we used the
unlabeled data to initialize network parameters, increasing the likelihood to incorporate more
source domain features. As described in the experiments performed with WLL, few labeled
instances provided a considerable increase in the performance of predictive models, in which all
available data contain important information, labeled or unlabeled. As expected, the classification
accuracy decreases as the proportion of labeled data to train the network, especially for feature
TL scenarios. Despite of that, WLL offers as lower decrease. Additionally, semi-supervised
performances can even surpass scenarios with fully labeled data.
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Evidently, the learning transferability from a model is influenced by the similarity
between the involved domains (source and target), measured using CDFG Measure. Since WLL
loss function is dependent only on the proportion of labeled examples, it is adaptable to different
scenarios, especially in tasks involving transfer learning, with low computational complexity.
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CHAPTER

6
CONCLUSION

This chapter reports the contributions and publications generated from the studies carried
out during this research project, as well as the conclusions and future work.

6.1 Contributions

The first significant contribution was the analysis of features spaces that can be obtained
and combined using pre-trained supervised deep learning networks. Many previous studies
investigated only the pre-prediction layer, however our results offer guidelines for the scientific
community to delve into initial and inner layers that may provide better descriptors for different
tasks. Another contribution of this research was the CDFG Measure. The comparison among
TL methodologies used to be performed only by specific metrics, which involved an analysis
within each dataset and/or task. The proposed measure offers a way to estimate how data from
one domain can offer a better model to be transferred to another. Additionally, such measure
is independent of the desired task and classic metrics. Another important contribution was the
Weighted Label Loss, which can be applied in deep hybrid networks, where supervised and
unsupervised learning occurs simultaneously. The WLL balancing provides the learning from the
unlabeled training set, in which is extremely relevant to the network. Otherwise, these unlabeled
examples would not be considered to provide knowledge for the model.

Hence, the exploration of the initial and inner layers from supervised deep networks,
either by analysis of the feature spaces (see section 3.1) or by fusion of the multi-layers activation
maps (see section 3.2), highlights the affirmation contained in the first hypothesis: “different
inner layers of supervised deep networks should be considered, and potentially combined,
when obtaining feature spaces in order to improve image and video recognition in transfer
learning scenarios”. This hypothesis was validated using different image domains with feature
extraction, network fine-tuning, and alignment of feature spaces obtained by TCA. Therefore, in
situations of domain generalization involving supervised networks, it is essential that the initial
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and inner layers are analyzed for the model to be more robust.

The second hypothesis “the descriptive capacity of a model to transfer the acquired
learning should be measured by metrics of each task and by different levels of divergence”
was validated by two different models: anomaly detection in videos considering CNN feature
extraction and alignment of the obtained spaces (detailed in section 4.2); and by classifying
images in a hybrid network involving both supervised and unsupervised learning simultaneously,
described in section 5.2. As can be observed by the results obtained through the proposed
generalization measure (see section 4.1), the models guarantee greater reliability in the use of the
acquired learning, indicating which domains are more appropriate in each case. Clearly, without
this measure, classical metrics only assess whether the model fits a specific dataset.

For the third hypothesis “in partially labeled data transfer learning scenarios, labeled
and unlabeled examples should be used jointly to increase the performance of the feature
space”, a hybrid architecture was developed that incorporates all available data, labeled or not,
in different forms of training and individual loss functions (see section 5.2). In this architecture,
using WLL (detailed in section 5.1) as the main loss function, we can note that small labeled
data rates significantly improve prediction over unsupervised evaluation. Additionally, in some
cases, semi-supervised results outperform supervised accuracy in the same scenario.

Therefore, with the validation of the three specific hypotheses, we restate the validity
of the general hypothesis: “deep networks for feature transfer learning tasks should be prop-
erly analyzed at different hierarchical levels of representations and paradigms of learning,
considering both classical and generalization measures”.

6.2 Research published studies

This section describes the publications directly related to this research theme that were
produced in the course of the project, involving features TL between different domains, either in
images or videos:

∙ Santos, F. P.; Ponti, M. A. "Robust feature spaces obtained from pre-trained deep network
layers for skin lesion classification" (SANTOS; PONTI, 2018) in the 31th Conference
on Graphics, Patterns and Images (SIBGRAPI-2018). This study analyzes feature spaces
extracted from pre-trained CNN (with and without fine-tuning) and distortion behavior
applied to them, potentializing their use for feature TL (see methodology and results in
section 3.1). The paper contribution includes: (i) use of several CNN models and different
layers for feature extraction and skin lesions image classification with and without fine-
tuning; (ii) a detailed study of the impact of dimensionality reduction, colors space
contraction, and noisy effects in the feature space; and (iii) feature generalization analysis
between raw and distorted sets;
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∙ Santos, F. P.; Ponti, M. A. "Alignment of local and global features from multiple layers of
convolutional neural network for image classification" (SANTOS; PONTI, 2019a) in the
32th Conference on Graphics, Patterns and Images (SIBGRAPI-2019). In this model was
analyzed features fusion from multi-layers of a CNN, where the resulting latent space is
aligned by TCA for different domains (see details of the method and results in section 3.2).
The contribution includes: (i) a novel that aggregates multi-layer features fusion from a
CNN and manifold alignment for image classification; (ii) practical evidence that multi-
layer features fusion provides better performance for feature TL in low-level appearance
datasets; and (iii) extensive experimentation in different scenarios of images;

∙ Santos, F. P.; Ribeiro, L. S. F.; Ponti, M. A. "Generalization of feature embeddings trans-
ferred from different video anomaly detection domains" (SANTOS; RIBEIRO; PONTI,
2019) in the Journal of Visual Communication and Image Representation (2019). This
paper proposes generalization measures to prove the efficiency of a cross-domain methods
using anomaly detection task in videos (detailed in section 4.1 and experiments in sec-
tion 4.2). The contributions from this paper were: (i) a framework for feature TL applied
in the task of anomaly detection in videos; and (ii) a novel evaluation approach regarding
generalization of feature embedding;

∙ Santos, F. P.; Zor, C.; Kittler, J.; Ponti, M. A. "Learning image features with fewer labels
using a semi-supervised deep convolutional network" (SANTOS et al., 2020). This study
proposed a hybrid architecture of CNN and AE with a differentiated loss function by the
adoption of the labels rate provided to balance individual loss (described in section 5.1 and
experiments in section 5.2). Consequently, the contributions were: (i) a semi-supervised
architecture which relates supervised and unsupervised learning simultaneously, allowing
training with unlabeled data; (ii) a dynamic loss function that weights the amount of
labeled examples provided during training; and (iii) an in-depth analysis showing that the
method allows good transfer of feature embedding learning between different datasets.

6.3 Related published studies

In addition to the research theme publications, this section reports the studies produced
in different contexts from image processing, such as relevant sampling and smoothing:

∙ Ponti, M. A.; Costa, G. B. P.; Santos, F. P.; Silveira, K. U. "Supervised and unsupervised
relevance sampling in handcrafted and deep learning features obtained from image col-
lections" (PONTI et al., 2019) in the Applied Soft Computing Journal (2019). This paper
investigated relevant samples selection from images collections to provide learning to
classifiers. Using both supervised and unsupervised methods, handcrafted and DL features
were generated to Optimum-Path Forest Selection, SVM-Selection, and k-Medoids Cen-
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troid Selection. Each of these three methods determine
√

N ·C samples from training sets,
which N is the set size and C is the number of classes. Experiments showed potential to
reduce the original training set size to 30% with a small accuracy decrease;

∙ Santos, F. P.; Ponti, M. A. "Homogeneity index as stopping criterion for anisotropic
diffusion filter" (SANTOS; PONTI, 2019b) in the 18th International Conference on
Computer Analysis of Images and Patterns (CAIP-2019). In this study, it was investigated
a new stopping criterion for the Anisotropic Diffusion Filter. Due to the costly iterations,
this method considers the image homogeneity and the existing parameters to establish the
optimal smoothing time close to ideal. Experiments show a significant improvement in
the reduction of the number of iterations (approximately 78% in the images considered)
without losing quality from the resulting image.

6.4 Final considerations and future directions

Specifically to the objectives outlined at the beginning of this research, the developed
predictive models and techniques sought to obtain discriminative, compact, and generalizable
features spaces. To achieve this purpose, we investigated how to apply network fine-tuning and
manifold alignment methods to obtain representations of image and video datasets and integrate
supervised and unsupervised learning into a hybrid architecture. Additionally, due to the gap
in the previous literature, we proposed a generalization metric to evaluate the transfer ability
of methods considering a source dataset. The built architectures and analyzes were validated
considering the classic metrics of each task (accuracy for classification; and AUC and EER for
anomaly detection) and CDFG Measure for generalization purposes. Additionally, our predictive
models were experimented by different datasets in the same context: fruits, objects, skin lesions,
natural photos, and digits for images; and surveillance videos of urban and natural scenarios.
Our studies provided important guidelines for feature extraction in pre-trained CNNs and deep
investigation of initial and inner layers, assessing which datasets increase learning guarantees,
even in semi-supervised scenarios where WLL can be used with different loss functions in any
hybrid architecture.

The results and discussions presented makes it evident how challenging this theme
presents itself to researchers. While we have state-of-the-art architectures for classification and
anomaly detection tasks, we often face a lack of labeled data availability. For this particularity,
as we can note, semi-supervised architectures provide an interesting step-forward in which the
WLL loss function contributes significantly in partially labeled data scenarios. Intuitively, this
loss function does not solve the issue of data labeling cost, however, it allows unlabeled data to
be leveraged in predictive models with acceptable performance. Another relevant aspect is to be
able to find manners to deal with differences within the same domain, such as spatial projection,
noise, and different forms of acquisition. In this case, CDFG Measure is an innovative divergence
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metric that allows one to detect whether one data distribution is sufficiently compatible with
another to provide knowledge that will help the model achieve better performance. Consequently,
if a model is developed to reduce spatial projection differences, for example, CDFG Measure will
express the quality of this methodology quantitatively. Another topic is the representativeness of
each layer to provide feature maps. Initial layers are known to have greater descriptive capability
for low-level features and the latter ones incorporate texture and semantics. Because of this
hierarchical structure, early and middle layers were in the background with descriptors. However,
it is interesting how these layers can help to improve performance when used properly. Of course
this incorporation comes with additional computational costs, however the performance gain
can be significant, which implies the advantage especially in critical systems, such as imaging
diagnostics, where response time need not be immediate and accuracy is highly required. For
feature TL tasks we can observe how these items complement each other in the same scenario: we
can train a predictive model with partially labeled data, exploring multiple layers and evaluating
its generalizability ability.

Based on the motivation to delve deep into different manners of finding a single and
robust solution for the same task and domain, respecting the particularities of each scenario, to
build generalizable models provide a realistic path to deploying real systems. Therefore, this
study suggests new research questions to be explored in future work. For example, considering
the CDFG Measure we can observe that it relates only two data distributions at a time. In an
opportunity to move forward in this matter, one requirement is its expansion into N domains
while maintaining its theoretical foundation. Consequently, this assessment may predict how
well data fusion provides learning for a target dataset. Another relevant unanswered question is
how to adopt temporal units in deep predictive models. In this scenario, several configurations
are possible: incorporation of temporal layers in conventional CNNs, development of multi-
stream networks in which to extract parallel and immersive visual and movement features, and
exploration of new loss functions that relate these layers in pre-trained networks. Finally, novel
architectures and training strategies to improve the use of both labeled and unlabeled examples
are still to be investigated.
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