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RESUMO

CUTIGI, J. F. Abordagens computacionais para a descoberta de genes significativos para
o câncer. 2021. 134 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2021.

O câncer é uma doença complexa provocada por alterações genéticas que se acumulam por toda
a vida do indivíduo. A essas alterações dá-se o nome de mutação genética, as quais podem ser
divididas em dois grupos: 1) Passenger mutations: mutações que não alteram o comportamento
da célula; 2) Driver mutations: mutações significativas para o câncer, ou seja, que provocam a
carcinogênese na célula. Células de câncer possuem um elevado número de mutações, das quais
a maioria delas são passenger mutations e um pequeno número delas são driver mutations. A
identificação de genes significativamente mutados, isto é, genes com mutações significativas,
é essencial para a compreensão dos mecanismos de iniciação e progressão do câncer. Essa
tarefa é um desafio chave na genômica do câncer, uma vez que estudos mostram que genes
significativos podem sofrer mutação em uma frequência muito baixa. Com o sequenciamento de
nova geração, uma extensa quantidade de conjuntos de dados genômicos foram gerados, criando
o desafio de analisar e interpretar esses dados. Para identificar genes relacionados ao câncer
com taxa de mutação baixa, redes de interação gênica combinadas com dados de mutação têm
sindo exploradas. Neste contexto, esta pesquisa apresenta abordagens computacionais para a
descoberta de genes significativos para o câncer. O genes são priorizados por um método baseado
em redes que combina frequência de mutação ponderada e influência de vizinhos na rede, e
possíveis falsos positivos são detectados por método baseado em aprendizado de máquina, o
qual utiliza-se de dados de mutação e redes de interação gênica para induzir modelos preditivos.
Um estudo experimental conduzido com seis tipos de câncer revelou o potencial das abordagens
na descoberta de genes já conhecidos e de possíveis novos genes significativos para o câncer.

Palavras-chave: Bioinformática do Câncer; Genômica do Câncer; Genes Significativos para o
Câncer; Mutações Significativas para o Câncer; Abordagem Computacional; Redes de Interação
Gênica; Dados de Mutação em Câncer. .





ABSTRACT

CUTIGI, J. F. Computational approaches for the discovery of significant genes in cancer.
2021. 134 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

Cancer is a complex disease caused by the accumulation of genetic alterations during the
individual’s life. These alterations are named genetic mutations, which may be divided into
two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell;
2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells
have a large number of mutations, in which the large majority of them are passenger, and
few mutations are drivers. The identification of significant mutated genes, i.e., genes with
driver mutations, is essential for the understanding of the mechanisms of cancer initiation and
progression. Such a task is a key challenge in cancer genomics, since several studies have shown
many significant genes are mutated at a very low frequency. With the next generation DNA
sequencing, large and complex genomic datasets have been generated, creating the challenge
of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene
interaction networks combined with mutation data have been explored. This research presents
computational approaches for the discovery of reliable significant cancer genes. Such a genes
are prioritized by a network-based method which combines weighted mutation frequency and
network neighbors influence, and possible false-positives are detected by machine learning-based
method which uses mutation data and gene interaction networks to induce predictive models. An
experimental study conducted with six types of cancer revealed the potential of the approaches
on the discovering of known and possible novel reliable significant cancer genes.

Keywords: Cancer Bioinformatics; Cancer Genomics; Significant Genes in Cancer; Significant
Mutations in Cancer; Computational Approach; Gene interaction networks; Cancer Mutation
Data. .
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CHAPTER

1
INTRODUCTION

1.1 Contextualization

Cancer, one of the main causes of death worldwide and responsible for approximately
9.6 million deaths in 2018 (BRAY et al., 2018), is a somatic evolutionary process that causes
alterations in the normal behavior of cells. As a result, the cells start a fast and uncontrolled
division process, leading to the formation of tumors in many parts of the human body (e.g., lung
cancer, leukemia, breast cancer, and melanoma).

Cancer is known to be caused by the accumulation of genetic alterations during an
individual’s life, which range from small changes in nucleotides to more considerable variations
in genetic material. Such changes, called genetic mutations, are caused by variable factors, which
may be internal to the organism (e.g., cell division failure), or external (e.g., excessive exposure
to the sun). They result in a disordered growth of cells, which invade tissues and organs, thus
causing cancer (STRATTON, 2009).

Genetic mutations in cancer have been long studied through DNA/RNA sequencing,
and a high number of recurrent mutations has been identified (VOGELSTEIN et al., 2013).
New genome-sequencing technologies, called Next-Generation Sequencing (NGS), enable
fast and cost-effective genomic sequencing, as well as the generation of a large volume of
biological data in short time. Such data help the study and analyses of genetic alterations
in many diseases, including cancer, and the development of personalized medicine (SOON;
HARIHARAN; SNYDER, 2013; MERIC-BERNSTAM; MILLS, 2012).

However, the abundance of genomic data hampers the processing of NGS data for useful
clinical information. In this sense, clinical bioinformatics develops and uses computational
methods and techniques for the interpretation of data, thus obtaining information and providing
subsidies for health professionals and researchers.
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One of the categories of computational methods includes those that aim to identify
significant mutations (or driver mutations) and their associated genes (or driver genes) for cancer
development. A cancer cell may have two types of mutations, namely 1) passenger mutations,
which do not change the cell behavior, and 2) driver mutations, which cause harmful behavior and
are responsible for the development of cancer, i.e., they provide cells with a selective advantage
in comparison to the other cells, increasing their survival and reproduction. The identification
of driver mutations and their associated genes is one of the most significant challenges in the
area of Cancer Genomics (HOU; MA, 2013; RAPHAEL et al., 2014). In the present research,
the following terms are considered as synonymous: 1): “significant mutations” and “driver
mutations”; and 2)“significantly mutated genes” and “driver genes”.

Several studies of computational methods and their algorithms for the identification of
significantly mutated genes in cancer have been conducted in recent years (HOU; MA, 2013;
RAPHAEL et al., 2014; CHENG; ZHAO; ZHAO, 2015; DIMITRAKOPOULOS; BEEREN-
WINKEL, 2017; CUTIGI; EVANGELISTA; SIMAO, 2020a), and various methods have been
proposed (MILLER et al., 2011; VANDIN; UPFAL; RAPHAEL, 2011; CIRIELLO et al., 2012;
VANDIN; UPFAL; RAPHAEL, 2012; DEES et al., 2012; BASHASHATI et al., 2012; HODIS et

al., 2012; LAWRENCE et al., 2013; LEISERSON et al., 2013; HOU; MA, 2014; LEISERSON et

al., 2015; LEISERSON et al., 2015; KIM et al., 2015; LEISERSON; REYNA; RAPHAEL, 2016;
CHO et al., 2016; HOU et al., 2016; HRISTOV; SINGH, 2017; HORN et al., 2018; REYNA;
LEISERSON; RAPHAEL, 2018; WU et al., 2019; ZHU et al., 2019; CUTIGI; EVANGELISTA;
SIMAO, 2020b; YANG et al., 2021). Each method displays different characteristics, from com-
putational and biological perspectives. New associated cancer genes, since a single gene to a
group of related genes, have been discovered through analyses of NGS data and application of
specific algorithms for finding relevant information.

Computational methods have adopted various strategies to uncover significantly mutated
genes in cancer, e.g., gene interaction networks, used for studies of mutated genes’ interactions
and their influence on networks. Network analysis is essential, since genes affected by driver
mutations tend to participate in common biological activities (OZTURK et al., 2018). Further-
more, somatic mutations in cancer can alter the mutant gene and the entire pathways where such
a gene is (VOGELSTEIN et al., 2013).

1.2 Motivation

The knowledge about genes that cause cancer initiation and progression is a critical issue
for Cancer Genomics and can significantly impact Cancer Medicine. Both cancer diagnosis
and treatment could be substantially improved if doctors knew the mutated genes responsi-
ble for cells’ carcinogenic behavior, towards personalizing the treatment of a given patient
(MERIC-BERNSTAM; MILLS, 2012), which characterizes a personalized cancer medicine
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(CHIN; ANDERSEN; FUTREAL, 2011). In this sense, tumors would be identified and clearly
characterized, thus enabling the most appropriate treatment (VINCENT, 2017). Furthermore, the
discovery of novel cancer genes can lead new biomedical directions on the cancer treatment.

The identification of significant genes for cancer can be supported by computational
methods based on several types of data currently available. Among such methods, mutation data
analysis has taken a prominent position after the advent of next-sequencing generation tech-
nologies (NGS) and due to projects such as TCGA (The Cancer Genome Atlas) (WEINSTEIN
et al., 2013), which collects plenty of mutation data available. Gene interaction information is
also explored and plays an important role in several computational methods (OZTURK et al.,
2018), providing essential information about complex interactions among genes and their related
proteins. Furthermore, data modeled in networks represent prior knowledge based on decades of
research (CREIXELL et al., 2015; DENG et al., 2017), thus being a reliable source of data for
work on biological problems. In comparison to a sequencing-only approach, the integration of
available data, such as sequencing mutation data and gene interaction networks, can enable the
finding of novel candidate cancer (NUSSINOV et al., 2019).

Although computational methods have been extensively used for the identification of
significant genes for cancer, they can misclassify some genes as significant, thus requiring
expert curation to filter their findings (BAILEY et al., 2018). Such a misclassification is due to
some genes (referred to as false-positive-drivers, or false-drivers) exhibiting characteristics of
being significant for cancer, despite not being actually involved in its initiation and progression.
The avoidance of the misclassification of false drivers as drivers is still a challenge, and the
development of tools for a further screening of the findings and detection of possible misclassified
genes is, therefore, crucial.

1.3 Problem, objective, hypothesis and research ques-
tions

The discovery of significant genes is a challenge in Cancer Genomics. Although several
computational methods have been developed towards addressing it, they have failed in predicting
all clinically diagnosed cancer genes mainly because the complexity of the conceptual biological
cancer basis (NUSSINOV; TSAI; JANG, 2019) and the misclassification of some genes. In
this context, the general objective of this thesis is to discover reliable significant cancer genes
with the use of two computational approaches. The objective is based on the hypotheses that
significantly mutated genes in cancer can be discovered through the combination of weighted
mutation frequency and network neighbors influence, and possible false-positives can be detected
by mutation data and gene interaction networks. Weighted mutation, extracted from mutation
data, is based on the functional impact of each different type mutation on a cell’s behavior. The
influence of neighbors, extracted from gene interaction networks, is obtained from asymmetric
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spreading strength measurements between all node pairs, which take into account direct and
indirect neighbors on the network. Such a proposal is based on a known and classic local
hypothesis (BARABÁSI; GULBAHCE; LOSCALZO, 2011) that genes involved in cancer tend
to interact with each other.

The following research questions were investigated:

RQ1: Can significant genes for cancer be discovered through the combination of weighted

mutation frequency and network neighbors influence?

RQ2: Can false-positive cancer genes be detected in a set of significant candidates for cancer

with the use of mutation and gene network data?

Towards answering to such questions, the following specific objectives were defined:

1. Select, study and analyze computational and biological perspectives from a set of compu-
tational methods that identify significant genes for cancer.

2. Identify specific biological and computational issues towards the proposal of new compu-
tational approaches.

3. Implement new computational approaches for both discovery of significant genes for
cancer and avoidance of possible false-positives.

4. Define in-silico evaluation pipeline to assess the results of the proposed computational
approaches.

5. Select data to be applied in the proposed computational methods.

6. Conduct experimental evaluation of the proposed approaches by defined evaluation
pipelines and selected data.

The present project promoted the union of the Computer Science expertise from the
University of Sao Paulo and Cancer Genomics expertise from Barretos Cancer Hospital towards
the proposal of a new perspective and way of thinking and dealing with a relevant ongoing and
challenging problem in Cancer Bioinformatics and Genomics.

1.4 Contributions
The central contribution of this thesis is the discovery of significant genes for cancer. Such

genes are identified and a detection of possible false positives can be performed, in order to obtain
more reliable results. The contribution was achieved through the proposal of two computational
approaches. First, a computational method, called DiSCaGe (Discovering Significant Cancer
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Genes), prioritizes significant genes for cancer directly related to the impact of different mutation
types and gene interactions on networks. It was applied and evaluated in six types of cancer
with the use of their mutation data sets and two gene interaction networks. Cancer mutation data
were subjected to a preprocessing routine, and networks underwent a link prediction process.
Lists of prioritized genes were evaluated through precision and discounted cumulative gain by
six recent cancer driver genes benchmarks, and an automated literature review of discovered
genes. The results showed DiSCaGe’s potential for discovering known and possible novel cancer
genes, including very low frequency mutated genes. The other computational approach, called
DFDriver (Detecting False Driver), detects possible false positives in a set of significant genes
candidates. The classification is performed by using a supervised machine learning approach
that employs the combination of mutation data of 33 cancer data sets and two gene interaction
networks to induce models to efficiently classify cancer genes. The evaluation was performed
using classical machine learning assessment, which showed the predictive potential of the models
and the benefits on the combination of mutation and gene network data.

1.5 Thesis Organization
This thesis is organized as follows. In Chapter 2 the main concepts related to Cancer

Genomics is presented. The objective of this chapter is to provide the biological cancer back-
ground to understand the next chapters and the development of the project. Next, in Chapter 3
the characteristics of driver mutations and the related challenges in cancer research are described.
It is also presented existing computational methods for identifying driver mutations, showing
their biological backgrounds and computational approaches. A summary of the methods is illus-
trated, showing the relations among the methods. Chapter 4 presents DiSCaGe, a computational
method for the discovery significant genes for cancer. An cancer mutation data preprocessing,
exploratory analysis and a network enrichment and characterization study are also performed. An
extensive experimental study is presented, showing the potential of the proposed computational
approach. Chapter 5 describes DFDriver, a machine learning-based approach to detect possible
false-positive drivers, from data collection to the induction of predictive models. It presents a
thorough evaluation of the models using classification metrics. Finally, Chapter 6 presents the
conclusion, contributions, limitations and future work extracted from this research.
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CHAPTER

2
CANCER GENOMICS

2.1 Initial Considerations

Cancer Genomics is the study of cancer cells genome. Basically, it focuses on how recent
technological advances in Genomics have deepened the understanding of the genetic basis of ap-
pearance and evolution of cancer from a genomic perspective (DELLAIRE; BERMAN; ARCECI,
2014; NCI, 2018). The comprehension of the molecular biology of cancer is fundamental for its
diagnosis and treatment, thus contributing to advances in precision oncology.

The chapter discusses the main topics related to Cancer Genomics, providing a back-
ground for the understanding and development of this thesis. Some parts of this chapter (e.g.,
mutation and heterogeneity concepts) were based on a paper published at the Journal of Bioin-

formatics and Computational Biology (JBCB) (CUTIGI; EVANGELISTA; SIMAO, 2020a) as
follows:

• CUTIGI, J. F.; EVANGELISTA, A. F.; SIMAO, A. Approaches for the identification
of driver mutations in cancer: A tutorial from a computational perspective. Journal of
Bioinformatics and Computational Biology, v. 18, n. 03, p. 2050016, 2020. PMID:
32698724. Available: <https://doi.org/10.1142/S021972002050016X>.

The chapter is organized as follows: Section 2.2 provides an overview on some basic
concepts of molecular biology related to this research, and Section 2.3 addresses some biologi-
cally important characteristics and concepts of cancer frequently used in Cancer Bioinformatics
and employed in the computational aspects presented here.

https://doi.org/10.1142/S021972002050016X
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2.2 An Overview on Molecular Biology
A cell, the smallest unit of life, is composed of genetic material and many parts, called

organelles, wrapped by a membrane. It contains the genetic material, comprised of chromosomes
with a DNA molecule, which expresses the characteristics of each individual. Genome is the
name of the full information from DNA for all proteins to be produced by the individual over his
lifetime (ALBERTS et al., 2008). Genes are portions of the DNA with biological information
that code for proteins made of a large number of amino acids. Figure 1 illustrates the organization
levels of a cell.

Figure 1 – Genome Schema: Genome is composed of chromosomes formed by DNA molecules. A specific
portion of the DNA is a gene, which produces a protein.

Source: Adapted from ThinnerGene (2018).

DNA is a molecule with two strands in a double-helix form (ALBERTS et al., 2008).
Each strand stores a code formed by four basic types of nucleotides, namely adenine (A), thymine
(T), cytosine (C) and guanine (G). A single sequence of a strand of nucleotides usually represents
a DNA, because the second strand can be derived from the first, where each nucleotide pairs up
with each other, following a simple rule: A pairs up with T and C pairs up with G. The pair of
nucleotides is called base pair.

A continuous sequence of nucleotides in the DNA can represent a gene. A gene is
a portion of DNA that works as instructions for the production of amino acids of proteins
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responsible for the morphological and physiological characteristics of the individual. It is
estimated that each human cell has 20,000 to 25,000 genes (NHGRI, 2021). However, not all
parts a gene have instructions (or a code) to amino acids. A gene is composed of coding and
non-coding regions, called exons and introns, respectively.

Genes do not produce proteins directly from DNA, but through mRNA (messenger RNA),
which is an intermediary molecule in the process (ALBERTS et al., 2008). When a protein is to
be produced, a DNA region from a specific gene is copied for an RNA molecule, starting in a
promoter region. This phase, called transcription, produces the RNA molecule, called preRNA,
which has introns, exons, and untranslated regions (UTRs). Subsequently, in a phase called
splicing, introns are removed from preRNA, thus resulting in mRNA, which produces the protein
through molecules called ribosomes, in the translation phase. In this same phase, a sequence of
three nucleotides (called codon or trinucleotide) is read in the mRNA, which generates a single
amino acid. The set of sequenced amino acids generates a protein. All this process is known as
Central Dogma, which is a paradigm of molecular biology (LEWIN, 2007). Figure 2 shows an
overview of the Central Dogma processes.

Figure 2 – Central dogma of molecular biology.

Source: Elaborated by the author.

2.3 Cancer

Cancer is a disease acquired through an evolutionary process in a population of cells
(NOWELL, 1976; STRATTON, 2009). According to Stratton (2009), its development is based
on two processes: 1) a continuous acquisition of heritable genetic variation in cells, due to
mutations, and 2) a natural selection, which results in diversity in a cell population.
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Term “cancer” describes a large number of complex diseases, and comprehends hundreds
of types and subtypes (e.g., skin cancer, or melanoma, breast cancer, and lung cancer), which
can develop in any organ in the body. Some organs are more susceptible to it and can be affected
by different types of tumor, more or less aggressive (INCA, 2019; INCA, 2020).

The following sections describe some cancer characteristics and the main concepts
related to the present research.

2.3.1 Stages of Cancer

The evolutionary process in a population of cells can confer them a selective advantage,
so that they reproduce indefinitely, which may lead to the development of cancer. During the
process, cancer usually continues its evolution, and some stages are established. Among the
several classifications of such stages, we have chosen the one defined by ASCO (2018) and
described as follows:

The evolutionary process in a population of cells can confer them a selective advantage,
which can make these cells to reproduce indefinitely, thus leading to the development of cancer.
During the process, cancer usually continues its evolution, and some stages are established.
Among the several classifications of such stages, in this works we have chosen the one defined
by ASCO (2018) and described as follows:

Stage 0: the cancer is usually small, and contained in the organ of origin. It has not spread to
other tissues, and is highly curable.

Stage I: this stage is similar to Stage 0, however, the cancer is larger. It has not spread to other
surrounding tissues and can be surgically removed. It is often called early-stage cancer.

Stages II and III: the cancer is usually larger, and has started to spread to the surrounding
tissues and lymph nodes. Classification into Stages II or III depends on the type of cancer.

Stage IV: the cancer has spread from its organ of origin to other organs or parts of the body. It
is an advanced stage, and cancer is called advanced or metastatic.

The determination of the cancer stage is crucial for the prescription of the best treatment,
since the stage is related to severity and diagnosis time.

2.3.2 Hallmarks of Cancer

Research has evidenced cancer is a complex process with multiple phases. According
to Hanahan and Weinberg (2000), six essential alterations in the cells lead to a cancer behavior.
In 2011, the authors updated their studies, proposing four new items, or characteristics, called
Hallmarks of Cancer, shared by most, or perhaps, all types of cancer (HANAHAN; WEINBERG,
2011). Below is their description:
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1. Self-sufficiency in growth signals: cancer cells acquire an autonomy to divide uncontrol-
lably, due to alterations in essential genes (HANAHAN; WEINBERG, 2000).

2. Insensitivity to anti-growth signals: cancer cells have deactivated tumor suppressor
genes, which cause the cells to not control division and growth (HANAHAN; WEINBERG,
2000).

3. Evasion of programmed cell death (apoptosis): cancer cells deactivate genes and path-
ways that can cause their death. As a result, sick cells do not die, and continue to reproduce
indefinitely (HANAHAN; WEINBERG, 2000).

4. Limitless replicative potential: cancer cells activate specific genes and pathways that
make them immortal, even after having grown for many generations (HANAHAN; WEIN-
BERG, 2000).

5. Sustained angiogenesis: cancer cells can start an angiogenesis process (new blood vessels
formation) and, therefore, their source of blood and blood vessels are continuously supplied
with oxygen and other nutrients (HANAHAN; WEINBERG, 2000).

6. Tissue invasion and metastasis: cancer cells can leave their original tissue and invade
others, thus spreading to other organs in the body (HANAHAN; WEINBERG, 2000).

7. Deregulating cellular energetics: cancer cells require more energy than normal cells.
Thereby, they can change themselves for obtaining more energy to survive and divide
(HANAHAN; WEINBERG, 2011).

8. Avoidance of immune destruction: cancer cells can deceive cells of the immune system,
which does not recognize or kill cancer cells (HANAHAN; WEINBERG, 2011).

9. Genome instability and mutation: cancer cells have combinations of damaged genome,
which deregulate them (HANAHAN; WEINBERG, 2011).

10. Tumor-promoting inflammation: inflammations in the human body can drive the emer-
gence of cancer cells (HANAHAN; WEINBERG, 2011).

In general, such hallmarks indicate cancer cells are imortal. They can grow indefinitely,
and move to other tissues in the human body, due to their efficient energy-extraction mechanism.
However, a cell rarely shows all hallmarks. The older the individual, the more exposure to
external environments (e.g., the sun, smoking environments), and the more cell division, the
higher the probability of the cells acquiring the hallmarks.
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2.3.3 Oncogenes and Tumor Suppressor Genes

Cancer develops from failures in the cellular process that controls the division and
reproduction of cells. Such failures can result in gene mutations and development (or not)
of cancer. A mutated gene related to cancer can be classified into proto-oncogene and tumor

suppressor gene.

Proto-oncogenes are a group of genes that, when mutated, can potentially incite cancer
(WEINBERG, 2013), causing cells to reproduce uncontrollably. The mutated version of a proto-
oncogene is called oncogene, which is an important molecular target for anti-cancer drugs design
(CHIAL, 2008). On the other hand, tumor suppressor genes can control the cell division, i.e.,
they are antigrowth genes (WEINBERG, 2013), of which some can repair the DNA of a cell.
In this case, if a mutation occurs during the cell division, proteins created by tumor suppressor
genes can fix the DNA.

RAS gene, which produces proteins that control the transcription of genes related to
the cell growth, is an example of proto-oncogene. When RAS is mutated, the protein produced
is altered, and the cell can no longer interrupt the regulatory process that controls its growth
(CANCERQUEST, 2020). TP53 is a well-known tumor suppressor gene that controls the cell
division and repairs problems in the DNA occurred during the division (CANCERQUEST,
2020).

Oncogenes usually have some few regions, called “hotspots”, which are more mutated
than others (LEWIN, 2007). For example, region V600 in BRAF gene is a hotspot, i.e., it is altered
in a large number of samples with mutations in BRAF. On the other hand, tumor suppressor
genes usually do not have few hotspots. Information on hotspots is important for studies on the
significance of a mutation.

In short, the difference between oncogenes and tumor suppressor genes is that the former
can cause cancer as a result of the activation of proto-oncogenes, whereas tumor suppressor
genes can not avoid cancer when they are inactivated in the cell (ACS, 2014). Therefore, the
identification of proto-oncogenes, tumor suppressor genes, and their associated mutations is
mandatory in Cancer Genomics.

2.3.4 Mutations

Genes contained in cells can undergo alterations, called mutations, in comparison with
original cells. The genome sequence has revealed a huge number of gene mutations can occur
across cancer cells of any type of cancer (STRATTON, 2011). Such mutations are classified
according to their origin into germline mutations, which are passed from parents to their children,
and acquired mutations, called somatic mutations, which occur throughout an individual’s life by
several causes, such as excessive exposure to sunlight, use of cigarettes, failure of cell division,
among other factors.
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2.3.4.1 Somatic Mutations

Cancer is caused by somatic mutations that occur all the time. Most mutations are known
to be benign, i.e., they do not contribute to carcinogenesis (formation of a cancer) (VOGELSTEIN
et al., 2013; PLEASANCE et al., 2009). However, others can cause cells to grow faster or evade
to other healthy tissues, thus changing the gene expression. According to Stratton (2009), somatic
mutations in a cancer cell genome can be classified into driver or passenger mutations, according
to their consequences for cancer development, as follows:

Driver Mutations: they confer cells the advantage of growing uncontrollably, thus promoting
the cancer development. They allow cancer cells to divide more than normal cells, and
spread to other tissues (STRATTON, 2009; STRATTON, 2011). In general, they are
responsible for the cancer initiation and progression, and, therefore, considered significant
for cancer.

Passenger Mutations: they do not alter the behavior of cells, i.e., they do not confer a growth
advantage to them (STRATTON, 2009; STRATTON, 2011). In general, their impact is
believed to be neutral, therefore, they are not significant for cancer.

Figure 3 displays the process of cell divisions from a fertilized egg to a cancer cell
(STRATTON, 2009). It shows the timing of the somatic mutations occurred in the cell and the
processes that contribute to cancer development.

Figure 3 – Processes that lead a normal cell to cancer through somatic mutations.

Source: Stratton (2009).

In summary, a single cancer cell usually undergoes a large number of mutations, which
comprehend few drivers and many passenger mutations, of which the former provide cells with a
selective advantage. An important goal of cancer genome analysis is the identification of driver
mutations, therefore, a key challenge is to distinguish between driver and passenger mutations
(STRATTON, 2009).
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2.3.4.2 Types of Mutations

Mutations in cancer occur on different scales, i.e., from a simple variation of a single
nucleotide to a huge alteration in a significant part of the chromosome, or even in the whole
chromosome (aneuploidy). Some of the main types of mutations are described below.

Single nucleotide variant (SNV): the smallest unit of a mutation that occurs in a non-coding
or coding region when a single nucleotide is substituted by another.

When a mutation occurs in a coding region, the SNV can be classified into synonymous
or nonsynonymous. The former refers to an SNV that does not affect the amino acid
matched and, consequently, does not change the protein produced. On the other hand, a
nonsynonymous SNV alters both amino acid and protein produced.

A nonsynonymous mutation can be categorized as either missense, or nonsense. The former
results in the substitution of an amino acid for another, whereas a nonsense mutation creates
a signal for the cell to stop building the protein, thus resulting in a shortened protein.

Insert and Deletion (InDel): a single or small sequence of nucleotides can be inserted into or
deleted from part of the DNA sequence. This type of mutation can be considered an SNV
mutation if the alteration is a single base pair.

Copy Number Alteration (CNA): a middle mutation level, in which the DNA can either gain,
or lose a large segment of the genome. In the first case, the mutation is called amplification;
otherwise, i.e., when DNA loses a segment, the mutation is called deletion.

Structural variant (SV): the highest mutation level, which occurs when a significant part of
the genome has been altered. For example, interchromosomal translocation, an SV type,
occurs when a large segment of a chromosome leaves its chromosome of origin and goes
to another one. Other types include intrachromosomal translocation and inversions.

Most mutations can cause cells to produce proteins different than those expected. In such
cases, the generated proteins can be nonfunctional or perform an abnormal function. Figure 4
shows some examples of types of mutations.

2.3.4.3 Mutation Matrix

Mutation Matrix is the usual way of representing genes (mutated or not) and patients.
It can be defined as a matrix M with m rows denoting patients (or samples), and n columns
representing genes. Each cell Mi j is given value 1 if gene g j of patient mi has been mutated, and
0, otherwise. For a set of m patients and n genes, a mutation matrix is defined as:

Mi j =

{
1 if gene j has been mutated in patient i

0 otherwise
(2.1)
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Figure 4 – Non-exhaustive view of types of mutations: (A) SNVs, exemplifying substitution, insertion,
and deletion. (B) CNAs, exemplifying amplification and deletion. (C) SVs, exemplifying a
case of an interchromosomal translocation.

Source: Elaborated by the author.

A mutation matrix is built from a list of somatic mutations from a cohort of patients.
Figure 5 illustrates a typical mutation matrix in two perspectives, i.e., graphical and raw data
representations.

Figure 5 – Same data in two different representations: (A) Mutation matrix in a graphical perspective,
where black cells indicate the gene mutated in the patient. (B) Mutation matrix in a raw data
perspective.

Source: Elaborated by the author.

2.3.5 Next-Generation Sequencing and Databases

Term Next-Generation Sequencing (NGS) denotes a set of technologies for the reading
and sequencing of the human genome. They enable the sequencing of an entire human genome
in a single day. NGS can be used to sequence the whole genome or some specific area of interest,
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including all coding genes or a set of individual genes (BEHJATI; TARPEY, 2013). A set of
platforms (e.g, Illumina1, Ion Torrent2 and PacBio3) implements NGS, and different sequence
platform vendors employ different strategies to sequence the human genome (BUERMANS;
DUNNEN, 2014).

The advent of NGS technologies has changed the studies of Cancer Genomics (STRAT-
TON, 2013) and generated a massive volume of genomic data, including cancer genomic data.
Public repositories of cancer mutation data have been created and continuously updated, thus
providing the scientific community with fast and easy access to a large variety of cancer data.
The primary goal of such repositories is to provide real data towards enabling the development
of research on cancer and its characteristics and behaviors. The following repositories have
excelled:

Catalogue Of Somatic Mutations In Cancer (COSMIC): it contains large amounts of cancer
mutation data and supports the exploration of the impact of mutations on several types of
cancer (COSMIC, 2021).

The Cancer Genome Atlas (TCGA): created from the efforts of research entities, this project
supplies information on genetic mutations for several types of cancer. It has already
generated and stored genomic mutations of 33 cancer types in 11,000 patients, holding
approximately 2.5 petabytes of data (WEINSTEIN et al., 2013; TCGA, 2021).

International Cancer Genome Consortium (ICGC): it contains a database with genomic
data of more than 20,000 tumor genomes (ICGC, 2019).

Pan-Cancer Analysis of Whole Genomes (PCAWG): it has been created from an interna-
tional collaboration for the study of patterns of mutation in more than 2,600 cancer
whole genomes (PCAWG, 2021).

The creation of large repositories of genomic data and their constant updates provide the
scientific community with opportunities for research, however, the huge volume of data hampers
data interpretation. Therefore, the current challenge refers to a way of interpreting such large
datasets.

2.3.6 Heterogeneity

Although the hallmarks of cancer (Section 2.3.2) are important and similar for most
cancer types, they are related to the phenotype. From a genotype point of view, cancer cells in
individuals rarely share the same set of mutations (PE’ER; HACOHEN, 2011).

1 https://www.illumina.com/
2 https://www.thermofisher.com/br/en/home/brands/ion-torrent.html
3 https://www.pacb.com/
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Cancer is known to be characterized by a high heterogeneity of genetic changes, including
cancer of the same type. Although some genes are known to contribute to the development
of cancer (oncogenes and mutated tumor suppressor genes), patients rarely undergo the same
genetic changes. Moreover, carcinogenesis after a mutation depends on the other changes already
existing in the cell (ASHWORTH; LORD; REIS-FILHO, 2011).

Heterogeneity can be classified into the following two levels (BURRELL et al., 2013):

Inter Tumor Heterogeneity: different somatic mutations occur in a same type of tumor, in
different patients, i.e., the cancer cells of two patients with the same type of cancer can
undergo a different set of mutations.

Intra Tumor Heterogeneity: different somatic mutations occur in the cells of a tumor in a
same patient, i.e., the tumor of a single patient can contain a set of both different mutated
cells and normal cells.

Heterogeneity leads to low frequency somatic mutations in a cohort of patients. It leads
an intrinsic difficulty to identify common mutations through their mutation frequency. Such a
heterogeneity also hinders the understanding and treatment of cancer. For example, one out of
two patients with the same type of cancer may respond positively to a specific drug, whereas the
other may not. Genetic differences in cancer cells can lead to two different diseases, even in the
same tissue and with similar characteristics.

2.3.7 Networks and Pathways

A gene does not work alone, but establishes complex interactions with other genes
and their produced proteins. Networks provide a natural representation of complex biological
systems(KIM; CHO; PRZYTYCKA, 2016) for showing such interactions. Gene interaction
networks are largely used in Cancer Genomics. In such networks, genes are nodes, and edges
connect genes that are physically interacting or functionally related (KIM; CHO; PRZYTYCKA,
2016).

Likewise, pathways represent interactions around genes from a group. However, they
are small networks of well-studied processes, in which interactions are usually related to some
biological function. According to Creixell et al. (2015), pathways represent consensus systems,
and are based on decades of research. They can be visualized in small diagrams, while networks
comprise interactions around genes derived from large-scale screens or integrative analyses of
multiple datasets. Figure 6 shows a general representation of network and pathways.

Many databases are sources of information about networks and pathways, e.g., Human
Protein Reference Database (HPRD) (PERI et al., 2003; PRASAD et al., 2009), High-quality IN-
Teractomes (HINT) (DAS; YU, 2012), HI-II-14 (ROLLAND et al., 2014), Interaction Reference
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Figure 6 – Simple representation of a network and pathways. All nodes (genes) and edges (gene inter-
action) represent networks. The red and green areas illustrate two different pathways in the
network.

Source: Elaborated by the author.

Index (iRefIndex) (RAZICK; MAGKLARAS; DONALDSON, 2008), MutiNet (KHURANA et

al., 2013), Reactome Functional Interactions (ReactomeFI) (WU; HAW, 2017; FABREGAT et

al., 2018; JASSAL et al., 2020), Kyoto Encyclopedia of Genes and Genomes (KEGG) (KANE-
HISA; GOTO, 2000; KANEHISA et al., 2012), and Human Reference Interactome (HuRI)
(LUCK et al., 2020)

According to Ozturk et al. (2018), network and pathway analyses are essential, since
genes affected by driver mutations tend to participate in common biological activities, described
by network diagrams. Such diagrams can better identify patterns of driver events. Furthermore,
somatic mutations in cancer can alter not only the mutant gene, but the entire pathway where
such the gene is (VOGELSTEIN et al., 2013). Creixell et al. (2015) stated that both pathway
and network analyses can reduce the genomic data dimensionality. Information about gene
interaction enables the selection of a smaller group of genes for the analysis and interpretation of
a set of altered processes.

2.3.8 Mutual Exclusivity

Some patterns have been discovered in the massive volume of cancer genomic data.
One of the most important is mutual exclusivity in cancer driver genes, widely observed in
cancer genomes(DENG et al., 2017). It shows the existence of relatively few drivers mutations
in a cancer cell and such mutations contained in many pathways. Moreover, mutations in the
same pathway are usually mutually exclusive (THOMAS et al., 2007; YEANG; MCCORMICK;
LEVINE, 2008).
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The mutual exclusivity pattern is related to a group of two or more genes rarely mutated
in a same patient, i.e., simultaneous mutations of genes in a same patient are less frequent
than expected by chance (KIM; MADAN; PRZYTYCKA, 2017). On the other hand, such a
group of genes can be mutated in different patients. According to Deng et al. (2017), more
than one-quarter of known cancer genes are related to the mutual exclusivity pattern. The study
conducted by Deng et al. (2017) refers to an example of BRAF and NRAS oncogenes (genes in
MAPK pathway) showing genetic alterations in 40% and 25% of melanoma patients, respectively,
while few patients undergo both genetic alterations (DAVIES et al., 2002).

The following two hypotheses have been raised from the study of the mutual exclusivity
pattern:

1. The mutual exclusivity pattern is usually found in a pathway (CISOWSKI; BERGO, 2017).
Mutation in only one gene from a pathway is sufficient to perturb the pathway and its
function, thus leading the cell to a cancer behavior. A cancer pathway is also expected to
be mutated in a large number of patients (VANDIN; UPFAL; RAPHAEL, 2012).

2. The co-occurrence of mutations in mutually exclusive genes is directly related to the cancer
cell survival (DENG et al., 2017). If two or more mutually exclusive genes are mutated,
the damage in the cell is significant, and leads the cell to death. This situation does not
characterize a cancer behavior, since the cell does not divide and proliferate.

Such hypotheses comprehend some important and specific cancer characteristics. For
example, it is interesting to find a group of genes that shows a mutual exclusivity pattern. In this
way, this group can be part of a known pathway or even a still unknown one. For example, genes
g2, g3 and g4 of the mutation matrix of Figure 7 have mutual exclusivity characteristics, i.e.,
they are not mutated in more than one patient. When one of the genes is mutated more than once,
the cell probably dies.

Many computational methods work with the mutual exclusivity pattern towards identify-
ing driver mutations. According to Deng et al. (2017), such methods are divided into two groups:
1) De Novo methods: use only genomic data to identify genes with a mutual exclusivity pattern
applying some strategies, such as pairwise test, combinatorial score and statistical score; and 2)
Knowledge-based methods: use genomic data and prior knowledge information, such as known
pathways, networks, and functional phenotype (e.g. gene expression data).

Both de novo and knowledge-based methods identify mutual exclusivity patterns in a
group of genes. The main difference is knowledge-based is more useful for the study of the
characteristics of known pathways or networks, or for the testing of the exclusivity of a group of
genes. De novo methods can explore not well-known genes and find novel information.
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Figure 7 – Mutual exclusivity among genes g2, g3 and g4

Source: Elaborated by the author.

2.4 Final Considerations
This chapter has presented some biological concepts of cancer genomics towards the

understanding the contribution of this thesis. Some biological concepts have been described
and some computational approaches are shown, bringing a computational bias to the presented
concept.

Although the full understanding of cancer aspects remains a challenge, significant ad-
vances have been made, of which some are related to the genomic area, where NGS technologies
have generated a vast volume of data, and computational approaches have been developed for
their analyses and interpretation. One of such approaches refers to methods that identify signifi-
cant mutated genes (driver genes) in cancer. Since driver genes are the basis for this research, the
next chapter addresses their main concepts and associated computational approaches.



47

CHAPTER

3
SIGNIFICANT MUTATIONS IN CANCER

3.1 Initial Considerations

A cancer cell has a large number of somatic mutations, but most of them are not significant
for cancer, while a small fraction is responsible for the cancer initiation and progression. In this
context, a key point in cancer genomics is to distinguish significant mutations from unimportant
ones, and their associated genes, for cancer. This is a complex task due to the complexity of
biological data and concepts. Computational approaches have been developed and applied to
identify driver genes using NGS data.

The chapter discusses existing computational approaches to identify significant mutations
in cancer, and it is based based on a paper published at the Journal of Bioinformatics and

Computational Biology (JBCB) (CUTIGI; EVANGELISTA; SIMAO, 2020a) as follows:

• CUTIGI, J. F.; EVANGELISTA, A. F.; SIMAO, A. Approaches for the identification
of driver mutations in cancer: A tutorial from a computational perspective. Journal of
Bioinformatics and Computational Biology, v. 18, n. 03, p. 2050016, 2020. PMID:
32698724. Available: <https://doi.org/10.1142/S021972002050016X>.

In that paper, some classical computational methods for the identification of significant
mutations in cancer are described from a computational perspective.

The chapter is organized as follows: Section 3.2 introduces characteristics about driver
mutations and this significance for cancer. Section 3.3 presents an overview of some specific and
related computational methods showing their main characteristics and relations among them.

https://doi.org/10.1142/S021972002050016X
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3.2 Identification of Significant Mutations in Cancer

The identification of mutations that cause cancer in the human body is a key challenge in
the area of Cancer Genomics. It happens because the cell has mutations in its DNA that were
acquired over the lifetime, which are called somatic mutations. These mutations are, for the most
of times, random and do not contribute to the carcinogenic behavior of the cell, the so called
passenger mutations. While most somatic mutations are passenger mutations, there is a smaller
group of mutations that are significant for cancer, the so called driver mutations (STRATTON,
2009; STRATTON, 2011; HANAHAN; WEINBERG, 2011).

A key question in Cancer Genomics is to distinguish driver from passenger mutations
(GREENMAN et al., 2007; HABER; SETTLEMAN, 2007; TRAN et al., 2012). In other words,
it is a crucial point to determine the significance of the genetic alterations, identifying which set
of alterations confer the selective advantage for the cancer cells. It is necessary for understanding
the molecular mechanisms of carcinogenesis and improve treatments for patients (HOU; MA,
2013).

Studies on Cancer Genomics have shown that a small number of genes are mutated with
high frequency in a given set of patients and a high number of genes are low-frequency mutated
(GARRAWAY; LANDER, 2013; BAILEY et al., 2018). This phenomenon is known as “long
tail”, and it is illustrated in Figure 8. Some mutated genes in the tail (with a low frequency
of mutation) can be genes that are significant for cancer, which brings a statistical difficulty
because it is not enough to mention that genes with the highest frequency of mutation are a driver
mutation.

Figure 8 – Long tail phenomenon: Few genes are highly mutated; High number of genes are few mutated.

Source: Elaborated by the author.



3.3. Related Computational Methods 49

One of the causes of “long tail” phenomena is the inter-tumor heterogeneity of cancer,
which is the fact that two genomes of the same type of cancer do not necessarily have the same
set of mutations. All this context shows that many significant genes have not yet been discovered
since many of these genes appear at low-frequency (GARRAWAY; LANDER, 2013).

3.3 Related Computational Methods

For the identification of significant mutations in cancer (or driver mutations), it is neces-
sary to understand the molecular mechanisms involved. The identification of these mutations is
of extreme importance for the understanding of these mechanisms, besides generating subsidies
for the personalized treatment for each type of cancer or individual. The creation of methods
for identifying these mutations is a relatively new field of research and has had many recent
contributions. Hou and Ma (2013) group the methods into four categories:

Pathway-Based Approach: these methods works with gene networks and pathways, focusing
on the interaction among the genes. Thus, they use graph algorithms to identify driver
mutations, based on the impact that the mutated gene has on the pathways or network.

Mutation Frequency-Based Approach: these methods use statistical analysis to compare the
number of mutations in a cancer cell in contrast to the number in normal cells. Mutations
observed more than expected by chance are identified as driver mutations.

Sequence-Based Approach: these methods evaluate the functional impact in the protein gener-
ated after a mutation in a gene.

Machine Learning-Based approach: these methods use machine learning in order to create
models from existing knowledge in driver mutations.

In this research we group the computational methods considering two perspectives:

From their goal: the computational methods have two basic goals: 1) Prioritizing driver genes,
i.e., methods produces a ranking of genes in order of significance for cancer; and 2) Sug-
gesting of driver pathways, i.e., methods produces a list of set of related genes significantly
mutated, which can be called of driver pathways.

From their approaches: the computational methods have distinct approaches (form compu-
tational or biological point of views) to reach their goals. Among the existing several
approaches, it can be cited: frequency, network, mutual exclusivity and machine learning.

Figure 9 presents a representation and classification of some computational methods in
the perspectives described above. Next, we briefly describe the methods.
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Figure 9 – An overview of related methods according to their main goal and based approach.

Source: Elaborated by the author.

MutSigCV (LAWRENCE et al., 2013) is a classical method that incorporates the het-
erogeneity of mutations in the analysis and identification of driver mutations. The method
determines whether the number of mutations observed in a gene is significantly higher than
expected Background Mutation Rate (BMR), which is the probability of observing a passenger
mutation by chance at a specific location in the genome (RAPHAEL et al., 2014). MutSigCV
considers the level of gene expression and the DNA replication time for taking account the
heterogeneity of mutations. MuSiC (DEES et al., 2012) seeks to distinguish passenger from
driver mutation through a extensive pipeline, which uses several data and tools, e.g., BMR
estimation, gene length information, and clinical correlation test.

MUFFINN (CHO et al., 2016) takes into consideration the influence from neighbors to
identify significant genes based on this influence, which according to the authors, if a gene has
low mutation frequency, but its neighbors have a higher one, such a gene is a highly probable
candidate to be a driver mutation. Another network-based method, nCOP (HRISTOV; SINGH,
2017) considers individual mutational profiles in a gene interaction network context towards
identifying connected subnetworks that comprise pathways that are significant altered across
many samples. Such a method employs an integer linear programming for solving the problem
and a greedy heuristic algorithm, in order to get a better performance. DriverNet (BASHASHATI
et al., 2012) and DawnRank (HOU; MA, 2014) combines data about mutation, gene expression
levels, and gene networks to rank the significance of the mutated genes.

“HotNet family” is composed of three similar approaches that use a diffusion process
and scores of mutation to find significantly mutated subnetworks. HotNet (VANDIN; UPFAL;
RAPHAEL, 2011) applies subnetwork discovery in an undirected network, while HotNet2
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(LEISERSON et al., 2015) uses a directed network. Hierarchical HotNet (REYNA; LEISERSON;
RAPHAEL, 2018) groups the genes in hierarchical levels and finds hierarchical significance
subnetworks. Recently, a new and improved approach, called NetMix (REYNA et al., 2021),
were proposed for the identification of altered subnetworks, which could be applied in HotNet
family methods.

MEMo (CIRIELLO et al., 2012) and MEMCover (KIM et al., 2015) are classified as
both network-based and mutual exclusivity pattern-based, since they find a mutual exclusivity
pattern in a set of genes in an interaction network. The main difference is MEMCover can be
applied to many types of cancer in a single analysis. GeNWeMME (CUTIGI; EVANGELISTA;
SIMAO, 2020b) is a flexible method that uses an extensive biological base (mutations, type of
mutations, gene interaction networks and mutual exclusivity pattern) for prioritizing groups of
significant and related genes in cancer, which can be considered according to the objective of the
analysis.

Dendrix (VANDIN; UPFAL; RAPHAEL, 2012) applies a weight function and an MCMC
approach to find a single set of genes mutually exclusive of high-coverage. Its extension, called
MultiDendrix (LEISERSON et al., 2013) uses an ILP approach and the same weight function of
Dendrix to find multiple sets of genes. CoMEt (LEISERSON et al., 2015) proposes changing the
weight function for a probabilistic score to identify sets of mutually exclusive genes and avoid
the coverage bias of some highly mutated gene. WExT (LEISERSON; REYNA; RAPHAEL,
2016) implements an weighted test for mutual exclusivity for taking into account mutation
frequency with the the probability in which a mutation can occur in each sample. WeSME (KIM;
MADAN; PRZYTYCKA, 2017) employs a fast heuristic for estimating statistical significance
of mutual exclusivity sets of genes, computing the significance for a subset of genes, thus not
requiring whole genome permutations. Such method also is capable to estimate the significance
of co-occurrence of mutated genes.

Regarding machine learning-based approaches have been taking advantage of massive
volume of digital biological data and previous knowledge towards training models to find novel
biological insights. LOTUS (COLLIER; STOVEN; VERT, 2019) uses one-class support vector
machine (OC-SVM) to define two score functions to classify driver genes into oncogenes or
tumor-suppressor genes. The model is trained with data from mutation (mutation frequency
and functional impact) and protein-protein interactions, using a multitask learning strategy to
share information across cancer types. DriverML (HAN et al., 2019) identifies cancer driver
genes by combining a weighted score test and machine learning approach. The score test takes
account mutation data and somatic variant types, aiming at quantifying the mutation functional
impact. Known driver genes are used to define weights of mutations, based on a machine
learning approach. Score value of each gene was obtained using the weighted score statistic with
the learned weight parameters. MoProEmbeddings (GUMPINGER et al., 2020) employs four
supervised machine learning algorithms for the classification of drivers genes. Models are trained
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under the data set that combines gene mutation score distribution and interaction network, in a
node’s local neighborhood with network propagation. The learning process takes account the
data distributions of known cancer genes to improve its prediction task.

Table 1 displays information about the methods described here. For every method it is
presented: 1) Name; 2) Main objective, related to the identification of significant mutations in
cancer; 3) Main computational approach used; and 4) Biological knowledge or data used by the
method.
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Table 1 – Summary of Methods

Method Main objective Main computational ap-
proach

Biological knowledge-
based

MutSigCV Identification of significant genes Statistical test Gene-specific BMR estima-
tion

MuSiC Identification of significant genes Ensemble of computational
tools

Combination of biological
concepts

MUFFINN Identification of significant related
genes

Influence of network neigh-
bors

Interaction network data

nCOP Identification of significant related
genes

Integer linear programming
and greedy algorithm

Interaction network data

DriverNet Generation of a ranking with likely
significant mutations

Greedy algorithm Interaction network data
and gene expression data

DawnRank Generation of a ranking with likely
significant mutations

Random walk Interaction network data
and gene expression data

HotNet Identification of significant sets of
related genes

Network diffusion process
by diffusion kernel

Interaction network data

Hotnet2 Identification of significant sets of
related genes

Network diffusion process
by random walk

Interaction network data

Hierarchical
HotNet

Identification of significant sets of
related genes

Network diffusion process
by random walk

Interaction network data

MEMo Identification of significant sets of
related genes with mutual exclusiv-
ity pattern

Node graph similarity ap-
proaches and MCMC

Interaction network data
and mutual exclusivity pat-
tern

MEMCover Identification of significant sets of
related genes with mutual exclusiv-
ity pattern in the same or across dif-
ferent type of cancer

Greedy algorithm Interaction network data
and mutual exclusivity pat-
tern

GeNWeMME Identification of significant sets of
related genes with mutual exclusiv-
ity pattern

Finding connected compo-
nents

Interaction network data
and mutual exclusivity pat-
tern

Dendrix Identification of significant sets of
genes with mutual exclusivity pat-
tern

Greedy algorithm and
MCMC

Mutual exclusivity pattern

CoMEt Identification of significant sets of
genes with mutual exclusivity pat-
tern

MCMC Mutual exclusivity pattern

WExT Identification of significant sets of
genes with mutual exclusivity pat-
tern

Weighted test Mutual exclusivity pattern

WeSME Identification of significant sets of
genes with mutual exclusivity pat-
tern

Permutation-based test Mutual exclusivity pattern

LOTUS Classification of significant genes Multi-task learning Interaction network
DriverML Classification of significant genes Statistical score and super-

vised machine learning
Functional impact

MoPro Classification of significant genes Network propagation Interaction network

3.4 Final Considerations

Many computational methods for identifying significant mutated genes in cancer have
been developed over the years. Many computational approaches and biological knowledge
are used in the algorithms of these methods. Most of them are summarized in some reviews
performed by researchers in the area (HOU; MA, 2013; RAPHAEL et al., 2014; ZHANG
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et al., 2014; CHENG; ZHAO; ZHAO, 2015; DENG et al., 2017; DIMITRAKOPOULOS;
BEERENWINKEL, 2017; OZTURK et al., 2018; CUTIGI; EVANGELISTA; SIMAO, 2020a).

In this chapter, which is based based on a paper published at the Journal of Bioinfor-

matics and Computational Biology (JBCB) (CUTIGI; EVANGELISTA; SIMAO, 2020a) the
importance of studying significant mutations in cancer is discussed. Some important and classic
computational methods to identify such mutations are presented. The methods were briefly
described, followed by a summary of related methods. The next two chapters describes the
development of this thesis, with a proposal and evaluation of two computational methods: 1)
DisCaGe, used for the discovery of driver genes, i.e., significantly mutated genes for cancer; and
2) DFDriver, used for the detection of possible false drivers.
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CHAPTER

4
COMPUTATIONAL APPROACH FOR THE

DISCOVERY OF SIGNIFICANT GENES FOR
CANCER

4.1 Initial Considerations
The identification of significantly mutated genes in cancer is essential for understanding

the mechanisms of tumor initiation and progression. Such a task is a key challenge, since
large-scale genomic studies have reported an endless number of genes mutated at a shallow
frequency. Towards uncovering infrequently mutated genes, gene interaction networks combined
with mutation data have been explored. This chapter addresses the investigation of the following
defined research question: RQ1: Can significant genes for cancer be discovered through the
combination of weighted mutation frequency and network neighbors influence?.

Figure 10 shows a summary of the general process applied to the investigation and
described in this chapter. In Step 1, cancer mutation data and a set of gene networks are selected
from reliable and widely used sources. In Step 2, an extensive exploratory analysis of mutation
data is performed, leading to data preprocessing routines. A network characterization study and a
link prediction approach are applied to selected gene networks towards the understanding of their
characteristics and obtaining of an enriched version of the networks. Finally, Step 3 refers to the
main contribution of this chapter, i.e., the proposal of a computational method, named DiSCaGe
((Discovering Significant Cancer Genes)), that discover driver mutations and generates a ranking
of prioritized driver genes. An experimental study is also conducted to evaluate the potential of
DiSCaGe on the discovering of significant genes in six types of cancer.
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Figure 10 – General process of discovering significant genes for cancer.

The chapter is based on two papers: The first was published at the Brazilian Symposium

on Bioinformatics (BSB 2019) (CUTIGI; EVANGELISTA; SIMAO, 2020b), which presents the
preliminary concepts of weighted mutations, and gene network enrichment. The second was
submitted to Nature Scientific Reports (CUTIGI et al., 2021), and describes the whole approach
presented in this chapter:

• CUTIGI, J. F.; EVANGELISTA, A. F.; SIMAO, A. GeNWeMME: A network-based
computational method for prioritizing groups of significant related genes in cancer. In:
SPRINGER. Advances in Bioinformatics and Computational Biology. [S.l.], 2020. p.
29–40. ISBN 978-3-030-46417-2.

• CUTIGI, J. F.; EVANGELISTA, A. F.; REIS, R. M.; SIMAO, D. A. A computational ap-
proach for the discovery of significant cancer genes by weighted mutation and asymmetric
spreading strength in networks. Submitted to Nature Scientific Reports, 2021.

Additionally, the exploratory study of cancer data is based on analyses published at the
Simposio Brasileiro de Computação Aplicada a Saude (SBCAS 2020) (RAMOS et al., 2020).

The chapter is organized as follows: Section 4.2 describes the cancer mutation data used
in the research, which were subjected to a preprocessing routine and an extensive exploratory
analysis. Section 4.3 introduces two gene networks extracted from the literature. An enrichment
process was applied to the networks, and a characterization study was performed in the enriched
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networks. Section 4.4 describes the computational method proposed for the prioritization of
significant mutated genes. Finally, Section 4.5 reports on an experimental study that evaluated
the method applied to the selected cancer data and gene networks.

4.2 Cancer data

The following six cancer mutation data sets were selected for the experiments that
aimed at finding significant mutations. Such types are among the most common types of cancer,
according to World Health Organization (WHO, 2021), and GBM commonly appears in method’s
evaluation in research papers. The abbreviations were defined by TCGA, which assigns codes to
each study on cancer1.

Breast invasive carcinoma (BRCA): the most common subtype of cancer in women and one
of the main causes of mortality (BING et al., 2016).

Colorectal adenocarcinoma (COADREAD): represents almost 10% of the global cancer inci-
dence. It is mainly related to old age and lifestyle factors, as dietary composition, obesity,
and lack of physical activity (WILD; STEWART; WILD, 2014).

Glioblastoma multiforme (GBM): the most common, aggressive and lethal subtype of brain
cancer, which shows a high growth rate and usually occurs in adults (PARSONS et al.,
2008).

Lung adenocarcinoma (LUAD): the leading cause of cancer death worldwide. It usually de-
velops in smokers, however, it can also occur in non-smokers (NETWORK et al., 2014).

Prostate adenocarcinoma (PRAD): one of the most common types of cancer in men. It occurs
in the reproductive system, mostly in the elderly (HUANG; HE; MO, 2018).

Stomach adenocarcinoma (STAD): the fifth most common type of cancer in the world and
third related to deaths (ZHOU et al., 2020). It is commonly associated with a bad dietary
composition.

Data sets of the following two types of mutations were selected for each type of cancer:
1) Single Nucleotide Variants (SNVs); and 2) Insertions and Deletions (InDels). The sets belong
to a Pan-Cancer study of TCGA (TCGA, Cell 2018)2 and were extracted from cBioPortal3,
which is an interactive platform for the exploration of cancer data (CERAMI et al., 2012; GAO
et al., 2013).
1 <https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations>
2 <https://www.ncbi.nlm.nih.gov/pubmed/29625048,29596782,29622463,29617662,29625055,

29625050,29617662>
3 <https://www.cbioportal.org/datasets>

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://www.ncbi.nlm.nih.gov/pubmed/29625048,29596782,29622463,29617662,29625055,29625050,29617662
https://www.ncbi.nlm.nih.gov/pubmed/29625048,29596782,29622463,29617662,29625055,29625050,29617662
https://www.cbioportal.org/datasets
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SNVs and InDels were accessed through a mutation file in a format called MAF (Mutation
Annotation Format), which is a tab-separated text file with structured mutation data. Each of its
rows is a somatic mutation with more than one hundred columns of information4, e.g., gene name
(Hugo_Symbol), type of mutation (Variant_Classification), sample/patient) id (Tumor_-
Sample_Barcode), among other. Table 2 shows an example of a MAF file containing seven
mutations in six different genes in three distinct patients.

Table 2 – Example of a MAF file with six columns.

Hugo_ Chromosome Variant_ Reference_ Tumor_Seq_ Tumor_Sample_
Symbol Classification Allele Allele2 Barcode
TP53 17 Missense_Mutation G A TCGA-02-0003-01
NF1 17 Splice_Site G A TCGA-02-0003-01
RB1 13 Nonsense_Mutation C T TCGA-06-0140-01
PIK3C2A 11 Frame_Shift_Ins - C TCGA-06-5416-01
TP53 17 Missense_Mutation C G TCGA-06-5416-01
PTEN 10 Nonstop_Mutation C A TCGA-06-0140-01
EGRF 7 In_Frame_Ins - CTAC TCGA-02-0003-01

4.2.1 Preprocessing

The selected data sets were subjected to a systematic preprocessing routine. This is a
crucial activity in cancer data analyses, since such data contain a large amount of information
that can be suppressed (intron region, for example) when exome mutation data are analyzed.
Furthermore, outlier samples can also be removed from the original data sets. The preprocessing
routine involves the following two steps:

1. Maintenance of specific somatic variants: only specific somatic variants were kept in
MAF file: 3’UTR, 5’UTR, Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_-
Frame_Ins, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_-
Site, and Translation_Start_Site. These variants were selected because they are
non-silent mutations and from coding regions, i.e., they are likely to be mutations that lead
to a functional impact. These selection was also validated on consultation with experts.

2. Removal of hypermutated samples: patients are considered hypermutated when they
have a much greater number of mutations than most patients in the set. Hypermutated
samples should be removed, since they are usually noisy or outliers, which can bias
the analyses. Among the several strategies that identify such samples, we used the one
proposed by Tamborero et al. (2013), according to which a sample is hypermutated when
it contains more than (Q3+4.5× IQR) somatic mutations, where Q3 is the third quartile,
and IQR is the interquartile range of the distribution of mutations across all data samples.
If a set of hypermutated samples is identified, it is removed from the MAF file.

4 <https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/>

https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/
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Figure 11 displays the distribution of the mutations before and after the preprocessing
task for each cancer data set. It can be noticed that the preprocessed data set the number of
mutations is better distributed. For example, regarding PRAD cancer data, in the original data
set, the most mutated sample has approximately 10000 mutations, whereas in the preprocessed
data set, the most mutated sample had around 100 mutations. The number of mutations, mutated
genes, and samples, before and after the preprocessing routine, is also shown in Table 3.

Figure 11 – Preprocessing routine: 1) Removing specific somatic mutation variants; and 2) Removal of
hypermutated samples.
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Table 3 – Data set characteristics

Original data sets Preprocessed data sets
Code Mutations Mutated genes Samples Mutations Mutated genes Samples

BRCA 130495 18794 1009 58322 14772 978
COADREAD 332610 19768 528 50900 13593 450

GBM 68802 16454 395 20782 9439 373
LUAD 243229 18905 562 168204 16352 560
PRAD 34192 12825 493 14852 7799 484
STAD 242605 18975 436 67438 14608 383

No specific genes were removed from the data set. For example, FLAGS (frequently
mutated genes) (SHYR et al., 2014) were kept in the analyses, since the aim was the evaluation
of the proposed approach with all genes of the preprocessed data set.

4.2.2 Exploratory analysis of somatic mutation cancer data

The understanding of the characteristics of cancer mutation data is crucial for a proper
analysis. In this sense, an exploratory analysis with the preprocessed data was performed towards
an overall view of the cancer data.

Long tail phenomenon

The long tail phenomenon shows a small number of genes is mutated in many patients,
while most genes are mutated at low-frequency. Figure 12 illustrates the mutation frequency in
patients for each gene. As expected, all data sets display long-tail characteristics. For example,
regarding BRCA, only five genes are mutated in more than 10% of the patients.
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Figure 12 – Evidences of the long tail phenomenon.

Inter-tumor heterogeneity

The long tail phenomenon is directly related to the inter-tumor heterogeneity of cancer,
in which two patients with the same type of cancer do not necessarily have the same set of
mutations. Jaccard coefficient (ETUDE, 1901) was applied to each pair of samples (si,s j) to
measure the similarity between the set of mutations. Two samples si and s j are considered similar
if they share a large number of common mutated genes. Considering the set of mutated genes
of si and s j as M(si) and M(s j), respectively, the Jaccard coefficient is calculated as follows:
J(si,s j) =

|M(si)∩M(s j)|
|M(si)∪M(s j)| .

A set of heatmaps was created for each cancer data set to show heterogeneity. Figure 13
displays the heatmaps, in which a color scale (from white to black) indicates how similar the
samples are. It can be noticed that the similarity is small between all pairs of samples in all
cancer data sets, thus demonstrating their high heterogeneity.
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Figure 13 – Heatmaps showing the high inter-tumor heterogeneity of each type of cancer.

Distribution of somatic mutation variants

Each SNV and InDel can be found in several classes, called somatic mutation variants.
Figure 14 shows the analysis in which the distribution of each variant is presented. It is possible
to notice a similar distribution for all types of cancer, in which most mutations are missense.
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Figure 14 – Somatic mutation variant distribution.

Distribution of SNV classes

Six SNV classes represent a single change in a nucleotide. Such classes are C>A, C>G,
C>T, T>A, T>C, T>G. Figure 15 shows the number of SNV classes for each type of cancer.
This analysis is related to mutational signatures, which are combinations of mutations generated
by different mutational processes (COSMIC, 2021). For example, class C>A is associated with
tobacco smoking and the most common in LUAD.

Figure 15 – SNV classes for each type of cancer.
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4.3 Gene networks
Understanding the complex interactions among biological entities is fundamental for the

acquisition of knowledge in Biology. Such knowledge can be modeled as a complex network for
the analyses of biological systems (LIU et al., 2020). In the present thesis, two gene networks that
use protein-protein (PPIs) as the main source of interactions were selected for the development
of the computational approach and the experiments. Below is their brief description.

Reactome Functional Interactions (Reactome): an extensive gene network built from curated
pathways from many sources, and whose data are obtained mainly from reliable PPI and
known pathways. Machine learning algorithms are used to train functional interactions.
The curation process is performed by domain experts, following a systematic process of
reviews, similarly to the editing of a scientific review. The combination of computational
approaches and expert‘s review is essential for the generation of a reliable set of high-
probability functional interactions (WU; HAW, 2017; FABREGAT et al., 2018; JASSAL
et al., 2020). The Reactome group consists of an international multidisciplinary team5,
who has updated versions of Reactome since 2016. The 2019 version, released in February,
2020, was used in this work.

Human Protein Reference Database (HPRD): classical and curated human protein interac-
tions, built from PPI, post-translational modifications, enzyme-substrate relationships, and
disease associations. Such interactions were manually extracted through critical readings
of studies published by Biology experts and bioinformatics analyses of the protein se-
quence (PERI et al., 2003; PRASAD et al., 2009). More than 70 laboratories have already
participated in the construction of the network6. The last available network (Release 9)
was used in this research.

Each selected gene network was treated as undirected and unweighted network G =

(V,E), where set of vertices V = {g1,g2, ...,gn} are genes and (gi,g j) ∈ E if gene gi interacts
with gene g j. The selected networks and subjected to an enrichment process towards inferences
about possible new interactions among the genes.

4.3.1 Gene network enrichment

Biological networks are known to be incomplete (MERING et al., 2002; ALOY; RUS-
SELL, 2004). To address this issue, a link prediction approach was used in this research
for inferring interactions among genes in the network. According to the local hypothesis
(BARABÁSI; GULBAHCE; LOSCALZO, 2011), two functionally related gene are likely to
share common neighbors (CIRIELLO et al., 2012). Szymkiewicz–Simpson coefficient (ss(gi,g j))
5 <https://reactome.org/about/team>
6 <https://hprd.org/>

https://reactome.org/about/team
https://hprd.org/
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(SZYMKIEWICZ, 1934), also known as overlap coefficient, was used to determine how similar
two genes gi and g j can be:

ss(gi,g j) =
|N(gi)∩N(g j)|

min(|N(gi)|, |N(g j)|)

where N(gi) is gi union the set of neighbors of gi, and N(g j) is g j union the set of neighbors
of gene g j; i.e., N(gi) = Neighbors(gi)∪{gi} and N(g j) = Neighbors(g j)∪{g j}. The union
operator considers the direct link between gi and g j. The overlap coefficient is extracted for each
pair of nodes of a gene network GN, thus resulting in a new weighted gene network wGN, where
the weight on the links is the overlap coefficient.

A threshold γ was defined for keeping the most significant links in wGN, in which only
edges of a coefficient higher than γ are maintained in the network. A similar approach used
by Ciriello et al. (2012) was applied for the choice of an appropriate γ threshold. For this, 186
known pathways derived from KEGG (KANEHISA; GOTO, 2000; KANEHISA et al., 2012)
and extracted from MSigBD (SUBRAMANIAN et al., 2005; LIBERZON et al., 2015) (database
v7.2, updated September 20207) were used. For each pathway p, all links among the genes of p

are selected and the weight is verified in wGN. The average overlap coefficient among all links
of p is calculated. In parallel, ten random pathways are extracted in wGN, with the same size of
p. The link weight average is obtained for each random pathway. As a result, the average overlap
coefficient in the network is extracted for each real pathway, considering the known pathway
and the set of random pathways. Figure 16 shows the chart of overlap coefficient for both real
and random pathways, according to the two networks used. As expected, the known pathways
showed a higher overlap coefficient.

The results of this analysis suggest only links whose overlap coefficient is higher than
random choices should be kept in wGN for maintaining interactions likely to participate in
biological processes. Therefore, the median of values of all random pathways was considered.
The thresholds obtained were γ = 0.16 and γ = 0.20, for Reactome and HPRD, respectively. A
non-weighted enriched gene network eGN was extracted for each network wGN, in which the
weight of all links in eGN is equal or higher than γ in the respective wGN. In order to avoid the
possible removal of edges of the original network, existing edges were replaced in the enriched
network. Algorithm 1 shows the process for the generation of an enriched gene network.

The enriched gene networks were called by their original names, with prefix e (e.g., the
enriched version of HPRD was called eHPRD). Table 4 shows some measures of both original
and enriched networks. Such measures are the number of nodes, number of edges, mean degree
(average connectivity of each node), density (ratio of number of edges and number of possible
edges), and number of components (subnetworks in which all nodes are connected by paths).

7 <https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_Latest_Release_
Notes>

https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_Latest_Release_Notes
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_Latest_Release_Notes
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Figure 16 – Choice of an appropriate threshold for the networks after link prediction with the use of
overlap coefficient.

Source: Elaborated by the author.

Table 4 – Comparison of the original networks (Reactome and HPRD) with their enriched versions
(eReactome and eHPRD).

Network Nodes Edges Mean degree Density Components
Reactome 14058 268323 38.17 0.002716 84
eReactome 14058 3067180 436.36 0.031042 84

HPRD 9465 37039 7.83 0.000827 110
eHPRD 9465 415295 87.75 0.009272 110



4.3. Gene networks 67

Algorithm 1: Obtaining of enriched gene network
Data: A gene network GN; A set of known pathways KP.
Result: An enriched gene network eGN.

1 wGN← an empty weighted gene network;
2 eGN← an empty gene network;
3 forall pairs (gi,g j)o f genes ∈ GN do
4 N(gi)← set of neighbors of gi;
5 N(gi)← N(gi)∪{gi};
6 N(g j)← set of neighbors of g j;
7 N(g j)← N(g j)∪{g j};
8 ss(gi,g j)←

|N(gi)∩N(g j)|
min(|N(gi)|,|N(g j)|) ;

9 wGN← link (gi,g j) with weight ss(gi,g j);
10 end
11 avg_set← /0;
12 forall pathway p ∈ KP do
13 ng← number of genes in p;
14 ni← number of interactions in p;
15 rp_set← 10 random pathways with ng genes and ni interactions;
16 avg_sum← 0;
17 forall rp ∈ rp_set do
18 avg_rp← average of link weights of rp in wGN;
19 avg_sum← avg_sum+avg_rp;
20 end
21 avg_set← avg_set ∪ (avg_sum/10);
22 end
23 γ ← median of values in avg_set;
24 forall pairs (gi,g j) of genes in wGN do
25 w← weight of the link (gi,g j) ∈ wGN;
26 if w > γ then
27 eGN← unweighted link (gi,g j);
28 end
29 end
30 forall pairs (gi,g j)o f genes ∈ GN do
31 eGN← unweighted link (gi,g j);
32 end
33 return eGN;

Source: Elaborated by the author.
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The gene network enrichment process increased the number of edges almost ten times in
each network. Such a process increased the density of the networks and placed more interactions
among the genes. The overall results of our approach were improved by the gene network
enrichment process.

4.3.2 Characterization of gene networks

The characterization of networks is an important point for comprehending the elements
and their interactions. Such networks can display distinct characteristics, depending on the way
they are built. Some analyses were performed towards supporting their study.

Network measures

All enriched gene networks used in this research were characterized, and some measures
and analyses performed aimed at knowing their topological characteristics. Such measures were
extracted from the main connected component of each network, since some of them are applied
only to connected networks. Table 5 shows a set of measures for each gene network: number of
nodes (N), number of edges (E), mean degree (MD), density (DS), average shortest path (ASP),
which is the average of all shortest paths between all pairs of nodes, diameter (DM), which is the
shortest path of longest length, assortativity (A), which is the tendency of a node to be linked
to another of a similar degree, normalized Shannon entropy (NSE), which is the heterogeneity,
considering the number of connections, and average clustering (AC), which is a tendency of the
nodes to form clusters.

Table 5 – Set of measures for the main component of each gene network.

Network N E MD DS ASP DM A NSE AC
eReactome 13864 3067033 442.45 0.031916 2.23 7 -0.07 0.71 0.52

eHPRD 9219 415125 90.06 0.009770 2.68 8 -0.01 0.59 0.43

The main component shows similar measures in comparison to the full network (see
Table 4). The average shortest path (ASP) and density (DS) are small in relation to the number of
nodes, which shows information in the network can be easily transferred. Assortativity (A) is
not strong, since the values of the two networks are near zero, although biological networks are
usually disassortative (A < 0). The heterogeneity of the networks is evidenced by the normalized
Shannon entropy (NSE), because the NSE values are high for all networks. Average clustering
(AC) shows a high value, related to the low density of the networks, i.e., such networks tend to
form clusters.

Degree distribution

Degree distribution is the relation between degree (k), and the probability of a node
has such a degree (P(k)). Figure 17 shows the degree distribution of the enriched networks
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on a logarithmic scale. A power-law distribution is observed in the tail of the graph, where
P(k) ∼ k−λ , and λ is the degree exponent. Probability P(k) decreases, as degree k increases,
i.e., the higher the degree, the less likely a node with that degree. Such a distribution displays
a scale-free network characteristic (BARABÁSI; ALBERT, 1999), which is common in many
biological networks (LIU et al., 2020).

Figure 17 – Degree distribution of each enriched gene network.

Source: Elaborated by the author.

The degree distribution shows the enriched gene networks are heterogeneous, i.e., most
of the genes have few interactions, whereas a small number of nodes are heavily connected.

4.4 Method
This section introduces DiSCaGe (Discovering Significant Cancer Genes), a network-

based computational method for discovering significant genes for cancer. Such significance is
directly related to the impact of different mutation types and gene interactions on networks.
DiSCaGe is based on the hypothesis that genes involved in cancer tend to interact with each other
(BARABÁSI; GULBAHCE; LOSCALZO, 2011), and the mutations they undergo can influence
their neighborhood. This influence is extracted from asymmetric spreading strength measures
of all node pairs, which take into account direct and indirect neighbors on the network. Such
spreading strength is used to quantify how much its neighborhood’s mutated genes can perturb a
gene. The following questions and answers summarize the method and its characteristics and
goals:

1. What is the biological problem that the method seeks to solve?

The prioritization of genes and mutations that are significant for cancer initiation and
progression.
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2. Why is this method necessary?

With the knowledge of significant mutations for cancer, it is possible to understand the
mechanisms of the disease and personalize the cancer treatment

3. What are the input data and hyperparameters to run the method?

Data: Mutation data (MAF file with SNVs and InDels); and Interaction gene networks.

Hyperparameters: weights for each type of mutation.

4. How is the problem computationally formulated?

A union and enrichment are performed in the networks, and aggregated with mutation data
in each node of the network. From it, a directed and weighted network is created, with
information on the propagation of the mutation strength among the genes of the network,
based on direct and indirect neighbors.

4.4.1 Running example

On this chapter, a running example will be performed. For this, it is necessary to provide
input data and hyperparameters that are mandatory to run the proposed method. For the running
example, MAF file of Table 6 will be considered, and four gene networks illustrated in Figure 18.
The required hyperparameters are presented in Table 7, which shows some defined weights
for each variant classification. Such weights will be used on the running example and on the
experiments, which are defined based on a consultation with expert. However, the final user is
able to change such weights through a input file for hyperparameters definition.
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Table 6 – MAF file for the running example.

Hugo_ Chromosome Variant_ Reference_ Tumor_Seq_ Tumor_Sample_
Symbol Classification Allele Allele2 Barcode
g1 7 Missense_Mutation A T p3
g1 7 Nonsense_Mutation G C p3
g1 7 Frame_Shift_Ins - T p3
g1 7 Frame_Shift_Del C - p3
g1 7 Translation_Start_Site A T p3
g1 7 Missense_Mutation A T p4
g2 13 Frame_Shift_Ins - C p2
g2 13 In_Frame_Ins - TTGTGCTTG p2
g2 13 In_Frame_Del ATTGG - p2
g2 13 Nonsense_Mutation C T p4
g2 13 3’UTR G A p4
g2 13 Missense_Mutation C T p5
g3 18 Nonsense_Mutation C T p2
g3 18 Frame_Shift_Ins - A p3
g3 18 Translation_Start_Site C T p3
g3 18 Missense_Mutation C T p5
g4 1 Frame_Shift_Del GC - p3
g4 1 Translation_Start_Site C T p3
g4 1 Missense_Mutation C T p4
g4 1 Missense_Mutation G A p5
g5 11 Missense_Mutation T G p2
g6 12 Nonsense_Mutation C G p1
g6 12 Nonstop_Mutation C G p1
g6 12 Missense_Mutation C G p1
g6 12 Translation_Start_Site G A p1
g6 12 In_Frame_Ins - GAA p3
g7 17 Nonsense_Mutation C T p5
g7 17 Frame_Shift_Ins - T p3
g7 17 In_Frame_Ins - TTGTGCTTG p3
g7 17 In_Frame_Del CTGGCT - p3
g7 17 Frame_Shift_Ins - G p6
g7 17 Translation_Start_Site C T p6
g8 15 Splice_Site C T p5
g8 15 Nonsense_Mutation C T p5
g8 15 Frame_Shift_Ins - A p5
g10 18 Frame_Shift_Del A - p1
g10 18 Translation_Start_Site C T p1
g10 18 In_Frame_Ins - TAT p3
g10 18 Nonsense_Mutation C T p6
g10 18 3’UTR A G p6
g11 10 Frame_Shift_Del A - p2
g11 10 In_Frame_Ins - TGTA p2
g11 10 In_Frame_Del CTA - p2
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Table 7 – Mutation weights.

Variant classification - vc Weight - w(vc)
Nonsense_Mutation 1.0
Missense_Mutation 0.4
Splice_Site 0.4
Frame_Shift_Del 1.0
Frame_Shift_Ins 1.0
In_Frame_Del 0.4
In_Frame_Ins 0.4
3’UTR 0.2
5’UTR 0.4
Nonstop_Mutation 0.4
Translation_Start_Site 0.2

Figure 18 – Networks for the running example.
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4.4.2 Method description

DiSCaGe uses cancer mutation data (SNVs and InDels in an MAF file format) and
a set of N ≥ 1 undirected and unweighted gene interaction networks (in edge lists) as input,
whereas the output is a ranking of prioritized mutated cancer genes. DiSCaGe is composed of
6 steps, as illustrated in Figure 19. In Step 1, a weighted mutation matrix (WMM) is built and
assigned a real value for each patient-gene pair, according to the weight defined for the variant
classification of the mutation and number of mutated patients. Step 2 uses WMM to obtain a
mutation score for each gene, called weighted mutation frequency. Next, in Step 3, a union
operation is performed on the gene interactions networks, resulting in an undirect and weighted
consensus gene interaction network. Based on such a network, in Step 4, a gene spreading
strength network (GSSN) is obtained, according to the spreading strength from a gene to its
direct and indirect neighbors. Step 5 extracts a mutation influence exerted on all genes by their
neighbors, based on GSSN and gene mutation scores. Finally, in Step 6, each gene mutation
score is enriched with the neighbors’ influence, and a sorted list of prioritized genes is obtained.

Figure 19 – Approach overview.

Step 1: Building the weighted mutation matrix

In this first step, the preprocessed MAF file is used as a source for the construction of
the Weighted Mutation Matrix (WMM), in which rows are patients and columns are genes. In
WMM matrix wmm, entry wmmpig j , for each pair of patient pi and gene g j, a score is obtained
according to its type of mutation vc (Variant_Classification from MAF input file) and in a
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weight w(vc) assigned for each vc, as seen in Table 7. Such weights are defined in the input of
the method.

Considering a patient pi, and all mutations in a gene g j, entry wmmpig j is defined as

wmmpig j =
1

|VCpig j |
∑

vc∈VCpig j

w(vc)

where VCpig j is the list of mutations that patient pi undergoes in gene g j, and w(vc) is the
weight defined for the type of specific mutation. For example, Considering MAF file from
Table 6, patient p3 has the following list of mutations types in gene g1: {Missense_Mutation,
Nonsense_Mutation, Frame_Shif_Ins, Frame_Shif_Del, Translation_Start_Site}. As
a result, the score w(p3g1) =

0.4+1.0+1.0+1.0+0.2
5 = 0.72.

Such a process is performed for all patient-gene pairs. Therefore, all pairs of a mutated
gene g j in a patient pi have score wmmpig j , which represents the importance of that mutation
in that patient. The weighted average of mutations are used to consider the mutations and the
possible functional impact of them, and because sometime it is necessary a set of mutations to
initiate the cell carcinogenesis. Furthermore, the use of average avoids possible errors and noise
in the sequencing data.

Figure 20 – An Weighted Mutation Matrix (WMM).

Source: Elaborated by the author.
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Algorithm 2: Building WMM
Data: Mutation data M in MAF format; Dictionary wc of variant classification

weight
Result: Weighted Mutation Matrix (WMM)

1 P← set of patients of M ;
2 G← set of genes of M ;
3 wmm← P×G = {(pi,g j) : pi ∈ P and g j ∈ G};
4 forall pairs wmmpig j ∈ wmm do
5 VCpig j ← list of variant classifications of pair (pi,g j) ∈M ;
6 wmmpig j ← 0;
7 forall vc ∈VCpig j do
8 wmmpig j ← wmmpig j +wc(vc);
9 end

10 wmmpig j ←
wmmpig j
|VCpig j |

;

11 end
12 return wmm;

Step 2: Generating mutation score for each gene

A single score for each gene is extracted from wmm, and called weighted frequency
w f (gi), which is the sum of the gene scores for all patients, divided by the number of patients,
defined as

w f (gi) =
1
|P| ∑

p j∈P
wmmp jgi

where P is the set of patients. For example, considering gene g1, the weighted frequency
w f (g1) = (0+0+0.72+0.4+0+0)/6 = 0.187. Such a frequency is extracted for all genes,
generating set w f with weighted frequencies for all genes. The final single score is normalized
by the largest value in w f , thus yielding a normalized weighted frequency nw f (gi), defined as

nw f (gi) =
w f (gi)

maxg∈G(w f (g))

For example, considering gene g1, nw f (g1) = 0.187/0.367 = 0.510. Table 8 presents
the weighted frequencies w f and normalized weighted frequencies nw f for all genes on the
running example.

Algorithm 3 presents the process to obtain the mutation score from WMM generated in
Step 1.
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Table 8 – Weighted frequencies.

wf nwf
g1 0.187 0.510
g2 0.267 0.728
g3 0.333 0.907
g4 0.233 0.635
g5 0.067 0.183
g6 0.150 0.409
g7 0.367 1.000
g8 0.133 0.362
g10 0.267 0.728
g11 0.100 0.272

Algorithm 3: Extracting mutation score for each gene
Data: Weighted Mutation Matrix wmm
Result: A set nw f of mutation score for each gene

1 P← set of patients of wmm;
2 G← set of genes of wmm;
3 w f = { /0};
4 forall g j ∈ G do
5 w fg j ← 0;
6 forall pi ∈ P do
7 w fg j ← w fg j +wmmpig j ;
8 end
9 w f ← w f ∪{w fg j};

10 end
11 nw f = { /0};
12 forall w fg j ∈ w f do
13 nw fg j ←

w fg j
max(w f ) ;

14 nw f ← nw f ∪{nw fg j};
15 end
16 return nw f ;

Source: Elaborated by the author.

Step 3: Consensus of gene interaction networks

An important component of DiSCaGe is gene network, which significantly impacts on
the method result. Towards reducing the bias of choice of a single network, DiSCaGe accepts
multiple networks as input, i.e., the method can be executed with one or more networks.

Each gene network GNi of input set GN1, ...,GNN was treated as undirected and un-
weighted networks. The union operation on these networks generates an undirected and weighted
network UGN. Weights on UGN interactions are the average of times an interaction occurs
in each network. For example, considering gene networks of Figure 18, the resulting UGN is
illustrated in Figure 21. It can be notice that interaction (g1,g5) are contained in all individual
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networks, then such interaction has weight w((g1,g5)) = 1, while w((g1,g2)) = 0.5 because
interaction (g1,g2) is presented in two networks (GN1 and GN4). Algorithm 4 shows the union
process of networks to generate a consensus network UGN.

Figure 21 – A consensus network UGN, extracted from the union of gene networks of Figure 18

Source: Elaborated by the author.

Algorithm 4: Building consensus network
Data: A set GNSET of gene networks
Result: A weighted network UGN(V,E,w)

1 UGN(V,E,w)← empty graph;
2 V ← set of all genes of GNSET ;
3 forall GN(VGN ,EGN) ∈ GNSET do
4 forall interaction (gi,g j) ∈ EGN do
5 if (gi,g j) /∈ E then
6 E← E ∪{(gi,g j)};
7 w((gi,g j))← 1

|GNSET | ;
8 else
9 w((gi,g j))← w((gi,g j))+

1
|GNSET | ;

10 end
11 end
12 end
13 return UGN;

Source: Elaborated by the author.
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Step 4: Extraction of the Gene Strength Spreading Network (GSSN)

According to the local hypothesis (BARABÁSI; GULBAHCE; LOSCALZO, 2011),
genes (and their associated proteins) involved in a certain disease tend to interact with each other,
and some mutations can influence other genes in the same pathway (DING et al., 2015). In this
context, if a gene is mutated, such a mutation can impact its neighbors and propagate to the
network.

An adapted spreading strength measure proposed by (LIU et al., 2017) was defined for
quantifying the spreading strength of a mutated gene through the neighborhood in UGN. Such
a measure takes into account both direct and indirect neighbors, and quantifies the spread of a
mutation from a node gi to a node g j, defined as

ss(gi,g j) = (1+ ri× rout
j )× pi j

where ri is the sum of the edge weights of gi; rout
j is the sum of the edge weights of g j that are

not edges of gi; and pi j is the weight of edge (gi,g j). The spreading strength is an asymmetric
measure, i.e, ss(gi,g j) 6= ss(g j,gi). Considering term (1+ ri× rout

j ), value 1 represents a single
spreading from gi to g j and ri× rout

j denotes the impact of gi through g j, taking into account
their indirect neighbors which are direct neighbors of g j. At the end, such a value is tuned by the
weight of the edge (gi,g j). The final spreading strength measure is normalized by the largest
value of ss, thus obtaining a normalized spreading strength nss(gi,g j), defined as

nss(gi,g j) =
ss(gi,g j)

max(g,g′)∈G×G(ss(g,g′))

For example, considering UGN of Figure 21 and the strength spreading from g3 to g4:

rg3 = pg3g1 + pg3g4 + pg3g5 = 0.5+0.5+0.5 = 1.50

rout
g4

= pg4g2 + pg4g8 = 0.75+0.5 = 1.25

pg3g4 = 0.50

ss(g3,g4) = (1+ rg3× rout
g4

)× pg3g4 = (1+1.50×1.25)×0.50 = 1.438.

Performing the normalization by the maximum value of the set ss of spreading strength
measure, nss(g1) = 1.438/4.938 = 0.291.

After the extraction of the normalized spreading strength measure for all neighbor genes,
a directed and weighted network, called Gene Spreading Strength Network (GSSN), is obtained.
In GSSN, directed interaction weights represent the degree of spreading at which a mutation in a
gene gi can pass through a gene g j. Finally, the mutation score of each gene is assigned to the
GSSN network. Figure 22 presents the Gene Strength Spreading Network GSSN generated from
UGN of Figure 21. Algorithm 5 shows the process to build the GSSN.
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Figure 22 – A Gene Strength Spreading Network GSSN, extracted from the network of Figure 21

Source: Elaborated by the author.

Algorithm 5: Building Gene Strength Spreading Network GSSN
Data: An weighted network UGN(V ′,E ′,w′)
Result: A directed and weighted network GSSN(V,E,w)

1 GSSN(V,E,w)← empty directed and weighted graph;
2 V ← V ′;
3 forall interaction (gi,g j) ∈ EGN do
4 Ngi ← set of neighbors of gi in UGN;
5 Ng j ← set of neighbors of g j in UGN;

6 rgi ← ∑
Ngi
g w′(gi,g);

7 rg j ← ∑
Ng j
g w′(g j,g);

8 rout
gi
← ∑

Ngi\Ng j
g w′(gi,g);

9 rout
g j
← ∑

Ng j\Ngi
g w′(g j,g);

10 pgig j ← w′(gi,g j);
11 ss(gi,g j)← (1+ rgi× rout

g j
)× pgig j ;

12 ss(g j,gi)← (1+ rg j × rout
gi

)× pgig j ;
13 E← E ∪ (gi,g j) of weight w(gig j) = ss(gi,g j);
14 E← E ∪ (g j,gi) of weight w(g jgi) = ss(g j,gi);
15 end
16 return GSSN;

Source: Elaborated by the author.
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Step 5: Extraction of mutation neighbors influence

The spreading strength among genes represents how much a single gene can be affected
by mutations of its neighborhood, and how much it can affect its neighbors. In this step, the
received influence of a mutated gene is extracted by a function r(gi), which represents how much
influence gi receives from its neighbors, defined as

r(gi) = ∑
gk∈N(gi)

nw f (gk)×nss(gk,gi)

where N(gi) are direct neighbors of gi on GSSN.

For example, considering gene g2 and and its neighbors N(g2) = {g1,g4,g6}:

r(g2) = ∑
N(g2)
gk nw f (gk)×w(gk,g2)

r(g2) = nw f (g1)×w(g1,g2)+nw f (g4)×w(g4,g2)+nw f (g6)×w(g6,g2)

r(g2) = 0.510×0.348+0.635×0.532+0.409×0.196

r(g2) = 0.177+0.338+0.080

r(g2) = 0.595

With this, gene g2 receive from its neighbors a mutation influence score of 0.595. After
the calculation of r(gi) for all genes of GSSN, a maximum value normalization is applied on
r(gi), as follows:

nr(gi) =
r(gi)

maxg∈G(r(g))

For example, considering gene g2, nr(g2) = 0.595/1.306 = 0.455. Table 9 presents neighbors
mutation influence r and normalized influence nr for all genes on the running example. Algo-
rithm 6 shows the process to extracted the neighbors influence.

Table 9 – Neighbors mutation influence.

r nr
g1 1.306 1.000
g2 0.595 0.455
g3 0.299 0.229
g4 0.911 0.697
g5 0.784 0.600
g6 0.151 0.116
g7 0.052 0.040
g8 0.105 0.080
g9 0.018 0.014
g10 0.000 0.000
g11 0.000 0.000
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Algorithm 6: Extraction of mutation neighbors influence
Data: Mutation score nw f for each gene; A directed and weighted network

GSSN(V,E,w)
Result: A mutation influence nr received for each gene

1 r←{ /0};
2 forall gi ∈V do
3 N(gi)← neighbors of gi;
4 r(gi)← 0;
5 forall gk ∈ N(gi) do
6 r(gi)← nw f (gk)×w(gk,gi);
7 end
8 r← r∪{r(gi)};
9 end

10 nr←{ /0};
11 forall rgi ∈ r do
12 nrgi ←

rgi
max(r) ;

13 nr← nr∪{nrgi};
14 end
15 return nr;

Source: Elaborated by the author.

Step 6: Gene mutation score enrichment based on GSSN and gene
prioritization

In this step, the final mutation score of each mutated gene g is obtained, taking into
account the individual mutation score of gene nw f (g) and the influence nr(g) score from its
neighbors. The final mutation score ms(gi) of a gene gi is the sum of its mutation score and its
neighbors mutations influence, given by

ms(gi) = nw f (gi)+nr(gi)

For example, gene g2 has own mutation score nw f (g2) of 0.728, and receives from its
neighbors r(g2) of 0.455, thus resulting in a final mutation score ms(g2) = nw f (g2)+nr(g2) =

0.728+0.455 = 1.183.

After ms(g) has been obtained for all mutated genes, the final ranking of prioritized
genes is extracted through their sorting by ms. Mutated genes with the highest ms values are
likely to be significantly mutated and related with significantly mutated neighbors. Table 10
shows the final mutation score ms(gi) for every mutated gene gi of the running example, sorted
by ms(gi).
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Table 10 – Final mutation score.

gene nw f (gi) r(gi) ms(gi)
g1 0.510 1.000 1.510
g4 0.635 0.697 1.332
g2 0.728 0.455 1.183
g3 0.907 0.229 1.136
g7 1.000 0.040 1.040
g5 0.183 0.600 0.783
g10 0.728 0.000 0.728
g6 0.409 0.116 0.525
g8 0.362 0.080 0.442
g11 0.272 0.000 0.272

4.5 Experimental study

The evaluation of computational methods that identify significant mutations in cancer
remains a challenging task (CUTIGI; EVANGELISTA; SIMAO, 2020a). The lack of gold
standard databases for driver and passenger genes hampers the obtaining of an optimal measure
of the output. In-vivo or in-vitro biological laboratory experiments could be performed to
analyze the suggested cancer genes found by the computational methods. However, they require
considerable time and are costly.

In this context, prior to laboratory experiments, prioritized cancer genes should be
considered highly reliable, and in-silico experiments can be performed. For this, in this research,
the results of the method will be evaluates as follows:

4.5.1 Evaluation metrics

4.5.1.1 Precision

Precision is the fraction of prioritized genes that are known related to cancer. The
precision of the ranking can be computed, and is obtained by

Precision =
|PG∩D|
|PG|

where PG is the set of prioritized genes and D is the set of known driver genes.

To extract precision of the results, a set of known driver genes D is necessary. Despite
the lack of a gold standard for driver and passenger genes, some gene databases are widely used
and continuously updated. Towards a well-defined set of known cancer genes, the following four
reliable and recent available benchmarks were considered:
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1. A DNCG set of 711 known cancer drivers extracted from Network of Cancer Genes (NCG)8

(REPANA et al., 2019).

2. A DCGC set of 723 driver genes extracted from Cancer Gene Census (CGC)9 (FUTREAL
et al., 2004; SONDKA et al., 2018).

3. A DIntOGen set of 568 driver genes extracted from Integrative OncoGenomics (IntOGen)10

(MARTÍNEZ-JIMÉNEZ et al., 2020).

4. A DBailey set of 299 driver genes extracted from the recent and extensive study conducted
by (BAILEY et al., 2018)11.

Considering the described four set of known drivers, a union of all lists was per-
formed, thus resulting in a single list D of 951 known cancer drivers, i.e., D = DNCG ∪
DCGC ∪ DIntOGen ∪ DBailey. For example, considering the following list of five (p = 5)
prioritized genes: PG5 = {T P53,T T N,EGFR,SEPT 9,CDKN2A}, four genes PG5 ∩ D =

{T P53,EGFR,SEPT 9,CDKN2A} are known to be driver genes. Thus, considering P = 5,
the Precision5 = 0.8, i.e, 80% of the prioritized genes are known to be related to cancer.

It is important to discuss that is a hard task to determine an ideal value for the precision.
For example, if all the prioritized genes are known drivers, the result was not able to bring any
possible novel information, thus, the gene prioritization method is nos useful. On the other hand,
if none of the prioritized genes are known driver, the result seems to be random. So, the results
should be analyzed not in a binary way, but in perspective with other analysis and specialist
validation.

4.5.1.2 Discounted cumulative gain (DCG)

Discounted cumulative gain (DCG) (JäRVELIN; KEKäLäINEN, 2002) is a measure of
the set prioritized genes that considers their position on the ranking and relevance of each gene.
It can be used for the analysis of how good a set of genes is. Two same size ranking lists of genes
can be compared, even if the genes are the same, but are not in the same position.

To allow the extraction of DCG, a relevance must be assigned for each gene. For this,
it is used information about the driver gene benchmarks DNCG, DCGC, DIntOGen, and DBailey

presented in previous section. In addition, other gene benchmarks were considered:

1. An FDNCG set of 250 genes listed as possible false positive drivers12 by the Network of
Cancer Genes (NCG).

8 Version 6.0 – http://ncg.kcl.ac.uk/download.php
9 Version 92, 27-AUG-20 – https://cancer.sanger.ac.uk/census
10 Release 2020-02-01 – https://www.intogen.org/search
11 Baylei et. al 2018 – https://pubmed.ncbi.nlm.nih.gov/29625053/
12 Version 6.0 – http://ncg.kcl.ac.uk/false_positives.php
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2. Six SDcancer_type
IntOGen sets of specific drivers for each type of cancer, based on the known

specific driver from IntOGen, i.e., each set contains genes related to a specific type of
cancer, whose specific benchmark is essential, since many genes are important in specific
types of cancer, and probably irrelevant in others (LEVER et al., 2019). The sets SDBRCA

IntOGen,
SDCOADREAD

IntOGen , SDGBM
IntOGen, SDLUAD

IntOGen, SDPRAD
IntOGen, and SDSTAD

IntOGen have 99, 72, 35, 42, 82 and
61 specific drivers, respectively.

With all driver genes benchmarks, it is possible to have the relevance of all genes,
considering all types of cancer. In this context, to get the relevance relct j

gi , of a gene gi in the
cancer type ct j a score for the presence of gi in each gene benchmark is assigned. The relevance
relct j

gi is incremented by 1 for each time that gi are contained in DNCG, DCGC, DIntOGen. or DBailey.
If gi is contained in the specific driver benchmark SDct j , relct j

gi is incremented by 4, in order to
specific cancer drivers have the same weight if it appears in all four general benchmarks. If gi is
contained in FDNCG, relct j

gi is decreased by 1. Finally, if gi is not in any gene set, its value is zero.

For example, Table 11 presents the relevance of five genes for STAD. The relevance of
gene TP53 for STAD relSTAD

T P53 = 8. Such relevance are used to extracted the DCG for a ranking
of prioritized genes.

Table 11 – Relevance of five genes for STAD

Gene DNCG DCGC DIntOGen DBailey FDNCG SDSTAD
IntOGen relSTAD

g
TP53 1 1 1 1 0 4 8
TTN 0 0 0 0 -1 0 -1

EGFR 1 1 1 1 0 0 4
SEPT9 1 1 1 0 0 0 3

CDKN2A 1 1 1 1 0 4 8

Discounted cumulative gain (DCGp) of a ranking of genes up to position p is a measure
that takes account the relevance of the genes and their position in the ranking, being reduced
logarithmically proportional to this position. DCGp is defined as follows:

DCGp =
PGp

∑
i=1

relct j
gi

log2(i+1)

where PGp is the ranking list of p prioritized genes. For example, considering PG5 =

{T P53,T T N,EGFR,SEPT 9,CDKN2A}, and the gene relevance relSTAD
g of Table 11.

DCG5 =
relSTAD

T P53
log2(1+1) +

relSTAD
T T N

log2(2+1) +
relSTAD

EGFR
log2(3+1) +

relSTAD
SEPT 9

log2(4+1) +
relSTAD

CDKN2A
log2(5+1)

DCG5 =
8

log2 2 +
−1

log2 3 +
4

log2 4 +
3

log2 5 +
8

log2 6

DCG5 = 13.756
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4.5.2 Results

A set of experiments was designed to show the potential of the computational approach
proposed in this research. Such experiments were evaluated using the criteria defined on the
previous section and cancer data and gene interaction network presented in Section 4.2 and 4.3
respectively.

For the DiSCaGe hyperparameter, i.e., weights of each type of mutation, the values of
Table 7 were considered. However, a study of the influence of hyperparameters is presented in
Section 4.5.2.10.

4.5.2.1 Precision and DCG

Figure 23 shows a plot with precision for each type of cancer, from the first prioritized
genes up to position 200. For example, considering BRCA and a list of 50 prioritized genes,
nearly 60% of genes are contained in the driver benchmarks, i.e., they are likely to be a known
driver.

Figure 23 – Precision

Figure 24 shows a plot with DCG at a specific position. For example, considering BRCA
and a list of 25 prioritized genes, DCG is 40. It can be noticed that is not natural to interpret
DCG when presented alone. However, such measure can be used together with precision to infer
the quality of a rank. Furthermore, it can be used to compare different rankings. For example,
ranking with the same genes but in different positions can be compared using DCG.
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Figure 24 – DCG

4.5.2.2 Comparison with mutation frequency

Not all most frequent mutated genes are considered drivers. Frequency-based methods
use complex approaches to estimate background mutation rate to extracted frequency based
on this estimation, which is a challenging task. In this context, the prioritized genes should
outperform a ranking of genes sorted by their simple mutation frequency. Figure 25 and 26
presents precision and DCG, respectively, of the results of DiSCaGe in comparison with simple
frequency. It can be noticed that DiSCaGe outperforms the results obtained with the simple
mutation frequency for all types of cancer.
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Figure 25 – Precision: DiSCaGe x Mutation frequency

Figure 26 – DCG: DiSCaGe x Mutation frequency

4.5.2.3 Comparison with weighted frequency

In Step 2 of the DiSCaGe, a mutation score is generated for each gene. Such score is a
normalized weighted frequency nw f (g), based on the type of mutations that gene g has on the
mutation data. In this experiment, a comparison between the weighted frequency nw f , and the
final mutation score ms is performed. Figure 27 and 28 presents precision and DCG, respectively.
It can be noticed that the final mutation score obtained by DiSCaGe outperforms the weighted
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score based only on the gene mutation. It suggests that the neighbors’ influence has a significant
impact on the performance of the method.

Figure 27 – Precision: DiSCaGe x Weighted frequency

Figure 28 – DCG: DiSCaGe x Weighted frequency

4.5.2.4 Comparison with mutation influence from neighbors

Step 4 and Step 5 of the approach extract information to measure the influence of the
direct and indirect neighbors on the mutated genes. In this experiment, the neighbors influence
r(g) that a gene g receive from its neighbors is compared with the final mutation score ms(g).
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Figure 29 and 30 presents precision and DCG, respectively. It can be noticed that the precision is
similar, considering both scores. However, comparing DCG for the score, it can be noticed that
the DiSCaGe outperforms the neighbors’ influence in all types of cancer, except in LUAD. It
suggests that, although the precision is similar, DiSCaGe is likely to return a ranking of genes
with high quality. However, it is important to notice that the neighbors’ influence has a significant
impact on the final result of the method.

Figure 29 – Precision: DiSCaGe x Neighbors influence

Figure 30 – DCG: DiSCaGe x Neighbors influence
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4.5.2.5 Prioritization of low-frequency mutated genes

DiSCaGe can find low-frequency cancer mutated genes. Figure 31 shows the long-tail
chart for each cancer data set studied. The top 30 prioritized genes are highlighted in the charts,
where red dots are genes known to be related to cancer, and blue ones are possible cancer genes
prioritized by DiSCaGe. The gene names can be observed in the matrix of the Figure 34, in which
the blue genes are not contained in any benchmark, i.e., the matrix column are composed by only
white cells. Several prioritized genes are on the tail of the graph, thus showing the potential of
DiSCaGe for prioritizing known and low-frequency cancer genes and possible novel ones.

Figure 31 – Low-frequency mutated genes

4.5.2.6 Evidencing the potential of combination of weighted mutation and asymmetric spread-
ing strength

This experiment shows the potential of the combination of the use of weighted mutation
and asymmetric spreading strength. For this, A comparison between DiSCaGe and an alternative
version was performed. Such an alternative version uses simple mutation frequency for mutation
score and value one for the weights of edges on GSSN. As seen in Figure 29 and 30, DiSCaGe
outperforms the alternative version on most of cancer types. For COADREAD the results are
similar and for LUAD the alternative version had better results.
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Figure 32 – Precision: DiSCaGe x Alternative version

Figure 33 – DCG: DiSCaGe x Alternative version

4.5.2.7 Top 50 genes on benchmarks

In this experiment, the presence of prioritized genes on the benchmarks is illustrated. The
50 prioritized genes for each type of cancer were selected to be presented in a colored matrix, as
seen in Figure 34. Each driver gene benchmark is presented in a row with a specific color, and
genes discovered by DiSCaGe are presented in the columns, for example, NCG is the first row
and has color green. If a gene is presented in the benchmark, the matrix cell is colored, otherwise
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the color is white. It can be noticed how the genes are arranged on the benchmarks and show
that results are consistent. The top 50 genes were chosen due to provide a better visualization.

Figure 34 – How top 50 genes appear in benchmarks

4.5.2.8 Automated literature-based analysis

As shown in Figures 31 and 34, some genes are not in any the driver gene benchmarks.
Their prioritization suggests they can potentially be novel cancer genes. Towards a secondary
study on those genes, an automated literature review was performed using CancerMine (LEVER
et al., 2019). Figure 35 displays, for each type of cancer and for the top 50 genes, the ones that
are not in the driver benchmarks, as shown in Figure 34, and their respective number of citations
found by CancerMine13.
13 Query performed on January 2021
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Figure 35 – Number of citations reported by CancerMine

Most genes were cited as cancer genes at least once in the research papers, which suggests
even prioritized genes that are not in driver benchmarks can be related to cancer. The remaining
of non-classified genes should be further evaluated and suggested as possible novel genes for
their respective cancer types. Although it is a secondary study, this experiment allows comparing
the relationship of genes known to be drivers with genes not yet known.

4.5.2.9 Comparison with related methods

In this section DiSCaGe is compared with related methods. The comparative study was
performed in two perspectives: 1) Quantitative comparison: DiSCaGe is compared with related
methods using precision and DCG. Furthermore, the potential of finding low-frequency genes
and the ability to suggest possible novel cancer genes was also compared; and 2) Qualitative
comparison: the main differences and novelties of DiSCaGe were pointed out in comparison to
related methods.

Quantitative comparison

In this experiments DiSCaGe method is compared with three related methods: MutSigCV
(LAWRENCE et al., 2013), MUFFINN (CHO et al., 2016), and nCOP (HRISTOV; SINGH,
2017). Such selected methods are chosen based on the classification of methods presented
in Section 3.3, which returns a ranking list of prioritized genes and use mutation data. To
avoid possible running influence, the methods were executed using standard parameters and
configurations, which are described as follows:
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MutSigCV: it was run using only the MAF file14. A difference on the preprocessing routine
was assigned to MAF files for MutSigCV, in which Silent mutation were kept on MAF,
because it is a mandatory data for the method, that uses it to extract the background
mutation rate.

MUFFINN: it was run using the number of mutated patients for each gene as the gene mutation
score (mutation occurrence data)15. MUFFINN has four variations, that is a combina-
tion of the approach (DNmax or DNsum) with the gene network (STRING or HumanNet). For
this experiment, DNmax + HumanNet was selected, because it presented the best results.

nCOP: it was run using its preprocessed HPRD gene network16 with no weight for each node
in the network. The optimal value for alpha was obtained for the method itself.

Precision

Figure 36 displays precision for all methods. The results show variations according to
the type of cancer and the top N value. For example, considering precision, for BRCA, nCOP
is better for N nearly from 20 to 50. In general, DiSCaGe outperformed all methods for most
values of N for BRCA, COADREAD, GBM, PRAD and STAD, which is evidenced in Figure 37.
Such a figure shows boxplots of precision presented in the curves of Figure 36. It can be noticed
the median for the DiSCaGe precision is better for five methods, except for LUAD, in which
MUFFINN is slightly better.

Figure 36 – Precision: related methods

14 https://software.broadinstitute.org/cancer/cga/mutsig_run
15 https://www.inetbio.org/muffinn/download.php
16 https://github.com/Singh-Lab/nCOP
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Figure 37 – Precision boxplots: related methods

DCG

Figure 38 displays DCG for all methods, which showed a significant variation in the
results. Although DiSCaGe outperformed all methods for PRAD, this performance was neither
dominant, nor explicit for the other types of cancer. nCOP is clearly better for BRCA and LUAD,
and MutSigCV yielded promising results for STAD and GBM up to N nearly 50. DiSCaGe
outperformed all methods for COADREAD, GBM, and STAD for N larger than nearly 50. The
boxplots of DCG, presented in Figure 39 show that the DCG median of DiSCaGe is better
for COADREAD, GBM, PRAD and STAD. For BRCA, nCOP is the only method better than
DiSCaGe, and for LUAD, nCOP and MutSigCV outperfom it.
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Figure 38 – DCG: related methods

Figure 39 – DCG boxplots: related methods

Low-frequency mutated genes

Section 4.5.2.5 shows that DiSCaGe is able to suggest possible cancer genes with very
low mutation frequency. In order to compare this ability with previous methods, Figure 40 shows
boxplots of mutation frequency of top 200 genes prioritized for DiSCaGe and related methods.
The mutation frequency median is lower for COADREAD and similar to MUFFINN for BRCA
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and STAD. It is important to mention that this analysis is quite relative, because the fact of
finding more genes with low frequency is good or bad is dependable on the objective of analysis.

Figure 40 – Boxplots of mutation frequencies of prioritized genes

Potential on discovering possible novel cancer genes

Figure 41 shows stacked bar plots of the frequency of top 200 genes prioritized by
DiSCaGe and related methods appears in driver benchmarks (green bar), false-positive bench-
mark (red bar), in CancerMine cited at least one time (blue bar), and not appearance in any of
them (gray bar). It can be noticed that MUFFINN prioritized most known cancer-related genes,
including evidences from CancerMine, but DiSCaGe outperforms MUFFINN on finding genes
on driver benchmarks. DiSCaGe finds a significant number of false-positives for LUAD, PRAD
and STAD, but DiSCaGe was the better of finding genes in driver benchmarks in such cancer
types.
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Figure 41 – Frequency of occurrences of prioritized genes on benchmarks and CancerMine

Qualitative comparison

DiSCaGe presents several differences in comparison with related methods. In this chapter
a qualitative comparison and discussion is performed with some related methods presented in
Section 3.3.

Most of methods use the simple frequency or a binary mutation matrix to compute the
mutation score, such as MUFFINN, nCOP, and MEMo. DiSCaGe employs a simple way to get
weighted frequency, based on the definition of weights on the impact of each type o mutation.
Such impact are user-centric, i.e., the final user can define the weights based on the objective
of analysis. DriverML automatizes the definition of the impact of mutation types through a
machine-learning approach, based on previous information.

Related to the use gene interaction networks, nCOP seeks to identify connected subnet-
works that are significant altered across the patients, using theses finding to ranking the genes,
while DiSCaGe dos not considers the subnetworks, only the gene neighborhood. In this way,
MUFFINN is closely related to DiSCaGe, but the neighborhood influence is obtained through
the maximum of the direct neighbor mutation score or the sum of the direct neighbor, divided by
its degree. Also, DiSCaGe differs on the using of the union network to infer the spread strength
from a mutated gene, thus considering it on the neighbor influence.

Gene interaction networks are the only previous knowledge information that DiSCaGe
employs for the cancer genes prioritization. None previous information about the gene cancer
significance is used. The machine-learning methods uses this known cancer genes in order to
discover possible novel ones. MutSiGCV and MuSiC are frequency-based methods that estimates
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the background mutation, while other methods, such as Dendrix and WExT uses only mutation
data do infer group of mutual exclusive genes. DiSCaGe do not employ such features. DriverNet
and DawnRank use gene expression data on their algorithms.

According to the map of Figure 9, DiSCaGe can be classified as a method of identification
of significant genes for cancer that use network-based approach to discover such genes. The map
with DiSCaGe is displayed in Figure 42.

Figure 42 – Classification of DiSCaGe on the methods map.

Source: Elaborated by the author.

4.5.2.10 Influence of hyperparameter

The hyperparameter of DiSCaGe is the definition of weights of each type of mutation.
Although this hyperparameter is clear and can be defined logically by the expert user, in this
experiment an analysis of the influence of the hyperparameter values was performed. For this,
the mutation types were divided in three groups, that were defined based on the rationale that
mutation of same group have similar functional impact:

Group 1: Nonsense_Mutation, Frame_Shift_Ins, and Frame_Shift_Del.

Group 2: Missense_Mutation, Splice_Site, In_Frame_Ins, In_Frame_Del, 5’UTR, and
Nonstop_Mutation.

Group 3: 3’UTR and Translation_Start_Site.

In the analysis, a fixed value was defined for two groups, while the other group was
variate. The fixed values follow the presented on Table 7, i.e., 1.0, 0.4 and 0.2 for the Groups 1,
2 and 3, respectively. The variation of values was on the range from 0.2 up 1.0.
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Figures 43 and 44 show the precision and DCG, respectively, for the variation of the
weights of mutation of Group 1. The boxplots represents all values of precision and DCG for
the top 200 prioritized genes for each type of cancer. In a general way, it can be noticed that
the DiSCaGe performance increases when the weights values are higher. For COADREAD and
PRAD this evidence is not so clear after value 0.6.

Figure 43 – Precision considering the variation on the weights of mutations of Group 1

Figure 44 – DCG considering the variation on the weights of mutations of Group 1

Related to the weights for the mutation of Group 2, Figures 45 and 46 show the precision
and DCG, respectively. It can be noticed that there is no a clear tendency for all cancer types.
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For example, for LUAD and STAD, the value 0.2 have a better performance. These lack of a
clear tendency can be related to the number of missense mutations, which are the majority of the
mutations. LUAD is a hypermutated cancer type, and has large number of missense that can be
with no impact, then a lower weight for missense can improve results for LUAD.

Figure 45 – Precision considering the variation on the weights of mutations of Group 2

Figure 46 – DCG considering the variation on the weights of mutations of Group 2

For the mutation types o Group 3, the performance of DiSCaGe have no significant
difference, as shown in Figures 47 and 48. The cause of this behavior can be due to the number
of mutations for the types of Group 3 in small, then the impact is less significant.
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Figure 47 – Precision considering the variation on the weights of mutations of Group 3

Figure 48 – DCG considering the variation on the weights of mutations of Group 3

4.5.2.11 Impact of the union of networks

An important aspect of DiSCaGe is the possibility of using many gene interaction
networks. They are combined using union of edges across networks. Figures 49 and 50 shows
the impact when combining networks. The first and second boxplot are the results for DiSCaGe
using eHPRD and eReactome, respectively. After that, a union of them was performed, which is
displayed in the third boxplot.
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Figure 49 – Precision considering the union of gene interaction networks

Figure 50 – DCG considering the union of gene interaction networks

It can be noticed that the performance of DiSCaGe have a slightly impacted with the
union of the networks. Although that procedure is a interesting way to avoid a bias on the chose
of a single network, the results shows the results using eReactome is similar with the union.
It can occur because Reactome is a extensively studied and developed network, with a high
confidence on the existing gene interactions. Maybe, with the discovery of new interactions in
other networks, the union operation could impact the results directly.
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4.6 Final Considerations
This chapter described DiSCaGe, a computational method for the discovery of significant

genes for cancer, which is based on ideas of two papers (CUTIGI; EVANGELISTA; SIMAO,
2020b; CUTIGI et al., 2021).

First, the cancer mutation data is collected, preprocessed and analyzed, followed by
the selection of gene interaction networks, their enrichment and characterization study. Next,
DisCaGe is described as a computational method for the discovery of significant genes for cancer
which takes into account weighted mutations in genes and the way they can affect network
neighborhood through an asymmetric spreading strength measure. The method presentation is
accompanied by a running example, and algorithms description. An experimental evaluation
was conducted and presented, with a set of known cancer genes benchmarks and an automated
literature review of genes prioritized by the proposed method. The method was able to 1)
prioritize genes known to be related to cancer, 2) prioritize genes related to cancer with low
mutation frequency, 3) suggest genes that are not in benchmarks, but are cited in research papers
as cancer-related ones, and 4) suggest possible novel cancer genes.

In the next chapter a machine learning approach, called DFDriver, is proposed to identify
possible false-positives significant genes for cancer. Such an approach could be used on the
output of DiSCaGE, to produce a more reliable cancer gene list.
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CHAPTER

5
COMPUTATIONAL APPROACH FOR THE

DETECTION OF FALSE-POSITIVE
SIGNIFICANT GENES FOR CANCER

5.1 Initial Considerations

An increasing interest in Cancer Genomics research emerged from the advent and
widespread use of next-generation sequencing technologies, which have generated a large
amount of digital biological data. However, not all of this information in fact contributes to
cancer studies. For instance, false-positive-driver genes may contain characteristics of cancer
genes but are not actually relevant to the cancer initiation and progression. Including this type
of genes in cancer studies may lead to identifying unrealistic trends in the data and mislead
biomedical decisions. This chapter reports on an investigation of the following research question:
RQ2: Can false-positive genes be detected in a set of significant candidates for cancer with
the use of mutation and gene network data?.

Towards answering the question, a machine learning-based approach, named DFDriver
(Detecting False Driver), is proposed and described. It aims to induce predictive models to
classify supposedly driver genes as real drivers or false-positive drivers based on both mutation
data and gene network interactions. Figure 51 shows a summary of the approach established
for the research. In Step 1, cancer mutation data, gene interaction networks, and gene labels are
selected from reliable and widely used sources. In Step 2, data are preprocessed, and features
are extracted towards composing a labeled data set created from the combination of somatic
mutation data of 33 types of cancer and centrality measures of a union of four enriched gene
interaction networks. Finally, in Step 3, a hyperparameters tuning is performed so that optimized
models can be induced and evaluated through stratified k-fold cross-validation, according to a



106 Chapter 5. Computational approach for the detection of false-positive significant genes for cancer

set of evaluation metrics. Experimental results show the combination of mutation data and gene
interaction data can improve the models’ prediction potential.

Figure 51 – An overview of the approach.

The chapter is based in a paper published at the Brazilian Symposium on Bioinformatics

(BSB 2020) (CUTIGI et al., 2020), as follows:

• CUTIGI, J. F.; EVANGELISTA, R. F.; RAMOS, R. H.; FERREIRA, C. d. O. L.; EVANGE-
LISTA, A. F.; CARVALHO, A. C. de; SIMAO, A. Combining mutation and gene network
data in a machine learning approach for false-positive cancer driver gene discovery. In:
SPRINGER. Brazilian Symposium on Bioinformatics. [S.l.], 2020. p. 81–92.

The chapter is organized as follows: Section 5.2 describes the collection of mutation
data, gene interaction network, and gene labels; Section 5.3 reports the data set preparation
for the models training; Section 5.4 introduces the machine learning-based approach, with the
selection of algorithms, training process, and hyperparameter selection; Section 5.5 is devoted to
an evaluation of the models by classical classification metrics and discussion and summarization
of the results.

5.2 Data collection

An essential step in a machine learning process is properly data collection, which involves
data acquisition, data preprocessing, and data labeling. Such activity is crucial for the obtaining
of a reliable data set for inducing useful models. The next sections address the collection of three
sources of information, necessary for the training data set preparation.
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5.2.1 Cancer mutation data

Data sets of 33 types of cancer were selected according to a TCGA Pan-Cancer study
(BAILEY et al., 2018) and downloaded from cBioPortal1 (CERAMI et al., 2012) by a web API2.
The collection contains mutation data comprehended of single nucleotide variants (SNVs), and
insertions and deletions (InDels). The mutation data for each type of cancer are structured in an
MAF format, as described in Section 4.2.

Each MAF file was subjected to a preprocessing routine similar to the process described
in Section 4.2.1. The difference is only nine specific somatic variants were kept in MAF file,
namely: Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_-
Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_Site and Translation_-
Start_Site. Other variants (3’UTR, and 5’UTR) were not available on MAF file obtained
through the API. Hypermutated samples were also removed, according to the same process
described in Section 4.2.1, i.e., the strategy defined by Tamborero et al. (2013).

All preprocessed MAFs were merged into a single MAF file, thus generating a MAF
file with mutation data of 33 types of cancer. Table 12 shows some metrics of the consolidated
mutation data, before and after the preprocessing routine, with the number of patients, genes,
and mutations.

Table 12 – Mutation data before and after preprocessing routine.

Non-preprocessed mutation data Preprocessed mutation data
Patients 10429 9741
Genes 20072 19183
Mutations 2192073 1228102

5.2.2 Gene interaction network data

The enriched gene interaction networks described in Section 4.3 were selected to be used
as a source of information of gene interactions. Similarly to Step 3 of DiSCaGe (see Section 16),
a union operation was applied to the enriched networks, resulting in a single network. However,
the resulting network is treated here as an unweighted network. Only the main component of
the network was considered towards the extractions of all defined centrality measures. Table 13
shows some metrics of the full network and its main component, which is similar to the full
network.

1 <https://www.cbioportal.org/datasets>
2 <https://www.cbioportal.org/api/swagger-ui.html>

https://www.cbioportal.org/datasets
https://www.cbioportal.org/api/swagger-ui.html
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Table 13 – Comparison of the full network and its main component.

Network Nodes Edges Mean degree Density Components
Full network 15432 3388292 439.13 0.028457 61

Main component 15294 3388191 443.07 0.028972 1

5.2.3 Gene labels

The proposed machine learning approach aims to classify driver candidates as real or
false-drivers, which requires genes labeled in such classes.

Set FDNCG with 250 genes (described in Section 4.5.1.2) listed as possible false-positive
drivers was used as a reference to label genes in the data set as false-drivers (FD) for the
induction of predictive models by the supervised machine learning algorithms. For driver class
D, the four sets, i.e., DNCG, DCGC, DIntOGen, and DBailey (described in Section 4.5.1.1) of known
driver genes were joined, resulting in a set of 951 genes listed as drivers. However, 65 genes in
the set were also present in FD, therefore, they were removed from D. The remaining 886 genes
were then used as a reference to label the drivers.

5.3 Data set preparation

The data set was properly structured for the training of supervised machine learning
algorithms. The samples in the unlabeled data set are the genes, while the features are the
measures extracted from the mutation and gene network data, as summarized below:

Mutation data set DSMUT : nine features were extracted from the MAF file for each gene for
the creation of a mutation data set DSMUT . Such features comprehends the number of
mutations of each specific somatic variant. Therefore, DSMUT is composed of 19183
samples and nine features.

Gene network data set DSGN: nine features were extracted for each gene (node) in network
for the creation of a data set DSGN . The features are centrality measures, presented as
follows and described according to the characteristics of a central node (OLDHAM et al.,
2019):

Degree: a node connected to many other nodes, i.e, a node with a high number of edges.

Betweenness: a node that is part of many shortest paths linking all pairs of nodes in the
network.

Closeness: a node with lower average shortest path length to other nodes in the network.

Eigenvector: a node connected to many other nodes and to other high-degree nodes.

Coreness: a node connected with many other nodes in a peripheral region in the network.
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Clustering coefficient: a node with a high fraction of edges among the neighbors.

Average of neighbors’ degree: a node connected with a high-degree node.

Leverage: a node with a higher degree than its neighbors.

Bridging: a node that is a key link between high-degree nodes.

Such measures consider distinct aspects of the network structure and topology to charac-
terize the importance of a node, thus highlighting its central role (OLDHAM et al., 2019).
DSGN is composed of 15294 samples and nine features.

Combined data set DSCOMB: features from DSMUT and DSGN were merged towards creating a
combined data set. Some of the genes were not contained in the data sets, therefore, only
their intersection was taken. The merging resulted in a data set DSCOMB, composed of
13988 samples and 18 features.

Finally, the genes in data set DSCOMB in the FD and D lists were extracted and properly
labeled. Considering only the labeled samples, the resulting DSCOMBL is composed of 1033
samples, 18 numeric features, and one class label (819 drivers and 214 false-drivers). The same
process was applied to DSMUT and DSGN , thus resulting in DSMUTL and DSGNL .

5.4 Machine learning approach

In DFDriver approach, supervised machine learning algorithms were trained with data set
DSCOMBL towards inducing predictive models to classify genes as drivers or false-drivers. They
were also applied to DSMUTL and DSGNL for comparing models induced with combined data
(mutation + gene network) to those induced with a single source of information (mutation or gene
network). Scikit-learn (PEDREGOSA et al., 2011), a Python module for machine learning, was
used in all processes described in this section. The following questions and answers summarize
DFDriver and its characteristics and goals:

1. What is the biological problem that the method seeks to solve?

The detection of possible false positives drivers among a set of genes candidates to be
driver.

2. Why is this method necessary?

Improve the the reliability of driver genes candidates, because including false positive
drivers in cancer studies may lead to identifying unrealistic trends and mislead biomedical
decisions.

3. What are the input data and hyperparameters to run the method?
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Data: Mutation data (MAF file with SNVs and InDels); and centrality measures of genes
in interaction networks.

Hyperparameters: machine learning algorithms hyperparameters.

4. How is the problem computationally formulated?

An extraction of useful information from both mutation data and gene network interactions
is performed and used as features for the models. Random Forest and Support Vector
Machine models were induced using the selected data.

5.4.1 Predictive models

The following two machine learning algorithms were selected to induce the predictive
models: 1) Support Vector Machine (SVM), a statistical learning algorithm that seeks the
identification of a hyperplane that can separate the classes of a problem, and 2) Random Forest, an
ensemble learning algorithm that generates several random decision trees, taking the combination
of their outputs as the classification.

SVM and Random Forest were selected for this study because they enable significant
flexibility in the induced models’ architecture through the adjustment of their hyperparameters.
This selection was performed considering that the structure required to represent the problem
and perform the classification was not known.

The models were induced by a stratified 5-fold cross-validation scheme with re-sampling
applied to every training portion of folds towards avoiding overfitting and addressing class-
imbalance. The re-sampling was performed through a combination of over and under-sampling
For over and under-sampling, SMOTE (Synthetic Minority Over-sampling Technique) (CHAWLA
et al., 2002) and ENN (Edited Nearest Neighbors Undersampling) (WILSON, 1972) were used,
respectively, which can be called SMOTEENN (BATISTA; PRATI; MONARD, 2004). SMOTE
generates synthetic examples from the minority class by placing them among samples that are
close in the feature space. In the other hand, ENN removes examples from the majority class by
removing them if a certain number of neighbors of minority class is higher.

Both re-sampling and folds split procedures were repeated, taking different random states
in each new training process. Also, a z-score standardization was applied to all features of data
sets.

5.4.2 Hyperparameter selection

Different hyperparameter sets were assessed through the training of multiple models
in a grid-search process, using procedures described before towards addressing overfitting and
class-imbalance problems. The process was repeated ten times for accounting for a possible
influence of randomness on both models training and re-sampling. The grid-search process
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induced models for all combinations of hyperparameters into a defined range, thus evaluating
each model according to a defined metric. An optimal hyperparameter set was obtained in the
training. Accuracy was used as an evaluation metric for comparing the induced models with
different configurations.

The following hyperparameters were considered for SVM, and Table 14 shows the range
of each hyperparameter conducted in the grid-search process.

• C: a regularization parameter that controls the error rate. Higher values imply higher
tolerance for the misclassified samples.

• gamma: a parameter for nonlinear hyperplanes that controls the curvature on boundaries
of classes separation. Higher values imply more curvature on boundaries. Value auto is
equal to 1/n_ f eatures, where n_features are all features of the data set, and value scale

is equal to q/n_ f eatures∗X .var(), where X .var() is the variance of the training data set.

• kernel: a type of hyperplane used in classes separation. Value linear is a liner hyperplane,
while rbf and sigmoid are nonlinear.

Table 14 – Grid-search process for SVM.

Hyperparameter Values
C 1, 2, 4, 6, 8, 10
gamma auto, scale, 1, 2, 3, 4, 6, 8, 10
kernel linear, rbf, sigmoid

The following hyperparameters were considered for Random Forest, and Table 15 shows
the range of each hyperparameter conducted in the grid-search process.

• n_estimators: number of decision trees in the forest.

• max_depth: max number of levels of each decision tree. Value None considers there is no
limit for expanding the tree (for example, an expansion can occur until all leaves are pure
according to the criterion).

• max_features: max number of features considered by each tree. Value None considers
all features (n_features) of the data set, while sqrt and log2 consider a random set of
features of size equal to the square root of n_features and logarithm equal to base 2 of
n_features, respectively.

• criterion: measure of the quality of each split on the trees. Values gini and entropy can
be used to decide the split in the decision tree considering impurity and information gain,
respectively.
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Table 15 – Grid-search process for Random Forest.

Hyperparameter Values
n_estimators 20, 50, 100, 150, 200
max_depth None, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20
max_features None, autor, sqrt, log2
criterion: gini, entropy

The optimal hyperparameters obtained from the grid-searches performed for the three
labeled data sets, with different features, are provided in Tables 16 and 17 for SVM and Random
Forest, respectively. The data sets are referred to as follows: DSCOMBL: labeled data set with
features from mutation data and gene network data; DSMUTL : labeled data set with features only
from mutation data; and DSGNL : labeled data set with features only from gene network data.

Table 16 – Optimal hyperparameters for data sets containing different features in SVM. (Note: gamma
hyperparameter is not applicable for kernel linear)

DSCOMBL DSMUTL DSGNL

Kernel linear linear rbf
C 4 1 1
gamma NA NA 10

Table 17 – Optimal hyperparameters for data sets containing different features in Random Forest.

DSCOMBL DSMUTL DSGNL

n_estimators 200 200 200
max_depth 16 16 16
max_features auto auto auto
criterion entropy entropy entropy

5.5 Experimental study
An experimental study was conduct to evaluate the potential of DFDriver on the detection

of driver candidates into false or real drivers. For this, the induced models were evaluated
through classical machine learning classification metrics. Also, genes prioritized by DisCaGe
were submitted to the classification using DFDriver.

5.5.1 Evaluation criteria

A set of metrics was selected for the assessment of the trained models’ performances.
They are based on the classification of a driver gene as true positive (T P), true negative (T N),
false positive (FP), or false negative (FN). Such metrics, described in what follows, are important
because they can help the identification of possible systematic trends in the miss-classifications.

1. Accuracy: fraction of genes correctly classified. Calculation: accuracy = T P+T N
T P+T N+FP+FN



5.5. Experimental study 113

2. Precision: fraction of genes correctly classified as drivers among the total of genes classified
as drivers. Calculation: precision = T P

T P+FP

3. Recall: fraction of genes correctly classified as drivers among the total of drivers. Calcula-
tion: recall = T P

T P+FN

4. F1 score: harmonic average of the precision and recall measurements. Calculation: F1 =

2× precision×recall
precision+recall

Receiver operating characteristic (ROC) curves were generated for the models trained,
according to both mutation and gene network features, and compared to the ROC curves obtained
from models trained using only a single source of features (i.e., either mutation, or gene network
data). The models with a single source of features were also trained by the same methodology
and with hyperparameters selected through new grid-searches. The areas under the ROC curves
(AUC) were also calculated for comparisons.

5.5.2 Results

The models induced using optimal hyperparameters evaluated using the metrics described
before, and the mean of each metric was calculated over 30 repetitions of the whole training
process. Tables 18 and 19 show the results for SVM and Random Forest, respectively. Averages
and standard deviations were calculated for each selected evaluation metric.

Both models trained with combined features provided satisfactory results according to
the selected metrics. Such models outperform the other models induced with a single source of
features for the most of metrics. This trend was also observed in the analysis of ROC curves,
depicted in Figures 52 and 53.

Table 18 – Comparison among SVM models induced by different features: DSCOMBL , DSMUTL , and DSGNL .

DSCOMBL DSMUTL DSGNL

Accuracy 0.857 ± 0.006 0.839 ± 0.004 0.796 ± 0.005
Precision 0.928 ± 0.003 0.911 ± 0.003 0.819 ± 0.002
Recall 0.888 ± 0.006 0.884 ± 0.004 0.954 ± 0.005
F1 0.908 ± 0.004 0.897 ± 0.003 0.881 ± 0.003

Table 19 – Comparison among Random Forest models induced by different features: DSCOMBL , DSMUTL ,
and DSGNL .

DSCOMBL DSMUTL DSGNL

Accuracy 0.850 ± 0.006 0.832 ± 0.006 0.780 ± 0.007
Precision 0.903 ± 0.005 0.885 ± 0.005 0.831 ± 0.004
Recall 0.907 ± 0.006 0.905 ± 0.005 0.905 ± 0.008
F1 0.905 ± 0.004 0.895 ± 0.004 0.867 ± 0.005
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Figure 52 – ROC curve comparison for SVM models

Source: Elaborated by the author.
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Figure 53 – ROC curve comparison for Random Forest models

Source: Elaborated by the author.
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The possible novel cancer genes discovered by DiSCaGe shown in Figure 35 were
subjected to the machine learning approach for the suggestion of possible false-positives on the
DiSCaGe results. Both SVM and Random Forest models detect the same set of false-positive
for LUAD, which are the genes: XIRP2, COL11A1, NAV3, ANK2, and PCDH15. For the other
cancer cancer types no false-positives were detected.

The natural application of this discovery approach is to avoid the misclassification of
false-positive-drivers as drivers and possibly eliminate unnecessary further analysis. Detecting
false-drivers is also crucial to prevent their inclusion in data analyses or on the development of
models, which could lead to the identification of unrealistic patterns. However, it is important
to note that this concept has been implemented considering the currently available data, which
is scarce and still under continuous investigation. Therefore, it is expected that the proposed
approach can be eventually revisited and improved as new information becomes available.

5.6 Final Considerations
This chapter described DFDriver, a machine learning-based approach for the classification

driver gene candidates in real or false-drivers. The chapter is based in a paper published at the
Brazilian Symposium on Bioinformatics (BSB 2020) (CUTIGI et al., 2020).

Nine measures from mutation data and nine from gene interactions were extracted, and
Support Vector Machines and Random Forest models were induced by a combined source of
features. Data were properly preprocessed, and stratified k-fold cross-validation was applied
to the models’ training. Moreover, a grid-search process was employed for hyperparameters
optimization.

In general, DFDriver achieved satisfactory classification performance due to the combi-
nation of mutation and gene interaction features in both RF and SVM models.

The next chapter is devoted to the conclusions, contributions, and limitations of this
thesis, as well as directions for possible future studies, and other secondary results.
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CHAPTER

6
CONCLUSIONS

This PhD thesis has addressed a classical and ongoing problem in Cancer Bioinformatics
and Genomics: the discovery of significant genes for cancer through computational approaches.
The thesis describes two computational approaches to deal with this challenging problem. The
first approach, called DiSCaGe (Discovering Significant Cancer Genes), discovers significant
cancer genes taking into account weighted mutations in genes and the way they can affect a
network neighborhood through an asymmetric spreading strength measure. The second approach,
called DFDriver (Detecting False Driver), identifies possible false-positive driver gene candi-
dates through machine learning models induced by a combination of mutation and gene network
data. Experimental evaluations were conducted for both approaches, with a set of known cancer
genes benchmarks and an automated literature review of discovered genes.

The combination of weighted mutation frequency and network neighbors influence shows
the potential of discovering significant genes for cancer, thus it was possible to investigate and
answer the research question RQ1. The results of experimental study shows DiSCaGe is able to
prioritize known cancer-related genes, including genes with low mutation frequency, and cited in
research papers as cancer-related genes. Furthermore, DiSCaGe also suggests possible novel
cancer genes.

The potential of the combination of features from mutation and gene interaction network
was confirmed on the training of machine learning models to detect possible false-positive
significant genes for cancer, thus answering the research question RQ2. The results of the
experimental study with DFDriver shows that models trained with combined features outperform
the other models induced with a single source of features for the most of metrics and by the
observation of ROC curves.

The investigation of both RQ1 and RQ2 leads to reach the general objective of this
thesis, which was to discover reliable significant cancer genes with the use of two computational
approaches. Furthermore the hypothesis was confirmed, which was significantly mutated genes in
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cancer can be discovered through the combination of weighted mutation frequency and network
neighbors influence, and possible false-positives can be detected by mutation data and gene
interaction networks.

6.1 Contributions
The general contribution of this thesis was an investigation on the problem of discovering

significant genes for cancer, which resulted in two computational approaches for the discovery
of significant genes for cancer, avoiding possible false-positive results. With the proposed
approaches is possible to:

1. Prioritize genes known to be related to cancer: Results shown the proposed approach
can discover genes that are in reliable benchmarks of driver genes. It outperforms related
methods for most types of cancer selected in the experimental study for most top N ranges
of genes.

2. Prioritize genes related to cancer with low mutation frequency: The long tail analysis
shown that the proposed approach can discover genes in the tail of the graph, i.e., genes
with low mutation frequency, which is a challenging task.

3. Suggest genes that are not in benchmarks but are cited in research papers as cancer-
related ones: An automated literature-based analysis on discovered genes shown that
genes out of benchmarks are cited in research papers as cancer genes. It suggests such
genes can be related to cancer; even they were not in benchmarks.

4. Suggest possible novel cancer genes: Some discovered genes by the proposed computa-
tional approach were not in benchmarks and are not cited. Such genes are suggestions for
a further investigation through in-vitro and in-vivo experiments.

5. Suggest possible false-positive cancer gene candidates: Results shown the potential of
the machine learning-based approach in classifying driver gene candidates in real or false
drivers.

The contributions of the proposed approaches can be summarized in three perspectives:

1) Computational perspective: complex networks and their algorithms were used in gene
interaction networks in combination with mutation data. Especially, an adapted asymmet-
ric spreading strength was employed to quantify how a mutation can influence a gene
neighborhood.

2) Biological perspective: The local hypothesis defined by Barabási, Gulbahce and Loscalzo
(2011) was used as the basis of the method, together with weighted mutations, based
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on the functional impact of distinct types of mutation in the genes. Additionally, a link
prediction approach was performed on the networks to deal with problem of incomplete
gene interactions.

3) User’s perspective: the approaches were built towards being easily adopted by end-users,
demanding mutation data and gene networks as input in standard formats. Additionally,
the user must define mutation weights, with no definition of unclear hyperparameters, thus
facilitating the use.

Such a combination of computational, biological and user’s perspectives enables the
definition and development of efficient computational methods for the discovery of novel cancer
genes.

Another important contribution is the evaluation of the results of computational methods
that discover cancer genes. A systematic pipeline was defined that uses four recent known cancer
genes benchmarks. Precision and DGC were used together to evaluate the methods. Such a
pipeline can be used in future works to evaluate and compare existing and related methods.

As secondary result, a research group composed of researchers from University of Sao
Paulo (Sao Carlos campus), Federal Institute of Sao Paulo (Sao Carlos and Barretos campus),
and Barretos Cancer Hospital, have been established during the development of this research.
A partnership with Barretos Cancer Hospital has been started, and has led to some initial
collaborations.

The following research papers have been submitted and published in conferences and
journals:

1. A short paper published at the Simposio Brasileiro de Computacao Aplicada a Saude

(SBCAS 2019) (CUTIGI; EVANGELISTA; SIMAO, 2019), which is a preliminary proposal
of a flexible computational method for ranking significant set of related genes in cancer,
by considering data about mutations, type of mutations, gene interaction networks and
mutual exclusivity pattern.

• CUTIGI, J. F.; EVANGELISTA, A. F.; SIMAO, A. A proposal of a graph-based
computational method for ranking significant set of related genes in cancer. In: Anais
Principais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde. Porto
Alegre, RS, Brasil: SBC, 2019. p. 300–305. Available: <https://sol.sbc.org.br/index.
php/sbcas/article/view/6266>.

2. A full paper published at the Brazilian Symposium on Bioinformatics (BSB 2019) (CUTIGI;
EVANGELISTA; SIMAO, 2020b), which is the improvement and implementation of the
idea published before.

https://sol.sbc.org.br/index.php/sbcas/article/view/6266
https://sol.sbc.org.br/index.php/sbcas/article/view/6266


120 Chapter 6. Conclusions

• CUTIGI, J. F.; EVANGELISTA, A. F.; SIMAO, A. GeNWeMME: A network-based
computational method for prioritizing groups of significant related genes in cancer.
In: SPRINGER. Advances in Bioinformatics and Computational Biology. [S.l.],
2020. p. 29–40. ISBN 978-3-030-46417-2.

3. A full paper published at the Journal of Bioinformatics and Computational Biology (JBCB)

(CUTIGI; EVANGELISTA; SIMAO, 2020a), which addresses significant mutations in
cancer and classical computational methods. It details some methods, presenting their
approaches and algorithms, and briefly describes some other related works, this providing
a summary of such methods. It also discusses their computational complexity and the way
they can be evaluated and compared.

• CUTIGI, J. F.; EVANGELISTA, A. F.; SIMAO, A. Approaches for the identification
of driver mutations in cancer: A tutorial from a computational perspective. Journal
of Bioinformatics and Computational Biology, v. 18, n. 03, p. 2050016, 2020.
PMID: 32698724. Available: <https://doi.org/10.1142/S021972002050016X>.

4. A full paper published, as secondary author, at the Simposio Brasileiro de Computacao

Aplicada a Saude (SBCAS 2020) (RAMOS et al., 2020), which is a exploratory work that
investigates the mutational characteristics presented in different cancer mutation data sets
of the same type of cancer.

• RAMOS, R. H.; CUTIGI, J. F.; FERREIRA, C. de O. L.; EVANGELISTA, A. F.;
SIMAO, A. Analyzing different cancer mutation data sets from breast invasive carci-
noma (brca), lung adenocarcinoma (luad), and prostate adenocarcinoma (prad). In:
Anais Principais do XX Simpósio Brasileiro de Computação Aplicada à Saúde.
Porto Alegre, RS, Brasil: SBC, 2020. p. 37–48. Available: <https://sol.sbc.org.br/
index.php/sbcas/article/view/11500>.

5. A full paper published at the Brazilian Symposium on Bioinformatics (BSB 2020) (CUTIGI
et al., 2020), which presents a machine learning-based approach to induce predictive
models able to classify driver gene candidates as real drivers or false-drivers.

• CUTIGI, J. F.; EVANGELISTA, R. F.; RAMOS, R. H.; FERREIRA, C. d. O. L.;
EVANGELISTA, A. F.; CARVALHO, A. C. de; SIMAO, A. Combining mutation
and gene network data in a machine learning approach for false-positive cancer driver
gene discovery. In: SPRINGER. Brazilian Symposium on Bioinformatics. [S.l.],
2020. p. 81–92.

6. A full paper submitted at the Nature Scientific Reports (CUTIGI et al., 2021), which
describes a computational method for the discovery of significant genes for cancer, which
takes into account weighted mutations in genes and the way they can affect network
neighborhood through an asymmetric spreading strength measure.

https://doi.org/10.1142/S021972002050016X
https://sol.sbc.org.br/index.php/sbcas/article/view/11500
https://sol.sbc.org.br/index.php/sbcas/article/view/11500
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• CUTIGI, J. F.; EVANGELISTA, A. F.; REIS, R. M.; SIMAO, D. A. A computa-
tional approach for the discovery of significant cancer genes by weighted mutation
and asymmetric spreading strength in networks. Submitted to Nature Scientific
Reports, 2021.

All materials to allow the reproducibility of experiments and results (eg.: source codes,
instructions of use, scripts of experiments and the complete list of libraries and versions) are
available on the following link: <https://github.com/jcutigi/Thesis_ComputationalApproaches>.

6.2 Limitations and future directions
The limitations of the research refer to a lack of a systematic biological evaluation of the

findings. Despite being a hard task, further in-vitro and in-vivo investigations can be performed
to confirm the results of both approaches. Related to the computational approach, DiSCaGe is
highly dependent on the networks, then the quality and the assertiveness of gene interactions
are determinants for the result. Although the gene network enrichment and spreading strength
minimize some outliers in the local neighborhood (e.g., star topology), the high connected genes
can still receive a strong influence from their neighbors, leading to possible false positives. In
this way, a smooth approach could be addressed to deal with high-connected genes. Additionally,
a different preprocessing in the networks could be performed to deal with high-degree genes.

As future work, both approaches can be subjected to a pan-cancer study for their eval-
uation in a large number of cancer types, thus providing subsidies for their characterization
and understanding of cases in which they can be properly adopted. A natural extension of the
approaches is to allow the method to suggest possible driver pathways with the use of the final
network and gene mutation score for finding significantly related genes. The development of an
online tool will facilitate the use of DiSCaGe and DFDriver by end-users. The study of impact of
different networks and their combination could be better addressed and evaluate in both methods.
Furthermore, such an impact could be performed in network-based methods, since networks
have significant impact on the methods results.

In sum, both approaches are not definitive solutions for the problem on identifying reliable
cancer genes. The proposed approaches and existing related method can be complementary, i.e.,
some methods with different approaches should be selected and used together in order to get
robust results.

https://github.com/jcutigi/Thesis_ComputationalApproaches
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