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RESUMO

DA SILVA, A. R. Operação de rótulo para o aprendizado multirrótulo. 2020. 207 p.
Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) – Insti-
tuto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP,
2020.

Tarefas de classificação nas quais instâncias são associadas com múltiplos conceitos são conheci-
das como classificação multirrótulo e devido ao alto número de aplicações e dados multirrótulos
disponíveis atualmente, é grande o interesse deste assunto pela comunidade de aprendizado
de máquina. Consequentemente, têm sido propostas muitas estratégias explorando diferen-
tes particularidades desse tipo de tarefa como o desbalanceamento dos rótulos, redução de
dimensionalidade e a dependência dos rótulos. No entanto, alguns aspectos que podem afetar
tais estratégias são negligenciados, como as que transformam os dados multirótulos em dados
monorótulos e utilizam um algoritmo base para resolver as subtarefas geradas. O impacto de
se escolher um algoritmo específico em detrimento de outro é desconhecido e normalmente
ignorado, assim como foi observado que muitos rótulos nunca são corretamente preditos, inde-
pendentemente da estratégia utilizada. Estas questões não têm recebido a devida atenção, mesmo
podendo produzir resultados enganosos, portanto, esta pesquisa tem por objetivo investigar as
estratégias multirrótulos explorando essas particularidades. Para tanto, um extensivo estudo
comparativo foi realizado, cujo foco é analisar a influência do algoritmo base nos resultados.
Além disso, a operação de rótulo é proposta como uma estratégia de otimização capaz de reduzir
o número de rótulos incorretamente preditos. Foi constatada, por meio de uma metodologia
empírica, que as operações de expansão e redução dos rótulos melhoraram diferentes medidas de
avaliação e reduziram o problema dos rótulos não preditos, embora não completamente. O meta-
aprendizado foi também investigado como forma de reduzir a complexidade das operações e
prover algum entendimento sobre as questões estudadas. Com isso, as medidas de caracterização
para meta-aprendizado foram sistematicamente investigadas, resultando em uma nova taxonomia
para organizá-las. Desse modo, as desc obertas e contribuições apresentadas aqui são relevantes,
principalmente, para a área de pesquisa em aprendizado multirrótulo e meta-aprendizado, assim
como levantam novas questões relacionadas a aspectos despercebidos de tais áreas. A presente
tese também tem potencial impacto na metodologia experimental desse tipo de pesquisa.

Palavras-chave: multirrótulo, operação com rótulos, transformação de problema, meta-aprendizado,
meta-características.





ABSTRACT

DA SILVA, A. R. Label operation for multi-label learning. 2020. 207 p. Tese (Doutorado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

Classification tasks in which instances are associated with multiple concepts are known as multi-
label classification. They have attracted growing attention in the machine-learning community,
given the high number of applications and multi-labeled data available nowadays. Consequently,
many strategies have been proposed exploring different particularities, such as label imbalance,
dimensionality reduction and labels dependence. Despite that, some aspects that may affect
strategies as a whole have been overlooked. For instance, some strategies transform the original
multi-labeled data into single-labeled data upon which a base algorithm can be applied. However,
the impact of choosing a specific base algorithm against another is unknown and usually ignored.
Moreover, it was observed that many labels are never correctly predicted regardless of the
strategies used. So far, very little attention has been paid to theses issues, which may produce
misleading results. Therefore, this thesis aims to investigate the multi-label strategies covering
these particularities. For such, an extensive comparative study is performed focusing on the
influence of the base algorithms on the results. Moreover, label operation is proposed as an
optimization procedure able to reduce the number of labels never predicted. Through an empirical
methodology, label expansion and reduction enhanced different evaluation measures, mitigating
the label prediction problem, although it was not completely removed. Additionally, meta-
learning is used to reduce the complexity of the operations and to provide some understanding
concerning the studied issue. Considering this, characterization measures for meta-learning were
systematically investigated, which resulted in a new taxonomy to organize them. In summary,
the findings and contributions presented here are relevant to the multi-label and meta-learning
research fields. They potentially have an impact on the methodology, and raise open new
questions concerning unnoticed aspects of these areas.

Keywords: multi-label, label operation, problem transformation, meta-learning, meta-features.
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CHAPTER

1
INTRODUCTION

Machine learning (ML), which is usually associated with artificial intelligence, can
be characterized by systems that are able to learn from previous experience (MITCHELL,
1997). Using an inductive approach, learning algorithms induce predictive models from data,
a collection of past facts (instances) described by a set of features. Usually, these models can
address tasks that cannot be deterministically solved or are too complex (ABU-MOSTAFA;
MAGDON-ISMAIL; LIN, 2012). This thesis is concerned with a particular sub-area of ML,
data classification. Classification is a supervised learning task, in which the training instances
are labeled with a target value, the “class”. In the classification task, this thesis investigated
Multi-label Classification (MLC).

MLC classification studies the classification tasks whose instances can have more than
one label (CARVALHO; FREITAS, 2009; TSOUMAKAS; KATAKIS; VLAHAVAS, 2010). In
MLC, the class of an instance is the set of labels associated with the instance. Initially applied
to the text categorization task (LEWIS et al., 1996; JOACHIMS, 1998; SCHAPIRE; SINGER,
2000), MLC has been investigated widely by the ML community (GALINDO; VENTURA,
2014) with applications in distinct domains, such as:

∙ Text related to laws and legal documents (GONÇALVES; QUARESMA, 2003; MENCíA;
FÜRNKRANZ, 2008), web pages (UEDA; SAITO, 2002), medical exams and diagno-
sis (PESTIAN et al., 2007), electronic forums (CHARTE et al., 2015a), news (LEWIS et

al., 2004), to mention some. Moreover, applications exploring tag suggestion (KATAKIS;
TSOUMAKAS; VLAHAVAS, 2008), text organization (DAYRELL et al., 2012) and
sentiment analysis (HUANG et al., 2013; LI et al., 2015) have also been designed as MLC
tasks.

∙ Multimedia related to the semantic annotation and object recognition of audio (TRO-
HIDIS et al., 2008; LO et al., 2011; BRIGGS et al., 2013), image (BOUTELL et al.,
2004; ANTENREITER; ORTNER; AUER, 2009; DUYGULU et al., 2002) and video
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(SNOEK et al., 2006; QI et al., 2007; MARKATOPOULOU; MEZARIS; KOMPAT-
SIARIS, 2014).

∙ Biological data related to gene annotation (CLARE; KING, 2001; ELISSEEFF; WE-
STON, 2001; TANAKA et al., 2015) and association of protein to functions (DIPLARIS
et al., 2005; ZOU, 2016; YANG; LU, 2006; XIAO; WU; CHOU, 2011; DUWAIRI;
KASSAWNEH, 2008).

∙ Miscellaneous applications that do not fit in the previous categories. For instance, chemical
analysis (KAWAI; TAKAHASHI, 2009), recommendation system (ZHENG; MOBASHER;
BURKE, 2014), movement detection based on sensors (READ; ZLIOBAITE; HOLLMÉN,
2016), meta-learning (ZHANG; SONG, 2015; PINTO; SOARES; MENDES-MOREIRA,
2016a) and food truck recommendation (RIVOLLI; PARKER; CARVALHO, 2017), to
cite some.

MLC learning strategies are typically organized into two groups (TSOUMAKAS;
KATAKIS, 2007): (i) problem transformation, which relies on transforming the original data
so that single-label algorithms can be applied; (ii) algorithm adaptation, which modifies the
single-label algorithms to directly support MLC tasks. Thus, while the former modifies the data
to fit it to the algorithm, the latter modifies the algorithm to fit it to the data (ZHANG; ZHOU,
2014).

Strategies that transform the problem are also called algorithm independent, since any
algorithm can be applied to solve the MLC task (CARVALHO; FREITAS, 2009). A “base
algorithm”, as it is called in this context, is used to induce internal models that are able to predict
a label or group of them. The MLC result is obtained by combining the model predictions
following some strategy defined by the transformation solution.

The main efforts made by the MLC community comprise the development of new
strategies. Hence, the choice of the base algorithm, as well as its actual impact in the MLC result,
have been overlooked in the MLC literature. Thus, the investigation of the impact of the base
algorithms to the transformation strategies is the starting point of this research.

By performing a broader study concerning the base algorithms, it was observed that
some labels have never been correctly predicted. Somewhat surprisingly, this problem was not
previously observed, despite being recurrently observed for all strategies and base algorithms
investigated in this thesis. Consequently, this is the first attempt to address the matter in the MLC
literature.

The proposed alternative to deal with this issue is called the label operation. The label
operation modifies the instances related to some labels during the transformation process. Differ-
ent operations are formalized and explored in order to enhance a given evaluation measure and
mitigate the label prediction problem. Moreover, top of the shelf alternatives (BOUTELL et al.,
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2004; MONTAÑÉS et al., 2014; CHARTE et al., 2015b; READ et al., 2011; TSOUMAKAS;
KATAKIS; VLAHAVAS, 2011; YANG, 2001) were considered and examined in comparison to
the proposed alternative.

Finally, Meta-Learning (MtL) is also investigated. In a nutshell, MtL investigates the
application of ML to enhance another ML task (BRAZDIL et al., 2009; VILALTA; DRISSI,
2002b; SMITH-MILES, 2008). It is justified because, according to the No Free Lunch (NFL)
theorem (WOLPERT; MACREADY, 1995), there is no learning algorithm that can outperform
all other algorithms for all problems. As each learning algorithm has a particular inductive bias,
which reflects in the performance of the predictive model generated, different algorithms can
be suitable for different tasks. By combining the characterization of many tasks along with the
respective performance of the algorithms, it is possible to create a recommendation system using
ML that is able to suggest a likely good option for a new task (BRAZDIL et al., 2009).

The development of MtL in this thesis is focused on organizing and understanding the
characterization measures, commonly called meta-features (CASTIELLO; CASTELLANO;
FANELLI, 2005). Using them to explain and enhance the label operation and the label prediction
problem occurrence is the main reason for this exploration in this study.

In summary, the research questions that incrementally arose to guide the development of
this work are:

1. Q1: What is the impact of the base algorithm on the transformation strategies?

2. Q2: How to overall improve the labels’ predictions in order to mitigate the problem in
which some of the labels are never correctly predicted?

3. Q3: How to find the right labels to be combined in the label operation procedure?

1.1 Hypothesis
Taking into account the current state of the art in MLC and MtL literature and the

research questions previously presented, the hypotheses investigated in this thesis are:

1. The base algorithm has a stronger influence than the transformation strategy on the
predictive performance of the MLC models. If the choice of a base algorithm is more im-
portant regarding the quality of the results than a specific strategy, then it must be carefully
selected. In empirical studies involving transformation strategies, multiple base algorithms
should be considered, which is not currently observed in the MLC literature (READ et al.,
2011; MONTAÑÉS et al., 2014; MADJAROV et al., 2012).

2. The right combination of labels during the transformation process leads to an improve-
ment in the MLC performance and this can mitigate the label prediction problem. Con-
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sidering that labels may have some relationship with other labels, combining them can take
some advantage of it. On the other hand, during the inductive process, a label may seem
such as noise for another close-related label, which is not well supported for many learning
algorithms (GARCIA; LORENA; CARVALHO, 2012). Furthermore, by combining labels
in different ways, it is possible to explore the dependency between them and obtain more
balanced datasets in some cases.

3. MtL can reduce the complexity of label operation and improve their predictive perfor-
mance. Different alternatives can be explored concerning the use of MtL to complement
the label operation: from generic scenarios like the suggestion of the operation type; to
more specific scenarios such as finding the right pair of labels to be operated. Additionally,
some predictive models can be interpreted. This can bring awareness concerning the
behavior of the operations and the occurrence of the label prediction problem.

1.2 Objectives

The main aim of this study is to investigate the MLC strategies focusing on the predic-
tive performance of individual labels. This includes the understanding of the behavior of the
base algorithms and transformation strategies. A second goal is concerning a more in-depth
investigation of meta-features for MtL, given that they play an important role in MtL applica-
tions (BENSUSAN; KALOUSIS, 2001; BILALLI; ABELLÓ; ALUJA-BANET, 2017). Finally,
the support provided by MLC strategy recommendation systems based on MtL are explored.

1.3 Outline

This thesis is organized as a collection of the main papers written by the candidate as
part of his Ph.D. project. Each chapter is a self-contained paper submitted to a relevant scientific
journal in the ML area. Although they can be read in any order, they are presented in a logical
sequence, representing the progress of the research. For the sake of convenience, the reference
and appendix sections of each chapter were mixed in unique sections in the thesis. Moreover, the
reader may notice that some sections from different chapters (mainly relative to the literature
review) are very similar to each other because the content of the paper is fully transcribed in
the thesis. It is important to observe that the formalism and notation between chapters may also
present some differences, given that the papers address distinct fields and audiences of ML (MLC
and MtL).

The remainder of this thesis is organized as follows:

Chapter 2 - An empirical analysis of binary transformation strategies for multi-label

learning investigates the impact of the base algorithms over the binary transformation strategies.
It comprises one of the largest empirical studies in the MLC literature, evaluating 6 distinct base
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algorithms and 10 transformation strategies. Among the experimental results, the wrong label
prediction problem is formalized and identified as a recurrent problem in MLC. This chapter is
directly related to hypothesis 1.

Chapter 3 - Characterizing classification datasets: a study of meta-features for meta-

learning is a survey of meta-features for MtL. A new taxonomy to organize the characterization
measures is proposed and an extensive list of them are properly organized in the respective
taxonomy. Some open issues concerning the meta-features are identified and discussed in detail.
A new tool to characterize datasets is also proposed.

Chapter 4 - Label operations for multi-label optimization introduces the label operation
as an optimization procedure that is able to enhance an evaluation performance measure and
mitigate the previously mentioned label prediction problem. Two operations, expansion and
reduction, are compared to the use of threshold optimization. This chapter is directly related to
hypothesis 2.

Chapter 5 - Recommending label operations for multi-label classification combines MLC
and MtL, in which the latter is used to reduce the complexity and enhance the label operation
procedure. Besides, MtL is used to explain the label prediction problem and label operation
combinations. This chapter is directly related to hypothesis 3.

Finally, Chapter 6 summarizes the contributions to the field, points out some limitations
of the research and suggests directions for future work.
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Abstract

Investigating strategies that are able to efficiently deal with multi-label classification
tasks is a current research topic in machine learning. Many methods have been proposed,
making the selection of the most suitable strategy a challenging issue. From this premise, this
paper presents an extensive empirical analysis of the binary transformation strategies and base
algorithms for multi-label learning. This subset of strategies uses the one-versus-all approach
to transform the original data, generating one binary data set per label, upon which any binary
base algorithm can be applied. Considering that the influence of the base algorithm on the
predictive performance obtained by the strategies has not been considered in depth by many
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empirical studies, we investigated the influence of distinct base algorithms on the performance
of several strategies. Thus, this study covers a family of multi-label strategies using a diversified
range of base algorithms, exploring their relationship over different perspectives. This finding
has significant implications concerning the methodology of evaluation adopted in multi-label
experiments containing binary transformation strategies, given that multiple base algorithms
should be considered. Despite these improvements in strategy and base algorithms, for many
data sets, a large number of labels, mainly those less frequent, were either never predicted, or
always misclassified. We conclude the experimental analysis by recommending strategies and
base algorithms in accordance with different performance criteria.

2.1 Introduction

Multi-label learning has been investigated widely by the machine learning community
in recent years (CARVALHO; FREITAS, 2009; TSOUMAKAS; KATAKIS; VLAHAVAS,
2010; GALINDO; VENTURA, 2014). It deals with classification tasks where an instance can be
simultaneously classified into more than one class. Each class is represented by one label. Several
domains, such as text (KLIMT; YANG, 2004; PESTIAN et al., 2007), multimedia (DUYGULU
et al., 2002; ZHOU; ZHANG, 2006; BRIGGS et al., 2013) and biology (ELISSEEFF; WESTON,
2001), are intrinsically multi-label.

A common approach to dealing with multi-label classification tasks is to transform the
original data set into one or more single-label data sets. A conventional binary classification
algorithm, called base algorithm here, is used to induce predictive models for each one of them.
As such, a transformation strategy defines how to decompose the original task into a set of
single-label tasks and to combine the results obtained from these tasks to solve the original
task (TSOUMAKAS; KATAKIS; VLAHAVAS, 2010). Many strategies have been proposed to
address the multi-label tasks and transform the data, exploring different aspects, such as label
correlation (READ et al., 2011; CHERMAN; METZ; MONARD, 2012; MONTAÑÉS et al.,
2014), dimensionality reduction (TSOUMAKAS; KATAKIS; VLAHAVAS, 2008; ZHANG;
WU, 2015) and class imbalance (ZHANG; WU, 2015; TSOUMAKAS; KATAKIS; VLAHAVAS,
2011).

Although the base algorithm can be seen as a hyperparameter for transformation strate-
gies, it is generally fixed for all strategies, so that only a single base algorithm is considered
in the whole experiment (READ et al., 2011; MONTAÑÉS et al., 2014; MADJAROV et al.,
2012). Given that a comprehensive comparison of the binary transformation strategies, using
different base algorithms, has not yet been performed, this study assesses the hypothesis that
the base algorithms can have a stronger influence than the binary transformation strategies
on the predictive performance of multi-label models. At a glance, it may seem trivial to be
investigated, however, if the choice of a base algorithm is more important regarding the quality
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of the results than the specific strategy, then several of them should be considered in empirical
studies evaluating these strategies.

In the multi-label literature, the most similar comparative study was performed by
Madjarov et al. (2012), where 12 strategies (including 3 binary transformation strategies) were
evaluated under several measures, using the original train and test partition of 11 benchmark data
sets. Even though a variety of different algorithms were considered, the transformation strategies
were evaluated with a single base algorithm, Support Vector Machine (SVM). Another large
empirical study covering multiple ensemble strategies (MOYANO et al., 2018) used only the
C4.5 decision tree as the base algorithm. Nevertheless, a few studies have considered using more
than one base algorithm. These studies include Tsoumakas and Katakis (2007) and Cherman,
Metz and Monard (2012), who did not compare strategies using different base algorithms; and
Zufferey et al. (2015), who compared strategies with distinct base algorithms, but just in a single
data set.

Methods using Automatic Machine Learning (Auto-ML) to address multi-label classifica-
tion tasks also consider multiple base algorithms (SÁ; PAPPA; FREITAS, 2017; SÁ; FREITAS;
PAPPA, 2018; WEVER; MOHR; HÜLLERMEIER, 2018; WEVER et al., 2019). During the
search for a solution, the Auto-ML method may find a suitable combination between strategies
and base algorithms that optimizes a fitness function. In these cases, choosing the base algorithm
is seen as part of the solution and the comparison of the strategies does not fix a base algorithm,
as observed in other studies.

Since the most common strategies are based on binary transformations, this paper
will focus on these strategies. Hence, 10 binary transformation strategies and 5 different base
algorithms (plus one with its hyperparameters tuned) were evaluated using 5x2-fold cross-
validation for 20 benchmark data sets. In contrast to previous studies, which used null hypothesis
significance testing, we ran Bayesian statistic tests (BENAVOLI et al., 2017) to assess the
statistical significance of the differences in the predictive performance of the assessed strategies
over different evaluation measures. To the best of our knowledge, this is the most extensive
multi-label empirical study carried out so far.

The results reported reinforce the claim that the predictive performance obtained by
transformation strategies is affected by the base algorithm used. Thus, experimental studies in
multi-label learning must take into account experiments with several different base algorithms.
In particular, many of the binary transformation strategies obtained very similar results, with
differences mainly being due to the choice of the base algorithm used. Therefore, previous
comparative studies (MADJAROV et al., 2012; MOYANO et al., 2018) might have reached
different conclusions if other base algorithms had been employed. Additionally, for many data
sets, the investigated strategies consistently predicted only a subset of the existing labels, never
assigning the remaining labels to any instance. This problem was previously observed in the
food truck data set (RIVOLLI; SOARES; CARVALHO, 2018a), however, as far as we know, it
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has never been widely investigated.

The rest of the paper is organized as follows: Section 2.2 formally defines the main
concepts relevant for multi-label learning. Section 2.3 details the investigated strategies. Section
2.4 describes the experimental design, including data sets, evaluation procedures, base classifiers,
tools, and hyperparameter values adopted. Section 2.5 presents, analyzes and discusses the
empirical results. In the last section, conclusions are drawn concerning relevant findings from
the experimental study and future work directions.

2.2 Multi-label learning

In multi-label learning, an instance can be simultaneously associated with more than one
label. The main tasks in this field are Multi-Label Classification and Label Ranking.

Multi-Label Classification (MLC), the most common task (TSOUMAKAS; KATAKIS;
VLAHAVAS, 2010), induces a predictive model h : X → Y from a set of training data D ,
which later assigns labels to new examples. This task can be formally defined as follows. Let
D be a set of labeled instances, such that D = {(x1,Y1), ...,(xn,Yn)}. Every labeled instance is
composed of xi = (xi1,xi2, ...,xid) ∈Rd , and Yi ⊆ L , such that L =

{
λ1,λ2, ...,λq

}
is the set of

all q labels λi. For the sake of convenience, the labels associated with the ith instance, also called
label set, can be seen as a binary vector yi = (yi1,yi2, · · · ,yiq) ∈ {0,1}q, where yi j = 1 iff λ j ∈Yi

and yi j = 0 iff λ j ̸∈ Yi. Finally, model h is used to predict, for a test instance (xi,?), the set of
relevant labels Ŷi (or ŷi as a binarized prediction).

In the Label Ranking (LR) task, a model outputs the ranked labels for each test instance.
This ranking can easily be computed using any model that provides a score value indicating its
probability of being relevant to a given instance. Thus, the higher the score value, the better its
ranking position. In turn, MLC can be derived from the LR formulation (GIBAJA; VENTURA,
2015).

A multi-label model can be obtained by using two approaches (TSOUMAKAS; KATAKIS,
2007), problem transformation and algorithm adaptation. The former converts the original multi-
labeled data into a set of binary or multi-class data sets, whereas for the latter, the multi-label
support is embedded into the algorithm’s structure. Thus, the transformation approach fits the
data to the algorithms, and the adaptation approach fits the algorithms to the data (ZHANG;
ZHOU, 2014).

A straightforward transformation is to build a binary classifier for each label individually.
This is known as the Binary approach. On the other hand, a multi-class transformation can
be considered, in which each label set (combination of labels) is mapped to one class. Both
approaches are algorithm independent (CARVALHO; FREITAS, 2009), in the sense that any
traditional classification algorithm that is capable of handling such problems can be used as the
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base algorithm.

We want to emphasize that the binary transformation approach implies that algorithms are
trained separately, but not necessarily independently; this will become apparent in the following
section. In addition, many hybrid approaches exist, such as Pairwise, which models pairwise
combinations (a one-vs-one approach), and subset approaches, which includes the well-known
RAndom k-labEL sets (RAkEL) strategy (TSOUMAKAS; KATAKIS; VLAHAVAS, 2011).

Binary transformation generates at least one data set per label. Each binary data set D ′
j is

related to the label λ j. The instances associated with λ j are labeled with a class value of “1”, all
others are labelled with a class value of “0”.The number of binary data sets generated is defined
by |D ′|= mq, where m is the number of data sets per label. Therefore, the complexity of this
family of strategies is linear in the number of labels q. Negative aspects of this approach include
the tendency to generate rather imbalanced data sets and the fact that some of these strategies
ignore the relationships between labels (ZHOU; TAO; WU, 2012).

The binary transformation strategies are organized into three groups, one-round, stacking,
and ensemble, according to the value of m. One-round strategies are the simplest strategies,
with m = 1. A special case of one-round is chaining, which increases the input space by adding
already predicted labels as features to predict the others, in a chain. In stacking strategies, two
rounds of training and prediction steps are performed, thus m = 2. They augment the input space
in the second round by using the values of the labels predicted in the first round as features. When
all the labels are used, they are called full-stacking. When only a subset of the labels is used, they
are called pruned-stacking. Finally, in the ensemble strategies more than two models for each
label (m > 2) are used and usually, the value of m is a hyperparameter defined by the user. When
the same instances and attributes are shared by all internal models, the ensemble is homogeneous.
However, when each member and label use distinct data sets as training data, the ensemble is
heterogeneous. The former can be seen as an ensemble of multi-labeled data, whereas the latter
as multiple ensembles of single-label data (GIBAJA; VENTURA, 2015). These groups and their
strategies are detailed in Section 2.3.

A base classification algorithm must always be chosen to induce predictive models for
each transformed data set D ′. Later, these models are used to predict the relevance of each
label for new instances. If the models predict a score instead of a class, the strategies support
both tasks, MLC and LR (GIBAJA; VENTURA, 2015). Logically, if the base algorithms are
responsible for predicting a score and the binary transformation strategies are independent from
them, any transformation strategy can be used to solve them. Distinctions among them will not
be considered in the rest of this paper.

As previously mentioned, this study is restricted to analyzing strategies based on binary
transformation, which are relevant for a broad group of researchers and practitioners. Besides, for
most of them, their individual models can be trained separately (thus, allowing for parallelism),
they are simple to interpret, they have been successfully used in many state-of-the-art comparisons
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in the literature, and they usually exhibit acceptable time complexity, almost linear with the
number of labels. Using separate classifiers, each focused on only one label, allows for higher
flexibility, choosing potentially different approaches on a per-label basis. Furthermore, new
labels can usually be added to the problem without retraining the models built for existing labels.
In general, as some of the strategies are conceptually quite similar to each other, their practical
differences may be highlighted by comparing their performances using different base algorithms,
an approach we put forward in this paper.

2.3 Strategies
In this section, the 10 binary transformation strategies considered are described. Table 1

presents the strategies organized into groups, defined by the number of binary models generated
per label, and the subgroups according to their main characteristic.

Table 1 – Binary transformation strategies organized into groups/subgroups according to the number of
binary models per label and their main characteristic.

Group Subgroup Strategy Reference

One-round - BR Boutell et al. (2004)
Chaining CC Read et al. (2011)

NS Senge, Coz and Hüllermeier (2013)

Stacking Full BR+ Cherman, Metz and Monard (2012)
DBR Montañés et al. (2014)
RDBR Rauber et al. (2014)

Pruned MBR Godbole and Sarawagi (2004)
PruDent Alali and Kubat (2015)

Ensemble Homogeneous EBR Read et al. (2011)
ECC Read et al. (2011)

2.3.1 One-round

The one-round strategies are characterized by generating only a single binary data set for
each label. Binary models are induced from these data sets and used for multi-label prediction.
The strategies from this group differ mainly by how they transform the data sets.

Binary Relevance (BR) (BOUTELL et al., 2004) is the simplest and most popular
multi-label strategy (LUACES et al., 2012; MONTAÑÉS et al., 2014). For each label λ j, an
independent binary data set is generated according to

D ′
j =
{
(xi,yi j) | 1 ≤ i ≤ n

}
, (2.1)

and will be used to induce a binary model θ j. The prediction is performed using the values of all
binary models as follows:

hbr = {λ j | θ j(x) = 1, 1 ≤ j ≤ q}. (2.2)
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2.3.1.1 Chaining

The Classifier Chains (CC) strategy (READ et al., 2009; READ et al., 2011) organizes
the labels in a chain and increases the original input space of the transformed data set for a given
label with the values of all previous labels in the chain. Thus, the data set is transformed as
follows:

D ′
j =
{
([xi,yi1,yi2, · · · ,yi( j−2),yi( j−1)],yi j) | 1 ≤ i ≤ n

}
. (2.3)

The model related to the first label in the chain is obtained exclusively from the original
input data, without adding any predictive attributes, as shown in Equation 2.1. The other models
increase their input space by adding j−1 new attributes, where j is the position of the respective
label in the chain. During the prediction phase, as the labels are predicted, their values are used
to increase the input space, as shown next

hcc = {λ j | ŷ j = 1, 1 ≤ j ≤ q},where

ŷ j = θ j([x, ŷ1, ŷ2, · · · , ŷ( j−2), ŷ( j−1)]).
(2.4)

Nested Stacking (NS) (SENGE; COZ; HÜLLERMEIER, 2013) brings two modifications
to CC. In the training phase, it uses the predicted labels instead of the real labels. Furthermore, in
the prediction phase, it makes a subset correction, in order to predict only preexisting label sets.

The transformation step is similar to Equation 2.3. However, the original label values y

are changed by the predicted values ŷ, such that

D ′
j =
{
([xi, ŷi1, ŷi2, · · · , ŷi( j−2), ŷi( j−1)],yi j) | 1 ≤ i ≤ n

}
,

where ŷi j is the prediction of the binary model θ j for the instance xi presented in the training
data. The prediction is obtained similarly to Equation 2.4 followed by the subset correction. The
ŷ is replaced by y* ∈ Y , which is the vector in Y that is most similar to ŷ, such that

hns = {λ j | y*j = 1, 1 ≤ j ≤ q},where

y* = argmin
y ∈ Y

dist(ŷ,y),

and dist is the hamming distance, which corresponds to the number of differences between two
binary vectors. When more than one minimum is found, the label set with the higher frequency
in the training data is selected.

2.3.2 Stacking

The stacking strategies are characterized by using the stacked generalization learning
paradigm (WOLPERT, 1992). In the multi-label context, they use two rounds of binary trans-
formation, where in the second round, the input space is augmented by the information from
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the labels obtained from the first round.1 The main difference among the stacked strategies is
how they choose the labels that would augment the input space. Some of them use all labels (full
stacking), while others use only a subset of labels (pruned stacking).

2.3.2.1 Full stacking

BR plus (BR+) (CHERMAN; METZ; MONARD, 2012) and Dependent Binary Rele-

vance (DBR) (MONTAÑÉS et al., 2014) are very similar to each other. In the training phase,
they perform exactly the same procedure. The first round is characterized by the induction of
a BR model, according to Equations 2.1 and 2.2. In the second round, the transformation is
performed by increasing the input space using the original labels. To illustrate how it works, let
φ j(y) be a function that removes the label λ j from the vector y, such that

D
′′
j =

{
([xi,φ j(yi)],yi j) | 1 ≤ i ≤ n

}
, where

φ j(y) = (y1, · · · ,y( j−1),y( j+1), · · · ,yq).
(2.5)

It should be noted though, that there is a subtle difference in the prediction phase,
precisely, in the second round. DBR predicts the labels using the second round binary models
that use the labels obtained from the first round binary models. Using the φ function presented
in Equation 2.5, the prediction is obtained as follows:

hdbr = {λ j | θ
′′
j ([x,φ j(hbr(x))]) = 1, 1 ≤ j ≤ q}.

Differently, BR+ updates the labels from the first round binary models while the second
prediction is occurring. Given a chain of labels (for example, λ1 ≺ λ2 ≺ ·· · ≺ λq), the prediction
is obtained in the following way:

hbr+ = {λ j | θ
′′
j ([x,φ j(ŷ)]) = 1, 1 ≤ j ≤ q},

for each j, ŷ = (ŷ1, · · · , ŷ( j−1),θ
′′
j ([x, ŷ])), ŷ( j+1), · · · , ŷq).

(2.6)

Recursive Dependent Binary Relevance (RDBR) (RAUBER et al., 2014) induces two
models as DBR does, but it uses the second model several times in a recursive way. The labels
predicted for the second model are used to update the input space and the second round is
executed again until either the result converges or a fixed number of iterations is reached. In
practice, it is the same process as in Equation 2.6, but while BR+ does only one update, RDBR
updates recursively several times until a stopping criterion is reached.

2.3.2.2 Pruned stacking

The Meta-BR (MBR) strategy2 (GODBOLE; SARAWAGI, 2004; READ et al., 2011)
augments the input space using the values of the most correlated labels (TSOUMAKAS et
1 Although CC and NS also augment the input space, they are not considered stacking, given that only

one-round is performed.
2 Also known as 2BR (TSOUMAKAS et al., 2009), Meta-Stacking (READ et al., 2009) and Stacking

(MONTAÑÉS et al., 2014).
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al., 2009). The Pearson product moment correlation coefficient for categorical variables ρ is
computed for each pair of labels and a threshold τ is used to define which labels should augment
the space of attributes. The data set in the second round is obtained in the following way:

D
′′
j =

{
([xi,φ j(ŷi)],yi j) | 1 ≤ i ≤ n

}
, where

φ j(ŷ) = {ŷl | ρ(λ j,λl)≥ τ, 1 ≤ l ≤ q},

and φ(ŷi) returns only the most related labels. Unlike the other stacked strategies, instead of
using the original labels in the second transformation, it uses the predicted labels obtained in the
first round.

The final prediction is the result of the binary models in the second step, such that:

hmbr = {λ j | θ
′′
j ([x,φ j(hbr(x))]) = 1, 1 ≤ j ≤ q}.

The Pruned and confiDent (PruDent) strategy (ALALI; KUBAT, 2015) uses only the
most relevant labels, as MBR does, and the original values to augment the second input space, as
BR+ and DBR do. The Information Gain (IG) measure is used to prune the irrelevant labels based
on a threshold τ . The PruDent transformation is the same as Equation 2.5, with the exception of
the φ function:

φ j(y) = {yl | IG(λ j,λl)≥ τ, 1 ≤ l ≤ q, l ̸= j}.

Contrary to the others, PruDent assigns a label to an example if either one of the
corresponding models, first or second round, predicts it. The predictions are done in the following
way:

hprud = {λ j | θ j(x) = 1 ∨ θ
′′
j ([x,φ j(hbr(x))]) = 1, 1 ≤ j ≤ q}.

2.3.3 Ensemble

Ensemble of Binary Relevance (EBR) and Ensemble of Classifier Chains (ECC) (READ
et al., 2011) are simply ensembles of models induced by the BR strategy and by the CC strategy,
respectively. Both BR and CC use bagging and choose different random subsets of the attributes
for each bagging iteration. To illustrate how EBR computes predictions, let m be the number of
models in the ensemble and φi a function for selecting a random subset of attributes:

hebr = {λ j |
( 1

m

m

∑
l=1

ŷl j

)
> τ, 1 ≤ j ≤ q}, where

ŷl = hl
br(φl(x)),
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ŷl j is the predicted value of the BR model l for the label λ j and τ is a threshold value.3 For the
ECC strategy, internal models are built using hcc with different chains, avoiding the influence
that choosing an inappropriate chain could have on the results.

2.4 Experimental design

This section presents an experimental comparison across the binary transformation
strategies and base algorithms. It describes the multi-label data sets, followed by a short overview
of evaluation measures and procedures. Next, it explains the methodology adopted and the
environmental setup.

2.4.1 Data sets

Table 2 lists the 20 multi-label data sets used for the experiments. They are from distinct
domains (column Domain) and have a wide diversity in their characteristics. The columns Inst,
Attr and Lbl are respectively the number of instances, attributes and labels. Label sets (lSets)
is the amount of distinct label combination, Proportion of Unique Label sets (PUL) indicates
the proportion of label sets related to a single instance, label cardinality (lCard) measures the
average number of labels per instance, label density (lDen) describes the average frequency of
labels, dependency (Dep) shows the average unconditional labels’ dependency (LUACES et

al., 2012), Inner Imbalance Degree (IID) measures the average label imbalance in the binary
data sets (MONTEJO-RÁEZ; LÓPEZ; STEINBERGER, 2004) and, finally, correlation (Corr)
indicates the average correlation between the predictive attributes and the labels.

Letting ρ jk be the Pearson correlation coefficient between the jth attribute and the label
λk, the correlation is computed as

Corr =
1
q

q

∑
k=1

max(|ρ1k|, |ρ2k|, ..., |ρdk|),

where d is the number of attributes. A high value for this measure means that there is at least one
attribute which is strongly correlated to each label, while a low value indicates the opposite.

These data sets are frequently used as benchmarks for multi-label experiments. They
come from different domains, organized here as text, image, audio, biology and other. The text-
domain data sets are related to aviation safety reports (tmc2007-500, (SRIVASTAVA; ZANE-
ULMAN, 2005)), medical documents (medical, (PESTIAN et al., 2007)), emails (enron,
(KLIMT; YANG, 2004)), newsgroups (20ng, (LANG, 1995)), scientific literature (fapesp,
(CHERMAN et al., 2015); ohsumed, (JOACHIMS, 1998)), web forums (stackex_chess,
(CHARTE et al., 2015a)), and web content (langlog and slashdot, (READ et al., 2011)). Text

3 It can either be a predefined value, such as 0.5 (READ et al., 2011) or dynamically defined using the
cardinality value of the training data set (READ et al., 2009).
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Table 2 – Characteristics of the multi-label data sets.

Data set Domain Inst Attr Lbl lSets PUL lCard lDen Dep IID Corr

20ng text 19300 1006 20 55 0.31 1.03 0.05 0.08 0.9 0.45
birds audio 337 260 15 115 0.53 1.84 0.12 0.08 0.75 0.39
cal500 audio 502 68 141 502 1.00 25.54 0.18 0.14 0.67 0.15
corel5k image 4995 499 218 2940 0.76 3.37 0.02 0.16 0.97 0.12
emotions audio 593 72 6 27 0.15 1.87 0.31 0.28 0.38 0.41
enron text 1702 1001 42 722 0.74 3.34 0.08 0.12 0.84 0.22
fapesp text 251 7286 18 61 0.46 1.35 0.08 0.11 0.85 0.57
flags other 194 19 7 54 0.44 3.39 0.48 0.15 0.35 0.40
image image 2000 294 5 20 0.10 1.24 0.25 0.15 0.51 0.33
langlog text 1197 916 38 223 0.53 1.31 0.03 0.06 0.93 0.29
mediamill image 42177 120 101 6554 0.63 4.56 0.05 0.22 0.93 0.10
medical text 949 1421 20 55 0.22 1.20 0.06 0.19 0.88 0.76
msd-195 audio 2901 180 38 267 0.09 2.47 0.07 0.24 0.87 0.13
ohsumed text 13929 1002 23 1147 0.50 1.66 0.07 0.04 0.86 0.32
scene image 2407 294 6 15 0.20 1.07 0.18 0.11 0.64 0.43
slashdot text 3776 1079 18 149 0.35 1.18 0.07 0.05 0.87 0.34
stackex-chess text 1612 585 78 725 0.72 2.07 0.03 0.10 0.95 0.37
tmc2007-500 text 28596 500 22 1172 0.35 2.22 0.10 0.11 0.81 0.38
yeast biology 2417 103 14 198 0.39 4.24 0.30 0.25 0.54 0.18
yelp8 image 10784 668 8 117 0.06 2.26 0.28 0.11 0.48 0.23

data sets have a higher number of attributes than most of the data sets from the other domains
and also contain the largest average value of correlation between attributes and labels.

The image-domain data sets are related to food (yelp), images extracted from videos
(mediamill, (SNOEK et al., 2006)), scene classification (image, (ZHOU; ZHANG, 2006);
scene, (BOUTELL et al., 2004)), and vector graphics (corel5k, (DUYGULU et al., 2002)).
They have the highest average number of labels and label sets of all domains. The data sets with
the highest average dependency degree among the labels are from the audio domain. They are
related to detecting emotions in songs (emotion, (TROHIDIS et al., 2011)), the identification of
music styles (msd-195, (BERNARDINI; BENITO; MEZA, 2014)), music effects classification
(cal500, (TURNBULL et al., 2008)) and sounds of birds (birds, (BRIGGS et al., 2013)).

The last two data sets are yeast (ELISSEEFF; WESTON, 2001), a data set from
the biology domain that associates gene expressions with biological functions, and flags
(GONÇALVES; PLASTINO; FREITAS, 2013), a data set of the countries where the color of
their respective flags are the labels.

The data sets come from the Cometa repository (CHARTE et al., 2018), an exhaustive
collection of MLC datasets, integrated with the tools used in this work. The exceptions are
the data sets fapesp and msd-195 obtained from their respective authors, and yelp8 from the
Kaggle website.4 The data sets were preprocessed with three operations. First, the labels with
less than 10 instances were removed to ensure a minimum number of instances with each label in
the training and test folds. Next, instances with no labels were also removed. Finally, predictive

4 see <https://www.kaggle.com/c/yelp-restaurant-photo-classification>.

https://www.kaggle.com/c/yelp-restaurant-photo-classification
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attributes with constant values were removed.

Concerning the characteristics shown in Table 2, the density (LDen) and the inner
imbalance degree (IID) are inversely correlated. As the density increases, the imbalance degree
decreases, and vice-versa. We did not find high correlation among the other characteristics.

2.4.2 Evaluation measures

The evaluation of the predictive performance of multi-label strategies requires using
different measures to assess different dimensions (TSOUMAKAS; KATAKIS; VLAHAVAS,
2010). They are organized here in example-based, label-based and ranking measures. The
example-based measures summarize the predictive performance over all instances, whereas the
label-based measures summarize the performance over all labels. The ranking measures are a
specialization of the former, using the prediction scores instead of the crisp values. As many
evaluation measures are highly correlated with each other (PEREIRA et al., 2018), a subset was
used.

2.4.2.1 Example-based measures

Hamming-loss (HL) is an error measure that evaluates the misclassification rate for each
label of every instance (SCHAPIRE; SINGER, 1999). This measure does not distinguish between
false positive and false negative errors, giving the same weight for both, as shown next

HL =
1
n

n

∑
i=1

1
q
|h(xi) ∆ Yi|, where

A ∆ B = (A−B)∪ (B−A).

(2.7)

While Hamming-loss is the most relaxed measure, Subset-accuracy (SA) is the strictest
(GIBAJA; VENTURA, 2015). It accounts only for correctly predicted label sets, ignoring the
partial hits. A partially correct prediction is valued the same was as a completely incorrect
one, such that the set of predicted or observed labels is treated as a class value in single-label
classification (ZHANG; ZHOU, 2014). It is computed as

SA =
1
n

n

∑
i=1

I(h(xi) = Yi), where

I(·) =

1 if the predicate is true,

0 otherwise.

(2.8)

Let us call the labels associated with an instance of relevant labels. We can use them to
define the following measures: Precision is the fraction of relevant labels among those predicted.
A high precision indicates a high ability of a model to correctly predict the labels, although not
necessarily all of them. Recall is the fraction of relevant labels that have been predicted out of
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all relevant labels. A high recall indicates that a model predicts many labels correctly, but not
necessarily only the relevant labels. Thus, the F1 measure (F1) computes the harmonic mean
between precision and recall. A model with a high value in this measure can predict the relevant
labels accurately and only them. It does not take the true negatives into account, combining just
the rate of relevant labels among the predicted ones and the rate of predicted relevant labels over
all relevant labels. F1 is computed as

F1 =
1
n

n

∑
i=1

2|h(xi)∩Yi|
|h(xi)|+ |Yi|

. (2.9)

2.4.2.2 Label-based measures

Label-based measures usually come in two variants: micro-averaged and macro-averaged.
The macro-averaged measures summarize the label distribution by giving the same weight to all
labels (YANG, 1999). They assess the consistency across all labels. Thus, they are too sensitive
to the performance on the least common labels, which is usually low (JACKSON; MOULINIER,
2002).

To illustrate how these measures work, let TP, FP, TN and FN be respectively the true
positive, false positive, true negative and false negative values from a confusion matrix, such that

Precisionb =
TP

TP+FP
, (2.10)

Recallb =
TP

TP+FN
, (2.11)

F1b =
2TP

2TP+FP+FN
. (2.12)

The macro label-based version computes the previous measures for each label and returns
their average value, such that

macro-β =
1
q

q

∑
j=1

β (TP j,FP j,TN j,FN j),

where β = {Precisionb | Recallb | F1b}, from Equations 2.10, 2.11 and 2.12, respectively.

The label prediction problem measures, Missing Label Prediction (MLP) and Wrong
Label Prediction (WLP), (RIVOLLI; SOARES; CARVALHO, 2018a) will be also considered.
The MLP measure indicates the proportion of labels that are never predicted by a strategy.
The WLP measure, which can be seen as a generalization or relaxation of MLP, represents
the case where a label might be predicted for some instances, but these predictions are always
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wrong. Equations 2.13 and 2.14 formalize these measures, respectively. In an ideal scenario,
their expected value is zero.

MLP =
1
q

q

∑
j=1

I(TP j +FP j == 0) (2.13)

WLP =
1
q

q

∑
j=1

I(TP j == 0) (2.14)

2.4.2.3 Ranking measures

Ranking measures consider the ranking of labels instead of the quality of bipartitions,
which defines the labels predicted. One-error (OE) is an extreme measure that only assesses the
error of the label predicted with most confidence. This measure is computed as follows:

OE =
1
n

n

∑
i=1

I(arg max
λ j∈L

f (xi,λ j) ̸∈ Yi)

Ranking-loss (RL) computes the average rate of label pairs that are incorrectly sorted
when using their predicted probabilities. It is calculated as follows:

RL =
1
n

n

∑
i=1

|{(λ j,λk)| f (xi,λ j)≤ f (xi,λk),(λ j,λk) ∈ Yi ×Y i}|
|Yi||Y i|

,

where Yi = L ∖Yi.

2.4.3 Multi-label baselines

Different baselines were adopted, optimizing different measures. With the exception of
the baselineRL, they were proposed by Metz et al. (2012). The baselineF1 literally predicts the
label set that maximizes the F1 measure (Equation 2.9) for the training data, such that

baselineF1 = argmax
Ŷ ⊆ L

F1(Y,Ŷ ),

where Ŷ is the label set predicted. This baseline is also used to compare the label based measures
macro-F1, macro-precision and macro-recall.

The baselineHL predicts the labels present in more than 50% of the training instances,
such that

baselineHL = {λ j | freq(λ j)> 0.5,1 ≤ j ≤ q},

where freq(λ j) is the frequency of the label λ j in the training data. In turn, baselineSA predicts
the most frequent labe lset in the training data, such that

baselineSA = argmax
Ŷ ⊆ L

n

∑
i=1

I(Yi = Ŷ )
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where I is the indicator function defined in Equation 2.8.

Finally, the baselineRL (RIVOLLI; SOARES; CARVALHO, 2018a), an adaptation of the
GeneralB baseline (METZ et al., 2012), predicts a ranking of labels according to their frequency,
such that

rank(λ j) = |L |− |
{

λk | λk ∈ L , freq(λ j)> freq(λk)
}
|,

and

baselineRL = {λ j | rank(λ j)≤ lcard, 1 ≤ j ≤ q},

where lcard is the label cardinality of the training data. This baseline is used for the ranking
measures: one-error and ranking-loss.

2.4.4 Base algorithms

The strategies described in Section 2.3 require using a base algorithm to induce binary
models. Algorithms that are frequently used as the base algorithm in multi-label experiments
are Decision Tree Induction Algorithms (CHERMAN; METZ; MONARD, 2012; ALALI; KU-
BAT, 2015; TSOUMAKAS et al., 2009), Logistic Regression (LR) (MONTAÑÉS et al., 2014;
RAUBER et al., 2014; SENGE; COZ; HÜLLERMEIER, 2013; TSOUMAKAS et al., 2009)
and Support Vector Machines (SVM) (READ et al., 2011; CHERMAN; METZ; MONARD,
2012; LI; ZHANG, 2014; LUACES et al., 2012; MADJAROV et al., 2012; TSOUMAKAS et

al., 2009).

Two classification algorithms that have been very successful in classification tasks, but
not commonly used for multi-label classification, Random Forest (RF) and eXtreme Gradient

Boosting (XGB), complete the set of base algorithms used in our experiments.

The k-Nearest Neighbors (kNN) and Naive Bayes (NB) algorithms were initially con-
sidered. They were discarded because they did not show competitive results when compared
with the others. Although other base algorithms, such as Multilayer Perceptron, could also be
investigated, they were not considered because those selected were able to support the claims
addressed in this paper.

2.4.5 Experimental setup

The experiments were carried out using the R environment. The data sets were handled
using code from the mldr package (CHARTE; CHARTE, 2015b). The strategies used R code
from the utiml package (RIVOLLI; CARVALHO, 2018). By default, utiml prevents empty
predictions (LIU; CHEN, 2015), in which case the strategy outputs the label with the highest
probability/score, preventing an example from being predicted without any labels.
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Most strategies and base algorithms used in the experiments require the definition of
hyperparameter values. Tables 3 shows, for each strategy used, the default values recommended
by the packages for the main hyperparameters.

Table 3 – Hyperparameters values for the strategies used in the experiments.

Strategy Parameters/Values

BR/DBR -

CC/NS chain = random(L )

BR+ strategy = "Dyn"

EBR/ECC m=10
subsample = 0.75
attr.space = 0.5

MBR/PruDent phi = 0.1

RDBR max.iterations = 5
batch.mode = FALSE

The implementation of the base algorithms used in the experiments come from the
packages C50, stats, randomForest, e1071 and xgboost for C5.0, LR, RF, SVM and XGB,
respectively. Table 4 shows the values used for the hyperparameters of each base algorithm,
which were those recommended in the corresponding package. SVMt is a tuned version of
SVM for the macro-F1 measure, where the range of values used in a Grid Search procedure
is reported. To validate the hyperparameter values, holdout with 70% for training and 30% for
validation is adopted for all data sets. SVM was singled out for tuning, due to the high effect of
hyperparameter values on its performance (MANTOVANI et al., 2015).

Table 4 – Hyperparameter values of the base algorithms used in the experiments.

Base algorithm Parameters/Values Reference

C5.0 trials = 1
CF = 0.25
minCases = 2

Quinlan (1993)

LR - Gelman and Hill (2007)

RF ntree = 500 Breiman (2001)

SVM kernel = "radial"
cost = 1
gamma = 1 / d

Chang and Lin (2011)

SVMt kernel = "radial"
cost = [2−5,2−3, · · · ,213,215]
gamma = [2−15,2−13, · · · ,21,23]

Madjarov et al. (2012)

XGB nrounds = 100
eval_metric = "error"
early_stop_round = 2

Chen and Guestrin (2016)

All results were obtained using 5x2-fold cross-validation with paired folds across all
combinations of strategies and base algorithms. An iterative algorithm for the stratification of
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multi-labeled data (SECHIDIS; TSOUMAKAS; VLAHAVAS, 2011) was applied to ensure
similar label distributions between training and test data.

Different from previous comparative studies in the multi-label domain, two Bayesian
statistical tests were used (BENAVOLI et al., 2017). The Bayesian hierarchical correlated t-test
was used to compare two strategies over multiple data sets, whereas the Bayesian correlated
t-test was used for a single data set. When comparing two strategies, the Bayesian statistical
test outputs the probability of three situations: strategy 1 is the best (left); strategy 2 is the best
(right); and there is a draw between them (rope), which is a region of practical equivalence
that indicates an insignificant difference in performance between the strategies. Benavoli et al.

(2017) suggest the interval [−0.01,0.01], which represents a difference of 1% for a measure
whose range is [0,1]. This interval was used for all evaluation measures, with the exception of
hamming-loss, where the interval was modified [−0.001,0.001] due to its finer granularity when
compared to the other measures. Otherwise, no statistical differences was observed, given that,
for hamming-loss, the number of mistakes made by a strategy is divided by the number of test
instances times the number of labels. Thus, the larger the data set, the smaller the differences
between the strategies.

2.5 Experimental results
This section presents the experimental results and the main findings from this study.

The complete set of experimental results is publicly available online at <https://rivolli.github.io/
ml-binary-transformation/>.

Initially, this section compares the results with multi-label baselines followed by the
comparison of the most similar strategies. Next, the strategies are compared using fixed base
algorithms, which is the traditional approach used in the multi-label literature. Afterwards,
the base algorithms are compared by fixing the strategies. In the last set of comparisons, both
strategies and base algorithms are combined without distinction. Finally, the main findings are
highlighted.

2.5.1 Comparison with the baselines

Despite their importance for evaluating predictive performance, baselines have not been
frequently used in multi-label experiments (METZ et al., 2012). As a result, there are no clear
standards for selecting baselines for evaluation. Table 5 presents a comprehensive set of results
for the different baselines (Section 2.4.3) used in the experiments.

The baselineF1 obtained the highest results for all measures in data sets with high average
labels’ frequency and low imbalance degree. The baselineHL, on the contrary, had its best
results in data sets with low average label frequency and high imbalance degree. Regarding the
baselineRL, used to evaluate the ranking measures, the results obtained are inversely correlated

https://rivolli.github.io/ml-binary-transformation/
https://rivolli.github.io/ml-binary-transformation/
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Table 5 – Baseline values obtained for each data set and measure.

Data set BaselineF1 ↑ BaselineHL ↓ BaselineRL ↓ BaselineSA ↑
F1 F1m Precm Recm HL OE RL SA

20NG 0.098 0.098 0.051 1.000 0.096 0.948 0.505 0.052
birds 0.288 0.096 0.059 0.267 0.149 0.694 0.316 0.087
cal500 0.478 0.156 0.112 0.282 0.165 0.116 0.212 0.000
corel5k 0.204 0.006 0.003 0.018 0.018 0.776 0.194 0.010
emotions 0.464 0.472 0.312 1.000 0.330 0.555 0.409 0.125
enron 0.463 0.057 0.042 0.095 0.078 0.464 0.141 0.088
fapesp 0.198 0.059 0.033 0.250 0.115 0.857 0.374 0.096
flags 0.699 0.528 0.427 0.714 0.328 0.211 0.220 0.097
image 0.389 0.395 0.247 1.000 0.331 0.710 0.458 0.189
langlog 0.145 0.015 0.008 0.079 0.053 0.857 0.271 0.094
mediamill 0.516 0.027 0.022 0.040 0.036 0.197 0.068 0.056
medical 0.249 0.044 0.027 0.145 0.082 0.720 0.252 0.174
msd-195 0.246 0.051 0.031 0.158 0.078 0.751 0.226 0.082
ohsumed 0.270 0.046 0.029 0.130 0.091 0.716 0.254 0.084
scene 0.302 0.303 0.179 1.000 0.272 0.779 0.473 0.168
slashdot 0.220 0.067 0.038 0.278 0.104 0.845 0.270 0.139
stackex 0.188 0.011 0.006 0.040 0.033 0.737 0.232 0.065
tmc2007 0.447 0.076 0.054 0.136 0.093 0.408 0.163 0.087
yeast 0.576 0.311 0.236 0.500 0.232 0.249 0.211 0.095
yelp8 0.494 0.284 0.203 0.500 0.260 0.411 0.296 0.080

with the label cardinality, i.e. the lowest ranking-loss values were observed in data sets with
high lCard. Finally, as the number of labels and label sets increase, the results obtained for the
baselineSA decrease.

Figure 1 summarizes the number of strategy/base-algorithm pairs that did not perform
statistically significantly better than the baselines for each data set and evaluation measure.
With the exception of macro-recall, that can be easily maximized by predicting all labels, and
some other measures in the case of the cal500 data set, at least one combination strategy/base-
algorithm was always able to outperform the baselines for all measures and data sets. However,
the considerable number of non-zero entries in Figure 1 corroborates the claim of Metz et al.

(2012) that any new strategy should be compared with others using appropriate multi-label
baselines.

2.5.2 Similarity of strategies

How the base algorithms affect the behavior of the binary transformation strategies is
one of the questions investigated in this paper. According to Table 1, it is reasonable to assume
that strategies within a group/subgroup are more similar to each other than the rest. However, the
transformation strategies work with a base algorithm, which is used to induce the learning models
from the transformed data, and its effect over the strategies is unknown so far. Following this
rationale, the similarity of strategies using different base algorithms is analyzed in two distinct
ways. First, by comparing their predictions, which removes the bias of a specific evaluation
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Figure 1 – Number of pairs strategy/base-algorithm that did not perform statistically significantly better
than the baselines according to different evaluation measures.

measure. Second, by comparing their predictive performance statistically over distinct evaluation
measures, which considers particularities of the learning process.

To compare the predictions obtained by the strategies, the Hamming distance (defined in
Equation 2.7) is computed for each pair of strategies. The result indicates the difference between
the predictions, and therefore, the average value over all data sets and repetitions can indicate
how similar or distinct any two given strategies are.

Initially, by fixing the base algorithm, the strategies were compared. For such, they were
organized according to their similarity using the hierarchical clustering algorithm Averaged-
Linkage (JAIN; DUBES, 1988). Figure 2 shows the hierarchy of strategies for each base al-
gorithm. Similar results are observed regardless of the base algorithm, with some exceptions.
In summary, the similarity of the predictions follows the intuition of the groups of strategies
presented in Table 1.

For all base algorithms, the ensembles EBR and ECC presented the largest difference to
all others. The full stacking BR+, DBR and RDBR were grouped together, following different
paths, according to the base algorithm. These are the only consensus in the results. Other strategy
pairs, such as the chaining CC and NS were the closest strategies only for the base algorithms
C5.0, RF and XGB. Similarly, pruned stacking MBR and PruDent were not always in the same
group.

Regarding the subgroups, the chaining strategies were more similar to the full stacking
for some base algorithms, and to the pruned stacking for others. Pruned stacking was more
related to BR than full stacking, which may indicate that the pruning approach impacted the
results more than the use of stacking, for these strategies.

Looking at the base algorithms, the use of C5.0 leads to a larger difference among the
results obtained by the strategies, and, on the other hand, RF leads to a higher similarity.

Next, when all the strategy/base-algorithm pairs were compared together (Figure 3), the
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Figure 2 – Similarity of strategies according to their bipartition predictions.

similarity between the base algorithms could also be compared. The base algorithms RF and XGB
produced similar results, and likewise for SVM and LR. In the latter case, the similarity observed
was still stronger than the former, since the same strategies using distinct base algorithms were
clustered together. On the other hand, SVM and SVMt, despite being the same base algorithm
using different hyperparameter values, were not so closely related as SVM and LR were.
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Figure 3 – Similarity of strategies and base algorithms according to their bipartition predictions.

With the exception of the ensembles and the SVM and LR base algorithms, all strategies
are clustered according to the base algorithm, instead of the opposite, i.e. different variants of
the same strategy grouped together. For instance, in this comparison, BRRF is more similar to
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DBRRF, a full stacking approaching, than to BRXGB. This shows that, for these strategies, their
differences might not be strong enough to always be apparent, regardless of the choice of base
algorithm.

To identify when small differences in prediction are significant, the pairs of strategies
within a group/subgroup were statistically compared. The investigated hypothesis remains that
the two distributions are equal such that a high probability means that the two strategies are
similar and a low value that the two strategies are indeed dissimilar as one would be interested
in. Figure 4 presents the rope probability of different pairs of strategies. The pairs are sorted
according to their average values, from the most similar to the most distinct (from the bottom to
the top). Likewise, the base algorithms are sorted from left to right.
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Figure 4 – Rope probabilities from the Bayesian hierarchical test in the comparison of related strategies
(y axis) for different base algorithms (x axis). The symbol ‘=’ is used for probabilities greater
than 0.95.

As previously observed, C5.0 was the base algorithm with the largest number of dif-
ferences between strategies, whereas RF was the base algorithm with the lowest number of
differences. Regardless of the evaluation measure, all pairs were considered similar to each other
when RF was used. Additionally, the differences between the strategies were captured in different
ways by the evaluation measures. For instance, no differences in F1 results were observed;
the ranking measures were more sensitive when comparing the pruned stacking strategies; and
hamming-loss and subset-accuracy produced clear differences for the ensemble and full stacking
strategies.

In summary, the results presented in this section showed that the base algorithms impact
the strategies in different ways. Despite all the investigated strategies using the same paradigm
(binary transformation), their small differences were captured by the evaluation measures for
some of the base algorithms. By varying the base algorithm, a pair of close-related strategies
can be seen as more similar, or more distinct, to each other, given a specific evaluation measure.
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Therefore, it can be concluded that some base algorithms are more dominant than others.

2.5.3 Analysis of strategies

Following the procedure used in many multi-label studies, the strategies are compared
with each other by fixing the base algorithm. As distinct base algorithms are considered, the
differences between them can be contrasted. Using the Bayesian hierarchical statistical test,
each pair of strategies with the same base algorithm is compared with each other. Figure 5
presents the results of the paired test, varying the base algorithms. For each base algorithm, the
strategy whose probability to statistically outperform the other is higher than or equal to 95%
is highlighted. Similar algorithms (rope ≥ 95%) are represented with an “=” character and an
empty value indicates inconclusive results (probabilities < 95%). The pairs of strategies with
similar or inclusive results for all base algorithms were removed from the chart.

The main discrepancies in the results are observed in relation to the ensemble strategies
and the base algorithm C5.0. For C5.0, EBR and ECC outperformed all other strategies for
most evaluation measures, whereas for other base algorithms, ensembles were outperformed by
different strategies. For the measures F1, macro-F1 and macro-recall a more homogeneous result
is observed across the base algorithms. In this case, the ensembles are clearly the best choice,
probably due to the fact that they internally perform a thresholding calibration that allows them
to obtain more balanced precision and recall results regardless of the base algorithm.

To detail the contradictions, Table 6 presents the cases where conflicting probabilities
from the statistical test were found across distinct base algorithms. Probabilities indicating that
the strategies are similar (rope > 50%) and inconclusive results (all probabilities < 50%) were
omitted from the table, which led to the elimination of the columns relative to base algorithms
RF and SVM. The bold markup highlights, for each base algorithm, the highest value and the
cases where the probability is greater than or equal to 95% are underlined.

Table 6 – Divergent probabilities found across the base algorithms in the comparison of the strategies.
Left and right are the probabilities obtained in the Bayesian hierarchical test.

Measure Strategies C5.0 LR SVMt XGB
left right left right left right left right

HL CC x DBR 0.53 0.00 0.35 0.59

Recm BR x NS 0.68 0.01 0.04 0.79
NS x PruDent 0.53 0.03 0.08 0.59

OE CC x MBR 0.74 0.09 0.3 0.50

RL BR+ x MBR 0.24 0.74 1.00 0.00
BR+ x PruDent 0.01 0.81 1.00 0.00
DBR x MBR 0.26 0.72 1.00 0.00
DBR x PruDent 0.01 0.86 1.00 0.00
MBR x PruDent 0.05 0.89 1.00 0.00 0.00 1.00
MBR x RDBR 0.84 0.15 0.01 0.99
PruDent x RDBR 0.97 0.00 0.00 1.00
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Figure 5 – Best strategy according to the results of the Bayesian hierarchical statistical test. The symbol
‘=’ indicates they are similar with statistical significance.

Many observations showed low probabilities at least for one of the base algorithms. This
indicates that the differences were not so evident according to the statistical test, even though
they are still conflicting. In this sense, the most noticeable differences were observed in the
ranking-loss measures, probably because the scores produced by the binary models are more
sensitive to variation than the bipartitions.

Regarding the base algorithm, C5.0 shows many strongly significant differences, which
reinforces the previous conclusions concerning C5.0 behaving very differently from the other
base algorithms. Regarding the strategies, all observed differences are related to pairs of strategies
where each comes from a different subgroup, e.g., a chaining strategy against a full stacking
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strategy.

In conclusion, the comparison of the transformation strategies showed different results,
for some measures, according to the base algorithm used. In this particular case, all strategies
use a binary transformation, which makes them very similar to each other. Given that differences
were still observed, it is reasonable to assume that when different transformation strategies are
evaluated, it is important to investigate distinct base algorithms.

2.5.4 Analysis of base algorithms

Exploring a different perspective, the base algorithms are compared by fixing the strate-
gies. The hypothesis investigated is that for each strategy some specific base algorithms perform
better than the rest. Analogous to the previous section, Figure 6 presents the results of the paired
test for base algorithms, in which all base algorithms were compared against each other for each
one of the strategies. In this test, for each strategy, the algorithm whose probability to statistically
outperform the other is higher than or equal to 95% is highlighted. Similar algorithms (rope ≥
95%) are represented with an “=” character and an empty value indicates inconclusive results
(probabilities < 95%).
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Figure 6 – Best base algorithm according to the results of the Bayesian hierarchical statistical test. The
best option for each pair and strategy is indicated by the first letter of the base algorithm, such
that C, L, R, S, St and X indicate C5.0, LR, RF, SVM, SVMt and XGB, respectively. The
symbol ‘=’ indicates they are similar with statistical significance.

At a glance, RF and XGB were the dominant base algorithms, regardless of the evaluation
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measure used. However, they have not been used as the base algorithm in previous studies. In
contrast, C5.0, followed by LR, obtained the worst results, despite their popularity in multi-label
studies.

Probably due to the lack of diversity in the strategies considered, few variations con-
cerning the best base algorithm were observed. Nevertheless, they are related to the ensembles,
the most distinctive strategies among the ones investigated, as noticed in Section 2.5.2. An
illustrative example that reinforces the investigated hypothesis is related to the ranking-loss

measure. For many strategies, RF was the best base algorithm. However, for the ensembles, it
was the worst. On the other hand, C5.0, which is not a good choice for many strategies, is a
suitable alternative for the ensembles. This is very plausible, as ensemble-based base algorithms,
similar to RF, perform better when their base learners are unstable – which is why decision
tree induction algorithms (e.g., C5.0) are popular choices inside ensembles of machine learning
algorithms. Since the predictions of ensemble-based base algorithms themselves reduce variance,
they are not as suitable for ensembles strategies.

For some comparisons and evaluation measures, one of the base algorithms was statis-
tically better than the other regardless of the strategy, mainly when C5.0 was involved, which
typically is the worst of the two. In spite of this regularity, the results reinforce the conjecture
that the performance of strategies depends on the base algorithm. In particular, the results of the
ensemble strategies presented a greater variation, concerning the best base algorithms, compared
to the other strategies. However, additional tests, including a more varied set of strategies, can
increase support for this claim.

Some pairs of base algorithms, in particular LR/SVM and SVM/SVMt, presented similar
results, with statistical significance, for different evaluation measures. Between LR and SVM,
the latter was the best option only for the ensembles, but not for all measures. Comparing SVM
and its optimized version, SVMt, despite the fact the latter performed apparently better than the
former in terms of F1, macro-F1 and macro-recall, the probabilities obtained in the Bayesian
test were not greater than or equal to the 95%. Regarding C5.0 and LR, the latter shows clear
advantages over the former. Finally, between RF and XGB, the most dominant base algorithms
according to the experimental results, the choice between one of them depends on the evaluation
measure. XGB was the best option for macro-F1 and macro-recall, while RF was the best for
hamming-loss, one-error, and ranking-loss.

In summary, the results presented in this section provide some support for the claim that
the choice of base algorithm can strongly influence a strategy’s performance. Furthermore, some
base algorithms performed better on average than others, which again can influence and even
distort comparisons of multi-label learning strategies.
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2.5.5 Combining strategies and base algorithms

The previous analyses showed that the ranking of the best strategies varies accord-
ing to the base algorithm used. To further investigate this issue, all strategy/base-algorithm
pairs are evaluated against each other without distinctions. In order to summarize the 60 pairs
(strategy/base-algorithm), Appendix A presents the ranking for each pair considering all data
sets and the strategies’ results using the best base algorithm. The statistical results comparing
those strategies are presented in Appendix B.

Considering the BR strategy as a more robust baseline, its performance is analysed in
relation to the other strategies. For the measures F1, macro-F1 and macro-recall the ensembles
outperform BR with statistical significance, regardless of the base algorithm. By contrast, BR
outperforms them to the measures hamming-loss, macro-precision, ranking-loss and subset-

accuracy. In relation to the other strategies, there is no case in which BR is completely outper-
formed by other strategy and vice-versa. Specifically for one-error measure, BRRF achieved
the best ranking over all combinations and outperformed the other strategies for 4 or 5 base
algorithms.

To complement these results, Table 7 presents, for all the selected pairs, the number and
percentage of other pairs that were statistically outperformed with a probability greater than or
equal to 95%, according to the Bayesian statistical test. The strategies are sorted from top to
bottom based on the number of pairs outperformed.

None of the strategies obtained a reasonable performance over all evaluation measures.
The highest results are observed for the ensembles using XGB that outperformed more than 90%
of the other strategies in terms of F1, macro-F1 and macro-recall. Consequently, they are the
best ranked pairs of strategy/base-algorithm according to the number of outperformed pairs. The
lack of a dominant combination for the other measures shows that all the strategies obtained a
good performance for some base algorithms.

Concerning the base algorithms, the best results were obtained mainly by either RF
or XGB. Both algorithms are represented in the table by all strategies. In terms of strategies,
despite being the simplest, BR presented a good performance for the hamming-loss, one-error

and ranking-loss.

To sum up, when all strategies/base-algorithms pairs are compared, some strategies
appear as dominant for some measures regardless of the choice of base algorithm, such as EBR
and ECC for macro-F1. On the other hand, for some evaluation measures, the choice of the base
algorithm dominates the results, regardless of the chosen strategies, such as RF for ranking-

loss. Even though all strategies use binary transformation, and consequently are very similar
to each other, statistical differences were observed between them. In conclusion, an empirical
comparison of multiple transformation strategies together with multiple base algorithms should
be considered for any future study proposing new transformations.
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Table 7 – Selected pairs of strategy/base-algorithm and the percentage of other pairs that were statistically
outperformed by them.

Strategy/base-algorithm F1 F1m Precm Recm HL OE RL SA

EBRXGB 90% 92% 24% 92% 27% 27% 19% 20%
ECCXGB 90% 85% 25% 92% 27% 22% 20% 27%
PruDentRF 14% 2% 39% 0% 49% 58% 58% 32%
MBRLR 14% 25% 24% 27% 32% 20% 37% 25%
RDBRSVMt 32% 46% 25% 47% 29% 20% 37% 39%
DBRSVMt 19% 36% 25% 44% 34% 24% 37% 36%
BRRF 14% 2% 32% 0% 47% 66% 59% 32%
NSRF 14% 12% 36% 0% 41% 53% 53% 39%
BR+SVM 14% 27% 24% 27% 32% 20% 37% 31%
CCRF 14% 7% 31% 0% 49% 53% 53% 37%
MBRXGB 14% 46% 27% 36% 34% 19% 22% 32%
BRXGB 14% 46% 27% 36% 32% 20% 39% 31%
PruDentXGB 14% 47% 27% 39% 34% 20% 37% 31%
CCXGB 14% 34% 27% 27% 27% 17% 37% 32%
NSXGB 14% 37% 27% 27% 27% 17% 37% 34%
BR+SVMt 17% 37% 25% 41% 34% 24% 37% 36%
MBRRF 14% 3% 37% 0% 49% 53% 47% 32%
RDBRRF 14% 0% 47% 0% 42% 29% 53% 37%
BR+RF 14% 3% 42% 0% 42% 27% 51% 37%
DBRRF 14% 3% 39% 0% 42% 49% 53% 36%
EBRSVM 42% 64% 14% 92% 14% 14% 5% 7%
DBRXGB 14% 42% 25% 34% 27% 19% 37% 32%
RDBRXGB 14% 42% 27% 34% 31% 17% 37% 36%
BR+XGB 14% 42% 27% 36% 29% 19% 37% 34%
EBRRF 81% 27% 27% 29% 22% 20% 0% 20%
ECCRF 88% 27% 27% 32% 20% 19% 0% 22%
NSSVMt 14% 32% 32% 32% 31% 22% 37% 34%
CCSVMt 14% 36% 31% 34% 36% 22% 37% 36%

2.5.6 Label prediction problems

It can be observed in Figure 7 that the values of F1 are substantially higher than the values
of macro-F1 for many data sets. This occurs when the value of F1 is very low for one or more
labels. In practice, the least common labels are often behind these differences. As the previously
defined label prediction problems MLP and WLP (Equations 2.13 and 2.14) provide a possible
explanation, their average proportions over all strategy/base-algorithm pairs are presented in
Table 8.

For the sake of clarity, the data sets without problems were removed from the table.
For many data sets, the values obtained paint a clear picture, indicating that many labels were
wrongly predicted or even never predicted at all. E.g., in the worst case, on average 73% of the
labels from the corel5k (≈ 159 labels) were wrongly predicted for all test instances, and 55%
(≈ 120 labels) were never predicted. The high values observed for many data sets indicate a
problem generated by the binary transformation strategies not previously detected.

This also justifies the high macro-precision values in comparison with the macro-recall

values (Figure 8). The best results for the measures F1, macro-F1 and macro-recall were achieved
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Figure 7 – Comparative results of the measures F1 and macro-F1 for all data sets and strategy/base-
algorithm pairs.

Table 8 – Average label prediction problems results over all strategy/base-algorithm pairs.

Data set MLP WLP

flags 0.03 0.04
ohsumed 0.06 0.07
medical 0.06 0.10
yeast 0.10 0.11
fapesp 0.13 0.19
slashdot 0.15 0.20
birds 0.15 0.23
mediamill 0.17 0.20
msd-195 0.24 0.34
enron 0.29 0.44
stackex-chess 0.32 0.45
langlog 0.34 0.47
cal500 0.37 0.54
corel5k 0.55 0.73

by the strategy ensembles. Since they use an internal threshold technique for selecting relevant
labels, their recall is enhanced and, consequently, their F1 result is also higher. Additional studies
are needed to test if this behavior is mainly due to this post-processing used by the ensembles.
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Figure 8 – Comparative results of the measures macro-precision and macro-recall for all data sets and
strategy/base-algorithm pairs.

2.5.7 Summary

The main motivation for this study was to obtain a better understanding of how the base
algorithm impacts the binary transformation strategies. The results presented in the previous
sections show that the choice of the base algorithm can interfere in the behaviour of binary
transformation strategies. Thus, by considering distinct base algorithms, an empirical study
involving transformation strategies can become less biased.

Different rankings of strategies and statistical results were obtained by using different
base algorithms. This, however, is not common practice in multi-label research. Usually trans-
formation strategies are proposed and compared using a single base algorithm (READ et al.,
2011; MADJAROV et al., 2012; MONTAÑÉS et al., 2014; MOYANO et al., 2018). The claim
that by segmenting the comparison of base algorithms more consistent results can be obtained
(MOYANO et al., 2018) might actually be misleading. In addition, across all assessed measures,
there was not a single base algorithm that obtained the best results for all strategies. Consequently,
performing a comparison of strategies using only one fixed base algorithm should be avoided.

Nevertheless, it is still valid to compare the strategies using a fixed base algorithm, since
it can help with understanding the scenarios in which a strategy is improved. For instance, a
clear superiority of the ensembles EBR and ECC, regardless of the evaluation measure, was
observed when the base algorithm C5.0 was used. On the other hand, when using the LR and
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RF algorithms, ensemble strategies did not perform so well, showing that for a given base
algorithm some strategies might not be suitable. Even though some base algorithms might obtain
a better overall performance than others, the diversity of base algorithms is valid to determine the
conditions in which each strategy is convenient. Furthermore, although predictive performance
is very important, there are reasons one may consider different base classifiers. For example,
decision trees provide good interpretation, logistic regression provides good probability estimates.
Therefore, it is useful to consider the relative performance difference rather than simply the top
performance.

Considering the large experimental scenario evaluated, the hyperparameter tuning proce-
dure adopted was simple and did not achieve the best results for the optimized measure. The use
of the SVMt base algorithm produced distinct results when compared to SVM, but when com-
pared to others, such as RF and XGB, the SVMt results were more similar to SVM. Therefore, in
this context, hyperparameter tuning can be seen secondary to base algorithm selection, provided
reasonable default parameter settings can be identified for the selected base algorithm. However,
we remark that this indeed depends on the model class in question; in which some models are
more sensitive to initial hyperparameter settings than others. Ideally, if computational power
allows for it, then the base algorithms should be tuned as part of the base-algorithm selection
process, especially if the performance difference between them is not great. Of course, for large
scale experimental comparisons, this may not be feasible due to the extra degree of complexity
implied.

Auto-ML for MLC (SÁ; PAPPA; FREITAS, 2017; WEVER et al., 2019) can be used to
find the best combination between strategies and base algorithm. Furthermore, it can tune the
hyperparameters of both of them, as well as the pipeline of the solution, in order to bring the
best results for a given problem. Thus, Auto-ML tools is an answer to the question of how to
give advice which multi-label classifier and base algorithm to use. However, it demands high
computational resources, which may be limiting its use.

Regarding the closely-related strategies (BR and pruned stacking; chaining; full stacking;
and the ensembles investigated here), their differences are shown to be subtle and circumstantial.
Given the relatively small number of data sets that have been considered in empirical studies,
finding characteristics of a problem that distinguishes strategies is not a trivial task. Thus, the
choice of a strategy between those close-related might also be seen as merely a matter of
convenience, potentially influenced by other performance considerations, such as memory or
runtime cost.

The differences between strategies from distinct groups are very consistent for the
different evaluation criteria. Therefore, for empirical studies involving binary transformation
strategies in MLC, we strongly recommend the use of strategies from different groups, as well as
various base algorithms. The selection between strategies in the same group is not an easy task.
However, it is important to provide some guidance concerning which one to use. We decided to
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use the average ranking considering all base algorithms (Appendix A).

Table 9 summarises the experimental results, describing good strategies for different
evaluation measures. In practical applications, RF and XGB should be considered as base
algorithms, in addition to the usual favorites, which include C5.0, LR, and SVM. We note
that if the median rank for each base algorithm or another criterion were adopted, different
recommendations would probably be observed but the predicted performance obtained would
not be expected to be very different.

Table 9 – Suggestion of binary transformation strategies to be picked in empirical experiments. The
recommendation is based on criteria such as dissimilarity and the strategies’ average ranking
considering all base algorithms.

Measure Ranking of suggested strategies
1 2 3 4 5

F1 EBR MBR RDBR BR CC
macro-F1 EBR RDBR MBR CC BR
macro-precision MBR NS RDBR BR ECC
macro-recall EBR RDBR MBR CC BR
hamming-loss PruDent BR CC BR+ EBR
one-error BR PruDent NS DBR EBR
ranking-loss BR NS PruDent DBR ECC
subset-accuracy RDBR NS PruDent BR ECC

2.6 Conclusion
This paper presented an extensive experimental evaluation of binary transformation

strategies for multi-label classification. Different perspectives were considered in addition to
the traditional approach of selecting just a single base algorithm when comparing multi-label
strategies. Thus, bipartition predictions were compared, strategies were compared for fixed base
algorithms, base algorithm were compared for fixed strategies, and all possible pairs of strategy
and base algorithm were compared with each other.

The main conclusions to draw from this study are:

∙ Binary transformation strategies are strongly influenced by the base algorithm used. Conse-
quently, empirical studies should always consider distinct and diversified base algorithms.

∙ RF and XGB, which showed high predictive performance across a number of strategies,
should be considered in the subset of base algorithms selected to perform an empirical
study in MLC.

∙ The investigated strategies and base algorithms always either misclassified or were unable
to predict some of the labels. So far this problem has been ignored, mainly because the
traditional evaluation measures are not able to capture this problem. Nevertheless, this is a
problem that requires more attention in future studies.
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More specific conclusions for multi-label strategies and evaluation measures include:

∙ Ensembles using internal threshold selection obtained good results for F1, macro-F1 and
macro-recall.

∙ Despite being considered a baseline in many studies, BR obtained the best predictive per-
formance for the ranking measures, one-error and ranking-loss. In addition, BR obtained
good results for the macro-precision and hamming-loss measures, depending on the choice
of base algorithm.

∙ The full stacking strategies and the NS strategy, which uses a subset correction procedure,
obtained the best results for the subset-accuracy measure.

Future work includes investigating the impact of the base algorithm on other transforma-
tions such as the label-powerset method. Recommendation of combinations of a strategy and a
base algorithm based on a desired measure, as well as dataset characteristics is another promising
direction. Finally, the two types of label prediction failure, MLP and WLP, need to be researched
in more depth.
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Abstract

Meta-learning is increasingly used to support the recommendation of machine learning
algorithms and their configurations. Such recommendations are made based on meta-data,
consisting of performance evaluations of algorithms on prior datasets, as well as characterizations
of these datasets. These characterizations, also called meta-features, describe properties of
the data which are predictive for the performance of machine learning algorithms trained on
them. Unfortunately, despite being used in a large number of studies, meta-features are not
uniformly described, organized and computed, making many empirical studies irreproducible
and hard to compare. This paper aims to deal with this by systematizing and standardizing
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data characterization measures for classification datasets used in meta-learning. Moreover, it
presents MFE, a new tool for extracting meta-features from datasets and identifying more
subtle reproducibility issues in the literature, proposing guidelines for data characterization that
strengthen reproducible empirical research in meta-learning.

3.1 Introduction

Machine learning algorithms have an inductive bias: they each make assumptions about
the data distribution and choose specific generalization hypotheses over several other possible
generalizations, thus restricting the search space (MITCHELL, 1997; WOLPERT, 1992). Since
the true data distribution is unknown, several techniques are typically tried to achieve a satisfac-
tory solution for a particular task. This trial-and-error approach is laborious and subjective, given
the many choices that need to be made. Alternatively, meta-learning (MtL) presents a data-driven,
automatic selection of techniques, by using knowledge extracted from previous tasks (BRAZDIL
et al., 2009). For instance, a meta-model can be trained on prior tasks to recommend suitable
techniques for a new task (VANSCHOREN et al., 2012).

Such a recommender system requires a systematic collection of dataset characteristics,
along with the corresponding performance of different algorithms. These characteristics extracted
from the datasets, named meta-features, play a crucial role in the successful use of MtL (BEN-
SUSAN; KALOUSIS, 2001; BILALLI; ABELLÓ; ALUJA-BANET, 2017). Many empirical
studies have investigated the effectiveness of meta-features in different domains (BENSUSAN;
GIRAUD-CARRIER, 2000; BENSUSAN; KALOUSIS, 2001; FILCHENKOV; PENDRYAK,
2015; FÜRNKRANZ; PETRAK, 2001; PENG et al., 2002b; PFAHRINGER; BENSUSAN;
GIRAUD-CARRIER, 2000; REIF; SHAFAIT; DENGEL, 2011; REIF et al., 2014), and proposed
different sets of meta-features to characterize a given MtL task.

Unfortunately, several aspects that affect the reproducibility and generalizability of these
experiments have been neglected or ignored in the literature. These include details concerning
the dataset characterization process, hyperparameter settings used to evaluate algorithms, as well
as procedures that deal with data encoding and missing values. These aspects require additional
and careful investigation, especially given the current reproducibility crisis in machine learning
research (HUTSON, 2018).

The lack of a systematic approach to compute meta-features has obfuscated the analyses
in empirical MtL studies. To overcome this limitation, Pinto, Soares and Mendes-Moreira (2016b)
proposed a framework to systematize the extraction of meta-features, defining a meta-feature in
terms of three components: meta-function, object and post-processing. In short, a meta-function

(e.g. entropy) extracts conceptual information from the object (e.g. predictive attributes) and a
post-processing function (e.g. mean) summarizes the result. Different variations of these three
components result in different meta-features. The authors claim that all current meta-features
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can be decomposed using these three components. However, this framework does not directly
mitigate the reproducibility problem, since the formalization, categorization and development of
the meta-features are not addressed in the framework.

A good initiative to overcome this problem is OpenML (VANSCHOREN et al., 2013),
an on-line research platform that supports a standard characterization of datasets. As such,
OpenML allows the comparison of MtL studies, insofar as they use the meta-features computed
by OpenML. This set of meta-features is itself not defined systematically, however, which may
hamper their suitability for subsequent meta-learning studies.

This paper surveys a comprehensive list of meta-features and their usage in the data
classification MtL literature, and systematically organizes and categorizes these meta-features in
a taxonomy. Furthermore, it highlights the main strengths and weaknesses of each meta-feature,
identifying important reproducibility issues related to them. Finally, the paper presents the
Meta-Feature Extractor (MFE) tool to compute many of these meta-features. Publicly available
as a package in Python1 and in R,2 MFE offers a flexible and standalone implementation of
meta-features for MtL experiments.

The rest of the paper is structured as follows. Section 3.2 presents a formalization and
taxonomy for the meta-features assessed in this text. Section 3.3 presents a bibliographical
synthesis that covers the state of the art in meta-features. Section 3.4 discusses the main strengths,
weaknesses and open issues of the use of meta-features in MtL experiments. Section 3.5 discusses
the main tools available and the MFE package. Section 3.6 concludes this work summarizing its
main contributions and pointing out avenues for future research.

3.2 Taxonomy

Let D be a dataset with n instances, such that D = {(~xi,yi) | 1 ≤ i ≤ n}. Each instance
~xi = [vi1,vi2, . . . ,vid] is a vector with d predictive attribute values, paired with a target value, yi.
A meta-feature f is a function f : D →Rk that, when applied to a dataset D , returns a set of k

values that characterize the dataset, and that are predictive for the performance of algorithms
when they are applied to the dataset. Function f can be detailed as

f (D) = σ(m(D , hm), hs),

such that m : D →Rk′ is a characterization measure; σ :Rk′ →Rk is a summarization function;
hm and hs are hyperparameters used for m and σ , respectively. Note that k′ can be different than
k. The summarization function is required in propositional scenarios when a fixed cardinality k

is needed, regardless of the value of k′.

1 <https://pypi.org/project/pymfe/>
2 <https://CRAN.R-project.org/package=mfe>

https://pypi.org/project/pymfe/
https://CRAN.R-project.org/package=mfe
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Table 10 – Categories used to describe a measure or group of measures.

Level Category Name Options

Input Task Classification
Supervised
Any

Extraction Direct
Indirect

Argument n Predictive Attributes (nP)
All Predictive Attributes (*P)
Target Attribute (T)

Domain Numerical
Categorical
Both

Hyperparameters Yes, No

Output Range [min, max]

Cardinality k

Deterministic Yes, No

Exception Yes, No

Traditionally, no distinction has been made between the concepts of a meta-feature, f ,
and a characterization measure, m. This may be natural when a measure results in a single value
(k′ = k = 1) and σ is the identity function, thus f = m. However, when a measure m can extract
more than one value from each dataset, i.e. k′ can vary according to D , these values still need to
be mapped to a vector of fixed length k. For instance, when a characterization can be computed
per attribute (e.g. the mutual information between an attribute and the target) many authors use
f ≈ mean(m) (ALI; SMITH, 2006; CASTIELLO; CASTELLANO; FANELLI, 2005; SOHN,
1999). Other common summarization functions are histograms (KALOUSIS; THEOHARIS,
1999), minimum and maximum (TODOROVSKI; BRAZDIL; SOARES, 2000), and skewness
and kurtosis (REIF; SHAFAIT; DENGEL, 2012).

These definitions allow the categorization of meta-features in a well-defined taxonomy,
illustrated in Table 10. In this framework, all characterization measures are themselves described
in terms of their required inputs and their outputs. While some of these categories are only
descriptive, others define whether or not a meta-feature is suitable for a specific scenario.

Some measures are restricted to specific tasks, such as classification. Others can be
more generically applied to supervised tasks, which includes regression problems. The measures
classified as any are the most general and can also be applied to unsupervised tasks such as
clustering, and semi-supervised problems. In supervised tasks, a target attribute is required to
evaluate the meta-features, which is not necessary for meta-features of the type any.

The cardinality defines the number of possible values returned by a measure. A distinction
between single-valued measures (k = 1) and multi-valued measures (k > 1) is important for data
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analysis, mainly to define whether or not a summarization function must be applied. For most
of the multi-valued measures, the cardinality is related to aspects such as the number instances,
attributes or classes in the considered datasets.

Some measures are non-deterministic, meaning that there is no guarantee that the same
result will be obtained for the same input in different runs. When reproducibility is necessary, the
same randomization seed must be used for each run or the measures must be executed a number
of times and averaged to account for the randomization effect.

Finally, while some measures are robust, others can generate exceptions for certain
datasets, leading them not to emit valid values in all cases. This can occur in particular conditions,
such as a division by zero or a logarithm of a negative number. The proper handling of these
situations is still an open issue for several measures.

3.3 Meta-Features

A fundamental question in MtL is how to extract suitable information to characterize
specific tasks. Researchers have been trying to answer this question by looking for dataset
properties that can affect learning algorithm performance, measuring this performance out-
right (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000; PFAHRINGER; BENSUSAN;
GIRAUD-CARRIER, 2000), investigating alternatives (KOPF; TAYLOR; KELLER, 2000;
SOARES; PETRAK; BRAZDIL, 2001) and adapting/creating new measures based on existing
ones (CASTIELLO; CASTELLANO; FANELLI, 2005; SOHN, 1999).

In all cases, the meta-features were organized in groups. These groups are subsets of
data characterization measures (BRAZDIL et al., 2009) that share similarities among them.
However, they are not always clearly and strictly delimited. Hence, when two different studies
mention using a certain group of measures, it does not mean that they use exactly the same
measures (SMITH-MILES, 2008). Additionally, different names have been used to describe
these groups of measures. In this work, we propose to organize the measures in six groups:

Simple: measures that are easily extracted from data (REIF et al., 2014), commonly known,
and do not require significant computational resources (REIF, 2012). They are also called
general measures (CASTIELLO; CASTELLANO; FANELLI, 2005).

Statistical: measures that capture the statistical properties of the data (REIF et al., 2014).
These measures capture data distribution indicators, such as average, standard deviation,
correlation and kurtosis. They are computed on numerical attributes only (CASTIELLO;
CASTELLANO; FANELLI, 2005).

Information-theoretic: measures from the information theory field (CASTIELLO; CASTEL-
LANO; FANELLI, 2005). These measures are based on entropy (SEGRERA; LUCAS;
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GARCÍA, 2008), capturing the amount of information in the data and their complexity
(SMITH-MILES, 2008). They can be used to characterize discrete attributes.

Model-based: measures extracted from a model induced using the training data (REIF et al.,
2014). Many of these are based on properties of decision tree (DT) models (BENSUSAN;
GIRAUD-CARRIER; KENNEDY, 2000; PENG et al., 2002b), referred to as decision-tree-

based meta-features (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000). Properties
extracted from other models are also used (FILCHENKOV; PENDRYAK, 2015).

Landmarking: measures that use the performance of simple and fast learning algorithms
to characterize datasets (SMITH-MILES, 2008). The algorithms must have different
inductive biases and should capture relevant information with a low computational cost
(FÜRNKRANZ; PETRAK, 2001; SOARES; PETRAK; BRAZDIL, 2001).

Others: measures not included in the previous groups, such as standalone measures, time-related
measures (REIF; SHAFAIT; DENGEL, 2011), concept and case-based measures (MUÑOZ
et al., 2018; VANSCHOREN et al., 2012), clustering and distance based measures (PI-
MENTEL; CARVALHO, 2019; VUKICEVIC et al., 2016), among others.

The first three groups represent the most common and traditional approaches for data
characterization (BRAZDIL et al., 2009). They receive different names such as basic mea-
sures (FILCHENKOV; PENDRYAK, 2015), DCT (PENG et al., 2002b), standard (ENGELS;
THEUSINGER, 1998) and STATLOG measures (SMITH-MILES, 2008). In earlier work, sta-
tistical measures were also called discriminant meta-features (LINDNER; STUDER, 1999).
The next two groups depend on machine learning algorithms to extract model complexity or
performance measures, while the last group includes characterizations for specific types of data,
such as time series. Vanschoren (2010) offers a more fine-grained categorization of meta-features,
based on intrinsic biases of learning algorithms, such as data normality, feature redundancy, and
feature-target association.

In the remainder of this section, a systematic definition and description of these measures
are provided, using the taxonomy shown in Table 10. The formal definition of each measure is
available in Appendix C. In the descriptions, −∞ and ∞ are used when it is not possible to define
the range of a measure, whereas inherited is used when the measure range is defined by the value
range of specific dataset attributes. The use of an upper stroke bar in the range and cardinality
indicates an approximated value. When the columns Extract, Domain, Hyperp., Excep. and Det.

describe a constant property, they are suppressed from the tables and identified in the caption.
The section finishes with a description and an analysis of the main summarization functions.
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3.3.1 Simple meta-features

The simple measures, listed in Table 11, are directly extracted from the data and represent
basic information about the dataset. They are the simplest set of measures in terms of definition
and computational cost (CASTIELLO; CASTELLANO; FANELLI, 2005; MICHIE; SPIEGEL-
HALTER; TAYLOR, 1994; REIF, 2012; REIF et al., 2014). They are also deterministic and free
of hyperparameters. Semantically, the measures are related to the number of predictive attributes,
instances, target classes and missing values.

Table 11 – Simple meta-features and their characteristics. They are directly extracted, free of hyperparam-
eter and deterministic.

Acronym Task Argument Domain Range Card. Excep.

attrToInst Any *P Both [0,d] 1 No
catToNum Any *P Both [0,d] 1 Yes
classToAttr Classif. *P+T Both [0,q] 1 No
freqClass Classif. T Categ. [0,1] q No
instToAttr Any *P Both [0,n] 1 No
instToClass Any *P+T Both [1,n] 1 No
nrAttr Any *P Both [1,+∞] 1 No
nrAttrMissing Any *P Both [0,d] 1 No
nrBin Any *P Both [0,d] 1 No
nrCat Any *P Both [0,d] 1 No
nrClass Classif. T Categ. [2,n] 1 No
nrInst Any *P Both [q,+∞] 1 No
nrInstMissing Any *P Both [0,n] 1 No
nrMissing Any *P Both [0,dn] 1 No
nrNum Any *P Both [0,d] 1 No
numToCat Any *P Both [0,d] 1 Yes

The measures related to attributes are: number of attributes (nrAttr); number of binary at-
tributes (nrBin); number of categorical attributes (nrCat); number of numeric attributes (nrNum);
proportion of categorical versus numeric attributes (catToNum) and vice-versa (numToCat).
These measures are relevant to characterize the main aspects of a dataset, providing information
that can support the choice of an algorithm for a particular learning task.

The number of instances (nrInst) and the number of classes (nrClass) indicate the
dataset size and its label diversity. When combined with the nrAttr, we can define attrToInst and
instToAttr, which represent the dimensionality and sparsity of the data, respectively. The latter is
a potential indicator for overfitting when its value is too small (KUBA et al., 2002). The number
of classes per attribute (classToAttr) and instances per classes (instToClass) measure properties
of the target attribute distribution, such as class imbalance. Likewise, the frequency of instances
in each class (freqClass) allows the extraction of measures such as the proportional frequency
of the majority and minority class (ALI; SMITH, 2006), default accuracy/error (PENG et al.,
2002b) and standard deviation of the class distribution (LINDNER; STUDER, 1999). When
combined with summarization functions, it can describe imbalanced learning scenarios.

Finally, some measures assess dataset quality, such as the number of attributes (nrAt-
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trMissing) and instances (nrInstMissing) with missing values, as well as the total number
(nrMissing). Since some ML algorithms can deal with missing values better than others, these
measures can provide important information for algorithm selection, or indicate when data
treatment is necessary, as discussed in Section 3.4.1.

Some authors have proposed modified versions of these measures. For instance, Todor-
ovski, Brazdil and Soares (2000) use the log of the number of instances, Brazdil, Gama and
Henery (1994) use the proportion of categorical attributes, and Kalousis and Hilario (2001b) use
the proportion of numerical attributes. When using these measures for meta-learning, it may be
necessary to normalize the values of these measures. With the exception of nrAttr and nrInst,
the measures can be normalized using their theoretical maximum value, as shown in the column
Range.

Finally, note that the catToNum and numToCat measures can only be computed for
datasets which have both categorical and numeric attributes.

3.3.2 Statistical meta-features

Statistical measures can extract information about the performance of statistical algo-
rithms (MICHIE; SPIEGELHALTER; TAYLOR, 1994) or about data distribution, for instance,
central tendency and dispersion (CASTIELLO; CASTELLANO; FANELLI, 2005). They are the
largest and the most diversified group of meta-features, as shown in Table 12. Statistical measures
are deterministic and support only numerical attributes. Some measures require the definition of
hyperparameter values, while others can generate exceptions, e.g. caused by division by zero.
Some of them are indirectly extracted, and are closely related to the discriminant group reported
in Lindner and Studer (1999). The others can be widely applied since they use only predictive
attributes as input.

Correlation (cor) and covariance (cov) capture the interdependence of the predictive
attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994). They are computed for each pair of
attributes in the dataset, resulting in (d −1)/2 values. The former is a normalized version of the
latter, and the absolute value of both measures are frequently used, which changes the range
from [−1,1] and [−∞,∞], respectively, to the values reported in Table 12. High values indicate a
strong correlation between the attributes, which can be interpreted as a level of redundancy in
the data (KALOUSIS; HILARIO, 2001b). To represent this information, nrCorAttr computes
the proportion of highly correlated attribute pairs.

Most statistical measures are extracted for each attribute separately. Measures of central
tendency are composed by the mean and its variations such as the geometric mean (gMean),
harmonic mean (hMean) and trimmed mean (tMean); and the median. Measures of dispersion
consist of the interquartile range (iqRange), kurtosis, maximum (max), median absolute deviation
(mad), minimum (min), range, standard deviation (sd), skewness and variance (var). While one
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Table 12 – Statistical meta-features and their characteristics. They are deterministic and only accept
numerical attributes.

Acronym Task Extract Argument Hyperp. Range Card. Excep.

canCor Classif. Indirect *P+T No [0,1] d No
cor Any Direct 2P Yes [0,1] d2 Yes
cov Any Direct 2P No [0,∞] d2 No
nrDisc Classif. Indirect *P+T No [0,d] 1 No
eigenvalues Any Indirect *P No [0,∞] d No
gMean Any Direct 1P No [0,∞] d Yes
hMean Any Direct 1P No inherited d No
iqRange Any Direct 1P No [0,∞] d No
kurtosis Any Direct 1P No [−3,∞] d Yes
mad Any Direct 1P No [0,∞], d No
max Any Direct 1P No inherited d No
mean Any Direct 1P No inherited d No
median Any Direct 1P No inherited d No
min Any Direct 1P No inherited d No
nrCorAttr Any Direct *P Yes [0,1] 1 Yes
nrNorm Any Direct *P Yes [0,d] 1 No
nrOutliers Any Direct *P Yes [0,d] 1 No
range Any Direct 1P No [0,∞] d No
sd Any Direct 1P No [0,∞] d No
sdRatio Classif. Indirect *P+T No [1,∞] 1 Yes
skewness Any Direct 1P No [−∞,∞] d Yes
tMean Any Direct 1P Yes inherited d No
var Any Direct 1P No [0,∞] d No
wLambda Classif. Indirect *P+T No [0,1] 1 No

points to the center of a distribution, the other shows how much the values are spread from the
center, complementing themselves. Their range depends directly on the attributes’ range, with
few exceptions like kurtosis and skewness. These two, are suitable to capture the normality of
the data attributes (VANSCHOREN, 2010).

A specific measure to capture the normality of the attributes is the nrNorm, which
computes the number of attributes normally distributed. Similarly, nrOutliers counts the number
of attributes that contain outliers. Normality and outliers may impact the behavior of learning
algorithms, which make these measures useful in an MtL scenario.

The discriminant statistical measures present some specificities such as being exclusively
used for classification tasks. By considering the target value and using the whole dataset as input,
they result in a single value. Canonical correlations (canCor), the number of discriminant values
(nrDisc), the homogeneity of covariances (sdRatio) and the Wilks lambda (wLambda) represent
the discriminant measures. Finally, the eigenvalues from the covariance matrix only use the
predictive data to be computed.

Concerning the hyperparameters, different correlation methods such as Pearson’s correla-
tion, Kendall’s τ and Spearman’s ρ coefficient (RODGERS; NICEWANDER, 1988), can be used
to compute the cor measure. This is also applied to the nrCorAttr measure, which additionally
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requires a threshold value to define high correlations. The tMean requires the definition of how
much data should be discarded to compute the mean. Finally, the nrNorm and nrOutliers are
dependent on the algorithm to compute whether or not a distribution is normal and has outliers.
Even though skewness and kurtosis could be seen as algorithm dependent, their variations do not
produce observable differences for large samples of data (JOANES; GILL, 1998).

Some measures can throw exceptions and due to this are not calculated correctly. The
cor, kurtosis, nrCorAttr and skewness could generate an error with a constant attribute caused
by division by zero. The sdRatio uses log in this formulation, and the possibility of obtaining a
negative value makes the measure error-prone. The gMean can be computed in 2 different ways
and both can generate errors, one using product and another using log. The former can obtain
arithmetic overflow/underflow while the latter cannot support negative values.

As the majority of the statistical measures do not consider the class information, Castiello,
Castellano and Fanelli (2005) proposed an indirect way to explore it. This approach splits the
dataset according to the class labels and computes the measures for each subset. However, the
authors are not aware of any empirical evaluation of this approach. Besides, many statistical
measures need to be summarized since several possible values can be obtained. Finally, it is
important to observe that the statistical measures only support numerical attributes. Datasets that
contain categorical data must be either partially ignored or converted to numerical values.

3.3.3 Information-Theoretic meta-features

Information-theoretic meta-features capture the amount of information in the data. Ta-
ble 13 shows the information-theoretic measures, which require categorical attributes and most of
them are restricted to representing classification problems. Moreover, they are directly computed,
free of hyperparameter, deterministic and robust. Semantically, they describe the variability and
redundancy of the predictive attributes to represent the classes.

Table 13 – Information-theoretic meta-features and their characteristics. They are directly extracted, free
of hyperparameter, robust, deterministic and support only categorical attributes.

Acronym Task Argument Range Card.

attrEnt Any 1P [0, log2(n)] d
classEnt Classif. T [0, log2(q)] 1
eqNumAttr Classif. *P+T [0,∞] 1
jointEnt Classif. 1P+T [0, log2(n)] d
mutInf Classif. 1P+T [0, log2(n)] d
nsRatio Classif. *P+T [0,∞] 1

The entropy of the predictive attributes (attrEnt) and the target values (classEnt) capture
the average uncertainty present in the predictive and class attributes (SEGRERA; LUCAS;
GARCÍA, 2008), respectively. In the former, all predictive attributes are assessed, thus its
summarization can provide an overview of the attributes’ capacity for class discrimination.
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In the latter, it represents how much information, on average, is necessary to specify one
class (CASTIELLO; CASTELLANO; FANELLI, 2005). In a learning perspective, a predictive
attribute with a low entropy contains a low discriminatory power (MICHIE; SPIEGELHALTER;
TAYLOR, 1994), whereas a target attribute with low entropy contains a high level of purity.
These measures are usually normalized.

The joint entropy (jointEnt) and the mutual information (mutInf ) compute the relationship
of each attribute with the target values. While the former captures the relative importance of the
predictive attributes to represent the target (ENGELS; THEUSINGER, 1998), the latter represents
the common information shared between them, indicating their degree of dependency (MICHIE;
SPIEGELHALTER; TAYLOR, 1994).

Finally, the equivalent number of attributes (eqNumAttr) and the noise signal ratio
(nsRatio) capture information that is related to the minimum number of attributes necessary
to represent the target attribute and the proportion of data that are irrelevant to describe the
problem (SMITH et al., 2001), respectively.

To extract these measures from numerical attributes, we must know their data distribution
or discretize them (CASTIELLO; CASTELLANO; FANELLI, 2005). The latter is simpler.
However, being user-defined needs the introduction of hyperparameters, which is discussed
further in Section 3.4.1.

3.3.4 Model-Based meta-features

The meta-features of this group are information extracted from a predictive learning
model, in particular, a DT model. They characterize a dataset by how complex is the model
induced, which, for DT, can be the number of leaves, the number of nodes and the shape of the
tree. Table 14 shows the DT model meta-features. They are designed to characterize supervised
problems, all measures are deterministic, robust and require the definition of hyperparameters:
the DT induction algorithm (together with its hyperparameter values) used to induce the DT
model.

The measures based on leaves are identified with the prefix leaves, which describe, in
some degree, the complexity of the orthogonal decision surface. Some measures result in a value
for each leaf, and those measures are the number of distinct paths (leavesBranch), the support
described in the proportion of training instances to the leaf (leavesCorrob) and the distribution
of the leaves in the tree (leavesHomo).

The proportion of leaves to the classes (leavesPerClass) represents the classes complexity
and the result is summarized per class. While leavesCorrob and leavesPerClass have a fixed
range independent of the dataset, leaves and leavesBranch have a maximum value limited by
the number of instances. In practice, the most observed limit is associated with the number of
attributes, which also determines the cardinality of them. Only leavesHomo does not have a
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Table 14 – Model-based meta-features and their characteristics. These meta-features are indirectly ex-
tracted, robust, deterministic, require the definition of hyperparameters and support both
attribute types.

Acronym Task Argument Range Card.

leaves Sup. *P+T [q,n] 1
leavesBranch Sup. *P+T [1,n] n
leavesCorrob Sup. *P+T [0,1] n
leavesHomo Sup. *P+T [q,+∞] n
leavesPerClass Classif. *P+T [0,1] q
nodes Sup. *P+T [q,n] 1
nodesPerAttr Sup. *P+T [0,n] 1
nodesPerInst Sup. *P+T [0,1] 1
nodesPerLevel Sup. *P+T [1,n] n
nodesRepeated Sup. *P+T [0,n] d
treeDepth Sup. *P+T [1,n] n
treeImbalance Sup. *P+T [0,1] n
treeShape Sup. *P+T [0.0,0.5] n
varImportance Sup. *P+T [0,1] d

defined limit of values.

The measures based on nodes, which extract information about the balance of the tree to
describe the discriminatory power of attributes, are identified with the prefix nodes. Together
with nodes, the proportion of nodes per attribute (nodesPerAttr) and the proportion of nodes per
instance (nodesPerInst) result in a single value. The number of nodes per level (nodesPerLevel)
and the number of repeated nodes (nodesRepeated) have the number of attributes at their
maximum value. While nodesPerLevel describes how many nodes are present in each level,
nodesRepeated represents the number of nodes associated with each attribute used for the model.

The measures based on the tree size, which extract information about the leaves and nodes
to describe the data complexity, are identified with the prefix tree. The tree depth (treeDepth)
represents the depth of each node and leaf, the tree imbalance (treeImbalance) describes the
degree of imbalance in the tree and the shape of the tree (treeShape) represents the entropy of
the probabilities to randomly reach a specific leaf in a tree from each one of the nodes.

Finally, the importance of each attribute (varImportance) represents the amount of
information present in the attributes before a node split operation. The amount of information
is defined by the randomization of incorrect labeling. This measure varies according to the DT
algorithm. As an example, the C4.5 algorithm uses the information gain from the information-
theoretic group to compute the importance of the attributes (BENSUSAN; GIRAUD-CARRIER;
KENNEDY, 2000) and the CART algorithm uses the Gini index (LOH, 2014).

Other model-based measures, using different learners, such as k-Nearest Neighbors
(kNN) and Perceptron neural networks were presented in Filchenkov and Pendryak (2015).
However, some of these measures have a very high computational cost. Some others have the
concept already described by well-known groups. In Nguyen et al. (2012), the weights learned
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by distinct feature selection algorithms were defined as model-based meta-features.

3.3.5 Landmarking meta-features

Landmarking is an approach that characterizes datasets using the performance of a
set of fast and simple learners, different from the model-based meta-features, which extract
information from the learning models. Although the performance of any algorithm can be used
as a landmarking, including sophisticated algorithms, some of them have been specifically used
as meta-features. Table 15 lists the most common landmarking measures. They characterize
supervised problems and are indirectly extracted, thus the whole dataset is used as an argument.
They require the definition of hyperparameters: the learning algorithm; the evaluation measure
to asses the model performance; and, the procedure used to compute them (e.g. cross-validation).
While the range is dependent on the evaluation measure (usually between 0 and 1), the cardinality
is from the procedure, thereby it is user-defined. Since their training and test data samples are
randomly chosen, all landmarking are non-deterministic.

Table 15 – Common landmarking meta-features and their characteristics. They are indirectly extracted,
non-deterministic and require the definition of hyperparameters.

Acronym Task Argument Domain Range Card. Excep.

bestNode Sup. *P+T Both [0,1] user No
eliteNN Sup. *P+T Both [0,1] user No
linearDiscr Sup. *P+T Num. [0,1] user Yes
naiveBayes Sup. *P+T Both [0,1] user No
oneNN Sup. *P+T Both [0,1] user No
randomNode Sup. *P+T Both [0,1] user No
worstNode Sup. *P+T Both [0,1] user No

The measures bestNode, randomNode and worstNode are the performance of a DT-model
induced using different single attributes. Respectively, they use the following attributes: the most
informative, a random one, and the least informative attribute. The aim is to capture information
about the boundary of the classes and combine this information with the linearity of the DT-
models induced with the worst and random attributes. The DT algorithm is a hyperparameter
defined by the user since different algorithms could be used.

The elite-Nearest Neighbor (eliteNN) is the result of the 1NN model using a subset of
the most informative attributes in the dataset, whereas the one-Nearest Neighbor (oneNN) is the
result of a similar learning model induced with all attributes. The distance measure used by the
kNN algorithm is a hyperparameter.

The Linear Discriminant (linearDiscr) and the Naive Bayes (naiveBayes) algorithms use
all attributes to induce the learning models. The first technique finds the best linear combination
of predictive attributes able to maximize the separability between the classes. For such, it uses a
covariance matrix and assumes that the data follow a Gaussian distribution. This technique can
generate exceptions if the data has redundant attributes. The second technique is based on the
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Bayes’ theorem and calculates, for each feature, the probability of an instance to belong to each
class. The combination of all features and related probabilities for one instance returns the class
with the highest probability.

Concerning the hyperparameters, an evaluation measure such as accuracy, balanced
accuracy and Kappa is necessary to evaluate the models. Other measures such as precision, recall
and F1 also could be used, however, for them, it is necessary to identify the class of interest in
binary datasets. The procedures used to induce the model are (i) using the whole instances to
train and test; (ii) holdout; and, (iii) cross validation. This information is rarely mentioned in
MtL studies and their impact in the characterization measures are not yet known. In practice, it
represents a trade-off between stable measures and computational costs.

Some variants are relative and subsampling landmarkings (FÜRNKRANZ; PETRAK,
2001) and their combined use (SOARES; PETRAK; BRAZDIL, 2001). Instead of using the
absolute performance of the landmarkers as meta-features, a relative approach adopts the land-
markers’ ranking, which is obtained using pairwise comparisons. Thus, the meta-feature can
be a binary value indicating the winner, the difference between them or the ratio of the two
performances. Besides, a meta-feature for each ranking position containing the name of the
respective landmarker is of categorical type. On the other hand, subsampling landmarking works
by applying traditional algorithms to a reduced subset of the original dataset.

The performance of the landmarkers can be represented as a learning curve, representing
their use with different sampling sizes of a dataset (LEITE; BRAZDIL, 2005). Furthermore,
in an algorithm recommendation scenario, their relative performance can be learned by meta-
models and the prediction from these meta-models can be used as meta-features, analogous to a
stacking-based approach (SUN; PFAHRINGER, 2013).

3.3.6 Other meta-features

Many other non-traditional characterization measures have been reported in the literature.
Despite the fact they are not broadly used in MtL studies, e.g. due to a high computational
complexity or domain bias, they can be useful for a particular learning scenario and MtL
problem. Besides, some works show good results when using those characterization measures
(GARCIA et al., 2018; MORAIS; PRATI, 2013; PIMENTEL; CARVALHO, 2019). Here, they
are arbitrarily presented in the following subgroups: clustering and distance; complexity; and
miscellaneous.

3.3.6.1 Clustering and distance-based

Clustering and distance-based measures characterize the instance space using validation,
also called index, measures that evaluate partitions produced by clustering algorithms and
measures calculating the distance between instances. Clustering validation measures and distance-
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based measures can be indirectly extracted characterization measures, requiring the set of
hyperparameter values such as the clustering algorithm and the distance function, respectively.
With few exceptions, they are computed using only the predictive attributes. According to the
distance measure used, the meta-features can handle numerical and/or categorical attributes.
Table 16 presents a list of clustering and distance-based measures.

Table 16 – Clustering and distance-based meta-features and their characteristics. They are robust and
require the definition of hyperparameters.

Acronym Task Extract Argument Domain Range Card. Determ.

AIC Any Indirect *P Both [0,∞] 1 No
BIC Any Indirect *P Both [0,∞] 1 No
compactness Any Indirect *P Both [0,∞] n No
connectivity Any Indirect *P Both [0,n] 1 No
distInst Any Direct *P Both [0,∞] n2 Yes
distCorrInst Any Direct *P Num. [0,1] n2 Yes
gravity Classif. Indirect *P+T Both [0,∞] 1 Yes
nrClusters Any Indirect *P Both [1,n] 1 No
purityRatio Classif. Indirect *P+T Both [0,1] q No
silhouette Any Indirect *P Both [−1,1] 1 No
sizeDist Any Indirect *P Both [0,1] n No
XB Any Indirect *P Both [0,∞] 1 No

Given the data partition produced by a clustering algorithm, nrCluster represents the
number of clusters, a simple informative measure, which is useful when this number is dynami-
cally defined. When the clustering algorithm used has the number of clusters as a hyperparameter,
a common option is to use the number of classes. The distribution of the clusters based on the
instances’ frequency is captured by the measure sizeDist. A distribution skewed to the right
indicates a complex dataset (LER et al., 2018).

Different validation measures are used to represent the quality of the partitions obtained,
such as how compact each group is and how separated the groups are from each other (VU-
KICEVIC et al., 2016). In a classification context, this information may indicate the separability
of the instances, and possibly the classes. The Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) measures represent the relative quality of the partitions
by estimating the amount of information lost by the model used to define the clusters. For both,
lower values indicate a better generalization of a model. While Compactness measures how
compact the clusters are, Silhouette and the Xie-Beni index (XB) add separation between clusters
to the compactness. The lower the value, the better for Compactness, whereas, for Silhouette and
XB, it is the opposite. Other often-used clustering validation measures are presented next.

Connectivity captures local densities by counting violations of the nearest neighbor
relationship of instances in different partitions (HANDL; KNOWLES; KELL, 2005). When
normalized by the number of instances, high values indicate that the clusters are not well
separated. It could be an informative measure to characterize the suitability of the bias related to
instance-based learning algorithms.
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Although only these validation measures have been used to characterize datasets in MtL
studies, there are many other clustering internal validation measures (HANDL; KNOWLES;
KELL, 2005) that could be employed. These measures can also be used without a clustering
algorithm, by considering the classes as partitions.

Differently, purityRatio is a clustering measure that looks at the instances’ classes to
evaluate the partitions. It is calculated for each class and captures the ratio of clusters that contain
instances related to the respective class. Datasets with high values are more complex than those
with low values since the classes are distributed across all partitions.

Another subset of measures, the distance-based measures (PIMENTEL; CARVALHO,
2019) are obtained computing the distance between all pairs of instances (distInst) and the
correlations combined with the distances (distCorrInst). They indicate how close and related
pairs of instances are, which may influence the decision boundaries of learning algorithms.
Finally, the center of gravity (gravity) computes the dispersion among the groups of instances
according to their class label. In this case, the groups are defined by the classes.

With few exceptions, all these measures have a high asymptotic computational complex-
ity, which restricts their use. Additionally, they allow a wide number of choices, with different
impacts in the value returned. In spite of being able to provide a good characterization, clustering
and distance measures are underexplored in the MtL literature.

3.3.6.2 Complexity

Complexity measures were proposed in (HO; BASU, 2002) to capture the underlying
difficulty of classification tasks, considering aspects such as class overlapping, the density of
manifolds and the shape of decision boundaries. They were used to support data pre-processing,
machine learning and recommender systems (GARCIA; CARVALHO; LORENA, 2016; GAR-
CIA et al., 2018; LUENGO; HERRERA, 2015; SMITH; MARTINEZ; GIRAUD-CARRIER,
2014). While the complete survey of the complexity measures can be found in Lorena et al.

(2019), Table 17 summarizes the main characteristics of these measures.

Ho and Basu (2002) divide the complexity measures into three groups: (i) feature
overlapping measures; (ii) measures of the separability of classes; and (iii) geometry, topology
and density of manifolds measures. Following Lorena et al. (2019), we adopted a more granular
organization: (i) feature-based measures; (ii) linearity measures; (iii) neighborhood measures;
(iv) network measures; and (v) dimensionality measures.

Feature overlapping measures characterize how informative the predictive attributes are
to separate the classes. They are: maximum Fisher’s discriminant ratio (F1); directional-vector
maximum Fisher’s discriminant ratio (F1v); volume of overlapping region (F2); maximum
individual feature efficiency (F3); collective feature efficiency (F4). The complexity is low if at
least one predictive attribute can separate the classes.
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Table 17 – Complexity meta-features and their characteristics. They are robust measures.

Acronym Task Extract Argument Domain Hyperp. Range Card. Determ.

clsCoef Classif. Indirect *P+T Num. Yes [0,1] 1 Yes
graphDensity Classif. Indirect *P+T Num. Yes [0,1] 1 Yes
F1 Classif. Direct 1P+T Both No [0,1] 1 Yes
F1v Classif. Indirect *P+T Both No [0,1] 1 Yes
F2 Classif. Direct 1P+T Num. No [0,1] 1 Yes
F3 Classif. Direct 1P+T Num. No [0,1] 1 Yes
F4 Classif. Direct *P+T Num. No [0,1] 1 Yes
Hubs Classif. Indirect *P+T Num. Yes [0,1] 1 Yes
LSC Classif. Direct *P+T Num. No [0,1− 1

n ] 1 Yes
L1 Classif. Indirect *P+T Num. No [0,1] 1 Yes
L2 Classif. Indirect *P+T Num. No [0,1] 1 Yes
L3 Classif. Indirect *P+T Num. No [0,1] 1 No
N1 Classif. Indirect *P+T Num. No [0,1] 1 Yes
N2 Classif. Direct *P+T Both No [0,1] 1 Yes
N3 Classif. Direct *P+T Both No [0,1] 1 Yes
N4 Classif. Direct *P+T Both No [0,1] 1 Yes
T1 Classif. Direct *P+T Num. No [0,1] 1 Yes
T2 Any Direct *P Both No [0,n] 1 Yes
T3 Any Indirect *P Num. No [0,n] 1 Yes
T4 Any Indirect *P Num. No [0,1] 1 Yes

Linearity measures quantify whether the classes are linearly separated. They include sum
of the error distance by linear programming (L1); error rate of linear classifier (L2); non-linearity
of a linear classifier (L3). To obtain the linear classifier, a linear Support Vector Machine (SVM)
is often used.

Neighborhood measures analyze the neighborhoods of individual examples and try
to capture class overlap and the shape of the decision boundary. They include fractions of
Borderline Points (N1); ratio of intra/extra class nearest neighbor distance (N2); error rate of the
nearest neighbor classifier (N3); non-Linearity of the nearest neighbor classifier (N4); fraction of
hyperspheres covering data (T1); local set average cardinality (LSC). All of them use a distance
matrix between all pairs of points in the dataset to define the instances’ neighborhoods according
to their classes.

The network measures transform a dataset into a graph and extract structural and sta-
tistical information from the graph. In this new representation, each example from the dataset
corresponds to a node, whilst undirected edges connect pairs of examples and are weighted by the
distances between them. These measures include average density of the network (graphDensity)
and Hub score (hubs). Other complex network measures are presented by Morais and Prati
(2013), however they are not detailed and we did not find other works using them.

Finally, the dimensionality measures evaluate data sparsity according to the number of
instances relative to the predictive attributes of the dataset. The measures include the average
number of points per dimension (T2); the average number of points per Principal Component
Analysis (PCA) dimension (T3); the ratio of the PCA dimension to the original dimension (T4).
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While T2 is the instToAttr meta-features, the T3 and T4 differ from T2 by using a transformed
dataset instead of the original.

These complexity measures look at different complexity aspects in a dataset. Thus,
they can be related to other groups of measures presented in this study. A variation of them to
characterize the classes individually instead of the whole dataset is found in Barella et al. (2018).
They are appropriate to represent the complexity of imbalanced datasets. These complexity
measures are free of hyperparameters and do not require the use of summarization functions,
since some of them directly adopt a summarization procedure, e.g. F1 which uses the maximum
value. However, their extraction usually has a high computational cost, which restricts their use
in MtL studies.

3.3.6.3 Miscellaneous

In this section, we included other characterization measures found in our review, which
did not fit in the previous groups and were used in a small number of MtL studies. These
measures are summarized in Table 18.

Table 18 – Other miscellaneous meta-features and their characteristics. They are robust measures.

Acronym Task Extract Argument Domain Hyperp. Range Card. Determ.

Data distribution measures
attrConc Any Direct 2P Categ. No [0,1] d2 Yes
classConc Classif. Direct 1P+T Categ. No [0,1] d Yes
propPCA Any Indirect *P Num. Yes [0,1] 1 Yes
sparsity Any Direct 1P Both No [0,1] d Yes

Case base measures
consistencyRatio Supervised Direct *P+T Both No [0,1] 1 Yes
incoherenceRatio Any Direct *P Both Yes [0,1] 1 Yes
uniquenessRatio Any Direct *P Both No [0,1] 1 Yes

Concept based measures
cohesiveness Classif. Direct *P+T Both Yes [0,n] n Yes
wgDist Any Direct *P Both Yes [0,∞] n Yes

Structural Information
oneItemset Any Indirect *P Both No [0,1] d Yes
twoItemset Any Indirect *P Both No [0,1] d2 Yes

Time based measures
infotheoTime Any Indirect *P Categ. No [0,∞] 1 No
landTime Supervised Indirect *P+T Both No [0,∞] 7 No
modelTime Supervised Indirect *P+T Both No [0,∞] 1 No
statTime Any Indirect *P Num. No [0,∞] 1 No

Data distribution measures assess how the data is distributed in the predictive attribute
space. One of these measures is the concentration coefficient, also known as Goodman and

Kruskal’s τ (KALOUSIS; HILARIO, 2001b), which is applied to each pair of attributes (attr-

Conc) and to each attribute and the class (classConc). In the former d(d−1) values are obtained,
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since it is not symmetric, whereas in the latter, d values are obtained, given that each attribute
is associated with the class. Semantically, they represent the association strength between the
attributes in each pair of attributes and between each predictive attribute and the target attribute.

Other related measures are the proportion of principal components that explain a specific
(e.g. 95%) variance of the dataset (propPCA) and the sparsity, which extracts the degree of
discreetness in each attribute. The former is another measure for capturing the redundancy of
predictive attributes, whereas, the latter indicates the variance in the values of the attributes.

Case base measures compare the instances with each other to identify properties that
might make the learning process more difficult (KOPF; IGLEZAKIS, 2002). Most of them
are originally proposed as logical measures, however, instead of only capturing the occurrence
(or not) of each property, we propose small changes to quantify each occurrence. The consis-

tencyRatio quantifies the proportion of repeated instances with different targets, where zero
is an ideal value. The uniquenessRatio is a generalization of consistencyRatio, since it uses
only the predictive attributes. To measure how dissimilar the instances are in their attribute
space, incoherenceRatio computes the proportion of instances that do not overlap with any other
instances in a predefined number of attributes. Values close to 1 are preferred in a dataset since it
shows that the instances are scattered through the input space.

The concept-based measures characterize the sparsity and the irregularity of the input-
output distribution (VILALTA; DRISSI, 2002a). An irregular distribution is observed when
neighboring instances have distinct target values (MUÑOZ et al., 2018). The weighted distance
(wgDist) captures how dense or sparse the distribution of the instances is (VILALTA, 1999).
It could be defined as a distance-based measure. Cohesiveness measures the density of the
example distribution (VANSCHOREN, 2010). Another measure of this subgroup, the concept
variation (VILALTA; DRISSI, 2002a) is defined by the cohesiveness average of all possible
instances in the input space, therefore unfeasible. Its version using the existing instances is
captured by the summarization function mean.

Structural information works well in identifying similar datasets (WANG; SONG; ZHU,
2015), by characterizing binary itemsets to capture the distribution of values of both single
attributes (oneItemset) and pairs of attributes (twoItemset) (SONG; WANG; WANG, 2012). They
capture different and complementary aspects of the dataset. oneItemset captures information of
each individual’s attributes, whereas, twoItemset captures possible correlations concerning pairs
of attributes. Association rules can also be applied to the transformed dataset to characterize
other relations between attributes (BURTON et al., 2014; MUÑOZ et al., 2018).

Time-based measures comprise the elapsed time to compute the previous groups of
measures (REIF; SHAFAIT; DENGEL, 2011), such as statistical, information-theoretic, model-
based and landmarking. In this case, the same hardware should be used to compute the meta-
features from different datasets, which can be very restrictive. Another option is to use the
number of float point operations, but it is not always possible.
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3.3.7 Summarization Functions

In this study, the purpose of summarization functions is to normalize the cardinality of
meta-features and to characterize other meta-feature aspects, such as tendency, distribution and
variability of the results. Given that many measures are multi-valued and that their cardinal-
ities vary according to the dataset, comparisons between multiple datasets can be infeasible.
Consequently, the summarization transforms non-propositional data to propositional (TODOR-
OVSKI; BRAZDIL; SOARES, 2000), making them suitable to be organized in a meta-base,
for instance. In the literature, summarization functions have been called meta-level attributes
(TODOROVSKI; BRAZDIL; SOARES, 2000), meta2-features (REIF; SHAFAIT; DENGEL,
2012) and post-processing functions (PINTO; SOARES; MENDES-MOREIRA, 2016b).

It is worth noting that in some studies (CASTIELLO; CASTELLANO; FANELLI, 2005;
FILCHENKOV; PENDRYAK, 2015; KUBA et al., 2002), to cite a few, the mean function is used
as part of the meta-feature definition and it is the only way used to summarize the results. Other
studies have used distinct subsets of summarization functions, such as histogram (KALOUSIS;
THEOHARIS, 1999); minimum, mean and maximum (TODOROVSKI; BRAZDIL; SOARES,
2000); minimum, maximum, mean and standard deviation (FEURER; SPRINGENBERG; HUT-
TER, 2014; GARCIA; CARVALHO; LORENA, 2016; PENG et al., 2002a); mean, standard
deviation and quartiles 1, 2 and 3 (BILALLI et al., 2018); minimum, maximum, mean and
standard deviation, kurtosis and skewness (REIF; SHAFAIT; DENGEL, 2012).

Table 19 presents a non-exhaustive list of the summarization functions, their range,
cardinality and a brief description. The quantiles and histogram result in multiple values. The
former summarizes a measure by representative values of the measure distribution, whereas
the latter uses the proportion of values in each range of data. A hyperparameter specifying the
number of bins in which the results are split (KALOUSIS; THEOHARIS, 1999) defines the
cardinality of the histogram. Some functions such as count, histogram and kurtosis change the
range of the characterized measure, while others inherit the range of the measure in which they
summarize, such as max, mean and min. The identity function is conceptually used when a
characterization measure results in a single value (k′ = 1).

Pinto, Soares and Mendes-Moreira (2016b) proposed that the summarization functions
should be organized in groups: descriptive statistical includes the most common functions and
summarizes a set of values in a single result such as max, min, mean, median, sd, skewness,
kurtosis, iqRange, among others; distribution characterizes the distribution of the measure using
multiple values. For this purpose, the use of histogram with a fixed number of bins (KALOUSIS;
THEOHARIS, 1999) and the use of quartiles to summarize the set of values (BILALLI et al.,
2018) are alternatives observed in the literature; hypothesis test assesses an assumption about a
set of values, resulting in one or more values, as the p-values and/or the tests result. However, its
use has not been observed in the literature.
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Table 19 – Main summarization functions.

Acronym Range Cardinality Brief description

count [1,k] 1 Computes the cardinality of the measure, suitable when the cardinality is
variable.

histogram [0,1] user Describes the distribution of the measured values, suitable for measures
with high cardinality.

iqRange [0,∞] 1 Computes the interquartile range of the measured values.
kurtosis [−3,∞] 1 Describes the shape of the measured values distribution.
max inherited 1 Results in the maximum values of the measure.
mean inherited 1 Computes the averaged values of the measure.
median inherited 1 Results in the central value of the measure.
min inherited 1 Results in the minimum value of the measure.
quartiles inherited 5 Results in the minimum, first quartile, median, third quartile and maxi-

mum of the measured values.
range [0,∞] 1 Computes the range of the measured values.
sd [0,∞] 1 Computes the standard deviation of the measured values.
skewness [−∞,∞] 1 Describes the distribution shape of the measured values in terms of

symmetry.

Conceptually, any function that offers guarantees of a fixed cardinality, regardless of the
number of values received by it, can be applied as a summarization function. Thus, even though
a post-processing function (PINTO; SOARES; MENDES-MOREIRA, 2016b) can also generate
indiscriminate number of values, a summarization function cannot. The summarization functions
presented in Table 19 can be applied to all multi-valued measures indiscriminately. Some
combinations measure/summarization-function explore semantic concepts, e.g. the standard
deviation of the classes proportion (LINDNER; STUDER, 1999). Particular summarization
functions, suitable for a specific measure, such as the nrCorAttr statistical meta-feature, that
summarizes the cor, is better instantiated as a meta-feature. Section 3.4.4 addresses this matter
as an open issue and shows possible insights concerning their use and exploration.

3.4 Discussion

In machine learning, it is expected that all information necessary to reproduce empirical
experiments, obtaining similar results, should be clearly reported. For MtL, the information’s
need to maintain the reproducibility is even greater, since this research topic also includes all the
machine learning analysis plus the recommendation system which is based on the characterization
of several datasets and the performance assessment from a set of algorithms over the datasets.
However, many details related to them are frequently ignored or subtly addressed in the literature.

This section focuses on six aspects of the characterization process, most of them strictly
related to the taxonomy proposed in Section 3.2. Frequently ignored details, the unspoken
decisions taken by researchers, are reviewed, along with the enumeration of gaps that demand
further analysis whether theoretical, empirical or both.
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3.4.1 Input Domain

The input domain defines the data type supported by a meta-feature. For instance,
statistical meta-features support only numerical data while information-theoretic meta-features
support only categorical data. The alternatives adopted to handle non-supported data types have
rarely been reported in the literature, as observed in Smith et al. (2001), Ali and Smith (2006),
Reif et al. (2014), Garcia, Carvalho and Lorena (2016). Besides the fact that such choices affect
the reproducibility of MtL experiments, their impact on the outcomes is unknown.

Figure 9 summarizes the options adopted in the literature to deal with the data type. The
options consist of ignoring (KALOUSIS; THEOHARIS, 1999) or transforming the data (CASTIELLO;
CASTELLANO; FANELLI, 2005). By ignoring the attributes, two problems are faced: (i) if
a dataset contains only attributes with the ignored data type, all respective measures will have
missing values; (ii) in an MtL context, the algorithms/techniques recommended may support
the ignored data. In favor of this choice, it can be argued that to using only the meta-features
that are able to characterize such data is a natural choice since they can properly represent the
data (MICHIE; SPIEGELHALTER; TAYLOR, 1994). Besides, their inability to process some
types of data may be aligned with the limitations of some algorithms, therefore representing
useful information. Alternatively, the datasets can be segmented by type (only numerical, only
categorical and mixed) where only the suitable measures for each group are used (BILALLI;
ABELLÓ; ALUJA-BANET, 2017; KOPF; IGLEZAKIS, 2002).

Figure 9 – Options to handle the input data type that are not supported by the meta-features.

By transforming the attributes, the meta-features can support any data types using a
binarization or discretization approaches. It leads to new decisions since there are different
alternatives used to transform the data, including the possibility of combining them together.

The most common transformation of categorical attributes into numerical ones is called
binarization (AGGARWAL, 2015). In this process, φ new binary attributes are created to
represent each different category in the data, where φ is the number of distinct categories in the
attribute. For each instance, only one of the new attributes is assigned to “1” while the others are
assigned to “0”. Its use to transform categorical attributes with a high number of distinct values
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is not recommended, since it generates a large number of new attributes. Alternatively, each
category can be mapped to an integer and then represented in a binary hash, where log2(φ) new
attributes are used to represent the bits values of the represented information (TAN; STEINBACH;
KUMAR, 2005). The unintended relationships among the new attributes can be a deficiency of
this approach, considering the meaninglessness of these relations.

Similarly, some meta-features support only categorical attributes, and the transformation
from numeric to categorical attributes may be necessary. For such, discretization techniques can
be used. These techniques distribute numeric values in φ distinct intervals, which correspond
to the new categories (AGGARWAL, 2015). As a result, order relations in the original values
and variations within the same interval are lost. In an unsupervised approach, the intervals can
be defined using equal-width or equal-frequency, where they have the same interval width or
the number of values, respectively. Other techniques such as clustering, correlation analysis and
decision tree analysis can also be used for value discretization (FAYYAD; IRANI, 1993; HAN;
KAMBER, 2006). The last two, which are supervised approaches, use the target attribute to
define the categories.

The discretization procedure has a larger number of alternatives than the binarization
procedure, which makes the result even more biased when they are arbitrary-defined. Most known
methods are based on supervised and unsupervised techniques. The unsupervised techniques
include the histogram and the clustering strategy. Given that in each transformation there is a loss
of information and a good discretization process can minimize it (JIN; BREITBART; MUOH,
2009). Because the unsupervised approaches are the simplest alternatives to discretize the data,
more information are lost in the process, however, they have a lower cost than the supervised
approaches.

The presence of missing values in the original datasets also demands attention, consider-
ing that many meta-features do not support the defective records. The alternatives to address this
issue are: (i) imputation of values provided by a preprocessing step and (ii) removal of attributes
and/or records with missing values. This topic is also frequently ignored in MtL papers.

3.4.2 Hyperparameter values

Another aspect that impacts the reproducibility of MtL experiments is the lack of details
with regards to the hyperparameter values required by the measures. Possibly, this occurs because
a value is used by default.

Tables 12, 14, 15 and 18 identify the measures that require the definition of hyperparam-
eter values. Some statistical measures have specific hyperparameter values. All model-based and
landmarking meta-features, on the other hand, have hyperparameter values that affect the whole
group. For the model-based, different DT algorithms can be used to induce the model and each
algorithm requires additional configurations. For the landmarking, the validation strategy, the
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evaluation measure and also the algorithms hyperparameters can be modified. In these cases, the
same set of configurations is usually adopted for all measures of the group, but not necessarily
by more than one author.

Other decisions concerning the use of meta-features and summarization functions can also
be seen as hyperparameters. For instance, how to handle the unsupported data type, as described
in Subsection 3.4.1, and the transformation by class (CASTIELLO; CASTELLANO; FANELLI,
2005) proposed to explore the target information, affect the statistical and information-theoretic
groups and can also be defined as hyperparameters. Additionally, the histogram summarization
function also has a hyperparameter that defines the number of bins to represent the measures.

In summary, the effects of such choices in the data characterization process are unknown.
Alternatives, such as tuning the different parameters of the measures, using distinct instances of
the same measure and evaluating the amount of information captured by them, have not been
explored.

3.4.3 Range of the Measures

The data range has been frequently ignored in MtL studies, which suggests that meta-
features have been used directly without transformation or it has not been properly reported.
Although meta-features have a different range of values, they are used together in a meta-base.
Considering that some algorithms are influenced by attributes with different ranges (HAN;
KAMBER, 2006; WANG et al., 2013), the meta-data can be transformed by min-max scaling or
z-score normalization, as illustrated by the vertical axis in Figure 10.

When?

How?

dataset meta-featurecharacterization measure

Rescale

Normalize

Figure 10 – Options to transform the range of the measures.

The transformation can occur in three distinct moments: (i) in the dataset, before any
computation; (ii) in the result of the characterization measure, before the summarization function;
and (iii) in the meta-base, after computing the meta-feature. These moments are represented by
the horizontal axis in Figure 10. They have some implications in the result regardless of how the
transformation occurs.

The dataset transformation is an alternative for the measures whose scale is determined
by the values present in the dataset (range is inherit). Changes in the original data range will
reflect on the outcome of these meta-features. The second alternative transforms the result of the
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characterization measures. It is more suitable for multi-valued measures. Both alternatives are
not recommended for meta-features using summarization functions on a particular scale, such as
kurtosis and skewness. Finally, the most conventional approach is to transform the meta-features
result, which requires the characterization of all datasets beforehand.

Some rescaled meta-features are used along with (or instead of) their original version.
The proportion of numeric and categorical attributes (BRAZDIL; GAMA; HENERY, 1994;
KALOUSIS; HILARIO, 2001b), the proportion of attributes with outliers and normal distribu-
tion (BRAZDIL; SOARES; COSTA, 2003; SALAMA; HASSANIEN; REVETT, 2013) and
the normalized entropy (CASTIELLO; CASTELLANO; FANELLI, 2005), are some examples
found in the literature. However, only a few measures have their rescaled version named. The
theoretical maximum and minimum values from the measures with a non-infinity range can
be modified with the min-max scaling. The transformation of meta-features for some dataset
characteristic (e.g. the number of instances) using absolute or relative values can be a better
alternative.

In summary, the lack of information about the procedures adopted concerning the meta-
data transformation is also a barrier to reproducible MtL studies. The different alternatives to
transform the meta-features can suit some meta-features better than others. Although this topic
does not contribute directly to the reproducibility issue, it is a very important research question
that has not been satisfactorily addressed in the MtL literature.

3.4.4 Summarization Functions

In most MtL studies, summarization functions are combined with meta-features, either
implicitly or explicitly. Implicitly when they are defined as part of the meta-feature formaliza-
tion (CASTIELLO; CASTELLANO; FANELLI, 2005; FILCHENKOV; PENDRYAK, 2015;
KUBA et al., 2002; PENG et al., 2002a), where the average result is the most natural solution
used. Explicitly when studies show the effectiveness of using other options to summarize mea-
sures (KALOUSIS; THEOHARIS, 1999; PINTO; SOARES; MENDES-MOREIRA, 2016b;
REIF; SHAFAIT; DENGEL, 2012; TODOROVSKI; BRAZDIL; SOARES, 2000), as reported in
Section 3.3.7.

Some combinations of meta-features and summarization functions have a semantic
meaning. For instance, the standard deviation (sd) applied to the frequencies of the classes
(freqClass) shows how uniform the class distribution is, which may also indicate that the classes
are unbalanced. Other combinations are meaningless, as the use of the cardinality of the measure
(count) to summarize the joint entropy (jointEnt), since the measure has a fixed cardinality. There
are also some possible problematic combinations, such as the use of histograms to summarize
meta-features with low cardinality and/or with the range that is defined according to a dataset
characteristic. In this case, the histogram bins can be sparse and represent different scales of
values for each dataset.
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The use of many functions to summarize a measure proportionally increases the number
of meta-features obtained. As many measures are multi-valued, hundreds of results can be
easily obtained when combined with multiple summarization functions. The relatively low
number of meta-instances usually observed in MtL experiments together with the high number
of meta-features could generate meaningless models due to the curse of dimensionality (TAN;
STEINBACH; KUMAR, 2005). The use of a feature-selection algorithm can be an alternative
to deal with this problem (LEMKE; BUDKA; GABRYS, 2015; PINTO; SOARES; MENDES-
MOREIRA, 2016b).

Even though summarization functions are not strictly related to reproducibility issues,
they are relevant to reproducibility because different choices can be made in a characterization
process. The empirical analysis of summarization functions and the exploration of new ways to
summarize meta-features should be the subject of future research.

3.4.5 Exceptions

As discussed previously, some measures can be incorrectly computed for some datasets.
Their use requires specific conditions that cannot always be guaranteed. Operations such as
division by zero and logarithm of negative values are the main causes of exceptions.

Alternatives to deal with problematic measures are: (i) assuming it results in a missing
value; (ii) using a default value; (iii) if the measure is multi-valued, ignore it. The first option
results in a meta-base with missing values, which eventually will be filled using some pre-
processing technique (HAN; KAMBER, 2006) or removed from the meta-base. The other two
alternatives fix the problem of having a missing value during the computation of the meta-feature.

The use of a default value to represent exceptional cases can be positive when it properly
characterizes the measure and the phenomenon that generates the exception. Table 20 presents
default values, suggested by the authors, to be used when a meta-feature cannot characterize a
dataset. With the exception of sdRatio, the values are in the range of their measures, assuming a
semantic meaning as explained in the column Meaning.

The previous alternatives can introduce noise in the predictive meta-data. This does not
occur when the defective results can be removed before the summarization. As a drawback, this
alternative is valid only for the multi-valued measures. Furthermore, to discard few values for
measures with high cardinality, the final result will not change drastically, but for the measures
with low cardinality, this approach may lead to distortions in results.

Summarization functions can also generate exceptions. This is the case of sd, kurtosis

and skewness. The sd cannot be applied to single values while the kurtosis and skewness cannot
be applied to constant vectors. The alternatives i and ii can also be adopted for them. The value 0
is the default value suggested to fill the problematic cases, which represents no deviations for sd

and constant values for kurtosis and skewness.
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Table 20 – Suggested values to fill the missing cases for the meta-features with exceptions.

Group Measure Default Meaning

Mono-valued measures
Simple catToNum d All attributes are categoric.

numToCat d All attributes are numeric.

Statistical nrCorAttr 0 No pair of attributes is highly correlated.
sdRatio -1 Invalid result.

Multi-valued measures
Statistical cor 0 No correlation.

gMean mean Mean value.
kurtosis 0 Constant values.
skewness 0 Constant values.

Landmarking linearDiscr 0 Low predictive performance.

In summary, the use of these measures and summarization function does not imply that
they will generate exceptions during the extraction of meta-features. However, there is an absence
of information about the occurrence or lack of occurrence in empirical studies in MtL. Thereby,
it is strictly related to the reproducible of the MtL studies, given that it has a technical bias and is
related to the implementation and use of meta-features.

3.4.6 Meta-feature Space

The ratio between the number of meta-features and the number of meta-instances in
MtL experiments is usually higher than in conventional ML experiments. Furthermore, it is well
known that the most suitable meta-features varies for different MtL tasks (BILALLI; ABELLÓ;
ALUJA-BANET, 2017). Thus, some studies have investigated the use of feature selection tech-
niques (PINTO; SOARES; MENDES-MOREIRA, 2016b; SALAMA; HASSANIEN; REVETT,
2013) and the transformation of the meta-features’ space (BILALLI; ABELLÓ; ALUJA-BANET,
2017; MUÑOZ et al., 2018) to reduce the dimensionality of meta-bases, as well as to increase
the predictive performance of meta-models (KALOUSIS; HILARIO, 2001a).

Meta-feature selection is just an instance of feature selection (LEMKE; BUDKA;
GABRYS, 2015). Among the different approaches for meta-feature selection, wrapper appeared
more often in our literature review (TODOROVSKI; BRAZDIL; SOARES, 2000; KALOUSIS;
HILARIO, 2001a; BRAZDIL et al., 2009; REIF et al., 2014; FILCHENKOV; PENDRYAK,
2015; GARCIA; CARVALHO; LORENA, 2016) than the use of a filter (PENG et al., 2002b;
LEE; GIRAUD-CARRIER, 2008; PINTO; SOARES; MENDES-MOREIRA, 2016b).

In Muñoz et al. (2018), the authors followed a new approach for meta-feature selection.
They investigated the behaviour of several meta-features in 12 classification challenges. By
modifying a dataset to increase/decrease each investigated problem, the variance of the meta-
features is statistically assessed, revealing those that better characterize each variation. After the
repetition of the process using different datasets, the most relevant features for each challenge
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are obtained.

Another work for the meta-feature dimensionality reduction used PCA (HOTELLING,
1933) to obtain latent meta-features (BILALLI; ABELLÓ; ALUJA-BANET, 2017). After com-
puting the principal components, the most relevant (according to the cumulative total variance)
are selected. The authors later used a filter based on correlation with the target to select a subset
of the latent meta-features.

As PCA does not take into account the target variable to transform the data, Muñoz et al.

(2018) used optimization to transform a set of previously selected meta-features into a 2-D space.
For such, the authors used the performance of several learning algorithms. Named instance space,
it enables the visualization of the set of datasets used in an MtL study.

Most of the studies found for this study use wrapper. Few studies use transformation
approaches in MtL. Some works have compared groups of meta-features (ABDELMESSIH et

al., 2010; KOPF; IGLEZAKIS, 2002; REIF; SHAFAIT; DENGEL, 2011; REIF et al., 2014),
with different findings. For instance, landmarkings and model-based meta-features were the most
important characterization measures in Reif et al. (2014) and Filchenkov and Pendryak (2015),
respectively. In contrast, feature selection wrapper did not improve the predictive performance
of the meta-models in Garcia, Carvalho and Lorena (2016).

To estimate the importance of a meta-feature, Filchenkov and Pendryak (2015) uses
a significance measure that associates the predictive performance of a model induced using
each meta-feature alone. This process is repeated several times and the average performance
obtained for each meta-feature is the meta-feature significance value. Pimentel and Carvalho
(2019) define the meta-feature importance as the number of times it is selected when the Random
Forest algorithm is applied to the meta-base. In Salama, Hassanien and Revett (2013), Peng
et al. (2002b), the authors use the correlation between them and the meta-target to select the
meta-features (PENG et al., 2002b; SALAMA; HASSANIEN; REVETT, 2013).

The decision of whether to use reduction and/or transformation is an important issue in
the reproducibility and performance of MtL experiments. When used, a detailed specification
of the procedures adopted is essential for the replication of the experiments. Moreover, while
meta-feature selection may improve the interpretability of the meta-models, the same is not the
case when a transformation is used.

3.4.7 Outline

The previous subsections discussed the main aspects related to the reproducibility of MtL
experiments. They refer to the alternatives and decisions taken that need to be properly reported.
Furthermore, some gaps were identified, mainly because it is unknown how the different choices
could impact the characterization process. Below, each topic regarding the reproducible issues
and gaps are summarized. The details can be seen in the respective subsection.
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Input domain: Some measures support only categorical data while others, only numeric. The
alternatives to handle with this issue are ignoring; transforming, which implies in other
decisions (see Figure 9); segmenting the experiments and datasets. The impact of such
choices in the statistical and information-theoretic meta-features is unknown. Furthermore,
datasets may have missing values, which will require imputation of values or the removal
of the defective records.

Hyperparameters: Some meta-features or groups of them require the definition of hyperparam-
eters (see Table 21). The way the hyperparameters affect the model-based and landmarking
meta-features is unknown. Also, approaches like tuning and the use of different hyperpa-
rameters values for the same measure have not been explored yet.

Range of the measures: The meta-features have distinct range of values. The alternatives to
handle with this issue are ignoring or transforming. In the latter (see Figure 10), the
min-max rescaling and z-score normalization are procedures that can be used; the dataset,
characterization measure and the meta-feature represent the objects to be transformed. The
gaps are concerned with identifying suitable combinations between the two dimensions
and the normalization of the meta-features.

Summarization functions: Different functions can be employed to summarize the measures
result. The investigation of how the summarization functions affect the measures’ results
are still incipient. Furthermore, finding new alternatives to summarize the measures may
increase the discriminative power of the meta-features.

Exceptions: Some measures cannot be computed for all datasets. The alternatives to handle this
issue are ignoring or replacing. In the latter, the alternatives are applying a preprocessing

technique; using a default value; removing the missing values (only for multi-valued
measures). However, the impact of such choices in the characterization result is unknown.

Meta-feature space: Meta-feature dimensionality reduction can be performed using a feature-

section and/or transformation approach. In the former, wrapper is more often used than
filter. In the latter, although PCA is most commonly used, it is used in a small number of
studies. While the use of feature selection allows model interpretability, transformation
usually has a lower computational cost.

We reinforce that many of those issues have not been properly reported in the MtL
literature. This list can be used as a guideline for future studies involving dataset characterization.
The next section addresses the characterization tools that contribute directly to reproducible
empirical research in MtL.
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3.5 Tools

Characterization tools have an important role in the development of research in MtL.
Besides simplifying an essential step of the work, their use corroborates the reproducibility of
MtL experiments. However, the approach used in the development of the tool can generate two
different perspectives: (i) a black box tool with abstracted choices, which promotes reproducibil-
ity, but only for the users that use the same tool or, (ii) a white box tool that exposes all the
options to the user promoting reproducibility even with different tools, but forcing them to make
the explicit decisions about the parameter values.

The Data Characterization Tool (DCT)3 (LINDNER; STUDER, 1999) is the most
referenced characterization tool in the MtL literature (BENSUSAN; GIRAUD-CARRIER, 2000;
KOPF; IGLEZAKIS, 2002; PFAHRINGER; BENSUSAN; GIRAUD-CARRIER, 2000; REIF et

al., 2014), to cite a few. The DCT contains a representative subset of meta-features from simple,
statistical and information-theoretic groups.

Matlab Statistics Toolbox (MATHWORKS, 2001) have also been used to characterize
statistical measures (ALI; SMITH, 2006; ALI; SMITH-MILES, 2006; SMITH-MILES, 2008).
Weka (HALL et al., 2009), RapidMiner (MIERSWA et al., 2006) and other general data mining
tools can be employed to compute landmarking meta-features (ABDELMESSIH et al., 2010;
BALTE; PISE; KULKARNI, 2014).

Nowadays, OpenML (VANSCHOREN et al., 2013) is the most robust tool available to
characterize datasets, though it has a broader purpose. Many of the reported measures are avail-
able in the platform, which is also a benchmarking repository that contains the characterization of
several datasets. OpenML uses an extension of the Fantail library (SUN; PFAHRINGER, 2013),
also available on GitHub.4 A drawback may be that the characterization process is performed
automatically when a new dataset is submitted to the platform, which abstracts the users’ choices.
On the other hand, anyone can compute and upload their meta-features to OpenML through its
API.5

The framework proposed by Pinto, Soares and Mendes-Moreira (2016b) is available as
an open GitHub project6, but without the implementation of the meta-features, which could be
an expensive task. Except for it, all the reviewed tools are black-box tools.

In parallel, many authors have used their implementation of the meta-features (FILCHENKOV;
PENDRYAK, 2015; GARCIA; CARVALHO; LORENA, 2016; REIF et al., 2014; TODOR-
OVSKI; BRAZDIL; SOARES, 2000), without reporting and making publicly available their
implementation. This practice negatively affects reproducibly and comparison of results. Besides,
without source code and widespread use, there is a chance that the implementations work as

3 <https://github.com/openml/metafeatures/dct>
4 <https://github.com/quansun/fantail-ml>, <https://github.com/openml/EvaluationEngine>
5 <https://www.openml.org/api_docs#!/data/post_data_qualities>
6 <https://github.com/fhpinto/systematic-metafeatures>

https://github.com/openml/metafeatures/dct
https://github.com/quansun/fantail-ml
https://github.com/openml/EvaluationEngine
https://www.openml.org/api_docs#!/data/post_data_qualities
https://github.com/fhpinto/systematic-metafeatures
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they should. A positive step towards reproducibility is the “Paper with code"7 platform, which
provides code repository. However, comparing the number of MtL related works published in the
last 5 years with the number of codes available at the “Paper with code" website,8 the practice
of publishing the code/results is unfortunately still incipient.

3.5.1 MFE Tool

Aiming to offer a robust, flexible and standalone data characterization tool, the authors
developed the Meta-Feature Extractor (MFE) tool9 that contains the implementation of most of
the meta-features and summarization functions described in this paper. MFE also implements
solutions for some of the issues discussed in Section 3.4 and provides a simple and flexible tool
specifically designed to characterize datasets.

MFE allows the user to compute a specific, a group of or all meta-features available.
It is possible to define which summarization functions should be computed and, optionally, to
obtain all computed values for a given set of measures, without summarizing the results. Many
of the hyperparameters can be changed according to the user’s preferences, as shown in Table 21,
which also includes the default values adopted for all of them. It is worth highlighting that the
robustness of these choices, regarding the characterization process, is usually unknown, although
they are consistent with the literature and the authors’ experience. The column “Details" presents
the rationale behind the decisions taken.

As a limitation, MFE does not support to characterize non-classification datasets and
does not accept datasets with missing values. An extension to other meta-features needs to follow
the discussion described in Section 3.4. The authors believe that MFE can be used in any MtL
experiment that requires the characterization of datasets, similar to DCT in the past, but with
more flexibility.

3.6 Conclusion

The recommendation of techniques by using MtL is an effective alternative to deal with
the selection of the most suitable techniques among a large number of possibilities. However,
many MtL studies adopt different methodologies and design approaches, which affect the
reproducibility of the experiments. By discussing topics that have been frequently ignored in
the MtL literature and suggesting possible alternatives to approach them, this paper reviewed
the main characterization measures and important issues related to the reproducibility of MtL
experiments, in addition to the proposal of a new taxonomy for meta-features and the MFE tool.
7 <https://paperswithcode.com/task/meta-learning/>
8 Using Scopus, we found 412 papers related to MtL in the last 5 years, whereas we found only 65

works in the ”Paper with code“ website.
9 Available in Python (<https://pypi.org/project/pymfe/>) and R (<https://cran.r-project.org/package=

mfe>) languages

https://paperswithcode.com/task/meta-learning/
https://pypi.org/project/pymfe/
https://cran.r-project.org/package=mfe
https://cran.r-project.org/package=mfe
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Table 21 – Hyperparameters and their adopted default values in the MFE tool.

Measure Hyperparameter User Details

Statistical
all transform = TRUE Yes Defined according to an exploratory analysis, to reduce the number

of missing values in the meta-features. By setting it as true the
categorical attributes will be binarized using simple transformation,
whereas with false they will be ignored.

by.class = FALSE Yes Enables the measure extraction by class, as proposed by Castiello,
Castellano and Fanelli (2005).

cor method = “pearson" Yes Options: “kendal" and “spearman"

nrCorAttr method = “pearson" Yes Options: “kendal" and “spearman"
threshold = 0.5 No As defined in Salama, Hassanien and Revett (2013)

nrNorm W-Test for normality No Details in Royston (1995)
propNorm W-Test for normality No Details in Royston (1995)

nrOutliers Tukey’s boxplot No Details in Rousseeuw and Hubert (2011)
propOutliers Tukey’s boxplot No Details in Rousseeuw and Hubert (2011)

tMean trim = 0.2 No As defined in Ali and Smith-Miles (2006)

Information-theoretic
all transform = TRUE Yes Defined according to an exploratory analysis, to reduce the num-

ber of missing values in the meta-features. By setting it as true
the numeric attributes will be discretized using equal-frequency
histogram transformation, whereas with false they will be ignored.
The number of bins is set to 3

√
n.

Model-based
all algorithm = Cart No Details in Breiman et al. (1984).

Landmarking
all Cross-validation No Methodology used in order to obtain more stable results.

folds = 10 Yes Also defines the measures cardinality.
score = “accuracy" Yes Options: “balanced.accuracy" and “kappa".

bestNode algorithm = Cart No Details in Breiman et al. (1984).
randomNode algorithm = Cart No Details in Breiman et al. (1984).
worstNode algorithm = Cart No Details in Breiman et al. (1984).

Miscellaneous
gravity distance = “euclidian" No As defined in Ali and Smith (2006).

The new taxonomy organized and formalized the current meta-features and their use-
fulness across different types of task, domain, range, and several other characteristics that can
impact MtL tasks. Based on this review, the authors enumerated the main decisions a researcher
faces when using meta-features. Moreover, a detailed discussion is provided on the cutting edge
subgroup of meta-features, their predictive power and the use cases where these measures have
been applied. In addition to this study, the MFE package was proposed to support the data
characterization process implementing the framework proposed with the main meta-features
included in the discussion.

Future work shall investigate meta-features for other types of tasks, such as regression
and clustering; increase the interpretability of the meta-features; and explore empirical analysis
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showing how some choices related to the hyperparameters, cardinality and the summarization
functions can affect dataset characterizations to best distinguish the performance of meta-models.
A review of regression and clustering meta-features could improve the task representation and
could also look at a different perspective and validate the taxonomy proposed. The exploration of
interpretability of the meta-features and the empirical analysis over hyperparameters, cardinality
and summarization function could improve the meta-model representation and performance.
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Abstract

In multi-label learning, instances are associated with different labels simultaneously. A
common approach to deal with this situation is the transformation of the original dataset into a
set of single-label datasets associated with each label. Next, a base, single-label, classification
algorithm is applied to each dataset. The results obtained for each single-label dataset are merged,
returning the overall multi-label prediction. By looking only at the overall multi-label predictive
performance, we can overlook some internal problems. One of them is that, in the single-label
classification tasks, some labels can be never or always predicted. So far, very little attention
has been paid to this issue, which may produce misleading results. This paper investigates
some alternatives to deal with these label prediction problems. In addition to using a traditional
approach (thresholding calibration), we introduce a new transformation that, by combining labels,
improves the predictive performance for a particular evaluation measure. Two operations, label
expansion and label reduction, are proposed to enhance the predictive performance for the label



98 Chapter 4. Label operation for multi-label optimization

measures AUC, F1 and precision. Considering that the labels are individually optimized, we
expect to reduce the label prediction problems. According to the empirical results, the proposed
approaches can mitigate the label prediction problems. We show that they can improve predictive
performance for different evaluation measures, including the non-trivial AUC, reducing the label
prediction problems regardless of the base algorithm used.

4.1 Introduction

Many real-world data science applications, from different domains, such as text, mul-
timedia and biology, are frequently related to multiple concepts simultaneously (GALINDO;
VENTURA, 2014). Multi-Label Classification (MLC) strategies have been largely used to deal
with them.

A common approach to support MLC tasks consists of transforming the original multi-
labeled data into single-labeled data and applying conventional classification algorithms to solve
each task separately, combining the results at the end (TSOUMAKAS; KATAKIS; VLAHAVAS,
2010). Binary Relevance (BR) (BOUTELL et al., 2004) is the simplest and most popular
transformation strategy (LUACES et al., 2012; MONTAÑÉS et al., 2014). BR generates an
independent binary dataset for each label, using the one-versus-all approach, which is used to
induce a learning model that is able to predict the relevance of such labels. However, it has
been criticized as it does not explore the labels’ dependencies and generates highly imbalanced
datasets due to the one-versus-all transformation (ZHOU; TAO; WU, 2012; ZHANG et al.,
2018).

Recently, we have observed for a particular dataset that some labels are never cor-
rectly predicted, just as others are always predicted, regardless of the strategies and base algo-
rithms (RIVOLLI; SOARES; CARVALHO, 2018a). Furthermore, such label prediction problems
seem to be recurrent for distinct datasets (RIVOLLI; SOARES; CARVALHO, 2018b), despite
the fact that no previous study has investigated them.

Thus, this paper investigates alternatives in order to address label prediction problems.
In addition to the use of a traditional approach, called threshold calibration (FAN; LIN, 2007),
we propose and formalize a multi-label transformation, called label operation. Considering: (i)

the intrinsic relationships between labels; (ii) the infrequent labels, such that some of them are
not properly represented by instances; (iii) the possibility of noises being introduced during
the labeling process; we believe that the combination of specific pairs of labels can lead to
improvement predictive performance. We propose and experimentally investigate here two
different approaches for this combination: label expansion and label reduction. While the former
increases the number of instances associated with a label, the latter reduces the number of
instances that are not associated with it. These operations use another, possibly related, label to
guide the transformation, indirectly exploring the labels’ dependencies. As consequence, they
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obtain more balanced datasets and can reduce label noises.

In a previous study (RIVOLLI; SOARES; CARVALHO, 2018b), we introduced the label
expansion as an alternative to deal with the label prediction problems. By generalizing it in the
label operation; investigating a new operation, the label reduction; and performing an in-depth
and broader set of experiments; the main contributions from this new study include:

∙ Proposition of two operations: label expansion and label reduction; that are empirically
evaluated in order to optimize the AUC, F1 and precision label measures.

∙ Formalization of these label operations as a multi-label optimization procedure.

∙ Experimental comparison of the proposed label operations with an alternative approach
found in the literature: threshold calibration.

Experimental results show that the investigated approaches are able to reduce the label
prediction problems for most of the datasets. Overall, label operations was shown to be more
robust than the threshold calibration for different base algorithms. In practical terms, the op-
erations act on the learning process, whereas threshold calibration only affects the final result.
Consequently, they can also be combined.

The rest of the paper is organized as follows: Section 4.2 formally defines MLC. Sec-
tion 4.3 formalizes the label expansion, label reduction and their use as a multi-label optimization
procedure. Section 4.4 presents the experimental evaluation process, describing the datasets,
evaluation measures and procedures adopted in the empirical study. The results, which include
the performance of the label operations and threshold calibration, are presented in Section 4.5.
Afterward, Section 4.6 discusses the effect of these mechanisms, highlighting the main properties
and implications of the label operations. The paper ends with Section 4.7, which summarizes the
findings and future work directions.

4.2 Multi-label Learning

A MLC task is a classification task in which each instance can be simultaneously
classified in more than one of the existing class labels (CARVALHO; FREITAS, 2009), using an
induced predictive model h : X → Y from a set of labeled instances D = {(~x1,Y1), ...,(~xn,Yn)}.
In this equation,~xi ∈ X is a vector with characterization features that describes the ith instance
and Yi ⊆ Y are the set of labels associated with it, such that Y =

{
λ1,λ2, ...,λq

}
is the set of all

q labels λ j, representing concepts from a given domain.

Different strategies have been proposed to induce a predictive model h for an MLC
task. They can be organized into two groups (TSOUMAKAS; KATAKIS; VLAHAVAS, 2010):
problem transformation and algorithm adaptation. The former transforms the original multi-label
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dataset into a set of single-label datasets, which can be modelled with conventional binary classi-
fication approaches. For this reason, they can be seen as algorithm independent (CARVALHO;
FREITAS, 2009). The latter modifies existing machine learning algorithms to intrinsically
support the multi-labeled data.

The transformation process is usually performed using the one-versus-all, one-versus-one
and multi-class approaches.. One-versus-all generates at least one dataset per label, in which
each binary dataset D ′

j = φ(D ,λ j) is related to the label λ j. The instances associated with the
λ j label are labeled with class 1, and the others with class 0, such that

φ(D ,λ j) ={(~xi, I(λ j ∈ Yi)) | (~xi,Yi) ∈ D}, where

I(·) =

1 if the predicate is true,

0 otherwise.

(4.1)

From this transformation, the BR strategy uses the dataset D ′
j to induce a binary model

θ j for each label λ j. The final prediction is performed combining the predictions from all binary
models as follows:

hbr = {λ j | θ j(~x) = 1, 1 ≤ j ≤ q}.

Without loss of generality, a binary model θ j predicts a class value from a real-valued
function f j. This value indicates a score of relevance, confidence or probability to a given
instance to belong to the class λ j. Hence, θ j(~x) = 1 ⇐⇒ f j(~x) ≥ τλ j , where τλ j is the
threshold value for label λ j. By default, the middle value of a range (e.g. τλ j = 0.5 for a [0,1]
interval) is used as a decision point. Nevertheless, different evaluation measures can be optimized
by varying this value (PILLAI; FUMERA; ROLI, 2013).

A widely threshold calibration strategy used in MLC tasks is the Score-Cut (SCUT) (YANG,
2001). From a validation set Dv and a given evaluation measure β that is maximized, a label-wise
optimization with SCUT is performed as

τ
*
λ j
= argmax

τλ j

β (θ j(Dv,τλ j),Dv). (4.2)

In this context, a label-wise optimization means that a threshold value τλ j will be defined
for each label. When τλ j is low (close to 0), more instances are predicted with the respective label,
which favors the recall. On the contrary, a high value (close to 1) is more restrictive, possibly
favoring the precision.

In a recent study (RIVOLLI; SOARES; CARVALHO, 2018a), the authors observed the
occurrence of three problems regarding the inability of an MLC model to properly predict some
labels. The Constant Label Prediction (CLP) measures the proportion of labels predicted for all
instances (Equation 4.3), whereas the Missing Label Prediction (MLP) measures the proportion
of labels never predicted for any instance (Equation 4.4). Its generalization is the Wrong Label
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Prediction (WLP), which measures the proportion of labels predicted incorrectly for all instances
(Equation 4.5). Unless the individual performance of the labels is reported, the current MLC
measures cannot identify these problems.

CLP =
1
q

q

∑
j=1

I(TN j +FN j == 0), (4.3)

MLP =
1
q

q

∑
j=1

I(TP j +FP j == 0), (4.4)

WLP =
1
q

q

∑
j=1

I(TP j == 0). (4.5)

These definitions use the confusion matrix values: TP j, FP j, TN j and FN j that, re-
spectively, represent the true positive, false positive, true negative and false negative counts of
the label λ j; I is defined in Equation 4.1. These measures should be computed on a separate
validation or test set.

Threshold calibration is one of the approaches investigated to solve the label predic-
tion problems. Among thresholding strategies used to define the decision points (AL-OTAIBI;
FLACH; KULL, 2014), we investigated the previously described SCUT strategy. Moreover, two
label operations are proposed to tackle this issue. They are detailed in the next section.

4.3 Label Operation

A frequent assumption of MLC is that the labels are dependent (MONTAÑÉS et al., 2014;
PAPAGIANNOPOULOU; TSOUMAKAS; TSAMARDINOS, 2015; MENC’iA; JANSSEN,
2016). Different approaches address this assumption in different ways; for instance, Classifier
Chains (READ et al., 2011) use the set of already predicted labels as features in the prediction
of another label. Other strategies (MONTAÑÉS et al., 2014; CHERMAN; METZ; MONARD,
2012) use the stacked generalization approach to augment the input space of a given label
considering all the other labels. In this sense, we propose a data manipulation approach, label
operation, that changes the target values of a label based on other related label.

Different operations can define alternatives to guide the transformation. For instance,
given two correlated labels that are assigned to a small number of instances, one can use as
positive examples all the instances assigned to the other. This can bring more representativeness
to the expanded label. In another scenario, the removal of the instances assigned exclusively with
one of two labels can work as a noise reduction for the learning process of the other label.

Through the label operation, the transformation can be defined as a function φ(D ,λ j,λk)

such that, the label λk will be used to modify the binary dataset D ′
j relative to the label λ j. Two

basic operations, expansion and reduction, are respectively detailed in Subsections 4.3.1 and
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4.3.2. Finally, Subsection 4.3.3 discusses how to perform the operations since it is necessary to
find the pairs of labels that are able to optimize a given evaluation measure.

4.3.1 Label Expansion

The Label Expansion (LE) operation between two labels (λ j +λk) uses instances la-
beled with any of them as being assigned to the λ j, for the transformation of the dataset D′

j.
Consequently, it increases the number of instances associated with the expanded label λ j (class
1) and reduces the number of instances with the class 0. Figure 11 shows the LE operation
(box ‘c’) using two labels, L1 and L2, for an illustrative MLC dataset. Boxes ‘a’ and ‘b’ show
the traditional transformation for both labels involved in the LE operation.
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Figure 11 – Illustrative example of the default one-versus-all, label expansion and label reduction trans-
formations for a multi-label data with two predictive attributes.

Formally, LE transformation is defined as

φLE(D ,λ j,λk) = {(~xi, I(λ j ∈ Yi ∨λk ∈ Yi)) | (~xi,Yi) ∈ D}.

The transformation is symmetric (λ j +λk = λk +λ j), such that the same training data is
obtained for both labels involved in the operation, leading to the same predictive model. However,
the models are used in different problems, namely to predict different labels. More specifically,
they will be evaluated using a different test set. Thus, λk may be used to expand λ j to enhance
an evaluation measure, but the opposite is not necessarily true.

Intuitively, LE can be suitable for expanding labels with few instances and between pairs
of labels with an “is-a" relationship. By using instances from another label, it is expected to create
better decision boundaries, despite the fact that some level of noise is also added to the target.
The LE operation increases the cardinality and density of the training data which can improve
the predictive performance of some MLC strategies (RODOVALHO; BERNARDINI, 2014).
Moreover, it is a subtle way to explore the relationship between labels during the transformation
process.
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4.3.2 Label Reduction

The Label Reduction (LR) operation between two labels (λ j −λk) removes the instances
associated with the λk that is not related to the λ j, for the transformation of the dataset D′

j. It
reduces the number of instances with the class label 0 without changing the number of instances
with the class label 1. The LR operation is also illustrated in Figure 1 (box ‘d’).

Formally, LR transformation is defined as

φLR(D ,λ j,λk) = {(~xi, I(λ j ∈ Yi)) | (~xi,Yi) ∈ D ,(λ j ∈ Yi ∨λk ̸∈ Yi)}.

The LR transformation is asymmetric (λ j − λk ̸= λk − λ j), thus the same pair of
labels can result in two different training data according to the label that is reduced. While LE
manipulates label values, LR removes instances; these are orthogonal dimensions. Nevertheless,
the rationale is the same here, such that λk may be used to enhance an evaluation measure for the
label λ j, but the opposite is not necessarily true.

Intuitively, LR can be suitable to obtain transformed datasets with a better imbalance
rate of the target. Different from LE, the LR does not introduce noise in the target, but, possibly
eliminates it when the removed instances are close to the decision boundary. Thus, it may
reduce possible overfitting in the learning process by removing similar instances associated with
different target labels.

4.3.3 Performing Operations

Despite being simple, both label operations cannot be applied randomly. They require a
procedure to identify the labels that can be expanded/reduced and the labels that can be used to
expand/reduce other labels. Distinct approaches can be used to find the best options. A validation
procedure can test several pairs of labels to identify the best combinations. However, as it has a
high computational cost, heuristics can reduce the number of labels assessed in the validation
procedure. Moreover, deterministic rules can be investigated in order to provide a reasonable
solution.

The validation procedure requires a binary evaluation measure β .1 Assuming that each
label is independent and β is maximized, the procedure is performed in the following way

argmax
λk

β (θ j(Dv),Dv) | φ(Dt ,λ j,λk)→ θ j, (4.6)

where θ j is the induced learning model for the label λ j, Dt and Dv are, respectively, the training
and validation datasets, respectively. This procedure can be used during the transformation and

1 Despite the fact that a multi-label measure could also be optimized (FAN; LIN, 2007), in this work
only binary evaluation measures are considered given its simplicity and direct association with the
macro-averaged evaluation measures.
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applied for each label. In the worst case, when λk =∅, the default one-versus-all transformation
(Equation 4.1) is applied.

This is a high-cost procedure, since it requires q2 induced models, considering all pairs
of labels, including the default transformation. As LE is symmetric, the number of induced
models can be reduced to q(q/2), which is still high for datasets with a large number of labels.
Heuristics could be used to reduce the search space, thus avoiding testing all pairs of labels.
Moreover, meta-learning (BRAZDIL et al., 2017) is an alternative to deal with the exhaustive
search. Their investigations are suggested as future works, thus the complexity involved to find
the best pairs of labels will be overlooked from now on.

4.4 Experimental Evaluation

This section presents the procedures used to carry out the empirical evaluation of the
proposed label operations. Besides, the traditional SCUT threshold calibration is investigated as
alternative to deal with the label prediction problems. It describes the selected datasets, followed
by a short overview of the selected measures and evaluation procedures used. Finally, it explains
the performance estimation procedure adopted and the computational environment setup.

4.4.1 Datasets

Table 22 lists the 20 MLC datasets selected to be used in the experiments. They are
from distinct domains (column Domain) and present a wide diversity in their characteristics.
The columns Inst, Attr and Lbl are the number of instances, attributes and labels, respectively.
Labelsets (lSets) is the amount of distinct label combinations; label cardinality (lCard) measures
the average number of labels per instance; label density (lDen) describes the average frequency of
labels; and dependency (Dep) shows the average unconditional labels’ dependencies (LUACES
et al., 2012), illustrating how correlated is the subset of labels.

These datasets are frequently used as benchmarks for MLC experiments. They come
from the Cometa repository (CHARTE et al., 2018), an exhaustive collection of MLC datasets,
integrated with the tools used in this work. The exceptions are the datasets fapesp and msd-195
obtained with their respective authors, and yelp8 from the Kaggle website.2 The datasets were
preprocessed with three operations. First, the labels with less than 10 instances were removed
to ensure a minimum of instances related to each label in the training and test partitions. Next,
the instances with no labels were also removed. Finally, the predictive attributes with constant
values were removed.

2 see <https://www.kaggle.com/c/yelp-restaurant-photo-classification>.

https://www.kaggle.com/c/yelp-restaurant-photo-classification
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Table 22 – Characteristics of the MLC datasets.

Dataset Domain Inst Attr Lbl lSets lCard lDen Dep

20ng text 19300 1006 20 55 1.03 0.05 0.08
birds audio 337 260 15 115 1.84 0.12 0.08
cal500 audio 502 68 141 502 25.54 0.18 0.14
corel5k image 4995 499 218 2940 3.37 0.02 0.16
emotions audio 593 72 6 27 1.87 0.31 0.28
enron text 1702 1001 42 722 3.34 0.08 0.12
fapesp text 251 7286 18 61 1.35 0.08 0.11
flags other 194 19 7 54 3.39 0.48 0.15
foodtruck other 407 21 12 116 2.29 0.20 0.14
image image 2000 294 5 20 1.24 0.25 0.15
langlog text 1197 916 38 223 1.31 0.03 0.06
medical text 949 1421 20 55 1.20 0.06 0.19
msd-195 audio 2901 180 38 267 2.47 0.07 0.24
ohsumed text 13929 1002 23 1147 1.66 0.07 0.04
scene image 2407 294 6 15 1.07 0.18 0.11
slashdot text 3776 1079 18 149 1.18 0.07 0.05
stackex-chess text 1612 585 78 725 2.07 0.03 0.10
tmc2007-500 text 28596 500 22 1172 2.22 0.10 0.11
yeast biology 2417 103 14 198 4.24 0.30 0.25
yelp8 image 10784 668 8 117 2.26 0.28 0.11

4.4.2 Evaluation

The evaluation of the predictive performance of MLC strategies requires using specific
measures that are able to explore their particularities (TSOUMAKAS; KATAKIS; VLAHAVAS,
2010). Three macro-averaged label-based evaluation measures are considered: macro-AUC,
macro-F1 and macro-precision. They averages the result of a binary evaluation measure applied
for each label, such that

macro−β =
1
q

q

∑
j=1

β j, (4.7)

where β j = {AUC j | F1 j | precision j} are given by Equations 4.8, 4.9 and 4.10, respectively.
The macro-averaged version summarizes the label results by giving the same weight to all
labels (YANG, 1999). It assesses the consistency across them, even though it may be impacted by
the performance of the least common labels (JACKSON; MOULINIER, 2002). Furthermore, the
optimization of an individual label measure enhances the respective macro-average multi-label
measure (DÍEZ et al., 2015).

AUC j =
|
{
(~x,~z) | f j(~x)≥ f j(~z),(~x,~z) ∈ Z j ×Z j

}
|

| Z j || Z j |
where, Z j = {~xi| λi ∈ Yi,1 ≤ i ≤ n} ,

Z j = {~xi| λi ̸∈ Yi,1 ≤ i ≤ n} ,

(4.8)

F1 j =
2T Pj

2T Pj +FPj +FN j
, (4.9)
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precision j =
T Pj

T Pj +FPj
. (4.10)

The Area Under ROC Curve (AUC) evaluates the predictive models regardless of the
choice of threshold values. On the other hand, F1 and precision use the confusion matrix values
computed from the bipartitions. Considering that the labels associated with an instance are the
relevant labels. Semantically, precision measures the fraction of relevant labels among those
predicted. High precision indicates the ability of a model to correctly predict the labels, although
not necessarily all of them. In turn, F1 measures the harmonic mean between precision and
recall, such that a model with a high F1 can predict the relevant labels accurately and only them,
since recall measures the fraction of relevant labels that have been predicted by the total amount
of relevant labels.

To assess the statistical relevance of the results, the Bayesian hierarchical correlated
t-test (BENAVOLI et al., 2017) is used to compare two different strategies over multiple datasets.
The test outputs probabilistic decisions about which strategy is better (left, rope and right) for
a particular evaluation measure. The rope is a region of practical equivalence, without any
significant difference in the performance of the alternatives. In Benavoli et al. (2017), the authors
suggest the interval [−0.01,0.01], which consists of a difference of 1% for a measure whose
range is [0,1]. This interval is used for the three macro-averaged evaluation measures.

Moreover, the constant label prediction CLP (Equation 4.3) and the wrong label predic-
tion WLP (Equantion 4.5) are investigated. Given that WLP is a generalization of the missing
label prediction (MLP), only the former is considered. The elimination of MLP without the
elimination of WLP has no effective gain in practice.

4.4.3 Procedures and Setup

In order to understand the effectiveness of the label operations on MLC predictive results,
different analyses are performed. For such, we adopted the 5x2-fold cross-validation with strati-
fied paired folds procedure. The iterative algorithm (SECHIDIS; TSOUMAKAS; VLAHAVAS,
2011) is used for stratifying the MLC data in order to ensure similar label distribution between
training and test data.

For LE and LR, a validation procedure is used to identify suitable combinations of labels
to individually optimize the label measures AUC, F1 and precision. Using only the training data,
the 5x2-fold cross-validation is applied, and the most probable combination is considered for the
test set. Similarly, the SCUT threshold calibration (Equation 4.2) for F1 and precision is also
performed using the same validation procedure.

Thus, the results are relative to the strategies BR, BR+Tβ , LEβ , LE+Tβ , LRβ , LR+Tβ ,
in which the subscript β = {AUC,F1,prec} indicates the optimized measure and the suffix +T
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indicates the use of an optimized threshold for the respective measure.3

To reduce the effect that the choice of a unique base algorithm would cause in the
analysis, 4 base algorithms: Decision Tree C5.0, Random Forest (RF), Support Vector Machine
(SVM) and eXtreme Gradient Boosting (XGB) are considered. When they are combined with the
3 evaluation measures (AUC, F1 and precision), 12 combinations of ML algorithm and predictive
performance evaluation measure are assessed.

The experiments are carried out in the R environment. The packages mldr (CHARTE;
CHARTE, 2015a) and utiml (RIVOLLI; CARVALHO, 2018) provided the code for the multi-
label resources used in the experiments. The implementation of the base algorithms come from
packages C50, randomForest, e1071 and xgboost for C5.0, RF, SVM and XGB, respectively.
Default hyperparameter values were used according to their respective packages.

4.5 Results
To investigate how to overall improve the individual label performances and mitigate the

label prediction problems, label operations and threshold calibration are empirically examined.
Following the methodology presented in Section 4.4, Section 4.5.1 presents the upper bound
results of the label operation, revealing the potential of both, LE and LR. Next, Section 4.5.2
details the results relative to the optimized tasks. Finally, Section 4.5.3 reports the label prediction
problem results.

4.5.1 LE and LR Upper Bounds

Finding the right matches between labels that are able to optimize the MLC result
comprises the key point of the label operation procedure. In order to understand the potential
gains to be made concerning these operations, an extensive study about the combinations is
performed. The results from this study also set the empirical upper bound of the LE and LR
operations.

Using an oracle that knows the best combination for each label operation, Figure 12
presents the proportional performance gain compared to the BR strategy for the respective
optimized measure. Each boxplot summarizes the distribution of performance gain for the 20
datasets. The optimization tasks (x-axis) are sorted from the lowest to the highest performance
improvement, whereas the average improvement (y-axis) is presented on a log scale to offer
better visualization of the results.

For the different base algorithms and evaluation measures investigated, both operations
achieved a considerable gain in relation to BR, mainly for the F1 measure. The smallest improve-
3 For the sake of clarity, the notation LEβ +Tβ was reduced to LE+Tβ , since the same measure is always

used in both optimization tasks. The same is valid for the LR operation. Moreover, when the subscript
can be removed without impairing the understanding of the text, only the name of the strategy is used.
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Figure 12 – Distribution of LE and LR performance gain in relation to BR for the 20 datasets considering
different optimization tasks.

ments were observed for the AUC measure. Concerning the label operations, LE showed greater
improvement over BR than LR. In turn, the improvement obtained by LR is more consistent
among the datasets, since its interquartile range is slightly lower than LE for many tasks.

Despite the task, the Bayesian statistical test revealed that both LE and LR statistically
improved the BR strategy when the best pairs of labels are used in the expansions and reductions.
When compared to each other, LE and LR are statistically similar in most of the tasks. Excep-
tionally, only when using RF, LEF1 was better than LRF1 with a probability of 98%, according
to the statistical results.

In another perspective, the oracle is used to identify the labels that can be optimized and
the candidate labels that when combined can result in an improvement. Despite the fact that
the previous analysis showed that LE obtains subtle better results than LR, from this analysis
the LR operation showed to be more robust than the LE, at least for the AUC and F1 measures.
In other words, more labels can be improved and are used to improve other labels when the
operation is the LR. For most of the datasets, more than 50% of the labels can be improved,
however this value is lower in terms of the number of candidate labels. The F1 is the easiest
measure according to both criteria, the number of improved labels and the number of labels used
to improve another.

Additionally, the similarity between the LE and LR operations is compared in two ways:
i) the best label used to enhance each label and ii) the set of suitable labels able to enhance each
label. The Jaccard measure is used to compare the similarity between two sets, which is given
by the ratio of the size of their intersection and the size of their union.4 Figure 13 presents the
similarity in both cases. Datasets (y-axis) and optimization tasks (x-axis) are sorted according to
their average similarity.

4 Jaccard(A,B) = (A∩B)/(A∪B)
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Figure 13 – Similarity between the LE and LR for each dataset and optimization task.

The best combinations of labels are different in terms of LE and LR operations. The cases
in which they are more similar to each other comprise datasets with a small number of labels
and tasks related to precision optimization. Precision was the measure in which the smallest
number of matches between pairs of labels were found, therefore empty sets of selected labels
were observed frequently. Possibly this fact justifies that precision obtained the most similar
pairs of labels. This is also valid when comparing the suitable set of labels as a greater similarity
between the two operations was obtained. This result indicates that for many datasets, most
of the combinations between pairs of labels are able to enhance both operations, however the
greatest improvements, comparing LE and LR, were usually obtained for distinct combinations.

Finally, in an attempt to measure the variance of the operations, the oracle was consulted
two times using distinct seeds to sample the data into the folds. Figure 14 presents the average
similarity for each task when the two runs are compared to each other. Again, the Jaccard
similarity is used. The cross symbol indicates the average value from the previous comparison
between LE and LR (Figure 13). It is used as a reference value for comparative purposes.

The comparison of the best pair of labels obtained a lower similarity than the set of
suitable labels. According to the results, LE showed to be more robust than LR, which is observed
by the more elongated boxplots, larger standard deviation and lower similarity rates observed
for the LR. This is consistent with the fact that for LR, a larger set of labels are available to be
combined when compared to LE. Thereby, a higher number of options leads to greater variability
in the choices. Regarding the crosses used as a baseline for this comparison, the similarity
between two executions of the same operation is consistently higher than between the operations.
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Figure 14 – Similarity between two distinct executions of the label operations.

Which can indicate that the choices of labels are not completely a matter of randomness.

However, as the similarities observed in the best label comparison were not as high
as expected, the inconsistency of the choices is gauged. Table 23 presents the percentage of
occurrences in which the best labels selected in a run were not present in the set of suitable labels
in the other run. The percentages are small for F1 optimization, regardless of the base algorithm
and operation, which is a good result. The worst result was obtained for LRAUC with RF, such
that 30% of the selected labels in a run were not suitable in the other run. Slightly better, LE
showed once more that it was more robust than LR.

Table 23 – Percentage of occurrences in which the best label selected in a run is not present in the set of
suitable labels in the other run.

Task LE LR Task LE LR

C5.0 AUC 11% 13% RF AUC 8% 30%
F1 6% 6% F1 1% 2%
precision 16% 18% precision 11% 19%

SVM AUC 9% 20% XGB AUC 9% 15%
F1 4% 8% F1 3% 5%
precision 17% 23% precision 20% 19%

In summary, the results revealed that both operations were able to enhance the predictive
performance of the optimized measures. Even though they presented some variability concerning
the choice of best label combination and the subset of suitable labels, for most of the datasets (and
labels) the performance was improved. As the improvement was consistent over base algorithms,
datasets, measures and operations, it is feasible to assume that they are not exclusively obtained
by chance.
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4.5.2 Optimization Tasks

The previous results showed that a considerable improvement, in different tasks, can be
obtained when the right pairs of labels are combined. However, as the oracle able to indicate
the best combinations is not available, a validation procedure is needed. Using a 5x2-fold
cross-validation with the training data, all pairs of labels are assessed and the best combinations
are used to expand/reduce the labels. If for a given label no other label improved its result in
the validation procedure, then the default transformation is used for it. Moreover, a threshold
selection is performed using the same procedure for BR, LE and LR when F1 and precision are
the optimized measures.

The complete results for the measures macro-AUC, macro-F1 and macro-precision are,
respectively, presented in Appendix D (Figures 34, 35 and 36). Table 24 summarizes the average
improvement of each strategy for different optimization tasks. Between parentheses is reported
the number of datasets for which the operation led to improved performance in relation to BR.
The overall result is reported in the “All” base algorithm row, representing the total number of
experiments for which improvement is obtained. The Bayesian statistical results are reported in
Table 55. The next subsections discusses the results for each evaluation measure.

Table 24 – Average improvement of the operations compared to BR. The number of improved datasets is
shown between parentheses. The underlined numbers highlight the strategy with the largest
improvement.

Macro Base BR+T LE LE+T LR LR+T

AUC C5.0 - 3% (16) - 2% (17) -
RF - -0.2% (5) - 0.3% (14) -
SVM - -0.1% (9) - -0.4% (16) -
XGB - 0.9% (11) - 0.6% (16) -
All - 0.9% (51%) - 0.6% (80%) -

F1 C5.0 10% (12) 19% (12) 17% (11) 14% (17) 15% (14)
RF 61% (18) 21% (12) 35% (14) 18% (18) 59% (17)
SVM 45% (18) 31% (11) 38% (14) 25% (16) 44% (16)
XGB 23% (16) 11% (11) 17% (11) 12% (17) 23% (16)
All 35% (80%) 20% (57%) 27% (62%) 17% (85%) 35% (79%)

prec. C5.0 3% (11) 1% (7) 3% (13) 3% (9) 5% (16)
RF 8% (17) -7% (4) -3% (11) 1% (11) 7% (15)
SVM 11% (15) 1% (7) 4% (12) 3% (8) 9% (16)
XGB 6% (16) -4% (4) 0.8% (13) 0.5% (8) 6% (16)
All 7% (74%) -2% (28%) 1% (61%) 2% (45%) 7% (79%)

4.5.2.1 Macro-AUC

AUC is a threshold independent measure, since it aggregates the results for multiple
values of the threshold. Therefore, only the results from BR, LE and LR are analysed. Figure 15
presents the relative macro-AUC improvement of the LE and LR operations over the BR strategy,
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as well as the difference to the corresponding upper bound (indicated by their respective symbols).
This plot explains the results summarized in Table 24.
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Figure 15 – Proportional macro-AUC improvement obtained by using LE and LR compared to BR.

For macro-AUC, both operations showed a moderated improvement when compared to
BR. Slight superior, LE achieved better results, whereas LR improved more datasets regardless
of the base algorithm. C5.0 is the base-algorithm that presented the most improvement. On the
other hand, only 5 from 20 datasets were enhanced when LE was combined with RF. A possible
explanation is due to the fact that BR with RF obtained a good performance for many datasets,
such that the gap of improvement is very low. This is corroborated by the fact that the C5.0 base
algorithm obtained the lowest performance for the BR strategy.

According to the results obtained by the base algorithms, the behavior of the operations
varied considerably for the same dataset. For instance, with the flags dataset: i) LE is better
than LR and both of them improve BR using C5.0; ii) both of them do not improve BR using RF
and XGB; iii) LR is better than LE, and only the former improves BR using SVM. Only in some
cases (corel5k, tmc2007-500 and yeast) is the same behavior between LE and LR observed
for all base algorithms.

Statistically, LE and LR outperform BR only with C5.0. For the other base algorithms,
they are considered equivalent. Even though LR, with SVM and XGB, is better than BR in 16
datasets, the improvement is not large enough for the Bayesian test to indicate some statistical
difference. Between LE and LR, no statistical difference is observed.
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4.5.2.2 Macro-F1

The F1 measure, which represents the trade-off between precision and recall, in the
macro-averaged version averages the performance of all labels. Figure 16 shows the relative
improvement of operations compared to the BR strategy. Here, the result is consistently better,
such that for many datasets the performances obtained are closer to the upper bound references.
The scale of the improvement is substantially higher in the cases where the BR’s performance is
too low. Again, in terms of overall improvement LE is superior to LR. However, in terms of the
number of datasets improved, LR is the best option, even compared to the other strategies using
threshold calibration.
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Figure 16 – Proportional macro-F1 improvement obtained by using LE and LR.

Although the macro-F1 improvement obtained from LE and LR was significant, it
was clearly inferior to the threshold calibration (BR+T), with the exception of the C5.0 base-
algorithm, which was least robust in this analysis. For C5.0, LE followed by LR obtained the
best ranking positions, which possibly indicates that when the base algorithm does not predict
good scores, label operations might work better than BR+T for macro-F1 optimization. When
the label operations are combined with threshold calibration, LE and LR are also optimized for
most of the cases. However, the exception is LE with C5.0.

BR achieved a very low result, regardless of the base algorithm, for some datasets:
cal500, corel5k, enron, foodtruck, langlog and msd-500. From them, only langlog was
not consistently enhanced, however their performance remains low even with the improvement.
As with most of them, macro-precision and macro-recall are also low, they characterize a set of
hard problems to be learned.
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The Bayesian statistical test indicates that, for this measure, all label operations and
threshold calibration outperform BR regardless of the base algorithm. For the other comparisons,
the statistical test indicates that the results are statistically different between C5.0 and the other
algorithms. Concerning C5.0, all other strategies are similar to each other. For the rest: BR+T
and LR+T ≺ LR ≺ LE+T ≺ LE.5 The exception is LE+T ≺ LR with SVM.

4.5.2.3 Macro-precision

Compared to the previous measures, LE and LR obtained improvements in a smaller
number of datasets. Moreover, the improvement is quite low, mainly for LE such that the highest
differences to the upper bound values are observed. Figure 17 shows the relative improvement of
LE and LR in comparison to BR. For many cases, a decline in performance is obtained, revealing
that the validation procedure failed to find suitable pairs of labels for this measure.
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Figure 17 – Macro-precision improvement obtained by using LE and LR.

The best ranking positions were obtained for BR+T and LR+T indiscriminately from the
base algorithm. The statistical test results indicate that only strategies using threshold calibration
were able to statistically outperform BR, such that BR+T, LE+T and LR+T ≺ BR, for all base
algorithms. Concerning the other strategies, BR+T and LR+T ≺ LE and LR. For RF, BR+T and
LR+T ≺ LE+T ≺ LE, whereas for the rest LE+T ≺ LE and LR.

5 A ≺ B means that A outperforms B.
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4.5.3 Label Prediction Problems

Two label prediction problems are investigated in this study. The CLP and WLP, re-
spectively, indicate the proportion of labels constantly predicted and the proportion of labels
that are always predicted wrongly. Table 25 presents the BR performance for CLP and WLP,
which represents the baseline for this analysis. For a better visualization, the no occurrence of
problems (value 0) is omitted from the table, as well as the datasets with no problems for all base
algorithms were removed. According to the results, WLP is a more recurrent problem than CLP,
such that for most of the datasets in the table, the WLP occurred indiscriminately for all base
algorithms. Differently, the CLP is observed only in 4 datasets and 3 base algorithms.

Table 25 – Label prediction problem results for the BR strategy. The datasets with no problems were
removed from the table. An empty cell indicates the occurrence of no problem.

Dataset CLP WLP
C5.0 RF SVM XGB C5.0 RF SVM XGB

birds 0.093 0.173 0.293 0.060
cal500 0.009 0.001 0.028 0.394 0.615 0.837 0.377
corel5k 0.918 0.829 0.814 0.759
enron 0.517 0.374 0.581 0.483
fapesp 0.178 0.311 0.189 0.139
flags 0.214 0.229 0.043 0.057
foodtruck 0.017 0.575 0.517 0.708 0.475
langlog 0.437 0.576 0.497 0.326
medical 0.110 0.175 0.095 0.030
msd-195 0.295 0.497 0.376 0.371
ohsumed 0.243 0.196 0.035
slashdot 0.428 0.144 0.122 0.100
stackex-chess 0.565 0.622 0.428 0.296
tmc2007-500 0.027
yeast 0.029 0.100 0.143 0.143 0.129

Total 2 2 3 0 14 14 13 13

Some datasets (cal500, corel5k, foodtruck, langlog and stackex-chess) had
more than 50% of their labels wrongly predicted, on average. Usually overlooked, this is a
considerable amount of labels to be neglected. For instance, the dataset corel5k has 218 labels.
According to the results, BR with C5.0 predicted approximately 18 correctly, on average. This
explains the macro-F1 and macro-precision result of 0.014 and 0.04, respectively.

Considering that the threshold calibration and the label operations can mitigate both
label prediction problems, 12 distinct strategies are analysed compared to BR. They are BR with
threshold calibration: BR+TF1 and BR+Tprec; Label expansion: LEAUC, LEF1 and LEprec; Label
reduction: LRAUC, LRF1 and LRprec; LE and LR combined with threshold calibration: LE+TF1,
LE+Tprec, LR+TF1 and LR+Tprec.

Ideally, a good strategy should reduce WLP without impairing CLP and vice-versa.
Therefore, Figure 18 presents the strategies’ performance considering both measures averaged.
The strategies are sorted according to their median performance for each base algorithm.
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Figure 18 – Strategies’ performance according to their trade-off between CLP and WLP.

Surprisingly, LEAUC with C5.0 and XGB obtained the best combined performance, over-
coming even F1 and precision optimizations. For C5.0, the strategies are completely segmented
such that all variations of LE outperformed LR, that in turn, outperformed BR and BR+T. For RF
and SVM, the best options mix the threshold calibration plus LE optimizing F1 and precision.

To summarize and quantify the improvement obtained for each dataset, Table 26 presents
the CLP and WLP results from the best strategies previously identified for each base algorithm.
Therefore, LEAUC is used with C5.0 and XGB, whereas BR+TF1 is used with RF and SVM. To
make the comparison with Table 25 easier, values similar to BR were removed and the underline
markup highlights the cases in which the problem is increased instead of solved.

Despite the fact that only in a few datasets (ohsumed, tmc2007-500 and yeast) the
WLP was completely solved, the reduction observed is considerable, in many cases. For instance,
BR+TF1 with RF reduced from 0.829 to 0.122 the WLP of corel5k. In the number of labels, it
consists of more than 150 labels that started to be correctly predicted for some test instances.
As expected, the improvement in the WLP led to a slight decline in CLP, mainly for RF and
SVM using threshold calibration. On the other hand, compared to C5.0 and XGB, they obtained
a greater improvement in terms of WLP.

Without looking specifically at the amount of improvement, but at the ability of the
strategies to improve one measure without impairing another, three scenarios are analyzed in
Table 27. Considering the number of datasets that are improved and deteriorated compared to BR,
the column “↑̸↓" indicates the cases that one measure is improved without impairing the other.
The column “↑↓" indicates the cases that one measure is improved and the other is damaged. The
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Table 26 – Label prediction problem performance when the best strategy is selected for each base algo-
rithm. An empty cell indicates that the result is similar to BR. The underlined numbers show a
degradation in performance when compared to BR.

Dataset CLP WLP
C5.0 RF SVM XGB C5.0 RF SVM XGB

birds 0.087 0.040 0.033 0.033 0.013
cal500 0.013 0.010 0.156 0.106 0.055 0.124 0.091
corel5k 0.022 0.004 0.702 0.122 0.276 0.642
enron 0.002 0.055 0.026 0.129 0.133
fapesp 0.117 0.011 0.011 0.106
flags 0.186 0.014 0.129 0.014 0.000 0.014
foodtruck 0.075 0.117 0.058 0.083 0.167
langlog 0.011 0.297 0.147 0.134 0.295
medical 0.015 0.010 0.015 0.015
msd-195 0.082 0.042 0.061 0.113
ohsumed 0.004 0.000 0.000
slashdot 0.267 0.044 0.028 0.061
stackex-chess 0.271 0.110 0.146 0.215
tmc2007-500 0.000
yeast 0.014 0.050 0.007 0.014 0.007 0.000 0.021

Strategy LRAUC BR+TF1 BR+TF1 LRAUC LRAUC BR+TF1 BR+TF1 LRAUC

column “̸↑↓" indicates the cases where one measure is damaged without enhancing the other.
The strategies are sorted according to a score over all base algorithms, given that each occurrence
of ̸↑↓ = -1, ↑↓ = 1 and ↑̸↓ = 2. The higher the score the safer the use of the strategy is.

Table 27 – Number of datasets improved and deteriorated compared to BR concerning the trade-off
between CLP and WLP. The arrows ↑̸↑↓̸↓ indicate that a measure is improved, not improved,
deteriorated and not deteriorated, respectively.

Strategy C5.0 RF SVM XGB
↑̸↓ ↑↓ ̸↑↓ ↑̸↓ ↑↓ ̸↑↓ ↑̸↓ ↑↓ ̸↑↓ ↑̸↓ ↑↓ ̸↑↓

1 LE+Tprec 13 2 0 14 0 0 11 2 2 12 1 1
2 LEAUC 13 2 0 9 3 2 10 3 0 13 0 1
3 LE+TF1 9 6 0 12 2 0 8 5 0 10 3 1
4 LEprec 13 2 0 10 3 1 10 3 2 11 0 2
5 LEF1 12 2 1 10 3 1 9 4 0 11 1 1
6 LRAUC 12 1 1 8 3 3 10 2 1 13 0 1
7 LR+Tprec 3 9 1 13 1 0 11 2 1 6 7 0
8 LRprec 12 1 1 7 3 2 8 3 2 12 1 1
9 BR+Tprec 1 10 0 13 1 0 10 3 1 5 8 0
10 LR+TF1 1 13 0 10 4 0 4 9 0 5 8 1
11 BR+TF1 0 12 2 10 4 0 6 7 0 4 9 1
12 LRF1 10 3 1 6 3 5 7 3 3 11 1 2

The best strategy, according to this criteria, over all base algorithms is the LE+Tprec.
It is followed by other LE strategies using different optimization measures and then some LR
strategies. The BR+T strategies appear in positions 9 and 11 in this ranking. The label operations,
mainly LE, showed a good balance between them to reduce WLP without increasing CLP,
regardless of the base algorithm. On the contrary, using a threshold calibration procedure is
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suitable only for robust base algorithms such as RF and SVM and it tends to reduce WLP
increasing CLP. Concerning the evaluation measure, the optimization of precision showed to
have a better compromise between the CLP and WLP.

4.6 Discussion

The results will now be analyzed according to 2 perspectives: the label operation strate-
gies, LE and LR, as an optimization procedure and the ability of the strategies to reduce the
label prediction problems. It is worth highlighting that this experiment considered a high number
of datasets and, mainly, base algorithms compared to other MLC experiments. Therefore, the
analysis is not restricted by a bias of a unique base algorithm, enabling a broader understanding
of the investigated strategies.

Empirically, it was shown that LE and LR can enhance BR for different base algorithms
and evaluation measures (Figure 12). However, in practice the improvement obtained with
the validation procedure adopted was quite far from the computed upper bound (Figures 15,
16 and 17). The variability of the choices became, in fact, a source of instability to the label
operations, mainly for the optimization of macro-precision. An additional test was performed
using a different validation procedure (5-folds CV) with a subset of datasets, but similar results
were obtained. A possible explanation is due to the fact that many labels are associated with a
few instances, which makes the variability intrinsic to the nature of the MLC datasets.

In an exploratory analysis, we tried to find heuristics to restrict the search space and
possible rules to define the label combinations in a deterministic way. Thus, the correlation
between the improvement and characterization measures, such as label frequency, imbalance
ratio, co-occurrence and distance between labels was assessed. It was expected, for instance, that
the frequency and/or the label imbalanced ratio would affect the optimization procedure, however
no strong correlation was found. Other approaches, such as meta-learning (BRAZDIL et al.,
2017), association rules (AGRAWAL; SRIKANT, 1994) and clustering techniques (ROKACH,
2010) were not employed at this moment, however their investigation is suggested as future work.
Potentially, they can reduce the complexity of the solution and provide a gain in performance,
which are currently the main limitations of LE and LR.

To discard the possibility that the combinations are a result of chance, we looked for
semantic combinations between pairs of labels. Analyzing the fapesp dataset, in which inter-
disciplinary scientific papers are labeled with distinct branches of knowledge, it was found that
using the label physics to expand the label astronomy, enhances its F1 and precision. In this
particular case, the opposite is true for the LR operation, such that by using the label astronomy

to reduce the label physics, the latter is enhanced. It is reasonable to assume that there is a
relationship of specialization/generalization between these two labels. Although the expansion of
the specialized label with the generic label does not seem intuitive, the reduction of the instances
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related to the specialized label that is not tagged with the generic label looks completely valid.
Other cases were also observed, for instance, the expansion of the label medicine with the labels
chemistry or genetics.

Overall, the relations vary according to the base algorithm, evaluation measure and label
operation regardless of the dataset. We believe that it is mainly due to the bias of the base
algorithm, that may be more or less susceptible to the noise introduced (or removed) by the label
operations and the transformations caused in the hyperspace for them.

When compared and combined with the threshold calibration, label operations showed
competitive results. First of all, LE and LR can optimize score based measures, such as AUC.
Furthermore, they can work better for base algorithms that are not so robust, such as C5.0,
differently from the threshold calibration that worked better for RF and SVM. Finally, the
number of datasets improved was usually greater with label operations than threshold calibration,
mainly for LR.

Concerning the label prediction problems, all the investigated strategies were able to
reduce the WLP, which were the most recurrent problems observed. Broadly speaking, LE
worked satisfactorily for all base algorithms, even when it did not achieve a good performance in
the optimized measure. Furthermore, LE combines good performance for WLP without impairing
the CLP, differently from the threshold calibration.

From the results, it can be observed that an undesirable high WLP is strongly related to a
very low macro-F1 and macro-precision values. Most of the datasets with a high WLP have a
subset of infrequent labels. For these labels, a threshold calibration may not work well (FAN;
LIN, 2007). Label operations face the same problem since a rare label is more susceptible to the
variability of the choices, because there are few instances in the validation set. But differently
from the threshold calibration, the upper bound analysis showed that it is possible to improve
such labels provided that the right choice of labels is made.

Therefore, more effort must be exerted to boost the choice of the right label to operate.
It is reasonable to assume that by choosing the right labels pairs, both operations can mitigate
the WLP even more. Other alternatives such as exploring more complex operations, combining
LE and LR with distinct MLC strategies and exploring strategies able to deal with the labels’
imbalance problem are possible alternatives to solve the WLP. This is still an incipient problem,
and therefore the results reported in this article comprise the first in-depth investigation to solve
the label prediction problems.

4.7 Conclusion

This study has shown that label operations and threshold calibration are suitable solutions
to reduce label prediction problems, particularly the WLP, in which some labels are never



120 Chapter 4. Label operation for multi-label optimization

correctly predicted. For such, 20 datasets and 4 base algorithms were empirically evaluated
considering the optimization of three different evaluation measures: AUC, F1 and precision. It
comprises the first investigation of the matter in the MLC literature.

By optimizing the threshold, when the base algorithm predicted good labels scores,
BR obtained better macro-F1 and macro-precision than both label operations. On the other
hand, LE and LR improved BR moderately, but consistently, for all base algorithms considered.
Furthermore, by using BR, the score-based measures were optimized such as the non-trivial
AUC measure.

Specifically to the label operations, finding the best set of labels to combine to the given
label is a hard problem. We explored a simple procedure, consisting of selecting the best label to
operate on the given label, using a search guided by the predictive performance on a validation
set. It is computationally expensive and may lead to suboptimal solutions. Several heuristic
search methods could be used to improve it but this is suggested as future work. The operations
were evaluated in terms of predictive performance as well as its impact on the label prediction
problems.

Concerning the label prediction problems, the WLP showed to be the problem to be
solved. Although no strategy completely removes the problem for most datasets, LE showed the
best trade-off regarding achieving good WLP performance without harming CLP.

Some issues remain open, such as how good the label operations might be when combined
with other MLC strategies, for instance ECC (READ et al., 2011) and DBR (MONTAÑÉS et al.,
2014). For such, it is necessary to find alternatives to reduce the search space of candidate labels
and increase the confidence of the choices. In another perspective, using strategies designed to
deal with MLC imbalance (CHARTE et al., 2014; CHARTE et al., 2019) to solve the WLP looks
like a promising direction.
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Abstract

In multi-label learning, a task contains instances related to multiple concepts simulta-
neously, the labels. However, recent studies showed that some labels have never been correctly
predicted regardless of the algorithm, which is identified as the Wrong Label Prediction (WLP).
Alternatives to mitigating this problem consist of using label expansion and reduction operations.
By modifying the instances related to a given label, an evaluation measure can be optimized,
and consequently, WLP can be reduced. Nevertheless, all pairs of labels must be combined in
order for the best matches to be found, which requires a myriad of computation resources. To
handle this issue, meta-learning is used to previously detect the occurrence of the WLP and to
recommend when an operation can optimize a given label. The empirical results show that it is
possible to previously identify the label prediction problem and also to reduce the computational
cost of the label operations by selecting the right labels to operate. Thus, operations can be more
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competitive when compared to other strategies, mainly the label expansion that can better reduce
the WLP.

5.1 Introduction

Multi-label learning deals with classification tasks in which instances are simultaneously
classified into more than one class (CARVALHO; FREITAS, 2009; TSOUMAKAS; KATAKIS;
VLAHAVAS, 2010; GALINDO; VENTURA, 2014). Each class is called ‘label’ and represents a
specific concept from the task’s domain. Distinct kinds of applications related to text (KLIMT;
YANG, 2004; PESTIAN et al., 2007), multimedia (DUYGULU et al., 2002; ZHOU; ZHANG,
2006; BRIGGS et al., 2013) and biology (ELISSEEFF; WESTON, 2001) are intrinsically
multi-label.

In a recent study (RIVOLLI; SOARES; CARVALHO, 2018a), we observed that for many
datasets some labels have never been correctly predicted (Wrong Label Prediction - WLP), and
others are always predicted (Constant Label Prediction - CLP), which occur less frequently.
These problems are observed regardless of the strategy and base algorithm used. To deal with
them, we proposed the label expansion and reduction operations that proved to be a reasonable
alternative to mitigate mainly the WLP.

The label expansion (LE) increases the number of instances associated with a label,
whereas the label reduction (LR) reduces the number of instances that are not associated with it.
Both use another, possibly related, label to guide the transformation, indirectly exploring the
labels’ dependency and obtaining more balanced datasets. The pairs of labels are selected by
optimizing a label evaluation measure, which consequently reduces the label prediction problems.
However, this process can demand a high computation cost, since each pair of labels should be
assessed in a validation procedure.

Aiming to understand the occurrence of the problems and reduce the cost of the opera-
tions, meta-learning (MtL) is used as a recommendation system. MtL supports the automatic
selection of machine-learning algorithms by using knowledge from the previous application of
such algorithms to several datasets (BRAZDIL et al., 2009). In a nutshell, a meta-base is created
using descriptive characteristics (RIVOLLI et al., 2019) extracted from similar tasks along with
the identification of the meta-target recommended. A meta-model is induced from this meta-base,
so that it can perform predictions for unseen cases, as well as provide an explanation for the
learned data.

In this paper, two MtL tasks are investigated. First, the labels that can never be correctly
predicted are learned, so that some actions can be taken to deal with them in advance. Moreover,
a meta-model is induced to predict if each label can be improved by using a label operation. In
this case, not all labels will be exhaustively evaluated during the validation procedure, but only
the most likely ones indicated by the meta-learner.
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Therefore, the contributions of this paper lead to a better understanding of the WLP
using an MtL system, and reducing the costs involving the label operation optimization. Using
an empirical approach, different experiments and analyses are performed in order to validate our
claims. The results show that it is possible to predict both scenarios with a certain confidence. For
instance, the occurrence of the WLP is predicted with more than 90% of accuracy by a relatively
simple learning model. The number of labels considered in the validation procedure was reduced
to more than 50% in some scenarios without impairing the operations’ performance.

Concerning the MtL research, the investigated problems pose an unusual challenge,
which is the presence of highly correlated meta-instances. Given that each meta-instance rep-
resents a label and many labels come from the same multi-label dataset, they share more
information between them than labels from different datasets. This fact requires some changes in
the experimental procedure, as well as caution when analyzing the results.

The rest of the paper is organized as follows: Section 5.2 formally defines the main con-
cepts relevant for multi-label learning and meta-learning. Section 5.3 describes the experimental
design, including datasets, procedures, evaluation and tools. Section 5.4 presents the empirical
results from the meta-learning experiments in both levels: base and meta. Finally, in Section 5.5
conclusions are drawn concerning relevant findings from the experimental study and future work
directions.

5.2 Background
This section presents the main concepts relevant for understanding this work well, which

comprises defining multi-label learning, formalizing the strategies used in the empirical study, as
well as the label expansion and reduction operations. Finally, MtL is presented.

5.2.1 Multi-label classification

In multi-label classification (MLC) tasks, an instance can be simultaneously classi-
fied into many of the existing labels (CARVALHO; FREITAS, 2009). The learning process
consists of inducing a predictive model h : X → Y from a set of labeled instances D =

{(~x1,Y1), ...,(~xn,Yn)}. In this equation, ~xi ∈ X is a vector with characterization features that
describes an instance and Yi ⊆ Y are the set of labels associated with it, such that Y ={

λ1,λ2, ...,λq
}

is the set of all q labels λ j, which represent concepts from a given domain.
Without loss of generality, the labels associated with the ith instance, also called label set,
can be seen as a binary vector yi = (yi1,yi2, · · · ,yiq) ∈ {0,1}q, where yi j = 1 iff λ j ∈ Yi and
yi j = 0 iff λ j ̸∈ Yi.

The strategies to induce a predictive model h for an MLC task are organized into two
groups (TSOUMAKAS; KATAKIS; VLAHAVAS, 2010): problem transformation and algorithm

adaptation. The former transforms the original multi-label dataset into a set of single-label
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datasets, where conventional machine learning algorithms can be used. For this reason, they can
be seen as algorithm independent (CARVALHO; FREITAS, 2009). The latter modifies existing
machine learning algorithms to intrinsically support the multi-labeled data.

The transformation process can be performed using one-versus-all, one-versus-one and
multi-class approaches. The one-versus-all strategies are characterized by using at least one
binary dataset per label, whereas the one-versus-one strategies generate q(q − 1)/2 binary
datasets, combining all pairs of labels. The multi-class strategies use the label sets (or part of
them) as classes, such that a high number of classes are commonly obtained.

5.2.2 MLC Strategies

Several MLC strategies have been proposed to support classification tasks with multiple
labels. In this work, some of them are selected to be empirically assessed.

The Binary Relevance (BR) strategy (BOUTELL et al., 2004) uses the one-versus-all
transformation in its simplest way. Each binary dataset D ′

j = φ(D ,λ j) is related to the label λ j.
The instances associated with the λ j are labeled with the class value “1", and the others with the
class value “0", such that

D ′
j ={(~xi, I(λi ∈ Yi)) | (~xi,Yi) ∈ D}, where

I(·) =

1 if the predicate is true,

0 otherwise.

(5.1)

BR uses the dataset D ′
j to induce a binary model θ j for each label λ j. The prediction is

performed using the values of all binary models as follows:

hbr = {λ j | θ j(~x) = 1, 1 ≤ j ≤ q}.

As drawbacks, BR does not explore the relationship between labels and usually produces
imbalanced binary datasets (ZHOU; TAO; WU, 2012; ZHANG et al., 2018). In order to explore
the labels’ dependencies, Dependent Binary Relevance (DBR) (MONTAÑÉS et al., 2014) is
a full stacking strategy that uses two rounds of binary transformation. In the first round, the
process is similar to the BR strategy. In the second round, the input space is augmented by the
labels’ information obtained in the first round. To illustrate how this works, let ψ j be a function
that removes label j from vector y, such that

D
′′
j =

{
([~xi,ψ j(yi)],yi j) | 1 ≤ i ≤ n

}
, where

ψ j(y) = (y1, · · · ,y( j−1),y( j+1), · · · ,yq).
(5.2)

DBR predicts the labels using the second round binary models that use the labels obtained
from the first round binary models. Using the ψ function presented in Equation 5.2, the prediction
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is obtained as follows:

hdbr = {λ j | θ
′′
j ([~xi,ψ j(hbr(~xi))]) = 1, 1 ≤ j ≤ q}.

An alternative to tackle the multi-label imbalance problem is the REsampling MultilabEl

datasets by Decoupling highly ImbAlanced Labels (REMEDIAL) algorithm (CHARTE et al.,
2015b). Although it is not a traditional oversampling method, empirical results show that its
use, when combined with the BR strategy, can improve the performance of the minority labels.
Specifically, it is suitable in scenarios in which the majority labels are present in the instances
related to the minority labels. In short, such instances are duplicated and the labels are reorganized
according to their frequency, such that one instance will have the most frequent labels and the
other instance the least frequent labels.

Ensemble of Classifier Chains (ECC) uses bagging, chooses different random subsets of
the attributes for each bagging iteration and induces Classifier Chain (CC) models with a random
order of chains (READ et al., 2011). The CC strategy (READ et al., 2009; READ et al., 2011)
increases the original input space of the transformed dataset for a given label with the values of
all previous labels organized in a chain. Thus, the dataset is transformed as follows:

D ′
j =
{
([xi,yi1,yi2, · · · ,yi( j−2),yi( j−1)],yi j) | 1 ≤ i ≤ n

}
.

The models increase their input space by adding j− 1 new attributes, where j is the
position of the respective label in the chain. During the prediction phase, as the labels are
predicted, their values are used to increase the input space, as shown next

hcc = {λ j | ŷ j = 1, 1 ≤ j ≤ q},where

ŷ j = θ j([x, ŷ1, ŷ2, · · · , ŷ( j−2), ŷ( j−1)]).
(5.3)

To illustrate how ECC computes predictions, let m be the number of models in the
ensemble and ϕi a function for selecting a random subset of attributes:

hecc = {λ j |
( 1

m

m

∑
l=1

ŷl j

)
> τ, 1 ≤ j ≤ q}, where

ŷl = hl
cc(ϕl(x)),

ŷl j is the predicted value of the CC model l for the label λ j and τ is a threshold value.1 Different
chains are used to avoid the influence that choosing an inappropriate chain could have on the
results.

Finally, RAndom k-labEL sets (RAkEL) is an ensemble of Label Powerset (LP) mod-
els (TSOUMAKAS; KATAKIS; VLAHAVAS, 2011). By using a multi-class transformation,
1 It can either be a predefined value, such as 0.5 (READ et al., 2011) or dynamically defined using the

cardinality value of the training dataset (READ et al., 2009).
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each member of the ensemble maps a small subset of labels into classes. RAkEL obtains m

transformed datasets, in which the subset of the label set of each instance is mapped to its class,
such that

D′
l = {(~xi,LP(Yi ∩Cl)) | 1 ≤ i ≤ n} , where

LP(L ) =
q

∑
j=1

I(λ j ∈ L )2 j−1,

C = {Cl | Cl ⊆ Y , |Cl|= k, 1 ≤ l ≤ m}

and Cl is one of the m subsets of k labels randomly selected from Y . Here, m and k are required
hyperparameters.

The internal LP models {θ1, · · · ,θm} induced from the respective datasets are used to
compute a positive or negative vote for each label. Given a new instance, RAkEL uses the ratio
of positive votes to decide if the label is relevant, such that

hRAkEL = {λ j |
Tλ j

Tλ j +Fλ j

≥ τ,λ j ∈ L }, where

θl(~x) =

Tλ j = Tλ j +1, iff λ j ∈ S ⊆Cl,θl(~x) = LP(S)

Fλ j = Fλ j +1, iff λ j ∈Cl.

The default threshold suggested by RAkEL’s authors is τ = 0.5. The approximate number of
votes for each label is given by mk/q, thus the performance of the strategy is influenced by the
definition of the m and k values.

5.2.3 Label operation

Label operation is a modification of the one-versus-all transformation, such that instances
and/or target values are specifically modified for each label in order to optimize a given evaluation
measure. Illustratively, a label operation can be seen as a one-versus-some transformation. During
the binary transformation of each label, not all instances related to the other labels will be labeled
with the class “0". Different operations can define alternatives to guide the transformation.

A transformation can be defined as φ(D ,λ j,λk) such that the label λk will be used to
modify the binary dataset D ′

j. Two operations, expansion and reduction, are investigated in this
study.

The Label Expansion (LE) operation between two labels (λ j +λk) uses instances labeled
with any of them as being related to the λ j, for the transformation of dataset D′

j. Consequently,
it increases the number of instances associated to the expanded label λ j (class value “1") and
reduces the number of instances with the class value “0". Formally, LE transformation can be
defined as

φLE(D ,λ j,λk) = {(~xi, I(λ j ∈ Yi ∨λk ∈ Yi)) | (~xi,Yi) ∈ D}.
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Despite the fact that the transformation is symmetric (λ j +λk = λk+λ j), the result is not,
since the learning model induced from the transformed dataset will be used to predict different
labels. Thus, λk may be used to expand λ j to enhance an evaluation measure, but the opposite
does not necessarily happen.

The Label Reduction (LR) operation between two labels (λ j −λk) removes the instances
associated to the λk that are not related to the λ j, for the transformation of dataset D′

j. It reduces
the number of instances associated to class “0" without changing the number of instances
associated to class “1". Formally, LR transformation can be defined as

φLR(D ,λ j,λk) = {(~xi, I(λ j ∈ Yi)) | (~xi,Yi) ∈ D ,(λ j ∈ Yi ∨λk ̸∈ Yi)}.

The LR transformation is asymmetric (λ j − λk ̸= λk − λ j), thus the same pair of labels
can result in two different datasets according to the label that is reduced. Nevertheless, the same
rationale is true here, such that λk may be used to enhance an evaluation measure for label λ j,
but the opposite does not necessarily happen.

Despite being simple, both label operations cannot be applied randomly. They require a
procedure to identify the labels that can be expanded/reduced and the labels that can be used to
expand/reduce other labels. A validation procedure can test several pairs of labels to identify
the best combinations. It requires a binary evaluation measure β ,2. Assuming that each label is
independent and β is maximized, the procedure is performed in the following way

argmax
λk

β (θ j(Dv),Dv) | φ(Dt ,λ j,λk)→ θ j, (5.4)

where θ j is the induced learning model for the label λ j, Dt and Dv are, respectively, the training
and validation dataset. This procedure can be used during the transformation and applied for each
label. In the worst case, when λk =∅, the default one-versus-all transformation (Equation 5.1)
is applied.

5.2.4 Meta-learning

Meta-Learning (MtL) has been largely used in recent years to support the automatic
selection of algorithms and define the configuration process (HUTTER; KOTTHOFF; VAN-
SCHOREN, 2019). By using knowledge from the previous applications (BRAZDIL et al., 2009),
a meta-learning system can, for instance, recommend a suitable algorithm for a new prob-
lem (ALI; SMITH, 2006; WANG; SONG; ZHU, 2015); estimate the performance of different
algorithms (LEITE; BRAZDIL, 2005; GARCIA et al., 2016; BILALLI et al., 2018); and define
machine-learning pipelines (MANTOVANI et al., 2015; MANTOVANI et al., 2019).
2 Despite the fact that a multi-label measure could also be optimized (FAN; LIN, 2007) in this work

only binary evaluation measures were considered given their simplicity and direct association with the
macro-averaged evaluation measures.
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The abstract model to represent a meta-learning pipeline includes some components,
such as: the problem space P; the feature space F; the algorithm space A; the performance
space Y; and the meta-learning algorithms (SMITH-MILES, 2008). Following a data-driven
process, the performance (Y) of a set of algorithms (A) over several datasets (P) is associated
with characteristics of such datasets (F), the meta-features. A learning model, induced from this
meta-data, is able to predict a solution for a new dataset.

The meta-features used in a MtL system depends on the problem domain, since it needs
to capture the characteristics that may impact the performance of the considered algorithms.
Therefore, the set of meta-features play a crucial role in the successful use of MtL (BENSUSAN;
KALOUSIS, 2001; BILALLI; ABELLÓ; ALUJA-BANET, 2017). Without loss of generality,
a meta-feature f is a function f : D →Rk that, when applied to a dataset D , returns a set of k

values that characterize the dataset. Function f can be detailed as

f (D) = σ(m(D)),

such that, m : D → Rk′ is a characterization measure; and σ : Rk′ → Rk is a summarization
function (RIVOLLI et al., 2019). The main meta-features are organized into five groups:

Simple: meta-features that are easily extracted from data (REIF et al., 2014), with low com-
putational cost (REIF, 2012). They are also called general measures (CASTIELLO;
CASTELLANO; FANELLI, 2005).

Statistical: meta-features that capture statistical properties of the data (REIF et al., 2014),
mainly indicators of localization and distribution, such as the average, standard deviation,
correlation and kurtosis. They can only characterize numerical attributes (CASTIELLO;
CASTELLANO; FANELLI, 2005).

Information-theoretic: meta-features based on information theory (CASTIELLO; CASTEL-
LANO; FANELLI, 2005), usually entropy estimates (SEGRERA; LUCAS; GARCÍA,
2008), which capture the amount of information in (subsets of) a dataset (SMITH-MILES,
2008).

Model-based: meta-features extracted from a model induced from the data (REIF et al., 2014).
They are often based on properties of decision tree models (BENSUSAN; GIRAUD-
CARRIER; KENNEDY, 2000; PENG et al., 2002b), when they are referred to as decision-

tree-based meta-features (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000).

Landmarking: meta-features that use the performance of simple and fast learning algorithms
to characterize the datasets (SMITH-MILES, 2008). The algorithms must have different
biases and should capture relevant information with a low computational cost.

A full description of the meta-features is found in Rivolli et al. (2019). According to
the arguments used as input, the meta-features can be related to the predictive attributes, to
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the target attribute and to the whole dataset (BRAZDIL et al., 2009). Due to the fact that the
binary datasets transformed from a multi-label data share the same predictive attributes, the
meta-features that consider only them are not considered in the experiments. More details about
the MtL components along with the procedures adopted to define the MtL study are specified in
Section 5.3.3.

5.3 Experimental procedures

This section presents the procedures used to carry out the empirical evaluation of the
MtL systems and the investigated strategies. It describes the MLC datasets, followed by a short
overview of MLC measures and evaluation procedures. Next, the MtL methodology is explained.
Finally, it presents the environmental setup of the comparison among the strategies.

5.3.1 Datasets

Table 28 lists the 20 MLC datasets selected by the authors to be used in the experiments.
They are from distinct domains (column Domain) and their characteristics are diverse. The
columns Inst, Attr and Lbl are respectively the number of instances, attributes and labels. Label
sets (lSets) is the amount of distinct label combination, label cardinality (lCard) measures the
average number of labels per instance, label density (lDen) describes the average frequency of
labels and dependency (Dep) shows the average unconditional labels’ dependency (LUACES et

al., 2012).

Table 28 – Characteristics of the MLC datasets.

Dataset Domain Inst Attr Lbl lSets lCard lDen Dep

20ng text 19300 1006 20 55 1.03 0.05 0.08
birds audio 337 260 15 115 1.84 0.12 0.08
cal500 audio 502 68 141 502 25.54 0.18 0.14
corel5k image 4995 499 218 2940 3.37 0.02 0.16
emotions audio 593 72 6 27 1.87 0.31 0.28
enron text 1702 1001 42 722 3.34 0.08 0.12
fapesp text 251 7286 18 61 1.35 0.08 0.11
flags other 194 19 7 54 3.39 0.48 0.15
foodtruck other 407 21 12 116 2.29 0.20 0.14
image image 2000 294 5 20 1.24 0.25 0.15
langlog text 1197 916 38 223 1.31 0.03 0.06
medical text 949 1421 20 55 1.20 0.06 0.19
msd-195 audio 2901 180 38 267 2.47 0.07 0.24
ohsumed text 13929 1002 23 1147 1.66 0.07 0.04
scene image 2407 294 6 15 1.07 0.18 0.11
slashdot text 3776 1079 18 149 1.18 0.07 0.05
stackex-chess text 1612 585 78 725 2.07 0.03 0.10
tmc2007-500 text 28596 500 22 1172 2.22 0.10 0.11
yeast biology 2417 103 14 198 4.24 0.30 0.25
yelp8 image 10784 668 8 117 2.26 0.28 0.11
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These datasets are frequently used as benchmarks for MLC experiments. They come
from the Cometa repository (CHARTE et al., 2018), an exhaustive collection of MLC datasets,
integrated with the tools used in this work. The exceptions are the datasets fapesp and msd-195
obtained from their respective authors, and yelp8 from the Kaggle website.3 The datasets were
preprocessed with three operations. First, the labels with less than 10 instances were removed
to ensure a minimum of instances related to each label in the training and test folds. Next, the
instances with no labels were also removed. Finally, the predictive attributes with constant values
were removed.

5.3.2 Evaluation Measures

The evaluation of the predictive performance of MLC strategies requires using specific
measures that are able to explore their particularities (TSOUMAKAS; KATAKIS; VLAHAVAS,
2010). In this study, we are interested in three macro-averaged measures: macro-F1, macro-

precision and macro-recall. They are label-based measures that summarize the performance of
the respective binary evaluation measure over all labels, such that

macro−β =
1
q

q

∑
j=1

β j, (5.5)

where β j = {F1 j | precision j | recall j}. Let TP j, FP j, TN j and FN j be, respectively, the true
positive, false positive, true negative and false negative values of the label λ j, the F1, precision
and recall specification are given by Equations 5.6, 5.7 and 5.8, respectively.

F1 j =
2T Pj

2T Pj +FPj +FN j
, (5.6)

precision j =
T Pj

T Pj +FPj
. (5.7)

recall j =
T Pj

T Pj +FN j
. (5.8)

Considering that the labels associated with an instance are the relevant labels. Seman-
tically, macro-precision measures the fraction of relevant labels among those predicted. High
precision indicates the ability of a model to correctly predict the labels, although not necessarily
all of them. Macro-recall measures the fraction of relevant labels that have been predicted out
of all the relevant labels. A high recall indicates that a model predicts many labels correctly,
but not necessarily only the relevant labels. In turn, macro-F1 measures the harmonic mean
between precision and recall, such that a model with a high macro-F1 can predict the relevant
labels accurately and only them. As the macro-averaged measures give the same weight to all
3 see <https://www.kaggle.com/c/yelp-restaurant-photo-classification>.

https://www.kaggle.com/c/yelp-restaurant-photo-classification
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labels (YANG, 1999), they are more sensitive to the performance in the least common labels,
which is usually low (JACKSON; MOULINIER, 2002).

In a recent work (RIVOLLI; SOARES; CARVALHO, 2018a), the authors observed the
occurrence of problems regarding the inability of an MLC model to properly predict some labels.
Given a test set, the Constant Label Prediction (CLP) measures the proportion of labels indis-
criminately predicted for all instances, whereas, the Wrong Label Prediction (WLP) measures
the proportion of labels incorrectly predicted for all instances. Equations 5.9 and 5.10 present
the CLP and WLP, respectively. I is defined in Equation 5.1.

CLP =
1
q

q

∑
j=1

I(TN j +FN j == 0), (5.9)

WLP =
1
q

q

∑
j=1

I(TP j == 0). (5.10)

Unless the individual performance of the labels is reported, the other MLC measures
cannot identify such problems. However, the respective measures require using the whole
validation or test set.

5.3.3 Meta-Learning procedures

In this work, the MtL is used with 2 distinct purposes. First, to predict for a given label if
the BR strategy will be able to predict it correctly for some test instance (directly related to the
WLP measure). Second, to recommend for a given label if it can be optimized by an operation
(expansion and reduction) or not.

In the former, MtL is used to detect the wrong label prediction. Set A consists of a
single algorithm, which is the base algorithm used by the BR strategy. Thus, the options are
A = {Yes,No} defining if the label will be predicted wrongly for all test instances or not. The
performance space comprises the recall measure, given by Equation 5.8, such that a recall equal
to zero is mapped to Yes, otherwise No is used. The idea behind this MtL task is identifying the
problematic labels before inducing the model, so that some action can be adopted.

In the latter, MtL is used to recommend if a label should be expanded or reduced by
another label, thus ALE = {Yes,No} and ALR = {Yes,No}. After predicting yes for LE and/or
LR, a validation procedure should be performed to find the best candidate label to be combined
with the original label. The performance evaluation measure used to select the best option is
the F1 measure (Equation 5.6), given that both operations optimize this measure. The high
computational costs involving the validation procedure to find the best match between pairs
of labels justify using MtL in this scenario. When a label is predicted with No, the default BR
transformation is used without any operation for that label.
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In both MtL tasks, the set of instances P consists of the binary transformed datasets
using the BR strategy (Equation 5.1). Each meta-instance is related to an individual label from a
multi-label dataset, such that |P|= 749.

Considering that some labels come from the same multi-label dataset, they share the
same predictive attributes. Therefore, only meta-features related to the target and the whole
dataset (predictive attributes and target) are used to characterize the meta-instances. Table 29
lists the selected meta-features used in both MtL tasks, more details about them, as well as their
formulation are available in Rivolli et al. (2019). The summarization functions used to sum up
the multi-valued measures are kursotis, max, min, median, min, sd and skewness.

Table 29 – List of meta-features selected to characterize the meta-instances. The column Sum. defines if
the measures must be summarized.

Group Name Sum. Description

Simple freqClass Yes Frequencies of the class values.

Statistical canCor Yes Canonical correlations between the predictive attributes and the class.

Information- classEnt No Class entropy.
theoretic eqNumAttr No Equivalent number of attributes.

jointEnt Yes Joint Entropy of attributes and classes.
mutInf Yes Mutual information of attributes and classes.
nsRatio No Noisiness of attributes.

Model-based leaves No Number of leaves.
leavesBranch Yes Size of branches.
leavesCorrob Yes Leaf corroboration.
leavesHomo Yes Homogeneity.
leavesPerClass Yes Leaves per class.
nodes No Number of nodes.
nodesPerAttr No Ratio of the number of nodes per attributes.
nodesPerInst No Ratio of the number of nodes per instances.
nodesPerLevel Yes Number of nodes per level.
nodesRepeated Yes Repeated nodes.
treeDepth Yes Tree depth.
treeImbalance Yes Tree imbalance.
treeShape Yes Tree shape.
varImportance Yes Variable importance.

Landmarking bestNode Yes Best Decision Node’s performance.
eliteNN Yes Elite Nearest Neighbor’s performance.
naiveBayes Yes Naive Bayes’ performance.
oneNN Yes One Nearest Neighbor’s performance.
worstNode Yes Worst Decision Node’s performance.

Others classConc Yes Class concentration coefficient.
gravity No Center of gravity.

Concerning landmarking, three other performance criteria were considered, apart from
accuracy: F1, precision and recall, in which each landmarking resulted in 28 meta-features.4

Thus, in the first MtL task, the set of meta-instances is characterized by |F |= 252 meta-features.

4 7 summarization function × 4 performance measure.
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For the second task, the previous set of meta-features captures only information about
the label base, in which no information related to the labels that can be used in the operations
are extracted. In order to represent them, for each label, the other labels are used as predictive
attributes generating an alternative dataset. The characterization measures from Table 29 are also
extracted for this new dataset, which will result in |F |= 399 meta-features.5

Finally, the C5.0 decision tree induction (C5) and the Random Forest (RF) (BREIMAN,
2001) algorithms are used to induce the meta-learner from the meta-base. Moreover, random
and majority predictors are adopted as baselines. Given that the meta-instances that come from
the same MLC dataset share some similarities, the procedure adopted for both MtL tasks is the
leave-one-out for MLC dataset. For both tasks, the performance of the meta-learner is evaluated
with the simple accuracy measure, given by

Acc =
T P+T N

n
.

5.3.4 Pipeline, tools and setup

The whole pipeline of the experiments carried out in this study is related to the following
steps:

1. Characterizing datasets: Each binary dataset is characterized using the meta-features
defined in Table 29. For the second MtL task, an additional characterization is performed
using the set of labels as predictive attributes for each label.

2. Evaluating MLC Performance: Using the iterative algorithm for stratifying MLC data (SECHIDIS;
TSOUMAKAS; VLAHAVAS, 2011), 5x2-fold cross-validation with paired folds is per-
formed for distinct strategies using C5 and RF base algorithms.

BR: For the first MtL task, the recall of each label is assessed to define if the base
algorithm will predict the respective label for all instances wrongly.

LE and LR: Both operations require using a validation procedure to define if the labels
can be optimized given an evaluation measure. Using only the training data, 5x2-fold
cross-validation is applied, and for each label, the most feasible combination is used
with the test set. If the F1 measure can be optimized, the respective operation is
considered positive in the second MtL task.

Other strategies: The DBR, ECC, RAkEL6 and REMEDIAL are also evaluated using
the same paired partitions. They are used in the comparison with the MtL results.

3. Inducing the meta-models: For each base algorithm and MtL task, a meta-model is
induced using the RF algorithm. The leave-one-out by the MLC dataset is the procedure

5 In this case, only accuracy was used to characterize the landmarkings.
6 The RAkEL’s hyperparameters are fixed in m = 2q and k = 3 according to that suggested in the original

paper (TSOUMAKAS; KATAKIS; VLAHAVAS, 2011).
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adopted, whereby the training data are comprised of the labels from 19 MLC datasets and
the test with the labels from the other MLC dataset.

4. Using the meta-models: Finally, using the recommendation of the meta-models, the label
prediction problem is investigated and the LE and LR recommended by the meta-learner
are compared against the other strategies and baselines. Moreover, the importance of the
meta-features used by the meta-models is investigated.

All the experiments are carried out in the R environment. The packages mldr (CHARTE;
CHARTE, 2015a) and utiml (RIVOLLI; CARVALHO, 2018) provided the code of the multi-
label resources used in the experiments. The implementation of the base algorithms come from
the packages C50 and randomForest for C5 and RF, respectively. The MFE tool (ALCOBACA
et al., 2019) contains the implementation of the selected characterization measures. Default
hyperparameter values are used according to their respective packages.

To assess the statistical relevance of the results, the Bayesian hierarchical correlated
t-test (BENAVOLI et al., 2017) is used to compare the results of two different strategies over
multiple datasets. The test results in probabilities concerning which one is better (left and right),
for a particular evaluation measure. It also defines a region of equivalence (rope) that indicates
the probability that the difference in performance of the classifiers is insignificant. Benavoli et al.

(2017) suggests the interval [−0.01,0.01], which consists of a difference of 1% for a measure
whose range is [0,1]. This interval is used for the three macro-averaged evaluation measures.

5.4 Results
This section presents the results obtained from the experimental evaluation previously

described. First, the MtL results are reported concerning the task to recognize the wrong label
prediction in the BR strategy. Next, the use of the MtL is analyzed to predict the label operations
LE and LR. Then, the impact of the MtL recommendations in the original tasks is presented.
Finally, some strategies are empirically compared to each other considering the MtL results.

5.4.1 Wrong Label Prediction

The goal of the first MtL task is to identify the cases in which a label is not correctly
predicted for any instance. It can happen occasionally (only in some partitions of k-fold cross-
validation) or always (for all folds). Figure 19 presents the proportion of labels wrongly predicted
for all instances by BR using C5 and RF base algorithms. Only in 5 datasets (20NG, emotions,
image, scene and yelp8) the WLP did not occur in both base algorithms.

Therefore, a meta-learner is used to identify possible labels with problems. The meta-
features used are defined in Table 29. The meta-target is a binary value identifying if or not the
respective label is wrongly predicted for all instances in at least one partition. Thus, a meta-base
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Figure 19 – Proportion of labels wrongly predicted for all instances in at least one partition and in all
partitions.

is created for each base algorithm and a meta-model is induced from this data. Table 30 presents
predictive accuracy according to the experimental procedure. In addition to the meta-learner
performance (MtL), the majority (Maj) and random (Rand) predictions are used as baselines.
The bold markup highlights the best result for each meta-base.

Table 30 – Accuracy of the label problem prediction task of a Majority (Maj), Random (Rand) and the RF
meta-learning (MtL) predictors.

Dataset BRC5 BRRF
Maj Rand MtL Maj Rand MtL

20NG 0.000 0.470 1.000 0.000 0.490 1.000
birds 0.200 0.486 0.860 0.400 0.526 0.666
cal500 0.744 0.509 0.726 0.744 0.470 0.775
corel5k 0.981 0.480 0.918 0.894 0.512 0.943
emotions 0.000 0.583 1.000 0.000 0.400 1.000
enron 0.642 0.490 0.888 0.523 0.561 0.883
fapesp 0.500 0.388 0.644 0.444 0.561 0.516
flags 0.000 0.528 0.957 0.142 0.514 1.000
foodtruck 0.666 0.541 0.991 0.583 0.591 0.916
image 0.000 0.420 1.000 0.000 0.540 1.000
langlog 0.631 0.505 0.710 0.657 0.502 0.760
medical 0.200 0.415 0.785 0.250 0.515 0.765
msd-195 0.473 0.497 0.815 0.605 0.465 0.892
ohsumed 0.391 0.526 0.839 0.260 0.530 0.908
scene 0.000 0.550 1.000 0.000 0.483 1.000
slashdot 0.555 0.488 0.833 0.222 0.533 0.916
stackex-chess 0.730 0.487 0.808 0.769 0.515 0.894
tmc2007-500 0.090 0.445 0.927 0.000 0.536 1.000
yeast 0.142 0.485 1.000 0.142 0.421 1.000
yelp8 0.000 0.537 1.000 0.000 0.475 1.000

Average 0.347 0.491 0.885 0.332 0.507 0.892
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In comparison to the baselines, the meta-learner achieved a good overall performance.
For both meta-bases, almost 90% of labels were correctly predicted whereas in the best case, the
baselines can predict 50% of them. Analyzing the performance of the meta-learner considering
the MLC datasets, only in 3 of them, the baselines were not outperformed. Otherwise, for many
of them, the meta-learner achieved 100% of accuracy.

In order to explain the predictions, a decision tree model is used to learn from the C5
meta-base, the induced tree representation is presented in Figure 20. For more generalization,
the tree was pruned so that each leaf represents at least 30 instances from the training data.
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Figure 20 – Decision tree model representation used to explain the meta-learner predictions from the C5
meta-base.

Only three rules and two meta-features classified ≈ 90% of the training data correctly.
The rules are considerably simple and obvious, e.g. if the minimum precision of the eliteNN

landmarker is greater than 0.074 (a low value), then the label will be correctly predicted.
Otherwise, if the eliteNN’s minimum precision is low and the maximum mutual information
between the attributes and the label is also low, then this label will not be correctly predicted.
Using these rules to predict the labels from the RF meta-base, 85% of them were correctly
predicted.

The most important meta-features according to the meta-models used are landmarkers
related to the minimum, median and maximum performance of eliteNN and oneNN. The ex-
ceptions are the mutual information (mutInf ) and the canonical correlations (canCor) that are
from information-theoretical and statistical groups, respectively. They are also among the most
important meta-features used.
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5.4.2 Label Operation

Label operation is performed by combining pairs of labels. For each label, all other labels
are assessed using a validation procedure aiming to identify matches that are able to optimize
an evaluation measure. In order to decrease the number of labels evaluated in this procedure, a
MtL system is used to predict the labels that can be operated. Given that some labels cannot be
enhanced through the label operations, by identifying such labels the computational cost of the
validation procedure is reduced.

Tables 31 and 32 present the accuracy of the MtL system to predict the labels that can
be optimized using the label expansion and label reduction, respectively. The bold markup
highlights the best result for each dataset.

Table 31 – Accuracy of the Majority (Maj), Random (Rand) and RF meta-learning (MtL) predictors to
the LE prediction task.

Dataset LEC5 LERF
Maj Rand MtL Maj Rand MtL

20NG 0.000 0.430 0.940 0.000 0.580 0.995
birds 0.333 0.473 0.533 0.467 0.426 0.526
cal500 0.064 0.495 0.936 0.021 0.514 0.963
corel5k 0.362 0.494 0.389 0.422 0.500 0.648
emotions 0.833 0.466 0.766 0.333 0.583 0.816
enron 0.690 0.490 0.535 0.714 0.533 0.447
fapesp 0.500 0.527 0.500 0.222 0.466 0.572
flags 0.857 0.514 0.857 0.571 0.599 0.542
foodtruck 0.917 0.508 0.917 0.917 0.466 1.000
image 0.200 0.440 0.760 0.200 0.560 0.800
langlog 0.368 0.476 0.468 0.237 0.505 0.342
medical 0.150 0.475 0.850 0.300 0.525 0.510
msd-195 0.737 0.492 0.710 0.579 0.486 0.579
ohsumed 0.522 0.469 0.656 0.652 0.543 0.456
scene 0.167 0.516 0.667 0.000 0.533 0.983
slashdot 0.389 0.466 0.722 0.333 0.466 0.566
stackex-chess 0.577 0.517 0.714 0.641 0.460 0.412
tmc2007-500 0.227 0.522 0.763 0.045 0.472 0.881
yeast 0.929 0.471 0.929 0.857 0.514 0.728
yelp8 0.250 0.375 0.375 0.250 0.525 0.750

Average 0.453 0.481 0.699 0.388 0.513 0.676

The overall performance of the MtL outperformed the baselines for all scenarios. Between
LE and LR, a subtle better result is observed for the former task, and between C5 and RF, the
C5 is better. Thus, the lowest overall accuracy is observed for LRRF . Looking at each dataset
separately, the meta-learner was outperformed by the baselines in some cases. Considering that
the number of cases is lower than half of the datasets evaluated, regardless of the scenarios, MtL
still seems to be advantageous. Furthermore, the accuracy obtained by the MtL is lower than
50% only in a few cases, .

To understand this result better, Table 33 presents the percentage of labels correctly and
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Table 32 – Accuracy of the Majority (Maj), Random (Rand) and RF meta-learning (MtL) predictors to
the LR prediction task.

Dataset LRC5 LRRF
Maj Rand MtL Maj Rand MtL

20NG 0.800 0.515 0.650 0.950 0.440 0.310
birds 0.400 0.460 0.586 0.533 0.546 0.519
cal500 0.078 0.492 0.921 0.085 0.541 0.836
corel5k 0.128 0.489 0.816 0.064 0.494 0.890
emotions 0.167 0.550 0.899 0.500 0.566 0.333
enron 0.381 0.511 0.428 0.476 0.500 0.671
fapesp 0.444 0.539 0.594 0.611 0.466 0.555
flags 0.000 0.471 1.000 0.429 0.528 0.728
foodtruck 0.083 0.475 0.917 0.167 0.458 0.917
image 0.800 0.540 0.600 0.600 0.540 0.620
langlog 0.842 0.478 0.463 0.763 0.513 0.797
medical 0.600 0.410 0.445 0.450 0.465 0.515
msd-195 0.368 0.555 0.737 0.816 0.502 0.711
ohsumed 0.261 0.539 0.673 0.391 0.517 0.609
scene 0.833 0.550 0.650 1.000 0.533 0.783
slashdot 0.611 0.505 0.650 0.667 0.522 0.438
stackex-chess 0.577 0.505 0.666 0.756 0.516 0.755
tmc2007-500 0.364 0.418 0.777 0.364 0.440 0.482
yeast 0.143 0.478 0.786 0.286 0.550 0.850
yelp8 0.500 0.437 0.500 0.250 0.537 0.675

Average 0.419 0.496 0.688 0.507 0.509 0.649

wrongly predicted, according to the confusion matrix. Moreover, precision and recall values are
presented. In practice, the false negative (FN) column indicates the proportion of labels that are
ignored in the validation procedure but should be considered. The false positive (FP) column
indicates the proportion of labels that is wrongly considered in the validation. On the other hand,
the true negative (TN) and the true positive (TP) comprise the averaged accuracy presented
in the previous results and are correctly considered and ignored in the validation procedure,
respectively. Precision summarizes the proportion of the labels correctly used in the validation
procedure over the total of labels considered. Recall summarizes the amount of labels considered
in the validation procedure in relation to all labels that should be considered.

Good precision and recall indicate that the MtL system can reduce the computational costs
of the optimization procedure and obtain good results using operations. According to the results,
MtL is an alternative to reduce the number of labels considered in the optimization process. The
recall results show that in 3 scenarios, around 70% of the labels that should be optimized were
predicted correctly. In turn, the precision obtained by the meta-learner, regardless of the scenario,
can be seen as a confidence degree in the recommendations, whereby the proportion of labels
unnecessarily optimized is between 20% and 40%, varying for each scenario.

Concerning the meta-features, Figure 21 presents the 30 most relevant meta-features
according to the RF variable importance. The prefix specific indicates the meta-features that
characterize the set of labels, instead of the original dataset.



5.4. Results 139

Table 33 – Confusion matrix values, precision and recall results of the meta-learner system and the
baselines.

Task Meta-learner FN FP TN TP Precision Recall

LEC5 Majority 0.445 0.176 0.012 0.367 0.676 0.452
Random 0.226 0.260 0.231 0.283 0.521 0.556
MtL 0.270 0.095 0.187 0.449 0.826 0.625

LERF Majority 0.254 0.439 0.270 0.037 0.078 0.128
Random 0.279 0.262 0.244 0.215 0.451 0.435
MtL 0.155 0.105 0.368 0.371 0.779 0.706

LRC5 Majority 0.446 0.184 0.004 0.366 0.665 0.451
Random 0.218 0.303 0.232 0.247 0.449 0.532
MtL 0.170 0.164 0.280 0.386 0.701 0.695

LRRF Majority 0.272 0.375 0.334 0.019 0.047 0.064
Random 0.310 0.176 0.296 0.218 0.553 0.413
MtL 0.111 0.132 0.495 0.262 0.664 0.703
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Figure 21 – Most relevant meta-features according to the RF variable importance.

Most of the meta-features selected are related to capturing the shared information among
the labels and describing how informative the predictive attributes are concerning the target. The
two most relevant meta-features are the joint entropy computed using the label set as dataset
and summarized with the max and the standard deviation. From this subset of meta-features,
6 of them are the specific ones, showing that they contributed to the learning process. The
information-theoretical group is represented by the most number of meta-features, mainly the
joint entropy and the mutual information, summarized in different ways. The mean, median and
standard deviation were the most relevant summarization functions present in the list.
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Between the different tasks, the set of relevant features presented a noticeable variation
among them. The most divergent task is the LRRF, which can be observed by the high ranking
of some selected meta-features. In this task, the meta-learner obtained the lowest accuracy and
precision compared to the other tasks, which are facts that may be related.

5.4.3 Base-level analysis

In order to investigate the effectiveness of the MtL recommendations concerning the
label operation, the results are analyzed in the MLC context. Beginning with the analysis of
the cost reduction obtained from the MtL system, Table 34 presents the number of candidate
labels to be optimized in each scenario. In this case, BR does not optimize any label whereas the
default operations LE/LR try to optimize 100% of them. The LE1 and LR1 are the results of
the first MtL task, which identifies the labels that cannot be correctly predicted for any instance.
The operations are performed only for the labels identified with problems. The LE2 and LR2 are
relative to the second MtL task, in which each operation is directly recommended.

Table 34 – Number of optimized labels in each scenario.

Dataset BR LE/LR LE1/LR1 LE2 LR2 LE1/LR1 LE2 LR2
C5/RF C5/RF C5 C5 C5 RF RF RF

20NG 0 20 0 1 10 0 0 9
birds 0 15 1 4 15 1 0 13
cal500 0 141 69 141 140 75 137 106
corel5k 0 218 197 201 55 190 121 30
emotions 0 6 0 3 6 0 1 3
enron 0 42 23 21 11 21 21 15
fapesp 0 18 2 0 12 12 6 15
flags 0 7 1 7 7 1 3 4
foodtruck 0 12 8 12 12 8 11 11
image 0 5 0 2 3 0 0 0
langlog 0 38 35 34 22 34 37 7
medical 0 20 8 1 5 9 5 3
msd-195 0 38 25 38 30 23 38 16
ohsumed 0 23 12 4 12 5 2 11
scene 0 6 0 1 1 0 0 1
slashdot 0 18 7 6 4 5 6 8
stackex-chess 0 78 70 49 20 59 22 15
tmc2007-500 0 22 0 1 10 0 2 6
yeast 0 14 2 14 13 2 8 11
yelp8 0 8 0 2 8 0 0 5

Proportion 0% 100% 61% 72% 53% 59% 56% 39%

The number of recommended labels to be optimized varied according to the operation
and base algorithm. For instance, 72% of the LE2C5 is recommended whereas for the LR2RF

only 39% of labels are recommended. It consists of a reduction of the number of assessed labels
during the validation procedure, mainly for the RF base algorithm.



5.4. Results 141

Contextualizing the previous results with the MLC performance, Figure 22 presents the
average ranking of each strategy according to different base algorithms and evaluation measures.
For instance, even LR2RF , using only 39% of the labels, achieved the second-best ranking
for macro-F1 and macro-precision measures. Although the results vary according to the base
algorithm and evaluation measure, it can be observed that for macro-F1 and macro-recall, the
MtL strategies achieved a better ranking than BR. For macro-precision, the reduction of the
number of labels was useful, considering that the validation procedure can indicate wrong pairs
of labels.
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Figure 22 – Strategies’ ranking according to different base algorithms and evaluation measures.

When compared statistically (Table 35), the MtL strategies are better than BR for macro-

F1 and mainly for macro-recall, given the high probabilities obtained. For macro-precision,
BR statistically outperforms all operations in most of the cases. In comparison to the default
operations LE and LR, the MtL strategies were statistically similar for the optimized macro-F1

measure, in most of the cases, better for macro-precision and worst for macro-recall. The MtL
recommendations provided a better trade-off between precision and recall measures than the
original operations.

Finally, the effect of the operations concerning the label prediction problems CLP and
WLP was analysed. Figures 23 and 24 present, respectively, the CLP and WLP results in a
heatmap. The strategies (x axis) are sorted, from left to right, according to their average result.
Only the datasets (y axis) with the respective problem are reported in the plot.

The CLP occurred in a small number of datasets. Mainly, for the C5 base algorithm, the
operations increased the CLP, since they privilege the WLP. Among the variations, LE1 and LR1
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Table 35 – Statistical result between the comparison of the meta-learner’s recommendation.

Measure Pair C5 RF
left rope right left rope right

macro-F1 BR x LE1 0.01 0.31 0.67 0.04 0.34 0.61
BR x LE2 0.01 0.10 0.88 0.06 0.12 0.81
BR x LR1 0.02 0.32 0.65 0.04 0.42 0.53
BR x LR2 0.00 0.05 0.93 0.01 0.04 0.93
LE x LE1 0.43 0.48 0.08 0.41 0.24 0.33
LE x LE2 0.07 0.82 0.10 0.12 0.38 0.49
LR x LR1 0.68 0.29 0.02 0.90 0.08 0.01
LR x LR2 0.02 0.97 0.00 0.24 0.75 0.00

macro-precision BR x LE1 0.16 0.76 0.06 0.86 0.10 0.02
BR x LE2 0.65 0.30 0.03 0.95 0.02 0.02
BR x LR1 0.14 0.76 0.08 0.84 0.13 0.02
BR x LR2 0.73 0.21 0.05 0.89 0.05 0.04
LE x LE1 0.00 0.00 0.99 0.00 0.00 0.99
LE x LE2 0.01 0.05 0.93 0.00 0.00 0.99
LR x LR1 0.04 0.17 0.77 0.16 0.04 0.78
LR x LR2 0.00 0.87 0.11 0.01 0.25 0.72

macro-recall BR x LE1 0.01 0.00 0.97 0.02 0.01 0.95
BR x LE2 0.01 0.00 0.98 0.05 0.00 0.93
BR x LR1 0.02 0.00 0.96 0.02 0.01 0.96
BR x LR2 0.00 0.00 0.98 0.02 0.00 0.97
LE x LE1 0.98 0.00 0.00 0.98 0.00 0.01
LE x LE2 0.90 0.07 0.01 0.98 0.00 0.00
LR x LR1 0.82 0.07 0.10 0.80 0.04 0.15
LR x LR2 0.40 0.58 0.00 0.88 0.11 0.00
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Figure 23 – CLP results considering different strategies and base algorithms.

showed the best results between the operations.

For WLP, the averaged ranking between the base algorithms is more similar. The LE
obtained the best ranking, followed by LE1 and LR1, respectively. In this case, the number of
labels used in the validation procedure can be correlated with the overall ranking position, except
for LE2 using C5.0. Compared to BR, the WLP was reduced for almost all cases regardless of
the operation.
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Figure 24 – WLP results considering different strategies and base algorithms.

In summary, the performance of the meta-learner in the meta-level showed to be sat-
isfactory considering the performance of the label operations in the base-level. In addition to
reducing the number of optimized labels, following the recommendation of the meta-learners
also reduced the label problems and enhanced the optimized measure compared to BR. Although
the performance of the operations assessing all labels is superior to the MtL operations, for most
of the cases, the results presented showed to be competitive. Thus, the reduction of the number
of assessed labels in the validation procedure, achieved by using MtL, is well justified.

5.4.4 Comparative among other strategies

In this section, the MtL operations are compared against other MLC strategies. For the
sake of clarity, we considered only the LE2 and LR2 operations to be compared since they
considerably reduced the number of optimized labels. The complete results are presented in
Appendix E, Tables 56 to 60. Additionally, Tables 36, 37 and 38 present the Bayesian statistical
results for the macro-F1, macro-precision and macro-recall, respectively. The strategies in the
row improve the strategies in the columns with a probability greater than or equal to 95% for the
respective base algorithm.

For macro-F1, ECC statistically improved all other strategies; the exceptions are the LE2
and LR2 using RF. The LE2 and LR2 obtained similar results by improving the same strategies,
DBR for C5, RAkEL for RF and REMEDIAL for both base algorithms. In turn, RAkEL and
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REMEDIAL did not present good results for macro-F1 as they were statistically outperformed
for all other strategies.

Table 36 – Bayesian statistical results for the macro-F1 measure such that the strategies in the row improve
the strategies in the columns with a probability greater than or equal to 95%.

BR DBR ECC LE2 LR2 RAkEL REMEDIAL

BR - RF C5,RF
DBR - RF C5,RF
ECC C5,RF C5,RF - C5 C5 C5,RF C5,RF
LE2 C5 - RF C5,RF
LR2 C5 - RF C5,RF
RAkEL - C5
REMEDIAL -

Table 37 – Bayesian statistical results for the macro-precision measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%.

BR DBR ECC LE2 LR2 RAkEL REMEDIAL

BR - RF RF C5
DBR - RF RF RF C5
ECC C5 C5 - C5 C5 C5
LE2 - C5
LR2 - C5
RAkEL C5 C5 C5 C5 - C5
REMEDIAL RF -

Table 38 – Bayesian statistical results for the macro-recall measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%.

BR DBR ECC LE2 LR2 RAkEL REMEDIAL

BR - RF C5,RF
DBR - RF C5,RF
ECC C5,RF C5,RF - C5,RF C5,RF
LE2 C5 C5,RF - C5,RF C5,RF
LR2 C5,RF C5,RF - C5,RF C5,RF
RAkEL - C5
REMEDIAL -

For macro-precision, ECC and RAkEL using C5.0 outperformed the other strategies. As
previously observed, both LE2 and LR2 did not achieve good results for this measure, such that
they were outperformed for the other strategies. On the other hand, LE2 and LR2 presented good
results for macro-recall, statistically outperforming all other strategies. It confirms that these
strategies tend to privilege recall in relation to precision.

Despite the fact that ECC obtained the best results and consequently improved the most
number of strategies concerning the evaluation measures considered, LE2 obtained the greatest
overall reduction of WLP, as illustrated in Figure 25.
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Figure 25 – Comparative WLP results for distinct datasets.

Regardless of the base algorithm, the label operations showed the best results for WLP.
For some datasets, such as foodtruck and cal500 the differences with the other strategies can
be clearly seen. On the other hand, RAkEL and REMEDIAL showed to be less effective in
reducing the WLP. Concerning the base algorithms, in general, strategies using C5 showed better
results than the ones using RF.

In summary, ECC and the label operations LE2 and LR2 showed the best results for
macro-F1, macro-recall and WLP. ECC uses an internal threshold calibration which can explain
the good performance observed. In turn, the label operations combine the labels to optimize
an evaluation measure and consequently, they reduce the number of labels that are completely
mispredicted. Moreover, label operations could be combined with the threshold calibration,
which would be potentially good for reducing the investigated label prediction problem.

It is worth emphasizing that using MtL to guide operations can reduce, in many cases by
half, the number of labels evaluated in the validation procedure. The reduction did not degrade
the performance of the operations, such that the label operation showed to be competitive when
compared to other strategies.

5.5 Conclusion

This work investigated the use of MtL to reduce the complexity of the label operations and
to tackle the WLP, diminishing the number of labels that are completely wrongly predicted. Thus,
two different MtL tasks were empirically evaluated. The first aimed to identify the problematic
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labels, which were easily detected using a few landmarking meta-features. The second focused
on identifying the labels to be operated, which was a harder task when compared to the former.

Regardless of the task, the results obtained at a base level were able to consistently reduce
the number of labels operated without impairing the operations’ performance significantly. When
compared to other strategies, the recommendations of the MtL for LE and LR achieved good
results for the macro-F1 and macro-recall evaluation measures. Moreover, they were still able to
reduce the WLP problems for many datasets.

To reduce the complexity of the label operations even more, future works should focus
on identifying the pairs of labels to be operated. Thus, the complexity of the operations would
become very close to the BR strategy, with the advantage that they would optimize an evaluation
measure. Replacing the validation procedure for an MtL approach could reduce the number
of wrong choices obtained by it. This is a potential alternative to enhance the operations and
mitigate the label prediction problems even more.



147

CHAPTER

6
CONCLUSION

Motivated by a growing number of applications involving multi-labeled data, many
strategies have been proposed to explore the particularities of the labels and their relation-
ship (GALINDO; VENTURA, 2014). These strategies explore different aspects, such as label
correlation (CHERMAN; METZ; MONARD, 2012), dimensionality reduction (TSOUMAKAS;
KATAKIS; VLAHAVAS, 2008) and class imbalance (TSOUMAKAS; KATAKIS; VLAHAVAS,
2011).

By following the goal of investigating the MLC strategies focusing on the predictive
performance of individual labels, some research questions were raised and consequently investi-
gated in this thesis. In this path, MtL was investigated as a procedure to automatize and optimize
some steps of the proposed strategies. Three hypotheses guided the development of the work:

1. The base algorithm has a stronger influence than the transformation strategy on the

predictive performance of the MLC models.

2. The right combination of labels during the transformation process leads to an improvement

in the MLC performance and this can mitigate the label prediction problem.

3. MtL can reduce the complexity of label operations and improve their predictive perfor-

mance.

Concerning hypothesis 1, the experimental results from Chapter 2 show that, for the
binary transformation strategies, the base algorithm has a stronger impact than the strategies in
most of the datasets analysed. When several strategies and base algorithms had their predictions
compared and clustered by similarity, the groups contained different strategies with the same
base algorithm. Furthermore, the rankings of the best combinations for different evaluation
measures were more segmented by the base algorithm than the strategies (See Appendix A).
Hence, it can be concluded that the selection of the base algorithm for these strategies has more
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impact on the results than the choice of the strategy. Following this conclusion, more than one
base algorithm was used in the empirical studies reported in the other chapters.

The investigation of hypothesis 2 is reported in Chapter 4, in which the label expansion
and reduction operations are proposed. Three evaluation measures were optimized through the
label operations. In the experiments using these operations, the number of labels that were never
correctly predicted was reduced. Suitable pairs of labels were found by assessing all possible
combinations through a validation procedure. Although this procedure still needs further work,
the hypothesis was validated for both operations.

Finally, Chapter 5 showed that MtL is a useful mechanism to reduce the complexity
of the operations. However it was not possible to increase the predictive performance of the
operations. The experimental results from this chapter partially answers hypothesis 3, given that
the validation procedure was optimized only in terms of the number of labels assessed.

The rest of this chapter is organized as follows. Section 6.1 summarizes the main
contributions from this thesis. Section 6.2 enumerates the papers written and submitted during
this research. Section 6.3 discusses the main limitations of this research. Finally, Section 6.4
indicates possible directions for future work according to what was developed and the experience
carried out during this PhD research.

6.1 Main contributions

The main contributions from this PhD thesis are related to MLC and MtL. In summary,
they include:

1. Demonstration of the impact of the base algorithm to the binary transformation strategies.
In many cases, by selecting a robust base algorithm, the simplest transformation strategy
can be used in order to attend a given performance criterion. The main implication of this
finding is the methodology used in the MLC empirical studies, since multiples and varied
base algorithms must be considered when transformation strategies are involved. This
contribution is detailed in Chapter 2.

2. Identification and formalization of the label prediction problem in MLC tasks. The in-
cidence of never correctly predicted labels is completely ignored in empirical studies
involving multi-labeled data. It is a new error measure that can be used to evaluate MLC
models, since two strategies can have similar predictive performance (e.g. 70% of accu-
racy), but one of them can, for instance, correctly predict more labels. This contribution is
stated in Chapter 2. Solutions for this problem are reported in Chapter 4 and 5, along with
the papers reporting these contributions Rivolli, Parker and Carvalho (2017) and Rivolli,
Soares and Carvalho (2018a).
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3. Development of the label operation transformation for MLC. Two operations, expansion
and reduction, were formalized and empirically assessed, showing that both of them
can mitigate the problem of labels that are never correctly predicted. Furthermore, these
operations can be used as procedures to optimize different evaluation measures, including
ranking-based measures, such as AUC. This contribution is detailed in Chapter 4 and 5
and in the paper Rivolli, Soares and Carvalho (2018b).

4. Investigation of an MtL approach to identify the labels that cannot be correctly predicted,
as well as those that can be enhanced using label operations. As results from this study,
the cost of the validation procedure adopted to find the right pairs of labels to be operated
can be reduced and by combining distinct operations the predictive performance can be
increased. This contribution is detailed in Chapter 5.

5. Analysis of the current meta-features state-of-art and proposing a new taxonomy to
organize meta-features according their approach. This study resulted in a survey of char-
acterization measures for MtL with an emphasis on the reproducibility of MtL empirical
studies. This comprises Chapter 3 of this thesis.

6. Publication of a new MLC benchmark, the foodtruck dataset. Available at Cometa
repository (CHARTE et al., 2018), the dataset can be used in the recommendation of
food truck cuisines considering some personal information and preferences. The dataset is
described and investigated in the papers Rivolli, Parker and Carvalho (2017) and Rivolli,
Soares and Carvalho (2018a).

Moreover, two tools were developed and published under open source license at the
Comprehensive R Archive Network (CRAN) repository. They fill gaps of libraries in the R
data-scientist community concerning the MLC classification and dataset characterization for
MtL. The developed tools are:

1. The utiml implements most of the state-of-art MLC strategies and pre-processing tech-
niques for multi-label learning (RIVOLLI; CARVALHO, 2018). Available at <https:
//CRAN.R-project.org/package=utiml>, it provides a set of multi-label procedures, such as
sampling methods, classification strategies, threshold functions, pre-processing techniques
and evaluation metrics. All the experiments reported in this thesis were performed using
the utiml tool.

2. The MFE is a tool for extracting meta-features from datasets (ALCOBACA et al., 2019).
Available at <https://CRAN.R-project.org/package=mfe>, it offers a flexible and stan-
dalone implementation of meta-features and summarization functions described in Chap-
ter 3. All the datasets’ characterization performed in this thesis were made using the MFE
tool.

https://CRAN.R-project.org/package=utiml
https://CRAN.R-project.org/package=utiml
https://CRAN.R-project.org/package=mfe
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6.2 Publications

The development of this research resulted in some conference and journal papers that
are directly and indirectly related to the main contributions of this thesis. They are presented in
chronological order:

6.2.1 Conference papers

∙ RIVOLLI, A.; CARVALHO, A. C. P. L. F. O uso seletivo de classificadores binários na
solução de problemas multirrótulos. In: XII Encontro Nacional de Inteligência Artificial
e Computacional, 2015, Natal. p. 270-277.

∙ RIVOLLI, A.; PARKER, L. C.; CARVALHO, A. C. P. L. F. Food Truck Recommen-
dation Using Multi-label Classification. In: 18th EPIA Conference on Artificial Intelli-
gence, 2017, Porto. 2017. v. 10423. p. 585-596.

∙ RIVOLLI, A.; SOARES, C.; CARVALHO, A. C. P. L. F. Label Expansion for Multi-
Label Classification. In: Brazilian Conference on Intelligent Systems (BRACIS), 2018,
São Paulo, SP. p. 414-419.

∙ SILVA, P.; RIVOLLI, A.; ROCHA, P.; CORREIA, F.; SOARES, C. Machine Learning for
Drugs Prescription. In: Intelligent Data Engineering and Automated Learning - IDEAL,
2018, Madrid, Spain. v. 11314. p. 548-555.

6.2.2 Journal papers

∙ RIVOLLI, A.; CARVALHO, A. C. P. L. F. The utiml Package: Multi-label Classifica-
tion in R. R Journal, v. 10, p. 24-37, 2018.

∙ RIVOLLI, A.; SOARES, C.; CARVALHO, A. C. P. L. F. Enhancing multilabel classifi-
cation for food truck recommendation. EXPERT SYSTEMS, v. 35, p. 1-19, 2018.

∙ RIVOLLI, A.; READ, J.; SOARES, C.; PFAHRINGER, B.; CARVALHO, A. C. P. L.
F. An empirical analysis of binary transformation strategies for multi-label learning.
Machine Learning, 2018, under minor revision.

∙ GARCIA, L. P. F.; RIVOLLI, A.; ALCOBACA, E.; LORENA, A. C.; CARVALHO,
A. C. P. L. F. Boosting Meta-Learning with Simulated Data Complexity Measures.
Intelligent Data Analysis, 2019, accepted.

∙ ALCOBACA, E.; SIQUEIRA, F.; RIVOLLI, A.; GARCIA, L. P. F.; OLIVA, J. T.; CAR-
VALHO, A. C. P. L. F. MFE: Towards reproducible meta-feature extraction. Journal
of Machine Learning Research, 2019, accepted.
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∙ RIVOLLI, A.; GARCIA, L. P. F.; SOARES, C.; VANSCHOREN, J.; CARVALHO, A.
C. P. L. F. Characterizing classification datasets: a study of meta-features for meta-
learning. Information Sciences, 2019, submitted.

∙ RIVOLLI, A.; SOARES, C.; PFAHRINGER, B.; CARVALHO, A. C. P. L. F. Label
Operations for Multi-label Optimization. Data Mining and Knowledge Discovery, 2020,
submitted.

∙ RIVOLLI, A.; SOARES, C.; PFAHRINGER, B.; CARVALHO, A. C. P. L. F. Recommend-
ing label operations for multi-label classification. Neurocomputing, 2020, submitted.

6.3 Limitations

Empirical studies in MLC usually employ a small number of datasets, as they may
demand a large amount of processing time, affected by the relationship and the number of labels.
In this thesis, 20 MLC datasets were considered, which is subtly higher than the number of
datasets used in most of the studies published in this area. However, considering the number of
strategies and base algorithms used, this number is still small because it makes it difficult to find
patterns and obtain reliable generalizations.

In addition to this methodological aspect, other research limitations were assumed with
the development of this work. Only binary transformation strategies were considered in the
study of the importance of the base algorithm to the transformation strategies. It leads to a more
specific assumption since it is not possible to assume the same results for other transformations,
such as pairwise and multi-class transformation. However, when considering a group of more
diversified strategies, some of those that were examined would be removed due to the size of the
experiment. Therefore, it was defined that, initially, this study would cover a whole family of
strategies. Future studies will explore other families and be integrated with this study.

Concerning the label operation, the validation procedure adopted to find the pairs of labels
to be operated was the main limitation of the proposed approach. Potentially, both expansion
and reduction operations can produce better results providing that the right labels are combined.
Moreover, the computational costs involved to find suitable combinations for large datasets is
very high. Heuristics and rules to avoid the exhaustive search in the validation procedure might
lead to better choices at a lower cost. However, one of the impediments here is the small number
of MLC datasets available.

The solution adopted in order to remedy this problem was MtL. However, the MtL task
could be designed in different ways. For instance, the recommendation system could be projected
to answer whether one label could improve another given an operation. This would modify
the whole validation procedure. However, a simpler recommendation system was adopted, in
which given a label, the task is to predict whether it can be optimized or not. Given this decision,
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it is still necessary to run the validation procedure for the labels positively identified by the
recommender system.

Besides, all the meta-bases generated and used for inducing the meta-learners have an
unexplored particularity. Considering that each meta-instance represents a label, many of them
have more similarities with each other than with others. This results in dependence between the
meta-instances so that the methodology adopted in the experiments was the leave-one-out for the
MLC dataset. Nevertheless, the MtL can explore such conditions to take some advantages and
improve the learning task.

6.4 Future Work
The limitations described in the previous section inspired some future studies identified

for this thesis. At the end of each chapter, specific future work directions are drawn and discussed.
Here, the main issues are highlighted summarizing the next steps of this work.

The impact of the base algorithm over pairwise and multi-class transformation strategies
can be further investigated. This includes the analysis of their similarity, analogous to what was
made with the binary transformation strategies.

Concerning the label operation, other operations, beyond label expansion and reduction,
can be investigated exploring, for instance, association rules among labels. Furthermore, the
mechanism to find the best pairs of labels to operate should be tuned. A more strict validation
procedure can potentially reduce the number of mistakes, whereas it can lead to a gain in
predictive performance. On the other hand, the use of MtL to recommend a suitable pair of labels
can solve this trade-off in a better way, therefore it is also suggested as future work.

In terms of MtL, the investigation of meta-instances with a high relationship of depen-
dency between themselves was shown to be a promising path to follow. How to explore this
characteristic in favor of a performance gain in the predictive models is the question that arises
from this scenario.

Finally, the problem of labels that were never correctly predicted is not completely solved.
For many datasets, the label operations were able to reduce the problem observed, but there
is still room for improvement in this matter. Considering that many labels never predicted are
associated with a small number of instances, the use of techniques to deal with the presence of
imbalanced data seems to be a reasonable alternative to be further investigated.
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APPENDIX

A
PERFORMANCE RESULTS OF THE BEST

COMBINATIONS BETWEEN STRATEGIES
AND BASE ALGORITHMS

This section presents the strategy/base-algorithm’s ranking over all datasets (Figures 26
to 33) and the performance value obtained for each strategy when combined with the best base
algorithm (Tables 39 to 46). The median ranking is used to select the base-algorithm for each
strategy.
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Table 39 – Results of best strategies for the F1 ↑ measure.

Data set
EB

R XG
B
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C XG

B
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en
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F
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B

R LR
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D

B
R SV

M
t

D
B

R SV
M

t

B
R RF

N
S RF

B
R

+ SV
M

C
C RF

20NG 0.7612 0.7323 0.7781 0.7659 0.7474 0.7477 0.7782 0.7735 0.7663 0.7725
(0.003) (0.008) (0.002) (0.003) (0.004) (0.005) (0.003) (0.002) (0.003) (0.003)

birds 0.5471 0.5472 0.5283 0.3837 0.3835 0.3862 0.5294 0.5263 0.4088 0.5277
(0.022) (0.017) (0.018) (0.134) (0.111) (0.110) (0.023) (0.023) (0.119) (0.023)

cal500 0.4476 0.4529 0.3414 0.3414 0.3693 0.3406 0.3458 0.3395 0.3261 0.3362
(0.004) (0.004) (0.006) (0.010) (0.009) (0.011) (0.006) (0.012) (0.009) (0.006)

corel5k 0.2211 0.2317 0.1680 0.1717 0.2160 0.2247 0.1675 0.1735 0.1696 0.1698
(0.003) (0.003) (0.004) (0.005) (0.003) (0.005) (0.004) (0.006) (0.003) (0.003)

emotions 0.6521 0.6528 0.6454 0.6366 0.6468 0.6473 0.6425 0.6377 0.6640 0.6377
(0.010) (0.012) (0.013) (0.021) (0.019) (0.015) (0.022) (0.019) (0.013) (0.019)

enron 0.6157 0.6176 0.5687 0.5291 0.5540 0.5549 0.5642 0.5646 0.5405 0.5670
(0.009) (0.009) (0.015) (0.007) (0.012) (0.013) (0.013) (0.011) (0.009) (0.015)

fapesp 0.5795 0.5778 0.5339 0.5754 0.5617 0.5672 0.5370 0.5301 0.5717 0.5301
(0.018) (0.023) (0.032) (0.027) (0.024) (0.033) (0.038) (0.035) (0.024) (0.035)

flags 0.7117 0.7198 0.7356 0.7310 0.7209 0.6918 0.7377 0.7364 0.7227 0.7371
(0.016) (0.018) (0.013) (0.013) (0.015) (0.029) (0.018) (0.014) (0.007) (0.016)

image 0.7000 0.6961 0.6905 0.6807 0.6756 0.6843 0.6893 0.6890 0.6812 0.6890
(0.008) (0.008) (0.007) (0.010) (0.027) (0.012) (0.007) (0.006) (0.009) (0.006)

langlog 0.3181 0.3179 0.2875 0.2861 0.2845 0.2779 0.2883 0.2846 0.2857 0.2874
(0.008) (0.010) (0.015) (0.010) (0.010) (0.008) (0.010) (0.010) (0.008) (0.017)

mediamill 0.6436 0.6496 0.6161 0.6005 0.6539 0.6514 0.6204 0.6114 0.5844 0.6108
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.002) (0.001)

medical 0.8481 0.8461 0.7746 0.8425 0.8397 0.8426 0.7674 0.7711 0.8364 0.7754
(0.010) (0.012) (0.010) (0.004) (0.016) (0.016) (0.013) (0.013) (0.005) (0.011)

msd-195 0.3233 0.3293 0.2404 0.2737 0.2784 0.2669 0.2353 0.2427 0.2771 0.2420
(0.010) (0.008) (0.009) (0.007) (0.010) (0.007) (0.009) (0.008) (0.005) (0.008)

ohsumed 0.5812 0.5842 0.5227 0.5570 0.5524 0.5524 0.5220 0.5204 0.5562 0.5207
(0.003) (0.003) (0.004) (0.002) (0.002) (0.003) (0.003) (0.003) (0.002) (0.003)

scene 0.8004 0.7898 0.7908 0.7904 0.7965 0.7955 0.7893 0.7883 0.7921 0.7879
(0.002) (0.010) (0.005) (0.004) (0.005) (0.006) (0.004) (0.001) (0.005) (0.000)

slashdot 0.5645 0.5493 0.5764 0.5697 0.3688 0.3742 0.5757 0.5740 0.5668 0.5721
(0.006) (0.007) (0.007) (0.012) (0.228) (0.228) (0.008) (0.007) (0.009) (0.005)

stackex 0.4372 0.4366 0.3611 0.3846 0.3296 0.3355 0.3591 0.3580 0.3434 0.3546
(0.011) (0.011) (0.008) (0.013) (0.050) (0.039) (0.008) (0.007) (0.008) (0.009)

tmc2007 0.7381 0.7407 0.7341 0.6835 0.6947 0.7186 0.7340 0.7352 0.6802 0.7345
(0.002) (0.002) (0.002) (0.002) (0.012) (0.015) (0.001) (0.002) (0.002) (0.002)

yeast 0.6561 0.6569 0.6023 0.6342 0.6468 0.6430 0.6082 0.6105 0.6513 0.6095
(0.004) (0.005) (0.003) (0.003) (0.006) (0.004) (0.003) (0.005) (0.004) (0.005)

yelp8 0.7410 0.7540 0.6889 0.6039 0.7301 0.7340 0.6885 0.7087 0.6072 0.7091
(0.004) (0.003) (0.002) (0.003) (0.003) (0.004) (0.003) (0.003) (0.005) (0.003)
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Figure 26 – Strategy/base-algorithm’s rankings for the F1 measure.
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Table 40 – Results of best strategies for the hamming-loss ↓ measure.

Data set

Pr
uD

en
t R

F

B
R RF

M
B

R RF

B
R

+ RF

D
B

R RF

R
D

B
R RF

C
C RF

N
S RF

EB
R RF

EC
C RF

20NG 0.0228 0.0228 0.0228 0.0242 0.0229 0.0246 0.0234 0.0233 0.0238 0.0243
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

birds 0.0922 0.0924 0.0927 0.0921 0.0921 0.0921 0.0927 0.0927 0.1094 0.1107
(0.004) (0.003) (0.003) (0.004) (0.004) (0.003) (0.004) (0.004) (0.003) (0.006)

cal500 0.1686 0.1694 0.1694 0.1668 0.1666 0.1669 0.1683 0.1962 0.1932 0.1876
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.004) (0.003)

corel5k 0.0167 0.0167 0.0167 0.0169 0.0169 0.0169 0.0167 0.0181 0.0215 0.0218
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

emotions 0.1865 0.1865 0.1872 0.1868 0.1873 0.1867 0.1898 0.1898 0.1880 0.1889
(0.007) (0.009) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.005) (0.005)

enron 0.0570 0.0571 0.0572 0.0574 0.0573 0.0578 0.0572 0.0638 0.0605 0.0614
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

fapesp 0.0630 0.0625 0.0625 0.0634 0.0635 0.0631 0.0635 0.0635 0.0688 0.0688
(0.004) (0.005) (0.004) (0.006) (0.005) (0.006) (0.004) (0.004) (0.005) (0.004)

flags 0.2366 0.2341 0.2338 0.2370 0.2380 0.2364 0.2350 0.2353 0.2368 0.2363
(0.012) (0.012) (0.016) (0.014) (0.013) (0.012) (0.012) (0.012) (0.012) (0.009)

image 0.1457 0.1461 0.1465 0.1458 0.1458 0.1462 0.1459 0.1459 0.1551 0.1547
(0.004) (0.003) (0.002) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

langlog 0.0435 0.0435 0.0434 0.0438 0.0439 0.0438 0.0436 0.0437 0.0503 0.0502
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

mediamill 0.0275 0.0273 0.0273 0.0280 0.0281 0.0281 0.0277 0.0277 0.0278 0.0282
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

medical 0.0263 0.0271 0.0270 0.0275 0.0275 0.0272 0.0262 0.0267 0.0293 0.0301
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

msd-195 0.0717 0.0716 0.0717 0.0723 0.0728 0.0721 0.0715 0.0715 0.0906 0.0929
(0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001)

ohsumed 0.0576 0.0577 0.0576 0.0578 0.0577 0.0577 0.0578 0.0578 0.0615 0.0616
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

scene 0.0747 0.0751 0.0748 0.0751 0.0751 0.0755 0.0753 0.0752 0.0782 0.0778
(0.001) (0.001) (0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

slashdot 0.0530 0.0531 0.0530 0.0547 0.0528 0.0545 0.0533 0.0531 0.0583 0.0591
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

stackex 0.0257 0.0258 0.0257 0.0259 0.0259 0.0258 0.0259 0.0258 0.0354 0.0356
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

tmc2007 0.0462 0.0462 0.0461 0.0465 0.0466 0.0466 0.0462 0.0461 0.0502 0.0504
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

yeast 0.1908 0.1902 0.1901 0.1921 0.1979 0.1941 0.1919 0.1918 0.1920 0.1951
(0.002) (0.002) (0.002) (0.002) (0.002) (0.004) (0.002) (0.002) (0.002) (0.003)

yelp8 0.1426 0.1421 0.1421 0.1393 0.1394 0.1393 0.1369 0.1370 0.1616 0.1571
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.007)
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Figure 27 – Strategy/base-algorithm’s rankings for the hamming-loss measure.
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Table 41 – Results of best strategies for macro-F1 ↑ measure.

Data set
EB

R XG
B

EC
C XG

B

M
B

R XG
B

B
R XG

B

Pr
uD

en
t X

G
B

R
D

B
R SV

M
t

D
B

R SV
M

t

C
C XG

B

N
S XG

B

B
R

+ SV
M

t

20NG 0.7582 0.7333 0.7546 0.7544 0.7544 0.7450 0.7452 0.7008 0.7409 0.7451
(0.002) (0.005) (0.003) (0.003) (0.003) (0.004) (0.005) (0.004) (0.003) (0.005)

birds 0.4511 0.4512 0.4459 0.4459 0.4459 0.2766 0.2788 0.4465 0.4307 0.2699
(0.029) (0.032) (0.035) (0.035) (0.035) (0.124) (0.125) (0.035) (0.037) (0.125)

cal500 0.2035 0.2031 0.1378 0.1380 0.1288 0.1688 0.1049 0.1369 0.1661 0.1185
(0.007) (0.008) (0.005) (0.005) (0.004) (0.011) (0.008) (0.005) (0.010) (0.006)

corel5k 0.0780 0.0751 0.0608 0.0577 0.0572 0.0917 0.0932 0.0598 0.0605 0.0940
(0.002) (0.004) (0.003) (0.002) (0.003) (0.004) (0.006) (0.004) (0.004) (0.008)

emotions 0.6644 0.6694 0.6369 0.6369 0.6514 0.6626 0.6655 0.6322 0.6324 0.6634
(0.009) (0.009) (0.010) (0.010) (0.011) (0.014) (0.009) (0.008) (0.008) (0.011)

enron 0.2725 0.2722 0.2523 0.2524 0.2535 0.1817 0.1820 0.2578 0.2508 0.1826
(0.006) (0.006) (0.008) (0.008) (0.008) (0.009) (0.009) (0.006) (0.008) (0.009)

fapesp 0.4884 0.4863 0.4498 0.4498 0.4513 0.4712 0.4663 0.4500 0.4462 0.4559
(0.025) (0.028) (0.029) (0.029) (0.027) (0.022) (0.038) (0.030) (0.028) (0.041)

flags 0.6431 0.6483 0.6449 0.6449 0.6435 0.6415 0.6293 0.6601 0.6531 0.6335
(0.030) (0.032) (0.028) (0.028) (0.026) (0.042) (0.031) (0.026) (0.028) (0.031)

image 0.6923 0.6885 0.6851 0.6851 0.6891 0.6714 0.6795 0.6666 0.6666 0.6765
(0.008) (0.009) (0.008) (0.008) (0.009) (0.027) (0.012) (0.009) (0.009) (0.019)

langlog 0.1854 0.1865 0.1616 0.1616 0.1616 0.1373 0.1342 0.1603 0.1604 0.1375
(0.015) (0.016) (0.014) (0.014) (0.014) (0.009) (0.010) (0.013) (0.013) (0.010)

mediamill 0.3277 0.2960 0.2355 0.2396 0.2387 0.3913 0.3865 0.2331 0.2306 0.3874
(0.004) (0.006) (0.004) (0.005) (0.005) (0.003) (0.004) (0.004) (0.005) (0.005)

medical 0.7185 0.7198 0.7253 0.7253 0.7253 0.7255 0.7338 0.7262 0.7107 0.7284
(0.021) (0.022) (0.024) (0.024) (0.024) (0.017) (0.017) (0.022) (0.023) (0.021)

msd-195 0.1744 0.1779 0.1234 0.1234 0.1241 0.1555 0.1486 0.1216 0.1220 0.1539
(0.009) (0.008) (0.009) (0.009) (0.008) (0.012) (0.008) (0.009) (0.009) (0.006)

ohsumed 0.4465 0.4479 0.4137 0.4139 0.4139 0.4177 0.4180 0.4129 0.4095 0.4180
(0.003) (0.004) (0.002) (0.002) (0.002) (0.004) (0.003) (0.004) (0.003) (0.004)

scene 0.8009 0.7945 0.7920 0.7920 0.7920 0.8005 0.7989 0.7777 0.7795 0.7980
(0.004) (0.013) (0.010) (0.010) (0.010) (0.006) (0.004) (0.001) (0.002) (0.005)

slashdot 0.4258 0.4174 0.4148 0.4148 0.4148 0.2385 0.2443 0.3893 0.4031 0.2399
(0.008) (0.015) (0.008) (0.008) (0.008) (0.227) (0.230) (0.011) (0.007) (0.228)

stackex 0.2968 0.2907 0.2580 0.2586 0.2586 0.1687 0.1778 0.2577 0.2349 0.1767
(0.009) (0.011) (0.010) (0.010) (0.010) (0.052) (0.038) (0.009) (0.011) (0.051)

tmc2007 0.6526 0.6543 0.6406 0.6323 0.6323 0.5978 0.6319 0.6286 0.6313 0.6237
(0.011) (0.012) (0.014) (0.013) (0.013) (0.008) (0.023) (0.011) (0.013) (0.028)

yeast 0.4328 0.4259 0.4019 0.4019 0.3961 0.4589 0.4512 0.4221 0.4223 0.4546
(0.004) (0.009) (0.006) (0.006) (0.006) (0.007) (0.005) (0.004) (0.004) (0.008)

yelp8 0.7087 0.7141 0.6970 0.6832 0.6846 0.6896 0.6893 0.6921 0.6982 0.6864
(0.005) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.005) (0.004)
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Figure 28 – Strategy/base-algorithm’s rankings for the macro-F1 measure.
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Table 42 – Results of best strategies for macro-precision ↑ measure.

Data set

M
B

R RF

C
C RF

R
D

B
R RF

N
S RF

B
R

+ RF

Pr
uD

en
t R

F

D
B

R RF

B
R RF

EC
C XG

B

EB
R XG

B

20NG 0.7851 0.7824 0.7871 0.7827 0.7895 0.7851 0.7852 0.7849 0.7236 0.7511
(0.002) (0.003) (0.009) (0.002) (0.008) (0.003) (0.003) (0.003) (0.014) (0.003)

birds 0.6179 0.6161 0.6043 0.6167 0.6047 0.6131 0.6046 0.5916 0.5311 0.5203
(0.078) (0.054) (0.089) (0.056) (0.087) (0.075) (0.087) (0.080) (0.060) (0.053)

cal500 0.1852 0.1745 0.1718 0.2061 0.1690 0.1797 0.1695 0.1791 0.2084 0.2136
(0.012) (0.019) (0.021) (0.019) (0.019) (0.014) (0.015) (0.016) (0.012) (0.008)

corel5k 0.0974 0.0821 0.0897 0.0915 0.0976 0.0937 0.0929 0.0882 0.1121 0.1082
(0.010) (0.011) (0.016) (0.011) (0.009) (0.012) (0.006) (0.009) (0.012) (0.007)

emotions 0.7299 0.7232 0.7205 0.7232 0.7209 0.7258 0.7203 0.7281 0.6843 0.6724
(0.011) (0.013) (0.011) (0.013) (0.010) (0.010) (0.011) (0.010) (0.011) (0.015)

enron 0.3651 0.3697 0.3769 0.3524 0.3725 0.3696 0.3733 0.3625 0.3450 0.3484
(0.017) (0.024) (0.019) (0.024) (0.018) (0.019) (0.017) (0.019) (0.017) (0.019)

fapesp 0.5127 0.4859 0.5057 0.4859 0.4980 0.4984 0.4922 0.5291 0.5119 0.5378
(0.082) (0.069) (0.088) (0.069) (0.084) (0.072) (0.081) (0.087) (0.028) (0.039)

flags 0.7101 0.7065 0.7227 0.7069 0.7235 0.7117 0.7238 0.7145 0.6743 0.6785
(0.064) (0.057) (0.062) (0.057) (0.059) (0.059) (0.059) (0.063) (0.031) (0.044)

image 0.7472 0.7519 0.7518 0.7520 0.7533 0.7486 0.7504 0.7482 0.6990 0.6987
(0.005) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.007) (0.010) (0.008)

langlog 0.1988 0.1961 0.1953 0.1918 0.1935 0.1964 0.1935 0.1964 0.2206 0.2222
(0.018) (0.027) (0.015) (0.014) (0.015) (0.020) (0.015) (0.018) (0.031) (0.024)

mediamill 0.5550 0.5732 0.5949 0.5745 0.5944 0.5601 0.5985 0.5599 0.6225 0.5805
(0.013) (0.019) (0.015) (0.014) (0.016) (0.011) (0.020) (0.014) (0.022) (0.016)

medical 0.7471 0.7370 0.7312 0.7405 0.7329 0.7554 0.7303 0.7468 0.7624 0.7490
(0.028) (0.037) (0.036) (0.033) (0.035) (0.023) (0.033) (0.030) (0.038) (0.036)

msd-195 0.2572 0.2406 0.2735 0.2464 0.2756 0.2757 0.2681 0.2605 0.2783 0.2647
(0.033) (0.028) (0.040) (0.028) (0.037) (0.033) (0.032) (0.026) (0.023) (0.030)

ohsumed 0.5991 0.5941 0.6007 0.6028 0.5866 0.5974 0.5894 0.5894 0.5538 0.5540
(0.039) (0.037) (0.035) (0.026) (0.022) (0.025) (0.027) (0.017) (0.014) (0.012)

scene 0.8130 0.8124 0.8136 0.8133 0.8159 0.8136 0.8145 0.8129 0.8038 0.7990
(0.004) (0.003) (0.003) (0.003) (0.004) (0.004) (0.002) (0.001) (0.014) (0.005)

slashdot 0.4932 0.5187 0.5216 0.5100 0.5184 0.5016 0.5113 0.5099 0.4540 0.4541
(0.027) (0.036) (0.052) (0.029) (0.052) (0.028) (0.041) (0.041) (0.037) (0.016)

stackex 0.2196 0.2132 0.2211 0.2290 0.2259 0.2235 0.2277 0.2180 0.3540 0.3453
(0.029) (0.017) (0.025) (0.023) (0.025) (0.023) (0.020) (0.033) (0.019) (0.018)

tmc2007 0.8738 0.8710 0.8697 0.8716 0.8696 0.8737 0.8691 0.8740 0.7526 0.7527
(0.018) (0.018) (0.018) (0.017) (0.018) (0.016) (0.017) (0.017) (0.010) (0.012)

yeast 0.7062 0.6583 0.6760 0.6575 0.6616 0.6982 0.6565 0.7040 0.5704 0.5427
(0.024) (0.025) (0.030) (0.025) (0.030) (0.025) (0.025) (0.027) (0.026) (0.017)

yelp8 0.8820 0.8649 0.8613 0.8673 0.8626 0.8808 0.8622 0.8820 0.7537 0.7429
(0.006) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.005) (0.006) (0.015)
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Figure 29 – Strategy/base-algorithm’s rankings for the macro-precision measure.
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Table 43 – Results of best strategies for macro-recall ↑ measure.

Data set
EB

R SV
M

EC
C XG

B

D
B

R XG
B

R
D

B
R XG

B

M
B

R XG
B

B
R XG

B

B
R

+ XG
B

Pr
uD

en
t X

G
B

C
C XG

B

N
S XG

B

20NG 0.7740 0.7634 0.7505 0.7459 0.7619 0.7615 0.7468 0.7615 0.6734 0.7364
(0.003) (0.016) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.007) (0.004)

birds 0.1323 0.4369 0.3761 0.3761 0.3770 0.3770 0.3761 0.3770 0.3771 0.3605
(0.046) (0.038) (0.027) (0.027) (0.026) (0.026) (0.027) (0.026) (0.026) (0.028)

cal500 0.2186 0.2318 0.1089 0.1113 0.1200 0.1201 0.1085 0.1109 0.1190 0.1548
(0.015) (0.009) (0.005) (0.006) (0.005) (0.005) (0.005) (0.004) (0.005) (0.010)

corel5k 0.0826 0.0672 0.0394 0.0378 0.0450 0.0413 0.0400 0.0407 0.0469 0.0471
(0.003) (0.004) (0.003) (0.003) (0.002) (0.002) (0.003) (0.002) (0.004) (0.003)

emotions 0.6680 0.6655 0.6576 0.6560 0.6064 0.6064 0.6542 0.6309 0.6091 0.6089
(0.024) (0.018) (0.025) (0.025) (0.020) (0.020) (0.023) (0.021) (0.014) (0.013)

enron 0.2309 0.2583 0.2370 0.2289 0.2146 0.2145 0.2288 0.2167 0.2239 0.2220
(0.010) (0.006) (0.005) (0.004) (0.007) (0.007) (0.006) (0.007) (0.007) (0.007)

fapesp 0.4732 0.5155 0.4227 0.4245 0.4245 0.4245 0.4226 0.4254 0.4239 0.4163
(0.024) (0.025) (0.024) (0.023) (0.027) (0.027) (0.025) (0.026) (0.026) (0.024)

flags 0.6227 0.6440 0.6342 0.6429 0.6347 0.6347 0.6340 0.6338 0.6505 0.6418
(0.028) (0.033) (0.023) (0.028) (0.031) (0.031) (0.024) (0.025) (0.025) (0.027)

image 0.6777 0.6808 0.6476 0.6409 0.6473 0.6473 0.6426 0.6557 0.6232 0.6232
(0.009) (0.011) (0.008) (0.009) (0.008) (0.008) (0.009) (0.011) (0.010) (0.010)

langlog 0.1604 0.1941 0.1469 0.1476 0.1495 0.1495 0.1475 0.1495 0.1486 0.1485
(0.006) (0.015) (0.012) (0.011) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

mediamill 0.3256 0.2315 0.1683 0.1648 0.1653 0.1677 0.1660 0.1666 0.1649 0.1621
(0.004) (0.004) (0.003) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003) (0.003)

medical 0.6959 0.7236 0.7323 0.7301 0.7372 0.7373 0.7306 0.7373 0.7351 0.7011
(0.012) (0.021) (0.027) (0.029) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026)

msd-195 0.2102 0.1734 0.0937 0.1000 0.0924 0.0924 0.0977 0.0941 0.0948 0.0952
(0.004) (0.007) (0.007) (0.008) (0.006) (0.006) (0.007) (0.005) (0.006) (0.006)

ohsumed 0.4245 0.4125 0.3552 0.3536 0.3490 0.3491 0.3512 0.3491 0.3502 0.3453
(0.005) (0.004) (0.002) (0.002) (0.003) (0.003) (0.002) (0.003) (0.002) (0.003)

scene 0.7978 0.7883 0.7766 0.7659 0.7895 0.7895 0.7619 0.7895 0.7633 0.7645
(0.013) (0.010) (0.004) (0.005) (0.007) (0.007) (0.002) (0.007) (0.003) (0.001)

slashdot 0.4443 0.4194 0.3862 0.3820 0.3967 0.3975 0.3792 0.3975 0.3555 0.3793
(0.012) (0.019) (0.008) (0.007) (0.008) (0.008) (0.008) (0.008) (0.010) (0.008)

stackex 0.2162 0.2873 0.2239 0.2267 0.2268 0.2274 0.2259 0.2274 0.2255 0.1967
(0.024) (0.014) (0.011) (0.011) (0.013) (0.013) (0.012) (0.013) (0.011) (0.009)

tmc2007 0.5865 0.6048 0.5690 0.5688 0.5737 0.5632 0.5680 0.5632 0.5622 0.5633
(0.007) (0.012) (0.011) (0.012) (0.014) (0.013) (0.011) (0.013) (0.011) (0.013)

yeast 0.4504 0.4258 0.3835 0.3732 0.3666 0.3666 0.3984 0.3597 0.3887 0.3902
(0.014) (0.009) (0.006) (0.010) (0.006) (0.006) (0.009) (0.005) (0.004) (0.004)

yelp8 0.5719 0.7002 0.6768 0.6583 0.6342 0.6204 0.6536 0.6234 0.6487 0.6530
(0.015) (0.005) (0.003) (0.004) (0.003) (0.003) (0.005) (0.002) (0.003) (0.004)
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Figure 30 – Strategy/base-algorithm’s rankings for the macro-recall measure.
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Table 44 – Results of best strategies for one-error ↓ measure.

Data set

B
R RF

Pr
uD

en
t R

F

D
B

R RF

M
B

R RF

N
S RF

C
C RF

R
D

B
R RF

B
R

+ RF

EB
R XG

B

EC
C XG

B

20NG 0.2161 0.2160 0.2165 0.2160 0.2211 0.2221 0.2333 0.2297 0.2354 0.2676
(0.003) (0.002) (0.002) (0.002) (0.002) (0.003) (0.007) (0.006) (0.003) (0.008)

birds 0.3270 0.3284 0.3218 0.3272 0.3284 0.3284 0.3230 0.3224 0.3329 0.3319
(0.034) (0.026) (0.031) (0.031) (0.031) (0.031) (0.029) (0.030) (0.038) (0.040)

cal500 0.1382 0.1562 0.1418 0.1529 0.1406 0.1410 0.1422 0.1414 0.3015 0.2601
(0.018) (0.017) (0.018) (0.021) (0.015) (0.016) (0.017) (0.017) (0.023) (0.014)

corel5k 0.6393 0.6379 0.6560 0.6384 0.6375 0.6371 0.6547 0.6553 0.6756 0.6769
(0.008) (0.008) (0.007) (0.008) (0.007) (0.005) (0.006) (0.006) (0.012) (0.007)

emotions 0.2626 0.2649 0.2667 0.2659 0.2805 0.2805 0.2650 0.2667 0.2890 0.2873
(0.015) (0.010) (0.016) (0.012) (0.014) (0.014) (0.017) (0.017) (0.016) (0.012)

enron 0.2128 0.2117 0.2121 0.2175 0.2135 0.2141 0.2199 0.2136 0.2299 0.2362
(0.011) (0.012) (0.011) (0.010) (0.008) (0.009) (0.011) (0.010) (0.014) (0.012)

fapesp 0.3854 0.3894 0.3942 0.3854 0.3942 0.3942 0.3910 0.3934 0.3904 0.3808
(0.048) (0.041) (0.052) (0.039) (0.042) (0.042) (0.052) (0.052) (0.023) (0.034)

flags 0.2009 0.1979 0.2009 0.2039 0.2042 0.2042 0.2071 0.2103 0.2421 0.2154
(0.025) (0.018) (0.027) (0.029) (0.019) (0.019) (0.026) (0.018) (0.035) (0.018)

image 0.2457 0.2460 0.2471 0.2478 0.2469 0.2469 0.2480 0.2473 0.2525 0.2581
(0.007) (0.009) (0.008) (0.007) (0.007) (0.007) (0.006) (0.007) (0.012) (0.010)

langlog 0.6714 0.6715 0.6779 0.6694 0.6752 0.6724 0.6775 0.6774 0.6555 0.6546
(0.010) (0.015) (0.013) (0.013) (0.011) (0.019) (0.013) (0.013) (0.011) (0.013)

mediamill 0.1015 0.1057 0.1175 0.1032 0.1058 0.1059 0.1093 0.1110 0.1416 0.1605
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.001) (0.001) (0.003)

medical 0.1856 0.1791 0.1909 0.1831 0.1824 0.1786 0.1877 0.1915 0.1337 0.1362
(0.015) (0.011) (0.015) (0.012) (0.015) (0.012) (0.009) (0.013) (0.011) (0.012)

msd-195 0.6241 0.6258 0.6466 0.6258 0.6220 0.6220 0.6331 0.6361 0.6043 0.6127
(0.011) (0.011) (0.009) (0.009) (0.009) (0.009) (0.014) (0.013) (0.016) (0.014)

ohsumed 0.3402 0.3397 0.3412 0.3414 0.3429 0.3422 0.3415 0.3432 0.3233 0.3234
(0.002) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.004) (0.002)

scene 0.1903 0.1897 0.1911 0.1902 0.1924 0.1919 0.1928 0.1915 0.1861 0.1982
(0.006) (0.006) (0.006) (0.007) (0.000) (0.000) (0.002) (0.000) (0.000) (0.009)

slashdot 0.3886 0.3887 0.3873 0.3885 0.3892 0.3917 0.4026 0.4045 0.4120 0.4277
(0.008) (0.007) (0.005) (0.005) (0.008) (0.006) (0.008) (0.008) (0.008) (0.006)

stackex 0.4684 0.4657 0.4718 0.4668 0.4676 0.4718 0.4707 0.4737 0.4430 0.4445
(0.012) (0.010) (0.008) (0.012) (0.009) (0.011) (0.009) (0.009) (0.016) (0.011)

tmc2007 0.1482 0.1489 0.1521 0.1695 0.1503 0.1512 0.1527 0.1530 0.1802 0.1763
(0.001) (0.001) (0.001) (0.003) (0.001) (0.002) (0.002) (0.001) (0.003) (0.002)

yeast 0.2304 0.2489 0.2459 0.2467 0.2525 0.2525 0.2434 0.2455 0.2249 0.2307
(0.005) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.007) (0.006)

yelp8 0.1659 0.1695 0.1707 0.1703 0.1622 0.1622 0.1699 0.1698 0.1616 0.1588
(0.005) (0.004) (0.004) (0.003) (0.004) (0.005) (0.004) (0.004) (0.004) (0.005)
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Figure 31 – Strategy/base-algorithm’s rankings for the one-error measure.



178 APPENDIX A. Performance results of the best strategies and base algorithms

Table 45 – Results of best strategies for ranking-loss ↓ measure.

Data set
D

B
R RF

Pr
uD

en
t R

F

B
R RF

B
R

+ RF

C
C RF

N
S RF

M
B

R RF

R
D

B
R RF

EB
R XG

B

EC
C XG

B

20NG 0.0378 0.0377 0.0376 0.0408 0.0379 0.0379 0.0389 0.0407 0.0745 0.0882
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.005)

birds 0.1205 0.1212 0.1226 0.1204 0.1234 0.1234 0.1217 0.1204 0.1909 0.1875
(0.011) (0.011) (0.011) (0.011) (0.010) (0.010) (0.012) (0.010) (0.009) (0.010)

cal500 0.2185 0.2287 0.2180 0.2187 0.2204 0.2202 0.2258 0.2210 0.2589 0.2548
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.003)

corel5k 0.1521 0.1534 0.1532 0.1514 0.1516 0.1519 0.1612 0.1535 0.2389 0.2377
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

emotions 0.1455 0.1460 0.1475 0.1465 0.1490 0.1490 0.1476 0.1468 0.1689 0.1664
(0.006) (0.006) (0.008) (0.006) (0.007) (0.007) (0.006) (0.007) (0.012) (0.009)

enron 0.0832 0.0832 0.0835 0.0834 0.0834 0.0833 0.0832 0.0834 0.1430 0.1368
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.003) (0.004)

fapesp 0.1002 0.1022 0.1028 0.1000 0.1026 0.1026 0.1020 0.1001 0.1462 0.1350
(0.009) (0.010) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.016) (0.013)

flags 0.1903 0.1876 0.1831 0.1899 0.1826 0.1825 0.1890 0.1900 0.2056 0.1980
(0.014) (0.013) (0.013) (0.014) (0.013) (0.014) (0.018) (0.014) (0.015) (0.012)

image 0.1313 0.1323 0.1321 0.1313 0.1323 0.1323 0.1328 0.1315 0.1532 0.1565
(0.004) (0.007) (0.006) (0.004) (0.005) (0.005) (0.005) (0.004) (0.007) (0.007)

langlog 0.1688 0.1681 0.1684 0.1687 0.1696 0.1695 0.1664 0.1685 0.2500 0.2530
(0.003) (0.003) (0.003) (0.003) (0.004) (0.005) (0.005) (0.003) (0.008) (0.007)

mediamill 0.0417 0.0377 0.0338 0.0418 0.0400 0.0400 0.0545 0.0435 0.1634 0.1584
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002)

medical 0.0224 0.0227 0.0228 0.0228 0.0219 0.0218 0.0217 0.0222 0.0406 0.0413
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.007) (0.007)

msd-195 0.1499 0.1494 0.1520 0.1490 0.1487 0.1487 0.1522 0.1469 0.2695 0.2628
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.006) (0.005)

ohsumed 0.0849 0.0849 0.0851 0.0853 0.0853 0.0853 0.0845 0.0853 0.1741 0.1720
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

scene 0.0593 0.0593 0.0589 0.0593 0.0592 0.0598 0.0593 0.0605 0.0910 0.0862
(0.003) (0.002) (0.003) (0.001) (0.002) (0.002) (0.003) (0.001) (0.003) (0.005)

slashdot 0.1091 0.1110 0.1116 0.1134 0.1102 0.1106 0.1127 0.1123 0.1795 0.1805
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.005) (0.004)

stackex 0.1086 0.1099 0.1107 0.1092 0.1110 0.1106 0.1130 0.1105 0.2366 0.2351
(0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.004) (0.002) (0.012) (0.010)

tmc2007 0.0315 0.0312 0.0311 0.0315 0.0315 0.0314 0.0324 0.0315 0.0764 0.0723
(0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.000) (0.001) (0.001)

yeast 0.1715 0.1683 0.1603 0.1685 0.1682 0.1682 0.1701 0.1689 0.1678 0.1668
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

yelp8 0.1178 0.1227 0.1130 0.1178 0.1177 0.1172 0.1122 0.1217 0.1187 0.1088
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)
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Figure 32 – Strategy/base-algorithm’s rankings for the ranking-loss measure.
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Table 46 – Results of best strategies for subset-accuracy ↑ measure.

Data set

R
D

B
R RF

B
R

+ SV
M

t

N
S SV

M
t

D
B

R RF

C
C SV

M
t

Pr
uD

en
t R

F

M
B

R RF

B
R RF

EC
C XG

B

EB
R XG

B

20NG 0.7476 0.6963 0.7164 0.7630 0.6945 0.7627 0.7628 0.7628 0.6543 0.7180
(0.005) (0.008) (0.006) (0.003) (0.009) (0.002) (0.002) (0.003) (0.017) (0.003)

birds 0.2852 0.1758 0.1300 0.2852 0.1766 0.2804 0.2840 0.2830 0.2195 0.2196
(0.026) (0.067) (0.052) (0.026) (0.064) (0.022) (0.026) (0.022) (0.028) (0.043)

cal500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

corel5k 0.0045 0.0231 0.0260 0.0040 0.0249 0.0038 0.0044 0.0041 0.0089 0.0082
(0.001) (0.002) (0.004) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

emotions 0.3253 0.3346 0.3045 0.3220 0.3139 0.3160 0.3079 0.3116 0.3083 0.2871
(0.041) (0.023) (0.024) (0.038) (0.029) (0.035) (0.037) (0.037) (0.020) (0.018)

enron 0.1523 0.1519 0.1558 0.1495 0.1456 0.1407 0.1404 0.1388 0.1563 0.1465
(0.016) (0.013) (0.012) (0.015) (0.012) (0.016) (0.015) (0.014) (0.012) (0.016)

fapesp 0.3993 0.4176 0.4351 0.3960 0.4310 0.3969 0.4049 0.3977 0.3403 0.3481
(0.025) (0.035) (0.030) (0.024) (0.021) (0.016) (0.016) (0.016) (0.026) (0.028)

flags 0.2506 0.2207 0.1577 0.2381 0.1608 0.2144 0.2196 0.2113 0.2146 0.1835
(0.022) (0.023) (0.049) (0.027) (0.081) (0.029) (0.026) (0.031) (0.037) (0.035)

image 0.5566 0.5485 0.5445 0.5572 0.5458 0.5564 0.5543 0.5552 0.5148 0.5084
(0.006) (0.016) (0.016) (0.009) (0.015) (0.008) (0.005) (0.008) (0.012) (0.011)

langlog 0.2187 0.2130 0.2115 0.2179 0.2137 0.2199 0.2240 0.2222 0.1851 0.1863
(0.012) (0.010) (0.011) (0.012) (0.013) (0.016) (0.013) (0.010) (0.005) (0.011)

mediamill 0.1702 0.2261 0.2220 0.1622 0.2212 0.1513 0.1458 0.1460 0.1483 0.0991
(0.002) (0.003) (0.003) (0.002) (0.003) (0.001) (0.002) (0.002) (0.002) (0.002)

medical 0.6669 0.7449 0.7549 0.6644 0.7445 0.6749 0.6672 0.6669 0.7561 0.7540
(0.012) (0.026) (0.017) (0.015) (0.021) (0.015) (0.015) (0.013) (0.013) (0.011)

msd-195 0.1514 0.1588 0.1165 0.1325 0.1542 0.1373 0.1264 0.1286 0.0693 0.0619
(0.008) (0.009) (0.051) (0.008) (0.008) (0.009) (0.009) (0.009) (0.006) (0.005)

ohsumed 0.2997 0.3086 0.3074 0.2994 0.3089 0.2988 0.2990 0.2980 0.2775 0.2753
(0.004) (0.003) (0.004) (0.004) (0.003) (0.004) (0.005) (0.004) (0.004) (0.005)

scene 0.7453 0.7319 0.7387 0.7466 0.7333 0.7454 0.7449 0.7428 0.7316 0.7266
(0.001) (0.006) (0.008) (0.004) (0.006) (0.005) (0.005) (0.004) (0.012) (0.003)

slashdot 0.4813 0.3141 0.3468 0.4943 0.3068 0.4901 0.4903 0.4892 0.4059 0.4345
(0.009) (0.191) (0.169) (0.007) (0.168) (0.008) (0.006) (0.008) (0.014) (0.006)

stackex 0.1324 0.1204 0.1356 0.1296 0.1161 0.1349 0.1336 0.1341 0.1209 0.1175
(0.007) (0.019) (0.012) (0.007) (0.019) (0.007) (0.007) (0.007) (0.009) (0.010)

tmc2007 0.4486 0.3722 0.4036 0.4456 0.3992 0.4373 0.4394 0.4373 0.3782 0.3649
(0.003) (0.038) (0.031) (0.004) (0.024) (0.004) (0.004) (0.003) (0.002) (0.004)

yeast 0.2092 0.2388 0.2539 0.1765 0.2264 0.1822 0.1623 0.1638 0.2295 0.1870
(0.008) (0.008) (0.009) (0.005) (0.010) (0.010) (0.007) (0.008) (0.007) (0.008)

yelp8 0.4065 0.4231 0.4260 0.4049 0.4235 0.3756 0.3746 0.3742 0.4174 0.3752
(0.004) (0.004) (0.006) (0.005) (0.007) (0.005) (0.003) (0.004) (0.007) (0.011)
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Figure 33 – Strategy/base-algorithm’s rankings for the subset-accuracy measure.
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APPENDIX

B
BAYESIAN STATISTICAL RESULTS OF THE

COMPARISON BETWEEN STRATEGIES
AND BASE ALGORITHMS

From the previous results, the best pairs of strategies/base-algorithms were statistically
compared against the other pairs using the Bayesian statistical test. Tables 47 to 54 report the
pairs that the considered strategies/base-algorithms statistically outperform with a probability
greater than or equal to 95%.

Table 47 – Bayesian Statistical results for the F1 measure such that the strategies in the row improve the
strategies in the columns with a probability greater than or equal to 95%. The cells’ content
indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

EBRXGB * * * * 124 12 * * * *
ECCXGB * * * * 124 12 * * * *
PruDentRF 1 1 1 1 1 1 1 1
MBRLR 1 1 1 1 1 1 1 1
RDBRSVMt 13 13 136 13 1 1 13 16 13 13
DBRSVMt 1 1 136 1 1 1 1 13
BRRF 1 1 1 1 1 1 1 1
NSRF 1 1 1 1 1 1 1 1
BR+SVM 1 1 1 1 1 1 1 1
CCRF 1 1 1 1 1 1 1 1

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All
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Table 48 – Bayesian Statistical results for the hamming-loss measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%. The
cells’ content indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

PruDentRF 16 16 16 156 * * 16 16 16 16
BRRF 16 16 16 16 * * 16 16 16 16
MBRRF 16 16 16 156 * * 16 16 16 16
BR+RF 1 16 16 16 * * 1 16 1 16
DBRRF 1 16 16 16 * * 1 16 1 16
RDBRRF 1 16 16 16 * * 1 16 1 16
CCRF 16 16 16 156 * * 16 16 16 16
NSRF 1 16 16 16 * * 1 16 1 1
EBRRF 1 1 1 1 124 12 1 1 1 1
ECCRF 1 1 1 1 12 12 1 1 1 1

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Table 49 – Bayesian Statistical results for the macro-F1 measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%. The
cells’ content indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

EBRXGB * * * * 123 123 * * * *
ECCXGB * 12346 12346 12346 123 123 * * * 12346
MBRXGB 1234 13 123 13 13 13 13 1234 1234 13
BRXGB 1234 13 1234 13 13 1 13 1234 1234 13
PruDentXGB 1234 13 1234 123 13 1 13 1234 1234 13
RDBRSVMt 1234 13 13 13 12 1 1234 1234 1234 13
DBRSVMt 1234 13 13 13 13 1234 134 13
CCXGB 123 13 13 13 1 1 13 123 13 13
NSXGB 1234 13 13 13 1 1 13 123 134 13
BR+SVMt 1234 13 13 13 13 1234 1234 13

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Table 50 – Bayesian Statistical results for the macro-precision measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%. The
cells’ content indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

MBRRF 1 1 1 12 * 12345 1 12 14 1
CCRF 1 1 1 1 12345 12345 1 1 1 1
RDBRRF 12 124 12 124 * 12345 1 124 14 1
NSRF 1 1 1 1 * * 1 12 1 1
BR+RF 12 1 12 12 * 12345 1 124 14 1
PruDentRF 12 1 1 12 * 12345 1 12 14 1
DBRRF 12 1 1 12 * 12345 1 12 14 1
BRRF 1 1 1 1 * 12345 1 1 1 1
ECCXGB 1 1 1 1 1245 124 1 1 1 1
EBRXGB 1 1 1 1 124 124 1 1 1 1

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All
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Table 51 – Bayesian Statistical results for the macro-recall measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%. The
cells’ content indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

EBRSVM * * * * 123 123 * * * *
ECCXGB * * * * 123 123 * * * *
DBRXGB 1234 13 13 13 13 123 134 13
RDBRXGB 1234 13 13 13 13 123 134 13
MBRXGB 1234 13 13 13 13 1234 134 13
BRXGB 1234 13 13 13 13 1234 134 13
BR+XGB 1234 13 13 13 13 1234 134 13
PruDentXGB 1234 13 134 13 13 1234 1234 13
CCXGB 13 13 13 13 13 13 13 13
NSXGB 13 13 13 13 13 13 13 13

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Table 52 – Bayesian Statistical results for the one-error measure such that the strategies in the row improve
the strategies in the columns with a probability greater than or equal to 95%. The cells’ content
indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

BRRF 1 1246 12456 1246 1245 1246 12456 1246 124 12456
PruDentRF 1 1246 1246 1246 1245 124 12456 16 124 1246
DBRRF 1 1246 1246 1246 124 124 146 16 12 124
MBRRF 1 1246 1246 1246 124 124 1456 16 12 1246
NSRF 1 1246 1246 1246 124 124 1456 16 12 1246
CCRF 1 1246 1246 1246 124 124 1456 16 12 1246
RDBRRF 1 1 146 1 12 12 16 16 12 1
BR+RF 1 1 16 1 12 12 16 16 12 1
EBRXGB 1 1 16 1 124 12 16 1 12 1
ECCXGB 1 1 16 1 12 12 1 1 1 1

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Table 53 – Bayesian Statistical results for the ranking-loss measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%. The
cells’ content indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

DBRRF 1 126 16 16 * * 156 16 126 126
PruDentRF 1 1246 16 126 * * 156 16 126 1246
BRRF 1 1246 16 1246 * * 156 16 126 1246
BR+RF 1 16 16 16 * * 156 16 126 126
CCRF 1 126 16 16 * * 156 16 126 126
NSRF 1 126 16 16 * * 156 16 126 126
MBRRF 1 16 16 16 * * 156 16 12 16
RDBRRF 1 126 16 16 * * 156 16 126 126
EBRXGB 1 1 1 1 34 3 1 1 1 1
ECCXGB 1 1 1 1 34 34 1 1 1 1

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All
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Table 54 – Bayesian Statistical results for the subset-accuracy measure such that the strategies in the row
improve the strategies in the columns with a probability greater than or equal to 95%. The
cells’ content indicates the base algorithms from the columns.

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

RDBRRF 16 1 1 1 * * 16 1 1 1
BR+SVMt 16 1 1 1 * * 1 1 1 1
NSSVMt 1 1 1 1 * * 1 1 1 1
DBRRF 16 1 1 1 * * 1 1 1 1
CCSVMt 16 1 1 1 * * 1 1 1 1
PruDentRF 1 1 1 1 * 12345 1 1 1 1
MBRRF 1 1 1 1 * 12345 1 1 1 1
BRRF 1 1 1 1 * 12345 1 1 1 1
ECCXGB 1 1 1 1 1245 1245 1 1 1 1
EBRXGB 1 1 1 1 12 12 1 1 1 1

Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All
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APPENDIX

C
CHARACTERIZATION MEASURES

FORMALIZATION

C.0.1 Simple

attrToInst Ratio of the number of attributes per the number of instances (KALOUSIS; THEO-
HARIS, 1999), also known as dimensionality: d

n .

catToNum Ratio of the number of categorical attributes per the number of numeric attributes
(FEURER; SPRINGENBERG; HUTTER, 2014): nrCatX

nrNumX
.

classToAttr Ratio of the number of classes per the number of attributes (TODOROVSKI;
BRAZDIL; SOARES, 2000): q

d

instToAttr Ratio of the number of instances per the number of attributes (KUBA et al., 2002):
n
d .

instToClass Ratio of the number of instances per the number of classes (VANSCHOREN,
2010): n

q .

ntAttr Number of attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994): d.

nrAttrMissing Number of attributes with missing values (FEURER; SPRINGENBERG; HUT-
TER, 2014):

d

∑
j=1

1(
n

∑
i=1

1(~xi j =∅)> 0)

nrBin Number of binary attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994):

∑
d
i=11(φ~ai = 2). It includes numerical and categorical attributes that contain only two

distinct values.

nrCat Number of categorical attributes (ENGELS; THEUSINGER, 1998): d −nrNumX.
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nrClass Number of classes (MICHIE; SPIEGELHALTER; TAYLOR, 1994): q.

nrInst Number of instances (MICHIE; SPIEGELHALTER; TAYLOR, 1994): n.

nrInstMissing Number of instances with missing values (LINDNER; STUDER, 1999):

n

∑
i=1

1(
d

∑
j=1

1(~xi j =∅)> 0)

nrMissing Number of missing values (LINDNER; STUDER, 1999):

n

∑
i=1

d

∑
j=1

1(~xi j =∅)

nrNum Number of numeric attributes (ENGELS; THEUSINGER, 1998): ∑
d
i=11(~ai ∈Rn).

numToCat Ratio of the number of numeric attributes per the number of categorical attributes
(FEURER; SPRINGENBERG; HUTTER, 2014): nrNumX

nrCatX
.

freqClass Frequencies of the classes values (LINDNER; STUDER, 1999):[
propc1

, . . . ,propcq

]
, such that

propc j
=

1
n

n

∑
i=1

1(yi = c j). (C.1)

C.0.2 Statistical

canCor Canonical correlations between the predictive attributes and the class (KALOUSIS,
2002): [ρ1, · · · ,ρz], such that ρi = cor

~w(i)
x X,~w(i)

y Y
, where ~w(i)

x and ~w(i)
y maximizes ρi and are

orthogonal to the ~w(i−1)
x and ~w(i−1)

y , Y is the binarized version of~y and z ≤ min [q,d] is the
number of distinct ~wx and ~wy vectors found by using discriminant analysis. Frequently,
the canonical correlation is reported in the literature as the eigenvalues of the canonical
discriminant matrix, such that

ρi =

√
λi

1+λi
. (C.2)

cor Absolute attributes correlation (CASTIELLO; CASTELLANO; FANELLI, 2005):[
|cor~a1,~a3 |, · · · , |cor~ad−1,~ad |

]
, such that corx,y is obtained by the use of a correlation al-

gorithm. The most common one used is the Pearson’s Correlation coefficient, given by

corx,y =
covx,y

sdxsdy
, where (C.3)

covx,y =
∑

n
i=1(xi − x̄)(yi − ȳ)

n−1
, and (C.4)
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sdx =
2

√
∑

n
i=1(xi − x̄)2

n−1
(C.5)

cov Attributes covariance (CASTIELLO; CASTELLANO; FANELLI, 2005):[
|cov~a1,~a2|, · · · , |cov~ad−1,~ad |

]
, where covx,y is given by Equation C.4.

nrDisc Number of discriminant functions (LINDNER; STUDER, 1999): |canCorD |.

eigenvalues Eigenvalues of the covariance matrix (ALI; SMITH, 2006): [λ1, · · · ,λd], such that
S~v = λi~v for some~v ̸= 0, where Sd×d is the covariance matrix of X.

gMean Geometric mean of attributes (ALI; SMITH-MILES, 2006):
[
gMean~a1

, · · · ,gMean~ad

]
,

such that gMeanx =
(

∏
n
i=1 xi

) 1
n .

hMean Harmonic mean of attributes (ALI; SMITH-MILES, 2006):
[
hMean~a1, · · · ,hMean~ad

]
,

such that

hMeanx =
n

∑
n
i=1

1
xi

.

iqRange Interquartile range of attributes (ALI; SMITH-MILES, 2006):[
iqRange~a1

, · · · , iqRange~ad

]
, such that iqRangex = Q3x −Q1x, where Q1x and Q3x repre-

sent the first and third quartile values of x, respectively.

kurtosis Kurtosis of attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994):[
kurt~a1 , · · · ,kurt~ad

]
, such that

kurtx =
m4

sd4
x
−3,

where m j represents a statistical moment, given by

m j =
1
n

n

∑
i=1

(xi − x̄) j. (C.6)

mad Median absolute deviation of attributes (ALI; SMITH, 2006):
[
mad~a1, · · · ,mad~ad

]
, such

that madx = median [ |x1 −medianx|, · · · , |xn −medianx| ], where

medianx =


1
2(x(r)+ x(r+1)) if |x| is even (|x|= 2r)

x(r+1) otherwise (|x|= 2r+1)
(C.7)

max Maximum value of attributes (ENGELS; THEUSINGER, 1998): [max ~a1, · · · ,max ~ad].

mean Mean value of attributes (ENGELS; THEUSINGER, 1998):
[
~a1, · · · ,~ad

]
.

median Median value of attributes (ENGELS; THEUSINGER, 1998):[
median~a1, · · · ,median~ad

]
, where medianx is given by Equation C.7.
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min Minimum value of attributes (ENGELS; THEUSINGER, 1998): [min~a1, · · · ,min~ad].

nrCorAttr Number of attributes pairs with high correlation (SALAMA; HASSANIEN; REVETT,
2013):

2
d(d −1)

d−1

∑
i=1

d

∑
j=i+1

1(|cor~ai,~a j | ≥ τ),

where τ is a threshold value between 0 and 1, usually τ = 0.5. This is the normalized
version adapted by the authors.

nrNorm Number of attributes with normal distribution (KOPF; TAYLOR; KELLER, 2000):

∑
d
i=11(isNormal~ai). To check if an attribute has or does not have a normal distribution the

W-Test for normality (ROYSTON, 1995) can be applied, for instance.

nrOutliers Number of attributes with outliers values (KOPF; IGLEZAKIS, 2002):

∑
d
i=11(hasOutlier~a j). To test if an attribute has or does not have outliers, the Tukey’s

boxplot algorithm (ROUSSEEUW; HUBERT, 2011) can be used, for instance.

range Range of Attributes (ALI; SMITH-MILES, 2006):
[(max ~a1 −min~a1), · · · ,(max ~ad −min~ad)].

sd Standard deviation of the attributes (ENGELS; THEUSINGER, 1998):
[
sd~a1 , · · · ,var~ad

]
,

such that sdx is given by Equation C.5.

sdRatio Statistic test for homogeneity of covariances (MICHIE; SPIEGELHALTER; TAYLOR,
1994):

exp(M/d
q

∑
i=1

(nci −1)), where M = γ

q

∑
i=1

(nci −1)log|S−1
i S|;

γ = 1− 2d2 +3d −1
6(d +1)(q−1)

q

∑
i=1

1
nci −1

− 1
n−q

;

S =
1

n−q

q

∑
i=1

(nci −1)Si

such that, nci is the number of instances related to the class ci, S is called pooled covariance
matrix and Si is the sample covariance matrix of the instances for the ith class.

skewness Skewness of attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994):[
skewness~a1, · · · ,skewness~ad

]
, such that

skewnessx =
m3

sd3
x
,

where sdx and m3 are given by Equation C.5 and C.6, respectively.
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tMean Trimmed mean of attributes (ENGELS; THEUSINGER, 1998):
[
tMean~a1, · · · , tMean~ad

]
,

such that
tMeanx =

x(i+1)+ x(i+2)+ · · ·+ x(n−i−2)+ x(n−i−1)

n−2i
,

where i = ⌈nα⌉ and α is a hyperparameter, such that 0 < α < 0.5. The suggested value is
α = 0.2.

var Attributes variance (CASTIELLO; CASTELLANO; FANELLI, 2005):
[
var~a1, · · · ,var~ad

]
,

such that

varx =
∑

n
i=1(xi − x̄)2

n−1
.

wLambda Wilks Lambda (LINDNER; STUDER, 1999):

z

∏
i=1

1
1+λi

,

where z = nrDiscD and λi is defined in Equation C.2.

C.0.3 Information-Theoretic

Let Hx be the entropy of a given attribute, such that

Hx =−
φx

∑
i=1

P(x = ϕ
x
i ) log2 P(x = ϕ

x
i ),

and let Hx,y be the joint entropy of a predictive attribute x and the class y, such that

Hx,y =
φx

∑
i=1

φy

∑
j=1

πi j log2 πi j,

where πi j = P(x = ϕx
i ,y = ϕ

y
j ). The mutual information shared between them is given by

MIx,y = Hx +Hy −Hx,y. Mainly from these concepts, the information-theoretic measures are
computed as following:

attrEnt Attributes entropy (MICHIE; SPIEGELHALTER; TAYLOR, 1994):
[
H~a1, · · · ,H~ad

]
.

classEnt Class entropy (MICHIE; SPIEGELHALTER; TAYLOR, 1994): H~y

eqNumAttr Equivalent number of attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994):

H~y
1
d ∑

d
i=1 MI~ai,~y

jointEnt Joint Entropy of attributes and classes (MICHIE; SPIEGELHALTER; TAYLOR,
1994):

[
H~a1,~y, · · · ,H~ad ,~y

]
.

mutInf Mutual information of attributes and classes (MICHIE; SPIEGELHALTER; TAYLOR,
1994):

[
MI~a1,~y, · · · ,MI~ad ,~y

]
.
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nsRatio Noisiness of attributes (MICHIE; SPIEGELHALTER; TAYLOR, 1994) :

1
d ∑

d
j=1 H~a j −

1
d ∑

d
j=1 MI~a j,~y

1
d ∑

d
j=1 MI~a j,~y

.

C.0.4 Model-Based

For DT-model meta-features, let ψ be the set of leaves, η be the set of nodes, such that
ψ ∩η = /0 and Γ = ψ ∪η are the whole structure of the tree that represents the DT learning
model. In addition, consider the following tree properties:

attrηi Predictive attribute used in the node ηi.

classψi Class predicted by the leaf ψi.

instΓi Number of training instances used to define the tree element Γi.

levelΓi Level of the tree element Γi. In other words, it is the number of nodes in the tree hierarchy
necessary to reach the root of the tree, such that levelΓi = 0 iff Γi = rootΓ.

probψi
Probability of reaching the leaf ψi from the root in a random walk through the tree

hierarchy, such that probψi
= 1

2levelψi
.

rootΓ Root node of a tree, such that rootΓ ∈ η .

The DT-model meta-features are the following:

leaves Number of leaves (PENG et al., 2002a): |ψ|.

leavesBranch Size of branches (PENG et al., 2002a):
[
levelψ1 , · · · , levelψz)

]
, where z = |ψ|.

leavesCorrob Leaves corroboration (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000):[
instψ1

n , · · · , instψz
n

]
, where z = |ψ|.

leavesHomo Homogeneity (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000):[
z

shapeψ1
, · · · , z

shapeψz

]
, where z = |ψ|.

leavesPerClass Leaves per class (FILCHENKOV; PENDRYAK, 2015):
[
lpcc1

, · · · , lpccq

]
, such

that

lpcc j
=

1
|ψ|

|ψ|

∑
i=1

1(classψi = c j)

nodes Number of nodes (PENG et al., 2002a): |η |.

nodesPerAttr Ratio of the number of nodes per the number of attributes (BENSUSAN;
GIRAUD-CARRIER; KENNEDY, 2000): |η |

d .
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nodesPerInst Ratio of the number of nodes per the number of instances (BENSUSAN; GIRAUD-
CARRIER; KENNEDY, 2000): |η |

n .

nodesPerLevel Number of nodes per level (PENG et al., 2002a):
[
npl1, · · · ,npllevelw

]
, such that

w = argmax
ηi∈η

levelηi,and

npl j =
|η |

∑
i=1

1(levelηi = j).

nodesRepeated Repeated nodes (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000):
[nrp1, · · · ,nrpd] ∀ nrp j > 0, such that

nrp j =
|η |

∑
i=1

1(attrηi = j).

treeDepth Tree depth (PENG et al., 2002a): [levelΓ1 , · · · , levelΓw ], where w = |Γ|.

treeImbalance Tree imbalance (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000):[
imbψ1, · · · , imbψw

]
, such that w = |ψ| and imbψ j =−zψ j(log2 zψ j), where

szψ j = probψ j ∑
w
i=11(probψi

= probψ j
).

treeShape Tree shape (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000):[
shapeψ1

, · · · ,shapeψw

]
, such that shapeψ j

=−probψ j
(log2 probψ j

) and w = |ψ|.

varImportance Variable importance (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000):[
imp~a1,~y, · · · , imp~ad ,~y

]
, where imp~a j,~y describes the homogeneity of the class~y produced by

some split of a given attribute~a j. Each DT learning algorithm uses a specific procedure to
define the importance of the variables.

C.0.5 Landmarking

Let A , θA and ξ be, respectively, a learning algorithm, a learning model and an evaluation
measure. All landmarking meta-features are computed in the same way, such as the model is
induced using the learning algorithm and a train data:

A (Xtrain,~ytrain)→ θA

and the prediction of the learning model for a test data is evaluated using the given measure,
such as

landmarkingA = ξ (θA(Xtest),~ytest),

where train and test subset are defined for each fold.

The differences between the landmarking measures are given by the learning-algorithm
family and the predictive attributes used to induce the model, as described below:
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bestNode Decision Node: ADT(Xtrain,battr, ~ytrain)→ θbestNode, where Xtrain,battr is the content
of the most informative attribute, which is defined using the varImportance result.

eliteNN Elite Nearest Neighbor: AKNN(Xtrain,battrset , ~ytrain, k= 1)→ θeliteNN, where Xtrain,battrset

contains only the subset of the most informative attributes for the train data. They are
defined using the varImportance result.

linearDiscr linear Discriminant: ALD(Xtrain, ~ytrain)→ θlinearDiscr.

naiveBayes Naive Bayes: ANB(Xtrain, ~ytrain)→ θnaiveBayes.

oneNN One Nearest Neighbor: AKNN(Xtrain, ~ytrain, k = 1)→ θoneNN.

randomNode Random node: ADT(Xtrain,rattr, ~ytrain) → θrandomNode, where Xtrain,rattr is the
content of a random attribute.

worstNode Worst node: ADT(Xtrain,wattr, ~ytrain)→ θworstNode, where Xtrain,wattr is the content
of the least informative attribute.

C.0.6 Others

The following subsections specify the non-traditional characterization measures, that
include groups and standalone meta-features.

C.0.6.1 Clustering and distance-based

The clustering and distance-based measures use the result of a clustering algorithm
and/or a distance measure. The k partitions obtained from the use of a clustering algorithm are
denoted by Ci ⊂D , such that~xCi denotes the center of cluster i. Without loss of generality, distx,y
represents a distance between two instances~xi ∈ D , ~x j ∈ D , regardless of the type of attributes
they have.

AIC Akaike Information Criterion (VUKICEVIC et al., 2016):

k

∑
i=1

∑
~x j∈Ci

(~x j −~xCi)
2 +2dk.

BIC Bayesian Information CriterionVukicevic2016

k

∑
i=1

∑
~x j∈Ci

(~x j −~xCi)
2 +dk logn.

compactness Quantify the compactness of the partitions (VUKICEVIC et al., 2016): [c1, · · · ,ck],
such that

ci = ∑
~x j∈Ci

dist~x j,~xCi
. (C.8)
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connectivity Amount of neighbouring instances that are not in the same partition (VUKICEVIC
et al., 2016):

n

∑
i=1

1(~x j ∈Ci ∧nn~xi ̸∈Ci),

where nn~xi is the nearest neighbor of instance~xi.

distInst Distance between all pairs of instances (FERRARI; CASTRO, 2015):[
dist~x1,~x2,dist~x1,~x3, · · · ,dist~xn−2,~xn,dist~xn−1,~xn

]
(C.9)

distCorrInst Distance and correlations of all pairs of instances (PIMENTEL; CARVALHO,
2019): [c′,d′], where

c′ =
c+1

2
, c =

[
cor~x1,~x2,cor~x1,~x3 , · · · ,cor~xn−2,~xn,cor~xn−1,~xn

]
,

d′ =
d −min(d)

max(d)−min(d)
,

such that corx,y (Equation C.3) is used to compute the correlation between 2 instances and
d is given by Equation C.9.

gravity Center of gravity (ALI; SMITH, 2006): dist~xCm ,~xCn
, where ~xCm and ~xCn are the center

points of the instances related to the majority and minority classes, respectively.

nrClusters Number of clusters (NASCIMENTO et al., 2009): |C|= k.

purityRatio Ratio of the number of clusters with a given class (LER et al., 2018):
[ s1

k , · · · ,
sq
k

]
,

where

si =
k

∑
j=1

1((~xl,yi) ∈C j)

silhouette Global silhouette index (VUKICEVIC et al., 2016):

1
k

k

∑
i=1

( 1
|Ci| ∑

~x j∈Ci

b(~x j)−a(~x j)

max(a(~x j),b(~x j))

)
,where

a(~x j) =
1

|Ci|−1 ∑
~xl∈Ci

j ̸=l

dist~x j,~xl , b(~x j) = min
i̸=i′

( 1
|Ci′| ∑

~xl∈Ci′

dist~x j,~xl

)
.

sizeDist Proportion of instances present in each cluster (LER et al., 2018):
[
|C1|

n , · · · , |Ck|
n

]
.

XB Xie-Beni index (VUKICEVIC et al., 2016):

1
n

∑
k
i=0 ci

min
i<i′

δ (Ci,Ci′)
, δ (Ci,Ci′) = min

~x j∈Ci
~xl∈Ci′

dist~x j,~xl ,

where ci is given by Equation C.8.
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C.0.6.2 Complexity Measures

The complexity measures are specified, well described and explained in Lorena et al.

(2019).

C.0.6.3 Miscellaneous

attrConc Attributes concentration coefficient (KALOUSIS; HILARIO, 2001b):[
conc~a1,~a2 ,conc~a2,~a1, · · · ,conc~ad−1,~ad ,conc~ad ,~ad−1

]
, such that

concx,y =
∑

φx
i=1 ∑

φy
j=1

π2
i j

πi+
−∑

φy
j=1 π2

+ j

1−∑
φ j
j=1 π2

+ j

,where

πi j = P(x = ϕ
x
i ,y = ϕ

y
j ), πi+ =

φy

∑
j=1

πi j and π+ j =
φx

∑
i=1

πi j.

(C.10)

classConc Class concentration coefficient (KALOUSIS; HILARIO, 2001b):[
conc~a1,~y, · · · ,conc~ad ,~y

]
, where concx,y is given by Equation C.10.

cohesiveness Density of the example distribution (VILALTA; DRISSI, 2002a): [v(~x1), · · · ,v(~xn)].

v(~xi) =
1

|K | ∑
(~x j,y j)∈K~xi

1−1(yi = y j),

where K~xi contains the k nearest neighbors of instance~xi. The k is a user hyperparameter.

consistencyRatio Proportion of repeated instances that have different targets (KOPF; IGLEZA-
KIS, 2002):

1
n

n

∑
i=2

i−1

∑
j=1

1(dist~xi,~x j = 0∧ yi ̸= y j)

incoherenceRatio Ratio of instances that does not overlap with any other instances in a prede-
fined number of attributes (KOPF; IGLEZAKIS, 2002):

1
n

n

∑
i=2

1

( i−1

∑
j=1

1(o(~xi,~x j)> α) = 0
)

o(~xi,~x j) =
d

∑
l=1

1(vil = v jl),

where α is a user hyperparameter to set the number of similar attributes to define when
two instances overlap.

infotheoTime The elapsed time to compute the information theretical meta-features (REIF;
SHAFAIT; DENGEL, 2011).

landTime The elapsed time to compute the landmarkings meta-features (REIF; SHAFAIT;
DENGEL, 2011).
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modelTime The elapsed time to compute the model-based meta-features (REIF; SHAFAIT;
DENGEL, 2011).

oneItemset Frequency of the predictive attributes after they are binarized (SONG; WANG;
WANG, 2012): [

∑
n
i=1 vi1

n
, · · · , ∑

n
i=1 vid

n
)

]
.

propPCA Proportion of principal components that explain a specific variance of the dataset
(FEURER; SPRINGENBERG; HUTTER, 2014):

|Λ|−∑
|λ |
i=11

(
∑

i
j=1 λi > α

)
+1

|Λ|
,

where Λ is the set of all eigen values λi inversely ordered according to their variance and
α is a user defined threshold indicating the amount of variance desired, e.g. 0.95.

sparsity Attributes sparsity (SALAMA; HASSANIEN; REVETT, 2013):[
sparsity~a1

, · · · ,sparsity~ad

]
, such that

sparsityx =
1

n−1

(
∑

φx
i=1 N(x = ϕx

i )

φx
−1
)
,

where N(x = ϕx
i ) is the number of times that the ith distinct value of x are present in the

vector. This is the normalized version adapted by the authors.

statTime The elapsed time to compute the statistical meta-features (REIF; SHAFAIT; DENGEL,
2011).

twoItemset Frequency of predictive attributes’ pairs after they are binarized (SONG; WANG;
WANG, 2012): [v(1,2),v(1,3), · · · ,v(d −2,d),v(d −1,d))]

v(i, j) =
1
n

n

∑
l=1

1(vli ̸= vl j).

uniquenessRatio Proportion of repeated instances (KOPF; IGLEZAKIS, 2002):

1
n

n

∑
i=2

i−1

∑
j=1

1(dist~xi,~x j = 0)

wgDist Weighted distance (VILALTA, 1999): [v(~x1), · · · ,v(~xn)], where

v(~xi) =
∑

n
j=1, j ̸=iW (~xi,~x j)dist~xi,~x j

∑
n
j=1, j ̸=iW (~xi,~x j)

W (~xi,~x j) =
1

22d d =
dist~xi,~x j√

n−dist~xi,~x j
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APPENDIX

D
PERFORMANCE RESULTS OF LE, LR AND

THRESHOLD CALIBRATION

Figures 34, 35 and 36 present the average results for the macro-AUC, macro-F1 and
macro-precision evaluation measures, respectively. The strategies LE, LR, BR+T, LE+T and
LR+T were obtained by the optimization of the individual labels using the a binary evaluation
measure. The BR’s performance is also reported since it represents the lack of operations. The
text color (red to black) indicates, for each dataset, the performance ranking over all strategies
and base algorithms. For each base algorithm, the best solution is highlighted with a gray
background.

Additionally, Table 55 presents the probabilities from the Bayesian statistical test between
the comparison of pairs of strategies. For each base algorithm, the probability values in the left
column are relative to the respective left strategy in a row, as well as, the right column is to the
right strategy. The rope columns indicate the likelihood that the two strategies will be similar.
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Figure 34 – Macro-AUC result of BR, LE and LR. For each base algorithm, the best solution is highlighted
with a gray background.
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Figure 35 – Macro-F1 result of BR, LE and LR with and without threshold calibration. For each base
algorithm, the best solution is highlighted with a gray background.
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Figure 36 – Macro-precision result of BR, LE and LR with and without threshold calibration. For each
base algorithm, the best solution is highlighted with a gray background.
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Table 55 – Bayesian statistical probabilities for different pairs of strategies and evaluation measures. The
highlighted values indicate probabilities higher than 50%.

left right C5.0 RF SVM XGB
left rope right left rope right left rope right left rope right

macro-AUC
BR LE 0.00 0.02 0.98 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.78 0.22
BR LR 0.00 0.37 0.63 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
LE LR 0.05 0.95 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.03 0.96 0.01

macro-F1
BR BR+T 0.01 0.08 0.92 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
BR LE 0.02 0.00 0.98 0.21 0.00 0.79 0.11 0.01 0.88 0.17 0.00 0.83
BR LE+T 0.03 0.00 0.97 0.03 0.00 0.97 0.01 0.00 0.99 0.05 0.00 0.95
BR LR 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.01 0.99 0.00 0.00 1.00
BR LR+T 0.01 0.00 0.99 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

BR+T LE 0.07 0.61 0.32 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
BR+T LE+T 0.04 0.78 0.18 1.00 0.00 0.00 1.00 0.00 0.00 0.97 0.03 0.00
BR+T LR 0.00 0.76 0.23 1.00 0.00 0.00 1.00 0.00 0.00 0.95 0.04 0.00
BR+T LR+T 0.00 0.89 0.11 0.11 0.89 0.00 0.01 0.99 0.00 0.00 1.00 0.00

LE LE+T 0.00 1.00 0.00 0.00 0.06 0.93 0.00 0.25 0.75 0.00 0.39 0.61
LE LR 0.06 0.59 0.35 0.03 0.00 0.97 0.15 0.20 0.65 0.01 0.01 0.98
LE LR+T 0.04 0.74 0.22 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

LE+T LR 0.07 0.60 0.34 0.41 0.00 0.59 0.72 0.17 0.12 0.21 0.09 0.69
LE+T LR+T 0.02 0.82 0.16 0.00 0.00 1.00 0.00 0.09 0.91 0.00 0.06 0.94

LR LR+T 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.01 0.99 0.00 0.13 0.86

macro-precision
BR BR+T 0.01 0.00 0.99 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00 1.00
BR LE 0.01 0.99 0.00 0.04 0.95 0.01 0.00 1.00 0.00 0.00 1.00 0.00
BR LE+T 0.01 0.00 0.98 0.47 0.02 0.51 0.08 0.00 0.92 0.02 0.00 0.98
BR LR 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
BR LR+T 0.00 0.00 1.00 0.01 0.01 0.98 0.00 0.00 1.00 0.00 0.00 1.00

BR+T LE 0.99 0.00 0.01 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
BR+T LE+T 0.00 0.99 0.00 0.94 0.05 0.00 0.02 0.98 0.00 0.03 0.97 0.00
BR+T LR 0.97 0.00 0.03 0.99 0.01 0.00 1.00 0.00 0.00 1.00 0.00 0.00
BR+T LR+T 0.00 0.98 0.02 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

LE LE+T 0.01 0.01 0.99 0.00 0.04 0.96 0.00 0.00 1.00 0.00 0.00 1.00
LE LR 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00 0.99 0.01
LE LR+T 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

LE+T LR 0.95 0.00 0.05 0.37 0.11 0.52 0.95 0.01 0.04 0.92 0.00 0.08
LE+T LR+T 0.00 0.92 0.07 0.00 0.03 0.96 0.00 0.93 0.07 0.00 0.92 0.08

LR LR+T 0.00 0.00 0.99 0.01 0.01 0.99 0.00 0.00 1.00 0.00 0.00 1.00
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APPENDIX

E
PERFORMANCE RESULTS OF OTHER

STRATEGIES

Tables 56 to 60 present the predictive performance of the measures macro-F1, macro-

precision, macro-recall, CLP and WLP, respectively. The bold markup indicates the best result
for each dataset.
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Table 56 – Macro-F1 results of distinct strategies and base algorithms.

Dataset Base BR DBR ECC REMED RAkEL LE2 LR2

20NG C5 .609(.00) .601(.00) .663(.00) .603(.00) .606(.00) .604(.00) .613(.00)
RF .773(.00) .773(.00) .762(.00) .768(.00) .607(.00) .773(.00) .773(.00)

birds C5 .367(.02) .370(.02) .422(.01) .197(.03) .354(.03) .364(.02) .376(.02)
RF .373(.02) .377(.03) .433(.01) .313(.01) .340(.03) .370(.03) .405(.03)

cal500 C5 .156(.00) .161(.00) .184(.00) .049(.00) .164(.00) .259(.00) .251(.00)
RF .097(.00) .086(.00) .166(.00) .041(.00) .098(.00) .275(.00) .260(.00)

corel5k C5 .014(.00) .014(.00) .059(.00) .007(.00) .019(.00) .038(.00) .020(.00)
RF .024(.00) .026(.00) .054(.00) .029(.00) .006(.00) .043(.00) .024(.00)

emotions C5 .559(.01) .563(.02) .644(.01) .422(.09) .601(.01) .580(.01) .592(.01)
RF .652(.01) .663(.01) .674(.01) .556(.01) .673(.01) .663(.00) .671(.01)

enron C5 .186(.00) .189(.01) .221(.00) .097(.00) .181(.00) .210(.00) .199(.00)
RF .210(.01) .213(.00) .254(.00) .120(.01) .220(.00) .223(.00) .244(.00)

fapesp C5 .317(.04) .316(.03) .404(.03) .293(.04) .358(.02) .317(.04) .340(.01)
RF .394(.04) .376(.04) .419(.04) .380(.04) .019(.01) .355(.04) .393(.05)

flags C5 .640(.03) .616(.03) .636(.03) .402(.02) .665(.02) .668(.01) .711(.01)
RF .647(.02) .641(.02) .635(.02) .459(.01) .653(.02) .668(.02) .709(.02)

foodtruck C5 .174(.01) .156(.01) .213(.00) .089(.01) .181(.02) .288(.01) .278(.01)
RF .177(.01) .148(.02) .228(.01) .108(.01) .158(.01) .292(.01) .274(.01)

image C5 .554(.01) .517(.01) .628(.00) .555(.01) .612(.01) .555(.01) .555(.01)
RF .683(.00) .684(.00) .689(.00) .680(.00) .688(.00) .682(.00) .682(.00)

langlog C5 .132(.01) .125(.01) .168(.00) .099(.01) .087(.01) .125(.01) .129(.00)
RF .108(.00) .104(.00) .113(.00) .113(.00) .012(.00) .086(.01) .112(.00)

medical C5 .707(.02) .710(.02) .731(.01) .644(.02) .716(.01) .718(.02) .710(.01)
RF .593(.01) .585(.01) .602(.01) .588(.00) .422(.01) .563(.02) .603(.01)

msd-195 C5 .115(.00) .113(.00) .137(.02) .034(.00) .103(.00) .142(.00) .131(.00)
RF .083(.00) .079(.00) .137(.00) .082(.00) .020(.00) .111(.00) .086(.00)

ohsumed C5 .354(.00) .364(.00) .426(.00) .164(.01) .349(.00) .362(.00) .394(.00)
RF .308(.00) .307(.00) .352(.00) .306(.00) .243(.00) .326(.00) .329(.00)

scene C5 .645(.00) .614(.01) .719(.00) .643(.00) .688(.00) .643(.00) .642(.00)
RF .792(.00) .792(.00) .791(.00) .793(.00) .771(.01) .794(.00) .794(.00)

slashdot C5 .246(.01) .244(.01) .289(.01) .219(.01) .265(.01) .250(.01) .250(.01)
RF .398(.01) .396(.01) .400(.00) .393(.00) .331(.00) .387(.01) .401(.01)

stackex C5 .151(.01) .139(.00) .190(.00) .068(.01) .113(.01) .174(.01) .157(.01)
RF .109(.00) .109(.00) .166(.00) .106(.00) .038(.00) .118(.00) .113(.00)

tmc2007 C5 .506(.00) .517(.00) .579(.00) .180(.00) .546(.00) .512(.00) .548(.00)
RF .574(.01) .576(.01) .601(.01) .356(.01) .576(.01) .568(.00) .593(.01)

yeast C5 .383(.01) .383(.00) .399(.00) .264(.00) .400(.00) .429(.00) .425(.00)
RF .354(.00) .364(.00) .399(.00) .257(.00) .377(.00) .464(.00) .463(.00)

yelp8 C5 .577(.01) .598(.01) .659(.00) .342(.00) .646(.00) .577(.01) .596(.01)
RF .633(.00) .655(.00) .667(.00) .453(.00) .635(.00) .633(.00) .655(.00)
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Table 57 – Macro-precision results of distinct strategies and base algorithms.

Dataset Base BR DBR ECC REMED RAkEL LE2 LR2

20NG C5 .661(.00) .662(.00) .675(.00) .666(.00) .775(.00) .660(.00) .651(.00)
RF .784(.00) .785(.00) .766(.00) .786(.00) .925(.00) .784(.00) .780(.00)

birds C5 .419(.02) .419(.03) .507(.03) .253(.05) .463(.05) .393(.02) .387(.02)
RF .591(.08) .604(.08) .539(.06) .492(.04) .709(.05) .590(.07) .585(.07)

cal500 C5 .175(.00) .192(.00) .205(.00) .086(.01) .201(.01) .185(.00) .190(.00)
RF .179(.01) .169(.01) .211(.01) .151(.01) .170(.01) .200(.00) .187(.00)

corel5k C5 .040(.00) .047(.00) .093(.00) .021(.00) .066(.01) .053(.00) .049(.00)
RF .088(.00) .092(.00) .099(.00) .090(.01) .059(.01) .068(.00) .095(.00)

emotions C5 .567(.01) .566(.02) .658(.01) .501(.15) .637(.01) .544(.02) .538(.01)
RF .728(.01) .720(.01) .699(.01) .765(.01) .710(.01) .680(.01) .669(.02)

enron C5 .236(.01) .236(.01) .281(.00) .148(.01) .260(.02) .244(.00) .222(.00)
RF .362(.01) .373(.01) .346(.01) .286(.03) .381(.01) .300(.01) .332(.01)

fapesp C5 .345(.05) .342(.05) .446(.05) .337(.05) .481(.06) .345(.05) .365(.02)
RF .529(.08) .492(.08) .501(.08) .479(.08) .122(.05) .465(.05) .493(.09)

flags C5 .680(.04) .677(.04) .663(.03) .483(.07) .690(.03) .571(.02) .614(.01)
RF .714(.06) .723(.05) .691(.05) .610(.07) .696(.05) .631(.02) .643(.02)

foodtruck C5 .188(.01) .199(.04) .230(.02) .108(.03) .242(.05) .215(.01) .225(.02)
RF .342(.04) .350(.04) .271(.04) .246(.04) .363(.05) .228(.02) .232(.01)

image C5 .523(.01) .511(.01) .645(.02) .578(.01) .640(.01) .506(.02) .502(.01)
RF .748(.00) .750(.00) .701(.00) .757(.00) .758(.01) .747(.00) .747(.00)

langlog C5 .144(.01) .145(.02) .179(.02) .113(.02) .152(.03) .124(.01) .138(.01)
RF .196(.01) .193(.01) .190(.02) .200(.03) .043(.00) .154(.03) .209(.01)

medical C5 .734(.03) .739(.02) .771(.02) .687(.02) .757(.03) .740(.03) .731(.02)
RF .746(.03) .730(.03) .726(.02) .748(.02) .635(.04) .710(.04) .746(.02)

msd-195 C5 .147(.00) .132(.01) .176(.01) .038(.00) .204(.02) .124(.00) .140(.01)
RF .260(.02) .268(.03) .251(.04) .245(.02) .262(.05) .174(.01) .256(.03)

ohsumed C5 .467(.01) .482(.01) .510(.01) .236(.02) .531(.01) .466(.01) .466(.01)
RF .589(.01) .589(.02) .562(.01) .585(.02) .549(.03) .584(.02) .581(.02)

scene C5 .614(.00) .607(.00) .720(.00) .616(.00) .752(.01) .598(.00) .607(.00)
RF .812(.00) .814(.00) .794(.00) .816(.00) .862(.01) .814(.00) .808(.00)

slashdot C5 .343(.03) .349(.04) .432(.04) .286(.02) .492(.03) .333(.03) .346(.04)
RF .509(.04) .511(.04) .479(.03) .516(.02) .519(.02) .453(.03) .497(.04)

stackex C5 .184(.01) .174(.00) .251(.02) .079(.01) .171(.01) .186(.02) .187(.01)
RF .218(.03) .227(.02) .211(.01) .199(.01) .125(.01) .203(.01) .228(.01)

tmc2007 C5 .634(.00) .626(.00) .686(.01) .269(.02) .676(.01) .633(.01) .586(.00)
RF .873(.01) .869(.01) .823(.01) .868(.02) .869(.01) .818(.00) .813(.01)

yeast C5 .407(.01) .373(.00) .492(.02) .323(.01) .457(.01) .348(.00) .361(.00)
RF .704(.02) .656(.02) .619(.02) .461(.05) .687(.02) .442(.00) .437(.01)

yelp8 C5 .650(.00) .612(.00) .725(.00) .452(.02) .734(.01) .634(.01) .552(.01)
RF .881(.00) .862(.00) .787(.02) .929(.00) .879(.00) .881(.00) .755(.00)
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Table 58 – Macro-recall results of distinct strategies and base algorithms.

Dataset Base BR DBR ECC REMED RAkEL LE2 LR2

20NG C5 .592(.00) .580(.00) .668(.00) .581(.00) .518(.00) .570(.00) .605(.00)
RF .770(.00) .769(.00) .767(.00) .762(.00) .479(.00) .770(.00) .771(.00)

birds C5 .351(.02) .355(.02) .404(.01) .180(.02) .313(.03) .374(.02) .393(.03)
RF .311(.01) .314(.02) .421(.02) .258(.01) .257(.03) .308(.02) .348(.03)

cal500 C5 .156(.00) .153(.01) .195(.00) .040(.00) .157(.00) .514(.01) .422(.01)
RF .087(.00) .080(.00) .175(.00) .030(.00) .091(.00) .534(.01) .509(.03)

corel5k C5 .012(.00) .013(.00) .053(.00) .008(.00) .012(.00) .047(.00) .017(.00)
RF .018(.00) .020(.00) .051(.00) .021(.00) .003(.00) .054(.00) .018(.00)

emotions C5 .555(.02) .565(.03) .637(.02) .382(.06) .579(.03) .660(.03) .670(.03)
RF .614(.01) .632(.02) .671(.02) .475(.01) .658(.02) .686(.02) .684(.03)

enron C5 .170(.00) .177(.01) .215(.00) .079(.00) .162(.00) .267(.02) .202(.00)
RF .170(.00) .175(.00) .231(.00) .089(.00) .177(.00) .285(.02) .234(.00)

fapesp C5 .333(.03) .334(.02) .419(.03) .293(.03) .326(.04) .333(.03) .353(.03)
RF .367(.02) .353(.03) .430(.03) .362(.02) .011(.00) .332(.04) .371(.03)

flags C5 .647(.05) .599(.03) .629(.04) .380(.03) .675(.03) .851(.05) .861(.02)
RF .640(.03) .624(.02) .628(.02) .411(.01) .653(.03) .770(.03) .810(.02)

foodtruck C5 .171(.02) .147(.01) .223(.01) .091(.01) .169(.01) .630(.05) .419(.04)
RF .159(.01) .132(.01) .233(.01) .101(.00) .140(.01) .656(.09) .369(.02)

image C5 .591(.01) .526(.01) .614(.02) .536(.01) .587(.01) .630(.01) .627(.02)
RF .630(.00) .630(.00) .680(.00) .619(.00) .631(.00) .630(.00) .630(.00)

langlog C5 .136(.01) .127(.01) .192(.01) .102(.01) .070(.00) .153(.01) .134(.01)
RF .109(.00) .106(.00) .125(.00) .113(.00) .008(.00) .103(.01) .112(.00)

medical C5 .704(.02) .705(.02) .730(.01) .640(.02) .707(.02) .747(.02) .718(.02)
RF .559(.01) .550(.01) .583(.01) .558(.01) .363(.02) .546(.03) .567(.01)

msd-195 C5 .103(.00) .112(.00) .140(.04) .043(.00) .081(.00) .204(.01) .133(.00)
RF .068(.00) .066(.00) .150(.00) .068(.00) .011(.00) .105(.01) .070(.00)

ohsumed C5 .302(.00) .312(.00) .403(.00) .144(.00) .289(.00) .326(.00) .364(.00)
RF .248(.00) .247(.00) .311(.00) .245(.00) .181(.00) .282(.00) .279(.00)

scene C5 .683(.00) .627(.01) .721(.00) .674(.00) .639(.01) .715(.00) .685(.01)
RF .775(.00) .773(.00) .790(.00) .774(.00) .704(.01) .777(.00) .783(.00)

slashdot C5 .243(.01) .238(.00) .288(.01) .225(.00) .222(.01) .258(.01) .246(.01)
RF .373(.01) .368(.00) .393(.01) .363(.00) .283(.00) .378(.01) .381(.00)

stackex C5 .143(.01) .133(.01) .195(.00) .068(.00) .099(.01) .203(.01) .152(.01)
RF .088(.00) .087(.00) .175(.00) .087(.00) .027(.00) .126(.01) .093(.00)

tmc2007 C5 .454(.00) .467(.00) .531(.00) .150(.00) .492(.00) .465(.00) .536(.01)
RF .482(.00) .487(.01) .538(.01) .267(.01) .485(.01) .488(.01) .526(.00)

yeast C5 .376(.01) .408(.01) .386(.00) .244(.01) .392(.01) .646(.03) .543(.03)
RF .318(.00) .344(.00) .405(.00) .218(.00) .361(.01) .624(.01) .543(.01)

yelp8 C5 .542(.01) .601(.01) .637(.00) .290(.01) .605(.01) .561(.01) .688(.03)
RF .531(.00) .568(.00) .623(.01) .339(.00) .532(.01) .531(.00) .641(.00)
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Table 59 – CLP results of distinct strategies and base algorithms.

Dataset Base BR DBR ECC REMED RAkEL LE2 LR2

cal500 C5 .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .15(.03) .03(.01)
RF .00(.00) .00(.00) .01(.00) .00(.00) .00(.00) .03(.02) .02(.02)

flags C5 .21(.07) .00(.00) .00(.00) .12(.08) .05(.10) .31(.11) .28(.09)
RF .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .01(.04) .00(.00)

foodtruck C5 .00(.00) .00(.00) .00(.00) .00(.02) .00(.00) .06(.11) .01(.03)
RF .00(.00) .00(.00) .05(.04) .00(.00) .00(.00) .00(.00) .00(.00)

yeast C5 .00(.00) .00(.00) .00(.00) .05(.06) .00(.00) .00(.00) .00(.02)
RF .01(.03) .01(.03) .14(.00) .00(.00) .05(.06) .02(.05) .02(.05)

Table 60 – WLP results of distinct strategies and base algorithms.

Dataset Base BR DBR ECC REMED RAkEL LE2 LR2

birds C5 .09(.04) .08(.05) .10(.04) .56(.09) .11(.06) .06(.05) .09(.05)
RF .18(.06) .16(.07) .04(.05) .29(.05) .20(.05) .17(.07) .14(.06)

cal500 C5 .39(.02) .35(.02) .38(.02) .75(.04) .37(.02) .12(.02) .16(.01)
RF .62(.04) .67(.03) .44(.04) .74(.04) .64(.02) .11(.02) .26(.02)

corel5k C5 .91(.01) .90(.01) .66(.01) .96(.00) .86(.01) .71(.03) .89(.01)
RF .83(.01) .80(.01) .71(.02) .79(.01) .92(.01) .64(.02) .83(.01)

emotions C5 .00(.00) .00(.00) .00(.00) .16(.20) .00(.00) .00(.00) .00(.00)
RF .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)

enron C5 .51(.03) .49(.04) .42(.03) .77(.02) .55(.01) .24(.03) .48(.02)
RF .37(.03) .35(.02) .30(.01) .59(.04) .33(.01) .21(.03) .35(.03)

fapesp C5 .17(.10) .17(.09) .17(.06) .30(.08) .19(.08) .17(.10) .13(.04)
RF .26(.09) .30(.08) .25(.10) .31(.08) .87(.05) .33(.07) .32(.10)

flags C5 .00(.00) .00(.00) .01(.04) .37(.07) .00(.00) .00(.00) .00(.00)
RF .01(.04) .01(.04) .04(.06) .21(.07) .02(.06) .00(.00) .00(.00)

foodtruck C5 .57(.04) .59(.06) .45(.07) .80(.05) .53(.09) .03(.04) .13(.09)
RF .51(.03) .51(.03) .41(.06) .62(.04) .50(.05) .03(.05) .18(.11)

langlog C5 .43(.02) .46(.04) .35(.03) .61(.06) .60(.04) .30(.03) .42(.02)
RF .58(.03) .58(.02) .57(.03) .56(.03) .94(.00) .57(.03) .57(.02)

medical C5 .11(.03) .11(.03) .07(.04) .16(.04) .08(.04) .07(.02) .09(.03)
RF .18(.03) .19(.03) .17(.02) .18(.02) .32(.04) .17(.03) .17(.03)

msd-195 C5 .29(.04) .29(.05) .33(.07) .87(.02) .35(.04) .13(.04) .23(.05)
RF .50(.01) .50(.01) .39(.03) .51(.03) .70(.06) .36(.04) .51(.02)

ohsumed C5 .24(.04) .21(.03) .04(.01) .66(.03) .13(.02) .09(.02) .17(.02)
RF .20(.02) .21(.03) .14(.02) .20(.02) .33(.03) .14(.02) .19(.03)

slashdot C5 .42(.03) .42(.04) .21(.04) .53(.04) .28(.04) .22(.08) .41(.05)
RF .12(.04) .15(.06) .13(.06) .13(.03) .30(.03) .10(.04) .14(.06)

stackex C5 .56(.04) .59(.02) .43(.03) .82(.02) .63(.03) .37(.03) .55(.04)
RF .62(.03) .61(.02) .48(.01) .63(.01) .83(.01) .56(.02) .62(.01)

tmc2007 C5 .02(.02) .00(.00) .00(.00) .65(.03) .00(.01) .00(.01) .00(.00)
RF .00(.00) .00(.00) .00(.00) .01(.02) .00(.00) .00(.00) .00(.00)

yeast C5 .10(.03) .07(.00) .12(.03) .50(.02) .12(.03) .01(.03) .06(.02)
RF .14(.00) .14(.00) .14(.00) .45(.04) .14(.00) .07(.00) .12(.03)

yelp8 C5 .00(.00) .00(.00) .00(.00) .36(.04) .00(.00) .00(.00) .00(.00)
RF .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
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