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RESUMO

NARDARI, G. V. Localização e Mapeamento Semânticos em Florestas. 2023. 102
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2023.

Enquanto dados de sobrevoo podem fornecer informações gerais sobre uma floresta, no
interior da mata é possível identificar plantas do sub-bosque, medir o diâmetro e contar os
troncos de cada árvore. Atualmente, essas medições dependem de expedições humanas, que
podem ser lentas, caras e até perigosas. Portanto, robôs capazes de navegar e extrair dados
do interior da mata de forma autônoma têm o potencial de revolucionar a forma como
as florestas são monitoradas em todo o mundo, aumentando a quantidade e qualidade
das informações obtidas. No contexto de florestas, algoritmos clássicos desenvolvidos
para ambientes urbanos podem falhar devido à falta de sinal confiável de GPS, terrenos
irregulares, plantas e folhas que cobrem o terreno, além das árvores que balançam com o
vento. Isso ocorre porque as suposições feitas pelos algoritmos clássicos podem não ser
válidas nesse ambiente. No entanto, informações semânticas, como classes e formas de
objetos esperados no ambiente são uma opção promissora para aumentar a robustez e o
desempenho de sistemas autônomos. Nesta tese é apresentado um framework que utiliza
informações semânticas derivadas de algoritmos de aprendizado de máquina dos dados
de sensores carregados por um veículo aéreo não tripulado. O framework desenvolvido
é capaz de identificar árvores e modelá-las como cilindros, criando um mapa semântico.
A formulação adotada possibilita a incorporação de estimativas ruidosas que podem ser
refinadas com a chegada de novas leituras dos sensores e de medidas externas para aumentar
a robustez do sistema. A partir do mapa semântico gerado, é proposto um algoritmo
capaz de gerar descritores únicos de locais em florestas que visualmente são extremamente
similares. Tais descritores permitem o reconhecimeno de locais já visitados, e podem ser
utilizados pelo framework para reduzir o erro acumulado nas estimativas de localização.
Os resultados obtidos em experimentos em ambientes simulados e em florestas de Pinus
do mundo real, demonstram que os métodos desenvolvidos geram mapas semânticos que
melhoram a qualidade das estimativas de localização do robô e geram mapas informativos.
Ademais, a representação semântica dos dados obtidos pelos sensores é mais eficiente
computacionalmente, pois resume os dados brutos em um modelo geométrico semântico
com poucos parâmetros.

Palavras-chave: Localização, Mapeamento, Segmentação Semântica, Aprendizado de
Máquina.





ABSTRACT

NARDARI, G. V. Semantic Localization and Mapping in Forests. 2023. 102 p.
Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2023.

While overhead data can provide general information about a forest, inside the forest, we
can identify understory plants and measure the diameter and count of the trunks of each
tree. Currently, specialists rely on human expeditions to get these measurements, which
can be slow, expensive, and dangerous. For this reason, robots that can autonomously
navigate and extract data from inside the forest could revolutionize how we monitor
forests worldwide and the amount of information we have about them. In forestry, the
lack of reliable GPS signal, uneven terrain covered by plants and leaves, and trees with
branches moving with the wind are a few of the challenges posed. These factors can
create shortcomings for classic algorithms as some assumptions may not be valid in
this environment. Semantic information, such as classes and forms of objects expected
in the environment is a promising way to increase the robustness and performance of
autonomous systems. In this context, this thesis introduces a framework that uses 3D
data provided by LiDAR or stereo cameras to identify semantic information using neural
networks. This information is used to identify trees and model them as cylinders, creating
a semantic map. Our formulation allows the incorporation of noisy estimates that can be
refined with the arrival of new sensor readings and external measurements to increase the
framework’s robustness. Using the semantic map generated by our framework, we propose
an algorithm capable of generating unique forest location descriptors that are visually
highly similar. These descriptors can be used to identify previously visited locations
and feedback to reduce accumulated errors in location estimates. We present several
experiments in simulated environments and real-world Pine forests, demonstrating that
our method generates semantic maps that improve the quality of the robot’s location
estimates and generate informative maps with information on the individual count and
the trunk diameter of each tree. Furthermore, the semantic representation of the data
obtained by the sensors is much more computationally efficient, as it summarizes the raw
data in a semantic geometric model with few parameters.

Keywords: Localization, Mapping, Semantic Segmentation, Machine Learning.
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CHAPTER

1
INTRODUCTION

Forests are of paramount importance to our society. They directly influence Earth’s
climate, house most of the planet’s biodiversity, and enable multiple economic activities. For
this reason, researchers, government, and industry spend enormous efforts to understand
these environments and estimate metrics such as timber inventory, fuel volume, health,
impacts of deforestation, and biodiversity.

To this end, satellite images are an essential tool, especially in fighting deforestation
and continuously monitoring large areas. From this data, we can detect illegal activities and
metrics about the health of the forest (BOYD; DANSON, 2005). However, the resolution
of the images provided by satellite can be meters per pixel. For this reason, overhead
flights with UAVs are becoming a standard approach to complement satellite data with
more detail. UAVs can carry different sensors such as LiDAR, multispectral cameras, and
ultrasound. From these sensors, it is possible to estimate metrics such as canopy height
and leaf area and recognize species (ALMEIDA et al., 2019).

While this technology dramatically improves what is possible to measure in a
forest, we still depend primarily on human expeditions to extract data about their interior.
For example, estimating the exact number of trees from over-canopy data is challenging
since the tree crowns can be very close and blended. It is also challenging to estimate
the diameter of tree trunks from overhead since the canopy blocks most sensor readings.
Moreover, many forests will have understory species, smaller trees that are not visible
over the canopy because more prominent individuals block them (MIRANDA et al., 2021).
While Terrestrial Laser Scanning (TLS) has facilitated interior mapping (CONTO et al.,
2017), the setup required for this technology still slows down the process for large areas.

For this reason, mobile robots can be an essential tool for frequently obtaining
rich information about an area’s interior. The robots can carry sensors such as LiDAR,
cameras, and microphones and capture mosquitoes, leaves, and water samples. This data
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can be analyzed automatically or by specialists to gather information about forests at a
speed and quality never seen before. The robots could also execute predefined missions
without requiring humans to enter the area of interest, which can be dangerous due to the
terrain and animals present in the forest.

In practice, all these technologies should be used together since, even with robots,
covering the interior of the forest will take more time than the alternatives. We envision a
system where satellite, overhead UAVs, and under-canopy robots work together to create a
digital twin of a forest that is continuously updated at different frequencies and resolutions.

While robots are starting to become part of our everyday lives, most works consider
urban or indoor settings. However, some valid assumptions in these environments do not
hold in a forest. For example, planar features and edges are not as reliable when twigs and
leaves cover the ground and branches constantly move with the wind. Moreover, forest
can cause perceptual aliasing, that is, different places that generate a similar footprint
resulting in wrong data associations. In this work, we propose algorithms designed with
forests in mind. We argue that semantic information can provide more reliable features for
these algorithms and create more meaningful maps that help us understand the forests.

The main objective of this thesis is to address this gap by developing a robot and
algorithms that can be deployed to gather data about the interior of the forests as a
semantic map. Semantic maps associate metric data to object-level representations of the
elements present in an environment, which can be more lightweight, robust and informative
that other representations. To this end, we propose a semantic localization and mapping
framework that can incorporate different sensor measurements and approximates the trunk
shapes with cylinder models that are constantly updated as new measurements arrive. Like
any iterative state estimation approach, our method will accumulate errors and drift over
time, even with more reliable features. For this reason, we propose a novel framework that
computes unique descriptors for different forest regions using the detected trees. These
detections can be used to incorporate loop closure constraints that help mitigate the drift
in forests.

It is necessary to mention that rainforests like the Amazon concentrate a large
portion of the world’s biodiversity and must be protected to avoid the advancement
of climate change. However, these forests are very dense and challenging to access and
traverse with a mobile robot, especially an UAV. In this project, we propose methods
motivated by such environments, but our development and experiments are performed in
more homogeneous environments such as Pine forests. These forests are also important
for carbon storage and have a significant commercial interest. In practice, we believe that
most of the limitations and assumptions our algorithms make for Pine are also valid in any
forest. We believe this research is a first step towards enabling mobile robots in rainforests.
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1.1 Contributions

• SLOAM, a framework for LiDAR-based odometry and mapping in forests that
extracts semantic information from the sensor data to identify and model individual
trees, creating a lightweight, informative map that also improves the robot state
estimation. We also demonstrate how SLOAM can be integrated into an autonomous
UAV system to perform large-scale missions under the forest canopy.

• A novel method for place recognition in forests that handles perceptual aliasing. Our
method uses the position of trees derived from the semantic map to create geometric
shapes that uniquely represent the different areas of the forest.

• A theoretical formulation based on a factor graph for SLOAM, capable of incor-
porating different sensors, measuring and updating tree models, and incorporating
loop closure constraints. This formulation ties together our first two contributions,
creating a more robust framework for state estimation in forests.

• A neural network architecture that mixes supervised and self-supervised learning to
jointly estimate a semantic segmentation mask and depth. The proposed model can
output semantic Pseudo-LiDAR measurements that can be directly used by SLOAM
as a cheap and lightweight replacement for the LiDAR.

1.2 Thesis Outline
This thesis is structured as follows: Chapter 2 presents the current state of the

art on the localization and mapping problem and the place recognition task. Chapter 3
introduces the main theoretical concepts used in our work, such as sensing modalities, map
representations, SLAM, and machine learning for object detection. Chapter 4 presents a
formal definition of the semantic SLAM problem, introduces SLOAM and its factor graph
formulation, and shows different results in simulation and in real-world experiments. In
Chapter 5, we present a novel method for place recognition in forests using only the position
of trees, results in real-world and simulated data, and its integration in the SLOAM factor
graph formulation. In Chapter 6, we present the neural network architecture for semantic
pseudo-LiDAR from stereo. Finally, Chapter 7 wraps up the thesis with a discussion on
the results and limitations of our work and possible future directions. Published papers
and scientific outreach interviews are listed in the Appendix section.
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CHAPTER

2
RELATED WORK

For an autonomous robot to efficiently navigate an unknown environment, it must
observe its surroundings using sensors to estimate ego-motion and create a representation
of the space. The problem of simultaneously creating a map to represent the space through
sequential sensor measurements while estimating the robot’s position with respect to this
map is known as SLAM.

2.1 Localization and Mapping
SLAM has been widely studied in the literature (CADENA et al., 2016). Despite

the field’s maturity, there are still many open challenges in SLAM. As new sensors appear
and embedded computers become more powerful, new possibilities emerge for research. In
Table 1, we present an overview of the recent SLAM works related to this thesis.

Many works rely on cameras to perform SLAM due to their affordable price,
availability, and weight. ORB-SLAM (MUR-ARTAL; MONTIEL; TARDOS, 2015) utilizes
ORB feature points to perform data association between measurements. The system uses a
graph-based back-end for pose optimization and mapping. Moreover, reobserved locations
are detected via a bag-of-features approach and integrated as loop-closure constraints
to reduce drift. ORB-SLAM is robust and optimized for real-time robotics applications,
making it a popular approach for many other robotics works that need a SLAM solution.
Since visual odometry and SLAM are popular topics, many other libraries such as VINS-
Mono (QIN; LI; SHEN, 2018) have been proposed in the literature, and we point the reader
to (ROSINOL et al., 2020) where the authors review open-source libraries for visual-based
SLAM methods.

LiDARs, on the other hand, are newer and more expensive sensors but capture
large amounts of information due to their measurement range. LiDAR Odometry and
Mapping (LOAM) (ZHANG; SINGH, 2014) was a seminal work in LiDAR SLAM. The
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authors developed a custom spinning mechanism using a 2D LiDAR and a motor for
rotational motion with an encoder that measures the rotation angle. With this device, they
could capture 3D data using a simpler sensor. To perform data association, LOAM relies
on geometric features, such as points on corners and planar surfaces extracted from the
sensor point cloud. The original LOAM formulation relies on direct nonlinear optimization
of point-to-point and point-to-plane distances. This formulation is effective but does not
incorporate other sensor measurements or loop closure detections to correct the inevitable
accumulated drift of the pose estimation. Lio-SAM (SHAN et al., 2020) proposed an
extension of LOAM with a Smoothing and Mapping (SaM) framework, supporting IMU
preintegration, GNSS, loop closure while running real-time on an edge device. Similar to
the original work, Lio-SAM relies on geometric features to perform data association, which
works well in most structured and urban settings but does not exploit the environment’s
semantics and can suffer in outdoor environments such as a forest.

The assumption made by LOAM and Lio-SAM that geometric features will provide
reliable points for data association is reasonable in most structured environments such
as indoor and urban settings. However, if more knowledge about the environment can
be provided to the SLAM algorithm, we can add more robustness in state estimation
and, consequently, better maps. For example, by considering that a ground plane will
be visible by the robot at every sensor observation, LeGO-LOAM (SHAN; ENGLOT,
2018) demonstrates how a simple assumption that is reasonable in many applications can
increase robustness. Ground plane detection enables LeGO-LOAM to selectively sample
features on the ground or other parts of the observation and constrains the pose estimation
optimization more effectively.

Most of the methods in the literature create metric maps that represent the
environment as occupied or free space, which is helpful for planning paths and obstacle
avoidance but not an optimal representation. For instance, when someone asks for directions,
humans will not give instructions in meters, e.g., walk 100m, turn left, walk 20m and turn
right. Instead, we remember reference points or landmarks and high-level structures that
help us navigate, e.g., "walk straight until you see the supermarket and turn right." Locally,
we still need to consider metric information to plan our next steps (are there obstacles on
the sidewalk that I have to avoid?), but it is not feasible to maintain this information for
long-term navigation.

A robot can benefit from semantic information on many levels. The growth of
learning-based methods for machine perception, especially in computer vision (VOULODI-
MOS et al., 2018), and specialized hardware to run such algorithms on embedded sys-
tems (CHEN et al., 2020) enabled robots to consider semantic information to reason
about the environment in more complex and meaningful ways. Semantic maps are more
compact than their metric counterparts since objects’ shapes can be approximated by
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geometric primitives such as cylinders, cuboids, or quadrics instead of maintaining all
the feature points that are part of the object (CHEN et al., 2020b; YANG; SCHERER,
2019; NICHOLSON; MILFORD; SÜNDERHAUF, 2018). This property is essential for
large-scale operations where memory space is limited (LIU et al., 2022a). For self-driving
cars, semantic information is indispensable for planning and control since the autonomous
driving system needs to recognize other cars, pedestrians, cyclists, and other structures to
make safe decisions, such as stopping at a cross-walk or switching lanes (SCHWARTING;
ALONSO-MORA; RUS, 2018).

Focused on self-driving vehicles, SuMA++ (CHEN et al., 2019) utilizes semantic
labels to reject features from moving objects and constrain data association. For example,
points from different observations should be associated if they are from the same type of
object, and this class of object is not expected to be moving, increasing the quality of the
features and the robustness of LiDAR state estimation. The authors use a voxel map to
represent the environment and enrich each cell with semantic labels. A flood-fill algorithm
refines the semantic labels of the voxels that may be inconsistent due to segmentation
mistakes. Similar to classic approaches, this method still relies purely on feature points,
and despite incorporating semantic labels into the map, it still uses a dense representation
and does not identify or model individual objects.

Most of the modern machine learning approaches for perception come from the
computer vision literature. For this reason, most of the semantic segmentation and instance
detection methods are designed for cameras. Kimera is a complete SLAM system that
combines metric and semantic information to create mesh maps from images and depth
maps enriched with semantic labels (ROSINOL et al., 2020). Kimera is composed of 4
main modules. VIO for state estimation, robust pose graph optimization, a mesh builder
based on feature triangulation and a semantic module operates on 2D images but applied
to the 3D meshes.

Since bounding boxes are a common output for these methods, different works
have proposed the use of 2D bounding boxes in images to locate and model objects in
3D space using a robot. CubeSLAM (YANG; SCHERER, 2019) fits 3D Cuboids from
a single image bounding box detection. These cuboid measurements are integrated into
a SaM framework that combines ORB features with object models in 2D and 3D to
optimize the robot pose and the cuboids jointly. Similarly, QuadricSLAM (NICHOLSON;
MILFORD; SÜNDERHAUF, 2018) fits 3D quadrics from 2D bounding box detections on
RGB images. Using a SaM approach, they can continuously update the quadric models
as new measurements arrive. These methods are general since they can approximate the
shape of an object from bounding boxes. In some applications like forest inventory, where
we are interested in detecting objects and measuring a property such as the diameter,
more knowledge about the application can be incorporated to obtain better estimates.
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One of the contributions of this thesis is SLOAM, a framework that performs SLAM while
detecting and modeling trees in a forest using LiDAR observations.

2.2 Place Recognition

The first and most challenging part of loop closure is place recognition, that is,
recognizing that the robot has returned to a known location. SLAM algorithms often
rely on point-to-point or point-to-geometric shape distance to perform data association.
Geometric or intensity-based features such as ORB and SIFT (LOWE, 2004; RUBLEE
et al., 2011) can vary significantly with illumination changes, weather conditions, and
dynamic environments that constantly change.

In most cases, feature associations are never reconsidered even as new measurements
that could reduce ambiguity arrive. Wrong associations may add noise to the pose estimation
step, reducing the performance of the SLAM algorithm. The probabilistic framework
proposed in (BOWMAN et al., 2017) addresses these limitations by solving data association
as an expectation maximization (EM) problem of the measurement likelihoods. In other
words, instead of taking the most likely association, their method maintains a probability
distribution that is updated iteratively with new measurements. Their framework also
considers semantic object detections and updates semantic labels of objects observed by
the robot. The main drawback of this approach is the computational load required to
perform these updates for every new observation, making this method hard to scale. For
this reason, most works opt to make hard assignments but try to improve data association
robustness by using better features.

Recent works have explored learnable or object-based descriptors to increase robust-
ness, especially for global localization methods requiring these features to be consistent,
even if the viewpoints differ from the last time the robot visited the same place. In Table 2,
we present an overview of global localization methods related to this thesis.

The Local Semantic Tensor (LoST) descriptor computes semantically-consistent
keypoints extracted from a convolutional neural network’s hidden layers that can be
used for keypoint matching (GARG; SUENDERHAUF; MILFORD, 2018). The authors
show that this approach performs well in a global localization task in urban settings,
even associating opposite viewpoints of the same scene. In (CHEBROLU et al., 2019),
the authors utilize semantic segmentation to select robust and unique points that help
a ground robot localize using a database of images taken from a UAV. The proposed
system is intended for outdoor crop fields, showing that these features are robust even
after multiple sessions spanning several weeks.

In (MILLER et al., 2021), the authors perform semantic segmentation in both
LiDAR and RGB cameras captured by a ground vehicle and combine both sensor measure-
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ments and semantic labels to create a semantic scan. Assuming that the objects observed
by the ground vehicle can also be observed by satellite imagery, they can perform global
localization without GNSS. Other works combine semantic and topological information to
compute robust descriptors. X-view (GAWEL et al., 2018) and (LIN et al., 2021) perform
segmentation on images and creates a dense graph based on the centroid of each object.
Both works propose a descriptor based on random walks on the graph to represent the
object distribution in space. They demonstrate that it can represent environments uniquely
enough for the global localization task even if the viewpoint is extremely different, as long
as enough object overlap is available.

While most works are concerned with urban settings that contain a wide variety of
semantic information, forests are especially challenging due to perceptual aliasing, the high
similarity between different parts of the environment. For example, if the only semantic
objects available are trees, the nodes of the graph-based methods would all be the same.
For this reason, methods that focus on the topology are better suited to robustly detect
previously seen locations in these environments.

GLARE (HIMSTEDT et al., 2014; KALLASI; RIZZINI, 2016) encapsulate geomet-
ric relationships based on the neighborhood of keypoints or landmarks. The neighborhood
of each element is defined by a user-defined threshold on the euclidean to other points. The
GLARE descriptor of an element descriptor is given by a 2D histogram of each neighbor’s
distances and relative angles. Finally, a global descriptor can be estimated by averaging
the local descriptors of each keypoint.

The work parallel to this thesis of Li et al. (LI et al., 2020) detects trees in a sparse
forest in accumulated point clouds captured by a LiDAR using a clustering algorithm. The
authors represent each tree as a 2D point in space, from which a Delaunay triangulation
can be computed. The triangles define local descriptors for the trees that can be used
for global localization. Our method, presented in Chapter 5 also leverages the Delaunay
triangulation, but proposes a composition of triangles to encode local regions of the
observation that proves to be more robust on noisy estimates.

2.3 Final Considerations
In this chapter, we introduced the pivotal works of the SLAM literature. We

showed how this field is improving by incorporating machine learning algorithms to
increase performance and robustness in different environments. Moreover, we presented
related works on the place recognition problem, especially for environments with high
perceptual aliasing. In this thesis, we present methods that leverage semantic information.
We show that semantic features and models lead to better results in forests, where the
usual assumptions made in urban environments do not hold.
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CHAPTER

3
BACKGROUND

This work aims to generate an efficient representation of a forest for large-scale
robotics operations while also being useful for downstream tasks such as forest inventory,
wildfire prevention, and preservation. We propose methods motivated by the challenges
and necessities of deploying a UAV flying under the forest canopy to solve these tasks.
However, with the scale and complexity of these environments, this task may be split
into multiple agents such as humans, UAVs, and ground robots, which, individually or in
collaboration, can all benefit from our methods.

These agents must carry different sensors, combine and reason about their data to
make decisions and estimates. In this chapter, we will introduce the theoretical concepts
and sensors that the methods proposed in this thesis and the UAV system used in our
experiments utilize to enable the semantic localization and mapping task.

3.1 Sensors for 3D Perception

LiDAR

Light Detection And Ranging (LiDAR) is a class of sensors that emit near-infrared
light (700nm-2000nm wavelength) and estimate the time the reflection of the emitted
signal takes to return to the sensor. In other words, a LiDAR is an active time-of-flight
sensor. Depending on the frequency of the light the sensor emits, it may be more or less
subject to the effect of the sunlight, making it suitable for indoor or outdoor applications.

We refer to 2D LiDAR as the sensors that return a single planar set of readings
of the environment, which is called a beam. A popular example is the Hokuyo-UTM 1.
3D LiDARs, on the other hand, contain multiple layered beams, capturing much more
information about the surroundings. We illustrate in Figure 1 a 2D and a 3D LiDAR.
1 <https://www.hokuyo-aut.jp/>

https://www.hokuyo-aut.jp/
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Figure 1 – Ouster OS1 3D LiDAR (left) and a Hokuyo URG-04LX-UG01 2D LiDAR (right).

These sensors have seen increasing interest from the robotics community, especially for
self-driving car research and industry (RORIZ; CABRAL; GOMES, 2021).

Most LiDARs such as the Ouster 2 or Velodyne 3 utilize a spinning mirror mechanism
to emit light in different directions. However, having a moving part inside the sensor
is not desirable. This mechanism is subject to mechanical failure and creates vibration,
affecting the quality of other sensors’ measurements and even the dynamics of the robot,
especially UAVs. A new class of sensors called solid-state LiDARs is emerging to address
these problems. These sensors do not have any moving parts. Instead, they use mirrors and
lenses to emit the same light source in different directions. For this reason, these sensors
usually have a smaller field of view but solve the mentioned limitations of the spinning
LiDARs.

Structured light sensors, such as the Microsoft KinectTM, can also be considered a
solid-state LiDAR. These sensors flash a pattern of infrared light into space and measure
the displacement and distortion of the pattern when it hits objects to compute the depth
of that region. The main disadvantages of this technology are the limited sensing range,
the field of view, and the sensitivity to sunlight depending on the frequency of light the
sensor emits.

LiDARs are a powerful class of sensors since they can capture a large amount of
information per observation with ranges up to kilometers. Their size, weight, and price
can make this technology prohibitive in some applications that require small robots or
risky operations where the robot may crash frequently. However, as the market for this
technology grows, they are expected to be better and more accessible in the near future.
Another limitation of LiDARs is that they do not provide color or texture information,
limiting algorithms to the shape of features and objects. For this reason, some works
combine this technology with cameras to compute a colored point cloud (VECHERSKY et

2 <https://ouster.com/>
3 <http://velodyne.com/>

https://ouster.com/
http://velodyne.com/
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al., 2018). Nevertheless, payload, computational burden, and cost constrain the use of both
sensors simultaneously in some applications. For this reason, much of the literature focuses
on stereo cameras as an alternative source of close-range depth while simultaneously
capturing rich texture and color information.

Inertial Measurement Unit

An Inertial Measurement Unit (IMU) combines gyroscopes, accelerometers, and
other optional sensors that can estimate the robot’s pose with respect to an inertial frame.
The gyroscope can measure angular velocity in the inertial frame of the sensor. The
accelerometer measures the rate of velocity change generated by external forces, which
can be used to estimate the acceleration of the IMU in one direction. A magnetometer or
compass can measure the intensity and direction of the magnetic fields around the IMU,
providing an absolute reference for yaw measurements. Typically, IMUs will contain three
sensors of each type to provide measurements in three rotation axes (roll, pitch, and yaw).

Instead of operating on raw measurements, most applications of IMUs utilize it
as part of an Attitude and Heading Reference System (AHRS), where the raw sensor
measurements are fused to provide high-frequency (100Hz+) attitude data. However, these
measurements are subject to external noise, such as vibration from spinning LiDAR, UAV
rotors, or magnetic interference. Moreover, the integration of the raw sensor measurements
will quickly accumulate drift over time.

A standard solution to address this problem is using GNSS to provide an absolute
reference for the 3D position of the system. Since GNSS provides independent measure-
ments, it can minimize the accumulated drift of the IMU estimates. However, GNSS can
only provide reliable estimates in open spaces. Even with partially occluded environments
such as under tree canopy, the GNSS measurements can become unreliable (ZHENG;
WANG; NIHAN, 2005; CARREIRAS; MELO; VASCONCELOS, 2013).

Stereo Cameras

A stereo camera is defined by two sensors with overlapping fields of view, separated
by a known fixed distance (stereo baseline). Given a pair of rectified images from these
sensors, one can compute a disparity map from one image to the other. That is, for every
pixel in image A, the number of pixels that we have to move across the epipolar line in
image B to find the corresponding pixel. See (HARTLEY; ZISSERMAN, 2003) for more
details on the theory of multiple view geometry.

The ground truth distance of the objects in the scene is a function of the dispar-
ity and can be computed if the camera’s intrinsic and extrinsic parameters are known.
This powerful framework provides dense depth estimates without needing expensive or
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Figure 2 – The Open Vision Computer (top), is an open-source sensor that contains stereo
gray-scale global shutter sensors with 120mm baseline, an RGB rolling shutter sensor
(center), and a Vectornav VN100 IMU. ZED Mini (bottom) a commercial solution
with stereo RGB rolling shutter sensors separated by a 63mm baseline and an IMU.
For both alternatives, most of the processing has to be done onboard a host computer
such as an Intel NUC or an NVIDIA Jetson.

complex sensors. For this reason, many works use stereo cameras for 3D object reconstruc-
tion (ACKERMANN; GOESELE, 2015), state estimation (SUN et al., 2018), and object
detection (PON et al., 2020).

The minimum and maximum depth that stereo cameras can estimate are defined
primarily by the camera’s baseline and field of view. If the baseline is small, the camera
can estimate the depth of objects close to the sensor but will quickly drop the quality for
objects further away. Conversely, the overlap will be small if the objects are too close to the
camera and the baseline is large. State-of-the-art commercial stereo cameras such as the
Stereolabs ZED 2 report a depth range of 0.2m to 20m with a 120mm baseline, while the
Stereolabs ZED Mini has a depth range of 0.1m to 15m with a 63mm baseline. In practice,
we observe that this range may have to be reduced for mapping applications to avoid
adding noise to the system. Both sensors are shown in Figure 2. In Figure 3 we illustrate
a single observation at the same location provided by a Hokuyo URG-04LX-UG01 2D
LiDAR, an Ouster OS1-16 3D LiDAR sensor and a ZED MiniTM stereo camera.

Since most disparity estimation algorithms rely on matching blocks of pixels
based on feature similarity, repetitive patterns and textureless regions can cause wrong
associations and, consequently, wrong disparity estimates. Recent works propose using
learning-based disparity estimation algorithms that learn feature descriptors that leverage
the scene context to be more robust to these scenarios (XU; ZHANG, 2020). This approach
has become a standard since convolutional neural networks can be highly optimized for



3.2. Map Representations 39

Figure 3 – Different sensor observations at the same location. The top left panel shows an RGB
image. The top right panel shows an Ouster OS1-16 point cloud, where the colors
represent the intensity of the light return. The bottom left corner shows a Hokuyo
04LX-UG01 laser scan. The bottom right panel shows a depth map computed by a
stereo camera. The glass door shows an important limitation of these sensors. Since
the light emitted by the laser sensors will pass through the glass, it will appear as an
empty space. Moreover, the sunlight coming from outside creates degenerate cases for
the stereo depth estimation algorithm, causing issues with the estimates on the glass
door and the reflection on the ground.

Graphics Processing Units (GPUs) and the same network weights can be shared for other
relevant applications, as discussed in Chapter 6.

3.2 Map Representations

Most robotic systems rely on some environment representation to localize and plan
paths for robot navigation. Occupancy grids are a simple and popular approach. The
space is represented by a 2D matrix, where each grid cell can assume three different values
(occupied, open, and unknown) and has a fixed resolution, e.g., 0.05m per cell. Some robots
and applications require a 3D representation of the environment, and this concept of an
occupancy grid, then expanded to three dimensions, is called a voxel grid. The memory
requirements of these methods increase with the size of the area that the robot can operate
and the resolution, which can be prohibitive in large-scale applications.

Another popular approach, especially in the LiDAR SLAM literature, is to store
the map directly as a point cloud. While this representation facilitates matching new sensor
observations into the existing map for estimation, this representation can be extremely
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Figure 4 – Voxel map vs Semantic Map. The voxel map contains dense metric information
that an autonomous system can use for planning. However, a semantic representation is
more suitable for large-scale maps since they can encapsulate the relevant information
with few parameters that describe the object models. This representation can alleviate
the memory requirements and enables more informative planning strategies, such as
planning trajectories to reduce the uncertainty an object model or predicting the path
of dynamic obstacles such as pedestrians. Figure adapted from (LIU et al., 2022a).

memory intensive in large-scale applications without some optimization (ZHANG; SINGH,
2014; SHAN et al., 2020; XU; ZHANG, 2021).

Instead of operating solely on metric information of the space the robot observed,
a more natural approach is to store high-level information about the environment (i.e.,
semantic information) and have local metric maps for planning (LIU et al., 2022a). This
approach is illustrated in Figure 4. Semantic maps enable algorithms to interact with the
environment and make decisions in more complex settings. For example, instead of "there
is a 180x30cm obstacle in front of me", a semantic map can provide "a person is crossing
the street on the crosswalk." or "this set of points belong to a moving car, so it is not
reliable as a reference for ego-motion estimation." Moreover, semantic maps aggregate
metric information in more compact representations, such as a model of an object instead
of a set of 3D points, which is more memory efficient and more suitable for large-scale
applications. This thesis proposes algorithms that can compute such semantic maps in
real-time with different sensor modalities, creating informative maps that can disambiguate
measurements even under large perceptual aliasing and create storage-efficient maps for
large-scale operation.

3.3 Data Segmentation

Given a sensor observation (e.g., an image) the goal of the semantic segmentation
task is to assign each individual measurement (i.e., a pixel) a semantic label for objects
and other uncountable elements such as the sky or the ground. With similar inputs, the
goal of the instance segmentation task is to identify individual objects in the observation
(individual cars, persons, trees), creating masks or bounding boxes for each object. The
union of both tasks is called Panoptic Segmentation (KIRILLOV et al., 2019). In other
words, semantic segmentation adds labels to individual pixels, instance segmentation labels,
or group pixels that belong to different objects. In contrast, panoptic segmentation will
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Figure 5 – The different segmentation tasks. Given an input such as an RGB image (top left
panel), the semantic segmentation task (top right panel) will assign a semantic label
for each pixel. In the instance segmentation task (bottom left panel), the objective is
to detect every individual countable object). Finally, in the panoptic segmentation
task (bottom right panel), we are interested in individual countable objects and
uncountable elements such as ground and sky.

add a semantic label to each pixel and an instance id. When the element is uncountable
such as the sky, the instance id is null. This definition can be generalized to other types of
sensors, such as 3D LiDARs, labeling or grouping 3D points instead of pixels. We illustrate
the output of each of the different segmentation tasks in Figure 5.

In this thesis, we utilize a combination of semantic segmentation and heuristics to
perform panoptic segmentation in LiDAR and image data.

3.4 Simultaneous Localization and Mapping (SLAM)

For a sequence of sensor observations 𝒪 ≜ {𝑜𝑡}𝑇
𝑡=1, the SLAM problem consists

of estimating the unknown variable 𝒳 ≜ {𝑥𝑡}𝑇
𝑡=1 that represents the robot pose. In

three dimensions, the robot pose can be represented by a rotation (roll, pitch, yaw)
and a translation (x, y, z) relative to some reference coordinate system, also referred
to as a reference frame. Moreover, the SLAM problem can incorporate other relevant
measurements, such as landmarks ℒ ≜ {𝑙𝑖}𝑁

𝑖=1. Landmarks are objects or points of interest
that the robot can observe in the environment. They can be used to anchor the robot pose
estimates while simultaneously having its properties, such as location and size, refined
as new measurements of the same landmark are captured. The SLAM problem can be
summarized by

arg max
𝒳 ,ℒ

𝑝(𝒳 ,ℒ|𝒪).



42 Chapter 3. Background

We refer to the algorithm that will solve this equation as the SLAM back-end. The
main types of back-ends in the literature are filter-based approaches (AULINAS et al.,
2008) that solve only for the current estimate 𝑥𝑡 and 𝑧𝑡 or least-squares approaches that
formulate SLAM as a maximum a posteriori estimation (MAP) problem. The latter is not
only concerned with the current observation but also with reducing the uncertainty of
past measurements (THRUN; MONTEMERLO, 2006; OLSON; LEONARD; TELLER,
2006; KAESS et al., 2012).

Most state estimation algorithms assume that subsequent sensor observations will
have enough overlap so that repeating patterns can be identified and used as a reference
to estimate the relative motion between observations. Traditional SLAM approaches rely
on features and models such as lines, planes, and edges to identify these patterns and
perform data association. These patterns are widely used and are consistent enough
if the environment is structured, such as an urban setting. However, in environments
such as a highly unstructured forest, with moving leaves and the ground covered with
underbrush that masks the actual shape of the ground, these features are not as reliable,
adding a significant amount of noise to the state estimation algorithm. For this reason, we
propose using semantic information to improve the robustness of data association in these
environments.

Once data association is solved, the problem is reduced to finding the relative
transformation that minimizes some distance between the associated features. With known
poses, the sensor measurements can be accumulated in a common map frame.

The increased success of machine learning approaches for semantic segmentation
and methods that can run in real time on edge devices enabled using more informative
features to become viable for real-time SLAM.

A central approach in this thesis is representing the SLAM optimization problem as
a factor graph (KAESS et al., 2012). This representation models the unknowns (i.e., robot
and landmark poses) as nodes of a graph that are connected by probabilistic knowledge
about them (factors). In Figure 6, we illustrate a factor graph where subsequent poses
are connected by the lines representing odometry measurement factors. The connection
between poses 𝑥2 and 𝑥5 is a particular case where a loop closure happens—the optimization
algorithm can use the loop constraint to minimize the accumulated drift. Moreover, we
can incorporate semantic information to create constraints between poses and landmarks
the robot observes during its trajectory. For example, the landmark 𝑙1 was observed by
𝑥0, 𝑥1, 𝑎𝑛𝑑𝑥4. The multiple observations of the same landmark can help the algorithm refine
the object’s parameters while simultaneously using this to anchor the pose estimation.

In this thesis, we propose different sub-modules for localization and mapping
that together compose our factor graph formulation. We show in chapter 4 that using
semantic features and object models to improve the robustness of SLAM algorithms in
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Figure 6 – Example of a Factor Graph with constraints between agent poses (green), poses and
landmarks (red) and loop closure (purple).

such unstructured settings can improve estate estimation and the quality of the resulting
maps. Moreover, we show in Chapter 5 that it is possible to derive geometric descriptors
from semantic object models to reliably identify previously seen locations in forests to
create loop closure constraints.

3.5 Final Considerations
This chapter introduced the primary sensors and concepts used in this work. The

methods we present in this thesis leverage machine learning algorithms that can run
efficiently on limited computing to perform segmentation and use this information to
select features and model objects. In our experiments, the primary sensing sources are a
360 degrees LiDAR and a stereo camera. With a stream of sensor data, we can use the
semantic information to generate semantic maps that are informative and more efficient
than their metric counterparts while increasing the robustness of robot localization in
forests.
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CHAPTER

4
SEMANTIC SLAM IN FORESTS

This chapter presents a framework that can run onboard an autonomous agent
such as a UAV and create high-quality and informative maps from under forest canopy
data. One of the primary challenges in forests is that geometric features are not as reliable
as in urban settings due to plants, leaves, and branches on the ground and the tree
branches that move with the wind. To increase robustness in these environments, we
leverage semantic information to select more reliable features and use geometric priors that
better approximate the structure of the environment to improve the robustness of state
estimation. At the same time, our map stores the number of individual trees, trunk growth
direction, and their DBH, which are useful for forest management and preservation.

Some Figures and Tables presented in this chapter were adapted from our publica-
tions "SLOAM: Semantic LiDAR Odometry and Mapping for Forest Inventory" (CHEN et
al., 2020b) and "Large-scale Autonomous Flight with Real-time Semantic SLAM under
Dense Forest Canopy" (LIU et al., 2022a) with permission from IEEE. The reference
implementation is open-sourced and can be found at github.com/kumarRobotics/sloam.
Complementary videos are available online video A, and video B.

4.1 Problem Formulation

Let ℒ ≜ {𝑙𝑖}𝑁
𝑖=1 be the set of objects available in an environment. An agent traverses

this environment with sensors, collecting a sequence of observations 𝒪 ≜ {𝑜𝑡}𝑇
𝑡=1, where

𝑜𝑡 ⊆ ℒ. The semantic localization and mapping problem consist of estimating the sensor
state trajectory 𝒳 , the number of objects 𝑁 , and the model parameters and classes of
each object 𝑙𝑖. Under the specific assumptions on the model parametrization and class
of objects 𝑙𝑖 made in this work, solving the semantic localization and mapping problem
will yield the tree count and their corresponding DBH for an area of interest of a forest
covered by the robot.

https://github.com/kumarRobotics/sloam
https://www.youtube.com/watch?v=V5C5MC5P8Q8
https://www.youtube.com/watch?v=Ad3ANMX8gd4
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Figure 7 – We propose a modular framework based on a factor graph to couple different sources
of measurements, such as LiDAR, stereo odometry, GPS, and loop closure constraints
while also enabling our cylinder models of trees to be updated as new observations
arrive.

4.2 A Framework for Semantic Localization and Mapping

To achieve reliable state estimation and mapping in forests using a UAV, we propose
a factor graph formulation that combines different sensor measurements to update the
robot pose while also updating our tree cylinder models as new observations arrive. The
factor graph is composed of two main sub-modules. SLOAM, our framework for semantic
odometry and mapping, and Urquhart tessellations for loop closure detection. In this thesis,
we describe each sub-module of the factor graph in-depth and provide experiments for
the individual parts, enabling us to compare their performance with other state-of-the-art
methods for LiDAR state estimation and place recognition.

This chapter focuses on the LiDAR odometry and mapping problem, presenting
the SLOAM framework and our extensions to integrate external odometry measurements
and the factor graph. In Chapter 5, we present a novel method that leverages the semantic
maps computed by SLOAM to identify previously seen locations of the forest. The factor
graph can directly use this detection to reduce the accumulated drift. The factor graph
is illustrated in Figure 7. This flexible framework supports other measurements, such as
IMU and GNSS when available, that could further improve the estimates.

Panoptic Segmentation

The first step to incorporating semantic information into our framework is to develop
algorithms that recognize objects in the environment from sensor data. We combine a
convolutional neural network for semantic segmentation with heuristics for post-processing
to identify individual trees and the ground surface. Most architectures for this task were
designed initially for images, and to use them with LiDAR. We convert the point clouds
into a range image using a spherical projection, as depicted in Figure 8. Models that
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Figure 8 – A 3D point cloud is converted to the more efficient range image representation that
serves as input to our semantic segmentation model that outputs a mask of where
the tree trunks are (top image). We convert the points labeled as a trunk back to a
3D representation (bottom image) from which SLOAM can extract semantic features
and model the trees.

operate on this representation are also more efficient than methods that operate directly on
point clouds, such as PointNet++ (QI et al., 2017). We model the segmentation problem
as a per-pixel binary classification where each 3D point from the LiDAR (range image
pixel) can be labeled as a tree or background.

To run in real time onboard the UAV computer, the neural network model has
to be lightweight, which limits the size of the architecture. In this work, we utilize two
model architectures to perform semantic segmentation depending on the computational
constraints. In these first experiments where every LiDAR sweep is processed, we use a
simplified variation of ERFNet (ROMERA et al., 2017) with fewer layers as detailed in
Table 3. This architecture can run at 100Hz on the CPU onboard the UAV. However, we
observe that the outputs would not be accurate along object edges, considering leaves and
small branches as part of the trunk, consequently adding noise to the entire framework.
For this reason, in scenarios where we do not need to run inference on every LiDAR sweep,
we utilize RangeNet++ (MILIOTO et al., 2019), a more robust architecture designed for
LiDAR data. This model can run at only 2Hz while using three CPU cores instead of one.

Table 3 – ERFNet inspired architecture used for semantic segmentation.

Layer Type Filter
1 Downsampler block 16
2-3 2𝑥 Non-bt-1D (no dilation) 16
4 Downsampler block 32
5-6 2𝑥 Non-bt-1D (no dilation) 32
7 Deconvolution 32
8-11 4𝑥 Non-bt-1D (no dilation) 32
12 Deconvolution Num. Classes



48 Chapter 4. Semantic SLAM in Forests

Figure 9 – Left: Trellis graph with 5 detected trees (beams closer to the ground at the top,
higher beams at the bottom). Tree 13 exhibits a fork structure, which is a valuable
information for foresters. Right: Front and sideways view of LiDAR points of a tree
trunk from which the Trellis graph is derived.

Individual Tree Detection

Assuming that the LiDAR measurements are gravity aligned, trees will grow from
the bottom of the LiDAR sweep to the top. Using this insight, we propose a heuristic that
defines a Trellis graph (FORNEY, 1973) to detect individual trees from the segmentation.
In this representation, each LiDAR beam represents a slice of the graph. For each slice,
a group of points that are close enough in space define a node on the graph. Assuming
the sweep is gravity aligned and trunks are continuous, we can expect that a node will be
available in the following slices that are part of the same tree trunk.

Once the Trellis graph is built, we can identify each tree instance by starting from
vertices on the initial slice and finding the shortest path through the graph using a greedy
algorithm. We illustrate the resulting graph in Figure 9. Each tree instance in the graph
initializes the cylinder model parameters of a new landmark 𝑙𝑖 that will be used during
the least squares optimization.

Ground Segmentation

The points labeled as the background will contain the ground, shrubs, branches,
canopy, and leaves. To extract points G that belong to the ground surface, we sample the
lowest points around the LiDAR sweep using a circular grid with a user-defined parameter
to control the number of cells. This parameter can be defined based on the expected
variation of the ground (the closer to a plane, the fewer cells are necessary). Without this
heuristic, sampling in irregular or sloped terrain would yield an incomplete representation
of the actual ground surface.
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Model parametrization

Ground

We model the ground as a plane parameterized by 𝜋 = (𝜔, 𝛽), where 𝜔 is the
normal of the plane, and 𝛽 is the offset such that the plane is defined by {x|⟨x,𝜔⟩+𝛽 = 0}.
Given a point p and plane 𝜋, let x0 be a point on the plane. We can then define a point
to plane distance:

𝐷𝜋(𝜋,p) = ⟨−(p − x0),𝜔⟩
||𝜔||

. (4.1)

Cylinders

Let c = (𝜌, 𝛼, 𝜅) be the parameters of a cylinder model. The first parameter 𝜌 is a
3𝐷 point that represents the cylinder root. That is, the lowest point of the tree that was
observed by the LiDAR. 𝛼 is a ray starting at the tree root that represents the growth
direction of the cylinder. Finally, 𝜅 represents the radius of the cylinder model. Given a
point p and cylinder c, we can project the feature point p into the cylinder axis 𝛼,

p𝑝𝑟𝑜𝑗 = (p − 𝜌) · 𝛼
𝛼 · 𝛼

𝛼 (4.2)

With p𝑝𝑟𝑜𝑗 we can compute the distance to the cylinder as

𝐷𝑐(c,p) =
⃦⃦⃦
p − p𝑝𝑟𝑜𝑗

⃦⃦⃦
2

− 𝜅. (4.3)

That is, the euclidean distance between 𝑝 and the projection 𝑝𝑝𝑟𝑜𝑗 with a margin
given by the cylinder radius 𝜅.

Using the lowest observed point as the cylinder root, we assume that the sensor
observed the lowest part of the trees, which may not be accurate due to the distance between
the tree and the sensor’s field of view. For this reason, we can increase the robustness of
the cylinder model by computing the intersection between the cylinder axis and the closest
ground model. This step increases the consistency of the root estimates across different
observations and consequently reduces the drift of the system. This operation is only used
in the experiments in subsection 4.3.

Odometry and Mapping

After performing panoptic segmentation on a new LiDAR sweep 𝑜𝑡, we obtain a
set of landmarks (cylinders) 𝒪𝑡 and a set of ground points G𝑡. At 𝑡 = 1, we initialize the
coordinate system at the origin and the map ℳ with the first set of landmarks ℳ = 𝒪1.
For subsequent sweeps, we perform object-based data association between cylinders in 𝒪𝑡
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and 𝒪𝑡−1 or ℳ depending on the step. A subset of feature points {p𝑗}𝛿
𝑗=1 extracted from

each cylinder of the sweep that has an association to the map adds a cost in the pose
optimization based on the point to cylinder distance in Eq. 4.3.

We present two different approaches to create ground constraints. Similar to
LOAM (ZHANG; SINGH, 2014) for each ground point of the current sweep p𝑖 ∈ G𝑡, we
find the subset of the closest ground points in G𝑡−1 to p𝑖 and define a local plane 𝜋𝑖 to
create a point to plane cost as defined by Eq. 4.1. This approach has the advantage that
each point to plane cost will consider a small region of the ground. Even if the ground is
irregular, it assumes that only a small patch can be approximated reliably by a plane. On
the other hand, this requires the algorithm to compute a plane model for each feature,
and if the ground is flat, most of these models will be very similar.

Alternatively, we can compute a fixed number of plane models per observation using
the grid cells defined to sample the ground points uniformly. Depending on the expected
irregularity of the ground surface, the grid must contain more cells to approximate the
surface better. However, if the ground is mostly flat, the algorithm can use only a few
plane models, saving computational time. In this approach, we perform data association
by matching each feature point to the nearest plane in 𝑡 − 1 using the centroid of the
points from the cell that defines the plane.

Finally, we can formulate the nonlinear least-squares objective function to estimate
the motion between the sweeps 𝑧𝑡−1 and 𝑧𝑡, 𝑇𝑡 by

arg min
T𝑡

𝜆𝑐

𝑁𝑡∑︁
𝑖=1

𝛿𝑖∑︁
𝑗=1

𝐷𝑐(c𝑗,p𝑗) + 𝜆𝑔

𝛾∑︁
𝑙=1

𝐷𝜋(𝜋𝑙,p𝑙), (4.4)

where 𝜆𝑐 = 𝛾∑︀𝑁𝑡
𝑖=1 𝛿𝑖

and 𝜆𝑔 = 1
𝜆𝑐

balance the frequency between different features.

Results

We evaluate SLOAM in two different experiments in a pine forest in the state of
New Jersey, US. The environment is depicted in Figure 10. In the first experiment, a
human carries the LiDAR sensor around a dense part of the forest. This dataset contains
rotations and instabilities caused by the human operator dodging obstacles such as brushes
on the ground. In the second experiment, the sensors are onboard the UAV that is flown
manually by a human pilot. Since GNSS is not reliable under the canopy, the UAV flight
controller can only rely on the IMU measurements to stabilize the robot. In this setup, the
controller will try to maintain the robot upward, but the altitude has to be maintained
by the pilot. This limitation causes the robot to move up and down as the pilot tries
to correct the altitude on the controller, as seen in the sideways trajectory in Figure 11,
adding additional complexity for state estimation. In this dataset, the UAV starts from
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Figure 10 – Wharton State Forest, New Jersey, US. The environment where our real-world
experiments are performed (left). Additionally, we measured individual trees with a
tape measure to compare human and SLOAM count and diameter measurements
(right).

hover and flies in a 65m trajectory for two minutes until it loops back to the initial position
and lands. Since the start and end marks are different in the 𝑧 axis, we offset the goal
coordinate by 1 meter instead of using the origin.

The simplified ERFNet segmentation network is trained on 544 scans from which
16 are extracted from the handheld dataset and the remaining are from 5 other regions of
the same forest. No data from the UAV flight was used for training.

We benchmark SLOAM against A-LOAM1, an open source implementation of
LOAM, a Intel RealSense T265 stereo camera with odometry measurements provided by
their proprietary VIO software and GICP (SEGAL; HAEHNEL; THRUN, 2009), available
through PointCloud Library (PCL). In order to increase the speed of GICP, we apply a
voxel grid filter to reduce the number of points the algorithm has to consider.

To compare the proposed method with the benchmarks, we qualitatively evaluate
the resulting accumulated point cloud maps to observe if any tree ghosting or duplication
occurs. Quantitatively, we estimate the accumulated pose drift by computing the difference
between the start and end in the UAV experiment, which performs a loop. Since SLOAM
explicitly estimates the radius of each tree, we also quantitatively evaluate the DBH
estimation compared to human field measurements using a tape measure.

In Figure 11 we present the resulting trajectories of each method for the UAV
experiment. This dataset contains sharp rotations and altitude variability due to the robot
being controlled by a human pilot. Combined with the vibration caused by the UAV rotors,
these factors add noise, especially to the IMU measurements. Moreover, the features under
the canopy are less reliable since the algorithm may track points on branches and plants
on the ground that can move with the wind. Additionally, there could be patches of light
where the sunlight can pass through the canopy, creating abrupt illumination changes that
1 <https://github.com/HKUST-Aerial-Robotics/A-LOAM>

https://github.com/HKUST-Aerial-Robotics/A-LOAM
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Figure 11 – Top-down (top) and sideways (bottom) views of the trajectories of benchmark
methods in the UAV loop trajectory experiment. GICP and SLOAM produce similar
trajectories and overall low odometry drift. Meanwhile, A-LOAM drifts significantly,
and the RealSense camera completely fails.

may be an issue if the sensor can not adjust the exposure.

Method Distance from the origin (m) Error
Ours 0.37 0.58%
GICP 0.41 0.63%
A-LOAM 2.75 4.24%
T265 (VIO) > 100 > 100%

Table 4 – Error: Distance relative to trajectory length in UAV experiment loop.

LOAM relies on geometric features to perform data association. As explained in
Chapter 3, these methods do not perform well in forests since edges and planar surfaces
are not well defined in this environment. This noise in data association propagates to the
pose estimation, as seen in the looping trajectory (see Figure 11). As presented in Table 4,
the distance from the goal according to LOAM is 2.75 meters, while our method achieves
an error of 0.37 meters. Consequently, we observe in Figure 12 that the feature points
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(green dots in the bottom figure) look like a random sample, illustrating how looking for
corners and planes is not as viable in this kind of environment.

GICP does not make any distinctions between the points to make associations.
Since it relies purely on the euclidean distance between points, it requires the source,
and target LiDAR sweeps to have a small difference in motion to perform reliable data
association without resulting in a local minima solution. For this reason, in the hand-carry
dataset (Figure 12 right), GICP can compute a relatively clean map when compared
to LOAM. Moreover, the pose drift in the UAV dataset is slightly larger than SLOAM.
However, even with a similar drift, we can observe in Figure 12 left that in the UAV
dataset, the more aggressive motion creates duplicate trees, especially in regions that are
further away from the sensor. These artifacts would inflate the individual count and make it
challenging to estimate tree diameters reliably when post-processing the results. SLOAM
outperforms both A-LOAM and GICP because our semantic features are more reliable
than texture-based lines and planes. Specifically, data association is more robust for both
ground and tree features since it inherently filters out noise. The resulting cost function is
more informative than the other approaches due to landmark shapes. Moreover, SLOAM
uses a point to cylinder cost function while A-LOAM and GICP rely on point-to-plane
and point-to-line cost functions forcing a false planar model onto the cylinders resulting in
tree trunks that look like flat surfaces.

A by-product of our method is that the resulting maps can be used directly to
estimate the properties of the forests. This also provides us with another metric to estimate
the quality of the resulting map. We compare the diameter estimates with measurements
made by humans for the UAV experiment. We manually measured 35 trees that were
inside the field of view of the robot during the flight, from which SLOAM identified 29
individuals as presented in Table 5 with an average error of 1.7 centimeters, which is
within the expected margins of the industry.

Detected Trees Mean Median Max Min
29 1.70 1.52 3.55 0.25

Table 5 – SLOAM DBH error metrics in the UAV experiment with respect to human measure-
ments.

This comparison assumes that the human measurements are correct. To estimate
how much we can expect this ground truth to be reliable, we executed another expedition
in the same forest with two humans carefully measuring the DBH of 1539 trees. In this
comparison, the mean DBH error mas 0.314 centimeters, and the median was 0.254 cm.
This result suggests that the expected noise in the ground truth is not the only source of
error in the SLOAM results, and there is still room for improvement.
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Resulting Maps Colored by Z Axis

A-LOAM
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A-LOAM

SLOAM SLOAM
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Figure 12 – The assumptions made by GICP and A-LOAM about the geometry of the points
during pose estimation result in blurry point clouds and flattening of the tree trunks.
Meanwhile, SLOAM exploits semantic information to extract more reliable features
and simultaneously models the trees as cylinders, resulting in cleaner and informative
maps while having more robustness to aggressive motion.
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4.3 Incorporating External Odometry Measurements

SLOAM relies purely on semantic information extracted from a LiDAR to estimate
the agent’s pose and a map. The problem with this approach is that in the case of
segmentation and object detection, if LiDAR failures, the entire system will crash. This
limitation is fundamental to consider when designing an autonomous aerial system for
large-scale missions, where the odds of encountering edge cases or sensor failure increase.

To incorporate SLOAM into a system that performs such missions under forest
canopy, we use S-MSCKF (SUN et al., 2018) VIO as a source of high frequency odometry
measurements and run SLOAM only in keyframes. This VIO method is more reliable
than the results found in the previous experiments due to the quality of the sensors and
strong padding of the UAV’s vibration that reduces the IMU noise. Although drift will still
occur due to the limitations of VIO in this type of environment, as long as the estimates
are locally consistent and smooth, this measurement can be used to provide SLOAM
with an initial guess. We chose VIO due to the number of solid works in the literature
with open-sourced code. However, this formulation can be adapted to any other source
of odometry such as wheel encoders and LiDAR as long as the local consistency and
smoothness assumptions hold.

To integrate both measurements, at every keyframe 𝑘, we store a tuple of SLOAM
and VIO poses (TSLOAM

𝑘 ,TVIO
𝑘 ), where the first SLOAM pose is set to odometry pose

at the time of the first keyframe. That is, TSLOAM
1 = TVIO

1 . The initial guess of relative
motion between keyframes estimated by the VIO is TREL

𝑘 = (TVIO
𝑘−1)−1 ·TVIO

𝑘 . The estimated
relative motion can then be combined with the previous SLOAM pose TSLOAM

𝑘−1 to form
TGUESS

𝑘 = TREL
𝑘 · TSLOAM

𝑘−1 , which is used to initialize a new SLOAM iteration.

We create a new keyframe when VIO estimates 𝜏 meters of translation movement,
where 𝜏 is defined by the user. Since SLOAM relies on nearest-neighbor matching, if the
motion between two keyframes is large, the association may fail or give false positive
matches. To address this, for a new keyframe and its set of landmarks ℒ𝑅𝑂𝐵

𝑘 in the robot
frame, we leverage the initial guess TGUESS

𝑘 to transform these cylinders to the map frame
and perform data association between the new measurements and the existing map. To
speed up the search for matches, we narrow the candidates from the map by filtering
landmarks whose distances to the guess pose are smaller than a threshold 𝜓

𝒮𝑘 = {
⃦⃦⃦
l𝑆𝐿𝑂𝐴𝑀 − TGUESS

𝑘

⃦⃦⃦2
< 𝜓 : l𝑆𝐿𝑂𝐴𝑀 ∈ ℳ}, (4.5)

We use a KD-Tree where cylinders are indexed by their roots to perform this
operation.

For the ground measurements of a new observation, we only consider the 𝑘 − 1
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planes G𝑆𝐿𝑂𝐴𝑀
𝑘−1 estimated via the grid sampling as presented in Subsection 4.2. Similar to

the cylinders, we use the initial guess to perform data association in the map frame.

With the initial guess available, we can split the pose optimization problem defined
in Equation 4.4 in two separate steps. One that relies only on the tree cylinders

arg min
TCYLINDER

𝑘

𝑁𝑘∑︁
𝑖=1

𝛿𝑖,𝑘∑︁
𝑗=1

𝐷𝑠(c𝑆𝐿𝑂𝐴𝑀
𝑗 ,p𝑗), (4.6)

where TCYLINDER
𝑘 is an SE(3) transformation with three degrees of freedom (translation

Z, Pitch, and Roll are fixed), and another that uses only the ground

arg min
TGROUND

𝑘

𝛾𝑘∑︁
𝑙=1

𝐷𝜋(𝜋𝑙,p𝑙), (4.7)

where TGROUND
𝑘 is an SE(3) transformation with three degrees of freedom (translation X,

Y and Yaw are fixed). By doing this, we can constrain parts of the initial pose in case
of partial failure. For example, we can constrain the altitude of the UAV even in regions
where no trees are detected by using ground constraints. The final pose estimate estimated
by SLOAM is given by

TSLOAM
𝑘 = TGUESS

𝑘 · TGROUND
𝑘 · TCYLINDER

𝑘 . (4.8)

Note that since the features and models of the keyframe 𝑘 are already in the map
frame according to TGUESS

𝑘 , the output of each optimization step is a refinement with
respect to the initial guess.

LeGO-LOAM (SHAN; ENGLOT, 2018) proposes a similar two-step optimization
formulation, where the authors report 35% reduction in computation and similar accuracy
when compared to estimating the full pose in one problem. LeGO-LOAM uses the output
of the ground optimization to constrain the X,Y and Yaw parameter estimation. However,
since we have an initial guess from the odometry, we solve 4.6 and 4.7 independently.

This integration is part of a system described in depth in (LIU et al., 2022a). We
refer the reader to the paper for more information on the other parts of the system such as
the custom simulator, trajectory planning, obstacle avoidance and the robot’s hardware.

Results

We present two experiments in different regions of the same pine forest as the
previous results and evaluate the influence of the VIO and SLOAM integration on the ro-
bustness of the state estimation module for an autonomous UAV system. For segmentation,
we utilize RangeNet++ trained on simulator data and fine-tuned on 50 (37 training and
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13 validation) manually annotated LiDAR sweeps from a different pine forest in Arkansas,
US. Note that the semantic segmentation model did not have access to data from the
forest where the experiments were conducted.

In the first scenario, the robot executes an autonomous flight mission where the
objective is to perform two square loops and return home. However, the autonomous system
has access only to the VIO estimates. For this reason, the UAV believes the mission was
successful when in practice, we observe that the robot landed far from the takeoff position.
We run SLOAM on the data recorded from this mission and use GNSS as a high-level
reference for the actual trajectory. It is only possible to qualitatively compare the impact
of this integration since the GNSS sensor reported a ∼10 m standard deviation for X and
Y position estimates, which is expected under the forest canopy. From Figure 13, we can
observe that the SLOAM + VIO trajectory is much closer to the GNSS measurements than
pure VIO. Nevertheless, even with noisy measurements, an external source of odometry can
reduce the computational load of running a semantic framework as part of an autonomous
system in real time and increase the system’s robustness in this environment.

Figure 13 – Top-down view of the 800m UAV flight. The robot flies autonomously, attempting
to perform two squared loops having access only to the VIO estimates. While the
autonomy stack believes the robot achieved its goal, both SLOAM and the noisy
GNSS show that the robot was far from the take-off position.

In the second experiment, similar to the loop experiment in Subsection 4.2, the
UAV is controlled by a human pilot throughout a 1.1km trajectory, depicted in Figure 14
to guarantee it will return to the take-off position. In this flight, the GNSS sensor was
not able to get a lock. Consequently, our only reference for the quality of each trajectory
is the difference between the starting and end pose of the robot according to VIO and
SLOAM + VIO. From the drift estimates in Table 6 we can observe that the XY drift is
reduced significantly with SLOAM, but it is still present. The most important impact is
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Figure 14 – Top-down view of the 1.1 km trajectory. In this scenario, the robot is manually piloted
so that we guarantee it will return to its initial position and we can estimate the
final trajectory drift. Black points illustrate the tree cylinders detected by SLOAM.

on the Z-axis, where VIO drifted more than 6 meters downward while SLOAM almost
completely removed this error.

Table 6 – Distance of the final estimated pose from the beginning of the trajectory on the 1.1
km loop.

Method XY Drift (m) Z Drift (m) Total Drift (m)
VIO 7.92 -6.27 10.10
SLOAM + VIO 3.93 0.71 3.99

4.4 SLOAM as a Factor Graph

Integrating other sensor measurements with SLOAM is an essential step towards a
more robust autonomous system. This section presents an extension to the external odom-
etry formulation using a Factor Graph formulation solved via incremental SaM (KAESS
et al., 2012) for state estimation and mapping. The Factor graph is a modular framework
that can naturally incorporate external odometry measurements, semantic landmarks, loop
closure, and GNSS in a single framework. Our implementation is based on GTSAM (DEL-
LAERT, 2012), a popular library for defining and solving factor graphs. The factor graph
enables the SLOAM framework to consider multiple sources of measurements and their
uncertainty, which is especially important as we can update the tree cylinders as new
observations arrive in a probabilistic way and quantify the certainty of our estimates.

Similar to the external odometry formulation, the factor graph operates on keyframes
created with respect to a minimum motion threshold defined by the user. This regime
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reduces the number of variables in the optimization problem, balancing the quality of the
solution, memory, and computational cost (SHAN et al., 2020).

Keyframe pose estimates are constrained by the relative motion between them with
a binary factor 𝑓pose(𝑥𝑘−1, 𝑥𝑘; TREL

𝑘 ) (DELLAERT; KAESS et al., 2017). Notice that since
the source of the pose guess and the relative poses are the same (odometry), without any
other factors, the solution of the factor graph would be the same as the odometry.

Cylinder Factor

For every keyframe 𝑘, we estimate ground models G𝑘 and cylinder models ℒ𝑘.
For every observed tree, we perform data association with the map via nearest neighbors
as described in Equation 4.5. Instead of directly running pose optimization with these
associations as in previous formulations, the landmark measurements are added to the
factor graph problem, together with the keyframe pose as a binary factor𝑓land(𝑙𝑖, 𝑥𝑘;𝑚𝑖

𝑘).

In 𝑓land, 𝑙𝑖 is the current factor graph estimate of the 𝑖th landmark indexed with
respect to the order they where added to the map. 𝑥𝑘 is the current pose estimate, given
by the previous keyframe pose estimate and the relative motion estimated by the odometry
𝑥𝑘 = 𝑥𝑘−1 · TREL

𝑘 and 𝑚𝑖
𝑘 is new landmark measurement. In other words, the cylinder

factor describes the measurement error between the current model estimate and a new
observation of the same tree as the difference of each model parameter transformed by
the pose estimate. This dependency on the pose estimate also causes the cylinder model
to constrain the robot poses during optimization. Our custom factor 𝑓land models the
measurement likelihoods with a Gaussian noise model, calculated as

𝑓land(T𝑘, 𝑙
𝑖;𝑚𝑖

𝑘) = 𝑒𝑥𝑝{−1
2

⃦⃦⃦
𝐸(T𝑘, 𝑙

𝑖,𝑚𝑖
𝑘)

⃦⃦⃦2

Σ
} (4.9)

where 𝐸(·, ·, ·) can be split into three independent terms

𝐸(𝑙,𝑚)𝜅 = 𝑙𝜅 −𝑚𝜅

estimates the error between the current estimate and a new measurement for the cylinder
radius 𝜅, and does not depend on the pose.

𝐸(T, 𝑙,𝑚)𝛼 = (T𝑅 · 𝑙𝛼) −𝑚𝛼

estimates the cylinder axis 𝛼 error considering the effect of the robot rotation. Finally,

𝐸(𝑙,T,𝑚)𝜌 = (T · 𝑙𝜌) −𝑚𝜌
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considers the full SE(3) pose for the cylinder root 𝜌 error.

With this factor, the cylinder models and their uncertainty are updated as new
measurements arrive. Similar to the previous SLOAM formulations, the cylinder factors
also contribute to the pose optimization problem, creating additional constraints to the
robot pose at every keyframe. Our factor graph formulation has been used as the foundation
and extended for an active mapping system (LIU et al., 2022b). The authors demonstrated
that this factor graph is an effective way to perform robust state estimation in real time
in the real world with multiple robots.

4.5 Final Considerations
This chapter introduced the theoretical foundation for a factor graph formulation for

semantic SLAM in forests. This formulation relies on SLOAM, a framework for odometry
and mapping under the forest canopy that automatically estimates timber inventory using
LiDAR measurements. We show that by using semantic information, namely tree and
ground features and models, this method matches or outperforms other LiDAR-based
frameworks that do not incorporate such information. We present results showing that the
quality of pose estimates and the resulting map is improved with SLOAM while generating
useful information about the environment.

In large-scale experiments, we observe that depending solely on semantic constraints
can be problematic since these methods cannot compute an estimate when segmentation
or detection failure occurs. For this reason, we presented an extension for SLOAM using
external odometry measurements to increase robustness. We show that even if VIO drifts
over time, as long as the estimates are locally consistent, it can be used by SLOAM and
the factor graph as an initial guess for the pose optimization problem. At the same time,
SLOAM provides refinements based on measurements from keyframes. This integration is
also beneficial in an autonomous system with limited computational resources since the
panoptic segmentation and semantic modeling task can be expensive to perform at the
same rate as the sensor measurements.

One crucial missing piece for the factor graph is detecting previously seen locations
and incorporating such detections into the state estimation problem. In the next chapter,
we present our method for loop closure detection based on the semantic maps computed by
SLOAM and how it can be incorporated to mitigate drift. Later, in Chapter 6 we present
an experiment in simulation using the complete factor graph formulation.



61

CHAPTER

5
PLACE RECOGNITION UNDER PERCEPTUAL

ALIASING

The semantic SLAM framework proposed in this thesis computes a semantic map
ℳ ≜ {𝑙𝑖}𝑁

𝑖=1, where each landmark 𝑙 is modeled by a cylinder parameterized by their root
𝜌, a 3D point representing the position of the lowest part of the tree, a ray 𝛼 that captures
the direction of the trunk and a radius 𝜅.

In general, forests have many similar regions. In environments such as Pine forests,
where trees have approximately the same age and are all from the same species, their radius
and growth direction are very similar. In this case, their position is the only information
that reliably differentiates trees. While object properties could be more informative in
other environments, we show that in this worst-case scenario, using the position of the
landmarks is enough to identify seen places even under high perceptual aliasing.

Images and Tables presented in this chapter were adapted from our published work
"Place Recognition in Forests with Urquhart Tessellations" with permission from IEEE. The
reference implementation is open-sourced and can be found at github.com/gnardari/urquhart.

5.1 Problem Formulation

Similar to the previous chapter, we represent an observation 𝒪𝑘 of a place in the
environment as sets of semantic objects ℒ𝑘 that are visible from a reference frame 𝑇𝑘.
However, for the place recognition problem, we consider that this observation can come
from a single sensor reading 𝒪𝑘 = ℒ𝑘 = {𝑙𝑖}𝑁𝑘

𝑖=1 or a union of a sequence of 2𝑐 observations
𝒪𝑘 =

𝑐⋃︀
𝑖=−𝑐

ℒ𝑘+𝑖 to increase the area being represented by our algorithm.

Due to sensor noise and occlusion, some landmarks in the environment may not be
detected by the system or detected in one observation and then not detected in another. For

https://github.com/gnardari/urquhart
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this reason, our method has to be robust to detection failure. Moreover, each observation
will have different landmark position estimates due to the different noise sources (sensor,
segmentation, instance detection, modeling), and our algorithm has to be able to handle
these inconsistencies.

Our primary motivation for doing place recognition is to mitigate drift by incorpo-
rating loop closure into the factor graph formulation of SLOAM introduced in Chapter 4.
To this end, we must not only identify a previously seen location but also be able to
compute a transformation H𝑎,𝑏 that maps the observation 𝑏 to 𝑎 that will be added as a
constraint to our SLAM framework.

Problem (Place recognition under perceptual aliasing). Given observations 𝒪𝑎 and
𝒪𝑏, determine if the corresponding observations overlap 𝒪𝑎 ∩ 𝒪𝑏 ̸= ∅ and if so, estimate
the associated rigid transformation H𝑎,𝑏 where

T𝑎 = H𝑎,𝑏T𝑏. (5.1)

5.2 Urquhart Tessellations

Our method encodes the topology of the semantic map via geometric shapes. To
achieve this, we switch back and forth between a graph-based and a geometric interpretation
of these shapes. To this end, we represent every landmark as a point in R2. For trees, this
point comes from the 2D projection of the root 𝜌 onto the ground plane.

The most basic primitive of our formulation is the edge. Geometrically, an edge
𝑒 = (𝑝𝑖, 𝑝𝑗) is a line segment bounded by a pair of points 𝑝𝑖, 𝑝𝑗 ∈ R2. The length of
this primitive encodes the euclidean distance between 𝑝𝑖 and 𝑝𝑗. A polygon 𝐿 is a closed
set defined by the region enclosed by the edges constructed via consecutive point pairs
(𝑝𝑖, 𝑝𝑖+1) in the sequence of points (𝑝1, . . . , 𝑝𝑛) where 𝑝1 = 𝑝𝑛. Conversely, the polygon 𝐿

is defined by a sequence of edges (𝑒1, . . . , 𝑒𝑛), where each edge 𝑒𝑖 is constructed based on
the original point sequence.

Let 𝑃 be a set of at least 3 discrete points 𝑝 ∈ R2 in general position. A tessellation
is a finite set of polygons {𝐿1, . . . 𝐿𝑛} which covers the convex hull 𝒬(𝑃 ) without gaps
or overlaps. More precisely,

𝑛⋃︀
𝑖=1

𝐿𝑖 = 𝒬(𝑃 ) and 𝑖𝑛𝑡(𝐿𝑖) ∩ 𝑖𝑛𝑡(𝐿𝑗) = ∅ ∀ 𝑖 ̸= 𝑗, where 𝑖𝑛𝑡(·)
denotes the interior of a polygon.

A triangle is a special case of the polygon where 𝑛 = 3, and the circumcircle is the
circle that passes through the points of the triangle. A triangulation is a tessellation where
all elements are triangles. The Delaunay triangulation 𝐷𝑇 (𝑃 ) is a triangulation where no
point 𝑝 ∈ 𝑃 is in the circumcircle of any triangle of 𝐷𝑇 (𝑃 ) (DELAUNAY et al., 1934). In
our application, 𝑃 is given by the 2D projections of the root of each landmark in 𝑂𝑘.
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We interpret the Delaunay triangulation as a graph, where the edges are given
by the triangles, in order to construct the Urquhart graph (URQUHART, 1980). Let
𝒢𝒟 = {𝒱𝒟, ℰ𝒟} be the graph representation of 𝐷𝑇 (𝑃 ), where 𝒱𝒟 is the union of the
triangle points, and ℰ𝒟 is the union of the triangle edges. The set of the longest edges
of each triangle in 𝐷𝑇 (𝑃 ) is defined by Ω = {arg max

𝑒∈𝐿
‖𝑒‖ : 𝐿 ∈ 𝐷𝑇 (𝑃 )}. The Urquhart

graph of 𝐷𝑇 (𝑃 ) is a graph 𝒢𝑈 = {𝒱𝑈 , ℰ𝑈} where 𝒱𝑈 = 𝒱𝒟 and ℰ𝑈 = ℰ𝒟 ∖ Ω. 𝒢𝑈 is a
sub-graph of 𝒢𝒟 where the longest edges of each triangle are removed.

We then convert the Urquhart graph 𝒢𝑈 back into an Urquhart tessellation 𝑈(𝑃 )
using cycle detection. A simple cycle 𝑐 of an arbitrary graph 𝒢 = {𝒱 , ℰ} is a non-empty
sequence of edges ℰ𝑐 = (𝑒1, . . . , 𝑒𝑛) ⊆ ℰ with a vertex sequence 𝒱𝑐 = (𝑣1, . . . , 𝑣𝑛) ⊆ 𝒱 such
that 𝑣1 = 𝑣𝑛, and 𝑣𝑖 = 𝑣𝑗 ⇐⇒ 𝑖, 𝑗 ∈ {1, 𝑛}, i.e. there are no repeated vertices except for
the first and the last. The simple cycles of a graph correspond to polygons of a tessellation.

The cycle basis 𝒞 of a graph 𝒢 is the minimal set of simple cycles such that for all
cycles 𝑐 ∈ 𝒢, ∃ 𝑐𝑖, 𝑐𝑗 ∈ 𝒞, such that 𝑐 = 𝑐𝑖Δ𝑐𝑗 where Δ represents the symmetric difference
operation. Intuitively, any cycle can be computed with elements of the cycle basis. The
cycle basis of a graph corresponds to the tessellation. As a result, we can convert the graph
𝒢𝑈 into the tessellation 𝑈(𝑃 ).

These tessellations motivate a hierarchy of geometric primitives ℋ(𝑃 ) that encom-
pass local to global information. The first level ℋ0(𝑃 ) is the set of all edges ℰ𝐷. The
second level ℋ1(𝑃 ) is given by the triangles of the Delaunay triangulation 𝐷𝑇 (𝑃 ). The
third level ℋ2(𝑃 ) is given by the polygons of the Urquhart tessellation 𝑈(𝑃 ).

We define a function 𝜑𝑖(·) : ℋ𝑖+1(𝑃 ) → ℋ𝑖(𝑃 ), to map from higher to lower levels,
where

𝜑𝑖(𝑠) = {𝑙 : 𝑙 ∩ 𝑠 = 𝑙, 𝑙 ∈ ℋ𝑖(𝑃 )}, (5.2)

e.g. 𝜑0 maps triangles of the Delaunay triangulation to its corresponding edges, 𝜑1 maps
polygons of the Urquhart tessellation to its corresponding triangles. An example of the
different structures computed with this method is given in Figure 15.

Method

The geometric primitives derived from the Urquhart Tessellation naturally encode
the topology of an observation of the environment by connecting nearby landmarks and
their relative distance. Similarly, the parallel work of Li et al (LI et al., 2020) demonstrates
that triangles provided by the Delaunay Triangulation of the landmark positions 𝐷𝑇 (𝑃 )
can be used directly for place recognition.

Triangles encode a small portion of the observation, subsequently, the odds of
encountering similar structures increases with the scale of the region being mapped. On the
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Figure 15 – Given a set of 2D points derived from our tree cylinder models, the Delaunay Graph
(left) defines a set of ℋ1 polygons (triangles). The Urquhart Graph (right) composes
these triangles to generate a new set of ℋ2 polygons (colored elements). The set
of all available polygons ℋ can be used to identify previously seen locations and
correspondences between points.
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Figure 16 – Place recognition pipeline with Urquhart Tessellations.

other hand, for two ℋ2 polygons 𝐿𝑚 and 𝐿𝑛 from different regions to have similar metric
properties, it would require that the triangles that compose 𝐿𝑚 and 𝐿𝑛 also have similar
metric properties and are arranged in space similarly, such that ⋃︀

𝜑1(𝐿𝑚) ≈ ⋃︀
𝜑1(𝐿𝑛).

For this reason, the Urquhart Tessellation 𝑈(𝑃 ) creates polygons that are less likely to
repeat than 𝐷𝑇 (𝑃 ), decreasing the probability of false-positive correspondences.

The number of triangles computed by 𝐷𝑇 (𝑃 ) has an upper bound of 2𝑛− 2 − 𝑏

where 𝑛 is the number of points, and 𝑏 are the points that lie in the convex hull of 𝑃
𝒬(𝑃 ) (DELAUNAY et al., 1934). By joining triangles to create more complex polygons,
we reduce the odds of false positives and the average number of shapes that must be
compared to identify a loop.

A trade off of our method is that it requires extra computation to get ℋ2 from ℋ1.
In Algorithm 1 we summarize our approach to compute the polygons given a new set of
points, where we loop through the elements of ℋ1 to compute the set of longest edges Ω
while also updating 𝒞𝑈 as triangles are combined to efficiently compute both the Urquhart
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Algorithm 1 – Urquhart Graph with Cycle Detection
1: input: 𝒢𝐷, ℋ1 ◁ Delaunay graph and triangles
2: 𝒞 = ℋ1

3: 𝒢𝑈 = 𝒢𝐷

4: for each triangle 𝐿 ∈ ℋ1 do
5: 𝑒𝐿 = arg max

𝑒∈𝐿
‖𝑒‖

6: Find 𝐿𝑛𝑒𝑖𝑔ℎ ∈ 𝒞, 𝐿𝑛𝑒𝑖𝑔ℎ ̸= 𝐿, 𝑒𝐿 ∈ 𝐿𝑛𝑒𝑖𝑔ℎ ◁ A neighboring triangle that shares 𝑒𝐿.
7: Drop 𝑒𝐿 from 𝒢𝑈

8: 𝒞𝐿 = 𝐿Δ𝐿𝑛𝑒𝑖𝑔ℎ

9: end for
10: return 𝒢𝑈 , 𝒞

graph 𝒢𝑈 and its cycle basis 𝒞𝑈 .

Descriptor

Our ℋ2 polygons can be composed by a different number of points, edges and
triangles. The same region can generate slightly different polygons due to a missed landmark
or position noise. For this reason, we need a robust and efficient descriptor to compare the
geometric shapes.

We borrow techniques from the shape retrieval literature and, for each polygon
and triangle 𝐿 ∈ ℋ(𝑡), we compute a descriptor based on their centroid distance (ZHANG;
LU et al., 2001). Let 𝑁 = {𝑝 : 𝑝 ∈ 𝐿} be the set of points that compose a polygon. The
centroid 𝑐 = (𝑐𝑥, 𝑐𝑦) of 𝐿 is computed by

𝑐𝑥 = 1
|𝑁 |

|𝑁 |∑︁
𝑛=1

𝑝𝑥
𝑛, 𝑐𝑦 = 1

|𝑁 |

|𝑁 |∑︁
𝑛=1

𝑝𝑦
𝑛.

Since the size of 𝑁 can vary for different polygons, we sample a constant number
points relative to their perimeter length 𝑃 . The 𝑠𝑡𝑒𝑝 size between sampled points is a
user-defined parameter, where 0 < 𝑠𝑡𝑒𝑝 < 1.0 such that 𝑠𝑡𝑒𝑝 * 𝑃 . This operation creates
a new set of points 𝑀 with the same number of elements regardless of the size of 𝑁 . If
𝑠𝑡𝑒𝑝 is large, the samples will be spaced out, smoothing out the surface descriptor, while a
small number will capture more details of the shape, such as sharp corners. An optimal
value of 𝑠𝑡𝑒𝑝 balances the two properties such that the descriptor is robust to some noise
but capture enough information about the polygon to avoid false-positive associations.

The new centroid distance with sampled points, as illustrated in Figure 17 is

𝐹 (𝐿) = {‖𝑝𝑛 − 𝑐‖2 : 𝑝𝑛 ∈ 𝑀}.

𝐹 (𝐿) is translation invariant since it uses distance relative to the centroid. However,
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Figure 17 – We compute the polygon centroid (yellow) as the mean of the original points (black).
Then, we sample a new set of points from the perimeter (red) from which the centroid
distance descriptor is computed. With this approach, the descriptor size will be
independent of the number of points that define the shape.

the order of the descriptor can vary depending on where sampling starts. Similar to
GLAROT (KALLASI; RIZZINI, 2016), it is possible to test every configuration of a pair
of descriptors, and choose the permutation with the smallest distance, but this can be
inefficient, as we may have to match many polygons per observation.

Instead, following the shape retrieval literature (ZHANG; LU et al., 2001), we
compute a Discrete Fourier Transform (DFT) of 𝐹 (𝐿) to obtain a new descriptor 𝐹 (𝐿) =
𝐷𝐹𝑇 (𝐹 (𝐿)) that transforms the centroid distance to the frequency domain. The lower
frequency values of the DFT contain information about the general features of the shape,
while higher frequency descriptors contain information about the details of the polygon.
The magnitude of this descriptor 𝐹 (𝐿) =

⃒⃒⃒
𝐹 (𝐿)

⃒⃒⃒
has the property that it will be the same

regardless of the order of the input, making the descriptor more robust to the sampling
order.

Matching

We store 𝐹 (𝐿) for all polygons in ℋ, including triangles. Given two polygons of
any dimension 𝐿𝑛 ∈ ℋ𝑖 and 𝐿𝑚 ∈ ℋ𝑗, they are considered a match if

⃦⃦⃦
𝐹 (𝐿𝑛) − 𝐹 (𝐿𝑚)

⃦⃦⃦2
< 𝜏. (5.3)

To increase robustness and speed, we only compare polygons if |𝑁𝑛| − |𝑁𝑚| ≤ 3.
That is, if the difference in number of points that define the polygons is smaller than or
equal to 3. With this approach, we are able to identify correspondences in overlapping
observation even with noisy measurements, as illustrated in Figure 18.

The pair of polygons 𝐿𝑛 ∈ ℋ2
𝑖 from observation 𝑖 and 𝐿𝑚 ∈ ℋ2

𝑗 from observation
𝑗 define the subsets of triangles 𝜑1(𝐿𝑛) ⊆ ℋ1

𝑖 and 𝜑1(𝐿𝑚) ⊆ ℋ1
𝑗 . Let 𝑥 bet the number

of triangles in 𝜑1(𝐿𝑛) with correspondences in 𝜑1(𝐿𝑚). If the ratio between 𝑥 and the
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Figure 18 – Example of two observations of the sample place, with inconsistencies in trees
detected and their position. Even with noisy measurements, our method can identify
enough corresponding polygons.

number of elements of 𝜑1(𝐿𝑛) is greater than a threshold 𝜂, the triangle correspondences
are considered valid. That is,

⎧⎪⎪⎨⎪⎪⎩
match, if 𝑥

‖𝜑1(𝐿𝑛)‖ > 𝜂

not match, otherwise.

If 𝐿𝑛 and 𝐿𝑚 match, we repeat the process comparing the subsets of triangles they
define. For a pair of matching triangles 𝐿𝑘 ∈ 𝜑1(𝐿𝑛) ∈ ℋ1

𝑖 and 𝐿𝑙 ∈ 𝜑1(𝐿𝑚) ∈ ℋ1
𝑗 , we

associate edges based on their lengths ¯̄ℰ𝑘 = {‖𝑒‖ : 𝑒 ∈ 𝐿𝑘}, and ¯̄ℰ𝑙 = {‖𝑒‖ : 𝑒 ∈ 𝐿𝑙} by

arg min
𝑘

⃦⃦⃦ ¯̄ℰ𝑚 − 𝜒𝑘
¯̄ℰ𝑛

⃦⃦⃦2
,

where 𝜒 is a permutation matrix reordering the elements of ¯̄ℰ . Intuitively, the matrix
that generates the smallest difference between the lengths of the edges is the best assign-
ment between them. Since the number of elements to compare is small, this comparison
is not as computationally expensive as testing permutations for an arbitrary polygon.
Finally, we extend this assignment to point correspondences by matching points that share
corresponding edges.

Euclidean Transformation Estimation

We run our experiments in R2, and assume that the data will not suffer from
shearing or scale variations to reduce H𝑖,𝑗 to a Euclidean transformation with 3 degrees of
freedom that we estimate using RANdom SAmple Consensus (RANSAC).

If the Euclidean distance between corresponding points after the transformation
is below a threshold 𝑑, we consider the correspondence an inlier. If the ratio of inliers to
outliers is above a threshold 𝑟 or the maximum number of iterations 𝑠 is reached, the
algorithm stops and returns the estimate which has the most inliers.
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For the R3 case, the assignments found by our algorithm can be propagated to the
entire object, and an optimization-based approach can be used to align the instances, e.g.,
as an alternative to the data association methods presented in Chapter 4. We present in
Section 5.3 an approach to create loop closure constraints between 3D poses in our factor
graph formulation of SLOAM using Urquhart Tessellations.

Results

Simulation Experiments

We simulate a 1𝑘𝑚2 or approximately 247 acres forest. To ensure a density of
trees that is consistent with a real world forest, the set of 2D landmarks is generated by
Poisson-Disc sampling through Bridson’s algorithm with a minimum distance between
points of 7𝑚 (BRIDSON, 2007). This algorithm will create a regular pattern across the
environment, which is not a realistic representation of the distribution of trees in a real
forest. To make the distribution closer to reality, each point in the set is perturbed with
Gaussian noise with 0 mean and 3𝑚 standard deviation.

Each simulated observation will have a radius of 50𝑚, similar to a real-world sensor
such as an Ouster or Velodyne, and will capture approximately 80 trees. The average
distance from a tree to its nearest neighbor in the simulated forest is 3.4𝑚, while in the
accumulated map from our real-world dataset, this distance is 3.2𝑚.

Due to sensor noise and detection failure, the input observations may be noisy,
and different measurements from the same place will not be perfectly consistent. It is
essential to measure how our method and the benchmarks handle this noise to check their
suitability in real-world loop closure applications.

To simulate real-world inconsistencies, we model the landmark detection noise 𝛿(𝑙)
with a Bernoulli distribution as in (WANG et al., 2011). Let 𝛿(𝑙) be the Boolean random
variable representing the successful detection of landmark 𝑙,

𝛿(𝑙) =

⎧⎪⎨⎪⎩1 if landmark 𝑙 is detected,

0 otherwise.

The distribution of 𝛿(𝑙) has a success probability 𝜔, that is, 𝛿(𝑙) ∼ 𝐵𝑒𝑟(𝜔). We
define simulated observation under the presence of detection noise

𝒪̄𝑡 ≜ {𝑙 : 𝛿(𝑙) = 1}𝑙∈𝒮𝑡 ⊆ 𝒮𝑡,

where 𝒮𝑡 is a subset of the ground truth semantic map.
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Due to sensor noise and uncertainty in the landmark projection on the ground
plane, the tree root projection 𝜌 may vary in different observations. We model this noise
as 𝜌 = 𝜌 + 𝜖, where 𝜖 is a Gaussian random variable with zero mean and variance Σ,
𝜖 ∼ 𝒩 (0,Σ). The 2D observation of a submap 𝒮𝑡 including both forms of sensor noise is

𝒪̄𝑡 ≜ {𝛿(𝜌)}𝑙∈𝒮𝑡 .

The simulated robot does a circular path 4 times. Each observation is rotated
by a random angle sampled from a uniform distribution in the range {0, 𝜋2 }, and every
landmark 𝑙 in the observations subject to position noise and detection noise. Excluding
the trivial match where 𝑖 = 𝑗, we consider a match a true positive if ‖T𝑎 − H𝑎,𝑏T𝑏‖2 < 10
and the rotation difference is smaller than 20𝑜, which are similar constrains to related
work (GAWEL et al., 2018). We consider a false negative when not enough matches are
found but the distance between the ground truth poses is smaller than the lidar radius.

For the simulated experiments, we run all combinations of the detection success
probability 𝜔 in the range {0.8, 0.9, 0.95, 1.0} and the standard deviation 𝜎 =

√
Σ of

the position estimation error 𝜖 in the range {0.0, 0.1, 0.2, 0.3, 0.4} totaling 20 different
configurations.

As defined in Equation 5.3, our method requires a threshold parameter 𝜏 that sets
the maximum difference between polygons to be considered a match. We refer the reader
to our paper (NARDARI et al., 2020), where we evaluate multiple configurations of 𝜏 and
define that 𝜏 = 5 is the value that achieves the best balance between precision and recall,
quantified by the F1-Score.

Finally, we evaluate the performance of all methods with respect to the F1-Score
for each combination of noise using the same range for 𝜎 and 𝛿.

Both the position of detection noise impact the performance of every method. Li et
al. can handle more detection failures than both our method and GLAROT. As triangles
capture a smaller portion of the observation, they are more likely to have consistent
polygons, even with a large percentage of unobserved landmarks. However, with the
smallest possible position noise (10𝑐𝑚), the performance of Li et al. significantly drops.
The main factor for this is that the descriptor relies on the area of the triangles, which
has high sensitivity to noise.

We used the parameters configuration for all methods that achieved the best F1
score in our simulated environment. However, GLAROT was not designed for such a
high-density and high similarity environment, which implied either high precision and low
recall or low precision and high recall. As a result, GLAROT performs poorly even in the
scenario with no noise due to false-positive associations.
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Table 7 – F1-scores for each method in the simulation place recognition experiment. We simulate
the observations of a robot with different levels of landmark position noise and detection
success probability. In most cases, our method is more robust the benchmarks.

Position Noise
Detection Success Prob. 100% 95% 90% 80%

Ours GLAROT Li et al. Ours GLAROT Li et al. Ours GLAROT Li et al. Ours GLAROT Li et al.
0cm 1.00 0.52 1.00 1.00 0.27 1.00 0.95 0.12 0.99 0.32 0.01 0.75
10cm 1.00 0.39 0.07 0.99 0.12 0.01 0.92 0.04 0.00 0.32 0.01 0.00
20cm 0.99 0.17 0.00 0.98 0.06 0.00 0.82 0.02 0.00 0.23 0.00 0.00
30cm 0.97 0.04 0.00 0.76 0.01 0.00 0.45 0.00 0.00 0.08 0.00 0.00
40cm 0.66 0.01 0.00 0.30 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00

For our method, as the polygons in ℋ2 capture a larger area of the observation,
these elements are more likely to be altered as landmarks are not detected. For this reason,
while it is more robust than the other methods, we observe that our approach is more
sensitive to detection failures.

While our method is generally more robust than the benchmarked methods, we
observe that the ℋ2 polygons are more sensitive to detection failure. Since these polygons
capture a larger area of the observation, their shape is more likely to be altered if landmarks
are not detected.

Real-World Experiments

In this experiment, we fly the robot twice across the same plot of a commercial
Pine tree forest. For both flights, we split the raw data into subsets for every minute of
the flight. The sub-maps have partial overlap, position noise, and detection failure caused
by the expected causes of noise that were already discussed, making this task challenging
for methods that are not robust to these factors. To extract the landmark observations 𝒪𝑡,
we run SLOAM on each subset 𝑡 individually.

The map is initialized with the first sub-map 𝒪𝑀
0 = 𝒪0, and subsequent sub-maps

are matched to the map in chronological order such that 𝒪𝑀
𝑡+1 = 𝒪𝑀

𝑡

⋃︀ H𝑀,𝑡+1𝒪𝑡+1, where
H𝑀,𝑡+1 is given by the different place recognition methods and the union ⋃︀ is the output
of Density Based Spatial Clustering of Application with Noise (DBSCAN) (ESTER et al.,
1996), clustering trees closer than 0.5𝑚 after the alignment into a single landmark. We
use this approach to remove duplicates instead of correspondences since some landmark
matches may not have been detected. For every new observation that is integrated into
the map, we recompute a new descriptor for the map.

To quantify the performance of the different methods, we require some kind of
reference or ground truth. The forest canopy causes GNSS to have errors ranging up
to tens of meters, preventing it from being used as ground truth. On the other hand,
despite the small drift observed in past experiments with SLOAM, its estimates may not
be perfect. Moreover, since each sub-map is a separate run, there will be inconsistencies
in the location of trees due to the order trees are added to the different sub-maps. To
compute a reference transformation, we use the SLOAM estimates as an initial guess to
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Flight One

Human Associations

Flight Two

Human Associations

Ours Ours

GLAROT GLAROT

Li et al. Li et al.

Figure 19 – Accumulated sub-maps for flight one (left column) and flight two (right column).
Colors represent the robot trajectory in different sub-maps, and black triangles
represent the landmarks. We iteratively merge pairs of sub-maps until the entire
trajectory is accumulated into a single map. Our method closely approximates the
results obtained with human associations.
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Table 8 – Landmark alignment error. We compare the euclidean distance between manually asso-
ciated landmarks using the transformations computed with correspondences provided
by each method.

Method
Experiment Flight 1 Flight 2

Mean Min. Max. Mean Min. Max.
Human Associations 0.17 0.00 0.54 0.21 0.01 0.67
Ours 0.19 0.00 0.61 0.23 0.01 0.83
GLAROT 0.20 0.01 0.90 30.15 0.03 89.22
Li et al. - - - 42.38 4.79 125.71

align subsequent sub-maps. For sub-map 𝑡+ 1, its initial alignment is given by the last
SLOAM pose in sub-map 𝑡. Using this pose, we manually annotate tree correspondences
between pairs of pre-aligned sub-maps, and use RANSAC to compute the final reference
transformation that will be used to compare the different approaches.

For all methods, we compute a translation error based on the Euclidean distance
and a rotation error based on the absolute difference for each transformation between
subsequent sub-maps when compared with the human associations. For our method, the
translation error on flight 1 is 0.43 meters, and the rotation error is 0.32 degrees. For
GLAROT, the translation and rotation errors are 0.33 meters and 1.54 degrees, respectively,
and Li et al. fails to find correspondences for one of the sub-maps. On flight two, the
translation and rotation errors are 0.26 meters and 0.33 degrees for our method, while
the others have translation errors greater than 15 meters and 200 degrees. In Figure 19,
we show that on flight 1, our method and GLAROT closely approximate the result with
human associations, and Li et al. also approximates it except for the sub-map that it fails
to align. On flight 2, our method is similar to the reference, while the benchmarks are
significantly off.

With the transformations computed with manual annotations, we select tree
associations considered inliers by RANSAC to evaluate the quality of landmark alignments,
totaling 142 and 162 trees for flights 1 and 2 respectively. The distance between these
landmarks after alignment is computed on pairs of subsequent sub-maps. In Table 8, we
show the mean, minimum and maximum distances over all pairs compared to the human
associations. Similar to our previous results, our method closely approximates the reference
on both flights, while GLAROT achieves good results in flight one but fails in flight two,
and Li et al. fails in both flights.

5.3 Loop Closure Factor

The Urquhart Tessellations proposed in this chapter can identify previously seen
locations in forests relying only on a 2D projection of the position of trees. However, as
our robot operates in 3D space, the method has to be extended to be incorporated into
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RANSACPolygon

Computation Matching GICP

Figure 20 – We extend the proposed place recognition pipeline using GICP on the cylinder
features of landmarks associated with our 2D Urquhart Tessellations. With this
approach, we can create 3D pose constraints for our factor graph formulation without
increasing the computational complexity of the descriptor.

the factor graph formulation.

While it is possible to generalize the 2D geometric tessellations to 𝑁 dimensions,
this increases their computational cost. For this reason, we maintain the 2D descriptors
for place recognition and data association. Instead, for a pair of observations 𝒪𝑖 and 𝒪𝑗,
if a loop is identified with our method, we use the 3D locations of the roots of associated
cylinders to estimate an initial alignment of the keyframes with RANSAC.

From the RANSAC inlier matches, we initialize a pair of point clouds using the
associated cylinder features. Then, we apply GICP to get the refined transformation
TLOOP

𝑖,𝑗 between the two frames. Since GICP can get stuck in local minima if the initial
rotation between the point clouds is large, this two step solution is more robust without
making any assumption about the reliability of the pose estimates associated with these
observations. The output transformation H̄ creates a factor between the poses associated
with the observations 𝑓pose(𝑥𝑖, 𝑥𝑗, H̄LOOP

𝑖,𝑗 ).

5.4 Final Considerations

This chapter presented a novel approach for place recognition under high perceptual
aliasing. We show that using the position of trees derived from the semantic map computed
by our method introduced in Chapter 4, we can detect previously visited locations more
robustly than other methods designed for similar constraints. Moreover, we present how
this method can be incorporated into the factor graph formulation to help reduce the
accumulated drift when the robot revisits places.

Up to this point, our methods used LiDAR as the primary sensing source for
semantic mapping. However, this sensor is expensive and heavy. As we work towards
denser and more diverse forests such as rainforests, we would like to be able to use the
algorithms proposed in this thesis on smaller and cheaper platforms. In the next chapter,
we present results in simulation on using a stereo camera as a substitute for the LiDAR
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and how this sensor can seamlessly be incorporated into the factor graph framework by
computing pseudo-LiDAR measurements.
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CHAPTER

6
TOWARDS REAL-TIME SEMANTIC

PSEUDO-LIDAR

Autonomous robots must understand their surroundings and make real-time de-
cisions while having tight computational constraints. For this reason, it is essential that
the algorithms that compose the system share as much information as possible to solve
different but related tasks.

We have shown in this thesis how semantics can improve LiDARs state estimation,
mapping, and solving global localization under high perceptual aliasing. However, LiDARs
are expensive and relatively heavy sensors compared to cameras. The weight is especially
significant when designing UAVs where payload directly impacts flight time. In this
chapter, we propose a learning-based approach to the stereo depth estimation problem
that simultaneously outputs semantic labels and stereo disparity estimates. This method
can obtain pseudo-LiDAR readings and substitute the semantic pipeline used in previous
sections by a single model while saving on computation and hardware weight. Finally,
we demonstrate that these measurements can be used by our factor graph to perform
semantic mapping in a simulated forest.

Classic feature matching-based algorithms rely on edges and corners to select
keypoints, which are unreliable under illumination changes, which frequently happen in
forests due to the sunlight passing through canopy gaps. Neural networks can learn more
robust descriptors that give cues about the geometry and structure of a scene even in such
scenarios (KENDALL et al., 2017; CHANG; CHEN, 2018). When designing systems that
use stereo cameras, estimating the depth and semantic labels for the image observations is
often desirable for the downstream task.

Tackling both tasks with a single model can improve computational efficiency
and the model’s performance. For example, SegStereo (YANG et al., 2018) concatenates
semantic and correlation features to compute a disparity cost volume. Moreover, based
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Stereo Input

Disparity + Segmentation

Pseudo-LiDAR Semantic Representation

Figure 21 – Given a pair of images from a stereo camera, our neural network will simultaneously
estimate disparity and semantic labels for each pixel. We can then project the pixels
of interest to 3D to get Pseudo-LiDAR measurements. These outputs are useful
for our main task of semantic mapping where the robot could identify and model
individual trees in real time.

on the disparity predicted by the model, SegStereo warps the right image 𝐼𝑟 with the
estimated disparity to reconstruct the left frame 𝐼 ′

𝑙 . From 𝐼 ′
𝑙 , the left segmentation ground

truth can be used to compute a loss term that is backpropagated through the disparity
network.

DispSegNet (ZHANG et al., 2019) and RTS2Net (DOVESI et al., 2020) propose
architectures where semantic embeddings are used to refine the disparity estimates of
the model. SGNet (CHEN et al., 2020a) proposes a confidence module composed of 3D
convolutions that leverages the consistency between the semantic and disparity inner
product left and right feature correlations. In addition, the authors utilize category-
dependent residuals for the disparity (WU et al., 2019). The intuition is that semantic
categories contain well-defined boundaries that should exist in the disparity map. However,
this is not true for all cases. For example, the boundary between roads and crosswalks is
not necessarily visible in the disparity map. For this reason, the authors limit this loss to
a pre-defined list of classes where this assumption holds.

In this context, we propose a novel network architecture for joint semantic seg-
mentation and disparity estimation using supervision only for the first task. With this
approach, we can incorporate loss constraints that consider our object of interest (tree
trunks) to improve the disparity results.

6.1 Problem Formulation

Given a pair of rectified RGB images (𝐼𝑙, 𝐼𝑟)𝑘 at keyframe 𝑘, we estimate the
disparity map 𝐷𝑘 that displaces each pixel (𝑢, 𝑣) in 𝐼𝑟 to its corresponding coordinates
(𝑢′, 𝑣′) in 𝐼𝑙, and a semantic mask 𝑆𝑘. Our final goal will be to identify individual trees
to create a semantic representation of the keyframe ℒ𝑘 = {𝑙1, 𝑙2, . . . , 𝑙𝑛}, where 𝑙 is a tree
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landmark modeled as a cylinder. Each step of our framework to achieve this is illustrated
in Figure 21.

6.2 Semantic Feature Extraction and Segmentation

The semantic branch of our architecture is a MobilenetV3 (HOWARD et al., 2019)
backbone for efficient feature extraction for disparity and segmentation. We use Lite
R-ASPP architecture as the segmentation head, as in the original paper. We modify the
original architecture to increase the dimensionality of our feature maps. This increases the
overall computational time of the backbone but is necessary to maintain enough resolution
for the iterative disparity estimation.

The segmentation branch considers only the left rectified view, using supervised
examples automatically computed by the simulator. The semantic loss function L𝑠𝑒𝑚 is
defined by

L𝑠𝑒𝑚 = 0.5 CE(𝑆𝑙, 𝑆𝑙) + 0.5 DICE(𝑆𝑙, 𝑆𝑙), (6.1)

where 𝑆𝑙 and 𝑆𝑙 are the ground truth and predicted semantic segmentation mask, respec-
tively. DICE refers to the multi-class Dice Loss, and CE is the Cross-Entropy loss.

6.3 Deep Disparity Estimation

Feature Aggregation

Feature pyramids have become a standard for disparity estimation. By leveraging
feature maps from different intermediate layers, the model can capture local and global
information about the input. We define three feature maps extracted from the MobileNetV3
backbone 𝐹1, 𝐹2, 𝐹3 of resolutions 1/8, 1/4, and 1/2 of the original image input.

Different approaches have shown that aggregation of features from different resolu-
tions benefits disparity estimation. AANet (XU; ZHANG, 2020) constructs separate cost
volumes for each feature resolution and aggregates their output. Similar to SENet (HU;
SHEN; SUN, 2018) and RTStereo (CHANG; CHANG; CHEN, 2020), the proposed ap-
proach combines features from our backbone via cross-scale feature aggregation. An
attention mechanism weights this operation before computing the cost volume. The net-
work learns the attention weights 𝐴 on the smallest scale features (𝐹1 for our architecture).
Then, for a feature map 𝐹𝑖, we match the scale of the other maps for aggregation via the
following rule
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⎧⎨⎩𝐹
′
𝑗 = 𝜑(𝑢𝑝(𝐹𝑗)), if 𝑖 > 𝑗

𝐹 ′
𝑗 = 𝜑′(𝐹𝑗), otherwise.

𝑢𝑝 is the bilinear upsampling operation, 𝜑 and 𝜑′ are convolutions followed by
batch norm but with strides 1 and 2 respectively. With this approach, we redefine each
feature map as a combination of the resized counterparts. E.g., for 𝐹2, the aggregated
feature map is 𝐹2 = 𝜑(𝜑(𝑢𝑝(𝐹1)) + 𝐹2 + 𝜑′(𝐹3)) · 𝐴 + 𝐹2. This operation increases the
representability of each feature map with a small computational footprint.

Cost Volume

One of the most expensive steps of disparity estimation is the cost volume computa-
tion, where every disparity hypothesis inside a pre-defined range [0, 𝐷𝑚𝑎𝑥] for each pixel is
considered. We propose to compute the total cost volume on a lower scale representation of
the input images and compute residuals (adjustments with respect to the lower resolution
disparity estimate) on larger scales to speed up this step (WANG et al., 2019b; CHANG;
CHANG; CHEN, 2020). We compute the full disparity in our model using 𝐹1 (1/8) and
residuals with 𝐹2 (1/4) and 𝐹3 (1/2). See the architecture design overview in Figure 22
for reference.

A critical part of the cost volume computation is cost representation. Some models
estimate pixel similarity by concatenating the feature vectors, creating a 4D cost volume
(𝐶,𝐷,𝐻,𝑊 ). In contrast, others perform a reduction such as a norm or correlation by inner
product (DOSOVITSKIY et al., 2015), resulting in a 3D cost volume (𝐷,𝐻,𝑊 ). In the
first case, the cost volume is followed by an aggregation step that requires 3D convolutions,
which is a more expensive operation than its 2D counterpart. For this reason, we use a
correlation-based cost volume. However, if computation is not a constraint, 4D volumes
are considered more informative and are expected to lead to better results (KENDALL et
al., 2017; CHANG; CHEN, 2018; ZHANG et al., 2020).

Disparity

As proposed in (KENDALL et al., 2017), we model disparity estimation as a
regression problem, where the disparity estimate 𝑑 is given by

𝑑 =
𝐷𝑚𝑎𝑥∑︁
𝑑=0

𝑑× 𝜎(𝑐𝑑), (6.2)

where 𝜎 is the softmax function and 𝑐𝑑 is the matching cost for each disparity candidate 𝑑.
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Figure 22 – Overview of our Neural Network Architecture. Sharing a MobilenetV3 backbone, the
segmentation head outputs a mask for the left image view. Meanwhile, the disparity
head uses semantic features of different resolutions to estimate a disparity map
efficiently in three stages that trade-off speed and accuracy.

Self-supervised Loss

Most works using CNNs to estimate disparity rely on pseudo or sparse ground truth
to learn in a supervised fashion. However, this data is not trivial to capture and is not
always available. For this reason, we rely on the reprojection error to learn the disparity
between the rectified images. Given the rectified image pair 𝐼𝑙, 𝐼𝑟 and the disparity 𝑑, we
can reconstruct the left image from the right image by warping the right pixels with the
disparity estimate 𝐼𝑙 = warp(𝐼𝑟, 𝑑). Finally, as in Monodepth (GODARD et al., 2019),
the final loss is given by a weighted sum of SSIM(WANG et al., 2004) and the L1 loss
function, with 𝛼 set to 0.15

L𝑑𝑖𝑠𝑝 = (1 − 𝛼) (1 − SSIM(𝐼𝑙, 𝐼𝑙))
2 + 𝛼

⃒⃒⃒
𝐼𝑙 − 𝐼𝑙

⃒⃒⃒
. (6.3)

Semantic Smoothness Loss

The ground and the canopy are irregular surfaces in forests due to the noise created
by leaves, branches, and foliage. On the other hand, the tree trunk, our main object
of interest, can be approximated by a smooth surface. Similar to (HEISE et al., 2013;
GODARD; AODHA; BROSTOW, 2017), we incorporate a second loss term based on
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(a) Ours (Stage 1) (b) Ours (Stage 2) (c) Ours (Stage 3d )

(d) AnyNet (WANG et al.,
2019b) (Stage 3) (e) AANet (XU; ZHANG, 2020) (f) Ground Truth

Figure 23 – Disparity results from each stage of our network, AnyNet and AANet.

disparity gradients 𝜕𝑑 weighted by an edge-aware term using image gradients 𝜕𝐼𝑙. However,
in our formulation, we incorporate the semantic mask 𝑆𝑙 to only consider pixels labeled as
a tree trunk,

L𝑠𝑚𝑜𝑜𝑡ℎ = 1
𝑁

∑︁
𝑖,𝑗

⃒⃒⃒
𝜕𝑥(𝑑𝑖𝑗𝑆

𝑙)
⃒⃒⃒
𝑒−‖𝜕𝑥𝐼𝑙

𝑖𝑗‖ +
⃒⃒⃒
𝜕𝑦(𝑑𝑖𝑗𝑆

𝑙)
⃒⃒⃒
𝑒−‖𝜕𝑦𝐼𝑙

𝑖𝑗‖. (6.4)

We perform joint learning by a simple summation of task-specific losses L𝑠𝑒𝑚 +∑︀3
𝑖=1 L𝑖

𝑠𝑚𝑜𝑜𝑡ℎ + L𝑖
𝑑𝑖𝑠𝑝. However, many works investigate better approaches for multi-task

learning to ensure the model will converge for both tasks, that the features learned
are the best possible for both scenarios, and minimize the trade-offs these approaches
make (KENDALL; GAL; CIPOLLA, 2018; NAKAMURA; GRASSI JR; WOLF, 2022).
Integrating these methods could further improve the accuracy of our model without
compromising the speed requirements.

6.4 Experiments

To design and compare our architecture, we capture data using a pine forest
simulated in Unity3D. In the simulator, we define a UAV carrying a stereo camera with
a baseline of 12cm, 80 degrees of field of view, and image resolution of 640 x 360. The
simulator provides ground truth semantic segmentation labels and depth, from which we
derive the disparity using the camera intrinsic and extrinsic parameters.

Using the autonomy stack proposed in (LIU et al., 2022a), we define multiple mis-
sions using waypoints relative to the take-off position, which are completed autonomously.
This creates data from trajectories that are closer to what a real robot would do, with
different orientations and speeds. We define a mission to capture the training set, com-
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Figure 24 – Disparity estimates across a vertical line on a tree trunk from each method. We
observe that AnyNet outputs noisy estimates while our method computes increasingly
better estimates at each stage. AANet is the closest to the ground truth but is
computationally more expensive.

posed of 590 image pairs, and a different mission for testing with 149 images. Unlike in
autonomous vehicle datasets where the car is aligned with the ground plane, the robot
tilts and yaws during the mission, increasing the variability of the data.

In Figure 23, we illustrate how the trade-offs made by each model affect the quality
of the disparity estimate. Since the first stage of our model computes the disparity using a
low-resolution feature map, the disparity is blurry, but the structure of the nearest tree
trunks is captured. Meanwhile, we can observe that the twigs and leaves on the ground
look blurry. Subsequently, stages two and three refine the disparity map sharpening edges
and defining smaller structures on the ground. Similarly, in Figure 24, we observe that
the quality of the disparity estimate for each stage across a tree trunk follows the same
pattern.

AnyNet uses 1/16 of the input resolution to compute the initial disparity map. This
resolution works for datasets such as Kitti (GEIGER et al., 2013), where the image width
is large (1382). However, for our dataset, we can observe that the low resolution creates a
very noisy and incomplete disparity map, from which the later stages cannot recover due
to the smaller disparity residual search range. AANet, on the other hand, aggregates cost
maps at different resolutions to estimate a single disparity map. This approach is visually
the closest to the ground truth but comes at the cost of increased computation.

Unlike the benchmarks, our model can also output a semantic mask for the input.
This output is essential for downstream tasks such as semantic mapping. We illustrate in
Figure 21 how the masked disparity can be used to create Pseudo-LiDAR measurements
and separate point clouds for the ground and tree points.

Finally, since we have ground truth disparity measurements in the simulator,
we calculate metrics for the disparity error, displayed in Table 9. The End-Point Error
(EPE) computes the absolute per-pixel difference between model output and ground truth
disparity. The 3-Pixel Error (3PE) denotes the percentage of estimated disparity pixels
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Table 9 – Disparity EPE, 3PE, and model runtime for each stage of our method trained jointly
for both tasks, only for disparity (Ours D), and the benchmarks. We use the ground
truth disparity to compute the errors and to train the benchmarks, while our method
is learns disparity without supervision.

Ours S1 Ours S2 Ours S3 Ours D S1 Ours D S2 Ours D S3 AANet AnyNet S3
3PE 0.070 0.036 0.035 0.056 0.0328 0.033 0.012 0.493
EPE 1.080 0.762 0.688 1.040 0.760 0.689 0.380 4.230
Trunk EPE 1.199 0.762 0.669 1.159 0.768 0.672 0.302 4.559
Ground EPE 0.803 0.706 0.689 0.741 0.686 0.682 0.433 2.438
Runtime (ms) 11.345 12.253 13.094 11.345 12.253 13.094 36.567 6.59

whose absolute difference from the ground truth is larger than 3. We also report these
metrics stratifying by the ground truth semantic labels. Moreover, we report median
inference time for a single image pair running on an NVIDIA 3060 RTX laptop GPU.

The proposed method balances between cost map resolution and speed while learn-
ing two tasks. Simultaneously, our architecture maintains an inference speed performance
acceptable for real-time semantic mapping. When using the same architecture, the model
trained only for disparity estimation performs slightly better but still underperforms
AANet, which computes cost maps at higher resolutions. On the other hand, AnyNet
performs worse than all methods due to the low horizontal resolution during cost map
computation.

Semantic Mapping with Stereo and Factor Graph SLOAM

To demonstrate how the Pseudo-LiDAR measurements derived from the proposed
model can be integrated into the factor graph SLOAM framework, we define a loop
trajectory in the Unity3D forest, executed autonomously by the simulated UAV.

The network’s disparity output is transformed to depth and projected to 3D using
the camera parameters. With the semantic segmentation mask, two separate point clouds
are created, one for the points labeled as a tree and another for the ground points, as shown
in Figure 26. In this figure, we can observe that the measurements are noisier around the
edges, where the disparity changes drastically. This noise is a known limitation of CNN-
based approaches that have to reason about 3D data using 2D images and convolutions.
Some works have proposed losses that consider the 3D projection of the network’s estimates
to explicitly account for this effect when using pseudo-LiDAR (WANG et al., 2019a),
which could further to be applied and improve our proposal.

In Figure 25, we show the estimated trajectories using LiDAR and pseudo-LiDAR
in a simulated loop experiment. The colored triangles illustrate the trees mapped via each
method. While the pose estimates are similar, in this experiment is illustrated the most
significant trade-offs of using cameras: the horizontal field of view and depth range. It
holds to note that the LiDAR has a 360𝑜 horizontal field of view, our cameras have 80𝑜.
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Figure 25 – A loop trajectory in simulation using our proposed model as source of semantic
pseudo-LiDAR compared with a simulated LiDAR sensor. Both sensor sources as
integrated with our factor graph formulation for semantic SLAM. We observe that
the trajectories are similar, but the number of trees observed with the camera is
much smaller. This is expected since the field of view of the LiDAR is larger.

The stereo system captures reliable depth up to 5 meters while the LiDARs captures a 25
meters radius in this experiment. On the other hand, cameras have a larger vertical field
of view and capture texture and color information. This information could enable other
tasks, such as species recognition, which would be hard to do with LiDAR point clouds.

6.5 Final Considerations

LiDARs capture large amounts of 3D information but are heavy, expensive, and do
not capture the texture and color of the images. In this chapter, we proposed a neural
network that simultaneously estimates disparity and a semantic mask. To achieve real-time
performance, we make several speed-accuracy trade-offs. First, we use a single model
to learn related tasks, which is known to impact the performance of the model when
compared to specialized models. Also, we show that there is an accuracy and speed
trade-off between the iterative disparity computation approach and aggregating features
to compute a single disparity. The results indicate that we can learn features for both
tasks by training the proposed neural network architecture on a mixture of supervised
learning for semantic segmentation and self-supervised for disparity estimation, saving
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(a) Semantic pseudo-LiDAR front view

(b) Semantic pseudo-LiDAR side view

Figure 26 – Tree trunk point cloud (brown) and ground point cloud (white) derived from a stereo
image pair using the proposed CNN model.
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computational resources for downstream tasks while maintaining acceptable performance
for our end goal of semantic mapping in forests.
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CHAPTER

7
CONCLUSIONS AND FUTURE DIRECTIONS

The preservation of forests is essential for the maintenance of the Earth’s climate
and biodiversity. In this context, multiple stakeholders seek solutions to accelerate and
improve what we know about these environments. More data about forests can help
governments define policies and laws for preservation. Local communities can learn more
about possible sustainable economic activities derived from the rich diversity of plants
available in the forest. Companies can compensate for their emissions by incentivizing
governments and forest owners to preserve their areas by investing in carbon credit. For
all of these activities to happen, it is necessary to know what is inside a forest, and
autonomous robots carrying sensors could be a game changer.

In this thesis, we proposed different methods that run onboard UAVs to gather
valuable information about forests. In Chapter 4, we introduced SLOAM, a framework
that leverages semantic information to increase the robustness of localization and mapping
under forest canopy without GNSS. While semantic features and models increase the
robustness of state estimation and quality of forest maps, we argue that to cover large
regions of a forest, a robot must consider multiple sensing sources to be more robust to the
different types of failure. To this end, we presented a factor graph formulation of SLOAM,
capable of integrating external odometry estimates, semantic landmarks and loop closure
constraints.

Analogously most of the state estimation algorithms, the SLOAM computes its
estimates by associating data between subsequent sensor measurements. This process is
subject to error that is accumulated over time. Adding loop closure constraints to our factor
graph can help mitigate this. Since GNSS is unreliable under the dense forest canopy, and
different regions of the forest look very similar, we proposed in Chapter 5 a novel approach
for "fingerprinting" different regions of a forest using only SLOAM’s semantic map to
derive the position of trees. Our method defines unique geometric shapes by combining
local regions of trees inside one or more sensor observations. We show that even under
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Figure 27 – Example of a Pine forest (left) where most of our experiments were performed, and
Sub-tropical forest (right) where we believe future work should strive for. Tropical
forests are denser and more diverse, creating additional challenges and opportunities
for future research.

significant position or landmark detection perturbations, our method can reliably detect
previously seen regions.

There are many variations of forests, some are homogeneous and sparse while
others are diverse and dense. In Figure 27 we illustrate a Pine and Tropical forest. Most
experiments presented in this thesis considered homogeneous forests such as Pine or
Eucalyptus. Even if these environments are relatively simpler when compared to tropical
forests, these forests are very challenging for an autonomous robot, and systems that
navigate in any forests do not exist. While our motivation for the algorithms proposed in
this thesis is to have them work in any type of forests, there are many gaps that have to
be addressed before deploying UAVs in Rainforests. In Chapter 6 we presented a neural
network that estimates depth and semantic labels given a pair of stereo rectified images.
While there is a clear trade-off between LiDAR and cameras, the latter are cheaper and
lightweight, which could enable smaller and more scalable platforms for forest mapping in
the future.
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Another direction for future work is related to extracting semantic information
from sensor data. The cornerstone of this thesis is semantic data. However, to extract
this information, all methods proposed in this thesis belong to the supervised learning
paradigm. They require labeled data during the training phase before being deployed to
identify the objects of interest. This approach requires labeled data during the training
phase. While there are many datasets for urban navigation with labeled data, there are
none for forestry. For this reason, much effort was put into data labeling during the
development of this work. However, there is a considerable context change for the models
trained on Pine forests data to Rainforests, making it only possible to reutilize the models
by retraining with new examples in the new domain. To increase the usability of our
methods, future work could explore unsupervised or few-shot learning methods to reduce
the dependency on large labeled datasets. For example, the segmentation models could
explore ways to incorporate the geometric priors, such as the tree cylinder models, to its
loss function to learn with weak supervision.

While SLOAM was designed for forestry applications, the factor graph formulation
presented in this thesis is modular and generalizable for other domains. The work presented
in (LIU et al., 2022b) builds on our formulation to incorporate 3D bounding boxes to
capture objects such as cars in urban settings. Future works could explore using more
general geometric priors for arbitrary objects or incorporating other sensors into the state
estimation framework to increase robustness.

Finally, another promising direction for future work is to deploy teams of robots
to improve the scalability of our methods. Since forests are enormous, given the limited
autonomy of UAVs, it would be impossible to cover the entire area with one robot in a
feasible time. For this reason, strategies for multi-robot collaboration would be essential
to make these systems viable in the real world.
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