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RESUMO

RAMOS, J. S. Análise de imagens do músculo esquelético para apoio a tomada de decisão.
2021. 139 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

Sistemas de diagnóstico auxiliado por computador, recuperação de imagens por conteúdo e a
abordagem radiômica são grandes aliados no auxílio à tomada de decisão. Contudo, um passo
comum entre estas abordagens é a segmentação de uma região de interesse, por exemplo, um
corpo vertebral. Desenhar manualmente, de uma forma precisa, os contornos de um corpo
vertebral é uma tarefa demorada e trabalhosa, tornando-se impraticável quando há uma quanti-
dade considerável de exames a segmentar. Como consequência, ferramentas semiautomáticas,
com uma interação manual mínima, se torna atrativa e impulsiona uma alta demanda para o
lado computacional. Deseja-se que, em algum ponto, a interação seja mínima, com pouca ou
nenhuma correção manual. Este doutorado tem a seguinte hipótese: “A segmentação de corpos
vertebrais em RM pode ser realizada de forma computacionalmente rápida, com interação manual
reduzida e, ao mesmo tempo, apresentando resultados precisos.” A validação desta hipótese
foi realizada em três cenários. No primeiro cenário, consideramos a segmentação de corpos
vertebrais fraturados com apenas um corte de RM, no qual foi proposto o método BGrowth, o
qual apresentou uma acurácia de 96.1% com um rápido tempo de processamento; No segundo
cenário, trabalhamos com a segmentação de RM volumétricas, que é uma tarefa ainda mais desa-
fiadora devido à considerável quantidade de cortes presentes nestes exames. Foi desenvolvida
uma família de métodos de segmentação, apresentando-se abordagens cada vez mais rápidas
e com menor interação manual. Ao final, apenas dois ou três cortes precisaram ser anotados,
entre cerca de 100 cortes, atingindo 94% de F-Measure. Para tal, foi proposta a estimativa de
anotações nos cortes intermediários (EANIS), juntamente com o método FastCleverSeg, o qual
apresentou o tempo de execução mais rápido e, ao mesmo tempo, resultado igual ou superior aos
competidores; No terceiro cenário, realizamos a análise de pacientes com fraturas por fragilidade
usando exames de RM e a abordagem radiômica. Foi proposto um método de análise de textura
(BEAUT), o qual obteve uma AUC de 97% na diferenciação de pacientes com e sem fratura por
fragilidade. Portanto, este doutorado contribuiu para o estado-da-arte introduzindo métodos de
segmentação que apresentaram resultados promissores nos três cenários mencionados acima. As
contribuições dessa tese têm um potencial para auxiliar no processo de tomada de decisão e na
produção de padrão ouro para o treinamento de modelos de aprendizado profundo.

Palavras-chave: Segmentação de imagens, ressonância magnética, fratura vertebral.





ABSTRACT

RAMOS, J. S. Analysis of medical images to support decision-making in the musculoskele-
tal field. 2021. 139 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2021.

Computer-aided diagnosis, computer-based image retrieval systems, and the radiomics approach
are great allies to aid in decision making. However, an ordinary and laborious step in those
approaches is the segmentation of a region of interest, for example, a vertebral body. Unfortu-
nately, manually drawing accurate and precise boundaries is time-consuming and impractical
to perform for many exams. Consequently, semi-automatic segmentation tools, with minimal
interaction, pose high and attractive demand to the computational end. The greater goal is
that, at some point, the physician intervention in the segmentation would be minimal with just
a few or even no manual corrections. This doctorate research has the following hypothesis:
“The segmentation of vertebral bodies in MRI can be performed computationally faster with
easier manual interaction and, at the same time, producing accurate results.” We evaluate this
hypothesis in three application scenarios as follows. First, we dealt with the challenging task
of segmenting vertebral compression fractures in single MRI slices. We proposed Balanced
Growth (BGrowth), which achieved 96.1% accuracy while keeping fast run-time performance.
Second, we stepped into the segmentation of volumetric spine MRI exams, which is even more
challenging due to several slices in the exams. We came up with a family of segmentation
methods, presenting faster approaches with less manual interaction. Our final solution required
annotating only two or three slices (among about 100 slices) and achieved 94% of F-Measure.
To do so, we proposed the Estimation of ANnotation on Intermediary Slices (EANIS) along
with the Fast Clever Segmentation (FastCleverSeg) method. Our approach was the fastest one
and, at the same time, presented results similar to or better than the competitors. Finally, we
assessed patients with bone fragility fractures using spine MRI and the radiomics approach. We
proposed BonE Analysis Using Texture (BEAUT), which achieved 97% AUC for differentiating
patients with and without vertebral body fragility fracture. Therefore, this doctorate research
contributed to the state-of-the-art by introducing segmentation methods that presented promising
results in the three scenarios mentioned above. We firmly believe that our contributions have a
high potential to aid in the decision-making process and producing more ground truths for the
training of deep learning models.

Keywords: Image segmentation, magnetic resonance imaging, vertebral fragility fracture.
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CHAPTER

1
INTRODUCTION

Long before any technology took its place, humans have naturally used visual signs to
communicate with each other, for example, through smoke signals and rustic drawings in the
caves. As the technology evolved, we were able to capture and store digital images. Since then,
we have applied digital images in several tasks, such as communication, security, and medicine.
Specifically, in medicine, images from several exams have a relevant role in diagnosing and
decision-making. In this case, Computer-Aided Diagnosis (CAD) and Computer-Based Image
Retrieval (CBIR) systems are pioneers in supporting decision-making using images (GROBEL;
TELLES, 2014; RAVAL; ZAFAR, 2013; GODINHO et al., 2016).

A CAD system outputs a second-opinion based on quantitative analysis of the exam.
In contrast, CBIR systems retrieve images based on their content. Thus, for example, given an
exam with an anomaly, the system retrieves previous similar cases. However, medical imaging
has progressively shifted from conventional visual image analysis to quantitative personalized
medicine. Thus, CAD systems, which focus on a single output (as lesion or cancer), may not suit
properly nowadays requirements. For this reason, the radiomics approach, which is a quantitative
technique for medical imaging, was designed to improve quality and precision of models that aid
decision-making (DURON et al., 2019; KUMAR et al., 2012; AHMAD et al., 2019; XU et al.,
2016).

Radiomics combines the extraction of hundreds or thousands of features from the images
and data from the patients not directly acquired from the images. The aim is to enhance the
existing data to detect disease-specific processes that are not accessible through traditional visual
inspection of the generated images. Therefore, there is no automation of the diagnostic processes.
Instead, radiomics supports existing ones with additional information (TIMMEREN et al., 2020).
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1.1 Motivation
The lumbar or Low Back Pain (LBP) is a common complaint worldwide affecting people

of all ages, compromising the quality of life, causing work absence (impairing mobility), impos-
ing a high economic burden on individuals, families, communities, industry, and governments.
Such issues and pain highlights the importance of caring for the human musculoskeletal system.
According to the World Health Organization1, over 80 percent of the world population may
experience LBP at some time during life. Aging raises the prevalence or incidence of LBP,
growing surgical treatments, requiring accurate and fast diagnoses to prevent complications. In
general, to detect and diagnose several spinal diseases, Magnetic Resonance Imaging (MRI)
exams frequently employed. Usually, computational approaches to support the decision-making
(such as CAD, CBIR, and radiomics approach) limit/crop each exam to a region or volume
of interest. In this way, digital segmentation can be applied, allowing a faster and more objec-
tive analysis of the issues, assisting in the characterization and quantification of abnormalities,
surgery planning, and evaluation of suitable treatments (FATOYE; GEBRYE; ODEYEMI, 2019;
FREBURGER et al., 2009).

In this context, the digital segmentation of a region of interest in a medical image plays a
significant role and can be performed manually, semi-automatically (sometimes with manual
correction), or fully automatically (by specialized methods, often using deep learning). In manual
segmentation, drawing accurate and precise boundaries is time-consuming and impractical to
perform for many exams. Besides, manual segmentation may considerably suffer from observer
bias, presenting intra- and inter-observer variations. In fully automatic segmentation, the use of
traditional methods takes too much processing time, requires the support of powerful computing
resources, and lacks consistent and precise results. Alternatively, automatic segmentation using
deep learning approaches requires thousands of samples whose production requires laborious
work, due to the issues above. On the other hand, semi-automatic segmentation tools, become
highly attractive due to two main reasons (WANG et al., 2017; HAMMERNIK et al., 2015;
KOREZ et al., 2016; GAONKAR et al., 2017):

1. Reduction of the labor-intensiveness of the manual approach by using minimal user input;

2. Easier production of more samples allows scientists to collect a large amount of reference
segmentations to be further used to train deep learning models to automatically and
accurately segment new cases.

Moreover, the semi-automatic segmentation aids in several analysis, as depicted in Figure 1 and
detailed as follows:

Quantitative: measures can be extracted, such as shape, texture, color (JUNIOR et al., 2018).
1 World Health Organization: <https://www.who.int/>

https://www.who.int/


1.2. Problem Statement 3

Figure 1 – Steps in a semi-automatic segmentation schema for volumetric MRI.
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Source: Adapted from Ramos et al. (2019a).

Classification: machine learning techniques can be applied to characterize a given anomaly
(CAD systems) or to retrieve similar cases (CBIR systems) (XUE et al., 2011; CAZZO-
LATO et al., 2019).

Training: Interactive segmentation tools can be meaningful during the education of new radiol-
ogists (KARIMI et al., 2018). Students can learn how to correctly segment each vertebra
and to detect spine pathologies (STEFAN et al., 2018). This kind of training may avoid
potential medical failures, which reduces further complications.

Visualization: 3D human structures can be visualized and used for simulation of medical and
surgical procedures (BANERJEE et al., 2017).

Semi-automatic segmentation methods enormously benefit physicians, as well as sci-
entists (BURIAN et al., 2019). Consequently, at some point, the physician intervention in the
segmentation would be minimal with just a few or even no manual corrections. This Doctorate
research investigated the following question: “How can we ease manual interaction in semi-

automatic segmentation of vertebral bodies in MRI exams and, at the same time, keep or improve

segmentation quality?”. The solution to this research question is challenging due to vertebrae
deformations/fractures, diversity of MRI acquisition parameters, the high computational cost of
segmentation algorithms (mainly in volumetric exams) and how to embed the expert knowledge
acquired over several years of experience without adding observer-bias.

1.2 Problem Statement
As previously mentioned, in this Doctorate research, we aim at advancing in the semi-

automatic segmentation and analysis of vertebral bodies obtained by MRI, focusing on reducing
the manual interaction. To this end, we propose novel segmentation methods and brand-new
techniques to reduce the time spent in laborious manual tasks. Considering the diversity and
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complexity of problems that may arise in this scenario, we propose this Doctorate thesis with the
following hypothesis.

Hypothesis

The segmentation of vertebral bodies in MRI can be performed computationally faster

with easier manual interaction and, at the same time, producing accurate results.

Our thesis's investigation considered data obtained from two distinct sources:

1. Exams obtained from the partners at the Ribeirao Preto Medical School Clinics Hospital -
USP (HCFMRP), within the Thematic FAPESP project “Mining, Indexing and Visualizing

Big Data in Clinical Decision Support Systems” – MIVIsBD2, to which this Doctorate is a
part of;

2. Public domain databases, such as from Zukić et al. (2014), Burian et al. (2019), Chu et al.

(2015a), and Chu et al. (2015b).

Accordingly, we support our previously mentioned thesis by proposing methods to solve
the three following research problems.

Research Problem 1. Segmenting fractured or deformed vertebral bodies in single slices.

A very recurrent disease among older adults is Vertebral Compression Fractures (VCF),
which, in general, is caused by bone-weakening diseases. The literature reports the works
(BARBIERI et al., 2015; CASTI et al., 2017; FRIGHETTO-PEREIRA et al., 2015;
FRIGHETTO-PEREIRA et al., 2015; AZEVEDO-MARQUES et al., 2015; FRIGHETTO-
PEREIRA et al., 2016a) that employ computational methods for VCF analysis from MRIs
exams. The works used, unless stated otherwise, a database with 63 T1 weighted exams
(detailed in Section 3.2.1). The database was divided into 102 lumbar vertebral bodies with
VCFs (53 benign and 49 malignant) and 106 healthy lumbar vertebral bodies. Reference
manual segmentations were performed in the central or most representative sagittal slice
of the exam. The works can be divided into segmentation and classification:

Segmentation: In general, VCFs segmentation is a challenging task due to non-homogeneous
gray intensities within the same vertebral body, which hardens boundaries delineation.
The literature presents the works (BARBIERI et al., 2015; CASTI et al., 2017) that
dealt with the challenge of VCF segmentation. Both techniques used only one seed
point (a mouse click) approximately in the center of the vertebral body in a single
slice.

Classification: the works (FRIGHETTO-PEREIRA et al., 2015; FRIGHETTO-PEREIRA
et al., 2015; AZEVEDO-MARQUES et al., 2015; FRIGHETTO-PEREIRA et al.,

2 FAPESP Process Number 2016/17078-0.
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2016a) dealt with the classification of VCFs using manually segmented vertebral
bodies in 2D (slices) exams. Casti et al. (2017) proposed a cooperative strategy that
exploited the dynamic contribution of the classification models, presenting an AUC
of 94% using QDA classifier and considering the reference manual segmentation
(ground-truth).

Although both segmentation works of Barbieri et al. (2015) and Casti et al. (2017) have
presented promising results, the best classification reported results still depends on the
ground-truth. Aimed at investigating the challenge of VCFs segmentation, we formulated
the following question:

a) How can we segment fractured vertebral bodies from MRI exams with accurate

boundary delineation with an easier and faster manual interaction than the state-of-

the-art approaches?

Research Problem 2. Reducing manual interaction on the segmentation of lumbar vertebral
bodies in volumetric MRI exams.

The segmentation of vertebral anatomical structures, such as paravertebral muscle, inter-
vertebral discs, and vertebral bodies, supports measurement, quantification, and analysis
of diseases related to the spine. In this context, segmentation tools, for example 3D Slicer3

(KIKINIS; PIEPER; VOSBURGH, 2014), which provides friendly Graphical User Inter-
face (GUI) are highly attractive. However, the semi-automatic segmentation algorithms
commonly used in this GUI, frequently, require too much time from the radiologists on
manual annotation of a few or all the slices in the exam (KOREZ et al., 2016; GAONKAR
et al., 2017; ENGSTROM et al., 2011; HILLE et al., 2018, 2018; RAMOS et al., 2019a).
One example of such method is GrowCut (VEZHNEVETS; KONOUCHINE, 2005), which
has been widely employed on the segmentation of medical imaging. Also, a faster but less
accurate version of GrowCut, Fast GrowCut, has been widely used for segmentation of
medical images in the 3D Slicer application. Considering this scenario, we formulated the
following questions:

a) How can we reduce the total time and effort spent on manual annotations of vertebral

anatomical structures in MRI exams and maintain segmentation accuracy?

Research Problem 3. Assessing bone fragility fractures using volumetric MRI and radiomic
texture features.

According to the International Osteoporosis Foundation (IOF)4, one in three women and
one in five men over fifty years old will suffer a broken bone due to osteoporosis worldwide.

3 <https://www.slicer.org/>
4 IOF: <https://www.osteoporosis.foundation/>

https://www.slicer.org/
https://www.osteoporosis.foundation/
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Thus, osteoporosis is a major public health issue, which slowly evolves as an asymptomatic
condition, with increasing probabilities of developing fragility fractures (MCCLUNG,
2005; LÓPEZ et al., 2016). Studies have shown that a previous spine fracture increases
the risk of future hip fracture, which in turn is associated with increased morbidity and
mortality in elderly people (TELLACHE et al., 2009; HAMMERNIK et al., 2015).

As one of the most common fracture occurs in the vertebra (MEHTA; SEBRO, 2020;
LÓPEZ et al., 2016), predicting occurrence of this injury is crucial for prevention and early
treatment. Bone mineral density (BMD) is one of the reference indicators employed to
diagnose osteoporosis, and is associated to an increased risk of fractures, including lumbar
and hip fractures (MCCLUNG, 2005; MEHTA; SEBRO, 2020; WU et al., 2020). Among
other bone measurements employed to estimate bone strength are the bone geometry,
cortical porosity, collagen properties, bone turnover rates, trabecular microarchitecture,
and percentage of microdamage, and bone marrow adiposity (MACIEL et al., 2020). BMD,
evaluated by Dual-Energy X-ray Absorptiometry (DEXA) imaging or bone densitometry,
often fails on predicting osteoporosis fragility fractures (CHANG et al., 2017), as well
as bone mass measurements alone are insufficient to faithfully predict all osteoporotic
fragility fractures (MEHTA; SEBRO, 2020). However, DEXA is still employed as an
initial, but insufficient, step in the evaluation of new drugs efficacy (MACIEL et al., 2020;
WU et al., 2020).

Studies from the literature have used intrinsic information extracted from Computerized
Tomography (CT) scans and MRI to detect osteoporosis, combining the image features
with bone measurements and structural information (TELLACHE et al., 2009; WU et al.,
2020; CHANG et al., 2017). Maciel et al. (2020) reported 13 texture attributes extracted
from L3 vertebrae in MRIs that are strongly correlated to BMD, highlighting the potential
relevance of texture features for fragility fracture assessment. Wu et al. (2020) reported a
negative correlation of BMD with bone quantitative measurements in MRIs, which can
potentially assess the severity of lumbar osteoporosis for scientific research. However, to
the best of our knowledge, the literature lacks studies that address only feature-based MRI
analysis for the classification of patients with fragility fractures risk. New techniques, such
as radiomics, are necessary to achieve better prediction of patients at risk of developing
fragility fractures. Previous literature showed that spine MRI texture features correlate
well with DEXA measurements. We employed our proposed methods to segment and
analyze bone fragility fractures caused by osteoporosis. We aimed at evaluating vertebral
bone fragility using texture analysis and formulated the following questions:

a) Can we assess bone fragility secondary to osteoporosis using MRI?

b) Is it possible to find potential biomarkers to predict bone fragility fractures?
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1.3 Contributions
The main contributions of this Doctorate research are three-fold, each of which addressing

one of the aforementioned research problems.

Contribution 1. Segmenting fractured or deformed vertebral bodies in single slices.

We have investigated the challenge of Vertebral Compression Fractures (VCFs) segmen-
tation and we proposed an efficient and accurate segmentation approach. Based on the
motto “unity is strength”, we take into account that all pixels in the path of an expanding
region have influence on their growth. We achieve “unity” by balancing the weights along
the growing path, so that the final segmentation is an “unanimity” among the pixels. This
allows small intensities transitions, as occurs mostly often in fractured vertebral bodies, to
be better delineated by our proposed method, named Balanced Growth (BGrowth). The
experimental results on a database with 102 crushed and 89 healthy vertebrae showed that
our approach significantly outperformed well-known methods from the literature such as
GrowCut, LazySnapping, image foresting transform, otsu thresholding, among others. We
have achieved 96.1% of accuracy while keeping fast run-time performance. Moreover,
BGrowth presented the best results even with a rough/sloppy manual annotation. The
work (RAMOS et al., 2019) reports BGrowth's contribution.

Contribution 2. Reducing manual interaction on the segmentation of volumetric MRI exams.

The semi-automatic segmentation of vertebral bodies in a volumetric scenario is a chal-
lenging task, due to the large number of slices in the exams. We have assessed several
possible solutions to this challenge and came up with three chronological contributions. We
presented each time faster segmentation algorithm and less manual interaction approaches.

First, we introduced the 3D Balanced Growth (3DBGrowth) approach (RAMOS et al.,
2019a)5 along with the slope coefficient to reduce the total number of annotated slices.
The experimental results showed that, on average, only 37% of the slices had to be
annotated, consequently making the process faster (on average, 36s for each vertebral
body). 3DBGrowth significantly outperformed the competitors and kept comparable
running time. Moreover, 3DBGrowth presented the best results even with simple/sloppy
seed points, which demanded less effort from specialist on the annotation process.

Then, we proposed the Clever Segmentation (CleverSeg) algorithm (RAMOS et al., 2019b),
along with the mean absolute error between slices aimed at minimizing the number of
annotated slices in each exam. In this work, we also optimized the manual annotation
process by estimating the inside annotation based on the outside annotation. The previous
state-of-the-art methods require inside and outside annotations. The experimental results
showed that, on average, only 50% of the slices required outside annotations. The time

5 This contribution won the conference's best paper award.
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spent on overall annotations was 50% faster by using only the outside annotation and
quickly estimating the interior annotation with our approach. CleverSeg presented better
or similar results than the state-of-the-art while managing a statistically significant lower
processing time. Moreover, we made CleverSeg available as a 3D Slicer extension6 and
incorporated it into URule and UTrack mobile applications (CAZZOLATO et al., 2020;
CAZZOLATO et al., 2021), in a straightforward adaptation for the segmentation of colored
images of skin wounds taken by mobile devices.

Finally, we proposed the Fast Clever Segmentation (FastCleverSeg) technique (RAMOS
et al., 2021), along with the Estimation of Annotation on Intermediary Slices (EANIS).
EANIS requires the annotation of only two or three slices to produce an accurate volumetric
segmentation. The experimental results showed that, combining FastCleverSeg and EANIS
makes the segmentation process faster, regarding processing time and manual annotation,
making it easier the production of reference manual segmentations. Moreover, our proposed
segmentation technique is the fastest one and, at the same time, presented results similar
to or better the state-of-the-art regarding segmentation methods. In average, EANIS
performed in 6 ± 3 ms per ROI, while the manual annotation process took only 8.1 ± 2.2s.
Moreover, FastCleverSeg presented an average f-measure of 94% with the fastest run-time:
25 ± 30 ms per ROI.

Contribution 3. Identifying patients with bone fragility using volumetric MRI exams and
Radiomics texture features

We have assessed this novel research topic using data from a study group comprised of
47 patients submitted to DEXA and spine MRI (T2 weighted images). We segmented the
lumbar vertebrae (L1 to L5) using our segmentation method (CleverSeg) in 3DSlicer. We di-
vided the dataset into 97 volumetric vertebral bodies diagnosed as osteopenia/osteoporosis
without fractures, and 97 volumetric vertebral bodies diagnosed as osteopenia/osteoporosis
with fractures. From each vertebral body, we extracted 1,674 texture features using PyRa-
diomics7, including a few variations using LoG and Wavelets. The experimental results,
using traditional machine learning techniques, showed that texture analysis from spine
MRI achieved high diagnostic performance for differentiating patients with and without
vertebral body fragility fracture. The best results were obtained with feature selection,
achieving up to 97% AUC and 92% accuracy. The works from Ramos et al. (2021), Ramos
et al. (2021) report the results regarding this contribution.

6 <https://github.com/JonathanRamos/SlicerCleverSegmentation>
7 <https://pyradiomics.readthedocs.io/>

https://github.com/JonathanRamos/SlicerCleverSegmentation
https://pyradiomics.readthedocs.io/
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1.4 Outline
This chapter summarized our motivation, addressed the problems, objectives and main

contributions of this doctorate research. We organized remaining of this monograph in eight
chapters as follows.

Chapter 2: presents, concisely, fundamentals and relevant background essential to follow the
work, considering a computational perspective as well as medical imaging perspective.

Chapter 3: details the results achieved by BGrowth, which tackles Research Problem 1.

Chapter 4: further explores the results achieved by 3DBGrowth and the negative slope coeffi-
cient, approached as a first step in Research Problem 2.

Chapter 5: presents the results achieved by CleverSeg along with the mean absolute error,
approached as a second step in Research Problem 2.

Chapter 6: reports results achieved by FastCleverSeg and the estimation of annotations on
intermediary slices (EANIS), approached as a final step in Research Problem 2.

Chapter 7: presents results achieved by BEAUT, which tackles Research Problem 3.

Chapter 8: concludes this thesis by stating our main contributions, publications yielded during
the work as well as opportunities for future works.

Appendix A: details how we automatically estimated the inside annotation in a VCF study case.

Annex A: presents the source codes for our most relevant contributions.
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CHAPTER

2
FUNDAMENTALS, BACKGROUND AND

RELATED WORKS

In this Chapter, first, we present the fundamentals of the representation of digital/medical
imaging (Section 2.1). Next, we detail the research topics related to digital imaging, preprocess-
ing, segmentation, feature extraction, classification, and measures to evaluate segmentation and
classification results (Section 2.2). After that, we present, briefly, the anatomical structure of
the human spine (Section 2.4). Then, we go further in the VCF and how a physician normally
diagnoses this disease. We also present works on computational approaches for VCFs analysis,
which includes segmentation and classification.

2.1 Fundamentals of medical and digital imaging

Over the centuries, the use of the electromagnetic spectrum, as depicted in Figure 2,
has revolutionized the practice of medicine, aiding in the analysis, diagnoses and prognoses
of several diseases. Note that the MRI takes place at the radio waves, not involving the use of
ionizing radiation. Ionizing radiation can be harmful to patients if not used in a negligible dose.

In general, each range of the spectrum is represented as discretized values in a matrix,
so that we can visualize, analyze, and store as digital images. Generally, a digital image can be
represented as a 2-Dimensional (2D) matrix with “r” rows “c” columns. Each pair of coordinates
or pixel, say entry (x,y) of the matrix, has a value that defines its intensity. Formally, a digital
image is canonically represented as a bi-dimensional function, f (x,y), with dimension r× c, as
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Figure 2 – Electromagnetic spectrum and common medical imaging modalities.

Gamma ray X-ray Ultra 
Violet Infra-Red Micro-wave

Wavelength
λ (m)

Radio waves

Visible

Frequency 
v (Hz)

Non-ionizing

1024 1022 1020 1018 1016

Ionizing

1014 1012 1010 108 106 104 102

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 104 106

Source: Elaborated by the author.

follows (GONZALEZ; WOODS, 2011):

f (x,y) =


f (0,0) f (0,1) ... f (0,c−1)
f (1,0) f (1,1) ... f (1,c−1)

: : :
f (r−1,0) f (r−1,2) ... f (r−1,c−1)

 . (2.1)

Gray-scale images, in general, fit into this definition by presenting intensities varying
between 0 and 255 (8-bits discretization in [0, 255] ∈ Z) or 0 and 65,535 (16-bits discretization
in [0, 65,535] ∈ Z). A volumetric or 3-Dimensional (3D) image can also be represented with
this definition by adding a third dimension ( f (x,y,z)) so that each entry or voxel in the matrix,
say (x,y,z), presents an intensity and the volumetric exam can be visualized in three distinct
planes, as illustrated in Figure 3.

The sagittal or median plane (in red), is in the y and z Cartesian coordinates (perpendicular
to the ground) which separates the mannequin's left from right. The coronal or frontal plane (in
blue), is in the x and z Cartesian coordinates (perpendicular to the ground) which separates the
mannequin's back (anterior) from the front (posterior). The transverse, axial, or horizontal plane
(in green) is the x, y, and z Cartesian coordinates (parallel to the ground) which separates the
mannequin's head (superior) from the feet (inferior) (MY-MS.ORG, 2008).

As a final remark, we highlight that, with the addition of channels, colored images can
be represented by Equation 2.1 as well. However, in this Doctoral research we focus only 2D
and 3D gray-scale images.
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Figure 3 – Example of Cartesian coordinate system and the basics anatomical planes.

Source: My-MS.org (2008).

2.2 Digital imaging: preprocessing, segmentation, feature
extraction and classification

Once an image is digitally stored as a matrix, a few techniques can be applied, isolated or
in a pipeline, in order to achieve a specific goal. The techniques can be divided into four extensive
research topics, preprocessing (Section 2.2.1), segmentation (Section 2.2.2), feature extraction
(Section 2.2.3) and classification/analysis (Section 2.2.4) as well as measures employed to
evaluate classification and segmentation results (Section 2.2.5). We briefly detail each topic in
the following sections.

2.2.1 Preprocessing

The main goal of preprocessing is to suit the image for a specific application, so that to
obtain visually informative images as well as to ease the subsequently processing and evaluation.
In general, preprocessing can be performed in the spacial domain or in the frequency domain,
detailed as follows (GONZALEZ, 2009).

Spatial domain: usually, employs convolutions (filters) on the image plane, such as high-pass
and low-pass filters. Low-pass smooths the gray intensities and may smooths contours of
the objects in the image as well, and, in general, blur and/or reduce noises. On the other
hand, high-pass sharpen boundaries details, and, often, highlights details in blurred image.
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Another simple, yet useful, preprocessing technique in this domain is the re-scaling of
the gray intensities. For example, occasionally, 16-bits images are converted to 8-bits in
order to reduce computational effort or to normalize the images in a given dataset. This
conversion is accomplished as

g =
f

256
, (2.2)

in which g represents the gray-scale with reduced range of intensities (GONZALEZ,
2009).

Frequency domain: analyze the rate of change among intensities using the Fourier transform.
High frequencies represents portions of the image with several abrupt changes. For ex-
ample, the portion of an image showing hair often contains high frequency data. Low
frequencies represents the portions of the image with not much sudden changes, such as a
flat wall. Thus, high and low-pass filters can be applied in this domain as well. High-pass
filters can remove homogeneous details, while low-pass filters may remove heterogeneous
details (GONZALEZ, 2009).

2.2.2 Segmentation
Generally, the segmentation is a crucial step and the most challenging one. Depending

on the kind of analysis, a bad segmentation can directly impact the quality of the results in
further steps. In most cases, the reference manual segmentation (performed by a specialist) is
considered the Ground-Truth (GT) or gold-standard (GILLIES; KINAHAN; HRICAK, 2016).
There are specific challenges on the segmentation of each region of the human body. For this
reason, for each segmentation task, there is a better working approach. However, they all share
some common goals (KUMAR et al., 2012; GILLIES; KINAHAN; HRICAK, 2016):

i Present precise and replicable results;

ii Be as automatic as possible;

iii Require as minimum as possible of human interaction;

iv Present an acceptable processing time.

According to Gonzalez (2009), segmentation methods can be divided in 3 traditional
groups:

Thresholding techniques that divide the image into groups of pixel intensities. In general,
for this approach, the image is segmented in two groups, in which pixels with intensity
values higher than the threshold is considered as foreground and the remaining pixels are
considered as background. A well-known threshold techniques is the Otsu (OTSU, 1979)
method, which automatically finds the best threshold value by using statistical measures.
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The Edge-detection approach generally works by finding abrupt (local) changes in intensity.
In general, the edges are found using a line detector, which frequently employs a mask or
filter, such as Sobel, Prewitt, or Robert’s, among others.

Region-growing methods work by growing seeds in the image using a determined criteria
among seeds and non-seeds pixels. The seeds are points in the image that are set manually
or automatically. The Superpixels (STUTZ; HERMANS; LEIBE, 2018) algorithm is
the most known on the automatic seed category. In the manual seed category, there are
several methods, in which, to the best of our knowledge, the GrowCut (VEZHNEVETS;
KONOUCHINE, 2005) method has been the most used in the segmentation of vertebral
bodies.

The three segmentation groups can be combined to obtain better results in a given appli-
cation (GONZALEZ, 2009). In the last years, Deep Learning (DL) approaches, which employ
neural networks, have presented promising results in the segmentation of images. However, DL
techniques required hundreds or even thousands of segmented samples to learn how to correctly
segment a given ROI. Depending on the kind of image or research topic, for example, medical
images, acquiring that number of samples can be difficult due to the complexity of the images
and demanded time to produce reference manual segmentation. Data augmentation methods and
transfer learning could be applied to work with small databases. However, does not deal with
the issues we tackle in this thesis. Also, when applying DL techniques, the interactive analysis
guided by the understanding of the evaluation process is impaired. Moreover, depending on
the kind of analysis, they may not generalize well enough to model the data. For these reasons,
traditional methods, are still required to ease the production of reference manual segmentation.

With a given segmentation region in binary (background and foreground), a few post-
processing can be performed using mathematical morphology, which we briefly detail next.

2.2.2.1 Mathematical morphology

In the mathematical morphology, each pixel (x,y) in the image is considered as an
element in a set. Given a binary image, set A contains all the pixels from the foreground (ones)
and set B contains all pixels from the background (zeros). A structuring element can present shape,
such as a line or a square, so that the element can dilate (Definition 1) or erode (Definition 2) an
object in the binary image. The dilation is an operation that “grows” the objects in the image,
while the erosion “shrinks” it.

Definition 1 (Dilation). The dilation between the binary object A in the image and an structuring
element B can be performed as

A⊕B = {z|(B̂)z∩A 6= /0}, (2.3)
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which is the set of all elements whose center from A reflect and translated by B has at least one
point in intersection.

Definition 2 (Erosion). The erosion between the binary object in the image (A) and an structuring
element B can be calculated as

A	B = {z|(B)z∩AC 6= /0} , (2.4)

in which A	B is the set of elements in A whose origin translated by B does not present any
intersection.

Based on these two operations, erosion and dilation, the closing operation can be defined
as the dilation followed by an erosion as

A ·B = (A⊕B)	B . (2.5)

To better exemplify this, Figure 4 illustrates the closing operation. Note that, the closing
operation removes protrusions from the binary object and, at the same time, keeps the original
size of the object of interest.

2.2.3 Feature extraction
A digital image is considered a complex object/data. The feature extraction from com-

plex data is usually performed by Feature Extraction Methods (FEMs) (Definition 3). FEMs
yield numeric signatures of the image content, also known as feature vectors (Definition 4).
Consequently, a digital image can be summarized/represented by its feature vector.

Definition 3 (Feature Extraction Method – FEM). A Feature Extraction Method (FEM) is a
non-bijective function (ξ : S→ V) that enables the representation of a complex object sa from
the complex data domain S into the feature vector domain V as va.

Definition 4 (Feature Vector). A feature vector, say va ∈V, is generated by a FEM (ξ (sa) = va)
such that va summarizes/represents a complex object sa from complex data domain S in the
feature vector domain V.

In general, FEMs work globally or locally considering features of color, texture or shape:

Global features consider every pixel of the image and may enable observers to rapidly perceive
the gist of a scene. Features associated with specific types of scenes include degree of
naturalness, degree of openness, degree of roughness, degree of expansion, and color.

Local features take into account only a part or a region of interest (ROI) of the image, which
refer to a pattern or distinct structure found in an image, such as a point, edge, or small im-
age patch. They are usually associated with an image patch that differs from its immediate
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Figure 4 – Mathematical morphology applied over a binary image. We used a square structuring element
of size 2×2 ([1 1; 1 1]).

(a) Ground-truth. (b) Segmented binary image.

(c) Dilation of (a). (d) Erosion of (b).

Source: Elaborated by the author.

surroundings by texture, color, or intensity. This category includes color, texture and shape
features, such as the ones defined in the MPEG-7 standard by ISO/IEC JTC1 (MARTINEZ;
KOENEN; PEREIRA, 2002). Local features .

In practice, several FEMs can be combined to improve the content representation being
analyzed. Then, after the extractions of features vectors, the classification (Section 2.2.4) or com-
parison among other images can be employed. To compare the images, dissimilarity techniques
ranks the images feature vectors using a distance function, which we cover next.

2.2.3.1 Comparing images

To compare pairs of images represented by their features vectors, a metric or Distance
Function (DF) is usually employed. A metric is part of the definition of a metric space (Defini-
tion 5), which measures how far or close a pair of objects are. The closer the distance is to 0,
the similar the images are. Reversely, the farther away from 0, the most dissimilar the images
are (SAMET, 2006).
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Definition 5 (Metric Space). A metric space is an ordered pair < V,δ >, in which V is the
domain of the feature vectors, and δ is a metric such that δ : V×V→ R+.

Definition 6 (Metric). A metric δ calculates the distance between pairs of elements, for example
< va,vb >, such that va,vb ∈ V, following the properties of symmetry, non-negativity, triangular
inequality, and the identity of indiscernibles. Therefore, ∀va,vb,vc ∈V, δ must hold the following
properties to be considered metric:

Symmetry: δ (va,vb) = δ (vb,va), the distance is a symmetric function;

Non-negativity: δ (va,vb)≥ 0, the distance value must be a positive number;

Triangular inequality: δ (va,vc)≤ δ (va,vb)+δ (vb,vc), the distance between two objects must
not be higher than the distance between them passing through a third object;

Identity of indiscernible: δ (va,va) = 0, the distance of an object to itself is 0.

There are several families of distance functions that follow the metric restrictions. How-
ever, the Minkowski family, or Lp norm, is the most used:

ξ (va,vb) =
( n

∑
i=1

(vi
a− vi

b)
p
)1/p

, (2.6)

in which n is total number of features from feature vectors va and vb (both with the same
dimension n). Note that when p have values 1, 2 and ∞, they are equivalent to Manhattan or city
block, Euclidean and Chebyshev distances, respectively (CONDE; DOMÍNGUEZ, 2018).

Based on the aforementioned concepts, the similarity search or query can be performed
as a range query (Figure 5a) or as k-Nearest Neighbor (k-NN) query (Figure 5b). A range query
return images (signatures) with distance equal or less than a threshold εq. A k-nn query returns
the k nearest images in ascending order.

2.2.4 Classification

To classify an image, given its feature vector, in general, machine learning techniques
are employed. To do so, a predictive classifier gets labeled features and learns the best way to
classify them. The classification methods may use one of the following strategies (FACELI et al.,
2011):

Distance: one of the most popular in this category is the k-NN classification, which observes
the distance among training instances (feature vectors). However, this type of method does
not learn a compact model for the data and the computational cost for distance calculation
between feature vectors grows as the number of instances expands.
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Figure 5 – Graphical examples of similarity searches commonly used for querying images based on their
content. Sq represents the query image, εq represents a range threshold for a range query, and k
is the number of nearest neighbors for a k-nn query.

Sq

εq

(a) Range query.

Sq

εq

Sq

k = 4

(b) k-nn query.

Source: Elaborated by the author.

Probability: the frequency in which a pattern occurs in the feature vectors is highly relevant in
this case. For example, the Naïve Bayes classifier estimates the probability of a feature
based on how frequent it appears in the training data. The main disadvantage of this
technique is that it assumes there is no dependence among the features, ignoring any
correlation among them. On the bright side, the technique only requires a few instances in
the training phase.

Search: takes advantage of the “divide-and-conquer” technique, in which a problem is divided
in sub-problems, composing a decision path. Therefore one or more paths lead to the
classification of each class. Methods in this category are widely kown as Decision Tree
techniques.

Optimization: aims at minimizing or maximizing an objective function. For example, the
Artificial Neural Networks (ANN) that employs an error correction constraint. At each
stage of the learning phase, the network recurs to the error optimization between the
expected classes and the predicted classes.

A few techniques integrate and take advantage of the aforementioned strategies:

Radial Basis Function (RBF): networks uses distances and an objective function approxima-
tion, which can be understood as an elementary ANN (BROOMHEAD; LOWE, 1988).

Quadratic Discriminant Analysis (QDA): separates two or more classes in a quadratic surface
using statistical measures. The goal is to minimize an objective function (quadratic),
assuming normally distributed data (JAMES et al., 2014).
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Support Vector Machines (SVM): calculates the hyper-plane that best separates the classifi-
cation groups in the training data. To this end, the method uses a sparse kernel decision
machine that avoids computing posterior probabilities in the phase of building its learning
model (AWAD; KHANNA, 2015).

Boosting techniques: use a set of weak learners, for example, a decision tree, to compose a
strong learner. For example, AdaBoost method, which gets the outputs of weak learner
and combines the predictions into a weighted sum that represents the final output. The Ad-
aBoost method can be divided in two versions, M1 and M2, in which M stands for “Multi-
class”. For binary classification problems (our case), M1 and M2 are equivalent (FREUND;
SCHAPIRE, 1996). Another example is the LogitBoost method, which takes AdaBoost as
a generalized additive model and applies logistic regression as a cost function. Therefore,
LogitBoost can be seen as a convex optimization approach aiming at minimizing the
logistic loss (FRIEDMAN; HASTIE; TIBSHIRANI, 2000).

2.2.5 Segmentation and classification evaluation measures
For the sake of simplicity, let us consider a binary segmentation and classification

scenario. In the segmentation, regions are segmented in foreground (positive, object of interest,
for example, a mass, a bone or a tissue) and background (negative, anything but the object of
interest). In the classification, the goal is to differentiate between the positive class (for example,
a bone fracture) and the negative class (for example, absence of bone fracture). In this context,
generally, the comparison measures employ the following cases:

True Positive (TP): counts the number of correctly identified positive cases:

• Segmentation: foreground entries1 correctly segmented as part of the foreground;

• Classification: positive cases correctly predicted as positive.

True Negative (TN): holds the number of correctly identified negative cases:

• Segmentation: background entries correctly segmented as part of the background;

• Classification: negative cases correctly predicted as negative ones.

False Positive (FP): comprises the total of negative cases identified as positive ones:

• Segmentation: background entries miss-segmented as part of the foreground;

• Classification: negative cases miss-predicted as positive ones.

False Negative (FN): represents the total number of positive cases identified as negative ones:

• Segmentation: foreground entries miss-segmented as part of the background;
1 Pixels or voxels.
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• Classification: positive cases miss-predicted as negative ones.

In order to compare the resulting segmentation or classification, a few measures, such as
Accuracy, Precision, Sensitivity, Jaccard, F-Measure, and Area Under the Receiver Operator
Characteristic Curve (AUC), can be calculated considering the aforementioned cases. Those
measures present percentage values ranging from 0 to 1, [0,1], defined as follows (TAHA;
HANBURY, 2015; SOKOLOVA; LAPALME, 2009).

Accuracy (ACC): takes into account all aforementioned cases to compute the ratio of correct
positive (TP) and negative predictions (TN) to the total number of input samples:

Accuracy =
TP + TN

TP + FP + TN + FN
. (2.7)

The Accuracy provides an overall effectiveness of the segmenter or classifier. However,
sometimes, it is interesting to know how the positive and negative classes are being handled
separately. Often, the positive class are more relevant to the analysis. Therefore, to that
end, the Precision and Sensitivity present insights on the positive class.

Precision (PRE): Considers the FPs to measure the percentage of TPs correctly identified:

Precision =
TP

TP+FP
. (2.8)

The higher the number of FPs, the lower the Precision, which indicates:

• Segmentation: how much is over-segmented outside of the ground-truth.

• Classification: class agreement of the data labels with the positive labels.

Sensitivity (SEN): uses the FNs to measure the percentage of TPs correctly identified:

Sensitivity = Recall = TPR =
TP

TP+FN
. (2.9)

The higher the number of FNs, the lower the Sensitivity, indicating:

• Segmentation: how much is not segmented within the ground-truth.

• Classification: effectiveness of a classifier to identify positive labels.

The Sensitivity is also known as Recall or True Positive Rate (TPR).

Jaccard Coefficient (JAC): also known as the intersection over union, calculates the intersec-
tion of the reference manual segmentation and segmentation yielded by a segmentation
algorithm (TP) divided by their union (TP + FN + FP).

Jaccard =
|T P|

|T P+FN +FP| . (2.10)
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F-Measure (FM): measures the balance between Precision and Sensitivity by calculating their
harmonic mean:

F-Measure = 2× Precision ×Sensitivity
Precision +Sensitivity

. (2.11)

The F-Measure is also known as the Sørensen–Dice coefficient or Dice Score.

AUC: Measures the area underneath the entire Receiver Operating Characteristic (ROC) curve
plot. The ROC is a graph showing the performance of a classification model at all clas-
sification thresholds. The graph is composed of the Sensitivity values against the False
Positive Rate (FPR):

FPR =
FP

FP+T N
. (2.12)

Lowering the classification threshold leads to predicting more positive cases, increasing
both FP and TP. Reversely, higher classification threshold values lead to predicting more
negative cases, increasing both FN and TN. AUC can be understood as the probability that
the model ranks a random positive case more highly than a random negative case.

For the case of a binary segmentation, the AUC can be calculated using the False Positive
Rate (FPR) against the False Negative Rate (FNR):

AUC = 1− FPR+FNR
2

, FNR =
FN

FN +T P
. (2.13)

When it comes to analyzing specifically 3D segmentation results, a widely employed
measure is the Average Hausdorff 's Distance (AVD), which indicates how far away in voxels,
on average, the Ground-Truth (GT) and SegmenTation (ST) are:

AVD(GT,ST) = max{ ξ (GT,ST), ξ (ST,GT) } , (2.14)

in which ξ (GT,ST) is the directed Average Hausdorff:

ξ (GT,ST) =
∑min ||gti− sti||

N
,∀gti ∈ GT , ∀sti ∈ ST , i = 1,2, ...,N . (2.15)

An AVD of 0 indicates comparable segmentations(MAROŠEVIĆ, 2018). The directed
Hausdorff Distance is generally sensitive to noise and outliers. In the medical context, noise and
outliers are commom in the exams. Therefore, Average Hausdorff is more indicated to compare
segmentation results, since it is more stable and less sensitive to outliers (TAHA; HANBURY,
2015).
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2.3 Medical imaging: systems that aid decision-making

One of the most used application to manage and retrieve medical exams (digital images
and metadata) is the Picture Archiving and Communication Systems (PACS), which, in general,
allows a fast and efficient access to the exams. Usually, a PACS adopt the Digital Imaging and
Communication in Medicine (DICOM) as the standard file format (LAROBINA; MURINO,
2014). DICOM incorporates protocols for the techniques of radiography, CT, MRI, ultrasound,
and, radioactive therapy. Moreover, DICOM defines standardization of information sharing, such
as via portable medias, image compression, 3D visualization, presentation, and reports (KAHN
et al., 2007).

A few systems use the aforementioned architecture and concepts to aid in the decision-
making process. In the next section, we explore two of them: CAD and CBIR systems.

2.3.1 CAD and CBIR systems

CAD systems output a second-opinion to the physician. The aim is to aid in the decision-
making by providing an output based on automatic quantitative analysis of the exam (AHMAD
et al., 2019). In general, CAD systems can be divided into four steps, as shown in Figure 6 and
detailed as follows.

1. First, the image may be preprocessed (Section 2.2.1) for several reasons, such as to remove
noises introduced in the acquisition phase or to enhance the segmentation phase.

2. Next, the region of interest (ROI) is isolated/segmented (Section 2.2.2) so that unnecessary
regions are not included in the analysis.

3. After that, quantitative features are extracted from the ROI (Section 2.2.3). The features
can be characteristics of texture, shape or color.

4. Finally, the extracted features are used to perform the classification (Section 2.2.4), which
yields a second-opinion to the physician.

CBIR systems retrieve images based on their content. The goal is to minimize the
semantic-gap, which is the gap between high-level characteristics, for example objects as we
interpret (car, house, cat, and so on) and low-level characteristics such as shape, texture, and
color (VIKHAR; KARDE, 2017).

In a medical context, a CBIR system takes an input image as query, for example a
fractured vertebral body, as exemplified in Figure 7, and returns similar cases based on the
following steps.
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Figure 6 – Fundamental steps in a CAD system.
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Source: Elaborated by the author.

Figure 7 – Illustration of the fundamentals steps in a CBIR system.
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1. First, the system extracts features from the query image (Section 2.2.3). In this case, the
image may or may not be segmented, depending on the kind of features that will be
extracted from the image. In general, shape features require segmented ROIs.

2. Next, the feature vector of the query image is compared to the feature vector of the
images in the database. The comparison is made using a similarity query, as explained in
Section 2.2.3.1.

3. Finally, the result is the rank (k-NN query) or grouping (range query) of the similar images
in the database.

Although CAD and CBIR systems have presented promising results, medical imaging
has progressively shifted from conventional visual image analysis to quantitative personalized
medicine. Furthermore, the field of medical image analysis has grown exponentially, which
implicates in increased data set sizes, consequently growing the number of pattern recognition
tools to analyze such data. For this reason, the development of processes for high-throughput
extraction of quantitative features were facilitated. Thus, allowing the conversion of images into
mineable data and the subsequent analysis of these data for decision support (DURON et al.,
2019; KUMAR et al., 2012; AHMAD et al., 2019; XU et al., 2016). To take advantage of this
high-throughput extraction of quantitative features, the Radiomics approach was designed to
improve quality and precision of models that aid decision-making, as we explain next.
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2.3.2 Radiomics approach
Radiomics is a quantitative technique to aid medical imaging, which combines the

extraction of hundreds or thousands of features from the images, as well as data from the patients
not directly acquired from the images (DURON et al., 2019; KUMAR et al., 2012; AHMAD et

al., 2019; XU et al., 2016). The aim of radiomics is to support decision making by enhancing the
existing data, in order to detect information of disease-specific processes that are not accessible
through traditional visual inspection of the generated images. Thus, improving quality and
precision of models that aid in the decision making. The main idea is not to automate the process,
but rather supports existing ones with additional information (TIMMEREN et al., 2020).

Radiomics can be divided into four main parts, as depicted in Figure 8. Each part presents
its own intrinsic challenges, which harden the implementation in a clinical set-up (GILLIES;
KINAHAN; HRICAK, 2016), detailed as follows.

Figure 8 – The Radiomics approach workflow.

1a - Examination
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3  - Feature Extraction 
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Source: Adapted from Lambin et al. (2012), Gillies, Kinahan and Hricak (2016).

1. Examination and Imaging: the exams can vary, coming from Computed Tomography
(CT), MRI, Positron Emission Tomography (PET), among others. Moreover, the exams
may present diverse acquisition parameters, such as resolution, patient position, 3-D
reconstruction, slice thickness. For those reasons, it is difficult to compare results from
distinct hospitals with different acquisition equipments. Furthermore, finding exams with
the similar clinical parameters, for example disease stage, is a challenging task. Thus,
standardization is the greatest challenge in the acquisition phase (LAMBIN et al., 2012;
GILLIES; KINAHAN; HRICAK, 2016).

2. Segmentation: poses as a crucial, challenging and also controversial step. The proceeding
analysis relies on the accuracy of the segmentation, making it crucial. In some cases, the
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boundaries of the ROI are not always well-defined in the image, making it challenging
to segment. It is controversial because there is no consensus about manual or automatic
(reproducible) segmentation, or which one between both is more reliable (GILLIES;
KINAHAN; HRICAK, 2016).

3. Feature extraction: the goal is to extract as many features as possible, and, when possible,
include information of the patient anamnesis, biopsy data, genomics and proteomics data.
The total number of feature extracted are then selected, discarding irrelevant features, in
which machine learning techniques are employed. The challenges in this step includes
imprecise features due to issues aforementioned in earlier steps.

4. Analysis: one of the challenges in this step is the number of available samples for the
training methods. In general, the data is filtered and a few of them are discharged due to
missing or inconsistent data, which reduces the total number of sample size. The analysis
in a preprocessed database (with removed irrelevant cases, missing or inconsistent data)
employs data mining techniques (artificial intelligence, machine learning or statistics
analysis).

According to Gillies, Kinahan and Hricak (2016), when building a database for Radiomics
analysis:

``[...] numbers are king and quality is queen.''

This implicates that the accuracy of the predictive classifier model relies on having sufficient
data. In general, the best models can accommodate additional clinical or genomic covariates,
which increases the need for large high-quality data sets. Most of the times, the curation of
a small dataset, say 100 patients, takes over hundreds of hours. Here, the curation refers to
segmentation, validation through charts, review of pathology and image acquisition parameters,
and so on (GILLIES; KINAHAN; HRICAK, 2016). For those reasons, in this Doctorate research
we focus on easing the time spent in laborious manual tasks by proposing faster and accurate
segmentation methods and, at the same, with fewer and less demanding interactive and/or manual
annotations.

2.4 Brief spine anatomy
The human body has 206 bones, in which 33 individual bones, stacked one on top of

the other, composes the vertebral column, also known as backbone or spine. One of the most
important role of the spine is to protect the spinal cord from injury. The spinal cord, roughly,
performs the transmission of neurological signs from the brain to the whole body, controlling
the voluntary muscles of the trunk and upper and lower extremities and receives sensory input
from these areas of the body. Other important roles of the spine includes the main support for
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our body, allowing us to stand upright, bend, and twist (BICAN; MINAGAR; PRUITT, 2013;
SPINE, 2018).

A healthy spine depends on strong muscles and bones, flexible tendons and ligaments,
and sensitive nerves. We can feel pain if any of these structures gets affected by strain, injury, or
disease. The spine is divided into five main regions, so that each region has unique features that
help in performing its main purpose, as illustrated in Figure 9a and detailed as follows (SPINE,
2018). Starting from top to bottom:

Figure 9 – Spine groups and vertebra parts.

(a) The spine is grouped in five parts: cervical, tho-
racic, lumbar, sacral, and coccyx.

Body Processes

Back (posterior)Front (anterior)

Spinal 
cord

Processes

Body

Vertebral Arch

(b) The three main parts of a vertebra: body, verte-
bral arch, and processes for muscle attachment.

Source: Adapted from Spine (2018).

Cervical (numbered C1 to C7): holds the weight of the head, which, in average, weights 4.5
Kilograms. The five cervical vertebrae (C1 to C5) presents the wider range of movements
due to two vertebrae connected to the skull (C1 and C2). The first vertebra (C1), presents
a ring shape and directly connects to the skull, which allows us to give the “yes” sign with
our head. The second vertebra (C2), presents a peg-shaped axis, which has a projection
called the odontoid. The movement of C2 allows us to give the “no” sign with our head.
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Thoracic (numbered T1 to T12): presents the main purpose to hold the rib cage and protect
the heart and lungs. The thoracic spine has a limited range of motion.

Lumbar (numbered L1 to L5): mostly bear the weight of the body and absorb the stress of
lifting and carrying heavy objects. The lumbar vertebrae are larger in size when compared
to the other vertebrae. For this reason, most of the diseases/fractures caused by bone
weakening takes place in the lumbar spine.

Sacral (numbered S1 to S5): connect the spine to the hip bones (iliac). The five vertebrae are
fused together and, joined with the iliac bones, they form the pelvic girdle in the shape of
a ring.

Coccyx: also known as tailbone, presents four fused bones provide attachment for the ligaments
and muscles of the pelvic floor.

While each one of the five regions of the spine has unique regional features, every
vertebra has three functional parts, as depicted in Figure 9b. The body is designed to bear weight
and withstand compression and presents the shape of a drum. The vertebral arch bone that
protects the spinal cord. The processes have the shape of a star and are designed for muscle
attachment.

As Figure 10 shows, between each pair of vertebrae there is an intervertebral disc, which
“link” or cushion the vertebrae and prevents the bones from rubbing each other. The discs are

Figure 10 – Discs are made of two main parts, in which the annullus pulls the vertebrae bones together
against the resistance of the nucleus.

Vertebrae Nucleus

Annulus

Source: Adapted from Spine (2018).

designed like a radial car tire and is composed of two main parts, the nucleus and the annulus.
The annulus (outer ring), has crisscrossing fibrous bands, which attach between the bodies of
each vertebra. The nucleus (inner ring) contains mostly fluid, which is absorbed during the night
as we lie down and is pushed out during the day as we move upright. Our discs increasingly lose
the ability to reabsorb fluid and become brittle and flatter as we age. This is one of the reasons
why we get shorter as we grow older.
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In this Chapter, we present the relevant background related to medical imaging. From
the acquisition and representation (Section 2.3), in which the utilization of the electromagnetic
spectrum of light has revolutionized the practice of medicine, to systems that support the decision-
making, such as Computer-Aided Diagnosis (CAD) and Content-based Image Retrieval (CBIR)
systems (Section 2.3.1), as well as the Radiomic approach (Section 2.3.2).

2.4.1 Vertebral Compression Fracture – VCF

Among several spine diseases, VCFs, exemplified in Figure 11, often occurs in older
adults. In general, it is caused by bone weakening diseases, such as osteoporosis (benign VCF)
or bone metastases (malignant VCF). Usually, VCFs affects the lumbar vertebrae since they
bear the weight of the body. In a clinical context, VCFs caused by osteoporosis are diagnosed
as benign while VCFs caused by bone metastases are diagnosed as malignant. In both cases,
patients present similar complaints. Thus, the differentiation between them is crucial for the right
diagnose and treatment (PEREIRA, 2016).

Figure 11 – Example of healthy vertebral body and vertebral compression fracture. (VCF)

Healthy 
Vertebral 

Body

Vertebral 
Comprression 

Fracture

Source: Adapted from Spine (2018).

To investigate a VCF's etiology, the physician can use MRIs of the spine. The analysis of
gray intensities within the vertebrae is performed to differentiate between a benign or malignant
VCF. In the clinical routine, the physician compares the gray levels of the intervertebral disc
with the gray levels as well as the shape of the vertebral body. Frequently, the following criteria
are used to investigate the etiology of a VCF (considering MRI exams with T1-weighted
sequences) (PEREIRA, 2016; FRIGHETTO-PEREIRA et al., 2016b):

Healthy: the vertebral body frequently presents an approximately rectangle shape in the sagittal
plane, which may include osteophyte that causes small deformations in the shape of the
vertebral body itself, due to outgrowth and marginal bone proliferation. Usually, the inner
part of the vertebral body presents higher gray levels than the intervertebral disc (CUÉNOD
et al., 1996), as shown in Figure 12a.
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Benign: In this case, the posterior wall may present angulated or irregular contours with
fragmented retropulsion on the the vertebral body. Accentuate concave shape can be
observed in vertebral plateaus, as well as rough contours with indentations caused by
subchondral bone impaction, as shown in Figure 12b

Malignant: may present a posterior bulge or convexity of the posterior vertebral body wall
along with concave deformation of the vertebral plateaus. Malignant processes and the
bulging neoplastic tissue may cause the contours of vertebrae to be relatively rounded or
smoother, as shown in Figure 12c.

Figure 12 – Example of vertebral bodies with and without VCFs in MRI exams (T1-weighted sequence).

(a) Healthy. (b) Benign fracture. (c) Malignant fracture.

Source: Adapted from Casti et al. (2017).

Sometimes it is not possible to achieve a precise diagnose analyzing the characteristics
aforementioned. In those cases, the investigation of the patient’s history, biopsy exams and
computational methods can be employed.

2.5 Final Considerations
In this chapter we presented the fundamental concepts of digital imaging related to the

research developed in this Doctoral thesis. All concepts and related works not presented herein
will be covered in the next chapters as demanded by each context. As stated in the beginning of
the chapter, the literature covered in this chapter is quite broad regarding the subjects presented.
We did not intent to deeply discuss each topic. Rather, we briefly and concisely presented the
key-points of each subject, so that to cover the required background and knowledge to understand
the contributions of this doctoral research. Since, most systems that support decision-making,
such as CAD, CBIR and Radiomics, in general, requires laborious manual interaction in some
steps, for example, in the segmentation. Therefore, in this Doctorate research we focused mostly
on easing the manual annotation time in the segmentation process. In the next Chapters we cover
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our contributions, in a chronological order, towards advancing the semi-automatic segmentation
for musculoskeletal region, specifically for vertebral bodies and muscles segmentation.
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CHAPTER

3
SEGMENTING VERTEBRAL COMPRESSION

FRACTURES IN MAGNETIC RESONANCE
IMAGING USING BALANCED GROWTH

In this chapter, we present the challenging task of segmenting VCFs, which, in gen-
eral, present heterogeneous gray intensities within the same vertebral body, which difficult its
segmentation. To cope with this segmentation challenge, we present our proposed Balanced
Growth (BGrowth) segmentation method (Section 3.1). BGrowth takes advantage of the motto
“unity is strength” to balance the weights along the growing path of the segmentation region (the
vertebral body in this case). Thus, our method achieves a better delineated border at both dark
and bright regions even with rough/sloppy seeds (manual annotation). The experimental results
(Section 3.3) on a dataset with 102 crushed and 89 healthy vertebrae show that our approach
significantly outperforms well-known and state-of-the-art methods from the literature. We have
achieved an accuracy up to 95% while keeping acceptable processing time performance, that
is equivalent to the state-of-the-art methods. Finally, we present the concluding considerations
(Section 3.4).

3.1 Balanced Growth Method

Based on the motto “unity is strength”, Balanced Growth (BGrowth) takes into account
that all pixels in the path of an expanding region have influence on its growth. BGrowth achieves
“unity” by balancing the weights along the growing path, so that the final segmentation is a
“unanimity” among the pixels. As a consequence, small intensities transitions are better delineated,
as occurs mostly often in fractured vertebral bodies.

For simplicity’s sake, we consider the segmentation of two regions, foreground as
vertebral body and background as the remaining parts. Since images come from MRIs exams,
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we consider gray-scale images. However, the method can be easily adapted to more than two
regions and for color images.

Let us consider a digital image as a matrix, as we defined in ??, and represented it by I.
Then, let us consider a matrix of annotations or labels regions and represented it by L, which is
the matrix that contains the annotations/seeds manually drawn by the user. Both matrices I and L

have dimension r× c, in which r is the number of rows and c is the number of columns. Each
entry in L has value−1, 0 or 1, representing background, unlabeled, and foreground, respectively.

Algorithm 1: BGrowth method.
Input: Image I and labels matrix L.
Output: Segmented binary image L == 1.
/* Step 1: Set initial weights */

1 for L(i, j) 6= 0, ∀(i, j) do
2 W (i, j)← 1.0 // Equation 3.1

3 maxIntensity←max∀i, j I(i, j)
/* Step 2: For each labeled pixel and its 8-Neighbors */

4 for L(i, j) 6= 0,∀(in, jn),∀(i, j) do
5 intensityDi f f ← 1− (|I(i, j)− I(in, jn)| / maxIntensity)
6 strength←W (i, j)× intensityDi f f // Equation 3.3
7 if (strength−W (in, jn))> 0.01 then
8 L(in, jn)← L(i, j)
9 W (in, jn)← 0.5×W (in, jn)+0.5× strength

BGrowth method is divided into two main steps, as shown in Algorithm 1. The first step
is to set up a weight matrix W (Algorithm 1) as in Equation 3.1, in which i = 1,2, ...,M and
j = 1,2, ...,N are the matrices indexes and W has the same dimension as I and L. We assign the
weight 1.0 for labeled pixels and the weight 0.0 for unlabeled pixels L(i, j) 6= 0 (line 2). Then,
we find the highest gray intensity in image I, represented as maxIntensity (line 3).

W (i, j) =

1.0 if L(i, j) 6= 0.

0.0 otherwise.
(3.1)

The second step is to analyze each labeled pixel at index (i, j) (line 4) and its 8-neighbors
(in, jn) in the image (we visit all pixels in the image). For each neighboring pixel at index (in, jn),
first, the absolute pixel intensity difference (line 5) is normalized by the maximum pixel value in
the image and subtracted by 1, which produces values within the range [0,1]:

intensityDi f f = 1− |I(i, j)− I(in, jn)|
max∀(i, j) I(i, j)

. (3.2)
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Next, a strength factor strength (line 6), which is the product of the central pixel weight
and the intensity difference, is calculated as

strength =W (i, j)× intensityDi f f , (3.3)

If the difference between the strength and the neighboring pixel weight (line 7) is greater
than a threshold (empirically set to 0.01 in this case), then the central pixel (i, j) expands to the
neighboring pixel at index (in, jn): its label is changed (line 8) and the new weight is balanced
with the old one (line 9). The algorithm iterates until no neighbor label was updated.

Without a threshold, the balancing may go back and forth, which may prevent the
algorithm from converging or to run unnecessary iterations. Thus, we avoid averaging values
over the second decimal place, consequently, managing the number of iterations and speeding up
the processing time.

The balance induced by the weights produces smoother borders at regions with small
pixel intensities. In our experimental evaluation, we determined that balancing the weights (old
and new one) equally produces the best results. Moreover, as long as the interior annotation
contains small portions of the dark and bright regions, it can work well even with rough interior
and exterior seed points. To better illustrate this, Figure 13 shows a few iterations of BGrowth for
a single vertebral body segmentation. Note that, at iteration 8 (Figure 13e), a few dark regions
(outside of the vertebral body) are still part of the foreground and, as the balancing goes on,
the foreground shrinks towards the ground-truth. The final result is quite close to the manual
segmentation.

Figure 13 – Example of BGrowth's iterations. Ground-Truth in red, interior annotation in white, exterior
annotation in green and final segmentation in cyan.

(a) Original ROI. (b) GT and initial seeds. (c) Final result.

(d) Iteration 1. (e) Iteration 8. (f) Iteration 15. (g) Iteration 30.

Source: Adapted from Ramos et al. (2019).
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Figure 14 shows another example of BGrowth's iterations on five lumbar vertebrae. Note
that, the method works well even when a simple line is given as seed points. The only constraint
is that the interior annotation has to comprise the dark/bright regions within the vertebral body.

Figure 14 – Example of BGrowth's iterations on five lumbar vertebral bodies: Ground-Truth, interior an-
notation and exterior annotation boundaries are outlined in red, white and green, respectively.

(a) Annotations. (b) Iteration 1. (c) Iteration 5. (d) Iteration 10. (e) Iteration 20. (f) Iteration 50.

Source: Adapted from Ramos et al. (2019).

As we work with the balance of old and new strength factors, it might happen that the
process of expansion goes back and forth on the same pixel. Therefore, we would recommend the
definition of a maximum number of iterations depending on the kind of image being segmented.
For the vertebral body segmentation, we have empirically used a maximum of 30 iterations for
the segmentation of a single vertebral body. For a whole exam, as exemplified in Figure 14, a
few more iterations might be necessary.

3.1.1 Time complexity

In the worst case scenario, the algorithm has a time complexity of r× c× 8× it =

O(r× c× it), where it is the maximum number of iterations.

3.2 Materials and Methods

In this section, we first describe the experimental database in Section 3.2.1, which is
composed of healthy, malignant and benign vertebral bodies. Then, we present the experiment
design, starting with the parameters settings in Section 3.2.2, which presents the computational
set-up as well as how the manual annotations were performed. Next, we detail the state-of-the-art
considered in the analysis in Section 3.2.3. Finally, in Section 3.2.4, we present the considered
measures to validate the experimental results.
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3.2.1 Patient database

We have used a meaningful database of lumbar vertebral bodies (L1, L2, L3, L4, and
L5), including 89 healthy vertebral bodies and 102 with VCFs. Bone metastases, confirmed by
biopsy and histopathological analysis, occurred in 49 VCFs (malignant VCFs). The remaining
53 VCFs were benign fractures and, following clinical guidelines, not all of them were confirmed
by biopsy or histopathological analysis. On these cases, a musculoskeletal radiologist with over
20 years of experience carefully reviewed the radiological information system (RIS) and the
hospital information system (HIS) and supervised the manual segmentation (ground-truth). This
study was approved by the Ethics Research Committee of the Ribeirão Preto Medical School -
USP, where the database was acquired.

The exams were acquired using the Achieva 1.5T MRI system (Philips Medical Systems,
Best, the Netherlands). T1-weighted MRI sequences were produced using the following imaging
parameters: mean echo time (ET) = 9.83±0.82 ms, mean repetition time (RT) = 489±75.58 ms,
mean field of view (FOV) = 32.25×33.33±3.98×6.39 cm, acquisition type 2D, flip angle 90◦,
and a slice thickness of 4 mm. The images used for the analysis have a spatial resolution of 353
µm/pixel. To compose the database, the central sagittal slices of 63 patients were considered,
which included 38 women and 25 men, with a mean age of 62.25±14.13 years.

To assure the same conditions to every segmentation method, all exams were normalized
from 65,535 gray levels (16 bits/pixel) into 256 gray levels (8 bits/pixel) using Equation 2.2.

We divided the database into four groups as follows.

Healthy: contains only normal vertebral bodies, without any fracture, summing up to 89 healthy
vertebral bodies.

Benign: has only osteoporosis fractures (53 benign VCFs).

Malignant: presents only metastasis fractures (49 malignant VCFs).

All: comprises the three earlier groups, which sums up to 191 vertebral bodies.

3.2.2 Parameters settings

The parameters for all methods that used superpixels were empirically set to m×n×0.25
superpixels (25% of the total pixels in the image) for each ROI, in which m and n are the number
of rows and columns of the ROI, respectively. The maximum number of iterations was set to 300
for Chan-Vese technique. For BGrowth and GrowCut, no maximum number of iterations was
set. The remainder of the parameters for all methods were set to default settings to avoid loss of
generalizability. No pre or post-processing technique were applied to assure the same conditions
for all segmentation methods.
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3.2.2.1 Computational set-up

The experiments were performed on a desktop with a 3.60GHz Intel(R) Core(TM) i7
CPU and 16GB RAM using Matlab(R) version 2021a.

3.2.2.2 Manual annotations

As Figure 15 shows, the initial interior and exterior seeds annotation were performed in
a “sloppy” way, i.e., no detailed boundary for accentuated curves were drawn. In general, the
annotation looks like a rectangle.

Figure 15 – Example of sloppy annotations (seed points): ground-truth (GT) in red; interior and exterior
annotations in white and green, respectively.

(a) Exam 42. (b) Exam 50.

Source: Adapted from Ramos et al. (2019).

3.2.2.3 Variations in the inside/outside annotations

We performed interior and exterior variations on the annotations, which we detail as
follows.

Interior variation: We keep a sloppy exterior annotation and vary the percentage of interior
annotation on each vertebral body, as exemplified in Figure 16. A percentage of the ground-
truth is extracted for each vertebral body. We always keep at least a line that goes through
the dark and bright regions. The percentage starts at 10% (Figure 16a), increasing by 10%,
up to 90% (Figure 16c), summing up to 9 variations.
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Figure 16 – Examples of variations in the interior annotation.

(a) 10%. (b) 50%. (c) 90%.

Source: Elaborated by the author.

Exterior variation: We keep a sloppy interior annotation and vary the distance, in pixels, of
the exterior annotation in relation to the ground-truth, as exemplified in Figure 17. Starting
at a distance of 3 pixels (Figure 17a) from the ground-truth, increasing by 3 pixels up to
27 pixels (Figure 17c), which sums up to 9 variations. We crop the ROI according to the
convex hull of the exterior annotation. Therefore, in the exterior annotation variation, the
ROIs size vary according to the size of the exterior annotation.

Figure 17 – Examples of variations in the exterior annotation.

(a) 3 pixels. (b) 15 pixels. (c) 27 pixels.

Source: Elaborated by the author.

3.2.3 State-of-the-art segmentation methods

In order to evaluate the correctness of BGrowth, we compared it with the methods
GrowCut, GrabCut, LazySnapping, VBSeg (BARBIERI et al., 2015), Image Foresting Transform
(IFT)1 (FALCÃO; STOLFI; LOTUFO, 2004), Chan-Vese or Snakes (CHAN; VESE, 2001) and
Otsu threshold (OTSU, 1979). To the best of our knowledge, although most of the aforementioned
methods have not been used for the segmentation of VCFs, they have been adapted or used in
several medical applications (YONG et al., 2017; LU et al., 2017; WU; NAKAO; MATSUDA,
2016; JUNIOR et al., 2018). We consider those segmentation approaches in our analysis to
address a wider assessment of VCFs segmentation over the state-of-the-art methods, considering
they are the most representative approaches for this kind of analysis/segmentation. We briefly
describe each method as follows.
1 <https://github.com/joakimlindblad/FuzzConn/blob/master/ift.m>

https://github.com/joakimlindblad/FuzzConn/blob/master/ift.m
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GrowCut: Egger, Nimsky and Chen (2017) segmented normal vertebral bodies using the Grow-
Cut (VEZHNEVETS; KONOUCHINE, 2005) algorithm, since the faster version, named
as Fast GrowCut (ZHU et al., 2014), presents slightly lower segmentation performance
than the original GrowCut (ZHU et al., 2014). Both approaches employ several seeds
points inside and outside of the ROI/VOI.

GrabCut: uses Gibbs energy (GEMAN; GEMAN, 1984) and Gaussian Mixture Models as soft
segmentation for the background and foreground (ROTHER; KOLMOGOROV; BLAKE,
2004).

LazySnapping: LazySnapping works as an interactive image cutout tool and also uses Gibbs
energy, combining graph cut with a pre-computed over-segmentation, e.g. Superpixels (LI
et al., 2004).

IFT: is a graph-based approach to the design of image processing operators based on con-
nectivity, dealing with how different operators relate to each other (FALCÃO; STOLFI;
LOTUFO, 2004).

Chan-Vese: uses level-set functions to overcome common issues with Snakes segmentation
methods (CHAN; VESE, 2001), such as sensibility to initial seeds (the seed need to be
placed closer to the boundaries of the segmentation object) and difficulties dealing with
protrusions and topological changes (JIANG; ZHANG; NIE, 2012).

Otsu: binarizes a gray-scale image by automatically finding the best threshold that maximizes
the intra-class variance (OTSU, 1979).

3.2.4 Evaluation measures

To evaluate BGrowth's segmentation results, we employed the measures of Accuracy
(Equation 2.7), Precision (Equation 2.8), Sensitivity (Equation 2.9), Jaccard (Equation 2.10), and
F-Measure (Equation 2.11).

3.3 Experiments, results and discussion

We divided our experimental design in three main parts, as depicted in Figure 18 and
detailed as follows. First, in Section 3.3.1, we present the experimental results considering a
measure analysis. Then, in Section 3.3.2, we analyzed resulting statistical difference for each
segmentation method against our proposed BGrowth. Finally, in Section 3.3.3, we assess the
impact of changing the percentage of manual annotation inside and outside each vertebral body
for every approach that uses this kind of annotation.
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Figure 18 – Experimental design to validate BGrowth.

Experiment 1
Measure Analysis

Experiment 2
Statistical tests

Experiment 3
Variation on Man-

ual Annotation

Source: Elaborated by the author.

3.3.1 Measures analysis

We conducted the measure analysis in two main parts, first, we assess the results for
group All, then for groups Healthy, Benign, and Malignant.

Table 1 reports the average results for group All, taking into account each segmentation
method considered in our experiments. Overall, BGrowth presented the best results, the only
exception was in the Run-Time, in which Otsu was the fastest and BGrowth the second faster.
However, although Otsu was the fastest, it presented one of the lowest Precision and Sensitivity.
GrowCut presented the second best results for most measures.

Table 1 – Results of the segmentation assessment considering group All.

Measure (%) Run-Time

Method Accuracy Precision Sensitivity F-Measure Jaccard (ms/ROI)

BGrowth 95.8 ± 07 96.0 ± 05 96.8 ± 06 96.4 ± 06 90.6 ± 11 12.8 ± 07
GrowCut 95.5 ± 07 95.7 ± 05 96.6 ± 07 96.1 ± 06 89.9 ± 11 18.1±11

IFT 94.4 ± 07 95.1±05 95.4±07 95.2±06 87.6±11 22.9±08
LazySnapping 93.7±07 94.6±05 94.8±07 94.6±06 86.1±12 48.6±40

GrabCut 66.8±16 92.4±14 53.6±28 62.1±21 55.9±19 26.9±58
Chan-Vese 79.6±16 89.4±10 76.6±23 79.6±20 65.0±21 500.5±70

Otsu 80.5±13 85.4±13 83.6±13 83.5±11 63.3±23 0.6 ± 04
VBSeg 71.0±11 80.0±14 87.0±06 – – –

Source: Research data.

Note – Bold and underlined values highlight the best and second-best column results, respectively.

Table 2 reports the average results for groups Healthy, Benign, and Malignant. BGrowth
presented the highest results for every measure on each group. GrowCut presented the second-
best results for every measure on every group. IFT and LazySnapping presented promising results
as well. Note that, the segmentation methods drop the segmentation performance when there are
VCFs. Moreover, each method tends to present a default segmentation behavior or pattern, as
illustrated in Figure 19. The dark and bright regions within the same vertebral bodies difficult the
segmentation for all methods. Thus, most methods present spiked borders and over-segmentation
on those regions due to the neighbors structure intensities (very similar , dark). On these cases,
even the manual segmentation is challenging and requires much experience of the specialist.
On the other hand, sometimes the segmentation methods, such as LazySnapping (Figure 19f)
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Table 2 – Results of the segmentation assessment for groups Healthy, Benign, and Malig-
nant.

Measure (%)

Method Accuracy Precision Sensitivity F-Measure Jaccard

BGrowth 96.1 ± 07 95.5 ± 06 97.3 ± 07 96.4 ± 07 92.4 ± 11
GrowCut 95.7 ± 08 95.1 ± 06 97.2 ± 08 96.1 ± 07 91.8 ± 11

IFT 95.1±07 94.9±06 96.2±08 95.5±07 90.6±11
LazySnapping 94.3±07 94.1±06 95.5±08 94.7±07 88.7±11

GrabCut 70.6±15 94.3±13 53.7±27 63.5±21 63.7±15
Chan-Vese 87.8±08 92.6±06 84.9±10 88.3±08 77.8±12

Otsu 87.9±06 92.3±05 85.4±09 88.4±06 77.7±10

H
ea

lth
y

VBSeg – – – – –

BGrowth 95.2 ± 08 96.1 ± 06 96.7 ± 07 96.4 ± 06 87.9 ± 15
GrowCut 94.9 ± 09 95.9 ± 06 96.4 ± 07 96.1 ± 06 87.1 ± 15

IFT 93.9±09 95.0±06 95.8±07 95.3±06 84.5±15
LazySnapping 92.8±09 94.8±06 94.4±07 94.5±06 81.9±15

GrabCut 62.7±18 92.9±12 50.7±28 60.0±23 46.2±20
Chan-Vese 79.7±16 86.8±11 82.5±18 83.4±15 58.4±22

Otsu 82.3±11 86.6±10 87.5±09 86.7±08 58.1±23

B
en

ig
n

VBSeg 75.0± – 85.0± – 86.0± – – –

BGrowth 95.7 ± 01 96.9 ± 02 95.9 ± 02 96.4 ± 01 89.7 ± 04
GrowCut 95.5 ± 01 96.6 ± 02 95.8 ± 02 96.2 ± 01 89.1 ± 04

IFT 93.5±02 95.5±03 93.5±04 94.4±02 84.9±05
LazySnapping 93.7±02 95.7±03 93.7±04 94.6±02 85.4±06

GrabCut 63.4±15 88.0±18 56.6±30 61.4±19 50.4±19
Chan-Vese 62.5±13 85.5±13 53.0±31 57.4±24 45.3±15

Otsu 63.1±11 69.5±12 75.4±20 70.0±11 35.2±19

M
al

ig
na

nt

VBSeg 62.0± – 68.0± – 88.0± – – –

Source: Research data.

Note – Bold and underlined values highlight the best and second-best column results for
each group, respectively.

and IFT (Figure 19e), tend to produce straight line borders, as exemplified by the results for L4.
Although most competitors presented promising results, sometimes they fail to delimit borders
even for healthy vertebral bodies (L4). In general, BGrowth (Figure 19c) generated smother and
more delineated borders (better balance between Precision and Sensitivity, which are closer to
the ground-truth.

3.3.2 Statistical Analysis

To test the normality of data, we employed the Kolmogorov-Smirnov (MASSEY, 1951)
test, since our data presents several identical values. The null hypothesis that the data follow a
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Figure 19 – Segmentation results for two benign VCFs (L3 and L5) and one healthy vertebral body (L4).
Ground-truth in red and semi-automatic segmentation in cyan. P represents the Precision and
S represents Sensitivity.

(a) Original Image. (b) GT and Annotations. (c) BGrowth.

(d) GrowCut. (e) IFT. (f) LazySnapping.

Source: Elaborated by the author.

normal distribution was rejected for every case. Therefore, we used the Wilcoxon (WILCOXON;
KATTI; WILCOX, 1970) test to analyze if there were significant differences. We considered
the null hypothesis as: “the median from data a is not greater than the median from data b”. We
considered the alternative hypothesis as: “the median from data a is greater than the median from
data b”. Here, data a can be, for example, the Precision from BGrowth and data b can be, for
example, the Precision from GrowCut.

Table 3 reports the results for the Wilcoxon test considering every group. Note that,
BGrowth presented significantly better results, most of the times, than any other method on
each measure. Although BGrowth did no presented greater Precision or Accuracy than GrowCut
and GrabCut in some cases, BGrowth always presented better F-Measure. This indicates that,
in general, BGrowth presents a better balance between Precision and Sensitivity, and, at the
same time, presents a greater F-Measure result. In some cases, BGrowth did not present better
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Accuracy or Jaccard than the other methods. For this reason, we conducted another statistical
test, in which we asses the opposite case. We test, in Table 4, if GrowCut, and GrabCut presented
better results than BGrowth in the cases in which BGrowth did not presented greater results in
Table 3.

Table 3 – Hypothesis testing for every group: p-value results at the 5% significance level. The
null hypothesis is that BGrowth did not present greater median than a given competitor.
4 indicates rejection of the null hypothesis (BGrowth presented better results), and 7

indicates failure to reject the null hypothesis (BGrowth did not present greater results).

BGrowth × Accuracy Precision Sensitivity F-Measure Jaccard

All

GrowCut 0.01 (4) 0.07 (7) 0.06 (7) 0.01 (4) 0.01 (4)
IFT 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

LazySnapping 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

GrabCut 0.00 (4) 1.00 (7) 0.00 (4) 0.00 (4) 0.00 (4)
Chan-Vese 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Otsu 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Healthy

GrowCut 0.01 (4) 0.08 (7) 0.07 (7) 0.00 (4) 0.00 (4)
IFT 0.00 (4) 0.01 (4) 0.00 (4) 0.00 (4) 0.00 (4)

LazySnapping 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

GrabCut 0.00 (4) 1.00 (7) 0.00 (4) 0.00 (4) 0.00 (4)
Chan-Vese 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Otsu 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Benign

GrowCut 0.11 (7) 0.36 (7) 0.11 (7) 0.00 (4) 0.16 (7)
IFT 0.00 (4) 0.00 (4) 0.02 (4) 0.00 (4) 0.00 (4)

LazySnapping 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

GrabCut 0.00 (4) 0.99 (7) 0.00 (4) 0.00 (4) 0.00 (4)
Chan-Vese 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Otsu 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Malignant

GrowCut 0.10 (7) 0.21 (7) 0.38 (7) 0.00 (4) 0.13 (7)
IFT 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

LazySnapping 0.00 (4) 0.02 (4) 0.00 (4) 0.00 (4) 0.00 (4)

GrabCut 0.00 (4) 0.85 (7) 0.00 (4) 0.00 (4) 0.00 (4)
Chan-Vese 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Otsu 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4) 0.00 (4)

Source: Research data.

In Table 4, GrowCut did not present significantly better/greater results than BGrowth,
which indicates that both methods presented similar results in those cases. On the other hand,
GrabCut presented significantly better Accuracy than BGrowth in the majority of the groups.
However, BGrowth presented significantly better Sensitivity and F-Measure than BGrowth
(Table 3). Therefore, we can conclude that, overall, BGrowth presented greater or similar results
than the competitors.
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Table 4 – Hypothesis testing for every group: p-value results at the 5% significance level. The null
hypothesis is that BGrowth presented greater median than a given competitor. 4 indicates
rejection of the null hypothesis (BGrowth did not present greater results), and 7 indicates
failure to reject the null hypothesis (BGrowth presented better results) .

BGrowth × Accuracy Precision Sensitivity F-Measure Jaccard

All
GrowCut – 0.93 (7) 0.94 (7) – –
GrabCut – 0.00 (4) – – –

Healthy
GrowCut – 0.92 (7) 0.93 (7) – –
GrabCut – 0.00 (4) – – –

Benign
GrowCut 0.89 (7) 0.64 (7) 0.89 (7) – 0.84 (7)
GrabCut – 0.01 (4) – – –

Malignant
GrowCut 0.90 (7) 0.79 (7) 0.63 (7) – 0.87 (7)
GrabCut – 0.15 (7) – – –

Source: Research data.

3.3.3 Annotation Variation
In Figure 20 we report the Precision, Sensitivity, and F-Measure for the inside/outside

annotation variation, as we detailed in Section 3.2.2.3. We considered group All for the four
segmentation methods that achieved the best results in previous experiments. We discuss the
results in two parts as follows.

Interior annotation variation (Figure 20a): from 10% to 40%, IFT and LazySnapping pre-
sented the highest Precision and the lowest Sensitivity. This indicates that both methods
do not grow much the inside region in this range of inside annotation/seeds. From 50% to
80%, BGrowth presented increasingly highest Precision (95% and up), while maintaining
the highest Sensitivity, consequently, presenting the highest F-Measure as well. GrowCut
presented results closer to BGrowth. At 90%, every method on each measure lower the
results. However, 90% of inside annotation (Figure 17c) rarely happens in a real case
scenario, as it is practically the ground-truth itself, which takes too much time to annotate.
Overall, each method presented a trade-off between Precision and Sensitivity: the more
inside annotation, the greater the Precision, while the lower the inside annotation, the
greater the Sensitivity. As a consequence, analyzing the F-Measure results, every method
presented a better balance between Precision and Sensitivity when given 40% to 80% of
inside annotation. Therefore, in this range of inside annotation, BGrowth surpassed all the
other methods.

Exterior annotation variation (Figure 20b): once again, every method increases the Precision
and decreases the Sensitivity as the distance from the ground-truth increases. BGrowth
and GrowCut presented the best Precision from 9 to 27 pixels, while presetting a lower
Sensitivity from 21 to 27 pixels. Analyzing the F-Measure, BGrowth presented the best
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Figure 20 – Results of the segmentation assessment over annotation variation at the interior/exterior of
each vertebral body.
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(a) Interior variation.

3 6 9 12 15 18 21 24 27

88

90

92

94

96

98

100

Distance from the ground-truth (Pixels)

Pr
ec

isi
on

(%
)

3 6 9 12 15 18 21 24 27
88

90

92

94

96

98

100

Distance from the ground-truth (Pixels)

Se
ns

iti
vi

ty
(%

)

3 6 9 12 15 18 21 24 27
85

87

89

91

93

95

97

Distance from the ground-truth (Pixels)

F-
M

ea
su

re
(%

)

(b) Exterior variation.

Source: Elaborated by the author.

results from 6 to 21 pixels. Considering a real case scenario: (a) a pixel distance smaller
than 6 rarely happens, as it is almost the ground-truth itself. (b) a pixel distance greater
than 21 will mostly appear in some parts of the vertebral body (considering a sloppy or
rough annotation, rectangle-like), for example, in region with concavity or convexity.

3.4 Final Considerations

The semi-automatic segmentation of Vertebral Compression Fractures (VCFs) is a
challenging task. In general, VCFs present several regions with heterogeneous intensities within
the same vertebral body. To cope with this challenge, we proposed an efficient and accurate
semi-automatic segmentation method called BGrowth, which balances the weights of the regions
in expansion. We used simple annotations and achieved 96.1% average Accuracy with low
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processing time.

Concerning the objectives of this Doctorate research, in this chapter we approached the
Research Problem 1: Segmenting fractured or deformed vertebral bodies. Based on the results
presented throughout the chapter, we answer the initial formulated research questions as follows:

a) How can we segment fractured vertebral bodies from MRI exams with accurate bound-

ary delineation with an easier and faster manual interaction than the state-of-the-art

approaches? Answer: BGrowth can better delineate borders even at regions that present
small intensities transitions. This is specially meaningful in the VCF scenario, due to
the non-homogeneous gray intensities within the same vertebral body. BGrowth presents
acceptable results even with rough or “sloppy” annotations and significantly outperformed
other well-known methods from the literature, presenting the best balance between Pre-
cision and Sensitivity. This indicates that our method does not over-segments or under-
segments fractured or healthy vertebral bodies as much as the competitors. Thus, our
proposed BGrowth can be used to segment fractured vertebral bodies with accurate bound-
ary delineation, demanding less effort of the specialist on stating seed points, making the
manual annotation process faster and, at the same time, yielding precise results.

In the next Chapter, we cover the use of BGrowth on a volumetric scenario, in which we
investigate the reduction on the number of annotated slices. Therefore, we step forward into the
Research Problem 2: Reducing manual interaction on the segmentation of lumbar vertebral
bodies in MRI exams.
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CHAPTER

4
VOLUMETRIC BALANCED GROWTH USING

THE SLOPE COEFFICIENT

As presented in Chapter 3, BGrowth method was proposed for the semi-automatic
segmentation of crushed vertebral bodies in single slices. BGrowth surpassed several methods
from the literature, including GrowCut, presenting better delineated borders on regions with
small intensities transitions. For this reason, in Section 4.1, we show how to extend BGrowth
to deal with the reconstruction of volumetric exams (3D), introducing the 3DBGrowth method.
Moreover, also in Section 4.1, we introduce the Negative Slope Coefficient (NSC), in which we
extrapolate the specialists' annotation up to a fixed limit without losing performance/accuracy,
aiming at reducing the total time spent on manual annotation, as we explore next. We show the
experimental results in Section 4.3, using a representative database with 17 volumetric MRI
exams. 3DBGrowth significantly outperformed the state-of-the-art methods and, on average,
only 37% of the total slices with vertebral body content must be annotated without losing
performance/accuracy. Moreover, 3DBGrowth works well with imprecise seed points, which
reduces the time spent on manual annotation by the specialist. Finally, Section 4.4 concludes this
chapter.

4.1 Slope Coefficient and 3DBGrowth method

The usual approach of annotating or stating seeds for segmenting medical images can be
cumbersome for large 3D exams. Thus, we focus on minimizing the human effort to segment
and reconstruct 3D exams built on 2D slices. As illustrated in Figure 21, depending on the MRI
exam, not all slices have to be manually annotated by the user to process the 3D reconstruction.
If the exams present a small spacing between slices (considering annotations on the sagittal
plane), several similar slices do not need to be annotated. This can be assessed by analyzing
the negative slope coefficient – NSC (VANNESCHI et al., 2004), detailed in Section 4.1.1. The
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Figure 21 – Examples of slices annotation for a single vertebral body (Exam AKa2, L5) and 3DBGrowth's
iterations. Ground-truth, interior and exterior annotation in red, magenta and blue, respectively.

#1 #7#4

MRI Exam
Interior Annotation

Annotation of a few slices
Slices Exterior Annotation

3DBGrowth Iterations

85.3% F-measure 91.8% F-measure 92.8% F-measure 92.9% F-measure

Iteration 1 Iteration 4 Iteration 8 Iteration 16

Source: Adapted from Ramos et al. (2019a).

NSC can provide the best trade-off between annotation time and quantitative measures. Besides,
by using a segmentation approach that does not require detailed interior/exterior annotation,
such as 3DBGrowth (Section 4.1.2), the total time spent on annotation is greatly diminished. In
addition, 3DBGrowth generally requires a simple rectangle-like annotation for the segmentation
of individual vertebral bodies. For example, only 3 out of 7 slices were annotated in Figure 21. In
average, each slice took 6.5 seconds for annotation and 3DBGrowth took 0.64 seconds to process
all 7 slices with only 16 iterations. Summing up, the whole process took 3×6.5+0.65 = 20.65
seconds and achieved a result close to the Ground-Truth.

4.1.1 The Negative Slope Coefficient (NSC)

The NSC can be calculated using the slope between two points, say {x1,y1} and {x2,y2},
which provides the rate of change between the two points as follows:

NSC =
∆y
∆x

=
y2− y1

x2− x1
. (4.1)

When the slope between two values of annotation time gets close to a straight horizontal
line, there is no gain in annotation time, in other words, the closer the slope gets to 0, the lower
the annotation time gain.

4.1.2 Volumetric BGrowth (3DBGrowth)

In our proposed 3DBGrowth method, detailed in Algorithm 2, we initially consider the
segmentation of foreground and background in gray-scale images. That is, considering a digital
image I and its annotations/labels as a matrix L, both with dimension M×N×Z, representing the
number of rows, columns, and slices, respectively. Each entry in L has value −1 (background), 0
(unlabeled) or 1 (foreground).



4.2. Materials and methods 51

Algorithm 2: 3DBGrowth method. Source codes available in Section A.2.
Input: Image I and labels matrix L.
Output: Segmented binary image L == 1.

1 for ∀(i, j,z) do // Step 1: Set initial weights
2 if L(i, j,z) 6= 0 then
3 W (i, j,z)← 1.0

4 for ∀(i, j,z) and L(i, j,z) 6= 0 do // Step 2: For each labeled voxel
5 for ∀(in, jn,zn) do // and its 26-Neighbors (in, jn, zn)

6 s←W (i, j,z)×
[

1−|I(i, j,z)− I(in, jn,zn)| / max
∀i, j,z

I(i, j,z)
]

7 if s >W (in, jn,zn) then
8 W (in, jn,zn)← 0.5×W (in, jn,zn)+0.5× s
9 L(in, jn,zn)← L(i, j,z)

Initially, each entry in a weight matrix W (line 1), with the same dimensions as I and L,
is set to 1.0 for seeds points and 0 otherwise (lines 2 and 3). Then, for each labeled voxel (i, j,z)

(line 4) and each one of its 26 neighbors (in, jn,zn) (line 5), a strength factor s is calculated
(line 6). Here, the absolute intensity difference is normalized by the maximum intensity in
the image and subtracted by 1. Finally, s is multiplied by the current weight W (i, j,z), which
produces values within [0,1]. If the strength s is greater than the neighbor's strength W (in, jn,zn)

(line 7), then the neighbor's strength is averaged with the new strength s (line 8) and its label
receives the label of the voxel (i, j,z) (line 9).

The process in line 4 repeats until the algorithm converges or for a fixed number of
iterations defined by the user.

4.2 Materials and methods
In this section, we present the materials and methods used in the experimental design.

First, in Section 4.2.1, we describe a volumetric database, which is composed of exams coming
from seven different hospitals, presenting a variety of scanning parameters as well as a few
pathologies. Then, in Section 4.2.2, we present the parameters settings used in the experimental
design, which presents the computational set-up as well as how the manual annotations were
performed. Next, we detail the state-of-the-art methods considered in the analysis in Section 4.2.3.
Finally, in Section 4.2.4, we present the segmentation assessment to validate the experimental
results.

4.2.1 Patient database

We used a database reported by Zukić et al. (2014) comprised of 26 exams, in which 22
exams are from pathological patients, and four are from healthy ones. Zukić et al. (2014) made
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Table 5 – Details of the exams used to compose the dataset reported by Zukić et al. (2014).

MRI MRI Resolution Resolution Segmented
Exam Seq. (voxels) (mm3) Path. #VB by

DzZ_T1 TI TSE 512×512×12 0.68×0.68×4.4 None 9 Experienced User
DzZ_T2 T2 TSE 640×640×12 0.55×0.55×4.4 None 9 Experienced User

AKa2 T2 frFSE 512×512×15 0.70×0.70×4.0 + 9 Experienced User
AKa3 T1 FSE 512×512×15 0.70×0.70×4.0 + 9 Experienced User
AKa4 TIRM 512×512×15 0.70×0.70×4.0 + 9 Experienced User
AKs5 T2 frFSE 512×512×15 0.70×0.70×4.0 + 9 Experienced User
AKs6 T1 FSE 512×512×15 0.70×0.70×4.0 + 9 Experienced User
AKs7 TIRM 512×512×15 0.70×0.70×4.0 + 9 Experienced User
AKs8 T1 FSE 512×512×15 0.70×0.70×4.0 + 9 Experienced User

S01 T2 SE 640×640×15 0.47×0.47×3.8 SL 7 Neurosurgeon
S02 T2 SE 640×640×15 0.47×0.47×3.8 SL 8 Neurosurgeon
F02 T2 SE 768×768×18 0.50×0.50×3.8 VF,SL 9 Neurosurgeon
St1 T2 SE 704×704×20 0.50×0.50×3.8 St 8 Neurosurgeon
F04 T2 TSE 448×448×23 1.12×1.12×3.0 VF+ 17 Experienced User

AKs3 T2 frFSE 512×512×25 0.70×0.70×4.0 + 10 Experienced User
F03 T2 TSE 320×320×25 1.19×1.19×3.3 VF 7 Neurosurgeon

C002 T2 TSE 448×448×31 1.12×1.12×3.3 Sco 13 Neurosurgeon

Source: Adapted from Zukić et al. (2014).

Note – Seq.: Sequence. #VB: Total of segmented vertebral bodies in the exam. Path.: Pathologies,
such as scoliosis (Sco), vertebral fracture (VF), spondylolisthesis (SL), and + represents other
pathologies not diagnosed from segmentation.

17 anonymized lumbar MRI exams publicly available among the 26 exams. The images came
from different hospitals and scanning machines. The MRI exams vary from the sacrum (S1) to
the mid-thoracic (T6-T12) with several health conditions, such as scoliosis, vertebral fracture,
and spondylolisthesis.

The MRI exams have 3.24±0.36 mm of slice thickness and 3.87±0.36 mm of spacing
between slices. The reference segmentations were produced by manually tracing the vertebral
body edges in the primary acquisition plane (23 sagittal, two axial, one coronal). Neurosurgeons
and three experienced users under expert supervision made the manual tracing in three to six min
per vertebra. The exams present varied MRI sequences, anisotropy factors, and at least one of
the three identifiable pathologies: scoliosis, vertebral fracture, and spondylolisthesis. Summing
up, Zukić et al. (2014) provided 160 segmented vertebral bodies. Since this database came from
seven different hospitals and the exams were taken by nine scanning machines (high anisotropy
of voxel), in Table 5 we report the details of each one of the 17 exams used to compose the
database. No pre or post-processing technique were applied to assure the same conditions for
all segmentation methods. All exams were normalized into 256 gray levels (8 bits/pixel) using
Equation 2.2.
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4.2.2 Parameters settings

The maximum number of iterations was set to 50 for GrowCut and 3DBGrowth.

4.2.2.1 Computational set-up

The experiments were performed on a 2.40GHz Intel(R) Core(TM) i7 CPU and 8GB
RAM machine, using Matlab(R) version 2018a.

4.2.2.2 Manual annotations

The initial interior and exterior annotation were performed in a “sloppy” way, i.e., no
detailed boundary for accentuated curves were drawn. In general, the annotation looks like
a rectangle for the background and a simple line for the foreground. The annotations were
performed on each slice on every exam and, to diminish computational processing, each exam
were cropped using the convex hull of the exterior annotation. In average, the manual annotation
of every slice in a single exam took 11 minutes per exam, which includes, in average, 9 vertebral
bodies per exam and an average of 12 slices per vertebral body.

We performed annotations in two ways. First, we annotated the whole exam, as illustrated
in Figure 22 from (a) to (c). Then we annotated individual vertebral bodies separately, as
illustrated in Figure 22 from (d) to (e).

4.2.3 Other similar methods

In order to evaluate the performance of 3DBGrowth in a volumetric scenario, we com-
pared it with the GrowCut approach, which has been widely used for the task of vertebral bodies
segmentation (EGGER; NIMSKY; CHEN, 2017). Since FastGrowCut is an approximation of the
original GrowCut, presenting a lower Accuracy (ZHU et al., 2014), we consider only GrowCut
in the experiments.

4.2.4 Segmentation assessment

To validate 3DBGrowth's segmentation results, we employed the measures of F-Measure
(Equation 2.11), Jaccard (Equation 2.10), Average Hausdorff (Equation 2.14), and Run-Time.

4.3 Experiments, results and discussion
We present our experimental design in four main parts, as illustrated in Figure 23 and

detailed as follows. First, in Section 4.3.1, we assessed the performance of each segmentation
method using the whole exam. Then, in Section 4.3.2, we validate the performance of 3DBGrowth
and GrowCut when not all slices are annotated. Next, in Section 4.3.3, we segmented the vertebral



54 Chapter 4. Volumetric Balanced Growth using the slope coefficient

Figure 22 – Example of sloppy annotation for a few vertebral bodies in one slice. From (a) to (c), whole
exam annotation (Aka2, eighth slice). From (d) to (e), annotation for a single vertebral body
(St1, L2, tenth slice). Ground-truth in red, interior and exterior annotations in magenta and
blue, respectively.

(a) Original. (b) Ground-Truth. (c) Annotation.

(d) Original. (e) Ground-Truth. (f) Annotation.

Source: Adapted from Ramos et al. (2019a).

bodies one-by-one for every segmentation method considered in the experiment. In this study, we
considered the annotation of individual vertebral bodies instead of the whole exam, as performed
in the two previous experiments. Finally, in Section 4.3.4, we applied statistical testing to detect
any significant difference between the results of the segmentation techniques.

Figure 23 – Experimental design to validate 3DBGrowth.

Experiment 1
Exam segmentation

analysis (whole exam)

Experiment 2
Variation on the

Number of Annotated
Slices (Whole exam)

Experiment 3
Segmentation of Indi-

vidual Vertebral Bodies

Experiment 4
Statistical Testing

and Validation

Source: Elaborated by the author.
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4.3.1 Exam segmentation analysis

Table 6 shows the average F-Measure, Jaccard, and Run-Time in seconds for each one
of the 17 exams in the database (whole exam annotation). 3DBGrowth presented on average
81% for F-Measure and 68% for Jaccard while GrowCut presented 76% and 61%, respectively.
Thus, 3DBGrowth presented higher F-Measure and Jaccard percentages than GrowCut for all
exams, achieving up to 5% and 7% of F-Measure and Jaccard gain, respectively. Moreover,
considering F-Measure and Jaccard, 3DBGrowth's standard deviation is slightly lower. Analyzing
the Run-Time, very often, 3DBGrowth presented a lower average processing time than GrowCut.

Table 6 – Segmentation assessment between 3DBGrowth and GrowCut, considering annotations on every
slice of each volumetric exam.

F-Measure (%) Jaccard (%) Run-Time (s)

Exam

3DBGrow
th

Grow
Cut

Gain

3DBGrow
th

Grow
Cut

Gain

3DBGrow
th

Grow
Cut

DzZ_T1 85 80 4.86 74 67 7.0 18 21
DzZ_T2 82 77 4.20 69 63 5.8 27 31

AKa2 82 77 5.17 69 62 7.1 27 27
AKa3 78 73 4.78 64 58 6.2 27 29
AKa4 80 73 7.10 67 58 9.4 26 27
AKs5 84 78 6.54 73 63 9.2 23 24
AKs6 84 79 5.44 73 65 7.8 21 24
AKs7 80 73 7.6 67 57 9.9 21 24
AKs8 81 78 3.39 68 64 4.7 18 21

S01 85 82 2.91 74 70 4.3 44 50
S02 83 78 4.97 70 63 6.9 26 32
F02 78 74 3.63 64 59 4.7 48 55
St1 83 80 2.73 71 67 3.9 61 67
F04 78 75 3.42 64 60 4.5 13 14

AKs3 80 73 6.42 66 58 8.4 40 37
F03 80 77 3.57 67 62 4.8 08 09

C002 71 65 5.85 55 48 6.7 16 14

Average 81 76 4.9 68 61 6.6 27 30
Std. Dev. 3.4 3.9 1.5 4.7 5.0 1.9 13.7 15.2

Source: Adapted from Ramos et al. (2019a).

Note – Best results highlighted in bold.

4.3.2 Variation on the number of annotated slices

We considered the annotations of the whole exam, however, leaving a few slices without
annotation. To do so, we set a slice distance, which manages the number of non-annotated
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Figure 24 – Run-Time and segmentation assessment between 3DBGrowth and GrowCut over variations
on the number of slices manually annotated. NSC values highlighted over the magenta line in
(a).

0 1 6 72 3 4 5 

Annotated Slices Distance

0

1

2

3

4

5

6

7

8

9

10

11

12

Ti
m

e 
(m

in
ut

es
)

Annotation Time 
Run-Time (3DBGrowth) 
Run-Time (GrowCut)-5.62

-1.9

-1.01
-0.34 -0.48

-0.64 -0.16

(a) Annotation time and Run-Time results.

0 1 2 3 4 5 6 7

Annotated Slices Distance

0
1
2
3
4
5
6
7
8
9

10
11
12

T
im

e 
(m

in
ut

es
)

(b) Annotation Time

Annotation Time
Running Time (BGrowth)
Running Time (GrowCut)

0 1 2 3 4 5 6 7
Annotated Slices Distance

49

54

59

64

69

74

79

84

89

Pe
rc

en
ta

ge
 (%

)

F-measure (3DBGrowth) 
F-measure (GrowCut) 
Jaccard (3DBGrowth)
Jaccard (GrowCut)

(b) F-Measure and Jaccard results.

Source: Ramos et al. (2019a).

slices between two annotated slices. For example, a slice distance of 1 implicates that only one
slice was left without annotation between two annotated slices. The slice distance started at 0,
increased by 1, up to 7.

Figure 24 reports the results for the variation on the number of annotated slices. As
the slice distance increases, the average annotation time decreases and the Run-Time keeps
almost steady for both methods. Also, F-Measure and Jaccard drops slowly for both methods.
However, 3DBGrowth presented best results than GrowCut for both measures. Considering the
Negative Slope Coefficient (NSC), detailed in Section 4.1.1, highlighted over the magenta line
in Figure 24a, by using a threshold of -1, the best slice distance would be 3, which presents the
best trade-off between annotation time and F-Measure/Jaccard in Figure 24b.

4.3.3 Segmentation of individual vertebral bodies

To speed-up the annotation process, we have considered a slice distance of three for this
experiment. Table 7 reports the segmentation results for individual vertebral bodies. GrowCut and
3DBGrowth presented equal mean Run-Time and 3DBGrowth presented better mean F-Measure,
Jaccard and Average Hausdorff than GrowCut.

Analyzing the average number of annotated slices per vertebra in Table 8, in average,
only 37% of the total slices with vertebral body content were annotated. Thus, the manual
annotation process was improved, taking, in average, 36 seconds to annotate each vertebral body.

To further investigate the results presented in Table 7, we conducted a statistical test, as
detailed next.
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Table 7 – Comparison between 3DBGrowth and GrowCut for the F-Measure, Jaccard, Average Hausdorff
in voxels and Run-Time in seconds.

F-Measure (%) Jaccard (%) Hausdorff (vox.) Run-Time (s)

Vertebrae

3D
BGro

wth

Gro
wCut

3D
BGro

wth

Gro
wCut

3D
BGro

wth

Gro
wCut

3D
BGro

wth

Gro
wCut

T6 88 87 79 78 3.16 4.00 0.15 0.16
T7 85 83 73 69 78.8 79.1 7.95 6.77
T8 86 85 76 72 79.3 79.2 7.55 8.37
T9 81 80 50 52 80.0 79.9 7.83 8.38

T10 87 85 80 76 26.2 26.9 2.95 2.83
T11 86 84 77 73 6.09 6.99 0.91 0.88

T
ho

ra
ci

c

T12 89 86 79 76 5.63 6.88 1.30 1.36

L1 89 87 78 76 6.56 7.31 1.57 1.56
L2 88 86 79 76 6.07 7.75 1.52 1.57
L3 86 85 75 72 6.40 7.49 1.68 1.83
L4 88 86 76 74 7.16 7.65 1.77 1.88L

um
ba

r

L5 87 85 76 74 7.04 8.42 2.33 2.39

Sacral S1 88 86 79 76 6.18 7.57 1.74 1.88

Average 87 85 77 74 7.24 7.72 1.52 1.52
Std. Dev. 0.07 0.06 0.08 0.08 4.85 5.00 1.27 1.27

Source: Adapted from Ramos et al. (2019a).

Note – Best results highlighted in bold.

4.3.4 Statistical testing

Considering that the resulting values of each measure had several similar values, we em-
ployed the Kolmogorov-Smirnov (MASSEY, 1951) and the null hypothesis that the data follows a
normal distribution was rejected for all measures. Then, we applied the Wilcoxon (WILCOXON;
KATTI; WILCOX, 1970) test, in which 3DBGrowth presented significantly better F-Measure,
Jaccard and Average Hausdorff than GrowCut. For the Run-Time, there was no significant
difference, which implicates that both methods presented comparable processing time.

4.4 Final Considerations
In this chapter we have tackled the challenging task of semi-automatic segmentation of

vertebral bodies in a volumetric scenario. To obtain a proper 3D reconstruction of the vertebral
body, one has to pay attention on allowing a fast and accurate segmentation of slices. To cope
with this challenge, we have used the negative slope coefficient in order to reduce the total number
of annotated slices. We extrapolated the specialists' annotations from a slice to its neighbors
up to a given limit without losing accuracy. We have proposed 3DBGrowth method, which
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Table 8 – Comparison of the number of annotated slices, considering a slice
distance of three.

Vertebrae Slices annotated out of Annotation time (seconds)

T6 3.0± .00 7.0± .00 28.7± .00
T7 3.0± .00 7.0± .00 32.5± .00
T8 3.0± .00 7.0± .00 34.6±11.6
T9 3.0± .00 7.0± .00 30.0±6.2

T10 2.5± .52 6.7±3.2 25.9±7.1
T11 3.1± .53 8.5±2.6 30.2±5.8

T
ho

ra
ci

c

T12 3.6± .50 9.6±1.9 34.5±8.1

L1 3.9± .78 10.2±2.2 36.8±9.2
L2 4.2± .75 10.9±2.3 38.6±10.1
L3 4.3± .86 11.6±2.1 40.0±9.5
L4 4.5± .62 12.5±2.8 39.3±6.3L

um
ba

r

L5 4.5± .72 12.5±3.0 39.8±7.8

Sacral S1 4.1± .70 10.9±3.3 35.8±6.3

Mean 4.1± .84 10.9±2.9 35.9±8.8

37% annotated

Source: Adapted from Ramos et al. (2019a).

Note – The total number of slices considers the number of slices with verte-
bral body content on each ROI.

significantly outperformed GrowCut and kept comparable running time in the experimental
results. Moreover, on average, only 37% of the slices with vertebral body content had to be
annotated, consequently, making the manual annotation process faster. We also highlight that
3DBGrowth presented the best results even with simple/sloppy seed points, which demands less
effort on the annotation process. As a final remark, concerning the objectives of this Doctorate
research, in this chapter, we consider our contribution as a first step in the Research Problem
2: Reducing manual interaction on the segmentation of lumbar vertebral bodies in MRI exams.
In the next chapters, we explore the next steps towards addressing Research Problem 2.
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CHAPTER

5
CLEVER SEGMENTATION – CLEVERSEG

In this Chapter, in Section 5.1, we introduce a new segmentation approach, named
CleverSeg), and we take advantage of the Mean Absolute Error (MAE) to select slices to be
annotated. MAE does not depend on the physical spacing between slices to identify the most
representative slices to be annotated. Moreover, we automatically estimate the interior annotation
so that only the outside annotation needs to be placed, what reduces the time spent on manual
annotations. Next, in Section 5.2 we detail the materials and methods used to validate our
approach. After that, in Section 5.3, the experimental results show that our proposed approach
is able to speed up the manual annotation process in up to 50% by annotating only a few
representative slices, without loss of accuracy. By annotating only the outside region, the process
can be further speed up by another 50%, reducing the total time to only 25% of the previously
required. Thus, the total time spent on manual annotation is reduced by up to 75%, and, since
human interaction is greatly diminished, allows a more productive and less tiresome activity.
Finally, Section 5.4 concludes this chapter.

5.1 CleverSeg: The Proposed Method
Placing (annotating) seeds appropriately in MRI data is a crucial initial step to produce

accurate paraspinal muscles segmentation. Nevertheless, due to the 3D nature of MRI data and
the complex structure of the human spine, it becomes a very difficult and tiresome task. In our
approach, we focus on minimizing the specialist's effort to segment and reconstruct MRI exams
built on 2D slices. To this end, we contribute in three main aspects, as depicted in Figure 25 and
detailed as follows.

Part A - Annotation of a few slices. We employ the MAE to verify the slices that look alike
and, therefore, are not required to be manually annotated. The error is calculated slice vs.
slice and it is not dependent on the physical spacing between slices.
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Figure 25 – Proposed pipeline: ground-truth in red, exterior annotation in magenta, estimated interior
annotation in yellow and CleverSeg segmentation result in blue. RT represents the Run-Time.

Mathematical morphologyAnnotated 24 out of 50 (48%)
CleverSeg Processing

Result

Part A Part B Part C
Estimated Interior AnnotationAnnotation of a few slicesVolumetric MRI Exam

Input

x x

Source: Adapted from Ramos et al. (2019b).

Part B - Automatic estimation of the interior annotation. Given the initial outside annota-
tion of each slice performed in step A, the inside annotation is automatically estimated
using mathematical morphology. As a consequence, the time spent on manual annotation
is greatly reduced.

Part C - Fast and effective CleverSeg for semi-automatic segmentation. Our proposed Cle-
verSeg method works in a faster and smart way, using only a few iterations. CleverSeg
efficiently propagates the annotated slices in Parts A and B into non-annotated slices.
Therefore, the processing time is reduced while keeping high accuracy.

We explore the three main aforementioned contributions next.

5.1.1 Annotations of a few slices

Considering a volumetric exam I = {I1, I2, .., Ii, .., In}, in which Ii represents the i-th slice
in the exam, similar sequential slices can be avoided from the manual annotation process. To do
so, we choose the most representative slices to be annotated by using MAE. Given two distinct
slices from a volumetric MRI exam I, say I1 and I2, MAE measures the difference between the
slices as follows:

MAE(I1, I2) =
1

r× c

r

∑
x=1

c

∑
y=1
|I1(x,y)− I2(x,y)| , (5.1)

in which both slices (matrices I1 and I2) have the same size r×c. Note that the closer MAE(I1, I2)

is to zero, the more similar the images are (SILVA et al., 2019; WANG; LU, 2018).

The most representative slices may be selected in a bottom-up manner in three steps, as
we detail next.
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Step 1: Define I1 to be manually annotated and set I1 as the initial slice for comparison with the
next slice I2.

Step 2: If the error MAE(I1, I2) is smaller than a threshold η , then I1 is compared with the next
slice I3. This process repeats until the i-th slice Ii, such that MAE(I1, Ii)≥ η . Then, define
Ii as the initial slice for comparison and go back to Step 1.

Step 3: Repeat Steps 1 and 2 until reaching the final slice In. The last slice is always set to be
manually annotated.

Note that, the first (I1) and last (In) slices are always set to be manually annotated. The
number of non-annotated slices in between I1 and In may vary according to the threshold η . The
value of the threshold η can be tuned manually.

For the purposes of analysis, we define a Percentage of Annotated Slices (PAS), which is
the number of annotated slices (#annotatedSlices) divided by the total number of slices in the
exam with muscle content (#slices):

PAS =
#annotatedSlices

#slices

5.1.2 Estimation of the interior annotation

Given the outside annotation of the i-th slice (Ii) as exemplified in magenta in Figure 26c,
we estimate the inside annotation using morphological operations (GONZALEZ; WOODS,
2008) in four steps:

Figure 26 – Illustration of estimating interior annotations. Sample slice with ground-truth in red,exterior
annotation in magenta, and estimated interior annotation in yellow (∆ = 20%).

(a) Original Image. (b) Ground-truth. (c) Outside annotation. (d) Filled, ∆ = 100%.

(e) 3 Erosions, ∆ = 70%. (f) 6 Erosions, ∆ = 34%. (g) 8 Erosions, ∆ = 16%. (h) Estimated annotation.

Source: Adapted from Ramos et al. (2019b).
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Step I: Represent the manually annotated outside region of Ii as a 2D binary mask ki. Consider-
ing that the region in k0 is always a closed boundary, fill this boundary with ones (white
pixels), as shown in Figure 26d.

Step II: Set k0 as the initial interior annotation and t0 as the total number of white pixels in k0

and apply an erosion operation over k0 using a 5×5 square structuring element, which
results into a new mask k1. As a consequence, the number of white pixels in k1 is reduced
to t1. The 5× 5 square structuring element allows a smooth erosion without losing the
main shape of the region.

Step III: Apply the same erosion over k1, which results in k2 with t2 white pixels. Repeat the
erosion process until the i-th iteration, resulting in the mask ki with ti white pixels. The
erosion process stops when the percentage of remaining white pixels in the eroded mask
(ki), associated to the initial mask k0, is lower than a threshold ∆:

∆ >
ti
t0

(5.2)

Step IV: Finally, use the ki mask as the inside annotation. The entire erosion process is depicted
in Figure 26e to Figure 26g, in which ∆ is set to 20%, yielding the estimated inside
annotation shown in yellow in Figure 26h.

We further investigated this interior annotation estimation by presenting Fast Inside
Estimation (FINE), in Appendix A, a study case with VCFs exams on automatic inside annotation
estimation. FINE automatically finds the suitable thresholds so that erosions and skeletonization
can be used to determine the inside annotation without using any fixed or empirically defined
limits;

5.1.3 Fast and effective CleverSeg for semi-automatic segmentation
Initially, we segment gray scale volumes into foreground and background. However,

CleverSeg works for more than two regions, and the difference between voxels intensities can be
easily adapted for multi-channel (color) images.

Considering a volume I and a matrix L of corresponding annotations/seeds, both with
dimensions M×N×Z, representing the number of rows, columns, and slices, respectively. The
total number of voxels in I is represented by n. The entries of L may have values 0 (unlabeled), 1
(background or outside annotation) or 2 (foreground or inside annotation).

As Algorithm 3 shows, we divide CleverSeg method in three main steps, explored as
follows.

Step 1: A weighted matrix W is initialized, so that every entry ∀wi ∈W is filled with ones for
corresponding labeled entries li ∈ L (inside/outside annotation) and zeros otherwise (lines
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1 to 3):

wi =

{
1.0 if li 6= 0,
0.0 otherwise.

(5.3)

The maximum voxel intensity is calculated/represented as mp (line 4).

Step 2: We analyze every voxel ∀(i, j,z) ∈ I and each of its 26 neighbors ∀(in, jn,zn) (line 5)
as follows. The absolute difference between the voxel intensity (I(i, j,z)) and its neigh-
bor's (I(in, jn,zn)) is calculated and subtracted by the maximum voxel intensity (mp). The
result is represented as h (line 7). A strength s is calculated line 8) normalizing h by mp

and multiplying with the current voxel strength W (i, j,z).

Step 3: If the difference between s and the neighbor's current strength W (in, jn,zn) (line 9)
is greater than a threshold (θ ), then, the strength W (in, jn,zn) is averaged with the new
strength s (line 10) and its label L(in, jn,zn) updates (line 11).

Algorithm 3: CleverSeg method.
Input: Volumetric exam I and annotation/labels matrix L.
Output: Segmented image (grown regions in L).

1 for ∀(i, j,z) do // Step 1: Set initial weights
2 if L(i, j,z) 6= 0 then
3 W (i, j,z)← 1.0

4 mp←maxvi, ∀vi ∈V, i = {1,2,3, ...,n}
5 for ∀(i, j,z) ∈ I and L(i, j,z) 6= 0 do // Step 2: For each labeled voxel
6 for ∀(in, jn,zn) do // and its 26-Neighbors (in, jn, zn)
7 h← mp−|I(i, j,z)− I(in, jn,zn)|
8 s←W (i, j,z)×h/mp
9 if (s−W (in, jn,zn))> θ then // Step 3: manage averaged values

10 W (in, jn,zn)← 0.5×W (in, jn,zn)+0.5× s
11 L(in, jn,zn)← L(i, j,z)

Steps 1 and 2 repeat for a maximum number of iterations or until the algorithm converges.
The threshold θ manages averaged values in order to avoid iterations that do not contribute to a
better segmentation. For example, it can be used to avoid balancing (averaging) values that only
change the third or fourth decimal place.

5.2 Materials and methods
In this section, we present the materials and methods used in the experimental design.

First, in Section 5.2.1, we describe a meaningful volumetric database of lumbar muscles, which
presents a larger number of slices for each muscle compared to the usual vertebral bodies,
therefore, it allows a more precise analysis of total time spent on manual annotation. The
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database is composed of four groups of muscles: erector spinae left and right and psoas left and
right muscles. In total, there are 216 muscles with reference manual segmentations. Then, in
Section 5.2.2, we detail the parameters settings along with the computational set-up as well as
how the manual annotations were performed. Next, in Section 5.2.3, we report the state-of-the-art
methods considered in the analysis. Finally, in Section 5.2.4, we detail the measures considered
to validate the experimental results.

5.2.1 Patient database

Burian et al. (2019) presented the MyoSegmenTUM spine database, which contains 54
MRI exams. Each exam contains reference manual segmentations of four lumbar muscle groups
and lumbar vertebral bodies. The muscles include the erector spinae left and right as well as
psoas left and right. Summing up, there are 54×4 = 216 segmented muscles.

The 54 Caucasians volunteers were 51.6±16.7 years old (15 males and 39 females). The
volunteers underwent MRI on a 3T system (Ingenia, Philips Healthcare, Best, Netherlands) using
a whole-body coil, built-in 12-channel posterior coil, and a 16-channel anterior coil. Subjects
were positioned head-first in a supine position. The segmentations were performed by a board-
certified radiologist using the image viewer software MITK (Medical Imaging Interaction Toolkit,
Heidelberg, Germany). The manual segmentation took 50 min for each of the paravertebral
muscles for each subject. The axial proton density fat fraction (PDFF) maps were used to
separately segment the erector spine and the psoas muscle on both sides from the cranial part of
L2 to the caudal part of L5.

The exams have an average resolution of 334×334×67.4±135×135×5.02 voxels
and a spatial resolution of 1×1×3.6±0×0×0.5 mm.

5.2.2 Parameters settings

The maximum number of iterations was set to 500 for all algorithms considered in the
analysis. However, in general, the algorithms take less than 500 iterations to converge. For
CleverSeg, the threshold θ , which controls the approximate “roundness” of the averaged weights
during the balancing of region expansion, was set to 1% so that to avoid averaging values on
the third decimal place. In order to allow a simple or sloppy-like annotation, the ∆ threshold
was set to a small value, 20%. Thus, imprecise external annotation do not compromise the
estimated internal annotation. For the η threshold, we considered an initial value of 0, increasing
by 1.5, up until 10.5, which sums up to 8 thresholds. To assure the same and best conditions
for all segmentation methods, no pre or post-processing techniques were applied and the exams
were normalized into 256 gray levels (8 bits/pixel) using Equation 2.2. The volumes were not
normalized to isotropic resolution to avoid adding noise to the image and manual segmentations.
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5.2.2.1 Computational set-up

Every experiment used a 2.40GHz Intel(R) Core(TM) i7 CPU and 8GB RAM machine,
using Matlab(R) version 2018a.

5.2.2.2 Manual annotations

Outside annotations were performed in a sloppy-like manner. Interior annotations were
estimated using our proposed approach (Section 5.1.2). Figure 26c shows an example of outside
annotation as well as the estimated interior annotation.

5.2.3 State-of-the-art segmentation methods
In order to evaluate CleverSeg for the segmentation of spinal muscles, we compared

it with 3DBGrowth (RAMOS et al., 2019a) and GrowCut (VEZHNEVETS; KONOUCHINE,
2005). Since Fast GrowCut presents a lower Accuracy than GrowCut (ZHU et al., 2014), we did
not consider Fast GrowCut in the analysis.

5.2.4 Segmentation assessment
To validate CleverSeg's segmentation results, we employed the following measures: F-

Measure (Equation 2.11), Jaccard (Equation 2.10), Average Hausdorff (Equation 2.14), Precision
(Equation 2.8), and Run-Time.

5.3 Experiments, results and discussion
In our experimental design, we analyze three main parts, as depicted in Figure 27 and

detailed as follows. First, in Section 5.3.1, we assess the segmentation of each muscle. Then,

Figure 27 – Experimental design to validate CleverSeg.
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Source: Elaborated by the author.

in Section 5.3.2, we vary the number of annotated slices, based on the error η between slices.
Finally, in Section 5.3.3, we statistically evaluate and validate the results.

5.3.1 Individual muscle segmentation
We performed the segmentation of each muscle considering the manual annotation of

every slice in each MRI exam. Figure 28 reports the results, in which CleverSeg presented better
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F-Measure, Jaccard and Run-Time than GrowCut, while keeping a similar Average Hausdorff.
Compared to 3DBGrowth, CleverSeg presented better F-Measure, Jaccard and Run-Time, while
keeping comparable F-Measure and Average Hausdorff.

CleverSeg presented the fastest Run-Time (377ms), while 3DBGrowth took 1202ms and
GrowCut 565ms. The number of iterations were 32±6.5, 99±22.6 and 49±13.2 for CleverSeg,
3DBGrowth and GrowCut, respectively. We highlight that, in Chapter 4 (RAMOS et al., 2019a),
3DBGrowth was tested with 18 slices (in average) and a maximum of 50 iterations. In our
experimental database of muscles, in average, there are 67 slices for each exam.

Figure 28 – Comparison between the segmentation approaches.
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In general, 3DBGrowth requires more iterations to converge as the number of slices
increases, consequently, increasing the processing time. On the other hand, CleverSeg presented
results comparable or better than the competitors, while managing a faster Run-Time. To better
illustrate this, Figure 28a shows the segmentation results for a single muscle. Note that, CleverSeg
presented the fastest Run-Time and a comparable or better F-Measure than the competitors.
For this example, the interior annotation took 96s (ANT) while the estimation of the interior
annotation was considerable faster (5.2ms). In average, the interior estimation for all muscles
took 4.5±3.6 ms. If the inside annotation was to be manually given, perhaps the time spent on
manual annotation (ANT) would be doubled.

Analyzing the segmentation results in Figure 28b, GrowCut presented spiculated borders
with a lower F-Measure, while CleverSeg and 3DBGrowth presented smooth borders and equal
F-Measure. However, CleverSeg had the lowest number of iterations, and presented the fastest
Run-Time. To further validate CleverSeg and, at the same time, reduce the annotation time
(ANT), on the next experiment we vary the number of slices with exterior annotation for each
muscle.

Source: Adapted from Ramos et al. (2019b).

In general, 3DBGrowth requires more iterations to converge as the number of slices
increases, consequently, increasing the processing time. On the other hand, CleverSeg presented
results comparable or better than the competitors, while managing a faster Run-Time. To better
illustrate this, Figure 29a shows the segmentation results for a single muscle. Note that, CleverSeg
presented the fastest Run-Time and a comparable or better F-Measure than the competitors.
For this example, the interior annotation took 96s (ANT) while the estimation of the interior
annotation was considerable faster (5.2ms). In average, the interior estimation for all muscles
took 4.5±3.6 ms. If the inside annotation was to be manually given, perhaps the time spent on
manual annotation (ANT) would be doubled.

Analyzing the segmentation results in Figure 29b, GrowCut presented spiculated borders
with a lower F-Measure, while CleverSeg and 3DBGrowth presented smooth borders and equal
F-Measure. However, CleverSeg had the lowest number of iterations, and presented the fastest
Run-Time. To further validate CleverSeg and, at the same time, reduce the annotation time
(ANT), on the next experiment we vary the number of slices with exterior annotation for each
muscle.
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Figure 29 – Segmentation results for a single muscle: exam 52, psoas left.
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Source: Adapted from Ramos et al. (2019b).

Figure 30 – Results for varying the mean absolute error (η) threshold.
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(a) F-Measure.
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(b) Annotation Time (ANT).
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(c) Percentage of Annotated Slices (PAS).
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(d) Run-Time.

Source: Adapted from Ramos et al. (2019b).

5.3.2 Varying the number of annotated slices

For this experiment, we use the error η between slices as a threshold in order to find
which slices should be annotated. We summarize the average results for all muscles in Figure 30.
The F-Measure starts dropping at η = 4.5 in Figure 30a, while ANT rapidly drops at η = 1.5 in
Figure 30b along with the PAS slices in Figure 30c. For the Run-Time in Figure 30d, CleverSeg
was the fastest method for all thresholds.
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Table 9 – Wilcoxon's test results at the 5% significance level: 4 means that CleverSeg was
significantly better and 7 means that no significant difference was observed.

η

CleverSeg against Measure 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

3DBGrowth

F-Measure 7 7 7 4 4 4 4 4

Jaccard 7 7 7 4 4 4 4 4

Average Hausdorff 7 7 4 4 4 4 4 4

Run-Time 4 4 4 4 4 4 4 4

GrowCut

F-Measure 4 4 4 4 4 4 4 4

Jaccard 4 4 4 4 4 4 4 4

Average Hausdorff 7 7 7 7 7 7 7 7

Run-Time 4 4 4 4 4 4 4 4

Source: Adapted from Ramos et al. (2019b).

According to the results reported in Figure 30, η = 4.5 presented the best trade-off
between F-Measure and ANT. For this threshold, the PAS drops to approximately 50% and
the ANT drops from 72 to 40 seconds (almost 2x faster), losing just a tiny bit of F-Measure
(from 87%, 87% and 83% to 85%, 84% and 81% for CleverSeg, 3DBGrowth and GrowCut,
respectively). Figure 29b illustrates this, in which, compared to Figure 29a, ANT drops almost to
a half, while F-Measure drops 1% for GrowCut. To further validate the results presented herein,
in the next section we perform statistical testing.

5.3.3 Statistical evaluation and validation

As the data for all measures presented several similar values, the Kolmogorov-Smirnov
(MASSEY, 1951) test was applied at the 5% significance level. The null hypothesis was rejected
for all measures, which indicates the data do not follow a normal distribution. Therefore, the
Wilcoxon (WILCOXON; KATTI; WILCOX, 1970) test was employed at the 5% significance
level and Table 9 reports the results. Note that, CleverSeg presented significantly better running
time (Run-Time) than 3DBGrowth and GrowCut. Compared to 3DBGrowth, CleverSeg presented
better results for F-Measure, Jaccard and Average Hausdorff from η = 4.5 to 10.5. In general,
CleverSeg presented comparable or significantly better results than the competitors, while always
achieving a faster processing time. For η below 3.0, there was no significant difference for most
measures due to the high number of slices that are annotate considering this threshold, making
both methods comparable results. For the Average Hausdorff, there was no significant difference
between CleverSeg and GrowCut. This happened because the Average Hausdorff will present
an average between the segmentation distances, therefore not counting the fact that CleverSeg
presented several spiculated border.
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5.4 Final considerations
The semi-automatic segmentation of muscles in larger volumetric MRI exams is a

challenging task. In general, annotating every single slice (inside and outside of the object of
interest) in the exam takes too much time. Therefore, allowing a fast and accurate segmentation
of slices is crucial in order to obtain a proper 3D reconstruction of the muscle. To ease the
manual annotation process, we used the mean absolute error to annotate only the most relevant
slices. We also estimated the inside annotation based on the outside annotation, avoiding manual
inside annotations. The experimental results showed that only 50% of the slices required outside
annotations (on average). Besides, the time spent on overall annotations is 50% faster by using
only the outside annotation and quickly estimating the interior annotation with our approach.
As a consequence, the time spent on manual annotation is greatly minimized, allowing a more
productive and less tiresome activity. We highlight that CleverSeg presented better or similar
results than 3DBGrowth and GrowCut while managing a statistically significant lower Run-Time.

Concerning the objectives of this Doctorate research, in this chapter, we consider our
contribution as a second step in the Research Problem 2: Reducing manual interaction on the
segmentation of lumbar vertebral bodies in MRI exams. In the next chapters, we explore the
next step towards addressing Research Problem 2.
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CHAPTER

6
FAST CLEVER SEGMENTATION –

FASTCLEVERSEG

In this Chapter, we present a fast and accurate approach for volumetric segmentation of
spine anatomical structures. First, in Section 6.1, we present our proposed approach in two main
parts: (1) Estimating ANnotation on Intermediary Slices (EANIS) by requiring the annotation
of only two/three slices (3% of the slices) in large MRI exams (about 100 slices), EANIS
automatically estimates the annotation of intermediary slices. Thus, the manual annotation speeds
up while assisting the segmentation techniques to yield more accurate results; (2) Fast Clever
Segmentation (FastCleverSeg) a fast and accurate semiautomatic segmentation approach, which
uses a clever balancing of the weights during the expansion of the labels (manual annotation), so
that each voxel is visited only once if its label does not change. Next, in Section 6.2 we detail the
materials and methods used to validate our approach. After that, in Section 6.3, the experimental
results show that, in average, EANIS performed in 6±3 milliseconds per structure, while the
manual annotation process took only 8.1± 2.2 seconds. Moreover, FastCleverSeg presented
an average F-Measure of 94% with the fastest Run-Time: 25± 30 milliseconds per structure.
Finally, in Section 6.4 we conclude this chapter.

6.1 FastCleverSeg: The Proposed Method
Our approach focus on minimizing the specialist's effort to segment and reconstruct MRI

exams built on 2D slices. To this end, we contribute in these two main aspects, as the pipeline
shows in Figure 31, and we detail as follows.

Annotation of only two to three slices (Section 6.1.1). Given the Outside ANnotation (OAN)
of the slices, we use the approach proposed in (RAMOS et al., 2019b), which uses
mathematical morphology to estimate the Inside ANnotation (IAN) based on given OAN
of each annotated slice, as we explored in Section 5.1.2. With the estimated IAN, we



72 Chapter 6. Fast Clever Segmentation – FastCleverSeg

Figure 31 – Proposed segmentation pipeline for spine anatomical structures on MRI: Illustration for
paravertebral muscle. In red: ground-truth, in black: exterior annotation, in cyan: estimated
interior annotation on intermediary slices (EANIS), and in yellow: f CleverSeg segmentation
result.
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Automatic
Inside Annotation
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Source: Adapted from Ramos et al. (2021).

Estimate the ANnotation on Intermediary Slices (EANIS) by taking advantage of the quick
Bresenham's method.

Fast and effective segmentation (Section 6.1.2). We propose the FastCleverSeg method, which
presents a faster Run-Time (RT), keeping better or comparable accuracy than the best
semi-automatic competitors. FastCleverSeg codes are privately available1. However, in the
final version of this manuscript, FastCleverSeg codes will be openly available.

6.1.1 Annotation on intermediary slices – EANIS

First, let us define a set of points P = {p1, p2, ..., pn} representing the points of the
contour of the inside annotation (IAN) in the bottom slice, in which pi = {xi,yi,zi} represents a
single point in a 3-dimensional space and n is the number of points. Likewise, we define a set of
points Q = {q1,q2, ...,qn} for the contour of the IAN on the top slice. Initially, the sets of points
P and Q are sorted in ascending way, i.e. points near to the origin {x = 0,y = 0} are put at the
beginning of each list. We trace a straight line between each pair of points in P and Q, {p1,q1},
as illustrated in Figure 32a. We use Bresenham (1965) line tracing algorithm to determine an
approximately straight line between each pair of points. Briefly, the Bresenham's approach is
an incremental algorithm that uses only integer addition, subtraction and bit shifting, which are
computationally faster to process than traditional computation demanding multiplication and
division of values.

1 <https://drive.google.com/drive/folders/1FlLBQkSYuc6jb29pHUEMgKA2t859uY8O?usp=sharing>

https://drive.google.com/drive/folders/1FlLBQkSYuc6jb29pHUEMgKA2t859uY8O?usp=sharing
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Figure 32 – Bresenham's line tracing algorithm: Example of iterations in the process of estimating the
inside annotation on intermediary slices (EANIS).
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Source: Adapted from Ramos et al. (2021).

In general, there is a difference in the number of points in P and Q, as exemplified
in Figure 32, in which |P|= 89 and |Q|= 81. To cope with this, we consider each set of points
as a circular list. When reaching the last point in the smaller list (q81 in the example), the next
points to be connected are the first one (on the smaller list, q1) and the ith point on (the larger list,
p82). The process stops when all points on the larger list are connected, e.g. when reaching point
p89.

For the external annotation on the intermediary slices, we considered a straight line
on the borders of the cropped ROI, which composes a rectangle-like outside annotation at the
endmost part of the ROI.

6.1.2 Fast Clever Segmentation – FastCleverSeg

In our proposed FastCleverSeg method, for simplicity's sake, we consider gray-scale
volumes and a binary segmentation scenario, i.e. foreground and background segmentation.
However, our method can be trivially adapted to multi-channel images or different gray-scales as
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well as to segment several regions.

As shown in Algorithm 4, we divide our approach in two steps: initialization and core
processing. In the initialization, we consider M,N, and Z as the number of rows, columns, and
slices, respectively, for the four following matrices:

I: volumetric MRI exam in gray-scale with voxels intensities in [1,2, ...,256].

L: labels matrix comprising manual annotations, in which the entries with values 0, 1 and 2
are unlabeled voxels, background/outside annotation and foreground/inside annotation,
respectively.

W : weighted matrix, in which, initially, every voxel ∀ (x,y,z) ∈W (line 1) is filled with ones for
corresponding labeled entries in L and zeros otherwise (lines 2 and 3):

W (i, j,z) =

{
0.0 if L(i, j,z) = 0,
1.0 if L(i, j,z) 6= 0.

(6.1)

B: boolean matrix that keeps track of the visited status of each voxel, in which true represents
the visited status and false represents the not visited status. Initially, every single voxel is
set to not visited or false (line 4).

Given matrices I,L,W, and B, FastCleverSeg may proceed to its core process, which is
detailed in three steps as follows.

Step 1. For every voxel ∀(i, j,z), check if the corresponding entry in the label matrix is annotated,
L(i, j,z) 6= 0, and was not visited/processed yet, B(i, j,z) = false, line 5. If the voxel does
not meet the condition, proceed to the next voxel. Otherwise, mark the current voxel (i, j,z)

as visited, B(i, j,z) = true, (line 6) and go to the next step.

Step 3 For each one of the 26 neighbors ({in, jn,zn},n ∈ [1,2, ...,26]) of the current voxel
{i, j,z} (line 7), calculate the absolute difference between the current voxel intensity
I(i, j,z) and the neighbor's voxel intensity I(in, jn,zn) normalized by the maximum voxel
intensity of the volume and then subtracted by one (line 8):

nvd = 1− |I(i, j,z)− I(in, jn,zn)|
max

∀(i, j,z)∈V
I(i, j,z)

.

Then, a strength s is computed by multiplying the weight of the current voxel W (i, j,z)

with the normalized voxel difference (nvd, line 9):

s =W (i, j,z)×nvd .
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Algorithm 4: FastCleverSeg method. Source codes available in Section A.3.
Input: Volumetric exam I and annotation/labels matrix L.
Output: Segmented image (grown regions in L).
// Initialization

1 for ∀(i, j,z) do
2 if L(i, j,z) 6= 0 then
3 W (i, j,z)← 1.0

4 B(i, j,z)← false
// Core process

5 for ∀(i, j,z) ∈ I and L(i, j,z) 6= 0 and B(i, j,z) = false do // Step 1: For each
labeled voxel not visited

6 B(x,y,z)← true
7 for ∀(in, jn,zn) do // Step 2: For each one of the 26-Neighbors

(in, jn,zn)
8 nvd← 1− |I(i, j,z)−I(in, jn,zn)|

max
∀(i, j,z)∈I

I(i, j,z)

9 s←W (i, j,z)×nvd
10 d f ← s−W (in, jn,zn)
11 if d f > θ then // Step 3: manage averaged values
12 W (in, jn,zn)← [ W (i, j,z)+W (in, jn,zn)+ s ]/3
13 L(in, jn,zn)← L(i, j,z)
14 B(in, jn,zn)← false

After that, calculate the difference between s and the neighbor's current strength W (in, jn,zn)

as d f (line 10):
d f = s−W (in, jn,zn) .

Step 3. If d f is greater than a threshold θ (line 11), then, first, the current voxel's strength
W (i, j,z), the neighbor's current strength W (in, jn,zn) and the new strength s are averaged
and set as the new strength of the neighbor's voxel (line 12):

W (in, jn,zn) =
s+W (i, j,z)+W (in, jn,zn)

3
.

Thus, we introduce a more accurate balancing between the weights. Secondly, update the
neighbor's label L(in, jn, zn) with the current voxel's label L(i, j,z) (line 13):

L(in, jn,zn) = L(i, j,z) .

Finally, the neighbor's voxel visiting status is set to not visited (line 14), B(in, jn,zn) =

false, ensuring that the neighbor voxel will be visited at least one more time, whether it
was visited or not.

This process (line 5) continues until there is no label change for all voxels.
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The θ threshold avoids balancing (averaging) values that only change the third or fourth
decimal place. We explore the θ threshold Section 6.3.5. The visiting status ensures that each
voxel is visited only once, unless its label changes. Therefore, the processing time can be
significantly improved, since each voxel is visited just a few times, depending on whether its
strength changed or not. At the same time, we efficiently propagate the strengths as the region
grows by using a more accurate balancing between the weights.

6.2 Materials and methods
In this section, we present the materials and methods used in the experimental design.

First, in Section 6.2.1, we describe the volumetric databases used in the experiments. We
considered five distinct databases divided into three groups: paravertebral muscles, intervertebral
discs, and vertebral bodies. Then, in Section 6.2.2, we detail the parameters settings along
with the computational set-up as well as how the manual annotations were performed. Next, in
Section 6.2.3, we report the competitors considered in the analysis. Finally, in Section 6.2.4, we
detail the measures considered to validate the experimental results.

6.2.1 Patient database
We have used five MRI databases, with respective reference manual segmentations, which

we divided into three groups: paravertebral muscles, intervertebral discs, and vertebral bodies.
First, we consider a public database of paravertebral muscles (BURIAN et al., 2019), which we
detailed in Section 5.2.1. Then, we present an intervertebral disc database Menezes-Reis et al.

(2016). Finally, we assembled three databases of vertebral bodies, which are publicly available
(ZUKIĆ et al., 2014; BURIAN et al., 2019; CHU et al., 2015b; CHU et al., 2015a) Table 10
reports the overall details for the aforementioned databases. The ground-truth segmentations
were performed or supervised by a physician.

6.2.2 Parameters settings
In order to evaluate our proposed method for the segmentation task, we compared it

with CleverSeg (RAMOS et al., 2019b) 3DBGrowth,(RAMOS et al., 2019a) Fast GrowCut
(ZHU et al., 2014) and GrowCut (VEZHNEVETS; KONOUCHINE, 2005). For every method,
no maximum number of iterations was set, which implicates that every algorithm runs until
convergence. We compare the results with and without our proposed estimated annotation on
intermediary slices (EANIS) as well.

For FastCleverSeg and CleverSeg, we set the threshold θ to 1%. The remaining parame-
ters of all methods are set to default settings to achieve the best results of each method and to
avoid loss of generalizability. No pre or post-processing techniques were applied to assure the
same conditions for all segmentation methods.
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Table 10 – Databases scan parameters (prior to the normalization).

Resolution Resolution
Database MRI Sequences. TR/TE (s) (Voxel) (mm3)

Paravertebral Muscles
T1 TFE 6.4/1.1

334×334×67 1.0×1.0×3.6
Burian et al. (2019) ±135×135×5.0 ±0×0×5

Intervertebral Discs
T2 SE 3.9/1.6

512×512×16 0.4×0.4×4.4
Menezes-Reis et al. (2016) ±0×0×0 ±0×0×0

Vertebral Bodies T1 F/TSE, T2 T/SE,
–/–

542×542×18 0.7×0.7×3.8
Zukić et al. (2014) T2 fr/FSE, TIRM ±106×106×5 ±0.2×0.2×0.3

Vertebral Bodies
T1 FFE 11/1.4

222×222×23 1.0×1.0×3.9
Burian et al. (2019) ±7×7×12 ±0×0 ×0.2

Vertebral Bodies
T2 TSE 5.2/0.1

305×305×39 1.2×1.2×2.0
Chu et al. (2015b) ±0×0×0 ±0×0×0

Source: Adapted from Ramos et al. (2021).

Note – TE: Echo Time, TR: Repetition Time, SE: Spin-echo, TSE: Turbo Spin-echo, –: Information not
reported in the paper neither present on the files's metadata.

To assure the best conditions to all segmentation algorithms, since the majority of the
original exams have 65.536 gray levels (16 bits/pixel), we normalized the gray-scale of the exams
into 256 intensities (8 bits/pixel) using Equation 2.2. All MRIs were normalized to the isotropic
spatial resolution (1×1×1 mm3), employing a trilinear interpolation.

6.2.2.1 Computational set-up

Every experiment used a 2.40GHz Intel(R) Core(TM) i7 CPU and 8GB RAM machine,
using Matlab(R) version 2018a.

6.2.2.2 Manual annotations

For every segmentation task, two or three representative slices present Outside Annotation
(OAN) as follows:

Two OAN. For the paravertebral muscle database, we have considered only the manual outside
annotation of the top and bottom slices due to the approximately regular shape of the
muscle (not concave or convex in the plane perpendicular to the annotations plane).

Three OAN. For the intervertebral discs and vertebral bodies, we have considered only the top,
middle, and bottom slices due to their non-regular shape (presents concavity or convexity).

For each slice with OAN, the Inside Annotation (IAN) was automatically calculated
based on the OAN. Therefore, the number of annotated slices required relies on the shape of
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the ROI. In our case, only two or three annotated slices were required, as aforementioned. The
annotations on intermediary slices were estimated using EANIS (Section 6.1.1).

6.2.3 Competitors

In order to evaluate our proposed method for the segmentation task, we compared it with
CleverSeg (RAMOS et al., 2019b), 3DBGrowth (RAMOS et al., 2019a), FastGrowCut (ZHU et

al., 2014), and GrowCut (VEZHNEVETS; KONOUCHINE, 2005), which are state-of-the-art
methods for semi-supervised segmentation.

6.2.4 Comparison measures

In order to compare the resulting segmentation yielded by each segmentation method,
we considered the F-Measure (Equation 2.11), Average Hausdorff (Equation 2.14), AUC (Equa-
tion 2.13), and Run-Time.

6.3 Experiments, results and discussion

For all experiments, the results with EANIS implicates that only the outside manual
annotation on the most representative slices were given and the inside annotation was automati-
cally estimated on those slices. The results with EANIS implicates that the inside and outside
annotation were estimated using our approach on the intermediary slices.

In our experimental design, we analyze four main parts, depicted in Figure 33, and
detailed as follows. Next, we segment only intervertebral discs. First, we analyze the segmentation

Figure 33 – Experimental design to validate FastCleverSeg.
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Source: Elaborated by the author.

of every paravertebral muscle. After that, we analyze the segmentation of every vertebral body.
Then, we analyze the overall results by joining the results of the three parts aforementioned. We
also analyze the data distribution of the results and perform validations using statistical testing.
Finally, we evaluate the effect of changing the θ threshold on FastCleverSeg and CleverSeg
methods.
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6.3.1 Paravertebral muscle

Figure 34 shows the results (average values) for the paravertebral muscles database. Note
that, in general, EANIS improved the results for all segmentation methods considering every
measure. The Sensitivity was slightly lower with EANIS for GrowCut. On the other hand, the
Precision and AUC are higher with EANIS for GrowCut. For the Average Hausdorff, AUC, and
F-Measure, FastCleverSeg and CleverSeg presented very close results (smallest value, which is
better). Analyzing the Run-Time, FastCleverSeg presented the fastest Run-Time while BGrowth
was the slowest one.

Figure 34 – MRI database segmentation results for the paravertebral muscles with and without EANIS.
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better). Analyzing the Run-Time, FastCleverSeg presented the fastest Run-Time while BGrowth
was the slowest one.

Figure 2 – Average segmentation results for the paravertebral muscles MRI dataset. Comparison with and
without EANIS for segmentation methods.
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Source: Adapted from Ramos et al. (2021).

To further illustrate the results, ?? shows the segmentation for a single muscle with and
without EANIS. In general, all methods over-segments (lower Sensitivity) the muscle without
EANIS. On the other hand, with EANIS (in cyan), all methods produce a segmentation closer
to the ground-truth with a lower Average Hausdorff and Run-Time while presenting a higher
F-Measure, AUC, Precision, and Sensitivity. With and without EANIS, FastCleverSeg and
CleverSeg presented the best results. FastGrowCut and GrowCut presented spiculated borders
even with EANIS, while the remaining methods presented smoother borders.

8.4.2 Intervertebral disc

For the intervertebral disc dataset, described in ??, Section 3 summarizes the average
segmentation results with and without EANIS. In the intervertebral disc scenario, all segmentation

Source: Adapted from Ramos et al. (2021).

To further illustrate the results, Figure 35 shows the segmentation for a single muscle
with and without EANIS. In general, all methods over-segments (lower Precision) the muscle
without EANIS due to the absence of annotations on the intermediary slices. On the other hand,
with EANIS (in cyan), all methods produce a segmentation closer to the ground-truth with a
lower Average Hausdorff and Run-Time while presenting a higher F-Measure, AUC, Precision,
and Sensitivity. With and without EANIS, FastCleverSeg and CleverSeg presented the best
results. FastGrowCut and GrowCut presented spiculated borders even with EANIS, while the
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remaining methods presented smoother borders.

Figure 35 – Segmentation results for a single paravertebral muscle with and without EANIS.
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Figure 3 – Segmentation results for a single paravertebral muscle with and without EANIS.
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Source: Adapted from Ramos et al. (2021).

was similar for most of the methods. Additionally, note that with a lower error margin one can
see that the results with EANIS were more concise. This indicates that, without EANIS, most
methods under-segments (lower Precision) the intervertebral discs. Analyzing the Run-Time, in
general, all methods performed faster with EANIS.

Source: Adapted from Ramos et al. (2021).
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6.3.2 Intervertebral disc

Figure 36 summarizes the average segmentation results with and without EANIS for the
intevertebral discs database. Note that, every segmentation method presented a higher Sensitivity
without EANIS. However, the Precision and AUC were higher with EANIS, while the F-Measure
was similar for most of the methods. Additionally, note that with a lower error margin one can
see that the results with EANIS were more concise. This indicates that, without EANIS, most
methods under-segments (lower Precision) the intervertebral discs. Analyzing the Run-Time, in
general, all methods performed faster with EANIS.

Figure 36 – Segmentation results for the intervertebral discs MRI database with and without EANIS.
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Figure 3 – Average segmentation results for the intervertebral discs MRI dataset. Comparison with and
without EANIS for each segmentation method.
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Source: Adapted from Ramos et al. (2021).

methods presented a higher Sensitivity without EANIS. On the other hand, the measures of
Precision and AUC are higher with EANIS, while the Dice Score is similar for most of the
methods. However, notice that with a lower error margin one can see that the results with EANIS
are more concise. Therefore, indicating that, without EANIS, most methods under-segments
(lower Precision) the intervertebral discs. Analyzing the Run-Time, in general, all methods
performed faster with EANIS.

To better illustrate this, ?? shows the segmentation results for a single intervertebral
disc. Note that, with EANIS, the Precision is higher and, therefore, the results are closer to
the ground-truth (even visually) with a higher AUC. As a last remark, all methods had a faster
Run-Time with EANIS: FastCleverSeg was the fastest one while BGrowth was the slowest one.

Source: Adapted from Ramos et al. (2021).

To better illustrate the results, Figure 37 shows the segmentation for a single intervertebral
disc. With EANIS, for every segmentation method, the Precision was higher and, therefore, the
results were closer to the ground-truth (even visually) with a higher AUC. As a last remark, every
segmentation method had a faster Run-Time with EANIS: FastCleverSeg was the fastest one
while BGrowth was the slowest one.
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Figure 37 – Segmentation results for a single intervertebral disc with and without EANIS.
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Figure 5 – Segmentation results for a single intervertebral disc with and without EANIS.
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6.3.3 Vertebral body

The vertebral bodies database is made up of three vertebral bodies databases, as we
described in Section 6.2.1. Figure 38 reports the average segmentation results for the assembled
vertebral bodies database. Note that, for most measures, EANIS improved the results for every
method and, at the same time, presented a lower standard deviation, which implicates that, with
EANIS, the segmentation methods presented more concise results. For the GrowCut method,
although there was no Sensitivity improvement, the Precision along with the F-Measure and
AUC presented better results with EANIS. To the greater extent, FastCleverSeg and CleverSeg
presented close results and FastCleverSeg presented the fastest Run-Time (RT) with and without
EANIS.

Figure 38 – Segmentation results for the vertebral body MRI database with and without EANIS.
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presented close results and FastCleverSeg presented the fastest Run-Time (RT) with and without
EANIS.

Figure 6 – Average segmentation results for the vertebral body MRI database with and without EANIS.
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Source: Adapted from Ramos et al. (2021).

Figure 7 shows the segmentation results for a single vertebral body. In general, all
methods over-segment in a few parts while under-segment in the others without EANIS. This
issue is minimized with EANIS so that all methods presented a higher Precision and Sensitivity,
consequently, a higher F-Measure and AUC. With and without EANIS, FastCleverSeg and
CleverSeg presented the best results with smoother borders. FastCleverSeg had the fastest
Run-Time.

8.4.4 Overall results analysis

In order to analyze the segmentation of all datasets considered in this chapter, Figure 8
shows the data distribution of all segmentation results. Note that, there were no Sensitivity
improvements with EANIS for GrowCut. However, for all the remaining measures, GrowCut

Source: Adapted from Ramos et al. (2021).

Figure 39 shows the segmentation results for a single vertebral body. In general, all
methods over-segment in a few parts, while under-segment in the others without EANIS. This
issue is minimized with EANIS, so that all methods presented a higher Precision and Sensitivity,
consequently, a higher F-Measure and AUC. With and without EANIS, FastCleverSeg and
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CleverSeg presented the best results with smoother borders. FastCleverSeg had the fastest
Run-Time.

Figure 39 – Comparison of segmentation results for a single vertebral body with and without EANIS.
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Figure 7 – Comparison of segmentation results for a single vertebral body: Comparison with and without
EANIS for each segmentation method.
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Figure 8 – Overall data distribution for all MRI datasets considered in this work. Comparison with and
without EANIS.

Figure 9 – Effect of changing the θ threshold: Comparison for several θ threshold values for FastCle-
verSeg and CleverSeg methods.

Source: Adapted from Ramos et al. (2021).

6.3.4 Statistical evaluation and validation

In order to analyze the segmentation of all databases considered in the analysis, Figure 40
shows the data distribution of all segmentation results. Note that, there were no Sensitivity
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improvements with EANIS for GrowCut. However, for all the remaining measures, GrowCut
presented better results with EANIS. For the remaining segmentation methods, the results with
EANIS were better for every measure. In general, FastCleverSeg and CleverSeg presented the
best results for all measures. However, for the Run-Time, FastCleverSeg was the fastest one with
and without EANIS, surpassing the fastest competitor (FastGrowCut).

Figure 40 – Overall data distribution for all MRI databases considered in this work. Comparison with and
without EANIS.
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Figure 39 – Overall data distribution for all MRI databases considered in this work. Comparison with and
without EANIS.
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Source: Adapted from Ramos et al. (2021).

7.4.4.1 Statistical testing

First, we tested the normality of the data by applying the Kolmogorov-Smirnov test at
the 1% significance level. The null hypothesis was rejected for all cases and all measures, which
indicates the data do not follow a normal distribution. In this case, the Wilcoxon test is the most
indicated for the significance analysis.

We employed the Wilcoxon test at the 1% significance level, and we assess the results in
two main parts. First, in Table 10, we analyze if there is a significant difference with EANIS
against without EANIS for all methods considering every measure.

As reported in Table 10, with EANIS, all methods yielded significantly better results on
every measure. Then, in Table 11, we verify if there is significant difference for FastCleverSeg
against the competitors' methods with and without EANIS for all methods considering every
measure as well. As Table 11 reports, considering no EANIS, FastCleverSeg presented similar

Source: Adapted from Ramos et al. (2021).

To further validate the results, we conducted statistical testing over the data presented in
Figure 40, as we discuss next.

6.3.4.1 Statistical testing

First, we tested the normality of the data by applying the Kolmogorov-Smirnov test at
the 1% significance level. The null hypothesis was rejected for all cases and all measures, which
indicates the data do not follow a normal distribution. In this case, the Wilcoxon test is the most
indicated for the significance analysis.
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We employed the Wilcoxon test at the 1% significance level, and we assess the results in
two main parts. First, in Table 11, we analyze if there is a significant difference with EANIS
against without EANIS for all methods considering every measure.

As reported in Table 11, with EANIS, all methods yielded significantly better results on
every measure. Then, in Table 12, we verify if there is significant difference for FastCleverSeg

Table 11 – Wilcoxon test p-value results (at the 1% significance level) for each method with EANIS
against itself without EANIS: 4means that a significant difference is observed.

Measure

Method Hausdorff AUC Run-Time F-Measure Precision Sensitivity

FastCleverSeg 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)
FastGrowCut 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)

CleverSeg 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)
BGrowth 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)
GrowCut 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)

Source: Adapted from Ramos et al. (2021).

against the competitors' methods with and without EANIS for all methods considering every
measure as well. As Table 12 reports, considering no EANIS, FastCleverSeg presented similar
results to:

• FastGrowCut: for the AUC and Precision measures. However, for Sensitivity and F-
Measure it was significantly better.

• CleverSeg: for the Precision. However, the Sensitivity was significantly better and, conse-
quently, the F-Measure was significantly better as well.

• BGrowth: for the Precision, however, the Sensitivity and F-Measure was significantly
better.

• GrowCut: for the Average Hausdorff and F-Measure.

Considering the results with EANIS, FastCleverSeg presented similar results with Fast-
GrowCut for the Hausdorff and F-Measure. There were similar results for the CleverSeg method
and FastCleverSeg for the Sensitivity. However, the Precision and F-Measure was significantly
better for FastCleverSeg. Predominantly, FastCleverSeg with EANIS presented significantly
better results than the remaining methods. FastCleverSeg was significantly faster than every
method with and without EANIS.
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Table 12 – Wilcoxon test p-value results (at the 1% significance level) considering annotations with
and without EANIS: 4 means significantly better results for FastCleverSeg and 7means
that no significant difference is observed.

Measure Hausdorff AUC Run-Time

FastCleverSeg Without With Without With Without With
against EANIS EANIS EANIS EANIS EANIS EANIS

FastGrowCut 0.000 (4) 0.885 (7) 0.106 (7) 0.031 (4) 0.000 (4) 0.000 (4)
CleverSeg 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)
BGrowth 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)
GrowCut 0.088 (7) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)

Measure F-Measure Precision Sensitivity

FastCleverSeg Without With Without With Without With
against EANIS EANIS EANIS EANIS EANIS EANIS

FastGrowCut 0.000 (4) 0.068 (7) 0.082 (7) 0.002 (4) 0.000 (4) 0.000 (4)
CleverSeg 0.000 (4) 0.000 (4) 0.498 (7) 0.000 (4) 0.000 (4) 0.138 (7)
BGrowth 0.000 (4) 0.000 (4) 0.104 (7) 0.000 (4) 0.000 (4) 0.000 (4)
GrowCut 0.059 (7) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4) 0.000 (4)

Source: Adapted from Ramos et al. (2021).

6.3.5 θ threshold variation

In this experiment, we analyze the effect of varying the θ threshold. We started at 0%,
increased by 1%, up until 15%, which sums up to 16 thresholds values. Figure 41 shows the
results for the F-Measure and AUC in both scenarios: with and without EANIS.

Note that, from 1% to 15%, the measures decreases as θ increases, and both methods
present a decrease in performance for all measures below 1%. Both methods present the best
results at 1% with and without EANIS. Conclusively, 1% is the most suitable value for the θ
threshold for FastCleverSeg and CleverSeg. For this reason, we employed this threshold value in
the BGrowth algorithm in Chapter 3.

6.4 Final considerations

The semi-automatic segmentation of human structures, such as paravertebral muscle,
intervertebral discs and vertebral body in large volumetric MRI exams is a challenging task.
In general, manually annotating every slice of an exam is a time-consuming and tiresome task
for the specialist. On the grounds of that, allowing a fast and accurate segmentation of slices is
crucial in order to obtain a proper 3D reconstruction of the segmented structure. To cope with
this, we proposed the estimation of annotation on intermediary slices (EANIS) along with the
automatic estimation of the inside annotation, so that only two or three representative slices
had to be annotated and the whole volumetric exam could be efficiently segmented using our
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Figure 41 – Effect of changing the θ threshold: Comparison for several θ threshold values for FastCle-
verSeg and CleverSeg methods.

Source: Adapted from Ramos et al. (2021).

proposed FastCleverSeg method. Furthermore, the inside annotation of each slice is automatically
estimated based on the outside annotation, which speeds up the manual step.

Concerning the objectives of this Doctorate research, in this chapter we approached the
Research Problem 2: Reducing manual interaction on the segmentation of lumbar vertebral
bodies in MRI exams. Based on the results presented throughout the chapter, we answer the
initial formulated research question as follows:

a) How can we reduce the total time and effort spent on manual annotations of vertebral

anatomical structures in MRI exams and maintain segmentation accuracy?

Answer: We firmly believe that FastCleverSeg and EANIS may aid physicians in produc-
ing more ground-truths in a faster manner, speeding up the laborious task of manually
segmenting regions of interest. By annotating only two or three representative slices, the
whole volumetric exam could be efficiently segmented using our proposed FastCleverSeg
method. The experimental results showed that our proposed segmentation technique is the
fastest one and, at the same time, presented results similar to or better than the competi-
tors, which are the state-of-the-art regarding semi-automatic segmentation methods. Thus,
physicians, as well as scientists, may benefit from this, since deep-learning approaches
can be applied with even more confidence assuming a larger number of samples.

In the next chapter, we employed our segmentation method into an application scenario
in which we cover the texture analysis of vertebral bodies in MRIs. Thus, we step forward into
the Research Problem 3: Assessing bone fragility fractures using volumetric MRI and radiomic
texture features.
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CHAPTER

7
ANALYSIS OF BONE FRAGILITY

FRACTURES USING TEXTURE FEATURES

In this Chapter, we use our segmentation method in an application scenario, in which
we present an extensive empirical study aimed at assessing fragility fractures secondary to
osteoporosis. First, in Section 7.1, we delve into the background and motivation. We developed
a radiomic-based approach called BonE Analysis Using Texture (BEAUT) to assess fragility
fractures. To evaluate BEAUT, we considered the materials and methods detailed in Section 7.2.
Next, in Section 7.3, we present the experimental results, on a meaningful database composed
of 47 T2-weighted exams. BEAUT achieved an Accuracy of 92% and 97% AUC with feature
selection to discriminate between patients with bone mass loss, spotting those at risk of fragility
fractures. Finally, Section 7.4 concludes this Chapter.

7.1 Proposed Method: BonE Analysis Using Texture –
BEAUT

To aid in the assessment of lumbar fractures in MRIs, we propose BEAUT, a novel
method which takes advantage of the radiomics approach. We divide BEAUT in four steps, as
shown in Figure 42 and detailed as follows. First, BEAUT gets a lumbar MRI as input, and
segment the vertebral bodies accordingly using CleverSeg. Next, we extract features of texture
patterns from each vertebral body. After that, we analyze and select the most relevant features.
Finally, we apply a classification model to spot a fragility fracture. For this, BEAUT builds a
classification model on previous images to analyze fractures in a specific patient.

BEAUT combines classifiers aiming at achieving the best possible results. We con-
sidered two techniques, AdaBoost (Adaptive Boosting) (FREUND; SCHAPIRE, 1996) and
LogitBoost (FRIEDMAN; HASTIE; TIBSHIRANI, 2000) to perform classification using all or
just selected features, respectively.
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Figure 42 – BEAUT pipeline: radiomics analysis for bone mass loss and prediction of fragility fractures
secondary to osteoporosis.
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Source: Adapted from Ramos et al. (2021).

7.2 Materials and methods
In this section, we present the materials and methods used in the experimental design.

First, in Section 7.2.1, we describe the volumetric databases used in the experiments. We used a
representative and balanced database comprising 47 MRIs exams. Then, in Section 7.2.2, we
detail the segmentation and feature extraction. We used CleverSeg to segment the volumetric
exams and extracted 1,674 texture features using PyRadiomics. Next, in Section 7.2.3, we
explored the analysis of features, in which we selected 434 features using the Chi-square feature
ranking. After that, in Section 7.2.4, we detail the classifiers used to compare and validate our
approach. We considered representative and well-established classifiers, such as SVM, k-NN,
Naïve Bayes, Discriminant Analysis (Disc. Analysis), and Decision Tree. Then, in Section 7.2.5,
we detail the parameters settings along with the computational set-up. Finally, Section 7.2.6, we
explore the measures considered to validate the experimental results.

7.2.1 Patient Database

The database is composed of 47 DEXA and volumetric spine MRI T2-weighted FSE se-
quences1. Every participants agreed to participate in the study and provided written informed con-
sent. The database was acquired at the Ribeirão Preto Medical School (FMRP-USP2) in Ribeirão
Preto, SP – Brazil, under the Ethics Research Committee approval (47580315.5.0000.5440)
following the Declaration of Helsinki.

All the MRI exams where taken by a 1.5-Tesla system (Philips Achieva, Philips Medical
Systems, Best, the Netherlands) with echo time (TE) of 120 ms, 4.4 mm gap, 19 echo-train
length, 3900 ms repetition time (TR), 3.0 mm slice thickness, and 2 min 16 s scan duration.
The individuals in this study were at least 50 years old and had a Body Mass Index (BMI)
between 18 and 25 kg/m2. None of the patients used medications that affect bone metabolism or

1 Database acquired in partnership with another doctoral research from M.D. Jamilly G. Maciel under
the supervision of Professor M.D. Marcello H. Nogueira-Barbosa (FAPESP Process 2018/04266-9).

2 <https://www.fmrp.usp.br/en/>

https://www.fmrp.usp.br/en/
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presented reported histories of smoking and/or alcoholism in the last 10 years. Moreover, they
did not present any structural abnormality in the lower spine that could affect MRI or DEXA
measurements.

As shown in Table 13, the database presents 12 osteopenic patients without fractures
and 12 osteopenic with fragility fracture, 12 osteoporotic patients without fractures and 11
osteoporotic with fragility fracture. We organized the database into two categories, ‘Fractures’
and ‘No Fractures’, In total, 97 vertebral bodies presented fragility fracture, fitting into the
‘Fractures’ group. The ‘No Fractures’ group includes 97 vertebral bodies that do not present
fragility fracture. Note that we filtered out vertebral bodies that were fractured and could bias the
analysis. We highlight that vertebral bodies from the same patient are not on both groups neither
present osteopenia and osteoporosis at the same time.

Table 13 – Database overview: group ‘No fractures’ represents cases with fractures while group ‘Fractures’
represents the opposite case.

Description Age BMD (g/cm2) T-score #exams Group #selected

Osteopenia 69 ± 5.5 0.85 ± 0.05 −1.9±0.4 12 ‘No Fractures’ 97

Osteoporosis 70 ± 6.5 0.73 ± 0.05 −2.9±0.6 12 24×5 = 120 VBs

Osteopenia 75 ± 5.8 0.84 ± 0.07 −1.7±0.3 12 ‘Fractures’ 97

Osteoporosis 71 ± 5.5 0.67 ± 0.06 −3.4±0.4 11 23×5 = 115 VBs

Total 47 235 194

Source: Adapted from Ramos et al. (2021).

BMD is calculated in g/cm2, and then compared against a reference population. The
comparison yields a T-score, which shows how much higher or lower the bone density is
compared to a healthy 30-year-old3. The lower the score, the weaker the bones are (LEWIECKI;
BORGES, 2006), as follows:

T-score of -1.0 or above: normal bone density.

T-score between -1.0 and -2.5: low bone density, or osteopenia.

T-score of -2.5 or lower: osteoporosis.

T-score of -2.5 or lower with a fragility fracture: severe osteoporosis.

3 The age when bones are at their strongest.



92 Chapter 7. Analysis of bone fragility fractures using texture features

7.2.2 Segmentation and feature extraction

We performed a segmentation (Figure 43) of L1-L5 for each T2 exam using Clever
Segmentation (RAMOS et al., 2019b) in 3D Slicer4(KIKINIS; PIEPER; VOSBURGH, 2014).
Manual corrections were performed in order to remove over segmentations or to correct under
segmentations. The segmentations were performed by an experienced technician under expert
supervision and took, in average, 15 minutes per exam.

Figure 43 – Example of segmentations for exam 10.

(a) T2 – MRI exam. (b) T2 – 3D Segmentation.

Source: Elaborated by the author.

In total, 1,674 texture features were extracted from each segmented vertebral body using
PyRadiomics (GRIETHUYSEN et al., 2017), as shown in Table 14. That is:

• 93 texture features were extracted from the original exams.

• 837 texture features were extract by adding a few variations using Laplacian of Gaussian
(LoG) to the original exams.

• 744 texture features were extract by adding Coiflets Wavelets variations to the original
exams.

4 <https://github.com/JonathanRamos/SlicerCleverSegmentation>

https://github.com/JonathanRamos/SlicerCleverSegmentation
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The LoG and Wavelets variations are frequently applied in this Radiomics features extraction.
We used LoG sigma values of 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5. For Wavelets, we used default
decomposition settings, yielding 8 variations. Each Wavelet variation considered High-pass (H)
and Low-pass (L) filters in the following combinations: LLH, LHL, LHH, HLL, HLH, HHL,
HHH, and LLL. We re-sampled every exam to isotropic spacing.

Table 14 – Summary of texture features considered in this work.

#variations

Name #features LoG Wavelets

Neigh. Gray Tone Difference Matrix (NGTDM) 5 9 8
Gray Level Dependence Matrix (GLDM) 14 9 8

Gray Level Run-Length Matrix (GLRLM) 16 9 8
Gray Level size zone matrix (GLSZM) 16 9 8

First-Order Statistics (FOS) 18 9 8
Gray Level Concurrence Matrix (GLCM) 24 9 8

Quantity 93 54 (837) 48 (744)

Total 93 + 837 + 744 = 1,674
Source: Adapted from Ramos et al. (2021).

7.2.3 Feature Selection

We employed the Chi-square univariate feature ranking over the whole database to select
the most relevant texture features. In statistics, the Chi-square test checks the independence of
two events/variables. The test measures how much two variables deviate from each other. The
smaller the Chi-Square value, the less independent the feature is from the label/class. In feature
selection, the more dependent on the label/class, the more powerful the feature is to differentiate
that label/class. Therefore, the higher the Chi-Square value, the more relevant the feature is (JIN
et al., 2006; BOUCKAERT; FRANK, 2004).

The Chi-square test has been used in a few radiomics approaches and yielded promising
results (JIN et al., 2006; BOUCKAERT; FRANK, 2004), so that we applied the Chi-square
test for feature ranking in our work as well. Due to the total number of features, we show, in
Figure 44, the ranking results as an histogram. We empirically selected features with ranking
larger than 5.28, summing up to 434 features. Those features comprises 78 unique features
across the original VOIs and LoG/Wavelet variations. We will focus on presenting the 10
most frequent features, as follows: 19 GLCM Contrast, 14 NGTDM Gray Level Variance,
14 GLRLM Gray Level Non Uniformity, 11 GLCM Cluster Tendency, 11 GLCM Maximum
Probability, 9 FOS Variance, 9 GLCM Joint Entropy, 9 GLCM Imc1, 9 GLCM Correlation,
9 FOS 90Percentile. We made available a complete description of the features selected at
<https://github.com/JonathanRamos/beaut>.

https://github.com/JonathanRamos/beaut
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Figure 44 – Histogram for Chi-square univariate feature ranking. The farthest to the left (black), the lower
the ranking, inversely, the farthest to the right (red), the higher the ranking.

94 Chapter 8. Bone Mineral Density and Texture analysis using pyradiomics

Figure 43 – Histogram for Chi-square univariate feature ranking. The farthest to the left (black), the lower
the ranking, inversely, the farthest to the right (red), the higher the ranking.
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8.2.4 Classifiers

In order to achieve the best results, we trained the hyper-parameters of all classifiers
used . To validate our proposed approach, BEAUT we made comparison with five well-known
literature classifiers, as detailed following.

• Support Vector Machine (SVM): calculates the hyper-plane that best separates the classifi-
cation groups in the training data. The parameters for all and for selected texture features
are respectively: kernel function: {Gaussian, Gaussian} and kernel scale: {5.60, 3.92}, box
constraint: {168.95, 971.73}.

• k-Nearest Neighbor (k-NN): observes the distance among training instances. The parame-
ters for all and selected texture features are respectively: Distance:{Spearman, City-block},
number of neighbors:{1, 1}, distance weight: {squared inverse, inverse}.

• Naïve Bayes: estimates the probability of a feature based on how frequent it appears in the
training data.

• Discriminant Analysis (Disc. Analysis): finds a linear combination of features that charac-
terizes or separates the classes. The parameters for all and selected texture features are
respectively: discriminant: {diagonal linear, diagonal linear}, fill coefficients: {no, no}.

• Decision Tree: takes advantage of the “divide-and-conquer” technique, where a problem
is divided in sub-problems to derive a decision tree. The parameters for all and selected
texture features are respectively: split criterion: {cross entropy, Gini's diversity index},
maximum number of decision splits: {8, 8}, surrogate: {no, no}.

We set AdaBoost's learning cycles to 496 and a learning rate of 0.12 considering a
decision tree learner with 4 maximum number of splits. For LogitBoost, we used 186 learning

Source: Adapted from Ramos et al. (2021).

7.2.4 Classifiers

To validate our proposed approach, BEAUT we made comparison with five representative
and well-known literature classifiers. In order to achieve the best results, we trained/tuned the
hyper-parameters of all classifiers. The tuning was performed by a Bayesian optimization and
acquisition function of expected improvement per second plus with a max of 100 iterations. We
detail the algorithms and tuned hyper-parameters as follows.

• Support Vector Machine (SVM): calculates the hyper-plane that best separates the classifi-
cation groups in the training data. The parameters for all and for selected texture features
are respectively: kernel function: {Gaussian, Gaussian} and kernel scale: {5.60, 3.92}, box
constraint: {168.95, 971.73}.

• k-Nearest Neighbor (k-NN): observes the distance among training instances. The parame-
ters for all and selected texture features are respectively: Distance:{Spearman, City-block},
number of neighbors:{1, 1}, distance weight: {squared inverse, inverse}.

• Naïve Bayes: estimates the probability of a feature based on how frequent it appears in the
training data.

• Discriminant Analysis (Disc. Analysis): finds a linear combination of features that charac-
terizes or separates the classes. The parameters for all and selected texture features are
respectively: discriminant: {diagonal linear, diagonal linear}, fill coefficients: {no, no}.

• Decision Tree: takes advantage of the “divide-and-conquer” technique, where a problem
is divided in sub-problems to derive a decision tree. The parameters for all and selected
texture features are respectively: split criterion: {cross entropy, Gini's diversity index},
maximum number of decision splits: {8, 8}, surrogate: {no, no}.
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For BEAUT, we set AdaBoost's learning cycles to 496 and a learning rate of 0.12
considering a decision tree learner with 4 maximum number of splits. For LogitBoost, we used
186 learning cycles and a learning rate of 0.90 considering a decision tree learner with at most
3. AdaBoost gets the outputs of a given initial classifier, considered as a “weak learner”, and
combines the predictions into a weighted sum that represents the final output. In general, using
a decision tree as AdaBoost's weak learner tends to present better results (KÉGL, 2013). The
AdaBoost method can be divided in two versions, M1 and M2, in which M stands for “Multi-
class”. For binary classification problems (our case), M1 and M2 are equivalent (FREUND;
SCHAPIRE, 1996). LogitBoost takes AdaBoost as a generalized additive model and applies
logistic regression as a cost function. Therefore, LogitBoost can be seen as a convex optimization
approach aiming at minimizing the logistic loss (FRIEDMAN; HASTIE; TIBSHIRANI, 2000).

To avoid the loss of generalizability, parameters not reported in this section were set to
the respective (widely used) default settings of each classifier.

7.2.5 Parameter settings

In our experimental setup, we employed ten repeated 10-fold cross-validation (stratified)
for the classification as well as for the statistical testing. Moreover, we trained the hyper-
parameters of every classifier considered in the analysis aiming at achieving the best result of
each method.

7.2.5.1 Computational setup

Every experiment was performed on a 3.40GHz Intel(R) Core(TM) i7 CPU and 8GB
RAM machine, using Matlab(R) version 2020a.

7.2.5.2 Statistical tests

We compared the repeated cross-validation Accuracy results of two classification models.
Considering that our sample size is limited and the data follows a normal distribution, we
employed a t-test at the 1% and 5% significance level. We considered 10 degrees of freedom
for the t-distribution to find the critical region and estimate the p-value. The null hypothesis is:
“the set of predictions resulting from classification model ‘A’ is more accurate than classification
model ‘B’.”

7.2.6 Comparison measures

For comparison, we used well-established measures, such as Accuracy (Equation 2.7),
Precision (Equation 2.8), Sensitivity (Equation 2.9), F-Measure (Equation 2.11), and AUC
(Equation 2.13).
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7.3 Experiments, results and discussion
In our experimental design, we analyze two main parts, as depicted in Figure 45 and

described as follows. First, in Section 7.3.1 we report the classification results with and without
feature selection. Then, in Section 7.3.2 we present statistical testing, in which we analyze
whether there were significant Accuracy differences among the classification models.

Figure 45 – Experimental design to validate BEAUT.

Experiment 1
classification with and

without feature selection

Experiment 2
Statistical test-

ing and evaluation

Source: Elaborated by the author.

7.3.1 Classification with and without feature selection

Table 15 reports the classification results with (+) and without (–) feature selection. We
discuss the results in two parts as follows.

Without feature selection. BEAUT achieved the best results, presenting the largest values
for every measure while k-NN reached the second-best results for every measure. SVM
exhibited slightly lower results than k-NN while the remaining classifiers (Decision Tree,
Disc. Analysis, and Naïve Bayes) performed poorly compared to BEAUT and k-NN.

To further validate the results, we show in Figure 46a the ROC plot along with the AUC
value of each classifier. BEAUT presented an AUC of 92%, giving the highest result. SVM
obtained the second-best ROC curve (89%) result and k-NN was the third (83%). Naïve
Bayes, Discriminant Analysis, and Decision Tree obtained the smaller AUC results, at
61%, 73%, and 76%, respectively.

With selected features. Once again, BEAUT reached the highest results for every measure.
Compared to the results using all features, BEAUT was able to improve 8%, in average.
The SVM classifier achieved the second-best results for all measures, and improved 3% in
average. The performance of the k-NN method reduced 5% in average, when compared
to the results using all features. Decision Tree, Disc. Analysis, and Naïve Bayes methods
presented slightly better results with features selection. Except the k-NN classifier, all
other methods yielded better overall results when feature selection is applied.

Figure 46b shows a further validation of the results the ROC plot along with the AUC
results of each classifier. As we can see, BEAUT presented the highest AUC (97%), SVM
presented the second best result (90%). The k-NN method presented an AUC of 89%,
corresponding to the third-best result. Disc. Analysis, Naïve Bayes, and Decision Tree
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presented the lowest AUC, with 74%, 76%, and 80%, respectively. Most methods presented
better result with selected features compared to the AUC with all features in Figure 46a.
k-NN was the only method that presented lower AUC with feature selection.

Table 15 – Classification results with (+) and without (–) selected features.

Measure (%)
Accuracy Precision Sensitivity Specificity F-Measure

Classifier – + – + – + – + – +

BEAUT 85 92 : 8 84 93 : 9 86 91 : 5 84 93 : 9 85 92 : 7
k-NN 83 78 : 5 82 76 : 6 84 83 : 1 81 74 : 7 83 79 : 4
SVM 80 83 : 3 81 82 : 1 78 84 : 6 81 81 : 0 80 83 : 3

Decision Tree 75 76 : 1 75 76 : 1 76 77 : 1 74 75 : 1 76 77 : 1
Disc. Analysis 70 71 : 1 69 70 : 1 73 73 : 0 67 68 : 1 71 71 : 0

Naïve Bayes 57 68 : 11 55 67 : 12 79 71 : 8 35 65 : 30 65 69 : 4

Source: Adapted from Ramos et al. (2021).

Note – Best column values in bold and second-best underlined.We represent equal or decreased
result with selected feature as : and improved results with selected features as :.

Figure 46 – ROC results for classifiers considering all and selected features. We represent AUC increase
and decrease in (b), compared to (a), as : and : , respectively.
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Table 14 – Classification results with (+) and without (–) selected features.

Measure (%)
Accuracy Precision Sensitivity Specificity F-Measure

Classifier – + – + – + – + – +

BEAUT 85 92 : 8 84 93 : 9 86 91 : 5 84 93 : 9 85 92 : 7
k-NN 83 78 : 5 82 76 : 6 84 83 : 1 81 74 : 7 83 79 : 4
SVM 80 83 : 3 81 82 : 1 78 84 : 6 81 81 : 0 80 83 : 3

Decision Tree 75 76 : 1 75 76 : 1 76 77 : 1 74 75 : 1 76 77 : 1
Disc. Analysis 70 71 : 1 69 70 : 1 73 73 : 0 67 68 : 1 71 71 : 0

Naïve Bayes 57 68 : 11 55 67 : 12 79 71 : 8 35 65 : 30 65 69 : 4

Source: Adapted from Ramos et al. (2021).

Note – Best column values in bold and second-best underlined.We represent equal or decreased
result with selected feature as : and improved results with selected features as :.

Figure 45 – AUC results for classifiers considering all features. We represent AUC increase and decrease
in (b), compared to (a), as : and : , respectively.
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(a) All features.
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97% : 5% AUC– BEAUT
78% : 5% AUC– k-NN
90% : 1% AUC– SVM
80% : 4% AUC– Decision Tree
74% : 1% AUC– Disc. Analysis
76% : 15% AUC– Naïve Bayes

(b) Selected Features.

Source: Adapted from Ramos et al. (2021).

Analyzing the principal diagonal in Table 15, we can see that only BEAUT and Naïve
Bayes using selected features presented a significantly better Accuracy than itself using all
features. In the first column with p-values, BEAUT using selected features presented significantly
better Accuracy than every classifier using all features, exhibiting low p-values (p < 0.02) most
of the times. In the second and third columns with p-values, k-NN and SVM using selected
features presented significantly better Accuracy than Decision Tree, Discriminant Analysis, and
Naïve Bayes using all features. For the remaining cases, no significant differences were observed,
presenting, most of the times, large p-values (p > 0.9).

(a) All features.
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Table 14 – Classification results with (+) and without (–) selected features.

Measure (%)
Accuracy Precision Sensitivity Specificity F-Measure

Classifier – + – + – + – + – +

BEAUT 85 92 : 8 84 93 : 9 86 91 : 5 84 93 : 9 85 92 : 7
k-NN 83 78 : 5 82 76 : 6 84 83 : 1 81 74 : 7 83 79 : 4
SVM 80 83 : 3 81 82 : 1 78 84 : 6 81 81 : 0 80 83 : 3

Decision Tree 75 76 : 1 75 76 : 1 76 77 : 1 74 75 : 1 76 77 : 1
Disc. Analysis 70 71 : 1 69 70 : 1 73 73 : 0 67 68 : 1 71 71 : 0

Naïve Bayes 57 68 : 11 55 67 : 12 79 71 : 8 35 65 : 30 65 69 : 4

Source: Adapted from Ramos et al. (2021).

Note – Best column values in bold and second-best underlined.We represent equal or decreased
result with selected feature as : and improved results with selected features as :.

Figure 45 – AUC results for classifiers considering all features. We represent AUC increase and decrease
in (b), compared to (a), as : and : , respectively.
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(b) Selected Features.

Source: Adapted from Ramos et al. (2021).

Analyzing the principal diagonal in Table 15, we can see that only BEAUT and Naïve
Bayes using selected features presented a significantly better Accuracy than itself using all
features. In the first column with p-values, BEAUT using selected features presented significantly
better Accuracy than every classifier using all features, exhibiting low p-values (p < 0.02) most
of the times. In the second and third columns with p-values, k-NN and SVM using selected
features presented significantly better Accuracy than Decision Tree, Discriminant Analysis, and
Naïve Bayes using all features. For the remaining cases, no significant differences were observed,
presenting, most of the times, large p-values (p > 0.9).

(b) Selected Features.

Source: Adapted from Ramos et al. (2021).

7.3.2 Statistical testing

We performed the statistical tests in two parts considering the Accuracy of each classifier.
First, we compared each classifier using selected features against every classifier using all



98 Chapter 7. Analysis of bone fragility fractures using texture features

Table 16 – Accuracy testing (p-values) of classifiers with selected features against classifiers with all
features, at the 5% significance level (p-values lower than 0.05, p < 0.05).

All Features

Decision Disc. Naïve
against BEAUT k-NN SVM Tree Analysis Bayes

BEAUT 0.017 (4) 0.031 (4) 0.006 (4) 0.001 (4) 0.001 (4) 0.001 (4)
k-NN 0.985 (7) 0.856 (7) 0.618 (7) 0.021 (4) 0.005 (4) 0.006 (4)

SVM 0.963 (7) 0.870 (7) 0.485 (7) 0.042 (4) 0.004 (4) 0.002 (4)
Decision Tree 0.999 (7) 0.991 (7) 0.969 (7) 0.317 (7) 0.162 (7) 0.123 (7)

Disc. Analysis 0.999 (7) 0.999 (7) 0.999 (7) 0.790 (7) 0.510 (7) 0.691 (7)
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Naïve Bayes 0.9995 (7) 0.9992 (7) 0.9983 (7) 0.7815 (7) 0.531 (7) 0.001 (4)

Source: Adapted from Ramos et al. (2021).

Note – 4 means significantly better results for row classifier and 7 means that no significant difference is
observed for the classifier of that column.

features, as shown in Table 16. Next, in Table 17, we assessed whether BEAUT using selected
features presents significantly better Accuracy than the competitors using selected features as
well. In both cases, for each p-value, the null hypothesis is that each row approach has greater
Accuracy than the technique in the corresponding column.

Analyzing the principal diagonal in Table 16, we can see that only BEAUT and Naïve
Bayes using selected features presented a significantly better Accuracy than itself using all
features. In the first column with p-values, BEAUT using selected features presented significantly
better Accuracy than every classifier using all features, exhibiting low p-values (p < 0.02) most
of the times. In the second and third columns with p-values, k-NN and SVM using selected
features presented significantly better Accuracy than Decision Tree, Discriminant Analysis, and
Naïve Bayes using all features. For the remaining cases, no significant differences were observed,
presenting, most of the times, large p-values (p > 0.9).

Table 17 – Accuracy testing (p-value) for classifiers using selected features, at the 1%
significance level (p < 0.01).

against k-NN SVM Decision Tree Disc. Analysis Naïve Bayes

BEAUT 0.0035 (4) 0.0044 (4) 0.0003 (4) 0.0004 (4) 0.0004 (4)

Source: Adapted from Ramos et al. (2021).

Note – 4 means there was significantly better Accuracy for BEAUT.

We can see in Table 17 that BEAUT presented a significantly better Accuracy than every
other classifier using selected features at the 1% significance level. Notice that the p-value is
quite low (p < 0.004) in every case, indicating that BEAUT has a higher discriminating power
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than every compared methods.

7.4 Final considerations
In this chapter we presented BEAUT, a new approach aimed at improving the ability to

identify patients with fragility fractures secondary to osteoporosis, using the texture analysis on
spine MRI of lumbar vertebrae not affected by previous fractures. To achieve better assessment
of patients at risk of developing fragility fractures, we investigated the use of texture features
extracted from volumetric segmentation of lumbar vertebral bodies. We used radiomics features
and well-known classifiers (with trained hyper-parameters) to aid in the assessment of patients
with fragility fractures, differentiating them from patients without fragility fractures.

Concerning the objectives of this Doctorate research, in this chapter we approached the
Research Problem 3. Assessing bone fragility fractures using volumetric MRI and radiomic
texture features. Based on the results presented throughout this chapter, we answer the initial
formulated research questions as follows:

a) Can we assess bone fragility secondary to osteoporosis using MRI?

Answer:: The experimental results on a meaningful dataset with 47 T2-weighted MRI
exams showed that, by using BEAUT with texture feature selection, we achieved a better
discriminating performance for differentiation of patients at risk of developing lumbar
fragility fractures. Our proposed method, BEAUT, achieved a significantly better Accuracy
(92%), when compared to competitor classifiers (that achieved at most 89%). Moreover,
BEAUT reached 97% AUC, which surpassed all the competitors as well. Thus, our
results open the possibility of future use of spine MRI to differentiate patients at risk for
developing fragility fractures.

b) Is it possible to find potential biomarkers to predict bone fragility fractures?

Answer: We ascertain that quantitative texture features can potentially discriminate indi-
viduals with bone mass loss and identify those at risk of fragility fractures. We believe that
further studies, with a larger database, can be conducted to identify isolated attributes, or a
set of attributes, to differentiate subjects at risk of fragility fractures. Future longitudinal
studies are necessary to evaluate if texture features extracted from spine MRI may really
predict future fragility fracture incidence.

Our study has limitations that deserve mention:

1. Machine learning was able to differentiate patients with and without osteoporotic fractures,
based on features extracted from vertebrae without fractures and with normal appearance
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on MRI, but we did not test if the algorithm can predict future development of fractures.
Future studies are necessary to address this question.

2. The database we used was relatively small and from the same institution. Thus, we did not
evaluate the generalizability of our method with spine MRI performed in other institutions.



101

CHAPTER

8
CONCLUSIONS

In this Doctorate research we aimed at advancing in the semi-automatic segmentation
and analysis of vertebral bodies obtained by MRI, focusing on reducing the manual interaction.
Specifically, we presented three main contributions, that we discuss next, along with the research
hypothesis and thesis of the Doctorate research. We organized this Chapter in three parts as
follows. First, Section 8.1 states our main contributions. Next, Section 8.2 lists the future work
we envision. Finally, Section 8.3 summarizes the publications resulted from this PhD research.

8.1 Contributions
As we stated in Chapter 1, our main goal of this Doctorate research was to answer the

following question: “How can we ease manual interaction in semi-automatic segmentation

of vertebral bodies in MRI exams and, at the same time, keep or improve the segmentation

quality?” This is a challenging question, due to vertebrae deformations/fractures, diversity of
MRI acquisition parameters, high computational cost of segmentation algorithms, as well as
how to embed the expert-knowledge acquired over several years of experience without adding
observer-bias. From this context, we contributed in three main aspects:

1. BGrowth method for the segmentation of fractured or deformed vertebral bodies in MRI.

BGrowth method better delineated VCFs boundaries and achieved the best Accuracy while
keeping acceptable Run-Time performance. We highlight that we employed a rough/sloppy
manual annotation and BGrowth presented the best results.

2. Family of segmentation methods to reduce manual interaction on the segmentation of
volumetric structures in spine in MRI.

We proposed a family of segmentation methods, in which FastCleverSeg represented
the approach in this challenging task of reducing manual interaction in the volumetric
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segmentation process. FastCleverSeg worked along with EANIS, requiring the annotation
of only two or three slices to produce an accurate volumetric segmentation. We showed that,
combining FastCleverSeg and EANIS makes the segmentation process faster, regarding
processing time and manual annotation, making it easier the production of reference
manual segmentations.

3. BEAUT approach to identify patients at risk of bone fragility fractures in MRI using
Radiomics.

By using texture features in a radiomics approach, BEAUT was able to achieve high
diagnostic performance for differentiating patients with and without vertebral body fragility
fracture. The best results were obtained with feature selection, achieving up to 97% of
AUC and 92% of Accuracy.

Now regarding the hypothesis of this Doctorate research:

Hypothesis

The segmentation of vertebral bodies in MRI can be performed computationally faster

with easier manual interaction and, at the same time, producing accurate results.

We are able to say that our segmentation method performs faster using less manual
interaction and, at the same time, keep comparable or better results than other state-of-the-art
methods. Next we point out future developments that can be done, based on the results of the
research achieved in this Doctorate work.

8.2 Future Work
As future work we envision the following developments:

Asses inter and intra observer subjective variability: to test subjective variability of details
employed in the manual annotation step, a few studies should be conducted to further
validate our segmentation methods. We believe such experiment would assess how well
our methods can incorporate expert knowledge in the segmentation, specially in the case
of VCFs segmentation.

Extending/incorporate FastCleverSeg into 3D Slicer software: So far, we have only made
available CleverSeg as a 3D Slicer extension. As future work, we look forward to imple-
menting FastCleverSeg as well as EANIS in 3D Slicer. This will allow a faster annotation
process, consequently, a faster overall segmentation in a friendly graphical user interface.
Thus, we believe more ground-truth can be produced in a faster manner. Therefore, ma-
chine learning algorithms (deep learning approaches) can be trained to segment considering
a lot more samples.
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Compare our family of segmentation methods with Deep Learning approaches : perform
a throughout analysis of our methods against neural networks (Deep Learning) mod-
els to the performance of our approaches.

Perform longitudinal studies to validate BEAUT: since our approach was able to differen-
tiate patients with and without osteoporotic fractures, based on features extracted from
vertebrae without fractures and with normal appearance on MRI, we did not test if the
algorithm can predict future development of fractures. Thus, future studies are necessary
to evaluate if texture features extracted from spine MRI may really predict future fragility
fracture incidence. To do so, bigger databases, coming from distinct institutions, should be
used to evaluate the generalizability of our method with spine MRI performed in other
institutions.

8.3 List of Publications
In this section, we divide the publications in three parts, along with the Qualis-CC

Capes1. First, in Section 8.3.1, we describe the main publications, which resulted directly from
this Doctorate research. Next, in Section 8.3.2, we report the submitted works, that are woks
under review by the peers. Finally, in Section 8.3.3, we detail the complementary publications,
the ones resulting from contributions with GBdI2 research group. We highlight that GBdI also
helped achieving the results reported in this thesis and contributed to the formation of the PhD
candidate.

8.3.1 Main publications

We describe the main publications in chronological order as follows.

1. SAC 2019, Qualis-CC Capes A2:

RAMOS, J. S.; WATANABE, C. Y. V.; NOGUEIRA-BARBOSA, M. H.; TRAINA, A.
J. M. BGrowth: An efficient approach for the segmentation of vertebral compression
fractures in magnetic resonance imaging. Symposium on Applied Computing (SAC),
Association for Computing Machinery, New York, NY, USA, p. 220–227, 2019. Available:
<https://doi.org/10.1145/3297280.3299728>.

2. CBMS 2019, Qualis-CC Capes A3:

RAMOS, J. S.; CAZZOLATO, M. T.; FAIÇAL, B. S.; NOGUEIRA-BARBOSA, M. H.;
JR., C. T.; TRAINA, A. J. M. 3DBGrowth: volumetric vertebrae segmentation and re-
construction in magnetic resonance imaging. International Symposium on Computer-

1 <https://ppgcc.github.io/discentesPPGCC/pt-BR/qualis/>
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8.3.3 Complementary contributions
We detail the complementary publications, in partnership with GBdI as follows.
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2. CBM 2021, Qualis-CC Capes A2:

CAZZOLATO, M. T.; RAMOS, J. S.; RODRIGUES, L. S.; SCABORA, L. C.; CHINO,
D. Y. T.; JORGE, A. E. S.; AZEVEDO-MARQUES, P. M. de; JR., C. T.; TRAINA,
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APPENDIX

A
FAST INSIDE ANNOTATION – FINE: A

STUDY CASE WITH VCF EXAMS

In this Appendix, we present Fast INside Estimation (FINE), which automatically esti-
mates the inside seeds based on the outside annotation. First, we go into the background and
motivation in Section A.1. Then, in Section A.2, we present FINE, which automatically finds
the suitable thresholds so that erosions and skeletonization can be used to determine the inside
annotation without using any fixed or empirically defined limits. After that, in Section A.4, the
experimental results on a representative database show that FINE achieved, on average, higher
Sensitivity (97%) and F-Measure (96%). Finally, Section A.5 concludes this Appendix.

A.1 Background and motivation

As we discussed in Chapter 3, the automatic or semiautomatic segmentation of VCFs
is a challenging task. VCFs presents non-homogeneous gray-scale intensities within the same
vertebral body (RAMOS et al., 2019), as exemplified example in ??. An accurate segmentation
algorithm plays a significant role and can assist the medical specialist in surgical planning and
evaluation of suitable treatments (ZUKIĆ et al., 2014).

We introduced BGrowth in Chapter 3 to cope with the challenging task of VFCs segmen-
tation. BGrowth is a region-growing approach that balances weights during the region expansion.
To do so, BGrowth uses sloppy-like or straightforward inside and outside annotation (seed points).
BGrowth surpassed every method considered in the analysis: one-seed-point approaches such as
VBSeg (BARBIERI et al., 2015) and Otsu 's threshold as well as inside/outside annotation (seeds)
approaches, such as GrowCut (VEZHNEVETS; KONOUCHINE, 2005), GrabCut (ROTHER;
KOLMOGOROV; BLAKE, 2004) and LazySnapping (LI et al., 2004). In Chapter 4, we extended
BGrowth to work with volumetric exams and we surpassed the competitors as well (RAMOS et

al., 2019a). However, manually drawing inside and outside annotations is not practical when
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dealing with a more significant number of exams.

Figure 47 – Example of sloppy inside (white) and outside (green) annotations (seed points) used by Ramos
et al. (2019): ground-truth (GT) in red.

Source: Adapted from Ramos et al. (2020).

In general, semiautomatic segmentation methods, such as BGrowth, and GrowCut require
manual annotations (seeds) on the inside and outside of the object of interest (vertebral bodies
in this work). To reduce the total time spent on manual annotation, we propose Fast INside
Estimation (FINE), which estimates the inside annotation/seeds based on the shape of the
outside annotation. Thus, allowing a more accurate segmentation of the vertebral body, and, at
the same time, reducing the manual annotation time. To this end, we employ the erosion and
skeletonization of the outside annotation in a reduced manner, as detailed next.

A.2 Proposed method: Fast INside Estimation – FINE
As depicted in Figure 48, we divide FINE into three main parts, as follows.

Part 1: crop the Region of Interest (ROI) based on the outside annotation, which is manually
given. We fill the outside annotation and represent it as k, as detailed in Section A.2.1.

Part 2: define the most suitable percentage to reduce the regions. We automatically calculate
two shape measures (∆1 and ∆2) from the filled outside annotation, the solidity and the
eccentricity, as defined in Section A.2.2.

Part 3: estimate the inside annotation by joining an eroded region of k and a smaller portion of
the skeleton of k. First, we iteratively erode the region k until it is smaller than a threshold
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Figure 48 – FINE pipeline: example of ROI and manual outside annotation as well as estimation of the
inside annotation.
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Source: Adapted from Ramos et al. (2019).

value (∆1). Then, we iteratively remove endpoints from the skeleton of k, until the number
of pixels in the smaller skeleton associated to the initial skeleton is smaller than a threshold
(∆2). Finally, we join the eroded result with the shrank skeleton result to produce the final
estimated inside annotation, as we discuss in Section A.2.3.

A.2.1 Cropping the ROI
Given the outside annotation as a circular list of points in a closed contour, we fill the

region (represented as k) using morphological operations. We use the convex hull of k to crop the
ROI. However, in general, the semiautomatic segmentation methods use an 8-neighbor schema
and does not produce the best results in this area of the image. For this reason, we add a margin
error of 2 pixels for every side of the ROI so that each segmentation method can achieve its best
result.

A.2.2 Finding ∆ values automatically
Let us define two shape measures that we will employ in our method, Solidity and

Eccentricity, as follows.

Definition 7 (Solidity). The proportion of pixels in the convex hull (convex hull area of k) that
are also in the region (area of k):

Solidity =
area of k

convex area of k
, (A.1)
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which describes the extent to which a given shape is convex or concave. The Solidity of a
completely convex shape is 1, as exemplified in Figure 49a. The farther the Solidity deviates
from 1, the higher is the extent of concavity (ZDILLA et al., 2016), as exemplified in Figure 49b.

Figure 49 – Example of Solidity for distinct shapes (in white).

(a) Completely convex shape: Solidity = 1. (b) Shape with sizeable concavity: Solidity = 0.1.

Source: Adapted from Ramos et al. (2020).

Definition 8 (Eccentricity). Is the ratio of the length of the short (minor) axis to the length of
the long (major) axis of k (ZDILLA et al., 2016):

Eccentricity =
Major Axis Length of k
Minor Axis Length of k

(A.2)

The Eccentricity is also known as the aspect ratio or ellipticity. The Eccentricity of a perfect
square is 1, as exemplified in Figure 49a, while the more prolonged the major axis length, the
closer to 0 the Eccentricity, as illustrated in Figure 50b.

We define two ∆ values (shape measures) to use as percentages to reduce the regions.
First, we erode the region k up until a given rate, which we define as ∆1 and is calculated using
the Solidity. We take the reciprocal of the Solidity to define the final ∆1 value:

∆1 = 1−Solidity (A.3)

Then, we use the skeleton of k and reduce it up to a given rate as well, which we define as ∆2,
and calculate using the Eccentricity. We define the Eccentricity as the final ∆2 value:

∆2 = Eccentricity (A.4)

A.2.3 Inside annotation estimation
To estimate the inside annotation of the vertebral body based on the given outside

annotation (represented as a binary mask k), we join the results of an iterative erosion pro-
cess (Section A.2.4) along with an iterative reduction of the skeleton (Section A.2.5) of the
region k. We can quickly calculate both approaches by using mathematical morphology. FINE
automatically compute the threshold rather than empirically defining a static one.
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Figure 50 – Example of Eccentricity for distinct shapes (in white).

(a) Perfect Square: Eccentricity = 1.
(b) Sizeable Major Axis Length: Eccentricity

= 0.01.

Source: Adapted from Ramos et al. (2020).

A.2.4 Sequential erosion
We iteratively apply erosions to the filled outside annotation until the region is smaller

than a given threshold (∆1). This process has two main steps:

Step 1: set k as the initial interior annotation and t as the total number of white pixels in k and
apply an erosion operation over k using a 3×3 square structuring element, which results
into a new mask k1. As a consequence, the number of white pixels in k1 reduces to t1. The
square structuring element allows a smooth erosion without losing the main shape of the
region. In this work, we use a small size (3×3) structuring element, since it allows a more
gradating shrinking of the region.

Step 2: apply the same erosion over k1, which results in k2 with t2 white pixels. Repeat the
erosion process until the i-th iteration, resulting in the mask ki with ti white pixels. The
erosion process stops when the percentage of remaining white pixels in the eroded mask
(ki) associated with the initial mask k is lower than a threshold ∆1:

∆1 >
ti
t
.

After that, we use the ki mask as part of the inside annotation, as illustrated in Figure 48,
Part 3, on the ninth iteration.

A.2.5 Shrinking the skeleton
We represent the skeleton of the initial filled outside annotation as sk. Similarly to the

erosion process, we shrink the skeleton iteratively by removing the endpoints of sk:
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Step A: set sk as the initial interior annotation and st as the total number of white pixels in sk.
Next, remove the endpoints, which are terminal points in the skeleton, and represent this
new skeleton as sk1, which has st1 white pixels.

Step B: Remove the endpoint of sk1, which results in the skeleton sk2. The process continues
until the i-th iteration

∆2 >
sti
st
.

Then, we set the reduced skeleton ski as part of the inside annotation, as exemplified in
Part 3 (the eighth iteration on the skeletonization) of Figure 48.

A.3 Materials and Methods
To validate FINE, we first describe the experimental database in Section A.3.1, which is

composed of healthy vertebral bodies, malignant and benign VCFs. Next, in Section A.3.2, we
present the parameters settings for each of the semiautomatic segmentation technique considered
in our analysis. We also present the computational setup along with the statistical tests used.
Then, in Section A.3.3, we present the segmentation methods considered to validate FINE.
Finally, in Section A.3.4, we detail the comparison measures employed.

A.3.1 Patient Database

We used the database described in Section 3.2.1, which is composed of 89 healthy
vertebral bodies and 102 with VCFs (single slices).

A.3.2 Parameters settings

We used the parameters settings defined by the authors of each method to meet the best
conditions of every technique. We compare FINE with the manual inside annotation, and a
static threshold ∆ = 20%. The static threshold uses only the erosion process as a simple attempt
to estimate the inside annotation. The ∆ value was set based on empirical testing. For every
segmentation algorithm, no maximum number of iterations was set.

A.3.2.1 Computational set-up

We calculated the total time demanded in each method on a 3.40GHz Intel(R) Core(TM)
i7 CPU and 8GB RAM machine, using Matlab(R) version 2018a.

A.3.2.2 Statistical tests

The Kolmogorov-Smirnov (MASSEY, 1951) normality test is the most indicated when
dealing with data presenting several similar values. If the Kolmogorov-Smirnov test rejects
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the null hypothesis that the data follows a normal distribution, the Wilcoxon (WILCOXON;
KATTI; WILCOX, 1970) test may be employed to analyze if there are significant statistical
differences among the data (results). In the Wilcoxon test, the null hypothesis is that data from
two paired-sample groups came from populations having the same distribution, against the
opposite alternative.

A.3.3 Segmentation methods

To evaluate FINE, we considered BGrowth (RAMOS et al., 2019a) and GrowCut (VEZH-
NEVETS; KONOUCHINE, 2005) segmentation methods.

A.3.4 Comparison measures

We considered the measures of Precision (Equation 2.8), Sensitivity (Equation 2.9),
F-Measure (Equation 2.11), and Run-Time.

A.4 Experiments, results and discussion
We analyze the experiments in three main parts, as depicted in Figure 51 and detailed

as follows. First, in Section A.4.1, we perform a quantitative analysis using the comparison
measures (Section A.3.4). Next, in Section A.4.2, we assess the results qualitatively by showing
a few segmentation results, both healthy vertebral body and VCF. Finally, in Section A.4.3, to
further assess the results, we perform statistical validation between the results of our proposed
method against the manual inside annotation and the static threshold (fixed in ∆ = 20%).

Figure 51 – Experimental design to validate FINE.

Experiment 1
Quantitative analysis

Experiment 2
Qualitative analysis

Experiment 3
Statistical evaluation

Source: Elaborated by the author.

A.4.1 Quantitative Analysis

For a better assessment, we divided the results in four parts as follows.

Healthy] vertebral body, which comprises only health vertebral bodies.

Benign VCFs, which considers only osteoporosis cases.

Malignant VFCs, which includes only bone metastasis situations.
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Overall results, which merges the results of the three previous parts.

Figure 52 reports the data distribution as well as the average F-Measure, Precision, and
Sensitivity achieved by GrowCut and BGrowth, with the three distinct inside annotation. For
every case, our proposed approach achieved the best F-Measure and Sensitivity results, the
static threshold achieved the second-best results, and the manual inside annotation presented the
third-best results. For the Precision measure, our proposed method made the third-best results
while the other techniques presented very close results. In average, the difference between our
approach and the competitors is small, up to 2%. On the other hand, analyzing the F-Measure
(balance between Precision and Sensitivity), we note that our method achieved the best results
for each one of the segmentation methods.

On average, the static threshold (∆ = 20%) took 10±3 ms to estimate the inside anno-
tation, while FINE took 14±4 ms. Our method took only 4 ms more to determine the inside
annotation. In general, manually annotating the inside/outside takes several seconds. By using
FINE, we reduced the time spent on manual annotation by half and, at the same time, produced
higher Sensitivity and F-Measure. To a greater extent, our proposed dynamic threshold FINE
achieves higher Sensitivity without losing much Precision.

Analyzing the overall Run-Time in Figure 53, FINE presented faster Run-Time than the
manual annotation approach. Compared to the static threshold (∆ = 20%), FINE obtained similar
or quicker results. Although the Run-Time is not a lot shorter than the competitor methods,
we contribute to the state-of-the-art by advancing towards the automation of segmentation of
medical images.

A.4.2 Qualitative Analysis
Figure 54 and Figure 55 depict the segmentation results for each segmentation method

for a healthy vertebral body and a malignant VCF, respectively. All in all, FINE presented the
best adherence to the borders of the vertebral bodies in comparison to the manual annotation and
the static threshold (∆ = 20%).

Although the manual annotation leads to higher Precision, in general, the segmentation
algorithms do not grow much, leaving a lot of the vertebral body content unsegmented (lower
Sensitivity). Likewise, for the static threshold, a ∆ value too high would not work on irregular
shapes, as it happens most frequently in malignant and benign compression fractures. A ∆ too
low would not generate enough inside annotation and, therefore, does not contribute to a better
segmentation. Therefore, defining a fixed threshold depends on the segmentation task, which
includes manually analyzing the shape of the vertebral body for each image.

Unsegmented vertebral body content might lead to issues when analyzing the shape
and texture of the region. Predominantly, the manual inside annotation and the static threshold
segment mostly the bright or homogeneous parts of the vertebral body. In general, the malignant
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Figure 52 – Data distribution of the results.

B.4. Experiments, results and discussion 73

Figure 26 – Data distribution of the results.
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Source: Adapted from Ramos et al. (2020).

or quicker results. Although the Run-Time is not a lot shorter than the competitor methods,
we contribute to the state-of-the-art by advancing towards the automation of segmentation of

Source: Adapted from Ramos et al. (2020).

and benign VCFs present irregular shape and different intensities within the same vertebral
body. Therefore, a segmentation method that achieves a higher Sensitivity (segments most of the



128 APPENDIX A. Fast Inside Annotation – FINE: a study case with VCF exams

Figure 53 – Run-Time overall results comparison.
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Figure 27 – Overall results comparison for the Run-Time.
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medical images.

B.4.2 Qualitative Analysis

Table 6 – Wilcoxon's test result.

FINE ×Manual Annotation FINE × Static Threshold

Segmentation
Technique

F-
M

ea
su

re

Pr
ec

isi
on

Se
ns

iti
vi

ty

Ru
n-

Ti
m

e

F-
M

ea
su

re

Pr
ec

isi
on

Se
ns

iti
vi

ty

Ru
n-

Ti
m

e
BGrowth 4 7 4 4 4 7 4 4

GrowCut 4 7 4 4 4 7 4 4

Source: Adapted from Ramos et al. (2020).

Note – 4 means significantly better results for FINE and 7 means the opposite.

Figure 28 and Figure 29 depict the segmentation results for each segmentation method
for a healthy vertebral body and a malignant VCF, respectively. All in all, FINE presented the
best adherence to the borders of the vertebral bodies in comparison to the manual annotation and
the static threshold (∆ = 20%).

Although the manual annotation leads to higher Precision, in general, the segmentation
algorithms do not grow much, leaving a lot of the vertebral body content unsegmented (lower
Sensitivity). Likewise, for the static threshold, a ∆ value too high would not work on irregular
shapes, as it happens most frequently in malignant and benign compression fractures. A ∆ too
low would not generate enough inside annotation and, therefore, does not contribute to a better
segmentation. Therefore, defining a fixed threshold depends on the segmentation task, which
includes manually analyzing the shape of the vertebral body for each image.

Source: Adapted from Ramos et al. (2020).

Figure 54 – Segmentation results for a healthy vertebral body. Ground-truth in red, outside (manual)
annotation in yellow, and inside annotation (on the left) and resulting segmentation result (on
the right) in cyan.

Precision: 100% 
Sensitivity : 84.5% 

Precision: 100%
Sensitivity : 92.3% 

Precision: 99.1%
Sensitivity : 94.6% 

Precision: 99.9% 
Sensitivity : 95.4% 

Precision: 99.9%
Sensitivity : 85% 

Precision: 100%
Sensitivity: 92.4% 

Manual Inside 
Annotation

Static Threshold
(𝚫 = 20%)

Dynamic Threshold 
(FINE)

BGrowth GrowCut

Source: Adapted from Ramos et al. (2020).

vertebral body content) is attractive in this case.

A.4.3 Statistical Validation

For all measures, the Kolmogorov-Smirnov test rejected the null hypothesis that the
data follows a normal distribution. Accordingly, we employed the Wilcoxon test to evaluate the
statistical significance of our proposal in comparison to the manual annotations and the static
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Figure 55 – Segmentation results for a malignant VCF. Ground-truth in red, outside (manual) annotation
in yellow, and inside annotation (on the left) and resulting segmentation result (on the right)
in cyan.
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threshold (∆ = 20%). Table 18 reports the Wilcoxon test results. Other methods outperformed
FINE in terms of Precision values. Nonetheless, we were able to improve the estimation of
interior regions in all settings regarding F-Measure, Sensitivity, and Run-Time measures. The
obtained results emphasize that FINE can speed up the inside annotation of vertebral bodies and
further improve the quality of the segmentation.

Table 18 – Wilcoxon's test result.
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Note – 4 means significantly better results for FINE and 7 means the opposite.
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A.5 Final considerations
In this chapter, aimed at minimizing the time spent on manual annotation, we proposed

Fast INside Estimation (FINE), which finds the best thresholds values to determine the inside
annotation. The experimental results with a representative database showed that the segmentation
methods presented higher average Sensitivity (96%) with FINE. In general, the malignant and
Benign VCFs display irregular shape and different intensities within the same vertebral body. In
this case, higher Sensitivity values are particularly crucial so that one could extract shape and
texture features with higher certainty.
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ANNEX

A
SOURCE CODES

In this Annex, we present the most relevant source codes of our methods. First, in
Section A.1, we present the source codes for BGrowth method, introduced in Chapter 3. Next, in
Section A.2, we show the source codes for 3DBGrowth method, which we detailed in Chapter 4.
Finally, in Section A.3, we report the source codes for FastCleverSeg and EANIS. We introduced
both approaches in Chapter 6.

We reiterate that, in order for our methods to achieve better result, we recommend the
following settings:

• The image I must be a 256 gray-scale image (conversion can be performed using Equa-
tion 2.2);

• The labels matrix L must present integer values corresponding to regions in the image. For
example, 1 foreground, 0 undefined, and 2 background. The method also works with more
than 2 regions.

Every C mex function will require the headers in Source code 1.

Source code 1 – Header for every Matlab C mex function in this Annex.

1: # include <math.h>
2: # include <matrix .h>
3: # include <mex.h>
4: # include <cstdlib >
5: # include <cstdint >
6: # include <vector >
7: /* K e e p c o m p a t i b i l i t y w i t h e a r l i e r v e r s i o n s of ML */
8: # ifndef MWSIZE_MAX
9: typedef int mwSize ;

10: typedef int mwIndex ;
11: typedef int mwSignedIndex ;
12: #if ( defined (_LP64)|| defined ( _WIN64 ))&&! defined ( MX_COMPAT_32 )
13: /* C u r r e n t l y 2 ^ 4 8 b a s e d on h a r d w a r e l i m i t a t i o n s */
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14: # define MWSIZE_MAX 281474976710655 UL
15: # define MWINDEX_MAX 281474976710655 UL
16: # define MWSINDEX_MAX 281474976710655 L
17: # define MWSINDEX_MIN -281474976710655 L
18: #else
19: # define MWSIZE_MAX 2147483647 UL
20: # define MWINDEX_MAX 2147483647 UL
21: # define MWSINDEX_MAX 2147483647 L
22: # define MWSINDEX_MIN -2147483647 L
23: #endif
24: # define MWSIZE_MIN 0UL
25: # define MWINDEX_MIN 0UL
26: #endif
27: using namespace std;

A.1 Balanced Growth – BGrowth

We show Matlab code for BGrowth method in Source code 2.

Source code 2 – BGrowth Matlab code.

1: function [L, W, its] = BGrowth (I, L)
2: I = double (I); si = size(I); sl = size(L);
3: assert (numel( unique (L))==3, ' l a b e l s m u s t 2 , 0 or 1 ');
4: assert (all(sl (1:2) ==si (1:2)), ' l a b e l s / i m a g e s i z e e r r o r ');
5: % 8 - n e i g h b o r s
6: Nx = [-1,1,0,0,-1,-1,1,1]; Ny = [0,0,-1,1,1,-1,1,-1];
7: gMax = max(I(:)); [dimx , dimy] = size(I);
8: W(dimx , dimy) = 0; W(L ~= 0) = 1.0; W(L == 0) = 0;
9: converged = false; its = 0;

10: while (~ converged )
11: its = its + 1; converged = true;
12: for i=2: dimx -1
13: for j=2: dimy -1
14: for n=1:8
15: in = i + Nx(n); jn = j + Ny(n);
16: gDiff = 1 - abs(I(i,j) - I(in ,jn))/gMax;
17: str = W(in , jn)*gDiff;
18: if ( (str - W(i, j)) > 0.01)
19: L(i, j) = L(in ,jn); W(i,j) = (str+W(i,j))/2;
20: converged = false;
21: end
22: end
23: end
24: end
25: end
26: end
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A.2 Volumetric Balanced Growth – 3DBGrowth
We show Matlab C mex function for 3DBGrowth in Source code 3.

Source code 3 – 3DBGrowth Matlab C mex function.

1: void mexFunction (int nlhs , mxArray *plhs [], int nrhs ,const mxArray *prhs []){
2: /* ** C h e c k i n p u t s ** */
3: if(nrhs != 2) mexErrMsgTxt (" M u s t h a v e I m a g e and L a b e l s as a r g u m e n t s . ");
4: if(nlhs > 2) mexErrMsgTxt (" Too m a n y o u t p u t a r g u m e n t s . ");
5: if( mxIsComplex (prhs [0]) || mxGetNumberOfDimensions (prhs [0]) < 2
6: || mxGetNumberOfDimensions (prhs [0]) > 3
7: || mxIsSparse (prhs [0]) || ! mxIsUint8 (prhs [0]))
8: mexErrMsgTxt (" I m a g e m u s t be 2 D or 3 D u n s i g n e d i n t e g e r (8 b i t s ) . ");
9: if( mxIsComplex (prhs [1]) || mxGetNumberOfDimensions (prhs [1]) < 2

10: || mxGetNumberOfDimensions (prhs [1]) > 3
11: || ! mxIsUint8 (prhs [1]))
12: mexErrMsgTxt (" L a b e l s m u s t be 2 D or 3 D u n s i g n e d i n t e g e r (8 b i t s ) . ");
13: // d e c l a r e v a r i a b l e s
14: mxArray *strens_m , *labels_m , *labelsn_m , *I_m , * mxTheta ;
15: mwSize numdims ;
16: const mwSize *dims , *dims2;
17: uint8_t *labels , *I;
18: long i,j,k,m, idxq , idxp , its = 0, neigh [26] , idx = 0;
19: float *strens , *strensn , MAX_ITS = 999, maxC = 256, C = 0, theta , g;
20: bool converged ;
21: // g e t s i m a g e d i m e n s i o n s
22: numdims = mxGetNumberOfDimensions (prhs [0]);
23: dims = mxGetDimensions (prhs [0]);
24: dims2 = mxGetDimensions (prhs [1]);
25: if (!( dims [0] == dims2 [0] && dims [1] == dims2 [1] && dims [2] == dims2 [2]))
26: mexErrMsgTxt (" L a b e l s and I m a g e m u s t be the s a m e s i z e . ");
27: int dimx , dimy , dimz , dimxy , dimxyz , colors ;
28: dimx = (int)dims [0]; dimy = (int)dims [1]; dimz = (int)dims [2];
29: dimxy = dimx*dimy;
30: if ( numdims == 2) dimz = 1; // not 3 D m a t r i x
31: dimxyz = dimxy*dimz;
32: if(dimx < 3 || dimy < 3) // M a t r i x too s m a l l for n e i g h b o r s c o m p a r i s o n
33: mexErrMsgTxt (" M a t r i x s i z e has to be l a r g e r t h a n 3 x 3 x 1 . ");
34: // s e t s up p o i n t e r s
35: I_m = mxDuplicateArray (prhs [0]); // C R E A T E I M A G E ' s C O P Y
36: labels_m = plhs [0] = mxDuplicateArray (prhs [1]); // C R E A T E L A B E L S ' C O P Y
37: // M A L L O C S P A C E ON M E M O R Y FOR THE S T R E N G T H S
38: strens_m = mxCreateNumericArray (numdims , dims , mxSINGLE_CLASS , mxREAL );
39: I = ( uint8_t *) mxGetPr (I_m);
40: labels = ( uint8_t *) mxGetPr ( labels_m );
41: strens = (float *) mxGetPr ( strens_m );
42: // D e f i n e N e i g h b o u r s
43: for(k = -1; k <= 1; k++)
44: for(i = -1; i <= 1; i++)
45: for(j = -1; j <= 1; j++)
46: if (!(i == 0 && j == 0 && k == 0))
47: neigh[idx ++] = i+j*( int)dims [0]+k*(( int)dims [0]*( int)dims [1]);
48: long index = 0;
49: // D e t e r m i n e n e i g h b o r h o o d s i z e at e a c h e n t r y and i n i t i l i z e s e e d s
50: vector < unsigned char > m_NBSIZE = vector < unsigned char >( dimxyz ,0);
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51: for(i = 1; i < dimx - 1; i++)
52: for(j = 1; j < dimy - 1; j++)
53: for(k = 1; k < dimz - 1; k++) {
54: index = i + j*dimx + k*dimxy;
55: m_NBSIZE [index] = 26;
56: (( uint8_t ) labels [index ]) <1? strens [index ]=0: strens [index ]=1;
57: }
58: // S t a r t m a i n l o o p
59: converged = false;
60: while (! converged ){
61: converged = true;
62: for(k = 1; k < dimz -1; k++)
63: for(j = 1; j < dimy -1; j++)
64: for(i = 1; i < dimx -1; i++) {
65: idxp = i + j*dimx + k*dimxy;
66: if( labels [idxp] != 0) {
67: for(m=0; m< m_NBSIZE [idxp ]; m++){ // for e v e r y n e i g h b o r
68: idxq = idxp + neigh[m];
69: C = fabs(I[idxp] - I[idxq ]);
70: g = 1-C/maxC;
71: theta = g* strens [idxp ];
72: if( (theta - strens [idxq ]) > 0.01 ){
73: strens [idxq] = (theta + strens [idxq ]) /2;
74: labels [idxq] = labels [idxp ];
75: converged = false;
76: }
77: }
78: }
79: }
80: }
81: mxDestroyArray (I_m);
82: mxDestroyArray ( strens_m );
83: }

A.3 Fast Clever Segmentation – FCleverSeg
We show Matlab C mex function for FastCleverSeg in Source code 4, how we estimated

the inside annotation in Section A.3.1, and detail EANIS source codes in Section A.3.2.

Source code 4 – FastCleverSeg Matlab C mex function.

1: void mexFunction (int nlhs , mxArray *plhs [], int nrhs ,const mxArray *prhs []){
2: /* ** C h e c k i n p u t s ** */
3: if(nrhs < 2) mexErrMsgTxt (" M u s t get I m a g e and L a b e l s as a r g u m e n t s . ");
4: if(nlhs > 2) mexErrMsgTxt (" Too m a n y o u t p u t a r g u m e n t s . ");
5: if( mxIsComplex (prhs [0]) || mxGetNumberOfDimensions (prhs [0]) < 2
6: || mxGetNumberOfDimensions (prhs [0]) > 3
7: || mxIsSparse (prhs [0]) || ! mxIsUint8 (prhs [0]))
8: mexErrMsgTxt (" I m a g e m u s t be a 2 D or 3 D u n s i g n e d i n t e g e r (8 b i t s ) . ");
9: if( mxIsComplex (prhs [1]) || mxGetNumberOfDimensions (prhs [1]) < 2

10: || mxGetNumberOfDimensions (prhs [1]) > 3
11: || ! mxIsUint8 (prhs [1]))
12: mexErrMsgTxt (" L a b e l s m u s t be 2 D or 3 D u n s i g n e d i n t e g e r (8 b i t s ) . ");
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13: // D e c l a r e v a r i a b l e s
14: mxArray *strens_m , *labels_m , *I_m;
15: mwSize numdims ;
16: const mwSize *dims , *dims2;
17: uint8_t *labels , *I;
18: long i,j,k,m, idxq , idxp , its = 0, neigh [26] , idx = 0;
19: float *strens , MAX_ITS = 999, maxC = 255, C = 0, g, *theta;
20: bool converged ;
21: // G e t s i m a g e d i m e n s i o n s
22: numdims = mxGetNumberOfDimensions (prhs [0]);
23: dims = mxGetDimensions (prhs [0]);
24: dims2 = mxGetDimensions (prhs [1]);
25: if (!( dims [0] == dims2 [0] && dims [1] == dims2 [1] && dims [2] == dims2 [2]))
26: mexErrMsgTxt (" L a b e l s and I m a g e m u s t be the s a m e s i z e . ");
27: int dimx , dimy , dimz , dimxy , dimxyz ;
28: dimx = (int)dims [0]; dimy = (int)dims [1]; dimz = (int)dims [2]; dimxy =

dimx*dimy;
29: if ( numdims == 2) dimz = 1; // not 3 D m a t r i x
30: dimxyz = dimxy*dimz;
31: if(dimx < 3 || dimy < 3) // M a t r i x too s m a l l for n e i g h b o r s c o m p a r i s o n
32: mexErrMsgTxt (" M a t r i x s i z e has to be l a r g e r t h a n 3 x 3 x 1 . ");
33: mxArray * mxTheta = mxDuplicateArray (prhs [2]);
34: theta = (float *) mxGetPr ( mxTheta );;
35: float t = *theta;
36: I_m = mxDuplicateArray (prhs [0]); // C R E A T E I M A G E ' s C O P Y
37: labels_m = plhs [0] = mxDuplicateArray (prhs [1]); // C R E A T E L A B E L S ' C O P Y
38: // M A L L O C S P A C E ON M E M O R Y FOR THE S T R E N G T H S
39: strens_m = plhs [1] = mxCreateNumericArray (numdims , dims , mxSINGLE_CLASS ,

mxREAL );
40: I = ( uint8_t *) mxGetPr (I_m);
41: labels = ( uint8_t *) mxGetPr ( labels_m );
42: strens = (float *) mxGetPr ( strens_m );
43: long index = 0;
44: // D e t e r m i n e n e i g h b o r h o o d s i z e at e a c h v e r t i c e and I n i t i l i z e s e e d s
45: for (k = -1; k <= 1; k++)
46: for (i = -1; i <= 1; i++)
47: for (j = -1; j <= 1; j++)
48: if (!(i == 0 && j == 0 && k == 0))
49: neigh[idx ++] = i+j*( int)dims [0]+k*(( int)dims [0]*( int)dims [1]);
50: // D e t e r m i n e n e i g h b o r h o o d s i z e at e a c h v e r t i c e and I n i t i l i z e s e e d s
51: vector < unsigned char > m_NBSIZE = vector < unsigned char >( dimxyz , 0);
52: for(i = 1; i < dimx - 1; i++)
53: for(j = 1; j < dimy - 1; j++)
54: for(k = 1; k < dimz - 1; k++) {
55: index = i + j*dimx + k*dimxy;
56: m_NBSIZE [index] = 26;
57: (( uint8_t ) labels [index ]) <1? strens [index ]=0: strens [index ]=1;
58: }
59: vector <bool > visited = vector <bool >( dimxyz , false);
60: // s t a r t m a i n l o o p
61: converged = false;
62: double diff = 0, s = 0.0;
63: while (! converged ){
64: converged = true;
65: for(k = 1; k < dimz -1; k++)
66: for(j = 1; j < dimy -1; j++)
67: for(i = 1; i < dimx -1; i++) {
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68: idxp = i + j*dimx + k*dimxy;
69: if( labels [idxp] != 0 && ! visited [idxp ]) {
70: visited [idxp] = true;
71: for(m = 0; m < m_NBSIZE [idxp ]; m++) {
72: idxq = idxp + neigh[m];
73: C = maxC - fabs(I[idxp] - I[idxq ]);
74: g = C/maxC;
75: s = g* strens [idxp ];
76: diff = s- strens [idxq ];
77: if(diff > t) {
78: visited [idxq] = false;
79: strens [idxq ]=(s+ strens [idxq ]+ strens [idxp ]) /3;
80: labels [idxq] = labels [idxp ];
81: converged = false;
82: }
83: }
84: }
85: }
86: }
87: mxDestroyArray (I_m);
88: }

A.3.1 Estimation of the inside annotation
We present Matlab code for estimation of the inside annotation in Source code 5. We

used those codes for FastCleverSeg validation in Chapter 6. Note that we consider labels with 1
values as foreground and exterior annotations were performed on the first, middle, and last slice
(i.e. cropped VOI with annotations).

Source code 5 – Matlab code for the estimation of the inside annotation.

1: function ANT = EstimateInteriorAnnotation (ANT)
2: tam = size(ANT , 3);
3: meio = round(tam /2);
4: ANT (: ,: ,2: meio -1) = 0;
5: ANT (:,:, meio +1: end -1) = 0;
6: pos = find( squeeze (sum(sum(ANT ==1))) > 0);
7: se = strel( ' d i s k ', 3);
8: AN(size(ANT ,1) , size(ANT ,2)) = 0;
9: for i=1: numel(pos)

10: clear aux
11: aux = squeeze (ANT (:,:, pos(i)));
12: AN (:) = 0;
13: clear filledOutside filledOutside totalIns
14: filledOutside = imfill (aux > 0, ' h o l e s ');
15: totalOut = sum( filledOutside (:));
16: totalIns = sum( filledOutside (:));
17: while totalIns / totalOut > 0.2
18: backup = filledOutside ;
19: filledOutside = imerode ( filledOutside , se);
20: totalIns = sum( filledOutside (:));
21: if totalIns < 5
22: filledOutside = backup ;
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23: break;
24: end
25: end
26: AN( filledOutside > 0) = 1;
27: AN(aux > 0) = 2;
28: ANT (:,:, pos(i)) = AN;
29: end
30: ANT (:, :, 2) = ANT (:, :, 1);
31: ANT (:, :, end -1) = ANT (:, :, end);
32: end

A.3.2 Estimation of Annotation on Intermediary slices – EANIS
We show Matlab code for EANIS in Source code 6.

The function bresenham_line3d() was acquired from <https://github.com/vistalab/
vistasoft/blob/master/external/NIfTI_Shen/bresenham_line3d.m>.

Source code 6 – EANIS Matlab Code

1: function [AN3D , rt] = FillNonAnnotatedSlices (I, AN3D)
2: slicesANT = find( squeeze (sum(sum(AN3D == 1))) > 1);
3: tic
4: for idx =1: length ( slicesANT )
5: AN3D = rasterLines (AN3D , slicesANT (idx),slicesANT (idx +1) ,1,1);
6: end
7: rt = toc;
8: for idx =1: slicesANT (end)
9: AN3D (:, 2, idx) = 2;

10: AN3D (2, :, idx) = 2;
11: AN3D(end -2, :, idx) = 2;
12: AN3D (:, end -2, idx) = 2;
13: end
14: end
15: function AN3D = rasterLines (AN3D ,pos1 ,pos2 ,valor ,v2)
16: BB = bwboundaries (AN3D (:, :, pos1) == valor);
17: BB2 = bwboundaries (AN3D (:, :, pos2) == valor);
18: if ~ isempty (BB) && ~ isempty (BB2)
19: for ix =1: length (BB)
20: clear vector
21: vector = BB{ix , :};
22: [vals idx] = sortrows (vector , [1 2]);
23: B = [ vector (idx (1):end ,:); vector (1: idx (1) -1,:)];
24: zcoord (size(B ,1)) = 0;
25: zcoord (:) = pos1;
26: for iy =1: length (BB2)
27: clear vector2 B2 idx2
28: vector2 = BB2{iy , :};
29: [vals idx2] = sortrows (vector2 , [1 2]);
30: B2 = [ vector2 (idx2 (1):end ,:); vector2 (1: idx2 (1) -1,:)];
31: clear zcoord
32: zcoord (size(B2 ,1)) = 0;
33: zcoord (:) = pos2;
34: if ( length (B) < length (B2))

https://github.com/vistalab/vistasoft/blob/master/external/NIfTI_Shen/bresenham_line3d.m
https://github.com/vistalab/vistasoft/blob/master/external/NIfTI_Shen/bresenham_line3d.m
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35: cont = 1;
36: for j=1: length (B)
37: P1 = [B(j, 1) B(j, 2) pos1 ];
38: P2 = [B2(j, 1) B2(j, 2) pos2 ];
39: [X,Y,Z] = bresenham_line3d (P1 , P2);
40: cont = cont + 1;
41: for i=2: length (X) -1
42: AN3D(X(i),Y(i),Z(i)) = v2;
43: end
44: end
45: c = 1;
46: for j= length (B)+1: length (B2)
47: P1 = [B(c, 1) B(c, 2) pos1 ];
48: P2 = [B2(j, 1) B2(j, 2) pos2 ];
49: [X,Y,Z] = bresenham_line3d (P1 , P2);
50: for i=2: length (X) -1
51: AN3D(X(i),Y(i),Z(i)) = v2;
52: end
53: if c == size(B ,1)
54: c = 1;
55: else
56: c = c + 1;
57: end
58: end
59: else
60: cont = 1;
61: for j=1: length (B2)
62: P1 = [B2(j, 1) B2(j, 2) pos2 ];
63: P2 = [B(j, 1) B(j, 2) pos1 ];
64: [X,Y,Z] = bresenham_line3d (P1 , P2);
65: cont = cont + 1;
66: for i=2: length (X) -1
67: AN3D(X(i),Y(i),Z(i)) = v2;
68: end
69: end
70: c = 1;
71: for j= length (B2)+1: length (B)
72: P1 = [B(j, 1) B(j, 2) pos1 ];
73: P2 = [B2(c, 1) B2(c, 2) pos2 ];
74: [X,Y,Z] = bresenham_line3d (P1 , P2);
75: cont = cont + 1;
76: for i=2: length (X) -1
77: AN3D(X(i),Y(i),Z(i)) = v2;
78: end
79: if c == size(B2 ,1)
80: c = 1;
81: else
82: c = c + 1;
83: end
84: end
85: end
86: end
87: end
88: else
89: disp( ' E m p t y a n n o t a t i o n ')
90: end
91: end



A.3. Fast Clever Segmentation – FCleverSeg 139



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Outline

	Fundamentals, background and related Works
	Fundamentals of medical and digital imaging
	Digital imaging: preprocessing, segmentation, feature extraction and classification
	Preprocessing
	Segmentation
	Mathematical morphology

	Feature extraction
	Comparing images

	Classification
	Segmentation and classification evaluation measures

	Medical imaging: systems that aid decision-making
	CAD and CBIR systems
	Radiomics approach

	Brief spine anatomy
	Vertebral Compression Fracture – VCF

	Final Considerations

	Segmenting VCFs in MRI using BGrowth
	Balanced Growth Method
	Time complexity

	Materials and Methods
	Patient database
	Parameters settings
	Computational set-up
	Manual annotations
	Variations in the inside/outside annotations

	State-of-the-art segmentation methods
	Evaluation measures

	Experiments, results and discussion
	Measures analysis
	Statistical Analysis
	Annotation Variation

	Final Considerations

	Volumetric Balanced Growth using the slope coefficient
	Slope Coefficient and 3DBGrowth method
	The Negative Slope Coefficient (NSC)
	Volumetric BGrowth (3DBGrowth)

	Materials and methods
	Patient database
	Parameters settings
	Computational set-up
	Manual annotations

	Other similar methods
	Segmentation assessment

	Experiments, results and discussion
	Exam segmentation analysis
	Variation on the number of annotated slices
	Segmentation of individual vertebral bodies
	Statistical testing

	Final Considerations

	Clever Segmentation – CleverSeg
	CleverSeg: The Proposed Method
	Annotations of a few slices
	Estimation of the interior annotation
	Fast and effective CleverSeg for semi-automatic segmentation

	Materials and methods
	Patient database
	Parameters settings
	Computational set-up
	Manual annotations

	State-of-the-art segmentation methods
	Segmentation assessment

	Experiments, results and discussion
	Individual muscle segmentation
	Varying the number of annotated slices
	Statistical evaluation and validation

	Final considerations

	Fast Clever Segmentation – FastCleverSeg
	FastCleverSeg: The Proposed Method
	Annotation on intermediary slices – EANIS
	Fast Clever Segmentation – FastCleverSeg

	Materials and methods
	Patient database
	Parameters settings
	Computational set-up
	Manual annotations

	Competitors
	Comparison measures

	Experiments, results and discussion
	Paravertebral muscle
	Intervertebral disc
	Vertebral body
	Statistical evaluation and validation
	Statistical testing

	  threshold variation

	Final considerations

	Analysis of bone fragility fractures using texture features
	Proposed Method: BonE Analysis Using Texture – BEAUT
	Materials and methods
	Patient Database
	Segmentation and feature extraction
	Feature Selection
	Classifiers
	Parameter settings
	Computational setup
	Statistical tests

	Comparison measures

	Experiments, results and discussion
	Classification with and without feature selection
	Statistical testing

	Final considerations

	Conclusions
	Contributions
	Future Work
	List of Publications
	Main publications
	Work under review
	Complementary contributions


	References
	Fast Inside Annotation – FINE: a study case with VCF exams
	Background and motivation
	Proposed method: Fast INside Estimation – FINE
	Cropping the ROI
	Finding Delta values automatically
	Inside annotation estimation
	Sequential erosion
	Shrinking the skeleton

	Materials and Methods
	Patient Database
	Parameters settings
	Computational set-up
	Statistical tests

	Segmentation methods
	Comparison measures

	Experiments, results and discussion
	Quantitative Analysis
	Qualitative Analysis
	Statistical Validation

	Final considerations

	Source Codes
	Balanced Growth – BGrowth
	Volumetric Balanced Growth – 3DBGrowth
	Fast Clever Segmentation – FCleverSeg
	Estimation of the inside annotation
	Estimation of Annotation on Intermediary slices – EANIS



