• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2013.tde-17052013-103616
Documento
Autor
Nome completo
Lucas Eduardo Azevedo Simões
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2013
Orientador
Banca examinadora
Helou Neto, Elias Salomão (Presidente)
Perez, José Mario Martinez
Takahashi, Ricardo Hiroshi Caldeira
Título em português
Novos métodos incrementais para otimização convexa não-diferenciável em dois níveis com aplicações em reconstrução de imagens em tomografia por emissão
Palavras-chave em português
Algoritmos incrementais
Otimização convexa
Otimização em dois níveis
Resumo em português
Apresentamos dois novos métodos para a solução de problemas de otimização convexa em dois níveis não necessariamente diferenciáveis, i.e., mostramos que as sequências geradas por ambos os métodos convergem para o conjunto ótimo de uma função não suave sujeito a um conjunto que também envolve a minimização de uma função não diferenciável. Ambos os algoritmos dispensam qualquer tipo de resolução de subproblemas ou busca linear durante suas iterações. Ao final, para demonstrar que os métodos são viáveis, resolvemos um problema de reconstrução de imagens tomográficas
Título em inglês
New incremental methods for bivel nondifferentiable convex optimization with applications on image reconstruction in emission tomography
Palavras-chave em inglês
Bilevel optimization
Convex optimization
Incremental algorithms
Resumo em inglês
We present two new methods for solving bilevel convex optimization problems, where both functions are not necessarily differentiable, i.e., we show that the sequences generated by those methods converge to the optimal set of a nonsmooth function subject to a set that also involves a function minimization. Both algorithms do not require any kind of subproblems resolution or linear search during the iterations. At the end, to prove that our methods are viable, we solve a problem of tomographic image reconstruction
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-05-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.