
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

Using complex networks and Deep Learning to model and
learn context

Edilson Anselmo Corrêa Júnior
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Edilson Anselmo Corrêa Júnior

Using complex networks and Deep Learning to model and
learn context

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Diego Raphael Amancio

USP – São Carlos
February 2021



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

C825u
Corrêa Jr, Edilson Anselmo
   Using complex networks and Deep Learning to
model and learn context / Edilson Anselmo Corrêa
Jr; orientador Diego Raphael Amancio. -- São
Carlos, 2020.
   92 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2020.

   1. Context. 2. Complex Networks. 3. Deep
Learning. 4. Ambiguity. I. Amancio, Diego Raphael,
orient. II. Título. 



Edilson Anselmo Corrêa Júnior

Modelagem e aprendizado de contexto usando redes
complexas e Deep Learning

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Diego Raphael Amancio

USP – São Carlos
Fevereiro de 2021





ACKNOWLEDGEMENTS

I’d like to thank my advisor, Prof. Diego Amancio for his friendship, support, patience,
guidance and dedication. I will definitely remember the many times we shared a cup of coffee,
in which we had endless conversations and discussions.

I’d like to thank members of the NILC lab, some who became friends, especially Vanessa
Q. Marinho and Leandro B. dos Santos. I would also like to thank colleagues from IFSC, Filipi
N. Silva and Henrique F. de Arruda.

I’d like to thank my parents who over the years have demonstrated that support comes
through actions rather than words. I would also like to thank my companion Andrine, for her
support and understanding.

I’d like to thank the collaborators that I had over the years, I met wonderful people who
allowed me to learn and grow.

Finally, I’d like to thank CAPES and the Google Research Awards for Latin America
program for their financial support.





“The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge.”

(Daniel J. Boorstin)





ABSTRACT

CORRÊA JR, E. A. Using complex networks and Deep Learning to model and learn context.
2021. 92 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

The structure of language is strongly influenced by the context, whether it is the social setting, of
discourse (spoken and written) or the context of words itself. This fact allowed the creation of
several techniques of Natural Language Processing (NLP) that take advantage of this information
to tackle a myriad of tasks, including machine translation, summarization and classification of
texts. However, in most of these applications, the context has been approached only as a source
of information and not as an element to be explored and modeled. In this thesis, we explore
the context on a deeper level, bringing new representations and methodologies. Throughout the
thesis, we considered context as an important element that must be modeled in order to better
perform NLP tasks. We demonstrated how complex networks can be used both to represent and
learn context information while performing word sense disambiguation. In addition, we proposed
a context modeling approach that combines word embeddings and a network representation, this
approach allowed the induction of senses in an unsupervised way using community detection
methods. Using this representation we further explored its application in text classification, we
expanded the approach to allow the extraction of text features based on the semantic flow, which
were later used in a supervised classifier trained to discriminate texts by genre and publication
date. The studies carried out in this thesis demonstrate that context modeling is important given
the interdependence between language and context, and that it can bring benefits for different
NLP tasks. The framework proposed, both for modeling and textual feature extraction can be
further used to explore other aspects and mechanisms of language.

Keywords: Context, Complex Networks, Deep Learning, Ambiguity.





RESUMO

CORRÊA JR, E. A. Modelagem e aprendizado de contexto usando redes complexas e Deep
Learning. 2021. 92 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2021.

A estrutura da língua é fortemente influenciada pelo contexto, seja ele social, do discurso
(falado e escrito) ou o próprio contexto de palavras. Este preceito propiciou a criação de várias
técnicas de Processamento de Língua Natural (PLN) que tiram vantagem dessa informação
para realizar uma miríade de tarefas, incluindo tradução automática, sumarização e classificação
de textos. Entretanto, em grande parte dessas aplicações o contexto tem sido abordado apenas
como uma informação de entrada e não como um elemento a ser explorado e modelado. Nesta
tese, exploramos o contexto em um nível mais profundo, trazendo novas representações e
metodologias. Ao longo da tese, consideramos o contexto como um elemento importante que
deve ser modelado para melhor desempenhar as tarefas da PLN. Demonstramos como redes
complexas podem ser usadas para representar e aprender informações de contexto durante a
desambiguação do sentido das palavras. Além disso, propusemos uma abordagem de modelagem
de contexto que combina word embeddings e uma representação de rede, esta abordagem
permitiu a indução de sentidos de uma forma não supervisionada usando métodos de detecção
de comunidade. Usando essa representação exploramos sua aplicação na classificação de textos,
expandimos a abordagem para permitir a extração de características de texto com base no fluxo
semântico, que foram posteriormente usadas em um classificador supervisionado treinado para
discriminar textos por gênero e data de publicação. Os estudos realizados nesta tese demonstram
que a modelagem de contexto é importante dada a interdependência entre linguagem e contexto,
e que pode trazer benefícios para diferentes tarefas de PLN. O framework proposto, tanto para
modelagem quanto para extração de características textuais, pode ser posteriormente utilizado
para explorar outros aspectos e mecanismos da linguagem.

Palavras-chave: Contexto, Redes Complexas, Deep Learning, Ambiguidade.
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CHAPTER

1
INTRODUCTION

The study of language and how it is learned has been the focus of research in several areas
of science, such as Linguistics, Psychology, Neuroscience and Computer Science (JURAFSKY;
MARTIN, 2000). Given that these areas address the language from a specific perspective with
different motivations and purposes, numerous discoveries and theories have been made over the
years. However, the exact mechanisms, structures, processes and types of language learning are
still considered unknown and they represent a rather old dispute between study approaches (for
example, Rationalism versus Empiricism) (MARKIE, 2015). Nonetheless, some elements and
concepts have been identified in more than one field as of great importance for understanding
the workings of language, one of them being the context, which has its importance emphasized
by the Firth’s Contextual Theory of Meaning (FIRTH, 1957). This theory states that language
and its structure is strongly influenced by the various forms of context: the context of the social
environment, the context of spoken and written speech, the context of neighboring words among
other contextual characteristics (MANNING; SCHUTZE, 1999).

In the daily use of language, references to context are common, expressions such as ’out

of context’ or ’context of the situation’ are recurrent in cases where the interpretation of sentences,
whole or partial texts and speeches, requires more information than is provided. This implies that
context is informative about meaning (PIANTADOSI; TILY; GIBSON, 2012), that is, part of
the meaning or interpretation attributed to a text depends partly on the context, with the degree
of dependence varying. More important, considering language as an efficient communication
system, redundancy on the information provided by the context will be sparsely and poorly
provided or not provided at all, making ambiguity a prevalent phenomenon in language.

Another facet of context is that although is possible to define some of its influences on
language the definition of context itself is ambiguous, it is possible to define context in very
different ways depending on which language level (Morphology, Syntax, Semantics, Pragmatics)
or textual element (paragraph, sentence and its components clauses, phrases, words or other
structure) is being analyzed. Thus, it is necessary to define the context as an abstract concept
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that can represent different types of information, but which has a common element in relation to
the language, which is to provide an additional layer of information, often nonexistent in the
language itself.

In Artificial Intelligence (AI), more specifically, in Natural Language Processing (NLP),
the importance of context is easily identified, methods and techniques make use of context
information to perform a range of different tasks, such as in part-of-speech tagging (COL-
LOBERT; WESTON, 2008), summarization (RUSH; CHOPRA; WESTON, 2015), machine
translation (SUTSKEVER; VINYALS; LE, 2014) and word sense disambiguation (JR; LOPES;
AMANCIO, 2018). Despite the diversity of applications, the context used on these works is
normally just the context of words (neighboring words). Instead of handling different contexts, it
is common practice to create different systems, for example, when creating a sentiment classifier
that will have as input texts from different sources (like Twitter and product review), different
systems are created instead of dealing with the context, since the individual performance of
specific sentiment classifiers is better than generic classifiers (CORRÊA et al., 2017). So, it is
possible to assert that in most works, context information have been neglected or poorly used,
and hardly considered as an important part of the problem that needs to be modeled and explored
along within the task.

Recently, two different fields have been exploring the importance of context in NLP,
namely the areas of Complex Networks and Deep Learning. The application of the framework
of complex networks to NLP is a trend that has been occurring in a similar way in several
fields of science (COSTA et al., 2011; BARONCHELLI et al., 2013; CONG; LIU, 2014), in
which problems modeled in graphs or networks are analyzed from a different and unexplored
perspective not possible through traditional statistical techniques (COSTA et al., 2007). When
modeling text into networks, such as in co-occurrence networks (see details in Section A.3) that
are highly dependent on the context of words, this type representation is not only able to capture
information about the language and its structure but also about the context, explaining the success
of its application in tasks such as text classification (ARRUDA; COSTA; AMANCIO, 2016),
keyword extraction (MIHALCEA; TARAU, 2004) and word sense disambiguation (AMANCIO;
JR; COSTA, 2012).

In Deep Learning, context has also been explored in many ways. One is in the represen-
tation of words in a vector space that is learned through the use of neural networks, the so-called
word embeddings (BENGIO et al., 2003). The Word2Vec model (MIKOLOV et al., 2013a;
MIKOLOV et al., 2013b), one of the most popular models for generating word embeddings, uses
the context where the words occur as the main source of information. Another example is the use
of attention mechanisms in neural networks applied to machine translation. These mechanisms
allow the system, when translating a word, to consider the importance of its neighboring words
(context at word level) in the process (BAHDANAU; CHO; BENGIO, 2015). This mechanism
significantly improved the performance of neural networks in this task (BAHDANAU; CHO;
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BENGIO, 2015; LUONG; PHAM; MANNING, 2015). Another example the use of context is
the Skip-Thought model, where embeddings are generated for entire sentences by using the
surrounding sentences (context at sentence level) (KIROS et al., 2015).

In both areas, Complex Networks and Deep Learning, the importance of context is visible,
however, even though both use contextual information, they do it in very different ways, a fact
that brings us to the focus of this thesis, which is the advancing of NLP models based on machine
learning by combining the framework of complex networks and deep learning techniques in
order to better model context in languages. In order to assess the effectiveness of the proposed
context modeling methods we decide to explore two problems given all the possibilities in NLP,
one being the ambiguity of words and the other text classification, more specifically genre and
publication date classification.

Ambiguity is an inherent factor in the language and also a mechanism that allows the
reuse of words, not forcing the human being to store an excessive number of different words (PI-
ANTADOSI; TILY; GIBSON, 2012). Although important for the human being, ambiguity has a
negative factor when it is necessary to automate some tasks related to language, such as automatic
translation (NAVIGLI, 2009). This and other factors led to the emergence of the word sense
disambiguation area, which aims to create automatic methods that can identify which sense of a
word is being used in a given context. As is clear from the problem definition, this task has a
high dependence on the context and a high complexity, being still an open problem in NLP and
considered an IA-complete problem (analogous to NP-complete problems) (MALLERY, 1988;
NAVIGLI, 2009), making it an ideal task to explore and apply the techniques that aim to model
the context.

On the topic of text classification, it is possible to create machine learning models
that completely disregard context or only consider word context (such as the bag of words
representation) and still achieve good results. However, much about the textual structure and
its creation process is left out, mostly because it is not necessary for simple text classification,
taking this into account, we explore what information or features can be evidenced by the use of
a modeling that considers context and whether these features can be used for more complex text
classifications such as the discrimination of genre and publication date.

This work, as a thesis by articles or compendium, follows a structure where each chapter is
a published article. So, in order to provide some insights on the period when the paper was written,
we add two sections before each article, Context and Contributions. Another important aspect
of this work is that all papers are self-contained in the regards of background information and
methods, but the author also hopes that the reader, even without much background knowledge on
complex networks and deep learning will be able to understand the papers and its contributions,
for this reason we provide two appendices, presenting the basic principles and concepts of
complex networks and deep learning. Also because of the chosen format for this thesis, the
narrator will be referred to as “we,” rather than “I”, since the research was carried out in a
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collaborative setting.

The remainder of this thesis presents the articles, in Chapter 2 we explore if a complex
network based machine learning model using only context information is capable of performing
word sense disambiguation. In Chapter 3 we investigated the possibility of representing the
context by combining word embeddings and network representation, we also evaluated the
use of this methodology in the word sense induction task. In Chapter 4 we explore if the
context modeling proposed could capture other types of information, more precisely, genre and
temporality. Finally, at the end, we present a general conclusion.
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CHAPTER

2
WORD SENSE DISAMBIGUATION: A

COMPLEX NETWORK APPROACH

Word sense disambiguation: A complex network approach. Edilson A Corrêa Jr,
Alneu A Lopes, Diego R Amancio. Information Sciences 442, 103-113, 2018.

2.1 Context

The state of the art approach in supervised word sense disambiguation at the time we
wrote this article was usually a combination of heuristics, domain specific information and
linguistic resources such as lexical datasets and thesaurus, topped by a supervised classification
method. A good example is It Makes Sense (IMS) (ZHONG; NG, 2010), in its default configura-
tion, IMS makes use of three set of features to characterize a ambiguous word, the POS tag of
surrounding words, words in the context and local collocations 1, all these features are used as
input for the Support Vector Machines (SVMs), a supervised classification algorithm.

In a parallel research path, some works, looking for alternative solutions to the WSD
problem, explored the use of graphs (VÉRONIS, 2004; MIHALCEA; RADEV, 2011) and
later complex networks (SILVA; AMANCIO, 2012; AMANCIO; JR; COSTA, 2012). Graphs
and networks were both used as a framework for disambiguation algorithms but also as a
representation that allowed the extraction of features (complex networks measurements), that
had a different nature than the traditional features used in WSD systems. These methods didn’t
overcome the state of the art in WSD, but as demonstrated by Amancio, Jr and Costa (2012),
the performance of traditional methods can be improved when combined with network-based
features.

These two lines of work motivated us to explore a method that would provide an

1 A collocation is a expression of two or more words that tend to appear frequently together, in which
the whole is perceived to have a meaning beyond the sum of the parts (MANNING; SCHUTZE, 1999)
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intersection between the two. A machine learning method that would perform the learning
process in the same structure used for the representation (a complex network), instead of just
extracting features.

2.2 Contributions
The contributions of this paper can be summarized in two topics. First, we brought

an adaptation of the Inductive Model Based on Bipartite Heterogeneous Network (IMBHN)
algorithm to the context of word sense disambiguation, the method proved to be suited for the
task, having competitive performance in two WSD shared tasks (Senseval-3 English Lexical
Sample Task and SemEval-2007 Task 17 English Lexical Sample). Although the method did
not outperform the state of the art, in a separate analysis, we showed that when compared to
traditional algorithms such as SVMs, the method had better results, indicating that systems such
as IMS could benefit from the IMBHN to handle context features instead of SVMs.

Second, the proposed adaptation, instead of using features that were extracted from
context, it explicitly modeled the context, demonstrating that context can be further explored
to tackle NLP problems through complex network representations. This insight allowed us to
follow this path and move to our other two works.
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a b s t r a c t 

The word sense disambiguation (WSD) task aims at identifying the meaning of words in a 

given context for specific words conveying multiple meanings. This task plays a prominent 

role in a myriad of real world applications, such as machine translation, word processing 

and information retrieval. Recently, concepts and methods of complex networks have been 

employed to tackle this task by representing words as nodes, which are connected if they 

are semantically similar. Despite the increasingly number of studies carried out with such 

models, most of them use networks just to represent the data, while the pattern recogni- 

tion performed on the attribute space is performed using traditional learning techniques. 

In other words, the structural relationships between words have not been explicitly used 

in the pattern recognition process. In addition, only a few investigations have probed the 

suitability of representations based on bipartite networks and graphs (bigraphs) for the 

problem, as many approaches consider all possible links between words. In this context, 

we assess the relevance of a bipartite network model representing both feature words (i.e. 

the words characterizing the context) and target (ambiguous) words to solve ambiguities 

in written texts. Here, we focus on semantical relationships between these two type of 

words, disregarding relationships between feature words. The adopted method not only 

serves to represent texts as graphs, but also constructs a structure on which the discrimi- 

nation of senses is accomplished. Our results revealed that the adopted learning algorithm 

in such bipartite networks provides excellent results mostly when local features are em- 

ployed to characterize the context. Surprisingly, our method even outperformed the sup- 

port vector machine algorithm in particular cases, with the advantage of being robust even 

if a small training dataset is available. Taken together, the results obtained here show that 

the representation/classification used for the WSD problem might be useful to improve the 

semantical characterization of written texts without the use of deep linguistic information. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The word sense disambiguation (WSD) task has been widely studied in the field of Natural Language Processing (NLP) 

[31] . This task is defined as the ability to computationally detect which sense is being conveyed in a particular context [37] . 

Although humans solve ambiguities in an effortlessly manner, this matter remains an open problem in computer science, 

owing to the complexity associated with the representation of human knowledge in computer-based systems [30] . The 

importance of the WSD task stems from its essential role in a variety of real world applications, such as machine translation 

∗ Corresponding author. 

E-mail addresses: diego@icmc.usp.br , diego.amancio@usp.br (D.R. Amancio). 

https://doi.org/10.1016/j.ins.2018.02.047 

0020-0255/© 2018 Elsevier Inc. All rights reserved. 
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[52] , word processing [19] , information retrieval and extraction [21,22,32,47,49,56] . In addition, the resolution of ambiguities 

plays a pivotal role in the development of the so-called semantic web [13] . 

Many approaches devised to solve ambiguities in texts employ machine learning methods, in which systems using su- 

pervised methods represent the state-of-the-art [37] . These methods usually rely on features extracted from the context 

of ambiguous (target) words, making contextual information a primordial element in the disambiguation process. However, 

the learning process in most of these methods only use representations that attempt to grasp the context and little or no 

explicit modeling of context is made. In this paper, we propose a new representation that explicitly models context and 

may be used as a underlying structure in the learning process. The representation used here consists of a bipartite network 

composed only of target and context words, while learning is carried out by a gradient descent method, which learns the 

relationship between the two types of words, allowing the induction of a model capable of performing supervised WSD. 

Although networks/graphs have been employed in general pattern recognition methods [15,16,54] and, particularly in the 

analysis of the semantical properties of texts in several ways [3,7,11,28,33,35,43,50] , the use of network models in the learn- 

ing process has been restricted to a few works (see e.g. [44] ). In fact, most of the current network models emphasize the 

relationship between all words of the document. As a consequence, a minor relevance has been given to the relationships 

between feature and target words. As we shall show, the adopted representation/learning method may improve the classi- 

fication process when compared with well-known traditional/general purpose supervised algorithms hinging on traditional 

text representations. Remarkably, we have found that our method retains its discriminative power even when a considerable 

small amount of training instances is available. These results may indicate that the adopted method is an ideal candidate 

for state-of-the-art methods such as IMS [55] , which at its core make use of traditional machine learning methods such as 

Support Vector Machines. We also applied our algorithm to two popular benchmarks in the area of WSD, namely Senseval-3 

English Lexical Sample Task [34] and SemEval-2007 Task 17 English Lexical Sample [40] . Despite of making use of a simple 

superficial textual representation, in both datasets our method achieved intermediary positions. 

The remainder of this paper is organized as follows. We first present a brief review of basic concepts employed in this 

paper and related works. We then present the details of the representation and algorithm used to tackle the word sense 

disambiguation task. The details of the experiments and the results concerning the accuracy and robustness of the method 

is also discussed. Finally, we present some perspectives for further works. 

2. Related works 

The word sense disambiguation task can be defined as follows. Given a document represented as a sequence of words 

T = { w 1 , w 2 , . . . , w n } , the objective is to assign appropriate sense(s) to all or some of the words w i ∈ T . In other words, the 

objective is to find a mapping A from words to senses, such that A (w i ) ⊆ S D (w i ) , where S D (w i ) is the set of senses encoded 

in a dictionary D for the word w i , and A ( w i ) is the subset of appropriate senses of w i ∈ T . One of the most popular approaches 

to tackle the WSD problem is the use of machine learning, since this task can be seen as a supervised classification problem, 

where senses represent the classes [37] . The attributes used in the learning methods are usually any informative evidence 

obtained from context and external knowledge sources. The latter approach is usually not common in practice because the 

creation of knowledge datasets demands a time-consuming effort, since the change in domains requires the recreation of 

new knowledge bases. 

The generic WSD task can be distinguished into two types: lexical sample and all-words disambiguation. In the former, 

a WSD system is required to disambiguate a restricted set of target words. This is mostly done by supervised classifiers 

[37] . In the all-words scenario, the WSD system is expected to disambiguate all open-class words in a text. This task usually 

requires a wide-coverage of domains, and for this reason a knowledge-based system is usually employed. In this article, only 

the lexical sample task is considered. 

The main step in any supervised WSD system is the representation of the context in which target words occur. The set 

of features employed typically are chosen to characterize the context in a myriad of forms [37] . The most common types of 

attributes used for this aim are: 

• local features : the features of an ambiguous concept are a small number of words surrounding target words. The number 

of words representing the context is defined in terms of the window size ω. For example, if the context of the target 

word τω is “p −3 p −2 p −1 τω p +1 p +2 p +3 ” and ω = 2 , then the words p −2 , p −1 , p +1 and p +2 are used as features. 

• topical features : the features are defined as topics of a text or discourse, usually denoted in a bag-of-words representa- 

tion; 

• syntatical features : the features are syntactic cues and argument-head relations between the target word and other words 

within the same sentence; and 

• semantical features : the features of a word are any semantic information available, such as previously established senses 

or domain indicators. 

Using the aforementioned set of features, each word occurrence can be converted to a feature vector, which in turn is 

used as input in supervised classification algorithms. Typical classifiers employed for this task include decision trees [36] , 

bayesian classifiers [20,36] , neural networks [36] and support vector machines [20,26] . A well known state of the art system 

that uses a combination of the presented features is the “It Makes Sense ” (IMS) method [55] , which uses Support Vector 
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Machines as the standard classifier. This system also makes use of attributes derived from knowledge bases, allowing its 

application in both all-words and lexical sample tasks. 

Another approach that has been used to address the WSD problem consists in the use of complex networks 

[6,38,45,53] and graphs [35] . For instance, the HyperLex algorithm [50] connects words co-occurring in paragraphs to es- 

tablish similarity relations among words appearing in the same context. The frequency of co-occurrences is considered 

according to the following weighting scheme: 

w i j = 1 − max { P (w i , w j ) , P (w j , w i ) } (1) 

where P (w i , w j ) = f i j / f i , f i is the frequency of word i in the document and f ij is the frequency of the co-occurrence of the 

words i and j . Then, this network is used to create a tree-like structure via recognition of central concepts, which represent 

all possible senses. To perform the classification, the distance of context words to the central concepts in the tree structure 

is computed to identify the most likely sense. 

Using a different approach, [9] uses the local topological properties of co-occurrence networks to disambiguate target 

words. In this case, even though a significant performance has been found for particular target words, the optimal discrimi- 

nation rate was obtained with traditional local features, suggesting thus that the overall discriminability could be improved 

upon combining features of distinct nature, as suggested by similar approaches [5,51] . 

Despite the numerous studies devoted to the WSD problem, this task remains an open problem in NLP, and currently it is 

considered one of the most complex problems in Artificial Intelligence [30] . Our contribution in this paper is the proposition 

of a new representation that explicitly models context that is used to perform sense discrimination. Unlike previous studies 

[9,50] , the learning process takes place in the same structure used for representation, eliminating the need of hand-designed 

features. Despite its seemingly simplicity, we show that such representation captures, in a artlessly manner, informative 

properties of target words and their respective senses. 

3. Overview of the technique 

This section presents the approaches to represent the context of target words in a bipartite heterogeneous network. Here 

we also present the Inductive Model Based on Bipartite Heterogeneous Network (IMBHN) algorithm, which is responsible 

for inducing a classification model from the structure of a bipartite network [42,46] . 

3.1. Modelling word context as a bipartite heterogeneous network 

Traditionally, the context of ambiguous words is represented in a vector space model, so that each target word is charac- 

terized by a vector. In this representation, each dimension of the vector corresponds to a specific feature. Alternatively, we 

may represent the data using a bipartite heterogeneous network. In this model, while the first layer comprises only feature 

words, the second only stores target words. In this paper, we focused on the analysis of local and topical attributes in the 

form of context, as such data are readily available on (or derivable from) any corpus. Note that, in this case, we have not 

used any knowledge dataset. 

In the proposed strategy based on topical features, we create a set T of topical words. Then, each one becomes a distinct 

feature. As topical words, we considered the most frequent words of the dataset. The number of topical words, i.e. |T | , is a 
free parameter. Given T , the bipartite network is created by establishing a link between topical and target words whenever 

they co-occur in the same document. 

In the proposed representation based on local features, each feature word surrounding the target word represents an 

attribute. For each instance of the target word in the text, we select the ω closest surroundings words to become a feature 

word (see definition in “Related works” section). The selected words are then connected to the target words by weighted 

edges. 

3.2. Algorithm description 

The IMBHN algorithm can be used in the context of any text classification task. If the objective is to classify distinct 

documents in a given number of classes, the bipartite network can be constructed so that nodes represent both terms and 

documents. In this general scenario, such representation is used to compute the relevance of specific terms for distinct 

document classes. In a similar fashion, in this study, we compute the relevance of local / topical features for each target word. 

Then, this relevance is used to infer word senses. 

The algorithm employed for sense identification relies upon a network structure with two distinct layers: (i) a layer rep- 

resenting possible feature words (i.e. local or topical features), and (ii) a layer comprising all occurrences of the target word. 

The two layers are illustrated in Fig. 1 . Edges are established across layers so that context words and distinct occurrences 

of the target word are connected. In addition, in the network representation, a weight relating each feature word to each 

target word is also established. The main components of the model are: 

• w d k ,t i 
: the weight of the connection linking the k th target word and the i th feature word. In the strategy based on topical 

features, this weight is constant along the execution of the algorithm and, for a given instance T , is computed as 

w d k ,t i 
= 1 − δ(d k , t i ) /l(T ) , (2) 
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Fig. 1. Bipartite network structure used by the IMBHN algorithm. Note the existence of two layers: the layer comprising feature words and the layer 

comprising target words, which can be classified into three distinct senses (A, B and C). For each feature word, there exists a vector of features relevance 

whose element f t i ,c j denotes the relevance of i th feature word for the j th possible sense. The vectors below each target word represents the sense obtained 

in each iteration (i.e. φd k ,c j 
). 

where δ( d k , t i ) denotes the distance between two words (i.e. the number of intermediary words) and l ( T ) is the length 

of T (measured in terms of word counts). In the strategy based on local features, the weight of the links is given by the 

term frequency - inverse document frequency (tf-idf) strategy [31] . 

• f t i ,c j : let C be the set of possible classes (i.e. word senses). f t i ,c j represents the current relevance of the i th feature 

word ( t i ∈ T ) to the j th class ( c j ∈ C). This value is initialized using a heuristic and then is updated at each step of the 

algorithm. 

• y d k ,c j : represents the actual membership of the k th target word. In other words, this is the label provided in the super- 

vised classification scheme. If c j is the class of the k th target word, then y d k ,c j = 1 ; otherwise, y d k ,c j = 0 . 

• φd k ,c j 
: represents the obtained membership of the k th target word. If c j is the class obtained for the k th target word, then 

φd k ,c j 
= 1 ; otherwise, φd k ,c j 

= 0 . 

• εd k ,c j 
: denotes the error of the current iteration. It is computed as: 

εd k ,c j 
= y d k ,c j − φd k ,c j 

. (3) 

As we shall show, this error is used to update weights in f so that, at each new iteration, the distance between y d k ,c j and 

φd k ,c j 
decreases. 

Note that, in the model illustrated in Fig. 1 , we only consider the relationship between feature and target words. 

The algorithm can be divided into the three following major steps: 

1. Initialization : there are three possible ways of initializing f , i.e. the vector weights of feature words. The most simple 

strategy is to initialize weights with zeros or random values. A more informed alternative initializes weights using the a 

priori likelihood of feature words co-occur with senses. This probability can be computed as 

Pr = P ( f i | d k ) = n f i ,d k 
/ n d k 

, (4) 

where n f i ,d k is the number of times that the i th feature word appears in the context of the k th target word and n d k 
is the total number of occurrences of d k . In our experiments, we report the best results obtained among these three 

alternatives. 

2. Error calculation : In the error calculation step, firstly, the output vector for each target word ( φ( d k )) is computed. This 

vector depends upon the presence of the feature word in the context ( w d k ,t i 
) and its relevance for the class ( f t i ,c j ). 

Mathematically, the class computed at each new iteration is given by 

C 

(∑ 

t i ∈T 
w d k ,t i 

f t i ,c j 

)
= 

{ 

1 , if c j = arg max 
c l ∈C 

( ∑ 

t i ∈T 
w d k ,t i 

f t i ,c j 

)
. 

0 , otherwise. 
(5) 
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Table 1 

List of words used to evaluate the word sense disambiguation algorithm. NS and 

NI denote the number of senses of the target word and the number of instances 

in the corpus, respectively. The dataset comprising word context and word senses 

was obtained from previous studies in WSD [17,24,25] . Prior to the application of 

the learning methods, stopwords and punctuation marks were removed from the 

original instances. 

Target word NS NI 

interest (noun) 6 2368 

line (noun) 6 4146 

serve (verb) 4 4378 

hard (adjective) 3 4333 

After updating the classes for each target word, the values of f t i ,c j are modified. This update is controlled by the correc- 

tion rate η: 

f (n +1) 
t i ,c j 

= f (n ) 
t i ,c j 

+ η
∑ 

d k ∈D 
w d k ,t i 

ε(n ) 
d k ,c j 

, (6) 

where the superscript ( n ) in f and ε denotes the value of these quantities computed in the n th iteration of the algorithm 

and D is the set of target words. Note that ε(n ) 
d k ,c j 

is computed as defined in Eq. (3) . The process of generating an output 

vector for each target word, computing the class and performing weight/feature relevance correction is done iteratively 

until a stop criterion is reached. In our experiments, we have stopped the algorithm when a minimum error εmin = 0 . 01 

is obtained. If the minimum error is not reached after n max = 1 , 0 0 0 iterations, the algorithm is stopped. 

3. Classification : in the classification phase, the induced values of f are used in the classification. The word senses for each 

ambiguous word of the dataset are then obtained by computing the following linear combination: 

class (d k ) = arg max 
c j ∈C 

(∑ 

t i ∈T 
w d k ,t i 

f t i ,c j 

)
. (7) 

Some aspects of the IMBHN algorithm resemble a neural network, namely the use of weights to represent the relevance 

of features in the classification process and the use of a similar optimization strategy to learn weights. However, the under- 

lying IMBHN network structure completely differs from a neural network because the former learns a bipartite structure to 

represent the relationship of two distinct types of entities (terms and senses). Another distinctive difference of the IMBHN 

structure concerns its ability to direct propagate the information through neighbors. Note that a single layer network, con- 

versely, performs the selection of relevant information via activation functions. 

4. Experimental evaluation 

The experimental evaluation of the algorithm was performed in two stages. In the first step, we assessed the performance 

of the algorithm by comparing to other state-of-the-art inductive classification algorithms. In the second stage, the IMBHN 

algorithm was applied to two WSD corpora previously used in WSD shared tasks, allowing thus the comparison of our 

method with state-of-the-art WSD systems. Both corpora are presented in the next section. 

4.1. Corpora 

4.1.1. Minimal corpus 

The minimal corpus is composed of 4 words ( interest, line, serve and hard ), which were used in similar works [17,24,25] . 

This corpus comprises documents from distinct sources, including the San Jose Mercury News Corpus and the Penntreebank 

portion of the Wall Street Journal. The corpus encompasses 15,225 instances of short texts representing the context sur- 

rounding ambiguous words, where words are tagged with their respective part-of-speech. In this corpus, the correct senses 

conveyed by ambiguous words were manually annotated. The number of senses and the number of instances of each word 

used in our experiments is shown in Table 1 . In the evaluation process, these four words were considered as the target 

words. In particular, to characterize the contexts, we have removed stopwords and punctuation marks as such elements do 

not convey any semantical meaning and, therefore, do not improve the characterization of contexts. 

4.1.2. Senseval-3 and SemEval-2007 

The Senseval-3 and SemEval-2007 corpora here presente refer, respectively, to the corpora used in the Senseval-3 English 

Lexical Sample Task [34] and in the SemEval-2007 Task 17 English Lexical Sample [40] . Both datasets provide instances of 

short texts representing the context of ambiguous words. The Senseval-3 is composed of 57 ambiguous words and 11,804 

instances (7,860 for train and 3,944 for test). The words were extracted from the British National Corpus. The SemEval-2007 

comprises 100 ambiguous words in 27,132 instances (22,281 for train and 4,851 for test). The data used in this corpus was 

extracted from both the Wall Street Journal and the Brown Corpus. 
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Table 2 

Accuracy rates (%) obtained by each algorithm using topical features to disambiguate 

words. The studied target words are: (i) “interest” (noun), (ii) “line” (noun), (iii) “serve”

(verb) and (iv) “hard”. The best results for each value of |T | and for each target word are 

highlighted in bold font. The best results tend to occur with the SMO method, however, 

in particular cases, the J48 outperforms the SMO learning technique. Apart from the word 

“serve” when |T | = 300 , the IMBHN does not perform as good as the other traditional 

methods. 

Method |T | interest line serve hard 

IMBHN 100 71.49 ( ±1.90) 59.91 ( ±3.27) 64.68 ( ±3.63) 77.28 ( ±2.59) 

J48 100 79.47 ( ±2.66) 62.73 ( ±1.94) 68.15 ( ±1.34 ) 84.58 ( ±1.29 ) 

IBk 100 75.71 ( ±1.82) 53.18 ( ±2.36) 63.68 ( ±1.33) 79.34 ( ±2.29) 

NB 100 59.79 ( ±2.56) 51.95 ( ±2.48) 58.79 ( ±1.84) 43.04 ( ±2.58) 

SMO 100 79.77 ( ±2.71 ) 62.87 ( ±1.29 ) 66.79 ( ±1.21) 84.07 ( ±1.19) 

IMBHN 200 78.50 ( ±2.61) 65.53 ( ±1.83) 66.56 ( ±2.43) 78.74 ( ±2.31) 

J48 200 82.39 ( ±2.34) 66.71 ( ±2.22) 68.95 ( ±1.80) 86.17 ( ±0.89 ) 

IBk 200 80.70 ( ±2.10) 53.93 ( ±2.58) 63.24 ( ±2.47) 80.10 ( ±1.52) 

NB 200 60.17 ( ±2.24) 54.43 ( ±2.92) 61.71 ( ±2.47) 42.69 ( ±2.62) 

SMO 200 83.27 ( ±2.51 ) 68.95 ( ±1.72 ) 69.84 ( ±1.70 ) 85.36 ( ±1.03) 

IMBHN 300 80.23 ( ±2.31) 67.82 ( ±1.93) 71.42 ( ±1.55) 78.62 ( ±2.82) 

J48 300 82.68 ( ±2.27) 68.54 ( ±1.26) 70.67 ( ±1.78) 86.22 ( ±0.95 ) 

IBk 300 80.32 ( ±2.14) 54.05 ( ±2.58) 63.13 ( ±2.29) 80.38 ( ±1.94) 

NB 300 55.66 ( ±2.92) 54.14 ( ±2.61) 66.99 ( ±2.87) 41.61 ( ±2.49) 

SMO 300 84.71 ( ±1.93 ) 69.87 ( ±0.87 ) 71.92 ( ±2.25 ) 85.52 ( ±1.37) 

Baseline – 52.80 53.40 41.40 79.30 

4.2. Experiment 1 

In this experiment the results obtained by the IMBHN algorithm were compared with four inductive classification al- 

gorithms: Naive Bayes (NB) [18] , J48 (C4.5 algorithm) [41] , IB k ( k -Nearest Neighbors) [1] and Support Vector Machine via 

sequential minimal optimization (SMO) [39] . The parameters of these algorithms have been chosen using the methodology 

described in [8] . For the IMBHN algorithm, we used the error correction rates η = { 0 . 01 , 0 . 05 , 0 . 10 , 0 . 50 } . The number of 

topical features used in the experiments were |T | = { 10 0 , 20 0 , 30 0 } . Finally, the window size for the local features were 

ω = { 1 , 2 , 3 } . The evaluation process was performed via 10-fold cross-validation [23] . 

To analyze the behavior and accuracy of the IMBHN algorithm, we first studied the WSD task using topical features to 

characterize the context of target words of our dataset. The obtained results are shown in Table 2 . When the number of 

topical features |T | is set with |T | = 100 , the best results occurred for the SMO and J48 techniques. In three cases, the 

IMBHN performed worse than the best results achieved with competing techniques. 

In general, the performance of the classifiers tend to improve when the number of topical features ( |T | ) increases from 

10 0 to 30 0. This is clear when one observes that e.g. the best accuracy rate for the word “interest” goes from 79.77% to 

84.71%. The same behavior can be observed for the other target words of the dataset, however, in a minor proportion. Con- 

cerning the performance of the IMBHN technique when |T | = { 20 0 , 30 0 } , in most cases, the IMBHN method is outperformed 

by the SMO technique, which provided the best results for the words “interest”, “line” and “serve”. The best results for the 

word “hard” was achieved with the J48 classifier. 

When analyzing the performance of the classifiers induced with local features, a different pattern of accuracy has been 

found, as shown in Table 3 . For the words “interest”, “line”and “serve” the IMBHN classifier yielded the best results, for 

ω = { 1 , 2 , 3 } . Conversely, if we consider the word “hard”, the decision tree based algorithm, J48, outperformed all other 

methods. However, the performance achieved with J48 was very similar to the one obtained with the IMBHN: the maximum 

difference of accuracy between these two classifiers was 1.09%, when ω = 3 . This observation confirms the suitability of the 

method for the problem, as optimized results have been found for virtually all words of the dataset. 

The best results obtained with topical and local features are summarized in Table 4 . The IMBHN algorithm for repre- 

senting texts and discriminating senses outperformed other methods when considering also distinct types of features. In 

special, the IMBHN performed significantly better than the SMO method for the word “line” and “serve”. A minor gain in 

performance has been observed for “interest”. With regard to the word “hard”, the best performance was obtained with 

the J48 (with topical features). However, a similar accuracy was obtained with the IMBHN (with local features, as shown 

in Table 3 ). All in all, these results show, as a proof of principle, that the proposed algorithm may be useful to the word 

sense disambiguation problem, as optimal or near-optimal performance has been found in the studied corpus. Given the 

superiority of the local feature strategy, we also provide in Table S2 of the Supplementary Information results for additional 

words, which also confirm the effectiveness of the IMBHN algorithm. 

State of the art WSD methods do not only use machine learning for classification purposes, but also a combination of 

heuristics, domain specific information and deep resources such as thesaurus and lexical datasets (e.g. the WordNet) [37] . 

The combination of distinct techniques and resources explains the reason why the IMBHN appears in a intermediary rank 

when compared to other methods relying upon more semantic information. We should note that the only information used 
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Table 3 

Accuracy rates (%) obtained by each algorithm using local features to disambiguate 

words. The studied target words are: (i) “interest” (noun), (ii) “line” (noun), (iii) “serve”

(verb) and (iv) “hard”. The best results for each value of ω and for each target word 

are highlighted in bold font. For the words “interest”, “line” and “serve”, the best perfor- 

mance is achieved with the IMBHN method in all of the studied scenarios. For the word 

“hard”, the J48 learning algorithm displayed the best performance. However, in this case, 

the IMBHN method performed almost as well as the J48, for ω = { 1 , 2 , 3 } . Another inter- 

esting pattern arising from the results is the fact that performances are improved when 

ω takes higher values. 

Method ω interest line serve hard 

IMBHN 1 81.50 ( ±2.17 ) 69.19 ( ±2.57 ) 69.96 ( ±1.85 ) 85.50 ( ±1.46) 

J48 1 65.83 ( ±2.86) 60.97 ( ±2.44) 46.43 ( ±2.54) 85.57 ( ±1.02 ) 

IBk 1 74.73 ( ±2.45) 59.76 ( ±2.39) 62.54 ( ±3.06) 82.06 ( ±1.82) 

NB 1 64.90 ( ±3.63) 37.16 ( ±1.76) 42.11 ( ±2.20) 43.94 ( ±3.35) 

SMO 1 66.00 ( ±2.33) 62.61 ( ±2.41) 57.88 ( ±2.73) 81.30 ( ±1.14) 

IMBHN 2 83.27 ( ±1.16 ) 75.80 ( ±2.39 ) 78.48 ( ±1.30 ) 84.67 ( ±1.64) 

J48 2 71.74 ( ±2.01) 61.21 ( ±2.32) 55.57 ( ±2.67) 85.39 ( ±1.03 ) 

IBk 2 65.32 ( ±2.03) 56.72 ( ±2.70) 58.26 ( ±2.32) 78.35 ( ±1.21) 

NB 2 66.97 ( ±1.83) 45.22 ( ±2.02) 60.16 ( ±2.87) 43.68 ( ±2.39) 

SMO 2 64.10 ( ±2.65) 62.13 ( ±2.60) 58.63 ( ±3.74) 80.68 ( ±1.53) 

IMBHN 3 85.55 ( ±2.60 ) 77.13 ( ±1.47 ) 80.12 ( ±1.30 ) 84.16 ( ±0.65) 

J48 3 76.85 ( ±2.75) 62.66 ( ±2.11) 60.94 ( ±2.41) 85.25 ( ±1.08 ) 

IBk 3 52.44 ( ±5.65) 53.59 ( ±2.27) 52.12 ( ±3.04) 78.86 ( ±1.17) 

NB 3 6 8.4 9 ( ±1.92) 50.43 ( ±2.58) 66.05 ( ±2.03) 42.97 ( ±3.46) 

SMO 3 64.14 ( ±2.35) 60.80 ( ±2.46) 58.45 ( ±3.24) 79.78 ( ±1.21) 

Baseline – 52.80 53.40 41.40 79.30 

Table 4 

Best classifiers for each feature set and its accuracy. 

Target word Topical features Local features 

interest (noun) 84.71% (SMO) 85.55% (IMBHN) 

line (noun) 69.87% (SMO) 77.13% (IMBHN) 

serve (verb) 71.92% (SMO) 80.12% (IMBHN) 

hard (adjective) 86.22% (J48) 85.57% (J48) 

by this method is the co-occurrence information present in the text, therefore no external information is used. Given the 

superiority of the IMBHN over SMO in some scenarios, it could be interesting to explore, in future works, the performance 

of other state of the art systems (such as the IMS) by using the IMBHN as the main machine learning algorithm (note that 

the IMS originally uses the SVM as main machine learning method). 

A disadvantage associated to the use of supervised methods to undertake the word sense disambiguation problem is the 

painstaking, time-consuming effort required to build reliable datasets [37] . For this reason, it becomes relevant to analyze 

the performance of WSD systems when only a few labelled instances are available for training [37] . In this sense, we per- 

formed a robustness analysis of the proposed algorithm to investigate how performance is affected when smaller fractions of 

the dataset are provided for the algorithm. To perform such a robustness analysis the following procedure was adopted. We 

defined a sampling rate S, representing the percentage of disregarded instances from the original dataset. For each sampling 

rate, we computed the accuracy �( S ) relative to the sampled dataset. The relative accuracy rate for a given S was computed 

as 

˜ �(S) = 

�(S) 

�(0) 
, (8) 

which quantities the percentage of the original accuracy which is preserved when the original dataset is sampled with 

sampling rate S . For each sampling rate, we generated 50 sampled subsets. The obtained results for the IMBHN in its best 

configuration (i.e. using local features and ω = 3 ) are shown in Fig. 2 . The best scenario occurs for the word “hard”, as 

even when 90% of the original is ignored, in average, more than 95% of the original accuracy (i.e. �(S = 0) ) is recovered. 

Concerning the other words, a good performance was also observed when only a small fraction was available. This is the 

case of “serve”: when 90% of the dataset is disregarded, 85% of the original accuracy is kept. These results suggest that the 

IMBHN could be successfully applied in much smaller datasets without a significative loss in performance. We have found 

similar robustness results for other configurations of parameters ( ω) of the IMBHN (results not shown), which reinforces the 

hypothesis that the resiliency of the method with regard to the total amount of instances in the training phase is stable with 

varying parameter values. Note that such a robustness, although strongly desired in practical problems, does not naturally 

arise in all pattern recognition methods. This is evident e.g. when the robustness SMO is verified for “serve” and “interest”, 

as shown in Fig. 3 . Note that when S = 0 . 9 , the accuracy drops to about 60% of its original value. The results confirmed that 
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Fig. 2. Robustness analysis performed with the IMBHN algorithm. The sampling rate corresponds to the fraction (percentage) of instances randomly re- 

moved from the original dataset. The relative accuracy is given by Eq. (8) . Note that, in the worst case, the accuracy of the IMBHN reaches 85% of the 

accuracy when only 10% of the original data is available ( S = 0 . 9 ), confirming thus the robustness of the method. A similar behavior was obtained when 

the approach based on topical features was evaluated with ω = { 1 , 2 } . 

Fig. 3. Robustness analysis performed with the SMO algorithm for two words of the dataset. The sampling rate corresponds to the fraction (percentage) 

of instances randomly removed from the original dataset. The relative accuracy is given by Eq. (8) . Unlike the IMBHN algorithm, the accuracy rate drops 

significantly for high sampling rates. 

only a minor decrease in performance is observed when labelled data is scarce in the IMBHN algorithm. Such a robustness 

suggests that the algorithm might not only be useful for the WSD task, but also for semi-supervised related problems [12] . 

Other important feature of any classifier are related to their scalability and time performance in the context of large 

instance problems [2,48] . The scalability issue of machine learning methods is oftentimes associated with two main aspects: 

the time required for (i) training and (ii) inference. According to Table S1 of the Supplementary Information, the IMBHN time 

performance is competitive when compared to other algorithms. Note that the internal operations can be performed in a 

matrix form, thus allowing an implementation based on specific efficient hardware, such as graphical processing units. Con- 

cerning the inference time, the IMBHN is also competitive compared to other methods, given that the state-of-art algorithms 

(such as IMS) rely on a SVM algorithm and therefore are much more less scalable with regarding to time performance. 

In the proposed model, as the number of training examples increases, the connectivity patterns between feature and 

target words tend to become constant (i.e. each word tends to keep the same number of links). However, the number of 

links for each feature/target word depends on the ambiguous word being analyzed, so there is no simple clear pattern that 

can be explained with the degree of the bipartite networks. The same idea holds for other measurements such as those 

dependent on link weights. We note that topological features of networks, however, have already been used for the WSD 

task, with different network formations (see e.g. [9] ). So we think that it would be interesting to explore in future works if 

there is any fact of the solution of the WSD problems that can be explained with features of bipartite networks. 
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Table 5 

F-score obtained by the best result of the IMBHN and a sample of the systems that 

participated in the Senseval-3 along with the baseline (More Frequent Sense). The 

rank of each systems is based in its performance in fine coarse word sense dis- 

ambiguation. Our system exceeded the baseline by 8.4% (fine) and 4.4% (coarse) 

besides having close results to the systems that were in 25th and 26th places. 

Rank System Fine Coarse 

1 htsa3 72.9% 79.3% 

25 UNED 64.1% 72.2% 

– IMBHN 63.6% 68.9% 

26 SyntaLex-4 63.3% 71.1% 

47 DL SI-UA-L S-NOSU 14.7% 23.9% 

Baseline(MFS) 55.2% 64.5% 

Table 6 

F-score obtained by the best result of the IMBHN and a sample of the systems that 

participated in the SemEval-2007 along with the baseline (More Frequent Sense). 

Our system exceeded the baseline by 5.2% and had close results to the systems that 

were in 6th and 7th places. 

Rank System F-score 

1 NUS-ML 88.7% 

6 OE 83.8% 

– IMBHN 83.2% 

7 VUTBR 80.3% 

13 Tor 52.1% 

Baseline(MFS) 78.0% 

4.3. Experiment 2 

In this experiment, the IMBHN algorithm was applied in two WSD corpora that were previously used in Senseval-3 

and SemEval-2007, allowing thus the comparison with state-of-the-art WSD systems that participated of the shared tasks. 

Only local features are considered in this experiment because, in the previous experiment, the best results of our method 

were obtained with these features. Since in both shared tasks the evaluation of WSD systems was performed using recall, 

precision and F-score, we chose to use the F-score because it consolidates recall and precision in a single quality index, sim- 

plifying the comparison between systems. The parameters of the algorithm were chosen in accordance with the previous ex- 

periment, being the error correction rate η = 0 . 10 and the window size for the local features ω = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 
We also considered as the context all words in the sentence where the ambiguous word occurs. 

Table 5 shows the best result obtained by variations of the IMBHN, together with the baseline (i.e. the Most Frequent 

Sense) and a sample of the systems that participated in Senseval-3. The systems were evaluated in two variants, which con- 

sidered fine and coarse grained senses (according to WordNet 1.7.1 and Wordsmyth). The ranking os systems was generated 

considering only their performance in fine grained senses. In this assessment, our system exceeded the baseline by 8.4% 

(fine) and 4.4% (coarse), and had very close results to the systems that were in 25th and 26th places (among 48 systems). 

In the SemEval-2007 task, only coarse grained senses were considered (based on WordNet 2.1), since the identification 

of fine grained senses is a hard task even for human annotators [40] . Table 6 shows the result of the best variation of 

the IMBHN along with a sample of systems that participated in the SemEval-2007. We also show the performance of the 

baseline based on the most frequent sense. In this evaluation, our system outperformed the baseline by a margin of 5.2%. 

The IMBHN also displayed a similar performance of systems ranked in 6th and 7th places (among 14 systems). 

In both datasets our algorithm did not exceed the best results, but managed to overcome the baseline and got better 

results than about half of the systems that participated in both tasks. Arguably, most of the participating systems have made 

the use of multiple features while we focused only statistical, superficial features. These results suggest that our system 

performs well if we consider that any linguistic, deeper information regarding senses was used to create the classifier. 

Another point of interest is that a large part of the best performing systems made use of the SVM as a core classifier. For 

this reason, we argue that such systems could benefit from the IMBHN to handle local features, since our algorithm is able 

to overcome the SVM in some cases, as discussed in the “Experiment1” section. 

5. Conclusion 

The accurate discrimination of word senses plays a pivotal role in information extraction and document classification 

tasks [4,14] . This task is important to improve other systems such as machine translators and search engines [37] . While 

methods based on deep paradigms may perform well in very specific domains, statistical methods based mainly on machine 

learning have proved useful to undertake the word sense disambiguation task in more general contexts. In this article, we 

have devised a statistical model to both represent contexts and recognize patterns in written texts. The model hinges on 
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a bipartite network, with layers representing feature words and target words, i.e. words conveying two or more potential 

senses. We have shown, as a proof of principle, that the proposed model presents a significant performance, mainly when 

contextual features are modelled via extraction of local words to represent semantical contexts. We have also observed that, 

in general, our method performs well even if a relatively small amount of data is available for the training process. This is 

an important property as it may significantly reduce both time and effort required to construct a corpus of labelled data. 

Concerning its performance compared to state-of-the-art WSD systems, our method was competitive although not exceed 

the best methods that participated of the Senseval-3 English Lexical Sample Task and SemEval-2007 Task 17 English Lexical 

Sample. We note here that no deep linguistic information was used in our system, which makes it more suitable when the 

existence of such information is limited or absent. Even though our method does not present the lowest processing time, 

we highlight that the technique can take advantage of specific hardware, which may substantially improve the efficiency of 

the method in a practical scenario. 

As future work, we intend to explore further generalizations of the algorithm. Owing to the power of word adjacency 

networks in extracting relevant semantical features of texts [9] , we intend to use such models to improve the character- 

ization of the studied bipartite networks. The word adjacency model could be used, for example, to better represent the 

relationship between feature and target words by using network similarity measurements [10,27,29] . We also intend to ex- 

tend the present model to consider topological and dynamical measurements of word adjacency networks as local features 

[9] . While in the current model we explored only the relationship between feature words and target words, we could also 

consider the inner-relationships between feature words or target words. The relationship between features words, e.g. can 

be considered using other networked models, such as co-occurrence networks [44] . 
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CHAPTER

3
WORD SENSE INDUCTION USING WORD

EMBEDDINGS AND COMMUNITY
DETECTION IN COMPLEX NETWORKS

Word sense induction using word embeddings and community detection in com-
plex networks. Edilson A Corrêa Jr, Diego R Amancio. Physica A: Statistical Mechanics and

its Applications 523, 180-190, 2019.

3.1 Context

The importance of context in the field of NLP is not a recent discovery, works like
Schütze (1992) have used context information in the task of disambiguation in the early days
of the field, however, once more, its importance has been reinforced in our work (previous
chapter). We demonstrated that a network representation that reinforces the importance of
context together with a learning algorithm is capable of obtaining good results in the task of word
sense disambiguation without using any other source of information. Further exploring context
information in disambiguation tasks, other works made use of pre-trained word embeddings
(see B.2) to represent context. Iacobacci, Pilehvar and Navigli (2016) combined pre-trained
word embeddings of the words in context of an ambiguous word and used that combination as
feature in the IMS framework, obtaining state of the art results. Kågebäck et al. (2015) not only
combined pre-trained word embeddings, but proposed a combination method that uses specific
weights for each word in context, this method combined with a traditional clustering method
(k-means) achieved state of the art results in unsupervised disambiguation, more specifically,
word sense induction.

At the same time that the use of word embeddings was being widespread in several NLP
tasks, related studies were also being carried out in the area of complex networks. Perozzi et al.
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(2014) showed that word embeddings could be represented in a network structure and that the
resulting networks could bring important information about the represented embeddings, such as
a meaningful community structure.

These works motivated us to represent the context of words in a network, which in turn
is modeled through the combination of word embeddings. In addition to the representation, we
also explore the use of community detection methods as an alternative to traditional clustering
methods.

3.2 Contributions
The main contribution of this paper was to explore the concept of context embeddings

modeled as complex networks and to use this structure to induce word senses via community
detection algorithms. Once more, our system was based only on features of the context and was
able to overcome competing algorithms and baselines. Being a method that does not use any
additional information and is completely unsupervised, it makes possible its insertion in a fully
automated system.

Going a step further, although the representation in this work has been used for the
task of inducing senses, the proposed framework is generic enough to absorb any graph-based
applications in scenarios where unsupervised methods are required to process natural languages.

3.3 Recent Developments
In addition to the use of word embeddings in the disambiguation process, both supervised

and unsupervised, some works began to seek representations of words that assume that a word
has more than one sense, thus creating multiple embeddings for a single word, describing
the multiple meanings that a word may have (NEELAKANTAN et al., 2014; IACOBACCI;
PILEHVAR; NAVIGLI, 2015; PELEVINA et al., 2016; SCARLINI; PASINI; NAVIGLI, 2020).
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a b s t r a c t

Word Sense Induction (WSI) is the ability to automatically induce word senses from
corpora. The WSI task was first proposed to overcome the limitations of manually
annotated corpus that are required in word sense disambiguation systems. Even though
several works have been proposed to induce word senses, existing systems are still
very limited in the sense that they make use of structured, domain-specific knowledge
sources. In this paper, we devise a method that leverages recent findings in word
embeddings research to generate context embeddings, which are embeddings containing
information about the semantical context of a word. In order to induce senses, we
modeled the set of ambiguous words as a complex network. In the generated network,
two instances (nodes) are connected if the respective context embeddings are similar.
Upon using well-established community detection methods to cluster the obtained
context embeddings, we found that the proposed method yields excellent performance
for the WSI task. Our method outperformed competing algorithms and baselines, in a
completely unsupervised manner and without the need of any additional structured
knowledge source.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, language has been studied via many different approaches and techniques. An interesting feature of
language is its ability to convey multiple meanings. While such a characteristic is oftentimes useful to enrich a discourse,
an ambiguous word may cause a deleterious effect in the automatic processing and classification of texts. The identification
of the sense of a word corresponds to the identification of its meaning in a given context. For instance, the word ‘‘bear’’
might be related to a wild mammal in a given context. In a different context, it may mean ‘‘to endure’’ a difficult situation.
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E-mail addresses: diego@icmc.usp.br, diego.raphael@gmail.com (D.R. Amancio).

https://doi.org/10.1016/j.physa.2019.02.032
0378-4371/© 2019 Elsevier B.V. All rights reserved.
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In this paper, we address the problem of identifying the meaning (senses) of words in the word sense disambiguation
task [1].

The Word Sense Induction (WSI) task aims at inducing word senses directly from corpora [1] (i.e. sets of textual
documents). Since it has been shown that the use of word senses (rather than word forms) can be used to improve the
performance of many natural language processing applications, this task has been continuously explored in the literature
[1–3]. In a typical WSI scenario, automatic WSI systems identify the activated sense of a word in a given context, using
a variety of features [1]. This task is akin to the word sense disambiguation (WSD) problem [4], as both induction and
disambiguation requires the effective identification of the sense being conveyed. While WSD systems require, in some
cases, large corpora of annotated senses, the inductive counterpart (also referred to as unsupervised WSD) does not rely
upon any manual annotation [5], avoiding thus the knowledge acquisition bottleneck problem [6].

Analogously to what occurs in supervised disambiguation, WSI techniques based on machine learning represent the
state-of-the art, outperforming linguistic-based/inspired methods. Several machine learning methods address the sense
identification problem by characterizing the occurrence of an ambiguous word and then grouping together elements that
are similar [1,2]. The characterization is usually done with the syntactic and semantic properties of the word, and other
properties of the context where it occurs. Once a set of attributes for each occurrence of the ambiguous word is defined,
a clustering/grouping method can be easily applied [1,2].

Textual contexts are usually represented by vector space models [7]. In such models, the context can be represented
by the frequency of the words occurring in a given text interval (defined by a window length). Such a representation
and its variants are used in several natural language processing (NLP) applications, owing to its simplicity and ability to
be used in conjunction with machine learning methods. The integration of machine learning methods and vector space
models is facilitated mostly because machine learning methods typically receive structured data as input. Despite of the
inherent simplicity of bag-of-word models, in recent years, it has been shown that they yield a naive data representation,
a characteristic that might hamper the performance of classification systems [8]. In order to overcome these problems, a
novel vector representation – the word embeddings model – has been used to represent texts [9]. The word embeddings
representation, also referred to as neural word embeddings, are vectors learnt from neural networks in particular language
tasks, such as language modeling. The use of vector representations has led to an improvement in performance of several
NLP applications, including machine translation, sentiment analysis and summarization [8,10–12]. In the current paper,
we leverage the robust representation provided by word embeddings to represent contexts of ambiguous words.

Even though distributional semantic models have already been used to infer senses [13], other potential relevant
features for the WSI problem have not been combined with the rich contextual representation provided by the word
embeddings. For example, it has been shown that the structural organization of the context in bag-of-words models also
provides useful information for this problem and related textual problems [14,15]. For this reason, in this paper, we
provide a framework to combine the word embeddings representation with a model that is able to grasp the structural
relationship among contexts. More specifically, here we address the WSI problem by explicitly representing texts as
a complex network [16], where words are linked if they are contextually similar (according to the word embeddings
representation). By doing so, we found out that the contextual representation is enhanced when the relationship among
context words is used to cluster contexts in traditional community detection methods [17,18]. The advantage of using such
methods relies on their robustness and efficiency in finding natural groups in highly clustered data [17]. Despite of making
use of limited deep linguistic information, our method outperformed several baselines and methods that participated in
the SemEval-2013 Task 13 [1].

The paper is organized as follows. Section 2 presents some basic concepts and related work. Section 3 presents the
details of the proposed WSI method. Section 4 presents the details of the experiments and results. Finally, in Section 6
we discuss some perspectives for further works.

2. Background and related work

The WSI task was originally proposed as an alternative to overcome limitations imposed by systems that rely on sense
inventories, which are manually created. The essential idea behind the WSI task is to group instances of words conveying
the same meanings [4]. In some studies, WSI methods are presented as unsupervised versions of the WSD task, particularly
as an effort to overcome the knowledge acquisition bottleneck problem [6]. Although some WSI methods have emerged
along with the first studies on WSD, a comprehensive evaluation of methods was only possible with the emergence of
shared tasks created specifically for the WSI task [1,2,19,20].

Several WSI methods use one of the three following methodologies: (i) word clustering; co-occurrence graphs; and
(iii) context clustering [4]. Word clustering methods try to take advantage of the semantical similarity between words,
a feature that is usually measured in terms of syntactical dependencies [21,22]. The approach based on co-occurrence
graphs constructs networks where nodes represent words and edges are the syntactical relationship between words
in the same context (sentence, paragraph or larger pieces of texts). Given the graph representation, word senses are
identified via clustering algorithms that use graphs as a source of information [23,24]. The framework proposed in this
manuscript uses the graph representation, however, links are established using a robust similarity measure based on word
embeddings [25]. Finally, context clustering methods model each occurrence of an ambiguous word as a context vector,
which can be clustered by traditional clustering methods such as Expectation Maximization and k-means [26]. Differently
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from graph approaches, the relationship between context words is not explicitly considered in the model. In [12], the
authors explore the idea of context clustering, but instead of using context vectors based on the traditional vector space
model (bag-of-words), they propose a method that generates embeddings for both ambiguous and context words. The
method – referred to as Instance-Context Embeddings (ICE) – leverages neural word embeddings and correlation statistics
to compute high quality word context embeddings [12]. After the embeddings are computed, they are used as input to
the k-means algorithm in order to obtain clusters of similar senses. A competitive performance was reported when the
method was evaluated in the SemEval-2013 Task 13 [20]. Despite its ability to cluster words conveying the same sense,
the performance of the ICE system might be very sensitive to the parameter k in the k-means method (equivalently, the
number of senses a word can convey), which makes it less reliable in many applications where the parameter is not
known a priori.

In the present work, we leverage word embeddings to construct complex networks [14,27–30]. Instead of creating
a specific model that generates context embeddings, we use pre-trained embeddings and combine them to generate
new embeddings. The use of pre-trained word embeddings is advantageous because these structures store, in a low-cost
manner, the semantical contextual information of words trained usually over millions of texts. Another distinguishing
characteristic of our method is that it explores three successful strategies commonly used in WSI. Firstly, we use semantic
information by modeling words via word embeddings. We then make use of complex networks to model the problem.
Finally, we use community detection algorithms to cluster instances conveying the same sense. The proposed strategy is
also advantageous because the number of senses do not need to be known a priori, since the network modularity can be
used to suggest the number of clusters providing the best partition quality [18]. The superiority of clustering in networked
data over traditional clustering methods has also been reported in the scenario of semantical classification of words.

3. Overview of the technique

The proposed method can be divided into three stages: (i) context modeling and context embeddings generation, (ii)
network modeling and (iii) sense induction. These steps are described respectively in Sections 3.1–3.3.

3.1. Context modeling and context embeddings generation

Several ways of representing the context have been widely stressed by the literature [4]. Some of them consist of
using vector space models, also known as bag-of-words, where features are the words occurring in the context. Other
alternative is the use of linguistic features, such as part-of-speech tagging and collocations [31]. Some methods even
propose to combine two or more of the aforementioned representations [32].

In recent years, a set of features to represent words – the word embeddings model – has become popular. Although
the representation of words as vectors has been widely adopted for many years [4], only recently, with the use of neural
networks, this type of representation really thrived. For this reason, from now on word embeddings refer only to the recent
word representations, such as word2Vec and GloVe [33,34]. As in other areas of NLP, word embeddings representations
have been used in disambiguation methods, yielding competitive results [35].

In this work, we decided to model context using word embeddings, mostly because acquiring and creating this
representation is a reasonable easy task, since they are obtained in a unsupervised way. In addition, the word embeddings
model has been widely reported as the state-of-the art word representation [36]. First introduced in [37], the neural
word embeddings is a distributional model in which words are represented as continuous vectors in an ideally semantic
space. In order to learn these representations, [37] proposed a feed-forward neural network for language modeling that
simultaneously learns a distributed representation for words and the probability function for word sequences (i.e., the
ability to predict the next word given a preceding sequence of words). Subsequently, in [38], the authors adapted this
concept into a deep neural architecture, which has been applied to several NLP tasks, such as part-of-speech tagging,
chunking, named entity recognition, and semantic role labeling [38,39].

A drawback associated to the architectures devised in [37,38] is their high computational cost, which makes them
prohibitive in certain scenarios. To overcome such a complexity, in [33,40], the authors proposed the word2vec represen-
tation. The word2vec architecture is similar to the one created in [37]. However, efficient algorithms were proposed so as
to allow a fast training of word embeddings. Rather than being trained in the task of language modeling, two novel tasks
were created to evaluate the model: the prediction of a word given its surrounding words (continuous bag-of-words) and
the prediction of the context given a word (skipgram).

The word embeddings (i.e. the vector representation) produced by word2vec have the ability to store syntactic and
semantic properties [40]. In addition, they have geometric properties that can be explored in different ways. An example
is the compositionality property, stating that larger blocks of information (such as sentences and paragraphs) can be
represented by the simple combination of the embeddings of their words [33,40]. In this work, we leverage this property
to create what we define as context embeddings. More specifically, we represent an ambiguous word by combining the
embeddings of all words in its context (neighboring words in a window of size w) using simple operations such as addition.

Fig. 1 shows a representation of the process of generating the embeddings of a given occurrence of an ambiguous
word. In the first step, we obtain each of the word vectors representing the surrounding words. Particularly, in the current
study, the embeddings were obtained from the study conducted in [33,40]. The method used to obtain the embeddings
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Fig. 1. Example illustrating how the context can be characterized from individual word embeddings. Given the word vectors representing the word
appearing in the context, we combine those vectors to obtain a single embedding representing the context around the ambiguous word.

is the word2vec method, in the skipgram variation [33]. The training phase was performed using Google News, a corpus
comprising about 100 billion words. As proposed in [33,40], the parameters for obtaining the methods were optimized
considering semantical similarity tasks. After obtained individual embeddings representing each word in the considered
context, such structures are combined into a single vector, which is intended to represent and capture the semantic
features of the context around the target word. Here we adopted two distinct types of combination: by (i) addition; and
(ii) averaging.

Let wi be an ambiguous word (i.e. an ordered set of symbols from some alphabet), where i represents that the word
is at the ith position in the considered text. Given the occurrence of wi in a context (ci) comprising ω words surrounding
wi, i.e. ci = [wi−ω/2, . . . , wi−1, wi, wi+1 . . . wi+ω/2]

⊺, the context embedding (ci) of wi obtained from addition is

ci =

+ω/2∑
j=−ω/2

j̸=0

wi+j, (1)

where wj is the embedding (i.e. the vector representation) of the jth word in ci. In other words, the context of a word is
given by the composition of the semantic features (word embeddings) associated to the neighboring words. This approach
is hereafter referred to as CNN-ADD method.

In the average strategy, a normalizing term is used. Each dimension of the embedding is divided by the number of
words in the context set. Let l = |ci| be size of the context. The average context embedding is defined as:

ci =

+ω/2∑
j=−ω/2

j̸=0

wi+j

l
. (2)

This approach is hereafter referred to as CNN-AVG method.
While differences between CNN-ADD and CN-AVG are not evident when computing distances with the cosine

similarity, differences arise when the Euclidean distance is used to construct the network. This happens because not
all similarity (or distance) measurements are scale invariant. Nonetheless, the results for the task considering variations
with and without the scale factor are similar, as shown in the results.

3.2. Modeling context embeddings as complex networks

Modeling real-valued vectors into complex networks is a task that can be accomplished in many ways. Here we
represent the similarity between contexts as complex networks, in a similar fashion as it has been done in previous
works modeling language networks [16]. While in most works two words are connect if they are similar according to
specific criteria, in the proposed model two context vectors are linked if the respective context embeddings are similar.
Usually, two strategies have been used to connect nodes. In the k-NN approach, each node is connected to the k nearest
(i.e. most similar) nodes. Differently, in the d-proximity method, a distance d is fixed and each node is connected to all
other nodes with a distance equal or less than d [16].
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Fig. 2. Example of network obtained from the proposed model using ω = 10 for the CN-ADD model. Each distinct color represents a different sense
induced for the word ‘‘add’’. The visualization was obtained with the networks3d software [41].

In this work, similar to the approach adopted in [16], we generate complex networks from context embeddings using
a k-NN approach. We have chosen this strategy because the network becomes connected with low values of k, thus
decreasing the complexity of the generated networks. In addition, it has been shown that the k-NN strategy is able to
optimize the modularity of the generated networks [16], an important aspect to our method. Both Euclidean and cosine
were used as distance measurements. In the Euclidean case, the inverse of the distances was used as edges weight. In
Fig. 2, we show the topology of a small network obtained from the proposed methodology for the word ‘‘add’’. Each node
represents an occurrence of ‘‘add’’, which may convey three different senses in the considered dataset. Once the context
vectors for each occurrence is obtained, they are linked by edges. To construct this visualization, we used ω = 10 in the
CNN-ADD model. Finally, senses are clustered via network community detection. Note that there is an evident separation
among the three distinct senses.

3.3. Sense induction

Once the context embedding network is obtained, the Louvain community detection method [42] is applied to identify
communities. Given the communities produced by the method, we define each community as a induced word sense. We
have chosen the Louvain method because it is known to maintain reasonable computational costs [41] while maximizing
the modularity [18]. We also have decided to use this method because it does not need any additional parameter definition
to optimize the modularity function. The results obtained for other community detection method are provided in the
Supplementary file. We decided not to show the results for these methods here because they are not significantly better
than the ones obtained with the Louvain method.

To illustrate the process of identifying (clustering) the sense of ambiguous words, we show in Fig. 3 an example of the
ambiguous word ‘‘bear’’, which may convey two senses in the example: (i) a verb with the meaning of enduring something;
and (ii) a noun representing the wild mammal. The first step is to consider the embeddings of the context words. In the
first sentence, the context word considered is ‘‘pain’’. In the second sentence, the considered context words are ‘‘out’’ and
‘‘woods’’. The representation of the context is then obtained by averaging the embeddings of the context words. Note that
the embedding representing the ambiguous words in the second sentence is the average of the embeddings representing
‘‘out’’ and ‘‘woods’’. Once each occurrence of the ambiguous word is represented via embeddings, a network of similar
embeddings is constructed and network community detection is used to discriminate senses.
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Fig. 3. Example of how senses are classified according to our methodology. In this example, the word ‘‘bear’’ can convey two different meanings.
Note that the classification of senses relies on the embeddings of context words.

4. Corpora description

In this section, we present the Semeval-2013 corpora used to evaluate our method. The pre-trained word embeddings
used here is also presented.

4.1. Semeval-2013 task 13 corpus

The SemEval-2013 data comprises 50 words. The number of instances of each word ranges between 22 and 100
instances. The dataset encompasses 4664 instances that were drawn from the Open American National Corpus. Each
instance is a short piece of text surrounding an ambiguous word that came from a variety of literary genres. The instances
were manually inspected to ensure that ambiguous words have at least one interpretation matching one of the WordNet
senses.

Following the SemEval-2013 Task 13 proposal [20], we applied a two-part evaluation setting. In the first evaluation,
the induced senses are converted to WordNet 3.1 senses via a mapping procedure and then these senses are used to
perform WSD. The output of WSD is evaluated according to the following three aspects:

1. Applicability: this aspect is used to compare the set of senses provided by the system and the gold standard. The
applicability criteria, in this context, is measured with the traditional Jaccard Index, which reaches its maximum
value when the set of obtained senses and the gold standard are identical.

2. Senses ranking: the set of applicable senses for an ambiguous word might consider a different degree of applicability
for distinct senses. For this reason, in addition to only considering which senses are applicable, it is also important
to probe if the rank of importance assigned for the senses follows the rank defined by the gold standard. The
agreement in applicability importance is measured using the positionally-weighted Kendall’s τ (K sim

δ ) [20].

3. Human agreement: this measurement considers the WSI task as if it were tackled in the information retrieval
scenario. In other words, the context of an ambiguous word is a query looking for all senses of the word. The
expected retrieved information is the set of all applicable senses, which should be scored and ranked according
to the applicability values of the word senses. This criterium was measured using the traditional Normalized
Discounted Cumulative Gain (WNDCG) metric, as suggested by the literature [20].

All above measurements generate values between 0 and 1, where 1 means total agreement with the gold standard. As
suggested in similar works, the final score is defined using the F1 measure between each of the objective’s measure and
the recall [20]. In this case, the recall measures the average score for each measure across all instances, even the ones
that were not labeled by the WSD system.

In the second evaluation, the induced senses are compared with a sense inventory through clustering comparisons. In
this case, the WSI task is considered as a clustering task and, because each word may be labeled with multiple senses,
fuzzy measures are considered. In [20], the authors propose the use of the following fuzzy measures:

1. Fuzzy B-Cubed: this measurement summarizes the performance per instance providing an estimate of how well the
WSI system would perform on a new corpus with a similar sense distribution.

2. Fuzzy Normalized Mutual Information: this index measures the quality of the produced clusters based on the gold
standard. Differently from the Fuzzy B-Cubed score, the Fuzzy Normalized Mutual Information is measured at the
cluster level, giving an estimate of how well the WSI system would perform independently of the sense distribution
of the corpus.
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4.2. Word embeddings

The pre-trained word embeddings1 used in this study was trained as a part of the Google News dataset, which is
composed of approximately 100 billion words. The model consists of three million distinct words and phrases, where
each embedding is made up of 300 dimensions. All embeddings were trained using the word2vec method [33,40].

5. Results and discussion

Here we analyze the performance of the proposed methods (Section 5.1). In Section 5.2, we study the influence of the
parameters on the performance of the methods based on complex network created from word embeddings.

5.1. Performance analysis

The results obtained by our model were compared with four baselines: (1) One sense, where all instances are labeled
with the same sense; (2) 1c1inst, where each instance is defined as a unique sense; (3) SemCor MFS, where each instance
is labeled with the most frequent sense of the lemma in the SemCor corpus; and (4) SemCor Ranked Senses, where each
instance is labeled with all possible senses for the instance lemma, and each sense is ranked based on its frequency in the
SemCor corpus. We also compared our method with the algorithms that participated in the SemEval-2013 shared task.
More specifically, in this task, nine systems were submitted by four different teams. The AI-KU team submitted three
WSI systems based on lexical substitution [43]. The University of Melbourne (Unimelb) team submitted two systems
based on a Hierarchical Dirichlet Process [44]. The University of Sussex (UoS) team submitted two systems relying on
dependency-parsed features [45]. Finally, the La Sapienza team submitted two systems based on the Personalized Page
Rank applied to the WordNet in order to measure the similarity between contexts [46].

In the proposed method, considering the approaches to generate context embeddings, the general parameter to be
defined is the context window size ω. We used the values ω = {1, 2, 3, 4, 5, 7, 10} and the full sentence length. In the
network modeling phase, context embeddings are transformed into networks. No parameters are required for defining
the fully-connected model that generates a fully connected embeddings network. In the k-NN model, however, the k value
must be specified. We used k = {1, 5, 15}.

Testing all possible combinations of parameters in our method resulted in 95 different systems. For simplicity’s sake,
only the systems with best performance in the evaluation metrics are discussed in this section. Additional performance
results are provided in the Supplementary Information. In the following tables the proposed models will be presented by
acronyms that refer to the context features used: CN-ADD (Addition) or CN-AVG (Average). CN-ADD/AVG denotes that
both systems displayed the same performance. When the ω column is empty, the full context (i.e. the full sentence) was
used. Otherwise, the value refers to the context window. The k column refers to the value of the parameter k in the k-NN
approach used to create the networks. When k is empty, the fully-connected model was used; otherwise, the value refers
to the connectivity of the k-NN network.

Three major evaluations were carried out. In the first evaluation, methods were compared using all instances available
in the shared task. The obtained results for this case are shown in Table 1. Considering the detection of which senses
are applicable (see Jacc. Ind. column), our best methods outperformed all participants of the shared task, being only
outperformed by the SemCor MFS method, a baseline known for its competitiveness [47]. Considering the criterium based
on senses rank (as measured by the positionally-weighted Kendall’s τ (K sim

δ )), our best methods also outperformed all
competing systems, including the baselines. In the quantification of senses applicability (WNDCG index), our best methods
are close to the participants; however, it is far from the best baseline (SemCor Ranked). Considering the cluster evaluation
metrics, our method did not overcome the best baselines, but the same occurred to all participants of the SemEval task.
Still, the proposed method outperformed various other methods in the clusters quality, when considering both Fuzzy
NMI and Fuzzy B-Cubed criteria. It is interesting to note that, in this case, the best results were obtained when the fully
(weighted) connected network was used to create the networks. In other words, the consideration of all links, though
more computationally expensive, seems to allow a better discrimination of senses in this scenario.

In the second evaluation, only instances labeled with just one sense were considered. The obtained results are shown
in Table 2. Considering F1 to evaluate the sense induction performance, our method outperformed all baselines, but it
could not outperform the best participants methods. In the cluster evaluation, conversely, our best method displayed
the best performance when compared to almost all other participants. Only two methods (One Sense and SemCor MFS)
outperformed our CN approach when considering the instance performance evaluation (as measured by the Fuzzy B-
Cubed index). Regarding the best k used to generate networks, we have found that, as in the previous case, in most of
the configuration of parameters, the best results were obtained when the fully connected network was used.

In the last assessment, only instances labeled with multiple senses were considered in the analysis. The obtained results
are shown in Table 3. Considering the criterium based on ranking senses and quantifying their applicability, our method
have had only results close to the participants and below the best baselines. However, our methods outperformed all
participants in the detection of which senses are applicable (see Jaccard Index) and in both cluster evaluation criteria.
Once again, most of the best results were obtained for a fully connected network in the k-NN connectivity method.

1 code.google.com/archive/p/word2vec/.
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Table 1
Performance of our best methods evaluated using all instances available in the shared task. The best results are highlighted in bold. Note that, for
several criteria, the CN-based method outperformed other traditional approaches.

WSD F1 Cluster comparison

System ω k Jaccard K sim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed

CN-ADD/AVG 10 – 0.273 0.659 0.314 0.052 0.452
CN-ADD/AVG 5 – 0.266 0.650 0.316 0.056 0.457
CN-ADD 2 – 0.252 0.588 0.293 0.061 0.373
CN-ADD/AVG 4 1 0.235 0.634 0.294 0.039 0.485
One sense – – 0.192 0.609 0.288 0.0 0.623
1c1inst – – 0.0 0.0 0.0 0.071 0.0
SemCor MFS – – 0.455 0.465 0.339 – –
SemCor Ranked – – 0.149 0.559 0.489 – –

Table 2
Performance of our best methods evaluated using instances that were labeled with just one sense. Best
results are marked in bold. Note that the proposed CN approach outperforms traditional approaches
when using both F1 and Fuzzy NMI criteria. The results for the SemCor Ranked are not shown because,
in the analysis considered only one possible sense, SemCor Ranked and SemCor MFS are equivalent.
System ω k F1 Fuzzy NMI Fuzzy B-Cubed

CN-ADD 4 – 0.592 0.048 0.426
CN-ADD 2 – 0.554 0.049 0.356
CN-ADD/AVG 4 1 0.569 0.031 0.453
One sense – – 0.569 0.0 0.570
1c1inst – – 0.0 0.018 0.0
SemCor MFS – – 0.477 0.0 0.570

Table 3
Performance of our best methods evaluated using instances that were labeled with multiple senses. Best
results are marked in bold.

WSD F1 Cluster comparison

System ω k Jaccard K sim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed

CN-ADD/AVG 4 5 0.473 0.564 0.258 0.018 0.126
CN-ADD/AVG 7 1 0.438 0.604 0.257 0.040 0.131
CN-ADD/AVG 10 – 0.464 0.562 0.263 0.021 0.137
CN-ADD/AVG 4 1 0.441 0.595 0.256 0.040 0.129

One sense – – 0.387 0.635 0.254 0.0 0.130
1c1inst – – 0.0 0.0 0.0 0.300 0.0
SemCor MFS – – 0.283 0.373 0.197 – –
SemCor Ranked – – 0.263 0.593 0.395 – –

Overall, the proposed CN-based approach displayed competitive results in the considered scenarios, either compared
to baselines or compared to the participating systems. The use of addition and averaging to generate context embeddings
turned out to be equivalent in many of the best obtained results, when considering the same parameters. It is also evident
from the results that the performance of the proposed method varies with the type of ambiguity being tackled (single
sense vs. multiple sense). Concerning the variation in creating the embedding networks, it is worth mentioning that the
fully-connected model displayed the best performance in most of the cases. However, in some cases the k-NN model also
displayed good results for particular values of k. Concerning the definition of the context window size, no clear pattern
could be observed in Tables 1–3. This means that the context size might depend on either the corpus some property
related to the specificities of the ambiguous word. A further analysis of how the method depends on the parameters is
provided in the next section.

5.2. Parameter dependence

In this section, we investigate the dependency of the results obtained by our method with the choice of parameters
used to create the network. In Fig. 4, we show the results obtained considered three criteria: F1, NMI and Fuzzy B-Cubed.
Subfigures (a)–(c) analyze the performance obtained for different values of k, while subfigure (d)–(f) show the performance
obtained when varying the context size ω. The dashed lines represent the performance obtained when the fully-connected
strategy is used ((a)–(c)) or the full context of the sentence is used ((d)–(f)). No dashed lines are shown in (d) and (e)
because the performance obtained with the full context is much lower than the performance values shown for different
values of ω.
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Fig. 4. Dependence of the performance results using different configuration of parameters. In all figures, we show the scenario allowing only one
sense for the ambiguous word. In (a), (b) and (c); we analyze the behavior of the performance as a function of k when the full context of the
sentence is considered. In (d), (e) and (f); we analyze the behavior of the performance for distinct values of ω when the fully-connected network
is considered. The dashed lines represent the performance obtained with the full context (a–c) and the fully-connected network (f).

The variability of the performance with k reveals that, in general, a good performance can be obtained with high values
of k. In (a), (b) and (c), excellent performances were obtained for k = 15. The fully-connected model also displayed
an excellent performance in all three cases, being the best choice for the NMI index. These results confirm that the
informativeness of the proposed model relies on both weak and strong ties, since optimized results are obtained mostly
when all weighted links are considered. We should note, however, that in particular cases the best performance is achieved
with a single neighbor connection (see Fig. 4(c)). Similar results can be observed for the other performance indexes, as
shown in the Supplementary Information.

While the performance tends to be increased with high values of k, the best performance when ω varies seems to arise
for the lowest values of context window. In (d) and (f), the optimum performance is obtained for ω = 1. In (e), the NMI
is optimized when ω = 2. The full context only displays a good performance for the Fuzzy B-cubed measurement. Similar
results were observed for the other measurements (see the Supplementary Information). Overall, the results showed that
a low value of context is enough to provide good performance for the proposed model, considering both WSD-F1 and
cluster comparison scenarios.

6. Conclusion

In this paper, we explored the concept of context embeddings modeled as complex networks to induce word senses via
community detection algorithms. We evaluated multiple settings of our model and compared with well-known baselines
and other systems that participated of the SemEval-2013 Task 13. We have shown that the proposed model presents a
significant performance in both single and multiple senses multiple scenarios, without the use of annotated corpora, in a
completely unsupervised manner. Moreover, we have shown that a good performance can be obtained when considering
only a small context window to generate the embeddings. In a similar fashion, we have also found that, in general, a fully-
connected and weighted network provides a better representation for the task. The absence of any annotation allows the
use of the proposed method in a range of graph-based applications in scenarios where unsupervised methods are required
to process natural languages.

As future works, we intend to explore the use of community detection algorithms that provide soft communities
instead of the hard communities provided by most of the current methods. We also intend to explore the use of neural
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language models to generate context embeddings in order to improve the quality of the context representation. Finally,
we intend to integrate our methods with other natural language processing tasks [48–54] that might benefit from
representing words as context embeddings.
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CHAPTER

4
SEMANTIC FLOW IN LANGUAGE

NETWORKS DISCRIMINATES TEXTS BY
GENRE AND PUBLICATION DATE

Semantic flow in language networks discriminates texts by genre and publication
date. Edilson A Corrêa Jr, Vanessa Q Marinho, Diego R Amancio. Physica A: Statistical

Mechanics and its Applications 557, 124895, 2020.

4.1 Context

When using the combination of complex networks and word embeddings, we were able
to successfully represent context and induce senses from it. With this result, we questioned
whether the context modeling we used could capture other types of information. Thus, using the
same context modeling to model sentences from literary pieces, we investigate what information
could be extracted and used in later tasks.

4.2 Contributions

The main contribution of this work was the adaptation of the framework used to represent
contexts and to induce senses that was presented in our previous work, for the representation
of texts. In addition to the adaptation, we also extended the framework so that it was able to
capture and characterize the semantic flow of the text. This characterization allowed us to later
discriminate texts by genre and also by date of publication.
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4.3 Recent Developments
During and after the writing of this work, the application of complex networks to capture

linguistic phenomena has expanded, one example is the study of the semantic and emotional
structure of suicide notes (TEIXEIRA et al., 2020). Another element that has become quite
popular is the enrichment of the network structure by using word embeddings (SANTOS et al.,
2017; QUISPE; TOHALINO; AMANCIO, 2020).
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a b s t r a c t

We propose a framework to characterize documents based on their semantic flow. The
proposed framework encompasses a network-based model that connected sentences
based on their semantic similarity. Semantic fields are detected using standard com-
munity detection methods. As the story unfolds, transitions between semantic fields
are represented in Markov networks, which in turn are characterized via network
motifs (subgraphs). Here we show that different book characteristics (such as genre
and publication date) are discriminated by the adopted semantic flow representation.
Remarkably, even without a systematic optimization of parameters, philosophy and
investigative books were discriminated with an accuracy rate of 92.5%. While the
objective of this study is not to create a text classification method, we believe that
semantic flow features could be used in traditional network-based models of texts that
capture only syntactical/stylistic information to improve the characterization of texts.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, several interesting findings have been reported by studies using network science to model
language [1–10]. Network-based models have been used e.g. to address the authorship recognition problem, where the
structure of the networks can provide valuable language-independent features. Other relevant applications relying on
network science include the word sense disambiguation task [11,12], the analysis of text veracity and complexity [13,14];
and scientometric studies [15].

Whilst most of the network-based language research have been carried out at the word level [16,17], only a limited
amount of studies have been performed based on mesoscopic structures (sentences or paragraphs) [18]. In addition, most
of the studies have analyzed language networks in a static way [19,20]. In other words, once they are obtained, the order
in which nodes (words, sentences, paragraphs) appear is disregarded. Here we probe the efficiency of sentence-based
language networks in particular classification problems. Most importantly, differently from previous works hinging on
network structure characterization [16,17], we investigate whether the semantic flow along the narrative is an important
feature for textual characterization in the considered classification tasks.

During the construction of a textual narrative, oftentimes authors follow a structured flow of ideas (introduction,
narrative unfolding and conclusion). Even in books displaying a non-linear, complex narrative unfolding, one expects
that an underlying linear semantic flow exists in authors’ mind. In other words, even though narrative events might not
organize themselves in a trivial linear form, the linearity imposed by written texts requires some type of linearization
(e.g. by performing a walk through the network). This idea is illustrated in Fig. 1.

∗ Corresponding author.
E-mail address: diego@icmc.usp.br (D.R. Amancio).

https://doi.org/10.1016/j.physa.2020.124895
0378-4371/© 2020 Elsevier B.V. All rights reserved.
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Fig. 1. High-level scheme illustrating the process of creating a text from a network of ideas. Each node represents an idea in the text. Usually, in
semantic networks, nodes can represent words, sentences, paragraphs or even a sequence of paragraphs [12,18]. Edges represent the relationship
(similarity) between ideas. In this paper we model each sentence as a distinct node in the network. A written text can be seen as a walk on this
network (see e.g. [21]). In the example, the following sequence of ideas is produced: ‘‘A, B, C, K, M, L, O’’.

The ideas conveyed by a text can be represented as a complex network, where nodes represent semantic blocks
(e.g. sentences, paragraphs), and edges are established according to semantic similarities. To map such a conceptual
network into a text, authors perform a linearization process, where nodes (concepts, ideas) are linearly chosen and
then transformed into a linear narrative (see Fig. 1). Such a projection of a multidimensional space of ideas into a
linear representation has been object of studies both on network theory and language research. A consequence of such
a linearization in texts is the presence of long-range correlations at several linguistic levels, a property that has been
extensively explored along the last years [22–25].

While complex semantic networks have been used in previous works to represent the relationship between ideas
and concepts, only a minor interest has been devoted to the analysis of how authors navigate the high-dimensional
semantic relationships to generate a linear stream of words, sentences or paragraphs. In [26], a mesoscopic representation
of networks was proposed. The authors used as a semantic, meaningful block a set of consecutive paragraphs. The semantic
blocks were connected according to a lexical similarity index. The model aimed at combining a networked representation
with an idea of semantic sequence obtained when reading a document. Even though some interesting patterns were found,
the concept of semantic fields were not clear, as no semantic community structure arises from mesoscopic networks. The
problem of linearization of a network structure was studied in [21]. A systematic analysis of the efficiency of several
random walks in different topologies was probed. The efficiency was probed in a twofold manner: (i) the efficiency in
transmitting the projected network; and (ii) the efficiency in recovering the original network. In [27], the authors explored
the efficiency of navigating an idea space, by varying network topologies and exploration strategies.

In the current paper, we take the view that authors write documents by applying a linearization process to the original
network of ideas, as shown in the procedure illustrated in Fig. 1. Upon analyzing the flow of ideas with the adopted
network-based framework, we show that features extracted from the networks can be employed to characterize and
classify texts. More specifically, we defined the network of ideas as a network of sentences linked by semantic similarity.
Semantic fields of similar sentences (nodes) were identified via network community detection. These fields (network
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communities) were then used to characterize the dynamics of authors’ choices in moving from field to field as the story
unfolds. Using a stochastic Markov model to represent the dynamics of choices of semantic fields performed by the author
along the text, we showed, as a proof of principle, that the adopted representation can retrieve textual features including
style (publication epoch) and complexity.

2. Research questions

The main objective is to answer the following research questions: is there any patterns of semantic flow in stories? Are
these patterns related to textual characteristics? To address these questions, we use sentence networks to represent the
semantic flow of ideas in texts. Such networks are summarized using a high-level representation based on the relationship
between communities extracted from the sentence networks. Using this representation, we show that motifs extracted
from such a high-level representation can be used to classify texts according to the style in which authors unfolds their
stories. We are not proposing a novel text classification method, but investigating whether semantic flow is a feature that
depends on text genre and publication date. We argue that the obtained results suggest that the proposed high-level view
of a text network could be further probed in other Natural Language Processing classification tasks.

3. Materials and methods

This study can be divided in two parts. In the first step, we identify the semantic clusters (fields) of the story. Differently
from the analysis of short texts, where semantic groups can be identified mostly by identifying paragraphs, in long texts
– the focus of this study – the identification of semantic clusters is more challenging because semantic topics might not
be organized in consecutive sentences/paragraphs owing to the linearization process illustrated in Fig. 1. In other words,
the process of obtaining semantic clusters can be understood as the reverse operation depicted in Fig. 1.

In order to identify semantic clusters from the text, we first create a network of sentences for each document, where
sentences are linked if the similarity between them is above a given threshold. The obtained network is then analyzed via
community detection methods, where groups of densely connected sentences are identified and considered as semantic
clusters. A qualitative analysis of the obtained communities suggested that most of the largest communities are in fact
related to a specific subtopic approached in the text. This idea relating semantic fields and network communities has also
been used to construct automatic summarization systems [28].

In the second step of this study, we investigate the semantic flow of ideas developed by authors while unfolding their
stories. We consider each community found as a semantic cluster, and as the story unfolds (one sentence after another),
we analyze the community labels of the adjacent sentences to create a Markov chain, where each state represents a
community and transitions are given by the text dynamics. Once the Markov chain representing the transitions of semantic
clusters is obtained, the text is characterized by finding and counting different chain motifs. Such a characterization is
then used to classify texts according to the semantic flow as revealed by sentences membership to different network
communities.

The main objective of this work is to provide a framework to analyze and verify whether the semantic flow in texts can
be used to characterize documents. Because the framework encompasses some steps, several alternatives could be probed
in each step. We decided not to conduct a systematic analysis of combination of methods (and parameters) owing to the
complexity of such analysis. A systematic study of the parameters and methods optimizing the proposed framework is
intended to be conducted as a future work.

In Fig. 2 we show a representation of the framework proposed to analyze stories. In the next section, we detail each
of steps used in this framework.

3.1. Word and sentence embeddings

Usually any vector representation of words is known as a word embedding. However, since the creation of neural
word embeddings [29], the term is mostly used to name those approaches based on neural network representations. The
word embedding model proposed in [29] aimed at classifying texts based on raw text input. Thus, the classification does
not require that textual features as input. Typically, word embeddings are dense vectors that are learned for a specific
vocabulary, with the objective of addressing some task.

A typical task addressed with word embeddings is the language modeling problem, which aims at learning a probability
function describing the sequence of words in a language. More recently, this same vector representation has been used
in more complex models, with the objective of addressing several Natural Language Processing tasks simultaneously,
including POS tagging, name entity recognition, semantic role labeling and others [30,31]. Despite its relative success in
the above mentioned tasks, the adopted embeddings could not be used in general purpose applications [30,31]. In order
to allow the use of embeddings in wider contexts, the Word2Vec representation was proposed [32,33].

The Word2Vec is a neural model proposed to learn a dense, high-quality representation that is able to capture
both syntactical and semantical language properties. As a consequence, vectors representing words conveying the same
meaning are close in the considered space. An interesting property of the Word2Vec technique is the compositionality,
which allows that large information blocks (e.g. sentences) can be represented by combining the representation of the
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Fig. 2. Sequence of steps employed to characterize documents using the proposed framework: (1) word embedding generation; (2) sentence
embeddings generation from word embeddings; (3) a sentence similarity network is generated based on the similarity of sentence embeddings; (4)
network communities are detected and a Markov chain is built based on the story unfolding (semantic flow); and (5) motifs are identified in the
Markov chain representing the semantic flow. These motifs are then used as features in a classification method.

vector representing the words in the sentence. Other interesting property is the ability to combine embeddings in a
intuitive fashion [32,34]. For example, using the Word2Vec technique, the following relationship can be obtained:

vector(‘‘King’’) − vector(‘‘Man’’) + vector(‘‘Woman’’) ≃ vector(‘‘Queen’’). (1)

The Word2Vec model is a robust, general-purpose neural representation that has been widely used in several Natural
Language Processing tasks, including machine translation [35], summarization [28,36], sentiment analysis [37] and others.
Given the success of the this model and the possibility of composition in different scenarios (sentiment analysis and sense
disambiguation) [37,38], in the current study we used a representation of sentences based on the Word2Vec. We have
chosen the Word2Vec as embedding method to illustrate the proposed framework for the aforementioned advantages.
However, we note that other embeddings techniques exist [39,40]. A comparison of techniques, however, revealed no
significant difference in performance.

More specifically, here the embedding s of a sentence s is represented by the average embedding of the words in s:

s =
1

ω(s)

ω∑
i=0

wi. (2)

where wi is the embedding of the ith word in s and ω(s) is the total number of words in s.
The word embedding technique used here was obtained with the Word2Vec method (skip-gram). The training phase

used the Google News corpus [32,33]. According to [32,33], the parameters of the method are optimized in the context
of semantical similarity task. The combination of embeddings to represent a sentence in Eq. (2) could also be performed
by summing individual embeddings. However, it has been shown that there is no significant difference when sentence
embeddings are used to construct a network of sentence similarity [41]. We note that some words are removed from
this analysis. This includes stopwords (e.g. articles and prepositions) and words with no embeddings in the Google News
corpus. Thus, whenever a sentence contains only words with no available embeddings, it is removed from the analysis.

3.2. Modeling sentence embeddings into complex networks

This step corresponds to the reverse process illustrated in Fig. 1. In other words, a network representing the relationship
between ideas is created from the text. The construction of networks from vector structures has been explored in recent
works. In [42], the authors present such a transformation as a framework in complex systems analysis. The transformation
of vector structures into networks has also been used in the context of text analysis [41,43]. The creation of a complex
network from Word2Vec was proposed using a twofold approach. The d-proximity technique links all nodes whose
distance from the reference node is lower than d. The second technique is the k-NN approach, which links all k nearest
nodes to the reference node. In the same line, [41] created a network based on word embeddings. However, the authors
aimed at creating a network that takes into account the sense of words to solve ambiguities. Each occurrence of an
ambiguous words was modeled as a node in the network. Nodes were represented by a vector combining the embeddings
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of the words in the context. Two occurrences of an ambiguous were then connected whenever the respective embeddings
were similar. In other words, two ambiguous words were linked if they appeared in similar contexts.

In the current study, sentences were connected according to the k-NN technique, as suggested by other works [43].
Each sentence is represented as a vector according to Eq. (2). The value of k in the main experiments were chosen to
allow that each network is composed of a single connected component. In particular, the lowest k allowing the creation
of a connected network was used for each book.

3.3. Community detection

The next step in the proposed framework concerns the detection of semantic fields, i.e. the communities in the network
of sentences. A recurrent phenomena in several complex networks is the existence of communities, i.e. groups of strongly
connected nodes. Similarly to other network measurements, the detection of communities gives important information
regarding the organization of networks. Communities are present in different networks including in biological, social and
information networks [44].

A well-known measure to quantify the quality of partitions in complex networks is the modularity [45,46]. This
measure compares the obtained partition with a null model, i.e. a network with similar properties but with no community
structure. Several algorithms have been proposed to address the community detection problem via optimization of the
modularity. In the main experiments we used the Louvain method [47] to identify communities. The main advantage of
this method is its computational efficiency, which has allowed its use in several contexts [43,48]. Another advantage
associated to this algorithm is that no additional parameters are required to optimize the modularity. In additional
experiments, we also probed the effect of other community detection methods on the performance of the framework
in the considered classification tasks. In addition to the Louvain method, we also used the following three methods: (i)
fastgreedy, (ii) eigenvector, and (iii) walktrap. An introduction to these methods can be found in [44,49].

In the proposed network representation, communities represent groups of interconnected sentences about a given
topic. Because the k-NN construction allows nodes to be connected to other close nodes and, considering the Word2Vec
an efficient semantic representation, the linking strategy allows the creation of dense clusters of semantically related
sentences. This idea of semantic clusters has also been explored via community detection in similar works [41,43,50].
For example, using networks built at the word level, the groups detected in [43] were found to represent large cities,
professions and others topics. In [41], the obtained groups were found to represent words conveying the same sense.

In order to illustrate the process of obtaining semantic communities, we performed an analysis of the obtained
communities in the book ‘‘Alice’s Adventures in Wonderland’’, by Lewis Carroll (see Fig. 3). We summarize below the
main topics approaches in some of the communities obtained by the Louvain algorithm:

1. Community A: this community includes sentences mentioning animals (e.g. ‘‘pet’’, ‘‘cat’’, ‘‘mouse’’ and ‘‘dog’’). This
community also includes dialogs between Alice and animals. ‘‘Cat’’ is the main character in this community.

2. Community B: this community includes words sentiment words expressed via speeches. Some of the words in this
community are ‘‘passionate’’, ‘‘melancholy’’, ‘‘angrily’’, ‘‘shouted’’ and ‘‘screamed’’.

3. Community C: this community includes several adverbs related to Alice’s actions.
4. Community D: this community includes words related to sentiments such as anger, tranquility and peacefulness.
5. Community E: this community is most related to the word ‘‘soup’’.
6. Community F : this community is related to geographical locations, including countries and cities (Australia, Rome

and New Zealand). Interestingly, this community also included the word ‘‘Cricket’’, a prominent sport in Australia.
7. Community G: this community included mostly sentences referring to ‘‘Dormouse’’, one of the main characters in

the plot.

While most of the obtained communities are informative, a few communities were found to be more dispersed,
approaching more than one topic. This might occur given the limitations of the embeddings model, since some words
might not be available in the considered model. Despite these limitations, we show that the flow of information (from
sentence to sentence) in the obtained semantic communities can be used to characterize texts.

3.4. Markov chains

In order to capture how authors move from community to community (semantic field) as their story unfolds, we create
a representation of community transitions. The idea of studying language via Markov process is not recent. One of the first
uses of this model is the study of letters sequences [51]. Since then, Markov chains are used as a statistical tool in several
natural language processing problems, including language modeling, machine translation and speech recognition [52].

Here we represented the transitions between semantic fields (network communities) as a first order Markov chain. In
this representation, each community becomes a state. Note that this approach of representing communities as a single
unit has also been used in other contexts [15]. The probabilities of transition are considered according to the frequency
of transitions observed in adjacent sentences. As we shall show, using this model, it is possible to detect patterns of how
authors change topics in their stories. As a proof of principle, these patterns are used to characterize texts in distinct
classification tasks.
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Fig. 3. Example of sentence network obtained from the book ‘‘Alice’s Adventures in Wonderland’’, by Lewis Carroll. Colors represent community
labels obtained with the Louvain method. The visualization was obtained with the method described in [15].

The process of creating a Markov chain from a network divided into communities is shown in Fig. 4. In the previous
phase, communities are identified to represent distinct semantic field of the story (see left graph in Fig. 4). Because each
sentence belongs to just one community, the text can be regarded as discrete time series, where each element corresponds
to the membership (community label) of each sentence. Using this sequence of community labels, it is possible to create
a Markov chain representing all transitions between communities (see graph on the top left of Fig. 4). Transitions weights
are proportional to the frequency in which they occur and normalized so as to represent a probability. This representation
is akin to a Markov chain used in other works addressing the language modeling problem [53]. The main difference here
is that we are not interested in the use of particular words, but in semantic fields [54]. Once the Markov chain is obtained,
we characterize this structure using network motifs. Note that the obtained Markov chain is equivalent to a weighted and
directed complex network. Thus, traditional network tools can be used to identify network motifs [55,56].

3.5. Motifs

Network motifs are used to analyze a wide range of complex systems, including in biological, social and information
networks [57]. Motifs can be defined as small subgraphs (see Fig. 5) occurring in real systems in a significant way. To
quantify the significance, in general, one assumes an equivalent random network as null model. In text analysis, motifs
have been used to analyze word adjacency networks in applications focusing on the syntax and style of texts [58]. More
recently, an approach based on labeled motifs showed that authors tend to use words in combination with particular
motifs [59]. Examples of considered motifs are represented in Fig. 5. Mathematically, the frequency of the motif with
nodes ‘‘i’’, ‘‘j’’ and ‘‘k’’ in Fig. 5 can be computed as:

fm =

∑
i

∑
j

∑
k

akiakjaji, (3)

where aij is an element of the adjacency matrix (i.e. aij = 1 if there is an edge from i to j and aij = 0, otherwise). A similar
equation can be used to compute the frequency of all possible motifs comprising three nodes. In very large networks,
efficient strategies for motif discovery have been proposed [60,61].

While the structure of the Markov Chains could be analyzed using traditional network measurements, we decided not
to use these measurements owing to the limited size of these structures. As suggested in related works, a characterization
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Fig. 4. Example of extraction of motifs from the network. As the text unfolds according to a given order of sentences (s1, s2, s3, s4 . . . sX . . .) a
sequence of communities is generated (Community A, Community B, Community C, Community B). This sequence is used to create a Markov chain.
Finally, the Markov chain is characterized by counting different patterns (motifs) of community transitions.

Fig. 5. Example of representative motifs comprising three nodes. The frequency of occurrence of the motif in the left upper corner can be computed
using Eq. (3).

based on network metrics in small networks might not be informative [20,62,63]. As we shall show in the results, this is a
simple, yet useful approach to classify small Markov Chains. In the results section, we only show the results obtained for
three-node connected motifs. In preliminary experiments, no significant gain was observed when considering network
motifs comprising four nodes.

The following approaches were considered to extract motifs from Markov networks. We discriminated strategies
according to the use of weights to count motifs (unweighted vs weighted). If a thresholding is applied before extracting
motifs, the strategy is referred to as ‘‘simplified’’ (see strategies 2–4 below).

1. Unweighted strategy: no thresholding is applied. All weights are disregarded. Every time a motif is detected, its
frequency is increased by one.
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Table 1
Accuracy rate and p-value obtained for the classification subtasks. Only the best results
are shown among all considered classifiers. We considered the unweighted version of the
Markov networks to extract motifs.
Subtask Acc. p-value

Children × investigative 50.8% 5.56 × 10−1

Children × philosophy 71.6% 1.30 × 10−3

Investigative × philosophy 70.8% 3.30 × 10−3

Children × investigative × philosophy 43.8% 3.50 × 10−2

2. Simplified unweighted strategy: this approach is the same as the unweighted strategy. However, before counting
motifs, the weakest edges are removed according to a given threshold.

3. Simplified weighted strategy: before counting motifs, the weakest edges are removed according to a given threshold.
Then motifs are identified disregarding edges weights (e.g. using Eq. (3)). Edge weights are then considered to
update the frequency associated to that motif. Every time a given motif is found, the respective ‘‘frequency’’ of that
motif is increased by the sum of the weights of its edges.

4. Simplified weighted strategy with local thresholding: this technique is similar to the simplified weighted strategy.
However, here a different approach is used to threshold the networks. We consider here a local threshold, which is
established for each edge. A local thresholding strategy is important for some network applications because a simple
global threshold value might overlook important network structures, such as network communities [64–66].
The local thresholding strategy proposed in [66] evaluates the relevance of an edge by computing a p-value
determined in terms of a null model. The null model computes the likelihood of a node v having an edge with
a specific weight by taking into account the other edges connected to v. In practice, the relevance αij of an edge eij
connecting nodes i and j is computed as:

αij = 1 − (ki − 1)
∫ πij

0
(1 − x)ki−2dx, (4)

πij = wij

(∑
ik∈ E

wik

)−1

, (5)

where wij is the weight of eij and ki =
∑

j aij. All edges with αij < A are removed from the network, where A is
the adopted local threshold.

3.6. Classification

The extracted motifs from the Markov Chains are used as input (features) to the classification systems. The following
methods were used in the experiments: Decision Tree (CART), kNN, SVM (linear) and Naive Bayes [67]. The evaluation
was performed using a 10-fold cross-validation approach. As suggested in related works, all classifiers were trained with
their default configuration of parameters [68].

4. Results and discussion

Here we probed whether the dynamics of changes in semantic groups in books can be used to characterize stories.
The proposed methodology was applied in two distinct classification tasks. In the first task, we aimed at distinguishing
three different thematic classes: (i) children books; (ii) investigative; and (iii) philosophy books. The second aimed at
discriminating books according to their publication dates. All books (and their respective classes) were obtained from the
Gutenberg repository. The list of books and respective authors are listed in the Supplementary Information. The corpora
size is compatible with other works in the literature [18,63,69,70].

In the first experiment, we evaluated if patterns of semantic changes are able to distinguish between children,
philosophy or investigative books. We considered problems with two or three classes. The obtained results are shown
in Table 1. In this case, weights were disregarded after the construction of the Markov networks (unweighted version).
Considering subtasks encompassing only two classes, only the distinction between children and investigative texts were
not significant, with a low accuracy rate. The distinction philosophy books and the other two classes, however, yielded
a much better discrimination. These results were found to be significant. When all three classes are discriminated, a low
accuracy rate was found (43.8%), even though this still represents a significant result. The low accuracy rate found using
the proposed approach is a consequence of a regular behavior found in the Markov chains. In other words, in most of the
books, all communities were found to be connected to each other, hampering thus the discriminability of different types
of books.
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Table 2
Accuracy rate and p-value obtained for the classification subtasks. Only the best results are shown among
all considered classifiers and thresholds. We considered the simplified unweighted version of the Markov
networks to extract motifs.
Subtask Acc. Threshold p-value

Children × investigative 65.8% 0.060 1.64 × 10−2

Children × philosophy 81.0% 0.190 1.19 × 10−5

Investigative × philosophy 91.6% 0.075 2.23 × 10−10

Children × investigative × philosophy 62.2% 0.075 2.00 × 10−7

Table 3
Accuracy rate and p-value obtained for the classification subtasks. Only the best results are shown among
all considered classifiers and thresholds. We considered the simplified weighted version of the Markov
networks to extract motifs.
Subtask Acc. Threshold p-value

Children × investigative 70.8% 0.075 3.30 × 10−3

Children × philosophy 89.0% 0.145 1.62 × 10−8

Investigative × philosophy 92.5% 0.120 2.23 × 10−10

Children × investigative × philosophy 62.7% 0.075 2.00 × 10−7

Table 4
Accuracy rate obtained for the classification subtasks, considering distinct community detection methods:
Louvain, walktrap, eigenvector and fastgreedy [44]. Only the best results are shown among all considered
classifiers, thresholds and community detection methods. We considered the simplified weighted version
of the Markov networks to extract motifs. The following parameters were used in the classifiers: SVM
(linear kernel and penalty parameter of the error term = 1.0), CART (criterion to measure the quality of
a split = gini, minimum number of samples required to split an internal node = 2, minimum number
of samples required to be at a leaf node = 1), Naive Bayes (GaussianNB) and kNN (k = 1, Euclidean
distance).
Subtask Acc. Threshold Method Classifier

children × investigative 76.7% 0.045 Eigenvector SVM
children × philosophy 90.8% 0.07 Walktrap SVM
investigative × philosophy 97.5% 0.185 FastGreedy CART
children × investigative × philosophy 70.0% 0.17 FastGreedy kNN

Given the low accuracy rates obtained with the unweighted strategy, we analyzed if the simplified unweighted version
was able to provide a better characterization. In this case, the weakest edges were removed before the extraction of
motifs. We considered the thresholding ranging between 0.01 and 0.20. The main idea here is to remove less important
links between communities. The obtained results are shown in Table 2. All obtained results turned out to be significant. All
previous accuracy rates were improved. Interestingly, a high discrimination rate (91.6%) was obtained when discriminating
investigative and philosophy books. These results suggest that the threshold is an important pre-processing step here,
given that it can boost the performance of the classification by a large margin.

When combining thresholding and edges weights in the simplified weighted version, the results obtained in Table 3
were further improved. The highest gain in performance was observed when discriminating children from philosophy
books: the performance improved from 81.0% to 89.0%. Only a minor improvement was observed when all three classes
were discriminated. Overall, this results suggest that both thresholding and the use of edges weights might be useful to
characterize Markov networks. Most importantly, all three methods showed that, in fact, there is a correlation between
the thematic approached and the way in which authors approaches semantic groups in texts.

While the main focus of this manuscript is not to provide the best combination to optimize the performance of
a classification task, it is still interesting to probe how the classification based on the concept of semantic flow can
benefit from different partitions (semantic clusters) extracted from different community detection methods. The best
results obtained by comparing 4 distinct methods are summarized in Table 4. Interestingly, note that an impressive 97.5%
accuracy rate was observed when discriminating investigative and philosophy books. In this case, a feature relevance
analysis revealed that two particular motifs are responsible for most of the discriminative power (see analysis in
Fig. 6). Additional results considering the strategy based on unweighted motifs strategy are shown in Table S1 of the
Supplementary Information.

The discriminative power of the obtained networks was also investigated using a local strategy to threshold the
network. In other words, the relevance of an edge in the simplified weighted strategy with local thresholding depends on
the weights of its neighboring edges (see Section 3.5) [66]. We show in Table 5 the results obtained with this technique
when adopting as local threshold the value A = 0.95. We found that, for this particular technique, the results are not
improved, even when other values for A are considered (additional results are shown in the Supplementary Information).
For this reason, we did not consider the simplified weighted strategy with local thresholding in the next results.
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Fig. 6. The above motifs are responsible for most of the discriminative power considering the task ‘‘investigative x philosophy’’ in the configuration
of methods and parameters used in Table 4. In order to compute relevance, we used the Gini index [71] (Γ ) in the CART classification method.
The obtained relevance values for the motifs on the left and right sides of the figure are, respectively, Γ = 0.809 and Γ = 0.147. While the
relevance of features (i.e. motifs) may differ in other classification tasks, the above motifs were found to be among the most discriminative ones in
the classification tasks studied in this paper (result not shown).

Table 5
Accuracy rate and p-value obtained for the classification subtasks. We considered the simplified weighted
strategy with local thresholding to extract motifs. All edges with αij < A were removed (see Eq. (4)). The
obtained performance is no better than the one obtained with the global thresholding approach..
Subtask Acc. p-value

Children × investigative 63.3% 3.25 × 10−2

Children × philosophy 66.3% 1.60 × 10−2

Investigative × philosophy 71.3% 3.30 × 10−3

Children × investigative × philosophy 48.0% 5.94 × 10−3

Table 6
Performance of the proposed method using the simplified unweighted motif characterization of Markov
networks. For each subtask, only the best threshold obtained for the best classifier is shown.
Subtask Acc. Threshold p-value

1700–1799 × 1800–1899 70.0% 0.195 1.34 × 10−3

1700–1799 × 1900 or later 75.0% 0.060 6.73 × 10−5

1800–1899 × 1900 or later 70.0% 0.160 1.34 × 10−3

1700–1850 × 1851 or later 66.0% 0.010 6.74 × 10−3

1700–1799 × 1800–1899 × 1900 or later 55.0% 0.025 1.22 × 10−5

In order to investigate the dependency of the classification results on the word embeddings model, we also considered
embeddings obtained from the BERT model [39]. While there is only a minor improvement in particular cases, the results
obtained with the Word2vec model (see Table 4) provides most of the best results. The results obtained with the BERT
model are summarized in Tables S2 and S3 of the Supplementary Information.

We also investigated if the patterns of semantic flow varies with the publication date. For this reason, we selected
a dataset with books in different periods. The following classes were considered, according to the range of publication
dates:

1. Books published between 1700 and 1799.
2. Books published between 1800 and 1899.
3. Books published after 1900.
4. Books published between 1700 and 1850.
5. Books published after 1851.

The results obtained in the classification for different subtasks is shown in Table 6. We only show here the results obtained
for the simplified unweighted characterization because it yielded the best results. Overall, all classification results are
significant, confirming thus that there are statistically significant differences of semantic flow patterns for books published
in different epochs. However, the results obtained here are worse than the ones obtained in the dataset with books about
different themes (see Table 3). Therefore, patterns of semantic flow seems to be less affected by the year of publication,
while being more sensitive to the subject/topic approached by the text.

5. Conclusion

In this paper we investigate whether patterns of semantic flow arises for different classes of texts. To represent
the relationship between ideas in texts, we used a sentence network representation, where sentences (nodes) are
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connected based on their semantic similarity. Semantic clusters were identified via community detection and high-level
representation of each book was created based on the transition between communities as the story unfolds. Finally,
motifs were extracted to characterize the patterns of transition between semantic groups (communities). When applied
in two distinct tasks, interesting results were found. In the task aiming at classifying books according to the approached
themes, we found an high accuracy rate (92.5%) when discriminating investigative and philosophy books. A significant
performance in the classification was also obtained when discriminating books published in distinct epochs. However,
the discriminability for this task was not as high as the ones obtained when discriminating investigative, philosophy and
children books.

Given the complexity of the components in the proposed framework, we decided not to optimize each step of the
process. Even without a rigorous optimization process, we were able to identify semantic flow patterns that were able to
discriminate distinct classes of texts. As future works, we intend to perform a systematic analysis on how to optimize the
process. For example, during the construction of the networks, different approaches could be used to create embeddings
and link similar sentences [72]. In a similar fashion, different strategies to identify communities could also be used in the
analysis. Finally, we could also investigate additional approaches to characterize the obtained Markov networks.

The proposed framework identified clusters of ideas being conveyed in texts. We basically measured, for each story,
how authors move from one semantic cluster to another while the story is being told. This gives the sense of ‘‘semantic
flow’’ measured in terms of network motifs. Our results suggest, therefore, that different classes of stories have distinct
semantic flow patterns. For example, in the classification of children and philosophical books, one should expect that
the dynamics of changing topics in children books should be much less complex than the semantic flow observed in
books about philosophy. Such a difference could be related to the cognitive efforts required to the reader to understand
different patterns of semantic flow. Concerning the classification based on publication dates, the high discriminability
could be related to the fact that each century is characterized by a different style. These are hypothesis that should be
evaluated in future works by using potential available datasets.

Our results suggest that semantic flow motifs could play an important role in other NLP tasks. For example, in the
authorship recognition task, patterns extracted from a semantic flow analysis could be combined with other techniques
to improve the characterization of authors [73,74]. In fact, the use of motifs in the microscopic level has already provided
a good characterization of authors [59]. A similar idea could also be applied to the analysis of other stylometric tasks.
In addition, we suggest that the semantics of the texts could be combined with the concept of semantic flow by using
‘‘labeled motifs’’, as proposed in our previous work [59]. Since semantic networks have been studied in cognitive sciences,
we believe that the adopted network representation could be adapted and used – as an auxiliary tool – to study complex
brain and cognitive processes that could assist the diagnosis of cognitive disorders via text analysis [73,75].
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CHAPTER

5
CONCLUSION

The work of this thesis occurred at the same time that the success of deep learning
was spreading through several tasks in different fields. In the area of NLP, disregarding the
period when neural networks were used as just another alternative for machine learning meth-
ods, the heavy use of deep learning started with methods to generate word embeddings such
as Word2Vec (MIKOLOV et al., 2013a; MIKOLOV et al., 2013b), GloVe (PENNINGTON;
SOCHER; MANNING, 2014), Wang2Vec (LING et al., 2015) and fastText (JOULIN et al.,
2017). Soon after, some methods capable of generating embeddings for larger structures such
as sentences, paragraphs and even complete texts emerged, some of these techniques used the
compositionality of word vectors (combination of embeddings, technique used in two of the
works of this thesis), others through the use of sequential models, like the seq2seq model for
machine translation (SUTSKEVER; VINYALS; LE, 2014) or for general purpose as in the
case of Skip-thought (KIROS et al., 2015) and fastText (JOULIN et al., 2016). Along with the
widespread use of sequential models, attention mechanisms (BAHDANAU; CHO; BENGIO,
2015) were created, which allowed sequential models to give ’attention’ according to the specific
needs of the problem, thus generating higher quality embeddings. Its success led to the creation of
the Transformer (VASWANI et al., 2017), a network architecture which has as its basic principle
the application of attention throughout its entire architecture. With this new architecture, a new
generation of methods capable of generating general purpose embeddings (for word, sentence
and larger structures) and also to perform end-to-end tasks like BERT (DEVLIN et al., 2018)
and GPT2 (RADFORD et al., 2019). Pre-trained language models that now are widely adopted
in wide range of NLP tasks and applications.

At the beginning of our work, we started attacking context modeling only with the use of
machine learning models that were based on complex networks, but given the trends and research
directions in NLP, we realized that the combination of techniques from deep learning it would
not only bring a significant gain to our work but would also explore an intersection between
areas yet to be consolidated. Thus, of the various models and works on deep learning available,
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we use both pre-trained word embeddings and more complex models such as BERT. Always
following the hypothesis that a good modeling and understanding of the context would lead to
better results in NLP tasks. A hypothesis that proved to be fruitful in our work, the use of word
embeddings allowed a good modeling of the local context and the use of a complex network
structure allowed the representation of different levels of context and also allowed the application
of community detection methods, operating as an alternative to traditional unsupervised methods
(clustering), whether for its use in disambiguation or for the classification of texts.

In addition to the specific "further works" of each article, we consider that some more
general studies should be considered in the future, like the devise of new network formation
approaches. The way in which a network is set up directly influences how measures and methods
behave in a complex network, which leads us to question whether it would be possible to create
processes capable of considering important measures such as modularity, which could benefit
the application of community detection methods in the structure; similarity learning, even in
the context of network modeling, the use of established distances in the literature is common,
but learning similarity that adheres to the problem in question could significantly improve
representation in networks; context expansion, the inclusion of random or even task related
information can help the network structure to highlight context information, as demonstrated
in the Word2Vec method, the inclusion of random information, if done correctly, can lead to
greater power of discrimination of machine learning models, thus, it is possible to consider that
in a network of ambiguous words (represented by context) having an addition of random content
(contexts unrelated to the ambiguous word) could better represent community structures, thus
bringing a improvement of the community detection method; new tasks, in general, our work
not only presents some techniques, but a framework that can be explored, expanded and modified
to measure, thus allowing its application in several unsupervised NLP tasks that use the context
implicitly or explicitly.
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APPENDIX

A
COMPLEX NETWORKS

The use of complex networks has become very popular in recent years, mainly due
to its general purpose representation, which can be adapted and applied to different real sys-
tems (COSTA et al., 2007; NEWMAN, 2010). With its origin in graph theory, a consolidated field
in mathematics and computer science, the field of complex networks has as its main objective
the study of networks with irregular, complex and dynamic structures, a common pattern in
complex systems (BOCCALETTI et al., 2006). Some of these systems come from areas such as
Sociology, Communication, Biology, Physics and Economics (COSTA et al., 2011), which has
made this area of research highly multidisciplinary and also popular with an increasing number
of researchers, including in the areas of Linguistics and Natural Language Processing.

The basic structure for the study of complex networks is called graph or network.
Formally, a graph or network can be represented as an ordered pair G = {V,E}, formed by a
set V = {v1,v2, . . . ,vn} of vertices (or nodes, or points) and a set E = {e1,e2, . . . ,em} of edges
(or connections). If it is necessary to represent the strength of the connections, the network can
be defined as G = {V,E,W}, where a new set W = {w1,w2, . . . ,wm} representing the weights
of the edges is incorporated. Usually, graphs are represented as adjacency lists or adjacency
matrices (COSTA et al., 2007), in which adjacency lists are generally more space efficient.
Nevertheless, for the sake of clarity in defining the network measurements in the next section, we
will use the adjacency matrix as a standard representation. We can define the adjacency matrix A,
where each element ai j has a value of 0 or 1, where 1 represents an edge between the vertices vi

and v j and 0 the absence of an edge. In weighted networks, the values assigned to the elements
of A are not confined to 0 and 1 (they are usually continuous) and if the network is directed, ai j

and a ji will not be equivalent, but in non-directed networks the adjacency matrix is symmetric.

After modeling a system into a complex network, it is necessary to characterize its
structure, a process normally performed using topological measurements or by analyzing the
overall structure of the network. In the case of measurements, created to capture specific phe-
nomena of complex systems, they usually provide a complementary view to traditional statistical



76 APPENDIX A. Complex networks

techniques, while the overall analysis of the network structure provides a macroscopic and even
in some cases a mesoscopic view of the system in hand. In the following sections, we explore
some commonly used network measurements (Section A.1) and also present the concept of
communities in networks (Section A.2), a macro structure found in many complex systems.
Finally, in Section A.3 we present how the theory of complex networks can be applied to the
area of PLN, in addition to some important works related to the objectives of this work.

A.1 Characterization of complex networks
In recent years, many measurements have been developed, driven mainly by the need to

characterize and describe complex networks and the complex systems they represent, respec-
tively (COSTA et al., 2007). Some of the more traditional ones are the measurements of degree,
clustering coefficient and geodesic path. The degree of a vertex vi is defined as the number of
edges connected to this vertex, considering the adjacency matrix A, the degree can be computed
by

ki =
n

∑
j=1

ai j. (A.1)

In directed networks, the degree can be redefined to take into account the edges that come out of
a vertex (kout

i ) and the edges that reach a vertex (kin
i ). Another variation of degree is strength, a

generalization for weighted networks. The calculation of strength is the same as the equation
A.1, but considering the matrix A as a weighted adjacency matrix. With the measure of degree

defined, it is possible to define a very simple global measure of connectivity called average

degree:

〈k〉= 1
|V |

n

∑
i=1

ki. (A.2)

The measure clustering coefficient is also related to network connectivity, as it represents
the tendency of the network’s vertices to group together. Also called transitivity, the measure
clustering coefficient is related to the presence of triangles in the network and can be defined as:

C =
3N4
N3

, (A.3)

where N4 is the number of triangles in the network and N3 is the number of connected triples. An
alternative to clustering coefficient (C) is local clustering coefficient (cc), defined as the ratio of
the actual number of edges between the neighbors of the vertex i (vi) and the maximum possible
number of edges between the neighbors of vertex i (given by ki(ki−1)/2, ki is the number of
neighbors of vertex i), that is,

cci =
2ei

ki(ki−1)
. (A.4)

This measure can also be transformed into a global measure (〈cc〉), by averaging the values of cc

for all vertices in the network:

〈cc〉= 1
|V |

n

∑
i=1

cci. (A.5)
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The difference between C and 〈cc〉 is that C assigns the same weight to each of the network’s
triangles, while 〈cc〉 assigns the same weight to each vertex of the network independently of its
connectivity, resulting in different values. Still, the values of both measures and local clustering

coefficient (cc) are between 0 and 1, where 1 represents maximum neighborhood connectivity.

The geodesic path or shortest path is the path between the vi and v j vertices with the
shortest length, where the length of a path is defined by the number of edges along that path.
Considering li j as the geodesic distance between the vertices vi and v j, we can represent all the
geodesics of a graph in a matrix D, where each element di j = li j. From this matrix we can define
the diameter δ as the maximum value contained in D and the average minimum path l of the
network as

l =
1

|V |(|V |−1)) ∑
i6= j

di j. (A.6)

This definition diverges if any of the vertices of the network is disconnected, one solution is to
consider only the pairs of vertices belonging to the largest component of the network. Another
alternative is to consider a related measure, such as global efficiency, defined by

E =
1

|V |(|V |−1)) ∑
i 6= j

1
di j

. (A.7)

This measurement quantifies the efficiency of the network in sending information between
vertices, assuming that the efficiency of sending information between two vertices is proportional
to the inverse of the distance of its geodesic (COSTA et al., 2007).

In general, network measurements are created in order to capture some specific phenom-
ena in the structure of a network, which explains the growing number of measurements found
in the literature. As in our work the focus is to explore the ability to learn in a network, instead
of using it in the characterization process we restrict ourselves to presenting a very limited and
popular group of measurements. A comprehensive review of network measures can be found
at Costa et al. (2007).

A.2 Community structure in networks

A very common phenomenon in nature and consequently in many complex systems is
the formation of groups with similar elements. In complex networks this phenomenon is defined
as a community structure, i.e., there is a tendency for the vertices to divide into groups, in which
the vertices of a group are highly connected to each other and sparsely connected to the other
vertices of the network (GIRVAN; NEWMAN, 2002; NEWMAN, 2006a). One measurement
that attempts to quantify this concept is the modularity (NEWMAN, 2006b), although the
definition of communities is widely accepted, it is open to interpretation (how to define highly

connected?). Thus, the modularity attributed to a set of partitions (of a network) is defined as
the density of edges within communities compared to edges between communities. Their values
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are comprised between -1 and 1, where larger values indicate that the defined communities are
properly communities and not structures that could be found in a random network.

The modularity, in addition to being used to measure the quality of communities found
by different methods, is also used by several methods of community detection as an objective
function for maximization. Defined as modularity maximization methods, these methods propose
alternative ways to attack the maximization problem, since addressing the problem directly
would have a high computational cost (NEWMAN, 2004) and prohibitive in scenarios where
networks are extremely large (BLONDEL et al., 2008).

An example of a modularity maximization algorithm is the Louvain method (BLONDEL
et al., 2008), a greedy algorithm that can be divided into two stages: (1) initially, the method
considers each vertex to be a community and then merges the communities that would maximize
the modularity; (2) the communities obtained are then transformed into a network, where each
vertex represents a community and the edges of the new vertices correspond to the existing
links between communities in the previous structure (if the network is weighted, the sum of
the weights is performed). When this new structure is built, step 1 is performed again. The two
steps are then repeated in each iteration of the algorithm until the communities stabilize and
there is no more change in modularity. In addition to dividing the vertices of a network into
communities, the method also provides a hierarchical structure that comes from all the iterations
of the algorithm, this feature allows the analysis of the community structure with a different
granularity.

The Louvain method (BLONDEL et al., 2008) was the main method used in this work,
mainly because it presents some interesting properties such as low computational cost (FORTU-
NATO, 2010; SILVA et al., 2016), a performance better than several other similar algorithms
(BLONDEL et al., 2008; FORTUNATO, 2010) and the possibility to use weighted networks. A
more extensive review of community detection methods can be found at Fortunato (2010).

A.3 Complex networks in NLP

The use of graph theory in the area of Natural Language Processing is not a recent
event, with some works dating back to the 1980s (MIHALCEA; RADEV, 2011). Nonetheless,
the study of language from the perspective of a complex system and its modeling in complex
networks is more recent (I CANCHO; SOLÉ, 2001). In this section we will present three popular
network models used in NLP, together with some works that made their use. The three models
are: semantic networks, co-occurrence networks and similarity networks.

Semantic networks are structures that represent concepts at their vertices and semantic
relations at their edges. An example of a semantic network is WordNet (MILLER, 1995), a
computational lexicon based on psycholinguistic principles. In WordNet, each vertex represents a
set of meanings (synsets) and the edges represent semantic relations, such as synonyms, antonyms
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and hyponyms. Its use in NLP is quite popular (JURAFSKY; MARTIN, 2000), mainly in the
area of word sense disambiguation, where the distance between concepts is commonly used
as a semantic distance between words, the WordNet is also used by various knowledge-based
disambiguation methods (AGIRRE; EDMONDS, 2007).

Figure 1 – Co-occurrence network of the phrase “To be, or not to be”, extracted from the book Hamlet by
William Shakespeare.

to

be
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Source: Elaborated by the author.

Co-occurrence networks model the text in a structure where the vertices represent words
and the edges represent co-occurrence in a window of size N, in its simplest version only adjacent
words are considered, this network is sometimes said adjacency network of words. In Figure 1
we have the example of an adjacency network. This category of network has been used in
several applications including part-of-speech tagging (BIEMANN, 2006), word sense disam-
biguation (WIDDOWS; DOROW, 2002), keyword extraction (MIHALCEA; TARAU, 2004)
among others. Specifically using a characterization process based on complex networks measure-
ments as described in Section A.1, we have works in word sense disambiguation (AMANCIO;
JR; COSTA, 2012), text categorization (ARRUDA; COSTA; AMANCIO, 2016), authorship
recognition (AMANCIO et al., 2011) among others (AMANCIO, 2013).

Finally, we have the similarity networks, structures that represent entities at their vertices
(e.g., words, sentences or paragraphs) and similarity or proximity relations at their edges. A
variation of this very popular structure is the k-NN network, where each element to be modeled
is connected with the k other elements closest to it. In Figure 2 we have part of a k-NN network.
This category is not as popular as the others, despite its popularity in the area of complex networks
(COMIN et al., 2020). This model was used in applications such as summarization (PARDO
et al., 2006; ANTIQUEIRA et al., 2009), representation of word embeddings (PEROZZI et al.,
2014), evaluation of translations (AMANCIO et al., 2008) and word sense disambiguation (NIU;
JI; TAN, 2005).
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Figure 2 – Part of a k-NN network generated with word embeddings that were trained using Word2Vec.
The parameter k was set to 3.
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APPENDIX

B
DEEP LEARNING

Machine learning is a subfield of Artificial Intelligence (AI) that aims to build algorithms
that have the ability to improve their performance on a task through experience, which is usually
obtained through examples (MITCHELL, 1997). While in traditional AI approaches, known
as knowledge-based AI, knowledge about the world (or problem) is encoded through manually
created rules (which can later be used to make inferences and make decisions), machine learning
methods on the other hand, are designed to have the ability to extract knowledge and patterns
directly from the data, with very limited manual interference. This characteristic is one of the
main factors of the success of methods of this nature in several areas, such as image recogni-
tion (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), automatic translation (SUTSKEVER;
VINYALS; LE, 2014), speech recognition (HINTON et al., 2012) and even in medical areas as
in the classification of skin cancer (ESTEVA et al., 2017).

Although machine learning methods perform the learning process automatically, they
have a great dependence on the representation of the data, that is, in most cases the algorithms
receive as input a set of features and not raw data. The features or characteristics, are sets of
information that ideally have the ability to describe the data and are designed according to the
nature of the problem. This process, which became known as feature engineering, was present
in most of the works that involved the use of machine learning and is still a very popular phase
in the design of intelligent systems today. A challenge with this approach is the difficulty of
designing the features and deciding which ones to use (LECUN; BENGIO; HINTON, 2015).

One way of tackling this problem in some tasks would be the use of representation
learning instead of manually designed features. This alternative is ideal in cases where a large
human effort or the effort of a entire area of research is required (GOODFELLOW; BENGIO;
COURVILLE, 2016). A example of representation learning algorithm is the autoencoder. Better
defined as a class of algorithms than a single algorithm, the autoencoders are trained in the task of
reconstruction, where the model attempts to copy or map the input to the output, in this process
the input information is encoded (encoder function) into an intermediate representation and later



82 APPENDIX B. Deep learning

decoded (decoder function) to the original space (SCHMIDHUBER, 2015; GOODFELLOW;
BENGIO; COURVILLE, 2016)(more details in Section B.1). The autoencoders are trained to
preserve as much relevant information as possible in the intermediate representation, which can
later be used by any learning algorithm.

Representation learning is one of the fundamental ideas of deep learning, which uses
deep neural networks that abstract this concept in each layer of the network, making it possible
to learn complex concepts from raw data. In the next section we present the general concepts of
artificial neural networks, their learning units, how learning is encoded in its internal structure,
how its training is carried out, its architectures and how the area of artificial neural networks has
become the popular area of Deep Learning. In Section B.2, we describe the main advances made
by the application of deep learning to NLP tasks. We also present some recent works that try to
combine complex networks and deep learning methods (Section B.3). Finally, in Section B.4 we
give some remarks on the use of non-neural machine learning algorithms.

B.1 Artificial neural networks

The initial idea of artificial neural networks arose in the pioneering work of McCul-
loch and Pitts (1943), which presented an artificial neuron model based on the knowledge of
biological neurons at the time. The proposed model had no learning capabilities, so, in order
to perform some task, was necessary to manually configure the neuron. A few years later, the
first work appeared that presented a form of learning (HEBB, 1949), which triggered a series
of works proposing learning methods for neural networks, both supervised (ROSENBLATT,
1958; ROSENBLATT, 1962; WIDROW; HOFF, 1962; NARENDRA; THATHACHAR, 1974)
and unsupervised (GROSSBERG, 1970; KOHONEN, 1972). Although the mentioned works
are accepted as the starting point of the neural networks area as a machine learning method,
some works emphasize that the first neural networks were basically variations of the linear
regression (SCHMIDHUBER, 2015), which go back to Gauss’s works in 19th century.

Figure 3 – Artificial neuron model.
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Source: Adapted from Haykin (2001).
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The artificial neuron, the main element of a neural network, has little relation to the
biological neuron despite its name. Some of these relationships are, their ability to receive input
and output (after certain processing) and the ability to be combined into more complex structures.
In Figure 3 we have an example of an artificial neuron. In this structure, the entry is represented
by the vector xxx = [x1,x2, . . . ,xm], the summation Σ = ∑

m
i=1 wixi+b and f is an activation function

that generates the network output from the summation (Equation B.1). The weights of the neuron
are represented by www = [w1,w2, . . . ,wm] and they are responsible for the learning itself. The
model also includes a bias b, which allows the function values to be shifted if necessary.

ŷ = f (
m

∑
i=1

wixi +b) (B.1)

Several activation functions are found in the literature, some of the most popular are:
sigmoid function (Equation B.2), hyperbolic tangent function (Equation B.3) and rectified linear
unit (ReLU) (Equation B.4). Activation functions have a fundamental role in the generalization
power of neural networks and in the learning process, as will be discussed below.

ŷ = f (x) =
1

1+ exp(−x)
(B.2)

ŷ = f (x) = tanh(x) (B.3)

ŷ = f (x) = max(0,x) (B.4)

The presented neuron model has the same structure as the perceptron (ROSENBLATT,
1958; ROSENBLATT, 1962), the first neuron model with the capacity to learn. This model is
limited to learning linear functions, but when combined in more complex structures, the so called
neural network architectures, the limitation does not hold.

In a neural network architecture, neurons are connected to each other, where the output
of one neuron can be connected to the input of another neuron or to the input of itself. In Figure 4
we have a example of the architecture of feedforward neural networks, also known as multilayer

perceptrons (MLPs). In this structure, we have an input layer, one or more intermediate layers
(hidden layers) and an output layer. The term feedforward refers to the fact that the flow of
information flows from the network input directly to the output, with no loops in the structure.

In a neural network, learning is carried out in the same way as it is done in a simple
neuron, by adjusting the connection weights, also known as synapses. Thus, considering a
supervised learning task where it is necessary to estimate a f function that maps an entry xxx to a
category or value y, a feedforward neural network models a function f ∗(xxx;θ) and learn the value
of the parameters θ (weights and bias) in order to better approximate f .

One of the most popular supervised learning algorithms for adjusting weights in a neural
network is the Backpropagation, popularized by the work of Rumelhart, Hinton and Williams
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Figure 4 – Feedforward neural network architecture
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Source: Adapted from Haykin (2001).

(1986) but having its origins in several previous works dating from the 1960s (SCHMIDHUBER,
2015). In a process similar to what is done in other supervised learning algorithms, the neural
network receives an input xxx and produces an output ŷ, from the output ŷ it is possible to
calculate the error in relation to the expected value (gold) y, the backpropagation then uses
this error to estimate the adjustments of the network weights, the adjustments that is performed
by a optimization method, such as stochastic gradient descent (GOODFELLOW; BENGIO;
COURVILLE, 2016), AdaGrad (DUCHI; HAZAN; SINGER, 2011), AdaDelta (ZEILER, 2012)
and Adam (KINGMA; BA, 2014).

Another very popular architecture is the recurrent neural network. This architecture
extends the feedforward model by including recurrences or loops in the architecture, as can be
seen in Figure 5. Created to process a sequence of values, recurring networks receive a sequence
of vectors xxx(1), . . . ,xxx(τ) with τ vectors, also called steps or time steps.

Recurrent networks abstract the idea of parameter sharing and unlike what occurs in
feedforward networks where a sequence would need to be modeled by different parameters (an
entire sequence would feed the network), in recurring networks each element of the sequence is
modeled by the same set of parameters allowing a greater generalization of the problem, because
instead of trying to generalize a window of information (all vectors of the sequence), the recurring
model has the ability to generalize the information distributed in a sequence, which allows this
structure to model sequences that have different sizes and also to model the dependency between
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Figure 5 – Recurrent neural network architecture. Connections dotted in red represent local recurrences
and connections dotted in blue represent global recurrences.

Input
layer

Hidden
layer

Output
layer

x1

x2

x3
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states, because the information persists through the network recurrence.

In Figure 6 we have a state graph that represents a generalization of the functioning of a
recurring network. The input sequence is represented by (xxx(t−1),xxx(t),xxx(t+1)) , h represents the
current state of the network (including weights, bias and other parameters) and ŷ represents the
output of the network. It is possible to notice that in a given step t, the network produces a result
ŷ(t) from the entry xxx(t) and the previous state h(t−1), indicating how information persistence is
performed in this architecture. Another interesting feature of recurrent neural networks is their
versatility in modeling different problems, for example, we can model a network that generates
an output at each step (Figure 6) but we can also model a network which generates a result only
at the end of an entire sequence (Figure 7), in which the first approach could be used in the
translation process and the second to predict the next value in a sequence of numbers.

The training of this architecture is performed through a variant of Backpropagation,
which has modifications to consider the time steps of a recurring network, this variant is known
as Backpropagation through time (WERBOS, 1990). Thus, the combination of a recurring
architecture capable of modeling sequences with the training algorithm Backpropagation through
time made this type of network very popular and consequently applied in several scenarios. But
despite this, the architecture presented problems in tasks that required long-term dependencies
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Figure 6 – State graph of a recurrent neural network where an output is produced at each time step.

h(...) h(t−1) h(t) h(t+1) h(...)

xxx(t−1) xxx(t) xxx(t+1)

ŷ(t−1) ŷ(t) ŷ(t+1)

Source: Adapted from Goodfellow, Bengio and Courville (2016).

Figure 7 – State graph of a recurrent neural network where an output is produced after reading an entire
sequence.

h(...) h(t−1) h(t) h(...) h(τ)

xxx(t−1) xxx(t) xxx(...) xxx(τ)

ŷ(t)

Source: Adapted from Goodfellow, Bengio and Courville (2016).

(i.e., when one element of the sequence has dependence on another distant element), this problem
became known as vanishing gradient (HOCHREITER, 1991; BENGIO; SIMARD; FRASCONI,
1994) because the long-term dependencies of the sequence were not learned by the network and
the network was unable to generalize. The vanishing gradient problem also applies to very deep
feedforward neural networks.

In order to solve the problem of vanishing gradient, Hochreiter and Schmidhuber (1997)
proposed a new type of recurrent neural networks, the Long Short Term Memory networks

(LSTMs). Developed to avoid the problem of not learning long-term dependencies, these net-
works introduce the concept of memory cells, which are used instead of neurons. The memory
cells have so-called gates that control the flow of information, allowing the network to learn
which information must be forgotten and which information must be kept, thus learning long
and short term dependencies. Similarly to the structures on Figures 6 and 7, in LSTMs, the
information flows between states (e.g., from h(t) to h(t+1)) are now controlled by mechanisms in
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the network itself.

In the literature it is possible to find several works applying LSTMs to the most diverse
problems, including machine translation (SUTSKEVER; VINYALS; LE, 2014), handwriting
recognition (GRAVES et al., 2009), speech synthesis (FAN et al., 2014). In addition to modifica-
tions in its structure to deal with specific problems (BAYER et al., 2009) or simplifications of its
structure to decrease the computational cost (CHO et al., 2014a).

There are currently a huge number of different network architectures, some architectures
are created to deal with a specific type of information, as is the case with convolutional neural
networks that were created to deal with images that come in a grid or matrix (GOODFELLOW;
BENGIO; COURVILLE, 2016). But in general, several models can be generated from simple
modifications or adaptations of the presented architectures.

A very important element to be defined when creating an architecture is its depth, a
term that refers to the number of hidden layers in the model. The universal approximation
theorem (CYBENKO, 1989; HORNIK; STINCHCOMBE; WHITE, 1989) dictates that a feed-
forward neural network with a single hidden layer (depth 1) has the capacity to approximate
any continuous function that maps a space of finite dimension to another, considering that the
network has the necessary amount of neurons in the hidden layer (GOODFELLOW; BENGIO;
COURVILLE, 2016). From the theorem it is possible to state that regardless of the function that
needs to be learned, we only need a feedforward network large enough to represent the problem,
however, there is no guarantee that the learning algorithm will be able to learn this function (the
set of weights that represents that function). It is in this context that deeper models are adopted,
as they can reduce the number of neurons needed to represent a function and at the same time
allow a better generalization of the problem (better learning). It is also possible to interpret deeper
models as being a composition of simple concepts, where the various layers of the network make
the composition of simpler functions to perform a more complex function (LECUN; BENGIO;
HINTON, 2015; GOODFELLOW; BENGIO; COURVILLE, 2016).

A problem that arose at the very beginning of the adoption of deep neural networks was
its training, although theoretically plausible, training networks with a large number of hidden
layers did not lead to good results, until the work of Hinton, Osindero and Teh (2006). The
problem in training deep neural networks is not related to a limitation of the representation,
but to the limitations of the training algorithm, which gets stuck in local minima, making the
network unable to adequately generalize the problem. To solve this problem Hinton, Osindero
and Teh (2006) proposes the use of an unsupervised pre-training technique, which is applied to
each of the hidden layers of a Deep Belief Network (type of neural network that stacks several
other generative neural networks) before taking supervised training. This technique was later
applied to several other types of deep neural networks (BENGIO et al., 2007; RANZATO et al.,
2007) and in all cases the generalization of the model improved.

The unsupervised pre-training technique used by Hinton, Osindero and Teh (2006) goes
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back to the ideas of representation learning and distributed representation (HINTON, 1986),
in which each layer of a neural network learns a new representation of the data and this new
representation is fed to the next layer, which does the same procedure until the classification
(or any other task) is performed on the last layer of the network. In this way, we can think that
each layer is responsible for learning a set of properties, which make the classification at the
end of the network possible. Hinton, Osindero and Teh (2006) took advantage of this idea by
pre-training each layer of the network (starting from the input layer towards the output layer)
in the reconstruction task, that is, each layer of the network received the output of the previous
layer and had as a task the reconstruction of that same information. This pre-training allows
the network to adjust their weights to better describe the data and consequently facilitating the
supervised training that is carried out later. Considering that a network that better represents
the data generates better results, it is possible to infer that the network learning process will be
better if its training process starts with a set of weights favorable to the task, making it easier for
the optimization algorithm to find a global minimum or a better local minima. It is also worth
mentioning that since this pre-training uses only the input data, we can consider it unsupervised.

Still following the idea of representation learning, we have autoencoders, neural networks
that are also trained in the task of reconstruction. Its architectures are divided into two parts, the
first (encoder), which receives an entry xxx and produces an intermediate representation xxx∗. While
the second part of the architecture (decoder) receives xxx∗ and produces xxx′ output, which should be
an approximation of the original value xxx. The training is carried out in order to reduce the error
between xxx′ and xxx and can be carried out with common network training algorithms. The idea of
autoencoder is not exactly learning how to perfectly reconstruct the data, but rather learning how
to represent the data in a new way, prioritizing only essential information and properties of the
input. Thus, after training, the encoder can be applied to the data set and the new representation
can be used by any machine learning algorithm and not just neural networks. It is important to
note that both the encoder and the decoder can simply be a layer of neurons up to complete
neural networks with different architectures. The concept of autoencoders is not new (YANN,
1987), but became popular only after 2006, with the advent of Deep Learning.

The term Deep Learning, coined after the work of Hinton, Osindero and Teh (2006),
has as its main objective to emphasize the research and use of artificial neural networks with
several layers (deep representations). But it is also possible to note that the area is not only
about building deep networks, but architecting an entire structure that will be able to learn and
generalize highly complex tasks, which explains its success in several areas, including in the
area of Natural Language Processing.

A more extensive review of deep learning, including history, methods and major advances
can be found at LeCun, Bengio and Hinton (2015), Schmidhuber (2015), Goodfellow, Bengio
and Courville (2016).
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B.2 Deep Learning in NLP

Artificial neural networks have been used in Natural Language Processing tasks for a
long time, but until the work of Bengio et al. (2003), its use was restricted, being considered
only as another alternative of machine learning algorithm, as is case of part-of-speech tagging
using the Average Perceptron (COLLINS, 2002).

Bengio et al. (2003) proposed a feedforward neural network architecture for the language
modeling task. As the objective of this task is to build a model capable of estimating the joint
probability of a sequence of words, the network was trained in the task of predicting the next
word given a sequence of previous words, that is, approximating a function P(wt |wt−1, . . . ,wt− j)

considering a sequence of j previous words.

Figure 8 – Neural architecture for language modeling proposed by Bengio et al. (2003).

Input Projection
Hidden
layer

Output

wt−1

w(t−1)

wt− j

P(wt |context)

Source: Adapted from Bengio et al. (2003).

In Figure 8 we have the neural architecture proposed by Bengio et al. (2003). Each word
in the sequence fed to the network is represented by a vector 1-of -V (one-hot encoding) where V

is the size of the vocabulary. The input is then projected in a dense vector space of dimension D,
the projection is basically the connection of each word of the input in each of the D neurons of
the projection layer. The weights of these connections are defined as random at the beginning of
the training and adjusted during the training like any other weight in the network. Thus, at the
end of the training each word in the vocabulary will have a vector representation of dimension D,
this representation is called word embedding.
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Subsequently, the first layer of the architecture proposed by Bengio et al. (2003), called
embedding layer, was incorporated by Collobert and Weston (2008) in a deeper structure and
applied to several NLP tasks, including part-of-speech tagging, named-entity recognition among
others. In all tasks, state-of-the-art results were obtained (COLLOBERT; WESTON, 2008;
COLLOBERT et al., 2011), in addition to the produced word embeddings having syntactic-
semantic relationships (e.g., city name vectors were close in this space).

Although the concept of word embeddings was established in the works already described,
it was the Word2Vec model, proposed by Mikolov et al. (2013a), Mikolov et al. (2013b) that really
made the concept popular. The Word2Vec model was created with the sole purpose of generating
quality word embeddings that could be used in subsequent tasks. Word2Vec is a simplified and
optimized version of the model proposed by Bengio et al. (2003) and instead of being trained in
the language modeling task, two tasks were proposed. The first being the prediction of a word
given its context of neighboring words (CBOW) and the second the prediction of the context
given a word (Skip-gram). In Figure 9 we have the graphical representation of the model.

Figure 9 – Simplified neural architecture proposed by Mikolov et al. (2013a), Mikolov et al. (2013b). (a)
prediction of a word given its context of neighboring words (CBOW). (b) context prediction
given a word (Skip-gram).

Input Projection Output

w(t−2)

w(t−1)

w(t+1)

w(t+2)

SUM
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(a) CBOW

Input Projection Output

w(t−2)

w(t−1)

w(t+1)

w(t+2)

w(t)

(b) Skip-gram

Source: Adapted from Mikolov et al. (2013a).

The word embeddings produced by the Word2Vec presented the same syntactic-semantic
relations found by Collobert and Weston (2008), but with a much higher quality, as indicated by
the performance of the embeddings in the task of syntactic-semantic similarity (MIKOLOV et al.,
2013a). An interesting property of the vectors was the possibility of performing algebraic opera-
tions between vectors, such as the operation vector(′king′)− vector(′man′)+ vector(′woman′)

which resulted in a vector very close to vector(′queen′) (where vector(x) is the word embeddings
of the word x). This property also allowed larger blocks of information such as sentences and para-
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graphs to be represented by simply combining the individual vectors of each word (MIKOLOV et

al., 2013b). This feature made the word embeddings from Word2Vec to be used in various tasks
including sentiment analysis (SOCHER et al., 2013), word sense disambiguation (IACOBACCI;
PILEHVAR; NAVIGLI, 2016) among other tasks (BARONI; DINU; KRUSZEWSKI, 2014).

Following the concept of word embeddings and representation learning, some models
emerged with the ability to combine or encode the information of individual vectors into a single
vector, that is, to represent sentences or even entire texts from the word embeddings of the input.
This type of model not only allowed the generation of a compact representation, but also allowed
the neural networks to operate on larger blocks of information and to directly perform tasks
such as automatic translation (CHO et al., 2014b; SUTSKEVER; VINYALS; LE, 2014) and
summarization (RUSH; CHOPRA; WESTON, 2015).

Currently, the research of Deep Learning in NLP tries to propose both improvements
and new neural models capable of performing specific tasks, as well as to propose ways of
representation and acquisition of unsupervised knowledge (such as Word2Vec). An example
of improvement are the attention mechanisms, which in a recurrent neural network means that
for a step t only the most important elements prior to that step are considered, for example,
during the translation of a sentence, in the production of each word in the target language
only the most important words in the original sentence will be considered instead of the whole
sentence (BAHDANAU; CHO; BENGIO, 2015). An example of new forms of representation
are autoencoders for representing sentences or larger blocks of information (LI; LUONG;
JURAFSKY, 2015; DAI; LE, 2015; GAN et al., 2016).

B.3 Complex networks and deep learning

Following the success of embeddings in the NLP, the concept of network embed-

dings (GROVER; LESKOVEC, 2016; DING; LIN; ISHWAR, 2016) has become quite popu-
lar (ADHIKARI et al., 2017). Ideally, methods that propose to generate network embeddings

try to learn a set of attributes capable of representing the vertices or edges of the network in a
similar way to what is done in word embeddings.

Node2Vec (GROVER; LESKOVEC, 2016) is an example of a method for generating
network embeddings. This method uses the same model proposed by Mikolov et al. (2013a),
Mikolov et al. (2013b) with some modifications, the words are replaced by vertices and the
context (neighboring words) is defined by a random walk in the network, the rest of the algorithm
remains the same. Grover and Leskovec (2016) demonstrated that the embeddings learned when
used in vertex classification and links prediction obtains state-of-the-art results, that is, they can
really characterize the vertices of the network. Other proposed methods follow the same idea,
but with some changes in the neural structure used or in the definition of context.
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B.4 Shallow classifiers
The no free lunch theorem for machine learning (WOLPERT, 1996) states that no

machine learning algorithm is universally better than any other. This is no different for neural
networks, for this reason other machine learning algorithms may be used during the work, but
the choice will always be made based on the premises of the problem in question. When needed,
non-neural methods will be referred to as shallow classifiers, emphasizing that these methods do
not use any type of deep structure to carry out the learning.
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