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“The fact is, there aren’t just two sides to any issue, there’s almost always a range of responses,

and ‘it depends’ is almost always the right answer in any big question.”

(Linus Torvalds)





ABSTRACT

NAZARE, T. S. Unusual Event Detection in Surveillance Videos. 2021. 108 p. Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Presently, surveillance cameras have been massively employed to monitor public spaces such as
malls, train stations and airports. The video feed generated by several of these security cameras
is monitored, in real-time, by a small group of people in a control room to detect anomalous
behaviors. Nonetheless, human monitoring is extremely ineffective when it comes to detecting
anomalies in surveillance footage, mainly because such task is both tedious (most of the time
nothing interesting/abnormal happens) and challenging (a single person is in responsible for
keeping track of multiple cameras at the same time). The aforementioned problems motivated
the machine vision community to develop automated methods for detecting unusual behaviors
in security videos. Despite recent advances in this area, we have noticed that current video
anomaly detection methods have some gaps regarding: i) the lack of noise removal/management
techniques when modeling motion patterns using optical-flow estimates; and ii) the need for a
more adaptive approach to tackle changes in viewing distances. Motivated by those issues, we
proposed some methods/studies aiming at improving anomaly detection in surveillance videos,
while maintaining (or reducing) computational cost. Our experiments show that employing
lightweight filtering to optical-flow estimates and anomaly scores can significantly improve
anomaly detection performance in surveillance scenarios, without increasing computational
complexity. Furthermore, we presented an automatic method to estimate changes in object size
caused by variations in viewing changes, which is capable of improving anomaly detection
performance and reducing setup time. Based on those findings, we designed an anomaly detection
method that is capable to achieve state-of-the-art anomaly detection performance in challenging
surveillance scenarios employing only optical-flow information. Additionally, we showed that a
domain-specific auto-encoder is capable of achieving comparable anomaly detection results to the
ones of features from pre-trained CNN models, while having a significant lower computational
complexity (smaller number of network parameters).

Keywords: Surveillance videos, Anomaly detection, Optical-flow, Computer vision.





RESUMO

NAZARE, T. S. Detecção de anomalias em vídeos de segurança. 2021. 108 p. Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Atualmente, câmeras de segurança têm sido amplamente usadas para monitorar espaços públicos,
como shoppings, estações de trem e aeroportos. O vídeo gerado por várias dessas câmeras de se-
gurança é monitorado, em tempo real, por um pequeno grupo de pessoas em uma sala de controle
para detectar comportamentos anômalos. No entanto, o monitoramento humano é extremamente
ineficaz quando se trata de detectar anomalias em vídeos de segurança, principalmente porque
tal tarefa é tediosa (na maioria das vezes nada de interessante/anormal acontece) e difícil (uma
única pessoa é responsável por monitorar várias câmeras ao mesmo tempo). Tais problemas
motivaram a comunidade de visão computacional a desenvolver métodos automatizados para
detectar comportamentos incomuns em vídeos de segurança. Apesar dos recentes avanços nessa
área, notamos que os atuais métodos de detecção de anomalias em vídeos de segurança têm
algumas lacunas como: i) falta de uso de técnicas de remoção/tratamento de ruído ao modelar
movimentos usando fluxo óptico; e ii) necessidade de uma abordagem mais adaptativa para lidar
com as mudanças de tamanho dos objetos causadas por distorçcões de perspectiva. Motivados
por essas questões, propusemos alguns métodos/estudos com o objetivo de melhorar a detecção
de anomalias em vídeos de segurança, mantendo (ou reduzindo) o custo computacional. Nossos
experimentos mostram que o uso de técnicas simples de filtragem das estimativas de fluxo
óptico e scores de anomalias podem melhorar significativamente o desempenho da detecção de
anomalias em cenários de vigilância, sem aumentar a complexidade computacional. Além disso,
apresentamos um método que automaticamente estima alterações no tamanho do objeto causadas
por distorções de perspectiva, o que ajuda a melhorar o desempenho de detecção de anomalias
e reduzir o tempo de configuração do sistema de seguraça. Com base nessas descobertas, pro-
jetamos um método de detecção de anomalias, que usa somente informações de fluxo óptico,
e é capaz de obter resultados de detecção de anomalias muito bons em cenários desafiadores.
Além disso, mostramos que um auto-encoder treinado para um cenário específico de vigilância é
capaz de alcançar resultados de detecção de anomalias comparáveis aos de features de CNNs
pré-treinadas, mesmo tendo uma complexidade computacional significativamente menor (menor
número de parâmetros de rede).

Palavras-chave: Vídeos de segurança, Detecção de anomalias, Fluxo ótico, Visão computacio-
nal.
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CHAPTER

1
INTRODUCTION

Our ever-increasing security concerns lead to the massive deployment of surveillance cameras in
public spaces, such as airports, malls and subway stations (ASHBY, 2017). The images captured
by those cameras have been used, in real-time, to monitor such environments and, eventually, to
support the detection of unusual activities (PIZA et al., 2019). Such monitoring is most typically
performed from control rooms, where human operators continuously search for abnormal be-
haviors. Despite being helpful in detecting dangerous events, the human-based monitoring is
susceptible to errors due to two main reasons: i) human operators cannot sustain an adequate
level of attention for longer than 20 minutes while watching security footage (SEIDENARI;
BERTINI, 2010), and ii) a single operator is usually responsible for keeping track of multiple
cameras at the same time (LUVISON et al., 2011) what hampers the surveillance quality. In
order to address these issues, various automated anomaly detection systems have been proposed
to assist operators in detecting anomalous events, thus improving the effectiveness of video
surveillance.

Over the last few years, the machine vision community has proposed a great deal
of automatic video surveillance methods (OLUWATOYIN; WANG, 2012), which have been
achieving practical results in specific scenarios (LI; MAHADEVAN; VASCONCELOS, 2014). To
build those models, several computer vision techniques have been employed, such as: dictionary
learning (LU; SHI; JIA, 2013; LEE et al., 2015), handcrafted spatio-temporal features (HU et al.,
2014), optical-flow features (COLQUE; CAETANO; SCHWARTZ, 2015; PONTI; NAZARE;
KITTLER, 2017), pre-trained CNNs (RAVANBAKHSH et al., 2018; NAZARE; MELLO;
PONTI, 2018), auto-encoders (XU et al., 2015) and GANs (RAVANBAKHSH et al., 2017). Yet,
the detection of unusual events in surveillance videos remains as an open question (NAPHADE
et al., 2019). Two of the main challenges composing this domain are: i) the production of highly
discriminative motion features based on noisy optical-flow estimates, and ii) the adaptation to
object sizes and velocities due to variations in terms of object-to-camera distances (even when
we have static surveillance cameras).
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Concerning noise, optical-flow methods estimate motion vectors in attempt to represent
the movement of every pixel between consecutive frames. Such estimate is prone to be incor-
rect/noisy due to factors like occlusions and illumination variations (LIU et al., 2019), which
may lead to the poor motion modeling and, lastly, hamper the performance of anomaly detection
methods. This problem has been reported in the literature, but most approaches try to reduce
its effects without directly filtering out optical-flow estimates. For instance, Adam et al. (2008)
apply a post-processing stage on anomaly scores to mitigate the effects of outlier scores in
attempt to reduce the amount of false positives. We believe that it is possible to further improve
the performance of optical-flow-based methods if we focus on improving the robustness of flow
estimates instead of simply suppressing the effects of incorrect estimates.

Regarding object size/velocity variations, even in noise-free scenarios, optical-flow may
fail to offer reliable estimates (GEORGE et al., 2018). This is due to changes in the viewing
distance of an object (object-to-camera distance) as it moves along the scene, what alters the
relationship between the real world velocity (e.g. in mph) and pixel velocities. A common way
of dealing with variations in viewing distance is to train a different anomaly detection model for
each video region (COLQUE; CAETANO; SCHWARTZ, 2015), requiring the training footage to
contain a sufficient representation of normal behavior patterns for every video region. As this kind
of approach typically employs fixed-size regions, object and monitoring region sizes may become
incompatible. To surpass this problem, a common approach is to process the video at multiple
region sizes or resolutions (LU; SHI; JIA, 2013; XU et al., 2015), increasing the computational
demands. A more recent alternative is to manually construct non-uniform grids to account for
the different object scales, while sustaining the overall computational complexity (LEYVA;
SANCHEZ; LI, 2014; GEORGE et al., 2018).

Inspired by the aforementioned challenges, this PhD thesis aims to improve anomaly
detection in surveillance applications by investigating methods to filter out noise from optical-
flow estimates while adapting to variations in object sizes/velocities. More precisely, this thesis
was based on the following 2-fold hypothesis:

i) the removal of noise from optical-flow estimates improves video anomaly detection

results;

ii) the capability of automatically adapting to changes in viewing distances boosts anomaly

detection results.

This PhD thesis presents the following contributions, which are going to be presented in
further details during this manuscript:

∙ A method to improve the detection of anomalous events by attenuating noise in optical-flow
estimates;
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∙ An adaptive approach to accommodate changing object velocities in light of their viewing
distances;

∙ An analysis of a time series decomposition method as a way of removing noise from
optical-flow estimates;

∙ A compact 8-dimensional motion pattern (a.k.a. descriptor) that achieves relevant anomaly
detection results at a reduced computational cost.

Additionally, we bring two insights regarding the usage of transfer-learning to video
anomaly detection scenarios. First, we present a broad comparison on the usage of pre-trained
image and video-based CNN models in surveillance scenarios. Then, we show that a domain-
specific autoencoder provides similar anomaly detection results in comparison to models that
leverage features from pre-trained Convolutional Neural Network (CNN) models.

1.1 Outline
The remaining of this PhD thesis is organized as follows:

Chapter 2 reviews some technical background on anomaly detection, optical-flow estima-
tion, signal decomposition, and deep convolutional neural networks;

Chapter 3 presents and discusses the related work;

Chapter 4 describes our proposed methods to improve anomaly detection in surveillance
videos;

Chapter 5 reports our results, including a study of hyper-parameters and comparisons
against several methods from the literature;

Chapter 6 draws concluding remarks and future research directions.
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CHAPTER

2
TECHNICAL BACKGROUND

2.1 Opening remarks

This chapter presents an overview of the fundamental concepts used to address the problem of
detecting anomalous events on security footage. Such concepts are employed on the following
chapters to design our approach and the experimental evaluation.

2.2 Anomaly detection in surveillance videos

We start by briefly introducing the general concept of anomaly detection and discuss its sim-
ilarities to noise removal and novelty detection (COSTA, 2014). Furthermore, we consider
which requirements an anomaly detection method should meet in order to be more successful in
practical video surveillance scenarios (ADAM et al., 2008).

According to Hawkins (1980), normal observations are prevalent in some dataset, being
the clear result of the expected probability distribution1, while other observations may rise the
suspicion of belonging to a different behavior thus being referred to as anomalies (see Figure 1
as an illustration). In attempt to detect anomalies, we must beforehand estimate the normal
behavior to next infer the normalcy of new observations. An alert is issued whenever an anomaly
is detected, indicating a problem may have happened (e.g. a network intrusion detection, banking
fraud or mass panic in crowded environments). Besides being applied in the context of anomaly
detection, normalcy modeling is also used in novelty and outlier detection, differing in the
way they leverage unusual behaviors. Novelty detection algorithms look for changes in data
distributions in order to adapt learning models to reflect new behaviors (ALBERTINI; MELLO,
2007), while outlier detection often considers anomalous samples as incorrect/noisy observations,
removing or fixing them out to improve the dataset quality.
1 In the context of this PhD thesis, the normal or expected behavior is defined from situations with no

need for intervention or enforcement of security protocols.
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Figure 1 – An example of a 2D feature space containing few anomalies. Filled circles represent anoma-
lies, while the remaining ones are associated to normal behavior (Adapted from Figure 2.1
of (COSTA, 2014)).

A useful anomaly detection method should be capable of obtaining a good detection
performance, while having a low false positive rate. Nonetheless, when working in the video
surveillance domain, there are other requirements to successfully tackle real-world scenarios, as
compiled by Adam et al. (2008):

∙ Simple and fast tuning/setup process;

∙ Ability to adapt to environmental changes;

∙ Robustness to crowded and cluttered scenes;

∙ Automatic learning process, which (preferably) requires a small training set;

∙ Low computational cost.

In the context of this PhD thesis, a series of concepts is considered to address the anomaly
detection in surveillance videos among which the optical-flow estimation is of great relevance,
as discussed next.
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2.3 Optical-flow estimation
The optical-flow estimation ht(.) takes two images as input and provides a difference vector
(u,v)x,y for every pixel, by solving the following optimization problem:

(u,v)x,y||It−1(x,y)− It(x+u,y+ v)||22 +λ ||(u,v)x,y||22
(u,v) ∈ −M, . . . ,M×−N, . . . ,N

∀(x,y),

given It−1 and It are the two images under the same dimensions M×N, the pixel position is
expressed as (x,y), and λ is a regularization term multiplied by the norm of the difference of
vector (u,v)x,y, thus producing a set of vectors representing the displacements of all pixels from
image t−1 to t in form:

ht(It−1, It) =


(u,v)1,1 (u,v)1,2 · · · (u,v)1,N

(u,v)2,1 (u,v)2,2 · · · (u,v)2,N
... . . . ...

(u,v)M,1 (u,v)M,2 · · · (u,v)M,N

 .
Ideally, one would expect to find perfect matches for each pixel, however it is unfeasible to obtain
such ideal correspondence on real-world applications due to factors like noise, lighting variations
and occlusions (LIU et al., 2019). Therefore, by assuming that those variations are small, optical-
flow estimation algorithms try to construct flow vectors (u,v)x,y so that It(x+u,y+v) is as close
as possible to It−1(x,y), but not necessarily identical (i.e. pixels do not move too far from one
image to its next).

The optical-flow approaches proposed by Horn and Schunck (1981) and Lucas and
Kanade (1981) are among the two most relevant ones with regards to their applicability onto
real-world problems and their influence on most modern approaches. Despite the fact that both
minimize a pixel-correspondence error function to obtain a good optical flow estimate, the
former operates globally on images while the latter does it locally. Thus, Horn and Schunck
(1981) compute the difference vectors considering influences from the entire image such that
∀(u,v) ∈ −M, . . . ,M×−N, . . . ,N, while Lucas and Kanade (1981) only consider spatially close
pixels to perform such a task ∀(u,v) ∈ −m, . . . ,m×−n, . . . ,n, in which m < M and n < M.
For a more complete overview on optical-flow approaches and their applications please refer
to (RADKE, 2012).

Regarding surveillance applications, optical flow can be computed for temporally-close
video frames and, then, be used to describe object-motion characteristics such as velocity and
direction (ADAM et al., 2008; COLQUE; CAETANO; SCHWARTZ, 2015; GEORGE et al.,
2018). However, the construction of motion estimates may lead to problems in the presence
of variations in object-to-camera distances, i.e. when objects move along the scene (LEYVA;
SANCHEZ; LI, 2014; GEORGE et al., 2018), or when incorrect/noisy flow estimates are
obtained (PONTI; NAZARE; KITTLER, 2017).
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2.4 Signal decomposition using EMD and mutual infor-
mation

One attempt to better analyze a time series is by decomposing it into deterministic and stochastic
components, model each of those separately and, then combine their analysis to obtain bet-
ter results. To this end, Rios and Mello (2016) combined the Empirical Mode Decomposition

(EMD) (HUANG et al., 1998) and Darbellay and Vajda’s mutual information estimator (DAR-
BELLAY; TICHAVSKY, 2000) to automatically perform this sort of decomposition.

2.4.1 Empirical Mode Decomposition

EMD (HUANG et al., 1998) was designed to decompose a signal into Intrinsic Mode Functions

(IMFs) without making any assumption regarding the linearity, stationarity, and stochasticity of
the signal. EMD models a signal y(t) as a sum of IMFs – each IMF is referred as xn(t) – plus a
residue r(t), as defined in the following equation:

y(t) = ∑
n

xn(t)+ r(t). (2.1)

IMFs are computed using an iterative process that begins by taking x(t) and finding its
local minima and maxima. Then, upper u(t) and lower l(t) envelopes are obtained applying a
cubic spline to the local minima and maxima points, respectively, and used to compute a mean
envelope m(t). After, m(t) is subtracted from y(t) to calculate an IMF candidate. This candidate
is considered an IMF if it meets one of the following requirements: i) m(t) is zero for every point;
ii) the number of extrema and zero-crossing points differ by at most one. Otherwise, the process
is repeated – replacing the original data by the IMF candidate – until a candidate that meets the
requirements is found. When an IMF is obtained, it is subtracted from the signal and this entire
process is repeated. The process stops when the remaining signal becomes a monotonic function,
being this last component considered as the residue r(t).

2.4.2 IMF analysis for signal decomposition

Visually inspecting the phase spectra extracted from IMFs, Rios and Mello (2016) noticed that
determinism increases along every consecutively extracted IMF. Based on such result, they
used the method presented in (DARBELLAY; TICHAVSKY, 2000) to compute the mutual
information vn between the phase spectra of two consecutive IMFs (θ(xn(t)) and θ(xn+1(t))), as
defined in the following equation:

νn = MI(θ(xn(t)),θ(xn+1(t))). (2.2)

Leveraging this mutual information analysis, they decompose y(t) into a stochastic and a
deterministic component. To this end, they assumed that IMFs with higher frequencies have lower
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mutual information values, while mutual information increases for low-frequency IMFs. Hence,
the deterministic component is given by the sum of all IMFs with higher mutual information,
while the stochastic components comprise the remaining ones.

2.5 Deep feedforward neural networks

Deep feedforward neural networks, such as Multilayer Perceptrons (MLPs), are supervised
learning techniques that aim to approximate functions, being employed to address machine
learning problems such as classification, regression and anomaly detection. Those networks are
composed of several layers of neurons (or layers of processing units) arranged in a way that
information always moves forward and, consequently, the connections between neurons do not
form any cycle. There is always an input and an output layer, while the intermediary ones are
referred to as hidden layers (for a visual representation, see Figure 2 which depicts a MLP with
two hidden layers).

hiddeninput output

 

 

 

Figure 2 – An example of a MLP architecture with two hidden layers.

When data is fed into a neural network, every neuron computes its activation (output) a

using the following equation:

a = f (wx+b),

in which x represents the input vector, w is the weight vector used to inhibiting or exciting
each input, b is a bias term and f is called the activation function (see Figure 3 for a visual
representation of the neuron activation). With regards to activation functions, several of them
have been proposed in the literature mainly to make MLP training faster and allow the usage of
deeper models. Figure 4 presents two of the most widely employed activation functions: sigmoid
and Rectified Linear Unit (ReLU) (NAIR; HINTON, 2010).
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Figure 3 – Visual representation of the neuron activation.
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Figure 4 – Examples of activation functions: Sigmoid (left) and ReLU (right). Please note that the range of
both plots are equal for the y axis, but differ in the x axis.

Now that we established that a MLP is formed by a set of connected neurons hierarchi-
cally organized along layers, we can start understanding how such model can be explored to
approximate a function. Generally speaking, to use a MLP to learn the behavior of a certain
function g* we need to properly set its neuron parameters (weights and biases) in a way that,
given an input vector x, the model generates an output that is as close as possible to g*(x). To this
end, we try to learn those parameters from a set of samples (x,y) – called training set – where x
is an input vector and y is the mapping of x using g* (y = g*(x)).

In order to accomplish such task, we need a learning algorithm that estimates a good
approximation of g* from the training samples. Usually, when dealing with neural networks,
the gradient descent method is applied to obtain this approximation. This method is widely
adopted due to its ability in reducing errors, simplicity of use, and computational efficiency when
simultaneously optimizing multiple variables (i.e. the weights and biases of a large network) in
face of analytical approaches.

Gradient descent iteratively adapts the network parameters so the output of the induced
model approximates the correct function value. Consequently, there is a need of quantifying
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the difference between the approximation produced by the network and the actual function
value. This is carried out by a loss function such as the Mean-Squared Error (MSE) and the
Categorical Cross-Entropy (CCE), which are commonly used in regression and classification
problems, respectively. These two functions are defined bellow:

MSE(W,b) =
1

2n ∑
x
||y− ŷ||2,

CCE(W,b) =
1
n ∑

x

(
−

C

∑
i=0

yilog(ŷi)

)
,

where W denotes all network weights, b represents all biases, n is the number of instances
composing the training set, x is a training sample, y is the expected output for x, ŷ is the output
in fact generated by the network, i indexes a particular class (on a classification problem) and C

is the number of classes.

Using this loss function, the gradient descent method addresses the optimization problem
by making small parameter changes towards the error reduction, i.e., in attempt to reduce the
divergence between the network outputs and the expected values. Mathematically, consider some
loss function L (e.g. MSE) and a set of variables v (e.g. weights and biases of a MLP), in order
to reduce L, we could change v as follows:

∆v =−η∇L, (2.3)

in which η > 0 is a small positive value known as learning rate and ∇L represents the gradient
of the loss function L.

Knowing that ∆L≈ ∇L ·∆v and using Equation 2.3, we obtain:

∆L≈ ∇L ·∆v

≈ ∇L · (−η∇L)

≈−η∇L ·∇L

≈−η ||∇L||2.

Given that ||∇L||2 ≥ 0 and η > 0, we conclude ∆L ≤ 0 and, therefore, L either decreases or
stays the same. Nevertheless, notice this statement is based on an approximation (∆L≈∇L ·∆v),
having greater chances of holding for smaller variations of v. For that reason, we tend to choose
small values of η when optimizing (training) some neural network.

At the last step, network parameters are updated based on the partial derivatives of the
loss function with regards to weights and biases. Before doing so, we need to establish the
following unambiguous notation:

∙ wl
jk: weight at the connection between the jth neuron at layer l, coming from the kth neuron

at layer l−1;
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∙ bl
j: bias associated with the jth neuron at layer l;

∙ zl
j: weighted sum of inputs and bias of the jth neuron at layer l (zl

j = ∑k wl
jkal−1

k +bl
j);

∙ f : activation function;

∙ al
j: activation of the jth neuron at layer l (al

j = f (zl
j));

∙ L: depth (number of layers) of the network which is used to index the output layer.

Once we have this notation, we define the derivative of the loss function with regards to
the weighted sum of the inputs for any neuron j at any layer l as follows:

δ
l
j =

∂L
∂ zl

j
. (2.4)

Based on this equation, we can find the partial derivatives for the output layer (Lth layer). To do
so, we first use Equation 2.4 to express the partial derivative of the loss function with respect to
the result of the jth output neuron and – given that L does not directly depend on zL

j , but rather
on aL

j – we apply the chain rule and rewrite the previous equation as follows:

δ
L
j =

∂L
∂ zL

j

=
∂L
∂aL

j

∂aL
j

∂ zL
j

=
∂L
∂aL

j
f ′(zL

j ).

At this point, we can use δ L
j to compute partial derivatives with regards to any weight wL

jk and
any bias bL

j at the output layer. Regarding the weights, the derivative of δ L
j is obtained as follows:

∂L
∂wL

jk
=

∂L
∂aL

j

∂aL
j

∂ zL
j

∂ zL
j

∂wL
jk

=
∂L
∂aL

j
f ′(zL

j )
∂ zL

j

∂wL
jk

= δ
L
j

∂ zL
j

∂wL
jk

= δ
L
j

∂ (∑k wL
jkaL−1

k +bL
j )

∂wL
jk

= δ
L
j aL−1

k .

Analogously it is possible to obtain ∂L
∂bL

j
= δ L

j . Having these two equations, we are able to leverage
the gradient descent method to update weights and biases for any neuron at the output layer.
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In a similar way, we use Equation 2.4 to find the partial derivatives for the weighted sum
of any hidden neuron. To this end, we apply the chain rule to rewrite this equation in terms of
δ

l+1
j , obtaining the following expression:

δ
l
j =

∂L
∂ zl

j

= ∑
k

∂L
∂ zl+1

k

∂ zl+1
k

∂ zl
j

= ∑
k

∂ zl+1
k

∂ zl
j

δ
l+1
k .

Then, we derive
∂ zl+1

j

∂ zl
j

using zl+1
j = ∑i wl+1

ki al
i +bl+1

k and al
i = f (zl

i) – which makes f (zl
i) vanish

for i ̸= j – as shown in the following equation:

∂ zl+1
j

∂ zl
j

=
∂ (∑i wl+1

ki al
i +bl+1

k )

∂ zl
j

=
∂ (∑i wl+1

ki f (zl
i)+bl+1

k )

∂ zl
j

= wl+1
k j f ′(zl

j).

Based on these last two results, we define δ l
j as follows:

δ
l
j = ∑

k
wl+1

k j f ′(zl
j)δ

l+1
k .
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To find the derivatives for weights of any hidden neuron, we do as follows:
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Finding the derivatives for the biases ( ∂L
∂bl

j
= δ l

j) is rather similar, therefore we decided to

omit them in order to avoid repetition. Then, the network parameters (weights and biases) are
updated using the following rules:

wl
jk← wl

jk−
η

n ∑
x

al−1
k (x)δ l

j(x)

bl
j← bl

j−
η

n ∑
x

δ
l
j(x).

One problem with such approach is that it uses all n training samples at every parameter update,
what may consume an excessive amount of computational resources, slowing down the training
stage. In attempt to mitigate this issue, the mini-batch version of the gradient descent method is
commonly used. In this technique, instead of using the entire training set to estimate the gradients,
a set of m (m≪ n) training samples are randomly taken and used to perform such estimation,
what significantly reduces the training time. Such approach relaxes training by providing a more
rough estimate at each iteration using a mini-batch of examples. Other optimization and training
techniques are relevant to induce good deep neural network models and can be found in (PONTI
et al., 2017) and (GOODFELLOW; BENGIO; COURVILLE, 2016).
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2.6 Convolutional neural networks

If we try to use the networks presented in the last section to classify images using their pixels,
we would have to turn every image into a vector, consequently, loosing all their natural spatial
structure. Convolutional neural networks (CNNs) (LECUN et al., 1998) were proposed to address
such visual content by using local learners represented in terms of neurons with their respective
convolution kernels (or filters) instead of globally adapting in response to dense combinations of
the inputs. Based on the last section, we now address two fundamental building blocks in order
to understand convolutional neural networks: convolutional and pooling layers (PONTI et al.,
2017). Then, mapping the other concepts from a regular network to a convolutional one is fairly
straightforward.

A convolutional layer differs from a dense one mainly because each of its neurons
learns a convolutional filter (or kernel) instead of learning a dense combination of all inputs. A
convolutional neuron i from a layer l generates its output matrix Y l

i (also known as feature map)
as in the following equation:

Y l
i = f (Kl

i *Y l−1 +bl
i),

where Kl
i is the filter learned by a particular neuron, Y l−1 is the output tensor provided by the

previous layer or the input image (in case of the first layer), * refers to as the convolution operator,
bl

i is the bias learned by a particular convolutional neuron and f is the activation function. In the
previous equation, the convolution is a matrix operation, while the addition of the bias term and
the application of the activation function are pointwise operations. By doing this process, each
neuron of a layer generates an output matrix, all being stacked up to generate the output tensor
of such layer (as shown in Figure 5).

7x7 input 5 feature maps of 5x5
(5 neurons with 3x3 kernels)

Figure 5 – Feature maps stacked up to compose the output tensor of a convolutional layer. In this case, the
hidden layer contains 5 feature maps, each one of size 5×5. To obtain such feature map size,
considering a 7×7 input, we used 3×3 filters and a stride equals to 1.

Another important characteristic of CNNs is the presence of pooling layers that are used
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after a convolutional layer to reduce the amount of information of its feature maps. Pooling layers
divide the feature map in equally-sized regions which are then summarized, typically by taking
their maximal or average activation, as depicted in Figure 6. In more recent deep convolution
networks, pooling is avoided in favor of using larger strides in the convolution process (HE et al.,
2016; CHOLLET, 2017; HUANG et al., 2017).

Figure 6 – Illustration of the pooling operation. A 4× 4 region is summarized by a pooling layer that
operates on 2×2 regions.

Lastly, despite the fact that all concepts on this sections were explained based on 2D
networks, mapping them to 1D or 3D models – such as the C3D network (Section 2.8.5) and the
proposed 3D auto-encoders (Section 5.4) – is straightforward. For a more in-depth view of such
concepts, the reader may refer to (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.7 Auto-encoders
An auto-encoder is a neural network typically used in unsupervised learning scenarios, in which
the learning process is not guided by predicting labels but rather by copying the input data.
In order to do so, an auto-encoder first uses an encoder to create a more restrict (or compact)
representation of the input data (also called code), then, it uses a decoder to reconstruct the
original data (the general structure of an auto-encoder is illustrated in Figure 7). By learning such
restricted representation of the original data, an auto-encoder can discover useful data properties,
instead of simply copying the input data.

Encoder Decoder
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Figure 7 – Auto-encoder general structure.

When building an auto-encoder, there are two ways of obtaining a restricted representa-
tion: by undercompleteness and by regularization. Creating an undercomplete representation
means that the code generated by the encoder has a smaller dimension than the one of the input
data, which compels the auto-encoder to try to capture some intrinsic data properties. On the
other hand, when working with regularization, instead of having shorter codes, we limit the
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copying capabilities by adding a regularization term to the loss function. Sparse auto-encoders
are one example of regularized auto-encoders that employ sparsity penalty on the generated code,
what makes their reconstruction error to be defined as follows:

L(x,d(e(x)))+Ω(h),

where L is a loss function that compares the original input x against its reconstruction d(e(x))),
e is the encoder part of the model, d is the decoder part, cx = e(x) is the code generated by the
encoder and Ω represents the sparsity penalty. Another example of models that use regularization
are denoising auto-encoders. Instead of trying to reconstruct its original (uncorrupted) input,
these models first apply some kind of noise to their input, then try to perform the reconstruction.
Hence, their reconstruction error is given by:

L(x,d(e(x̃))),

where x̃ is a noisy version of the original input (e.g. if x is an image, x̃ can be the same image
corrupted by a Gaussian noise). As a consequence, in order to reduce the loss value, the model
must be capable of removing noise, not simply copy the input.

2.8 CNN architectures
In this section, we discuss some widely used CNN architectures for video and image classi-
fication. These models produce rather generic features and, therefore, have been successfully
employed in tasks other than the one they were trained for, thus comprising transfer-learning
techniques. We start by presenting four widely used image classification models (VGG (SI-
MONYAN; ZISSERMAN, 2014), ResNet (HE et al., 2016), Xception (CHOLLET, 2017) and
DenseNet (HUANG et al., 2017)), which were capable of obtaining remarkable results on the
ImageNet (DENG et al., 2009) classification challenge. Then, we present the C3D (TRAN et al.,
2015) architecture, that was proposed for action recognition in videos and uses 3D convolutions
to process video segments. Later, these pre-trained CNN models are used in our experiments as
feature extractors.

2.8.1 VGG networks

VGG networks take as input 224× 224 RGB images and process them using five blocks of
convolutional layers with 3×3 kernels (sometimes, 1×1 filters are also used) and convolutional
stride equals to 1. Moreover, padding is carried out so it prevents convolutional layers to reduce
spatial resolution; in other words, a padding of 1 is used for 3×3 filters, while there is no padding
for 1×1 kernels. The number of neurons for the convolutional layers of each of the convolutional
blocks is always: 64, 128, 256, 512 and 512, with the smaller layers as the ones closer to the
input and the larger ones nearby the output. At the end of each block of convolutional layers,
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there is a 2×2-windowed max-pooling layer using a stride equals to 2. After the convolutional
part of the architecture, there are three fully connected layers: two ReLU layers with 4096 neurons
followed by an output softmax layer with 1000 neurons. To illustrate the above mentioned VGG
characteristics, we depict the architectures of one of its most successful variants, also used in
some of our experiments, the VGG-16 network (see Figure 8).
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Figure 8 – VGG-16 architecture.

2.8.2 ResNet

One of the limitations of VGG-like models is their inability to converge when using more than
19 layers, what is caused by the vanishing/exploding gradient problem (BENGIO; SIMARD;
FRASCONI, 1994). To overcome such issue, He et al. (2016) proposed the usage of residual
units (see Figure 9) instead of sequential connections between convolutional layers. Such
approach facilitates the propagation of error on deeper CNN models, consequently mitigating the
vanishing/exploding gradient problem. Their approach then allows to train networks with more
than 150 layers and outperformed the VGG on the ImageNet image classification challenge,
while having less parameters.

Conv2D: 1✕1 kernels

Conv2D: 3✕3 kernels

Conv2D: 1✕1 kernels

Figure 9 – Example of residual unit used in ResNet models (Adapted from Figure 2 of (NAZARE;
MELLO; PONTI, 2018)).

2.8.3 Xception

The Xception architecture was proposed by Chollet (2017), inspired by Inception V3 (SZEGEDY
et al., 2016). In this CNN model, the standard convolution is replaced by a variation referred
to as depthwise separable convolution, which is computed by applying the same convolutional
filter (e.g. 3×3) to each tensor channel separately and, then, using a regular 1×1 convolution
to combine all channels (as shown in Figure 10). By employing this methodology, Xception
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models reduce the number of trainable parameters of each layer, consequently leveraging deeper
architectures. This model outperformed Inception V3 on the ImageNet classification competition.

Figure 10 – Depthwise separable convolution layer (Adapted from Figure 3 of (NAZARE; MELLO;
PONTI, 2018)).

2.8.4 DenseNet

Inspired by residual units, Huang et al. (2017) proposed DenseNets, which use shortcut/skipping
connections to link every layer to all of its subsequent layers. By using more shortcut connections,
the authors were able to obtain even deeper models (up to 201 layers), which led them to win the
ImageNet classification challenge in 2017.

2.8.5 C3D networks

One of the seminal studies to understand the use of 3D convolutions to model videos was
introduced in (TRAN et al., 2015), which heavily explored 3D convolutions using CNN models
and achieved state-of-the-art results in several action recognition benchmarks. Later, other
researchers concluded that pre-trained networks based on the same principle as well as their
features extracted from specific datasets could be used to tackle other tasks, inherently leading to
transfer learning applications. Among all models, the 3D CNN trained on the Sports-1M dataset
is the most successful with regards to producing transferable features. This is the reason we
decided to review and analyze the features generated by such a network model which is, from
now on, referred to as the C3D network.

The C3D network processes video segments with 16 224×224 frames, containing: 8 3D-
convolutional, 2 fully connected, 5 max-pooling and one softmax layers, organized as illustrated
in Figure 11. All eight convolutional layers use 3×3×3 kernels and the ReLU activation function,
having 64, 128, 256, 256, 512, 512, 512 and 512 kernels, respectively.

Of the five max-pooling layers, the first (Pool1) has a pooling kernel of 1× 2× 2 –
so that it only affects the two spatial dimensions, not the temporal one – while the other four
use 2×2×2 kernels, consequently their pooling operations occur in the spatial and temporal
dimensions. Additionally, this network has three fully connected layers: two hidden ones (fc6
and fc7) – which have 4096 neurons each, use ReLU as activation function and have a dropout
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probability equals to 50% – and the output layer (fc8) that uses softmax activation and has 487
neurons (equal to the number of classes present in the Sports-1M dataset).
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Figure 11 – C3D architecture employed on the Sports-1M dataset.

2.9 Concluding remarks
This chapter presented an overview on the fundamental concepts of: anomaly detection for
surveillance applications, optical flow and CNNs. These concepts are necessary to understand
the methods reviewed in Chapter 3, our proposals in Chapter 4, and the experimental results
presented and discussed in Chapter 5.



49

CHAPTER

3
RELATED WORK

3.1 Opening remarks
In this chapter, we review several methods devoted to detect unusual events in surveillance
videos by applying a myriad of strategies, including dictionary learning, optical-flow features,
deep neural networks. After analyzing those methods, we listed gaps of existing video anomaly
detection approaches, mainly: i) the lack of robustness to deal with noise, especially when
working with optical flow data; and ii) the complexity of automatically adapting to object-size
variations due to changes in viewing distances. The former gap is mostly related to the need of
filtering noisy feature estimates, while the later is greatly associated to the usage of fixed-size
monitoring video regions (referred to as monitors, windows, cuboids, spatial regions or video
blocks). Those gaps comprise the main motivation for this PhD thesis whose contributions are
discussed from Chapter 4 on.

3.2 Local motion histogram method
The Local Motion Histogram (LMH) method was introduced by Adam et al. (2008) to deal
with real-time anomaly detection in security videos, thus adapting to environmental changes,
while requiring small training samples. This method is primarily based on grids of low-level
feature monitors to detect anomalies in different image regions (Figure 12 depicts the location of
monitors).

Each monitor extracts low-level features (i.e. optical flow magnitude or optical flow
orientation) only at its particular location in order to reduce the overall computational cost
involved in this stage which is similar to the ones presented in (ROSENBERG; WERMAN,
1997; SHI; MALIK, 1998), being divided into the following steps:

I – Flow Probability Matrix: For two sequential frames, It−1 and It , the method assumes that
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Figure 12 – Example of 23×15 grid of monitors, in which the red dots represent of the monitors.

all pixels within a template window W , centered at the monitor coordinates, have the same
displacement. Then, it computes a Sum of Squared Differences (SSD) matrix, in which
each element SSD(u,v) represents the sum of squared differences between the elements
of W in It−1 and the elements of W +(u,v) in It , as shown in Equation 3.1. Afterward,
it transforms SSD into a probability distribution P using Equation 3.2, having c as the
normalization factor, σ2 corresponding to the SSD variance.

SSD(u,v) = ∑
i, j∈W

(It(i+u, j+ v)− It−1(i, j))2 (3.1)

P(u,v) = c× e−
SSD(u,v)

σ2 (3.2)

II – Binning: Using the flow probability matrix obtained at the last step, the algorithm calculates
another probability distribution by aggregating the flow probabilities P(u,v) by angle or
magnitude (depending on the low-level feature). Thus, a new probability distribution P(Oi)

is generated, in which Oi represents the possible aggregated observations.

III – Ambiguity Test: As optical flow values may be imprecise, the method performs an am-
biguity test to verify if the most likely observation OML can be considered valid. Given
the distance between observations d(Oi,O j) and an ambiguity threshold AT , OML is con-
sidered valid only if Equation 3.3 holds true. Otherwise, the monitor does not produce an
observation for that frame.

∑
i

P(Oi)d(OML,Oi)< AT (3.3)

Each monitor keeps the last n valid observations in a buffer, which is used to compute the
likelihood of new observations. In case such likelihood is below a given threshold, the monitor
considers that there is an anomaly and produces an alert. Initially, the authors considered frames
to be anomalous when at least one of the monitors produced an alert. Nonetheless, due to the
presence of noise on the optical-flow values, they noticed that such approach led to a large
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number of false alarms. In attempt to reduce the number of false alarms, LHM only issues an
anomaly if at least n of the last y frames are anomalous.

3.3 Sparse combination method
Lu, Shi and Jia (2013) proposed the Sparse Combination method to detect anomalies in video
footage in real-time with a low computational cost, achieving high detection rates while process-
ing 150 FPS on a PC with a 3.4 GHz CPU with 8 GB RAM. Those results are the consequence of
their sparsity-based dictionary learning method which leverages the redundancy of surveillance
videos.

In such method, the video is firstly partitioned into non-overlapping spatial regions under
the same size (e.g. 20×10 pixels). Next, those regions are divided into temporal segments of
5 consecutive frames described using the 3D gradient features by Kratz and Nishino (2009).
The feature vector of each segment is then reconstructed by sparsely combining patterns from a
learned normalcy dictionary, so that anomaly is characterized by large reconstruction errors.

Prior to such work, sparsity-based abnormality detection models were derived from
training sets X = {x1,x2, . . . ,xn} only composed of normal data patterns in attempt to build
some dictionary D ∈ Rp×q which was then used to sparsely reconstruct some new data sample x
as follows:

min
β

||x−Dβ ||22

s.t. ||β ||0 ≤ s,
(3.4)

in which β ∈Rq×1 represents sparse coefficients, s is a sparsity parameter (s≪ q) and ||x−Dβ ||22
is the fitting error (used to judge the normalcy of new observations). Such anomaly detection
approach typically presents high computational demands, given that there are

(q
s

)
different ways

of selecting s vectors from some dictionary with q patterns. Therefore, the computational cost of
such sparse reconstruction does not allow real-time anomaly detection when employing a large
dictionary.

When facing the real-time requirements of surveillance applications, the authors proposed
a lightweight sparse combination learning that takes advantage of the highly redundant structure
of surveillance videos. In their approach, given the same training set X = {x1,x2, . . . ,xn},
instead of learning a dictionary, they learn a set of K combinations of basis vectors S =

{S1,S2, . . . ,SK}. Consequently, the reconstruction error for a new sample x is obtained by:

min
β i
||x−Siβ

i||22 ∀ i = 1,2, . . . ,K, (3.5)

in which Si ∈ Rp×s is a set (combination) of basis vectors and β i ∈ Rs×1, which is obtained
by a closed-form, contains the sparse coefficients. This means that the reconstruction error is
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computed by simply calculating the least square error between x and each Si ∈S and, then,
taking the lowest value which makes it possible to detect anomalies in real-time. Besides, due to
this low computational cost, the authors were able to process each frame at 3 different scales
(resolutions) to tackle object size variations while still being able to run their method in real-time.

3.4 Local nearest neighbor distance method

Local Nearest Neighbor Distance (LNND) (HU et al., 2014) is a video anomaly detection
technique that uses a compact description of video blocks. Such description is generated by
employing the novel LNND descriptor, that considers, not only the spatio-temporal characteristics
of a block, but also its spatio-temporal context.

3.4.1 LNDD descriptor

Initially, a video V is divided into a set {Vs,t} of spatio-temporal cuboids, where s and t are
the spatial and temporal coordinates of the cuboids, respectively. Those cuboids are partially
overlapped and have the same spatio-temporal size of h×w× τ , in which h is the spatial height,
w is the spatial width and τ is the temporal duration (in number of frames) of the cuboid.

Once we have the spatio-temporal cuboids, the description process begins by computing
the magnitude of the spatio-temporal gradient for each pixel within the cuboid, generating the
gradient cuboids set {Gs,t}. Then, each gradient cuboid Gs,t is described using the Local Motion

Pattern (LMP) descriptor presented by Guha and Ward (2012)1.

A cuboid description using LMP begins by calculating the variance, skewness and
kurtosis – which are the second, third and fourth central moments – along the temporal dimension,
for every spatial coordinate. These moments are stored, respectively, in three h×w matrices: M2,
M3 and M4. Therefore, each element of Mr (r ∈ {2,3,4}) is defined as:

Mr(i, j) =
1
τ

τ

∑
t=1

(G(i, j, t)r), (3.6)

where G(i, j, t) is the spatio-temporal gradient magnitude at coordinate (i, j, t), τ is the temporal
length of a cuboid and r is the moment being calculated. These matrices are transformed into
vectors m2, m3 and m4 and, then, concatenated to generate the final LMP descriptor with 3×h×w

dimensions (see Figure 13 for a visual representation of such procedure).

Next, for every cuboid Vs,t , a spatial neighborhood SN and a temporal neighborhood T N

are defined. In SN, every cuboid is at the same time interval t as Vs,t and, in T N, every cuboid is
at the same spatial position s as Vs,t . The distance between Vs,t and one of its spatial or temporal

1 The original version of LMP applies a Gaussian blur on the raw pixel values, instead of computing the
magnitude of the spatio-temporal gradient, prior to the calculation of the spatio-temporal descriptor.
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Figure 13 – Block description using LMP (based on Figure 2 of (GUHA; WARD, 2012)). First, a video
segment is extracted. Then, the spatio-temporal gradient magnitudes and the three central
moments (variance, skewness and kurtosis) are calculated, generating the matrices M2, M3 and
M4 (represented in blue, green and red, respectively). Finally, these matrices are transformed
into vectors m2, m3 and m4, which are concatenated to generate the final descriptor.

neighbors is defined as the Wavelet Earth Mover’s Distance (WEMD) (SHIRDHONKAR;
JACOBS, 2008) of their LMP descriptions.

The final LNND descriptor is constructed in three steps. Firstly, the smaller K distances
between Vs,t and its spatial neighbors are taken in ascending order. This generates a vector
X sd = [d1,d2, . . . ,dK]

T , where dk is the kth smallest distance between Vs,t and one of its spatial
neighbors. Secondly, by the same process, the smaller N distances between Vs,t and its temporal
neighbors are taken in ascending order. This generates another vector X td = [d1,d2, . . . ,dN ]

T ,
where dn is the nth smallest distance between Vs,t and one of its temporal neighbors. Lastly, the
final LNND is obtained by concatenating X sd and X td as follows:

LNND =

[
X sd

X td

]
, (3.7)

generating a descriptor with K +N dimensions. In (HU et al., 2014), the authors used K = 8 and
N = 1, so the final LNND dimension was 9.

3.4.2 Training and abnormality detection

Using the LNND description of the training data – which does not contain any anomalies – a
different Fast Mixed-Membership Naive Bayes (Fast MMNB) model is learned for each spatial
region s. After the learning phase, given a new sample Xs that occurred at spatial region s, its
log-likelihood l under the normalcy model of region s is calculated. If this likelihood is below a
user-defined threshold, Xs is classified as an abnormality.

3.5 Motion influence map method
The Motion Influence Map method (LEE et al., 2015) detects unusual events by embedding
contextual motion information into the video description, as opposed to most methods that handle
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context in a classification level. In order to deal with context at the feature level, a novel motion
representation technique, named motion influence map, was proposed to quantify the “motion
influence” between frame parts (blocks) thus helping to detect unusual motion patterns.

3.5.1 Motion influence map descriptor

The first step to construct a motion influence map of a frame is to estimate optical flow for
every of its pixels. Then, the frame is divided into M×N non-overlapping blocks, as shown in
Figure 14, and an optical flow value is assigned to each block by computing the average flow of
its pixels.

Figure 14 – An example of a frame partitioned into uniform non-overlapping blocks.

Afterward, the weight wi j is computed for all pairs of blocks i and j to quantify the
influence of block i on the motion of block j by using the following equation:

wi j = δ
d
i jδ

φ

i j e
−D(i, j)
||bi|| , (3.8)

in which D(i, j) is the Euclidean distance between blocks i and j, and bi is the optical flow of
block i. The variables δ d

i j and δ
φ

i j indicate whether block i influences block j by considering their
inner distance as well as the angle formed by their average flow vectors, respectively, as defined
bellow:

δ
d
i j =

1, if D(i, j)< Td

0, otherwise
δ

φ

i j =

1, if − Fi
2 < φi j <

Fi
2

0, otherwise
(3.9)

in which Td is a distance threshold, φi j is the angle between the vector ranging from the center of
block i to the center of block j with the optical flow of block i (bi), and Fi is an angle threshold
(the authors assumed Fi = π in their experiments).

Using the influence weights, a motion influence map is constructed having each block j

represented by an 8-bin histogram H j(k). Every bin k of H j(k) refers to an orientation range and
stores the total influence (sum of influence weights) on block j in its orientation range. These
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ranges are defined in Equation 3.10, in which k ∈ {1,2,3,4,5,6,7,8}, ∠bi is the angle of the
flow vector bi, and q is the function mapping the flow angle to one of the k orientations.

q(∠bi)≡ k s.t.
(2k−3)π

8
< bi ≤

(2k−1)π
8

(3.10)

To summarize this entire process, Algorithm 1 depicts the main steps to construct a
motion influence map of a frame, given the spatial position and the optical flow of each block.

Algorithm 1 – Motion influence map construction
Require: A distance threshold Td , an angle threshold Fi, a set of blocks B.

1: for all block i do
2: for all block j do
3: if D(i, j)< Td then
4: if −Fi

2 < φi j <
Fi
2 then

5: H j(q(∠bi))← H j(q(∠bi))+wi j
6: end if
7: end if
8: end for
9: end for

3.5.2 Feature extraction using motion influence maps

Feature extraction initiates by repartitioning the video, spatially and temporally, into mega blocks.
A mega block is a spatio-temporal cuboid composed by n×n blocks over t sequential frames
and is constructed using the motion influence representations, not the original frames. Next, the
mega block descriptor is generated by summing up the motion influence vectors of all blocks
within the same frame (generating an 8-dimensional vector for each of its t frames) and, then,
concatenating such vectors. Hence, this entire process creates a final mega block descriptor of
8× t dimensions, as shown in Figure 15.

Figure 15 – Mega block description example (adapted from Figure 5 of (LEE et al., 2015)). In this
example a mega block is defined by 2×2 blocks over 3 consecutive frames. First, all 2×2
motion vectors are added for each frame, generating 3 motion vectors of size 8. The three
vectors are concatenated to generate the final 8×3-dimensional descriptor.
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3.5.3 Training and anomaly detection

Considering a training video composed solely by normal frames, codewords are learned sepa-
rately for every mega block spatial position. This is done by taking all descriptions from a given
spatial position, and by performing a k-means clustering to use the k centers as codewords. Thus,
a region has its normal behavior represented by a dictionary with k codewords.

Lastly, in order to detect anomalies for new samples, the minimal distance between a
new sample and the codewords in its correspondent spatial region is calculated. If this distance is
above an user-defined threshold, the sample is considered as anomalous.

3.6 Composition pattern method
The Composition Pattern method (LI NANNAN, 2015) learns local contextual behavior in two
main steps. First, local atomic patterns are learned globally, what means they do not take into
account contextual information (they are atomic) neither consider spatial location (they are
global). Second, the video is divided into cubes and a histogram of the distribution of atomic
patterns is computed for each video cube. This process generates a new video description, called
composition-pattern representation, which is used to learn normal behavior for different video
spatial regions. In the two subsequent sections, we explain these steps further in details.

3.6.1 Learning atomic patterns

Before extracting features, frames are blurred using a Gaussian kernel (usually with σ = 1), then
a Spatio-Temporal Video Volume (STVV) is built at each pixel. A STVV is a pixel cuboid of
size Lx×Ly×Lt , in which Lx and Ly refer to the spatial dimensions and Lt is associated with the
temporal duration in number of frames. Then, the polar representation of the spatio-temporal
gradients is calculated for each STVV using the equations below:

Mst =
√

G2
x +G2

y +G2
t , (3.11)

θ = arctan
(

Gy

Gx

)
, (3.12)

φ = arctan

(√
Gx +Gy

Gt

)
, (3.13)

where Mst is the magnitude of the spatio-temporal gradient, θ ∈ (−π,π] and φ ∈
(−π

2 , π

2

]
are

the angles of the polar representation, Gx = I(x+1,y, t)− I(x,y, t), Gy = I(x,y+1, t)− I(x,y, t)

and Gt = I(x,y, t +1)− I(x,y, t).

In order to describe a STVV, θ and φ are quantized into eight and four values, respectively.
Afterward, two histograms are computed: the first represents the distribution of Mst according to
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the eight quantized values of θ , and the second represents the distribution of Mst according to the
four quantized values of φ . Lastly, the atomic pattern descriptor is constructed by concatenating
these two histograms and normalizing each bin, creating a final atomic descriptor hi that has 12
dimensions.

To learn atomic patterns, the descriptions of all STVVs are clustered using the online
fuzzy weighted c-means (HORE et al., 2009) and a codebook is obtained by taking the cluster
centers as codewords, what makes possible to represent each STVV as a set of membership
degrees Ui quantifying the similarity between the STVV and each codeword.

3.6.2 Composition descriptor

As atomic patterns are obtained globally, so they do not take into account the spatial location
within the frame, some activities referred as normal in some spatial locations and taken as
abnormal in others, making difficult to classify them out. For instance, a person walking on
the walkway is a normal event, whereas a person walking on the grass should be considered as
an abnormal event. Hence, it is possible to notice that the spatio-temporal context needs to be
assessed.

To address this problem, videos are described using compositions of the above-mentioned
atomic patterns. This description initiates by redividing the video into overlapping cubes, which
have a larger spatio-temporal size when compared against STVVs (i.e. a video cube contains
many STVVs). Next, the description of a video cube is performed in 3 steps: i) the video cube is
divided into 8 blocks under the same size; ii) a membership histogram is built for each block by
accumulating membership degrees of all STVVs, so each block is represented by a histogram
of size C which defines the number of codewords in the atomic pattern codebook; and iii) the
membership histograms of all blocks are merged in a way that bins corresponding to the same
codeword are grouped in, consequently the composition descriptor has 8×C dimensions. The
entire composition process is illustrated in Figure 16.

3.6.3 Anomaly detection using a dictionary of composition patterns

After the phase of the composition-pattern description, normal behaviors are learned by con-
structing a different sparse dictionary for each spatial position. These dictionaries are built using
the following model:

min
D,α

1
n

n

∑
i=1

(
1
2
||xi−Dα i||22 +λ ||α i||1

)
s.t. ||Dj||2 = 1,∀ j = 1,2, ...,k,

(3.14)

where xi ∈ Rd is a d-dimensional training sample, D ∈ Rd×k is the dictionary of size k to be
learned, Dj ∈ Rd is one of the basis, α i ∈ Rk×n are the reconstruction coefficients for each one
of the n training samples (xi) and λ is a sparsity parameter. Therefore, the greater the parameter
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Figure 16 – Example of a composition-pattern representation with the number of codewords in the atomic
pattern codebook equals to three (C = 3). First, the video cube is divided into 8 equally sized
blocks and a membership histogram is computed for each of the 8 blocks. Then, the bins of
all histograms are grouped according to the same codeword (Adapted from Figure 2 of Li
Nannan (2015)).

λ is, the more sparse are the combinations. A stochastic approximation of the optimal solution
for this model is obtained using the method from Mairal et al. (2009).

In the classification phase, given a new sample x and the learned dictionary D, the
reconstruction coefficients α* are obtained from Equation 3.15. Next, the sparsity reconstruction
cost of x is calculated using Equation 3.16 and, if such cost is greater than a given threshold, the
sample is considered an anomaly.

min
α

(
1
2
||x−Dα||22 +λ ||α||1

)
(3.15)

Cx =
1
2
||x−Dα

*||22 +λ ||α*||1 (3.16)

Due to the fact that there is a different dictionary for each spatial location, the thresholds used to
infer whether a sample is anomalous may vary depending on the spatial location (used dictionary)
what makes hard to assign the thresholds manually. In order to tackle this problem, a Gaussian
distribution of the reconstruction costs of the training samples is estimated for each spatial
location. Then, thresholds are set in a way that a sample is considered to be an anomaly only if
the difference between its reconstruction cost and the mean of the distribution is greater than
twice the variance of the distribution.

3.7 Histograms of optical flow orientation and magnitude
method

Based on the studies by Chaudhry et al. (2009), Colque, Caetano and Schwartz (2015) developed
an anomaly detection method referred to as Histograms of Optical Flow Orientation and

Magnitude (HOFM) to describe the optical-flow distribution on video cuboids. In their video
anomaly detection approach, this descriptor is computed for non-overlapping video cuboids and
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it is based on the optical flow estimated for every pair of consecutive frames. To compute the
optical flow, the pyramidal implementation of the Lucas-Kanade-Tomasi algorithm (BOUGUET,
2000) was used. Additionally, to reduce processing time, they compute the difference between
consecutive frames and only estimate optical flow for pixels whose change is greater than a given
threshold.

3.7.1 Cuboid description using HOFM

In order to describe a cuboid they begin by obtaining the polar coordinate representation of
the flow estimate. Then, they quantize the optical flow orientation, which ranges from 0 to
360 degrees, into S bins and map the optical flow magnitude from the interval [0,∞] to B bins.
After that, a S×B matrix, each row corresponding to an orientation range and each column to a
magnitude interval, is used to count the number of co-occurrences of quantized orientation and
magnitude values. Lastly, such matrix is vectorized by concatenating its rows, generating the
final HOFM descriptor. An example of a cuboid description is depicted in Figure 17.

Figure 17 – An example of cuboid description using HOFM. First, an optical flow estimate is obtained
(in polar coordinates) for every pixel within the cuboid. Secondly, both the optical flow
orientation and magnitude are quantized. In this example, the optical flow orientation was
quantized in four intervals ({[0,90); [90,180); [180,270), [270,360)}), and the magnitude
was also quantized in four ranges ({[0,20); [20,40); [40,60), [60,∞)}). Thirdly, a matrix –
which is 4× 4 because both orientation and magnitude were quantized in four intervals –
counts co-occurrences of orientation and magnitude values. Finally, this matrix is vectorized,
generating the final HOFM descriptor (Adapted from Figure 4 of (COLQUE; CAETANO;
SCHWARTZ, 2015))).

3.7.2 Anomaly detection with HOFM descriptor

After computing the HOFM descriptions of all cuboids on the training data – which only contains
non-anomalous observations – a new cuboid is classified by comparing its description against all
training samples located at the same spatial position. If the distance of this new sample to the
nearest point is greater than a given threshold, the cuboid is considered to be anomalous.
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3.8 AMDN method

Xu et al. (2015) were the first to use an unsupervised deep learning framework – named
Appearance and Motion DeepNet (AMDN) – to create a video representation to detect unusual
behavior in security videos. Additionally, their framework uses both early and late fusion of
motion and appearance information to improve performance and achieve state-of-the-art results.

optical-flow patch

video patch

early fusion
(pixel-level)

SDAE 
appearance

SDAE
joint

SDAE
motion

OC-SVM

OC-SVM

OC-SVM

encoder output

encoder output

encoder output

late fusion

Figure 18 – AMDN framework overview. An important detail in this framework is that the OC-SVMs use
the code (output of their encoder) generated by the SDAEs as feature vectors (Adapted from
Figure 1 of (XU et al., 2015)).

During the training phase, their method uses Stacked Denoising Auto-Encoders (SDAEs)
to learn representations for three different sources: motion, appearance and both motion and
appearance simultaneously (which provides an early fusion of the two sources of information).
First the a layer-wise pre-training is carried out on the SDAE, then a fine tuning is performed
on the entire model. Once the auto-encoder models are trained, the outputs of their encoder
part are used to train three One-Class SVMs (OC-SVMs) to learn the normal behavior for each
representation. Given the abnormality score of each of these three OC-SVM models can have
different importance on the final anomaly detection, a weight is learned for each of them so
detection become more accurate.

In the detection phase, these SDAEs are used to extract features from video patches,
which are feed into the three previously trained OC-SVMs to compute an anomaly score for each
of them. Then, these scores are combined, using the weights learned during the training time,
and a final anomaly score – which allows a late fusion of motion and appearance information –
is calculated. In this setup, anomalies are identified by thresholding this final score. An overview
of the AMDN framework is depicted in Figure 18.
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3.9 Plug-and-play CNN method

Ravanbakhsh et al. (2018) presented an abnormal event detection method for security videos that
uses features extracted from an AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) CNN,
pre-trained on the ImageNet dataset. Their method takes advantage of convolutional feature
maps and optical flow to monitor changes in video regions and find unusual patterns. Their
anomaly detection technique can be divided into three parts: generate CNN-based binary maps
from a sequence of input frames, computing Temporal CNN Patterns (TCPs) and feature fusion
(between the optical flow and TCPs). Such steps are illustrated by Figure 19.

The first step to compute the binary maps is to describe frame regions using the pre-
trained AlexNet model, which is accomplished by taking the output (feature maps) of the last
convolutional layer. By doing so, a n-dimensional region description is generated for each region
having the size of the receptive field of such neurons. Considering the AlexNet model employed
by the authors, each image region is described by a 256-dimensional feature vector, which is not
convenient when trying to track temporal changes. Thus, to reduce the descriptor dimensionality,
an Iterative Quantization Hashing (ITQ) (GONG; LAZEBNIK, 2011) is applied to convert the
feature vectors into 24-bit binary codes.

Fully-convolutional
network

Feature maps

Binary quantization
layer

Binary bit map
(24 bits)

Figure 19 – The pipeline of binary maps generation.

Having the description of frame regions (also called patches), the video is then divided
into temporally-overlapping video blocks. Such process is carried out by taking each patch
description pi

t – where t is the frame number and i the patch spatial position – and by creating
a block bi

t containing L+ 1 patches centered on pi
t ({bi

t} = {pi
l}

t+L/2
l=t−L/2). Next, each block is

described by a histogram hi
t that represents the distribution of binary codes over its patches.

In attempt to infer when an appearance anomaly occurs using this histogram, the TCP
measure of a block is computed as follows:

TCP(bi
t) =

|hi
t |

∑
j=1
||hi

t( j)−hi
t( jmax)||22,

where |hi
t | is the number of histogram bins, ||.||2 is the L2-norm, hi

t( j) is the jth bin of hi
t , and

jmax is the index of the bin with the greatest count in hi
t (i. e. hi

t( jmax) is the mode of hi
t). This

measure represents irregularity (deviation from the dominant pattern) in appearance, whose
greater values increase the chance of having an anomaly.
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As every pixel within a block has the same TCP value, TCP maps do not provide an
accurate abnormality location as they still consider image regions instead of individual pixels.
Aiming at improving anomaly localization, a structure named optical-flow maps is built based
on the following steps: i) the optical flow magnitude is estimated for every pair of consecutive
frames within the video, meaning that each pixel within a block has a corresponding optical flow
magnitude value; ii) considering a block bi

t of length L+1, the optical-flow map di
t is calculated

by summing up the flow magnitude at each spatial position (di
t = ∑

L+1
l=1 flowi

t(l)) along time;
and iii) the fusion between the TCP map and the optical flow map is carried out by taking their
average and generating what the authors refer to the motion segment map, consequently leading
regions with greater optical flow magnitudes to be more influenced by TCP values. Based on
such process, anomaly detection is carried out by applying a threshold to the values on the
motion segment map.

3.10 Parallelepiped spatio-temporal regions method
George et al. (2018) developed a technique that uses a non-uniform grid of regions to deal
with distance variations between the camera and objects. Their approach uses parallelepiped
spatio-temporal regions to account for object size variations on both horizontal and vertical axes,
improving upon previous non-uniform grid methods (LEYVA; SANCHEZ; LI, 2017) that only
consider size variations with regards to the vertical axis.

To build up the non-uniform grid, they start by defining the side of the row containing
the smallest cells (top row) in the grid as y0, and the growth rate of the cell rows as a. Next, they
create cell rows, until the entire image is covered, using the following equation:

yk+1 = ayk,

where k is the row id. By doing so, they are able to account for object-size variations along
the vertical axis. To deal with horizontal variations, that can occur in scenes where objects are
observed from an angle, they apply the following shear transform on the vertices of each cell:[

x′

y′

]
=

[
1 m

0 1

][
x

y

]
,

where (x′,y′) represents the shear transformed points and the parameter m determines the shear
degree. At the end of such process, it is possible to obtain a non-uniform grid such as the one
illustrated in Figure 20.

Once the cell regions are obtained, a different fully-connected auto-encoder model is
learned for each region, which uses the HOFM features (COLQUE; CAETANO; SCHWARTZ,
2015) computed for that cell over the last 5 frames (for more details on the HOFM features,
please refer to Section 3.7). During the anomaly detection phase, the reconstruction error of each
model is used as an anomaly score for its corresponding frame region.



3.11. Comparison 63

Figure 20 – An example of a non-uniform grid produced using a shear transform.

According to the experimental results, their method is capable of achieving good anomaly
detection results and improving robustness with regards to changes of object sizes according to
their distance to the camera. Nevertheless, their approach needs several parameters to be set in
order to obtain a good non-uniform grid. Hence, this method can be rather time consuming to
setup in a real-world situation, where several cameras must be monitored.

3.11 Comparison

Table 1 – Main characteristics of the video anomaly detection methods.

Method Visual cues Monitoring
scheme Adaptiveness Filtering Anomaly detection

method Feature type

LMH
(ADAM et al., 2008)

motion
fixed-size
monitors -

post-processing
(anomaly alarms)

histogram-based
likelihood optical-flow magnitude

Sparse combination
(LU; SHI; JIA, 2013)

both
fixed-size
monitors

multi-scale
processing - reconstruction error dictionary patterns

LNND
(HU et al., 2014)

both
fixed-size
monitors - - Fast MMNB LNDD features

Motion Influence Map
(LEE et al., 2015)

motion
fixed-size
monitors - - normalcy dictionary

dictionary patterns based
on motion influence maps

Composition Pattern
(LI NANNAN, 2015)

both
fixed-size
monitors muitiple models Gaussian blur reconstruction error dictionary patterns

HOFM
(COLQUE; CAETANO; SCHWARTZ, 2015)

motion
fixed-size
monitors muitiple models -

nearest neighbor
distance HOFM descriptors

AMDN
(XU et al., 2015)

both
fixed-size
monitors

multi-scale
processing

denoising
auto-encoders OC-SVM scores

auto-encoder features
(motion and appearance)

Plug-and-play CNN
(RAVANBAKHSH et al., 2018)

both
fixed-size
monitors - - TCP-based likelihood

CNN features
and optical-flow

Parallelepiped regions
(GEORGE et al., 2018)

motion
handcrafted grid
(non-uniform)

non-uniform grid/
multiple models -

reconstruction error
(using an auto-encoder) HOFM descriptors

In this section, we have compiled Table 1 to summarize/compare the main characteristics
of the reviewed methods, what allowed to notice the following patterns:

Visual cues: all reviewed methods employ motion cues in order to detect anomalous behavior,
while only half of them also use appearance cues.

Monitoring scheme: most of the reviewed methods employ fixed-size monitoring regions, which
tend to hamper their ability to adapt to viewing distance changes. To tackle this prob-
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lem, George et al. (2018) use a non-uniform grid that accounts for object-size variations.
Nonetheless, their grid needs to be manually created for each different camera, what makes
their method rather timing consuming to be setup in applications with several cameras.

Adaptiveness: besides the usage of non-uniform grids of monitors – what is carried out only
by (GEORGE et al., 2018) – the reviewed methods that aim at adapting to changes in
viewing distance either employ a different model for each monitoring location or process
the video at multiple scales (spatial resolutions). The usage of multiple models tends to
require more data for the training step, as all normal behaviors need to be well represented
for every monitoring region. On the other hand, methods that process the same frame at
multiple scales increase their computational complexity.

Filtering: for the most part, filtering the model inputs and outputs is a step that does not receive
much attention in surveillance applications. Based on previous findings (ADAM et al.,
2008), we conclude that the filtering of surveillance video information (specially when
working with optical-flow estimates) improves anomaly detection results.

Anomaly detection method: methods that employ dictionary learning and auto-encoder models
tend to use the reconstruction error as an anomaly score, while other methods use some
kind of likelihood (e.g. nearest neighbor, histogram-based probability, OC-SVM distances
from the decision boundary) as such scores.

Feature type: about half of the reviewed methods employ feature learning by building up some
auto-encoder or dictionary, while the remaining ones rely on handcrafted descriptors.
Besides, the majority of reviewed methods use optical-flow estimates as part of their
anomaly detection pipeline.

3.12 Concluding remarks
This chapter presented several anomaly detection methods for video surveillance applications.
Even though these approaches have confirmed good performances on challenging scenarios, it is
possible to notice that they still have relevant gaps: i) too many parameters must be optimized
thus increasing the setup time; ii) issues are observed when dealing with noisy optical-flow
estimates; and iii) videos must be analyzed multiple times at different scales and resolutions
in order to account for viewing changes. These are some of the main gaps that motivated us to
propose the methods detailed in Chapter 4.



65

CHAPTER

4
PROPOSED APPROACHES

4.1 Opening remarks

In the last chapter, we presented an overview of several methods designed to tackle the anomaly
detection problem in video surveillance applications. Based on such study, we identified the
following gaps in the literature: i) the lack of an in-depth understanding on the usage of CNNs
on surveillance problems; ii) the need for robust methods to deal with subtle movements/changes
occurring in such type of footage; and iii) automatic approaches to address different object-to-
camera distances. By investigating those issues, security systems become less time consuming to
be setup as well as more computationally efficient in production environments. From that, they
become easier to be deployed particularly in scenarios with multiple cameras to be monitored.

Motivated by such gaps, we studied and developed a series of methods. First, we designed
an auto-encoder, fully based on 3D convolutions, and employed its local reconstruction error to
detect abnormal local events. Secondly, we proposed a framework to better leverage the motion
information of surveillance videos. Finally, we proposed a novel method that adapts the local
monitoring dimensions according to the expected average object size at each spatial location.
The remaining of this chapter details all those approaches.

4.2 Anomaly detection with 3D-fully-convolutional auto-
encoders

Motivated by the results obtained using auto-encoders in security videos (XU et al., 2015) and
by the performance of 3D-convolutional networks (TRAN et al., 2015), we here introduce a fully
3D-convolutional auto-encoder architecture to detect anomalous events in surveillance videos, as
shown in Figure 21. Our architecture uses only 3×3×3 kernels, has 5 layers, employs 2×2×2
kernels at the max-pooling and up-sampling operations, and it employs the mean-squared error
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(MSE) as loss function, ReLU as the activation function of all layers, the Batch Normalization in
every layer and Gaussian noise to corrupt input data.

Conv 3D
16 P

oo
l Conv 3D

8 P
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l Conv 3D
4 U

p Conv 3D
8 U

p Conv 3D
16

Encoder Decoder

Figure 21 – 3D auto-encoder architecture. The number at each convolutional layer indicates how many
filters are learned at that particular stage.

We trained our auto-encoder on 20×20×8 cuboids extracted from training videos. After
that, in order to detect anomalies, cuboids from the test set were reconstructed with the learned
model and the MSE of such reconstruction was calculated. The MSE value is considered as an
anomaly score, which means that higher values of such score indicate ha higher chance of having
an anomaly. In order to illustrate the concept, Figure 22 shows a frame containing an anomaly
and its reconstructed version. By comparing the two images, we notice a poor reconstruction
result for the biker (anomaly) and a fairly good one for pedestrians and the footage background.

Figure 22 – Frame reconstruction using a 3D auto-encoder. The first image is the original frame and the
second is its reconstructed version. Observe the reconstruction is very accurate, except for the
biker (anomaly).

When compared to pre-trained CNN architectures, our 3D auto-encoders are more prone
to learn specific features while using less parameters, what makes its inference more efficient.
Nevertheless, our experimental results suggest that our approach struggles to detect anomalous
behavior in the presence of subtle object movements and object-to-camera distance variations,
what was addressed as discussed next.
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4.3 Robust and adaptive motion descriptors with optical-
flow filtering

Considering the gaps we have identified from the literature review and by analyzing the results
of our auto-encoder model, we turn our attention to improve the robustness of optical-flow-based
video anomaly detection methods. In particular, with respect to object-to-camera distance varia-
tions and subtle movements. We start tackling this issue by measuring the gains of reducing the
noise on optical-flow estimates by leveraging the EMD decomposition. Despite being a tool that
allowed us to demonstrate the importance of optical-flow filtering, the EMD decomposition is bet-
ter suited for offline situations, such as a forensic scenarios, in which the entire time series/frames
is assumed to be available beforehand. Then, we continue our study by investigating the usage
of wider frame gap and a temporal median-filter to mitigate this issue, which also confirms to
improve the detection performance, while being more convenient in terms of computational
complexity. Lastly, we propose a novel method to adapt region monitoring size to the average
object size/velocity expected for each image region.

4.3.1 Deterministic EMD components as filtered optical-flow esti-
mate

As proposed by Rios and Mello (2016) and explained in Section 2.4, Empirical Mode Decompo-
sition (EMD) can be used to decompose time series into two components: a deterministic and a
stochastic one. One way of interpreting them is to consider the stochastic component as noise
and the deterministic as a filtered time series.

Such a way of looking at EMD is particularly suitable when working with optical
flow from surveillance videos, as the flow estimates between consecutive frames tend to be
considerably noisy, while the flow field tends to be rather similar for temporally-close frames.
Hence, the results of decomposing optical-flow estimation of a surveillance video can be seen in
the following way: i) the deterministic component represents a filtered flow estimate obtained by
leveraging the temporal smoothness of a surveillance video; and ii) the stochastic component can
be seen as noise from the local optical-flow estimates. Based on that, we compare the detection
performance of using raw and filtered local optical-flow magnitudes to detect anomalies in
security videos. Using the pipeline presented in Figure 23, noisy optical-flow estimates can
hamper the detection performance.

Preprocessing Optical flow estimate EMD
Deterministic 
component 
extraction

Thresholding
(anomaly detection)

Figure 23 – The main steps involved in our pipeline.

To perform our comparison, we start by dividing the video in 30× 30 overlapping
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windows, then we compute a background image by taking the average of all training images (see
Figure 24b). Next, we use such an image to speed-up the optical-flow estimation by identifying
windows that do not contain movement, i.e. its absolute difference to our background image
is lower than a user-defined threshold (illustrated in Figure 24a). Lastly, we compute the flow
value for the foreground regions using the method introduced in (FARNEBÄCK, 2003) and set
the flow as zero for the remaining ones. All this preprocessing approach is based on previous
algorithm proposals, including (ADAM et al., 2008) and (COLQUE; CAETANO; SCHWARTZ,
2015).

(a) (b)

Figure 24 – Preprocessing stage. In (a), we present the absolute difference between a frame and the
background image. In (b), we have the background image obtained by computing the mean
of all training images. By visually inspecting (a), one may observe that even a reasonably
crowded image is mostly background, so this approach can indeed help reducing the flow
estimation time (Adapted from Figure 2 of (PONTI; NAZARE; KITTLER, 2017).

Once we have the optical-flow estimates for all windows, we take the average flow
magnitude of all pixels within each window and consider this value as a raw anomaly score
for such a particular frame region. Next, we apply EMD on the features of each block, so the
flow of each spatial position is temporally decomposed. As explained in Section 2.4, EMD
iteratively generates a set of IMFs being the last ones more deterministic. Hence, it is possible to
establish a cut-off point to divide IMFs into two groups: one with the more deterministic IMFs
and another with the more stochastic ones. Then, by adding up IMFs belonging to each group,
we obtain our two components. Roughly speaking, we perform this cut-off when the mutual
information for consecutive IMFs changes abruptly. More specifically, we first obtain the mean
mutual information value as follows:

V̄ =
1

N−1

N−1

∑
n=1

νn,

where N is the number of IMFs and νn is the mutual information value computed between
the IMFs at indices n and n+ 1. Next, we look for the greatest mutual information value νz
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that is smaller than V̄ , which is then considered as the cut-off point. Hence, our deterministic
component is defined as follows:

ydet(t) =
N

∑
n=z+1

xn(t)+ r(t),

in which xn(t),∀n≥ z+1 are the deterministic IMFs and r(t) is the residue. Then, we take the
deterministic optical-flow component as a filtered version of the original anomaly score. Such
approach generates much more reasonable motion/velocity estimates, as illustrated in Figure 25.
Despite the improvements in anomaly detection when reducing noise in optical-flow estimates,
such approach is limited to forensic (offline) applications as it requires the entire series to be
available beforehand. Nonetheless, the results obtained by the EMD decomposition confirm the
importance of reducing the amount of noise in optical flow estimates in surveillance scenarios.

Figure 25 – Temporal filtering for an entire video with examples of normal and anomalous events. Observe
it is easier to detect unusual events when using the deterministic component (Adapted from
Figure 1 of (PONTI; NAZARE; KITTLER, 2017)).

4.4 Adaptive modeling of motion patterns

In order to make it possible to leverage optical-flow filtering in way that is more suitable for
surveillance scenarios (without the need for the entire flow series), we present a novel approach
(see Figure 26 in our workflow) that employs a lightweight filtering procedure and an adaptive
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motion modeling framework to mitigate the effects of noisy optical-flow estimates and, also,
viewing distance variations, leading to improvements in the abnormal event detection for security
footage.

Optical-flow
estimation

Optical-flow 
norm. map

Dynamic 
monitors

Feature 
extraction

Feature 
scaling

1 2 3 4 5

1-NN model

6

Temporal 
filtering

7

Figure 26 – Workflow of the proposed approach. Only steps 1 to 6 are involved in the training stage,
having some type of learning from steps 2 to 6. During prediction, the temporal filtering (step
7) is used to reduce the number of false positives.

Having a video V composed of T instants, each instant t = 1 . . .T is represented by a
frame (image) It with resolution M×N. The anomaly detection problem can be defined as finding
a function A : RD→ [0,1] which estimates an anomaly score based on D input features extracted
from a frame region. Additionally, as this is an anomaly detection method, such function is
inferred using features strictly extracted from normal data (frames with no abnormal behavior). In
the remaining of this section, we introduce our novel motion-based anomaly detection framework,
which was designed to be robust to noisy optical-flow estimates and adapt to object size changes.
Also, to facilitate reading, Table 2 contains a description of all symbols used throughout this
section.

Table 2 – Summary of the symbols used in this section.

Variable Definition
V video used by our method as training or test data
t index of a certain frame in V
T size (number of frames) in V

M×N number of rows and columns of each frame in V
It t-th frame of V
A anomaly detection method/function

(x,y) coordinates of a pixel (row × column) within It
ht optical flow estimate between It and It−∆t
h optical flow map
w base size of the dynamic window
~d 8-dimensional descriptor of a frame region

4.4.1 Training phase

At the first step of our approach, we perform a dense optical-flow estimate among pairs of
frames. This means that we generate the flow field ht that contains a vector estimating the
movement of each pixel ht(x,y) from some previous frame It−∆t to the current one It . As in
security footage is common to capture footage in which the objects are fairly far from the camera,
objects end-up being represented by small number of pixels. Hence, their movement tends
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to be rather subtle from one frame to the next, making it hard to have a precise optical-flow
estimate. Motivated by this issue, differently from most methods (ADAM et al., 2008; COLQUE;
CAETANO; SCHWARTZ, 2015; GEORGE et al., 2018), we study the usage of optical flow
estimated from longer frame intervals (i.e. [t, t−∆t] for ∆t > 1). The advantages of such simple
change are noticeable from the comparison shown in Figure 27.

(a)

(b) (c)

Figure 27 – Example of optical-flow estimation with different values for ∆t. In (a), we have the original
frame, (b) represents the flow extracted using ∆t = 1, while (c) shows the results for ∆t = 3.
We can notice that the estimate of (c) has a lower degree of noise when compared to (b). For
(b) and (c), colors represent the direction of the flow whose intensities indicate magnitudes
(the greater the intensity is, the larger is the magnitude).

In scenarios where the size of objects change according to their position within the image
(as the one shown in Figure 27), we are not able to use optical flow as a relative velocity measure
among pixels due to the fact those methods estimate movement with regards to the number
of pixels instead of physical distances. To tackle this issue, in the second step of our training
pipeline, we use a linear regression model to infer the average velocity (in pixels) of an object
for each image coordinate. This model allow us to estimate velocity ratios for each pair of image
coordinates and, therefore, make motion patterns invariant to the distance between the camera
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and the object.

To build such model, we start by analyzing the training set and counting the number of
non-zero optical-flow magnitudes at each pixel location. Next, we take all locations with at least
k (we set k = 100) non-zero magnitudes and learn a Huber linear regression model (HUBER,
2011) to estimate the average flow magnitude given the pixel coordinates (x,y) (see Figure 28a).
This particular type of linear regression model was employed due to its robustness to outliers.
Figure 28b allows to confirm that this model is capable of learning that objects at the top of the
image move slower (with regards to the number of pixel) when compared to pixels at the bottom.
It is important to notice that by using the Huber regression we assume that average velocities
change linearly, which may be the case for several surveillance scenarios, but not for all of them.
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Figure 28 – Illustration of the optical flow mapping: (a) refers to the mean magnitudes for pixels with
more than 100 non-zero observations; and (b) shows the final map. Please note that each plot
has a different range of values.

Once our linear regression model (referred to as optical-flow map, for the remaining
of this text) is trained, in the third step of our training pipeline, we use its results to infer the
expected average object size at each image region. To do so, we start by locating the contour
line of the optical-flow map in which the values are equal to one. Next, we place windows of
size w along this particular contour line, so they have about 50% of horizontal superposition.
For our experiments we use values for w that are approximately the expected object size for
this contour line, while also testing the effects of using smaller window sizes. After creating
monitors for this first contour line, we find two lines (one above and the other bellow the first one)
that have roughly 50% of horizontal superposition with the monitors from the initial line and
create windows of size h(x,y)×w, where h(x,y) is the mean optical-flow value for the contour
line. This process is repeated until monitors cover the entire image up. By varying the window
size according to the expected average pixel displacement and having vertical and horizontal
window superposition, our method becomes more robust to changes in scale and avoids having
anomalies occurring at the boundary between monitors, respectively. Therefore, our approach
improves upon previous studies that – despite using window superposition – either use fixed
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monitor sizes (COLQUE; CAETANO; SCHWARTZ, 2015; ADAM et al., 2008), or multiple
monitor sizes for the entire image (XU et al., 2015). Figure 43 show a example of monitors for
two different contour liner of a normalized optical-flow map.

Figure 29 – Example of monitors generated for two different contour lines on the normalized optical-flow
map.

At the fourth step of our training process, we normalize the optical-flow field of each
frame by dividing flow vectors by the expected average flow magnitude (obtained from the
optical-flow map). Then, for each window region (obtained at step three), we compute the
following 8-dimensional descriptor:

~d = {µm,σm,γm,κm,µo,σo,γo,κo},

where µ , σ , γ , κ represent the mean, standard deviation, kurtosis and skewness, while m and o

are related to the orientation and the magnitude of the optical-flow, respectively. This strategy
makes our descriptor resilient to changes in image perspectives with regards to optical flow
values and object scales. Moreover, we do not need to setup hyper-parameter like the bin sizes
used in (COLQUE; CAETANO; SCHWARTZ, 2015) or manually create the adaptive grid of
windows like (GEORGE et al., 2018).

Given we employ a nearest neighbors approach to detect anomalies, we first need to
normalize our features to ensure that they all have the same scale. To do that, in our fifth step,
we normalize our data using a 0−1 or a z–score normalization (we compare both approaches in
our experiments).

With the normalized features, in our sixth step, we train a single 1-NN model to generate
anomaly scores for all windows within the frame. This approach has two main advantages: i) it
is able to learn normal behaviors from the entire image instead of building local models; and ii)
it does not need to process the frame at multiple resolutions to improve resilience to viewing
changes.
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4.4.2 Prediction phase

After the training process, we obtain: the normalized optical-flow map, the location of all
monitors, a feature normalization model and a trained 1-NN model. When generating predictions
from new data, we do as follows:

1. Compute the optical flow between the new frame It and t−∆;

2. Normalize the obtained optical flow field using our optical-flow map;

3. Locate the region corresponding to each monitor within the frame;

4. Generate our 8-dimensional feature vector from every monitor region;

5. Normalize our feature vector;

6. Compute a first anomaly score for each pixel using our 1-NN model. Given our windows
overlap, the same pixel may have more then one score, so the greatest value is taken as the
pixel anomaly score;

7. Use a temporal median filter to remove noisy pixel scores.

Lastly, in the seventh step of our pipeline (that is only present in the prediction phase),
we post-process (filter) our scores in attempt to mitigate the types of noise that are not addressed
by increasing the frame gap. For instance, if we have some kind of interference at one of the two
frames used to compute our flow, the results would be erroneous. To tackle problems that may
emerge from the local nature of the optical flow, we enforce the fact that surveillance footage
tends to smoothly change by filtering our anomaly scores.

Based on our pixel-level values, we also compute a frame-level anomaly score as the
maximal anomaly score of its pixels. These scores are used in our experimental setup to compare
our approach to related studies on both frame and pixel-level anomaly detection benchmarks.

In summary, our goal is to use the first and seventh steps of our framework to investigate if
filtering out the noise from optical flow estimates can improve anomaly detection in surveillance
situations (as presented in the first part of our hypothesis). Additionally, by employing our
dynamic monitors strategy (second and third steps of our framework), we aim at verifying
whether adapting to changes in viewing distances (second part of our hypothesis) improves
anomaly detection results on security footage.

4.5 Concluding remarks

This chapter described our three anomaly detection methods for video surveillance applications:
i) a 3D-convolutional auto-encoder that obtains comparable results to pre-trained CNN models;
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ii) an EMD-based optical-flow decomposition that improves anomaly detection by providing
more robust flow estimates; and iii) a motion modeling framework that tackles optical flow noise
using lightweight filtering techniques and automatically adapting to viewing changes. The next
chapter presents our experimental setup and shows an in-depth comparison of our proposed
methods against the related work.
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CHAPTER

5
EXPERIMENTAL SETUP AND RESULTS

5.1 Opening remarks

In this chapter, we report results on widely used benchmark datasets to analyze the performance
of our three anomaly detection methods: i) dataset-specific fully-3D-convolutional auto-encoder;
ii) EMD-based optical-flow filtering; and iii) adaptive modeling of motion patterns. Next, we
establish some baselines to contrapose all three methods to pre-trained CNNs used as feature
extractors, once: i) CNNs have achieved outstanding performance results on several transfer-
learning scenarios; and ii) to the best of our knowledge, there are no studies comparing those
models on video anomaly detection situations.

Starting with the first method, we confirmed that the dataset-specific fully-3D-convolutional
auto-encoder is capable of achieving comparable results to the CNN baselines, while drastically
reducing the number of network parameters. Following our study, we show a complete evalua-
tion of our second and third methods to filter out and reduce the impacts of noisy optical-flow
estimates on anomaly detection, which confirmed to obtain more robust optical-flow estimates
without over-increasing the processing power demanded by the automated surveillance system.

At last, we compare the results of our three methods against the related studies, corrob-
orating their abilities and robustness while outperforming strategies currently composing the
state-of-the-art.

5.2 Anomaly detection datasets and evaluation metrics

This section presents some surveillance video datasets that are widely employed to assess the
performance of anomaly detection systems. Furthermore, it reviews the main evaluation criteria
used to compare models in this application domain.
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5.2.1 UCSD anomaly datasets

The two UCSD datasets (MAHADEVAN et al., 2010; LI; MAHADEVAN; VASCONCELOS,
2014), named Ped1 and Ped2, were recorded at the UCSD (University of California, San Diego)
campus using stationary cameras. Each dataset contains videos of a different pedestrian walkway
on the UCSD campus and all videos within the same dataset are under the same specifications
(i.e. camera position, viewing angle, resolution and fps).

Ped1 and Ped2 are divided into train and test videos and only the test ones contain
abnormal events, e.g. carts, skaters, bikers and people walking on the grass or across the
walkway. Table 3 presents the main characteristics of Ped1 and Ped2 and Figure 30 shows some
examples of normal and abnormal frames.

Table 3 – Video specifications for Ped1 and Ped2.

Characteristic Dataset
Ped1 Ped2

train videos 34 16
test videos 36 12

frame resolution 238×158 360×240
fps 10 10

frames per video 200 120−180

Figure 30 – Frames from Ped1 (first row) and Ped2 (second row) in which anomalies were manually
highlighted by red boxes.

Among the main advantages, the videos in those datasets were not staged and the majority
of test videos were manually annotated at the pixel-level. This means that every test frame has a
corresponding binary mask indicating which pixels (if any) contain anomalies. By using this
pixel-level annotation, it is possible to evaluate a method based on both its ability to detect
abnormal frames and to locate an anomaly within a frame.
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On the other hand, those datasets only contain short videos (none of the videos has more
than 200 frames), therefore one may question if they do represent real surveillance scenarios.
This fact may hamper the performance of algorithms that expect longer videos, like the ones that
do not rely on a training phase.

5.2.2 UMN dataset

The UMN dataset1 is composed of three different scenarios of several people walking (as shown
in Figure 31). The anomalies of such dataset are represented by time intervals in which people
are running, supposedly to escape from some kind of dangerous situation. Therefore, differently
from the local anomalies of the UCSD datasets, the abnormal patterns are global. Regarding its
labels, this dataset only has frame-level annotations. Some characteristics of each scenario are
presented in Table 4.

Figure 31 – Sample frames from the UMN dataset. Each image shows a frame from one of the three
different scenarios.

Table 4 – UMN dataset characteristics.

Characteristic Scene 1 Scene 2 Scene 3
scene size 1450 frames 4415 frames 2145 frames
resolution 320×240 pixels 320×240 pixels 320×240 pixels

environment outdoor indoor outdoor

5.2.3 Subway exit dataset

This dataset, introduced by Adam et al. (2008), contains a single 43-minute video with a
512× 384 resolution and 25 fps. In their experiments, the first 5 video minutes were used to
perform training and the remaining frames for testing. In this dataset, an unusual event occurs
when a person is moving in the wrong direction, which means a person is trying to break in the
subway station. In Figure 32, we show some frames extracted from this dataset.

1 The UMN dataset can be downloaded at: <http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi>

http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
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Figure 32 – Frames extracted from the Subway Exit dataset. The first frame represents a normal event,
while the second, which contains a person trying to break in the subway station, represents an
unusual event.

Table 5 – Dataset comparison.

Dataset Event type Event source Scene Label type Staged
UCSD local both outdoor frame, pixel no
UMN global motion both frame yes

Avenue local both outdoor frame, pixel no
Subway exit local motion indoor frame no

5.2.4 Avenue dataset

The Avenue dataset was presented in (LU; SHI; JIA, 2013) and contains a total of 30652 frames
– being 15328 for training and 15324 for testing – filmed at the CUHK (The Chinese University
of Hong Kong) campus avenue. Regarding the number of videos, it contains 16 for training and
21 for testing. This dataset has challenging scenarios like: i) there is a slight camera shake in
one of the test videos; ii) the training set contains few outliers; iii) some of the normal patterns
are rather rare in the training set. The evaluation process for this dataset focus on frame-level
detection. Figure 33 shows some examples of anomalous frames.

5.2.5 Dataset comparison

Now, in Table 5, we summarize/compare some characteristics of the datasets described in the
previous sections with regards to: types of events (local and global), source of anomalous events
(appearance and motion), scene environment (indoor and outdoor), types of available labels
(event, frame and pixel) and if the videos were staged.

We decided to use the UCSD and UMN datasets to evaluate our approaches because
they can help us to measure the results of our models with regards to local and global anomaly
detection, respectively. Another important reason for such a choice is that those datasets are
widely used in the literature, thus facilitating comparisons of our methods to other studies.
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(a) abnormal object (b) strange action

(c) wrong direction

Figure 33 – Frames extracted from the Avenue dataset showing different types of unusual events
(highlighted by a red box). These frames with highlighted anomalies were obtained from
<http://www.cse.cuhk.edu.hk/~leojia/projects/detectabnormal/dataset.html>.

5.2.6 Evaluation criteria

In the literature, the three most common strategies to assess the performance of a video anomaly
detection algorithm are: the event-based, the frame-based and the pixel-based criteria. They are
discussed in the next four sections.

Event-level criterion

In a event-based evaluation, the algorithm first detects frames, or frame intervals, supposedly
containing unusual events. After that, these predictions are compared against a ground-truth list
of unusual events to determine the percentage of correctly identified elements (detection rate)
and the number of false alarms. An unusual event is considered to be correctly identified if the
algorithm is capable of detecting at least a predetermined percentage of its anomalous frames in
the event interval. On the other hand, a false alarm occurs when the algorithm detects a normal
interval as anomalous.

Frame-level criterion

In an frame-based evaluation, the anomaly detection algorithm classifies each frame in the test set
as normal or abnormal. After that, classifications are compared against a frame-level ground-truth

http://www.cse.cuhk.edu.hk/~leojia/projects/detectabnormal/dataset.html
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to determine the number of true-positive and false-positive frames. The True Positive Ratio

(TPR) and False Positive Ratio (FPR) are then computed as follows:

T PR =
# of true-positive frames

# of positive frames
, (5.1)

FPR =
# of false-positive frames

# of negative frames
. (5.2)

Using TPR and FPR values, the Receiver Operating Characteristic (ROC) curve is constructed.
Finally, this curve is summarized with the Equal Error Rate (EER), which is defined as the
value of FPR at which FPR = 1−T PR. This is the same as saying that the EER is the value of
FPR at which the ROC curve intercepts the line connecting points (0,1) and (1,0), as shown in
Figure 34. It is important to observe that the smaller is EER, the better it is.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R

Figure 34 – ROC curve example. The EER value is obtained by taking the FPR value at the point at which
the ROC curve (blue curve) intercepts the dashed line.

Pixel-level criterion

In a pixel-level evaluation, instead of detecting anomalous frames, the algorithm classifies each
pixel as normal or abnormal. Then, these classifications are compared against a frame-level
ground-truth (see Figure 35). If a frame contains an abnormality and the algorithm is capable
of detecting at least a given percentage of its anomalous pixels, the frame is considered a true-
positive2. On the other hand, if the algorithm considers one or more anomalous pixels in a frame
with no abnormality, this frame is considered a false-positive. After computing a the number of
2 Li, Mahadevan and Vasconcelos (2014) use 40% as the minimum pixel detection percentage for the

UCSD datasets, which is adopted by most studies. We are going to consider the same threshold to
make our results comparable against the ones from the literature.
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true-positives and the number of false-positives, the ROC curve is calculated. To summarize this
curve, the AUC (Area Under the ROC curve) and the EER are used.

Figure 35 – An image from the Ped1 dataset containing an anomaly and its corresponding pixel-level
ground-truth.

5.2.7 Evaluation criteria comparison

Given that the prior evaluation criteria are widely used in the literature, Table 6 summarizes the
main advantages and drawbacks of each criterion.

Table 6 – Evaluation criteria comparison.

Criterion Advantages Drawbacks
Event-level It is the simplest among the three, but

it can still point out if an algorithm is
capable of detecting anomalous events,
which is the main focus of surveillance
applications.

It does not take into account the per-
centage of anomalous frames that the
algorithm is capable of correctly de-
tecting, neither considers if the algo-
rithm is capable to correctly locating
the anomalies within frames.

Frame-level By computing the number of true-
positive and false-positive frames, it
better considers how precise are the
anomalous event interval detection.

It does not take into consideration the
effectiveness of the algorithm in cor-
rectly locating the anomalies within
frames.

Pixel-level It shows if the algorithm is capable of
locating the anomaly within the frame
or if the obtained frame-level detec-
tion was a “lucky guess”.

The manual pixel-level annotation pro-
cess is time consuming.

5.3 Establishing baselines using pre-trained CNNs as fea-
ture extractors

For the most part of our approaches/experiments we use an 1-NN model to detect unusual
behaviors in security footage. Along this section, we aim at establishing the effectiveness of such
approach by using it in combination with features extracted from pre-trained image classification
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CNNs, as shown in the experimental setup presented in Figure 36. Besides building baselines
for our experimental setup we also seek to compare features generated by the convolutional
part of the following state-of-the-art image classification models (trained on ImageNet): VGG-
16 (SIMONYAN; ZISSERMAN, 2014), ResNet-50 (HE et al., 2016), Xception (CHOLLET,
2017) and DenseNet-121 (HUANG et al., 2017). To the best of our knowledge, this study is
very relevant because – despite having some video anomaly detection that employ features from
pre-trained CNNs (RAVANBAKHSH et al., 2018) – no comparison has been made to establish
the best model to be used. In Table 7, we present the number of features generated by the selected
models, while Section 2.8 contains a detailed description of each architecture.
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Training
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training
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Results

Training videos
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step 1: feature extraction step 2: data preparation step 3: model training and evaluation

Figure 36 – Experimental setup diagram (Adapted from Figure 1 of (NAZARE; MELLO; PONTI, 2018)).

Table 7 – Number of parameters and output features for each one of the feature extractors (convolutional
part of a pre-trained CNN) used in our experiments.

Feature extractor Number of trainable parameters Number of features
VGG-16 14,714,688 512

ResNet-50 23,534,592 2048
Xception 20,806,952 2048

DenseNet-121 6,953,856 1024

In the first step of our pipeline, we convert each video frame to 384×256 pixels, then
we generate overlapping image regions of 32×32 pixels using a stride of 16 pixels. Each image
region is transformed into d features by a forward pass through the convolutional part of a CNN
pre-trained on the ImageNet dataset (DENG et al., 2009), in which d depends on the network
architecture – it is equal to the number of kernels (neurons) at the last convolutional layer of
such architecture. For our setup, taking only the convolutional part of CNN model (rather than
the entire model) is convenient, mainly because we can provide input images with different sizes
other than used in the original training setup (e.g. 224×224 images). Also, is important to notice
that we apply the same pre-processing procedure used by the pre-trained model.

In the second step, we preprocess the features so they can be used to detect anomalous
events. We initiate this process by normalizing our feature vectors according to four different
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criteria: z-score, 0-1, L1 and L2 normalization methods. This normalization step helps out the
nearest neighbor algorithm, which could have its results hampered if features have a greater range
of values. After having the normalized version of our feature vector, we reduce its dimensionality
by applying the Incremental PCA (IPCA) algorithm (ROSS et al., 2008) (in our experiments, we
compare results using 50 and 100 dimensions). The two most important reasons for using IPCA
are: i) the reduction in the number of dimensions (features) so we can speedup the anomaly
detection process; and ii) as IPCA incrementally compute its components, we can deal with large
datasets without demanding a huge amount of main memory.

Finally, in the third step of our setup, we train a single approximate 1-NN model (using
the algorithm from (MUJA; LOWE, 2014)) on each dataset obtained after the step two (which
has 50 or 100 features), thus the same nearest neighbor model is responsible for generating an
anomaly score for every image region. This score is equal to the Euclidean distance from the
new sample (feature vector extracted from a particular region of a frame) to its closest sample on
the training set. Then, we compute the anomaly score for a frame simply by taking the maximum
score among its regions. Using such frame scores, we can compute the Area Under the ROC

Curve (AUC) and EER on a frame-level classification.

Based on the aforementioned experimental protocol, we learn 1-NN models using image
region descriptions generated by the four pre-trained CNNs. On each of our tests, prior to
training our anomaly detection models, we normalize descriptors and apply IPCA to generate
lower dimensional representations of features. Seeking to achieve better results, we try several
configurations for both the normalization technique and the number of IPCA dimensions. The
frame-level results for both UCSD datasets are shown in Table 8.

Analyzing the results presented in Table 8, we can notice that different normalization
methods have a significant impact on the anomaly detection performance. Furthermore, such
influence varies according to the pre-trained CNN model. For instance, the z-score normalization
seems to be more suitable for ResNet-50 and Xception features, while the 0−1 normalization
generated better results for DenseNet-121 features. Regarding the number of IPCA dimensions
used to learn our 1-NN model, its is possible to notice that using 100 instead of 50 dimensions
tends to improve results. Nonetheless, those improvements were fairly incremental. Thus, in
practical applications, it is important to consider whether the performance gain of the anomaly
detection offsets the increase in computational cost of running the nearest neighbor algorithm on
a larger number of dimensions.

5.4 Anomaly detection with 3D-convolutions

In order to understand the effectiveness of using the simple 3D-auto-encoder presented in
Section 4.2, we compare its results against the ones obtained from features generated by a pre-
trained C3D model (TRAN et al., 2015). Next, we compare its results against our auto-encoder.
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Table 8 – Frame level detection results on Ped1 and Ped2 datasets using several pre-trained CNNs as fea-
ture extractors, various feature normalization techniques. All results employed the approximate
nearest neighbor algorithm. Please keep in mind that the smaller the EER is, the better it is; and
the greater the AUC is, the better it is.

Feature
extractor

IPCA
dimensions

Normalization
method

Dataset
Ped1 Ped2

AUC EER AUC EER

VGG-16

50

0-1 63.98% 40.85% 63.81% 42.90%
z-score 63.35% 42.02% 64.98% 40.05%

L1 59.01% 43.28% 63.73% 39.95%
L2 59.16% 43.15% 63.37% 40.13%

100

0-1 64.06% 41.02% 63.42% 40.29%
z-score 63.78% 41.13% 64.97% 38.53%

L1 63.62% 40.40% 65.49% 38.40%
L2 61.02% 42.72% 62.84% 40.70%

ResNet-50

50

0-1 59.10% 44.94% 62.05% 42.27%
z-score 60.95% 43.17% 79.59% 28.88%

L1 55.26% 45.73% 45.59% 51.93%
L2 63.60% 41.25% 71.05% 34.53%

100

0-1 59.65% 44.66% 69.02% 37.08%
z-score 61.98% 42.21% 83.90% 23.33%

L1 55.48% 45.93% 47.49% 51.46%
L2 62.67% 42.19% 70.08% 34.89%

Xception

50

0-1 59.95% 44.18% 86.61% 21.82%
z-score 59.16% 44.23% 87.33% 21.66%

L1 51.59% 48.91% 63.72% 41.32%
L2 60.02% 44.21% 80.78% 25.39%

100

0-1 60.68% 43.75% 87.94% 19.55%
z-score 59.61% 43.59% 88.93% 20.02%

L1 51.99% 48.71% 65.21% 40.35%
L2 58.83% 43.56% 82.03% 24.58%

DenseNet-121

50

0-1 63.65% 41.02% 82.91% 23.58%
z-score 62.04% 41.83% 72.57% 34.81%

L1 63.00% 40.60% 73.73% 31.98%
L2 63.15% 41.34% 72.79% 32.87%

100

0-1 63.16% 41.88% 84.61% 23.06%
z-score 62.57% 41.44% 83.07% 24.31%

L1 62.73% 41.40% 78.09% 28.16%
L2 62.71% 42.13% 78.05% 27.07%

Furthermore, we compare the two approaches in terms of how their number of parameters affect
their computational efficiencies.
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5.4.1 Spatio-temporal features from C3D as descriptors for anomaly
detection

To carry out this comparison, we start by employing the experimental setup shown in Figure 37
to try to optimize the results of C3D features. From a video anomaly detection perspective (see
Figure 37a), our setup was based on the one presented in (NAZARE; MELLO; PONTI, 2018).
With regards to the analysis of the features extracted from different convolutional layers of the
C3D network, our study is strongly motivated by the findings of Yosinski et al. (2014).
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Figure 37 – Experimental setup diagram for C3D features.

In the first step of our setup, we perform a forward pass of video segments (16 con-
secutive frames) through convolutional layers of a pre-trained C3D model. This generates an
output tensor that describes 32×32×16 regions of the video segment. Later, such description is
employed to detect anomalies in video regions/frames.

Considering that we extract features from four different layers – in order to obtain a
descriptor for 32× 32× 16 video regions – the descriptor coming from each layer should be
interpreted in a particular way. For instance, when we carry on with this process using the entire
convolutional part of the C3D network (related to Extractor 4 in Figure 37b), we obtain an
M×N×512 tensor in which there are 512-dimensional feature vectors describing M×N video
regions of 32×32×16 pixels each (see Table 9). Nevertheless, if we are going to extract features
using Extractor 3, each region is going to be described by a 2×2×2×512 tensor. It is possible
to notice that, specially for Extractors 1 and 2, the number of features generated is rather great,
making anomaly detection very slow. To tackle this problem, we perform a 3D pooling on the
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spatial and temporal dimensions in order to reduce them out to one. This approach drastically
reduces the number of features generated by the extractors, as seen in Table 9.

Table 9 – Number of features generated by each extractor when describing a 32×32×16 video region
(before and after pooling).

Extractor Number of raw features Number of features after pooling
1 8×8×8×128 = 65536 128
2 4×4×4×256 = 16384 256
3 2×2×2×512 = 4096 512
4 1×1×1×512 = 512 512

Before doing the forward pass, the pre-trained C3D model subtracts the average pixel
value (calculated on the original training set) of its input video segment. To accommodate such
pre-processing step – even when we use video segments with a frame resolution that is different
from the one of the original C3D training dataset – we re-scale the pre-processing tensor to have
the same spacial resolution of our input video segments and subtract these values from the input
video segment.

Next, in the second step of our setup, we reduce the number of features generated by the
extractor used in first step. In order to do that, we begin by applying a standard scaler on the raw
features, then we reduce the number of features using an Incremental PCA (IPCA) model (ROSS
et al., 2008) and, lastly, we rescale the features again using another standard scaler. Reducing the
number of features and having them following a mean equals to zero and a standard deviation
equals to one is important, because, in the third and last step, we use an approximate nearest
neighbor algorithm to detect anomalies (MUJA; LOWE, 2014). Such algorithm requires features
in the same scale to provide the same importance to them, besides being faster when operating
on less features.

Finally, in the third step of our setup, we detect local anomalies (video regions that are
unusual) by computing the Euclidean distance of its descriptor – after having its dimensionality
reduced in step two – to the most similar sample in the training data. In this case, the greater is
the distance, the more likely is the chance of having an anomaly on that particular video region.

Using this setup, we compare the features generated by four different layers of a pre-
trained C3D model with regards to their ability of enabling the detection of anomalies and their
processing demands. To achieve that, we experiment with some variations of hyper-parameters
(listed in Table 10) that were empirically chosen aiming at obtaining good anomaly detection
results, while keeping the computational cost fairly low. Then, to evaluate the detection per-
formance, for each experiment, we measure the AUC and EER for the frame-level anomaly
detection on the Ped1 and Ped2 datasets.

We experimented with the values presented in Table 10 and collected the results shown
in Table 11. By analyzing these results, one observes that the features extracted from Extractor
2 usually provided the best results, what is interesting for two reasons: i) it may indicate that
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Table 10 – Values tested for each hyper-parameter.

Parameter Values
Pooling type average, max

Frame resolution 192×128, 384×256
IPCA output dimensions 8, 16, 32, 64, 128

Table 11 – Results obtained from a frame-level detection on the Ped1 and Ped2 datasets. These results
were obtained using several different hyper-parameter settings (feature extractor, pooling
method, number of IPCA features and frame resolution). Please notice that the greater the
AUC is, the better it is; and the lower the EER is, the better it is.

Extractor Pooling
ethod

IPCA
dims.

Ped1 Ped2
192×168 384×256 192×168 384×256

AUC EER AUC EER AUC EER AUC EER

1

avg

8 61.39% 42.21% 54.88% 48.06% 79.53% 28.29% 88.17% 20.14%
16 56.33% 44.08% 53.96% 47.03% 74.80% 31.80% 90.03% 17.18%
32 56.83% 45.41% 55.03% 45.95% 70.20% 33.77% 88.96% 19.47%
64 54.21% 47.58% 54.80% 45.28% 82.96% 25.57% 92.65% 15.41%

128 49.96% 51.14% 49.70% 52.03% 84.11% 21.48% 94.63% 11.96%

max

8 46.66% 52.88% 46.61% 51.99% 54.07% 42.95% 49.38% 50.43%
16 43.04% 54.73% 47.61% 51.91% 51.27% 45.62% 50.48% 48.95%
32 44.76% 54.23% 48.43% 52.22% 53.24% 46.52% 52.70% 49.51%
64 44.41% 53.69% 48.43% 51.02% 59.25% 42.90% 57.66% 45.90%

128 45.32% 52.34% 48.95% 52.60% 56.41% 43.82% 57.69% 44.35%

2

avg

8 57.94% 44.46% 58.71% 44.44% 68.58% 37.05% 77.18% 30.48%
16 57.95% 43.54% 53.58% 47.56% 68.10% 36.07% 83.45% 25.53%
32 59.44% 43.52% 55.00% 45.77% 70.52% 35.96% 90.77% 15.99%
64 58.65% 43.68% 56.60% 46.33% 89.26% 20.22% 94.61% 11.80%

128 54.33% 46.05% 57.02% 44.42% 88.44% 19.40% 96.12% 11.48%

max

8 49.46% 50.47% 49.95% 49.41% 57.57% 45.08% 67.03% 37.40%
16 48.44% 51.75% 49.72% 49.84% 53.27% 45.87% 79.46% 26.70%
32 48.24% 50.87% 49.94% 49.28% 58.03% 41.84% 82.26% 24.52%
64 48.10% 50.47% 49.86% 51.06% 77.71% 29.74% 85.66% 22.87%

128 48.69% 50.51% 51.45% 48.91% 84.70% 23.28% 88.83% 19.07%

3

avg

8 53.35% 47.10% 50.45% 49.34% 61.18% 44.79% 75.97% 30.99%
16 54.10% 46.34% 48.45% 51.16% 65.81% 40.80% 77.57% 30.93%
32 52.09% 48.41% 50.37% 50.06% 80.25% 26.04% 85.00% 22.61%
64 55.57% 46.89% 51.65% 48.90% 83.10% 23.27% 87.85% 18.36%

128 55.68% 46.40% 51.94% 48.84% 85.04% 22.62% 88.22% 16.72%

max

8 49.85% 49.47% 46.33% 52.78% 61.74% 43.23% 74.24% 29.02%
16 49.16% 50.01% 40.64% 56.32% 61.29% 46.56% 72.60% 33.11%
32 45.92% 53.10% 44.81% 53.72% 70.57% 32.56% 79.89% 25.05%
64 49.83% 51.08% 48.12% 51.28% 76.87% 30.47% 86.95% 18.76%

128 51.11% 48.90% 48.52% 50.36% 82.35% 28.20% 87.25% 17.18%

4 -

8 48.98% 50.78% 50.49% 50.25% 76.47% 30.07% 79.17% 24.32%
16 49.85% 49.87% 46.04% 53.53% 77.41% 27.54% 84.98% 18.84%
32 48.02% 50.95% 48.86% 51.92% 81.76% 23.20% 85.69% 17.43%
64 48.53% 51.03% 46.55% 53.61% 72.93% 30.11% 87.93% 16.07%

128 48.38% 51.40% 48.48% 51.66% 70.67% 32.39% 87.02% 16.11%

simpler (and more generic) features such as the ones of Extractor 2 can perform better, given the
original dataset in which the C3D model was trained on and the target (USCD) datasets are very
different; and ii) it is much faster to compute its descriptors, given Extractor 2 only uses some of
the C3D layers.
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Figure 38 – Comparison of pooling methods. Results confirm average pooling at the last layer of the
feature extractor, instead of max pooling, improves anomaly detection results.

Another interesting observable fact from Table 11 is that – for this particular method –
the average pooling tends to lead to better anomaly detection results. In Figure 38, we present
some boxplots that help to make evident such phenomenon as the AUCs are greater than for max
pooling. Additionally, one notices that a greater number of IPCA dimensions (64 and 128) lead
to better results.

When comparing the C3D results against the pre-trained image classification models, we
observe that the features from the last convolutional layer of the C3D model are comparable to
the ones of the best 2D model (Xception). Nonetheless, by using simpler features (from layers
that are closer to the input video segment), we were able to surpass the Xception results for the
Ped2 dataset. Similarly to the image classification CNN, the C3D model obtained poor anomaly
detection results when dealing with the Ped1 dataset.

Our auto-encoder architecture was tested with and without background subtraction
applied to the input frames, providing the results shown on Table 12. Regarding Ped1, our
approach was capable of achieving better results when compared to all models learned with
features from pre-trained models. Nevertheless, its results are still not comparable to the state-of-
the-art. Considering Ped2, our results were comparable to the best ones presented in the literature.
It is important to notice that our auto-encoder was capable of obtaining such a performance by
using far less parameters than CNN architectures (as seen in Tables 7 and 13).

By analyzing these results, we believe that, despite being capable of modeling changes in
spatio-temporal behavior, the studied methods cannot tackle variations in object sizes and subtle
movements occurring in the Ped1 dataset. Consequently, their results are hampered, despite
their ability to generate good spatio-temporal feature representations (as seen in Ped2 results).
To mitigate such issue, we propose a more adaptive approach to model such scenes in the next
section.
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Table 12 – Frame-level anomaly detection results for the proposed auto-encoder architectures on the
UCSD datasets.

Method Ped1 Ped2
AUC EER AUC EER

3D-auto-encoder
(with bg subtraction) 64.8% 39.7% 91.0% 15.0%

3D-auto-encoder
(without bg subtraction) 67.7% 38.7% 90.0% 19.0%

Table 13 – Number of trainable parameters for each 3D-convolutional models (C3D feature extractors
and auto-encoder).

Model Number of trainable parameters
AE-3D 9,364

C3D (Extractor 1) 226,560
C3D (Extractor 2) 2,881,280
C3D (Extractor 3) 13,499,136
C3D (Extractor 4) 27,655,936

5.5 Adaptive modeling of motion patterns

5.5.1 EMD as an optical-flow filtering method

In this section, we show how reducing the noise of optical-flow estimates can benefit the detection
of unusual events. We first tackle this problem by using EMD to decompose the local optical
flow – average flow on a frame window – into a deterministic component (that we consider to
be a filtered optical-flow estimate) and a stochastic component (that we consider to be noise).
Such local average is considered to be an anomaly score, which means that regions with objects
moving faster are considered to be anomalous. By comparing the raw average flow against the
filtered one, we are visually able to perceive that the filtered flow produces better anomaly scores.
To illustrate the efficacy of our filtering technique, we show examples of comparisons between
applying a threshold on filtered and original features (optical-flow magnitude) in Figures 39
and 40.

The aforementioned comparisons suggest that this type of filtering is beneficial. However,
in attempt to quantify the performance gains of such technique, we compare it against the
original features when detecting anomalies at the frame level on the Ped2 dataset, using optical-
flow magnitude as descriptor. When doing so, we observed that EER dropped from 40.2% to
31.7%, simply by doing the proposed filtering. This result indicates that our technique can be
advantageous when working with noisy video descriptors (e.g. the ones based on optical flow).
Furthermore, this result signals that leveraging the fact that surveillance videos are monotonous
to enforce smoothness on the descriptions of temporally-close frames can improve detection
rates. Despite having such gains, our method requires the entire video sequence to perform the
decomposition, therefore its use in an online fashion can be compromised. Regardless of this
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(a) (b)

Figure 39 – Optical-flow magnitude filtering. In (a) we have the original magnitude values, while in (b)
we have the deterministic component obtained by the decomposition process described in this
section (Adapted from (PONTI; NAZARE; KITTLER, 2017)).

(a) (b)

Figure 40 – Optical-flow magnitude thresholding example in a frame. In (a) we have the original features
and in (b) the filtered ones. Blocks in red correspond to detected anomalies, while blocks in
blue are borderline samples, within a 5% margin of the threshold (Adapted from (PONTI;
NAZARE; KITTLER, 2017)).

drawback, the idea of temporally filtering features is a major contribution that can be considered
to improve even online detection, as discussed in the next section.

5.5.2 Adaptive motion modeling framework

Prior to comparing our proposed methods against related work, we study the sensibility of
our adaptive motion modeling framework (presented in Section 4.3.1) to changes to its hyper-
parameters, listed in Table 14.

We start our hyper-parameter evaluation by inspecting the effectiveness of using the
proposed dynamic monitors rather than fixed-size ones. We compare the frame-level of these
two procedures on the Ped1 dataset, due to its variations in object-camera distances. In order
to do that, we compared the best results of each approach when varying all the remaining
parameters according to the values presented in Table 14. By doing so, we obtained an AUC of
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Table 14 – Search space of our hyper-parameters.

Parameter Values
monitor sizes fixed, dynamic
pixel scores raw, filtered

optical-flow method Farneback, Brox, Dual TV L1
optical-flow frame delta 1, 3, 5

dynamic monitor base size 16, 20
feature pre-processing 0-1 scaling, z-score

87.7% and an EER of 18.7% when employing dynamic monitors, while the results of fixed-size
monitors achieved an AUC of 84.8% and an EER of 21.8%. Running the same experiments
on Ped2, the two monitor types obtained similar performances. Thus, our results confirm that
dynamic monitors improve performances when object-camera distances vary, while maintaining
performance in situations where this phenomenon does not occur. For that reason, the dynamic
monitors approach is employed on the remaining experiments.

Next, based on the findings of Adam et al. (2008), Ponti, Nazare and Kittler (2017), we
turn our attention to understand the effects of considering filtered anomaly scores (obtained as
the result of a temporal median filter) rather than the raw values. We employed the median filter
due to both its anomaly detection improvements (which are going to be demonstrated by our
experiments) and its low computational complexity. We start our investigation by comparing
AUC and EER results at the frame level detection on both UCSD datasets. Our experiments
consider all variations of the remaining hyper-parameters (presented in Table 14). The results of
such experiments are summarized in Figure 41, from which one notices that filtered anomaly
scores improve the detection performance in both datasets.
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Figure 41 – Frame-level results in terms of AUC and EER with/without pixel score filtering. The two
left-most images show the results for Ped1, while the two right-most ones show for Ped2.
Please notice that each box plot has a different y-axis range.

To further understand the benefits of this kind of filtering, we take the best hyper-
parameter combination for each dataset and compare their pixel-level detection results when
using the two anomaly scores (raw and filtered). The results of such experiments are presented in
Figure 42, confirming that filtered scores lead to a substantial improvement in anomaly detection
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Figure 42 – Pixel-level ROC curves for the UCSD datasets. Please note the random performance with
regards to pixel-level is not 50%, but rather close to zero.

performance. Specifically, our Ped1 AUC results increased 5.9 pp3 and our EER results improved
4.8, while for Ped2 we obtained a 12 pp gain with regards to AUC and 12.5 improvement
considering EER. Referring to these results, please keep in mind that the smaller the EER is, the
better it is; while, the greater the AUC is, the better it is.
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Figure 43 – Frame-level AUC results for a hyper-parameter sensitivity analysis. Rows correspond to
results for Ped1 and Ped2, respectively. Columns illustrate results while varying: the optical-
flow estimation method, the frame delta parameter used by the optical-flow method, the base
monitor size, and the feature scaling approach.

Supported by the prior experimental results, we study the remaining hyper-parameters by
only considering their impacts on results generated by filtered pixel anomaly scores. Additionally,
such comparison is carried out only using AUC results from frame-level experiments, as they
3 pp – Percentage point.
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allow us to have sufficient evidences to carry on with our comparison and a simpler experimental
setup.

The results of this part of our study can be seen in Figure 43 from which we notice the
following for each hyper-parameter:

Optical-flow estimation method: despite the fact that we do not focus on tuning the optical-flow
algorithms, we compare the three most commonly used in our experiments according to
the setup suggested by their authors (FARNEBÄCK, 2003; BROX et al., 2004; ZACH;
POCK; BISCHOF, 2007). The results depicted by the first column of Figure 43 indicate
that the choice of such method can lead to substantial changes in anomaly detection results
and that greater impacts seem to occur in footage with varying object-to-camera distance,
like the ones from Ped1. First, regarding the results by Brox’s method (BROX et al.,
2004), one possible reason for the lower performances on Ped1 and on Ped2 is the fact that
such an approach tends to be hampered by changes in brightness, as the ones from Ped1.
Second, while the Dual TV method (ZACH; POCK; BISCHOF, 2007) aims at increasing
robustness to illumination changes, occlusions and noise, its parameters tend to be scene-
dependent what may affect its results on Ped1. Last, Farneback’s method (FARNEBÄCK,
2003) confirmed to be less sensitive to parameter tuning while obtaining the best overall
performance, despite having worse AUC results on Ped2. In summary, our results suggest
that Farneback’s method can be used to obtain good results without deeply investigating
this hyper-parameter, but scene-dependent studies on this matter can lead to additional
performance gains.

Frame delta: we evaluated some gap sizes (specifically 1, 3 and 5) in order to determine if
greater frame gaps could improve optical-flow estimates and, consequently, the anomaly
detection performance. Our results are presented at the second column of Figure 43,
confirming that an increasing in the frame gap helps improving results for Ped1, while
reducing the performance for Ped2. We believe that the Ped1 results were improved due
to greater gaps (e.g. 3 and 5) make movements more noticeable and easier to estimate
by using optical-flow techniques. This is particularly beneficial for this dataset, as it
has a lower video resolution in which objects are represented by a reduced number of
pixels, leading to very a subtle pixel movement that is difficult to estimate/notice. On the
other hand, given Ped2 has already more noticeable movements due to its greater frame
resolution/object size, greater frame delta values can make the two frames used to estimate
the optical flow so different that such flow becomes imprecise, negatively impacting on the
anomaly detection performance. Therefore, as a rule of thumb, we recommend the use of
greater frame gaps only on datasets with very subtle changes due to: low resolution, large
object-to-camera distance, small objects.

Monitor size: as discussed in Section 4.4.1, we aim at setting this parameter as the average
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object size on the scene, so a window can contain an entire object. Nonetheless, inferring
this value for each scene can be time consuming, leading to the investigation of monitor
sizes equal to 16 and 20 pixels. As cen be seen in Figure 44, such values are reasonable for
Ped1 and too small for Ped2, what helps us to understand possible drawbacks of having
monitors that are too small when compared to the average object size. As it can be noticed
from the third column of Figure 43, even with lower than ideal monitor sizes our method
performs well on Ped2, confirming the robustness of our framework to variations on this
hyper-parameter.

Feature scaling: in order to illustrate the robustness of our pipeline, we compared two types
of feature scaling: the 0−1 scaling and the z-score normalization. As we use an 1-NN
approach to detect anomalous behavior, some type of normalization is mandatory so our
method consider all feature equally (as explained in Section 4.4.1). As presented at the
last column of Figure 43, our method achieve similar results with both normalization
approaches.

Figure 44 – Illustrating the base monitor size for the UCSD datasets: Ped1 (top), Ped2 (bottom). The blue
and red bounding boxes represent monitor sizes equal to 16 and 20 pixels, respectively.

5.5.3 Performance comparison

After having a better understanding of our proposed methods, we compare our results against the
related work. In Table 15, we organize methods according to their type of visual cues (appearance,
motion or both) and list their frame and pixel-level results on the UCSD datasets. As we compare
our methods against the results reported in the literature, some values are missing. Moreover, we
suppress the Ped1 pixel-level results from papers that consider the extended label version4.

Regarding the Ped1 results, our method achieved comparable results to the ones of meth-
ods that use both appearance and motion cues. Still, some of such methods obtained considerably
4 Originally, pixel-level annotations were created for 10 test videos, which was later extended to all 36

videos by Antić and Ommer (2011). However, to the best of our knowledge, those labels are no longer
available online.
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better results (i.e. more precisely Adversarial discriminator (RAVANBAKHSH et al., 2017) and
Plug-and-play CNN (RAVANBAKHSH et al., 2018)). When comparing against motion-based
methods, we obtained comparable results to the ones of Conv-WTA (TRAN; HOGG, 2017)
and LSA (SALIGRAMA; CHEN, 2012), while being able to surpass the performance of AE-
HOFM (GEORGE et al., 2018) (which is the other method that applies a non-uniform grid of
windows to mitigate the effect changes in viewing distance). The usage of an auto-encoder to
learn dataset-specific motion features and the additional spatial-temporal neighbor analysis are,
respectively, possible explanations for the superior performance of Conv-WTA and LSA on
Ped1.

Concerning Ped2, which has more motion-related anomalies when compared to Ped1,
our method was capable of obtaining the best results on both frame and pixel-level anomaly
detection setups. We think that one of the main factors that contributed to our good performance
is the dynamic window approach, which allows for the usage of a single anomaly, while most
techniques employ a different model for each region. This approach is particularly beneficial
when dealing with the Ped2 dataset, because its videos have a poor representation of the dif-
ferent types of normal behaviors at the bottom part of the training frames, which hampers the
performance of local anomaly detection at these regions.

Table 15 – Frame-level anomaly detection comparison on the UCSD datasets: Ped1 and Ped2. Lower EER
values are better, while greater AUC values are better.

Method Type
Ped1 Ped2

Frame-level Fixel-level Frame-level Pixel-level
AUC EER AUC EER AUC EER AUC EER

CNN-2D features (NAZARE; MELLO; PONTI, 2018) appearance 64.1% 40.4% - - 88.9% 19.6% - -
Sparse combination (LU; SHI; JIA, 2013) both 91.8% 15.0% 63.8% - - - - -

LNND (HU et al., 2014) both - 27.9% - - - 23.7% - -
MDT (LI; MAHADEVAN; VASCONCELOS, 2014) both 81.8% 25.0% 44.0% 55.0% 82.9% 25.0% - 55.0%

AMDN (XU et al., 2015) both 92.1% 16.0% 67.2% 40.1% 90.8% 17.0% - -
Composition pattern (LI NANNAN, 2015) both 87.2% 21.0% - - 89.2% 20.0% - -

Adversarial discriminator (RAVANBAKHSH et al., 2017) both 96.8% 7.0% - - 95.5% 11.0% - -
Plug-and-play CNN (RAVANBAKHSH et al., 2018) both 95.7% 8.0% 64.5% 40.8% 88.4% 18.0% - -

LMH (ADAM et al., 2008) motion 63.4% 38.9% 24.0% - 58.1% 45.8% - -
MPPCA (KIM; GRAUMAN, 2009) motion 59.0% 40.0% - 82.0% 69.3% 30.0% - -

Social force (MEHRAN; OYAMA; SHAH, 2009) motion 67.5% 31.0% - 79.0% 55.6% 42.0% - -
Sparse reconstruction (CONG; YUAN; LIU, 2011) motion 86.0% 19.0% 46.1% 54.0% - - - -

LSA (SALIGRAMA; CHEN, 2012) motion 92.7% 16.0% - - - - - -
WMD (LEYVA; SANCHEZ; LI, 2014) motion - 19.0% - - - 16.0% - 25.0%

HOFM (COLQUE; CAETANO; SCHWARTZ, 2015) motion 71.5% 33.3% - - 89.9% 19.0% - -
Motion influence map (LEE et al., 2015) motion - 24.1% - - - 9.8% 81.5% -

Flow decomposition (PONTI; NAZARE; KITTLER, 2017) motion - - - - - 31.7% - -
SL-HOF (WANG et al., 2016) motion 87.5% 18.0% 64.4% 35.0% 95.1% 9.0% 81.0% 19.0%

Conv-WTA (best) (TRAN; HOGG, 2017) motion 91.9% 14.8% 68.7% 35.7% 96.6% 8.9% 89.3% 16.9%
AE-HOFM (GEORGE et al., 2018) motion 78.0% 29.5% - - 91.0% 15.8% - -

Ours (best) motion 87.7% 18.7% 52.3% 45.6% 97.9% 6.1% 94.2% 9.8%

Finally, we carried out a comparison using the UMN dataset as seen in Table 16, which
confirms that our method is also competitive with regards to detecting global anomalies. Nonethe-
less, it is important to point out that, differently from the experiments with the UCSD datasets,
these results were not obtained using exactly the same experimental setup. The reason is that most
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Table 16 – UMN dataset performance comparison.

Method Frame-level AUC
Chaotic Invariants (WU; MOORE; SHAH, 2010) 99%
Social Force (MEHRAN; OYAMA; SHAH, 2009) 96%
optical-flow (MEHRAN; OYAMA; SHAH, 2009) 84%

Sparse (CONG; YUAN; LIU, 2011) 97%
LSA (SALIGRAMA; CHEN, 2012) 98%
AE-HOFM (GEORGE et al., 2018) 88%

Ours 95%

methods use the first 500 to 600 frames from each UMN video for training and the remaining
ones for testing, while we only use the first 300 frames for training and start our testing at frame
500. We choose to carry out our experiments in this way because, in some cases, the first 500
frames of a video contains anomalous events, which could influence our results. Regardless of
those differences, our method achieves state-of-the-art results on the UMN dataset, indicating its
suitability to detect global anomalies.

5.6 Concluding remarks
This chapter presented an in-depth comparison of features from pre-trained CNNs models
versus learning dataset-specific features with a 3D-convolutional auto-encoder. The experiments
indicated that such auto-encoder is capable of achieving comparable results, while increasing
computational efficiency (having less parameters). Next, EMD was tested as way to obtain
filtered optical-flow estimates and, consequently, better anomaly detection results, which proved
to be very effective in surveillance footage. Despite such good results, EMD is not suitable to
be used in surveillance scenarios as it requires the entire series to be available beforehand. In
order to make it possible for this filtering results to be used in an online setup, a combination of
pre (increasing frame gap when computing the optical flow) and post-processing (applying a
median filter to the anomaly scores) was used. Such approach, in combination with the usage of
dynamic windows, was capable of improving the motion anomaly detection with regards to both
the robustness to noisy optical-flow estimates and changes in viewing distances.
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CHAPTER

6
CONCLUSIONS

This PhD thesis is motivated by the challenges of detecting anomalies in surveillance videos,
more specifically to improve the motion modeling aspect of methods devoted to tackle such
problem. After studying and revisiting the literature, we discovered that a major gap in the way
that anomaly detection methods deal with motion modeling regarding both noisy optical-flow
estimates and changes in viewing distances, thus leading to this thesis hypothesis:

i) the removal of noise from optical-flow estimates improves video anomaly detection

results;

ii) the capability of automatically adapting to changes in viewing distances boosts anomaly

detection results.

Regarding the first item of our hypothesis, we initially used EMD to remove the noisy
part (stochastic component) from the optical-flow series. Our results confirmed that it is possible
to obtain significant improvements in the quality of the extracted features and, therefore, in the
anomaly detection performance. Despite demonstrating the relevance of filtering, EMD tends
to be more suitable to address offline applications, limiting its applicability to the online setup
(e.g. security videos). Building upon this idea, we conclude that a lightweight filtering technique
(temporal median filter) can also improve optical-flow quality, while being more adequate to
surveillance applications.

Concerning the second item of our hypothesis, we have shown that many methods face
problems when dealing with variations in viewing distances. To analyze such factor, we started by
testing the features generated by pre-trained CNN models from the image and video classification
domains. Our results corroborated that those methods can deal with surveillance applications,
but they are not capable of tackling changes in object-to-camera distances. In attempt to further
understand this issue, we trained an auto-encoder (using only 3D-convolutional layers) to verify
whether such model would adapt to variation within frames. Despite being capable of achieving
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comparable results to the ones obtained from pre-trained models while requiring far less param-
eters, our experiments confirmed that the auto-encoder could not properly manage variations
depending on frame regions. Finally, we proposed an adaptive motion modeling framework
that dynamically adapts windows according to expected object sizes. As also confirmed by our
experiments, such method achieves state-of-the-art anomaly detection results with the usage
of an 8-dimensional descriptor, even when varying viewing distances. Lastly, this approach
obtained outstanding results when detecting global anomalies.

In a nutshell, the first part of our experiments indicate that domain-specific models can
maintain the same level anomaly detection performance of pre-trained ones, while having a lower
computational cost. Next, in the second part of our experiments, we noticed that employing
lightweight pre and post-processing techniques can greatly improve the detection results of
optical-flow-based methods, without significantly increasing their computational complexity.
Lastly, in the third part of our experiments, we discovered that optical flow can be leveraged to
estimate changes in viewing distance, improving model detection performance and reducing
setup time. Based on such ideas, we have build a video anomaly detection model that is capable to
achieve state-of-the-art anomaly detection employing a simple 8-dimensional motion descriptor
based only on optical-flow information. We believe that our findings can be used by future
research to further improve anomaly detection in surveillance videos with regards to: increasing
model detection performance, lowering computational cost and reducing setup time.

6.1 Publications

Some of the results of this projected are presented in the following publications:

∙ Nazare, Tiago; Mello, Rodrigo; Ponti, Moacir. “Investigating 3D convolutional layers
as feature extractors for anomaly detection systems applied to surveillance videos”, 16th
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISAPP 2021);

∙ Nazare, Tiago; Mello, Rodrigo; Ponti, Moacir. “Are pre-trained CNNs good feature
extractors for anomaly detection in surveillance videos?”, 14th Workshop de Visão Com-
putacional (WVC 2018);

∙ Ponti, Moacir; Nazare, Tiago; Kittler, Josef. “Optical-flow features empirical mode de-
composition for motion anomaly detection”, 42th International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2017).

The remaining of our findings is going to be presented in the paper listed bellow, which is under
review:
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∙ Nazare, Tiago; Mello, Rodrigo; Ponti, Moacir. “A novel motion modeling framework for
anomaly detection in surveillance videos”.

Lastly, during this project, we also collaborated on the publication of the following papers:

∙ Souza, Andrey; Lacerda, Wilian; Forster, Carlos Henrique; Lima, Danilo; Nazare, Tiago.
“Aplicação de Redes Neurais Siamesas na Autenticação de Condutores”, 14th Simpósio
Brasileiro de Automação Inteligente (SBAI 2019);

∙ Kubo, Diandra; Nazare, Tiago; Aguirre, Priscila; Duarte, Felipe; Oliveira, Bruno. “On
the usage of U-Net for pre-processing document images”, Workshop of Works in Progress
– 31th Conference on Graphics, Patterns and Images (SIBGRAPI 2018);

∙ Nazare, Tiago; Costa, Gabriel; Mello, Rodrigo; Ponti, Moacir. “Color quantization in
transfer learning and noisy scenarios: an empirical analysis using convolutional networks”,
31th Conference on Graphics, Patterns and Images (SIBGRAPI 2018);

∙ Nazare Tiago, Costa, Gabriel, Contato, Welinton, Ponti, Moacir. “Deep convolutional
neural networks and noisy images”, 22th Iberoamerican Congress on Pattern Recognition
(CIARP 2017);

∙ Ponti, Moacir; Ribeiro, Leonardo; Nazare, Tiago; Bui, Tu; Collomosse, John. “Everything
you wanted to know about Deep Learning for Computer Vision but were afraid to ask”,
Tutorials of the 30th Conference on Graphics, Patterns and Images (SIBGRAPI 2017);

∙ Costa, Gabriel; Contato, Welinton; Nazare, Tiago; Batista Neto, João; Ponti, Moacir. “An
empirical study on the effects of different types of noise in image classification tasks”,
12th Workshop de Visão Computacional (WVC 2016);

∙ Contato, Welinton; Nazare, Tiago; Costa, Gabriel; Ponti, Moacir; Batista Neto, João. “Im-
proving Non-Local Video Denoising with Local Binary Patterns and Image Quantization”,
29th Conference on Graphics, Patterns and Images (SIBGRAPI 2016);

∙ Ponti, Moacir; Nazare, Tiago; Thumé, Gabriela. “Image quantization as a dimensionality
reduction procedure in color and texture feature extraction”, Neurocomputing (Amster-
dam), 2016.

6.2 Future work
A list of further possibilities is resultant of this PhD thesis. Among the most relevant items are:

∙ The combination of our approach on dynamic windows with appearance descriptors (e.g.
features from pre-trained CNNs) to take advantage of such visual clues in our pipeline;
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∙ The CNN models used in our experiments (e.g. VGG-16 and C3D) can be retrained using
a gray-scale/noisier versions of the original datasets. This is specially motivated by some
of our results (NAZARE et al., 2018; COSTA et al., 2016; NAZARE et al., 2017), which
have confirmed that such approach can be beneficial;

∙ Explore other pre-trained 3D-convolutional CNNs as features extractors for security
footage (e.g. the models compared in (CARREIRA; ZISSERMAN, 2017));

∙ Employ the approach by Lee et al. (2015) to analyze neighboring regions in attempt to
improve the way our method describes complex motion patterns;

∙ Better understand the behavior of different optical-flow methods when used in our frame-
work and experiment with optical-flow estimation based on deep neural networks (e.g. the
one presented by Ilg et al. (2017));

∙ Adapt our dynamic window approach to operate with moving cameras.
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