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RESUMO

NAKASSIMA, G. K. Sobre dicotomia exponencial e abordagens para computação rigorosa
para equações diferenciais. 2023. 142 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2023.

Neste trabalho mostramos pesquisas realizadas em três diferentes tópicos: robustez da estabili-
dade assintótica e dicotomia exponencial para uma classe de equações diferenciais em espaços
de Banach; uma abordagem baseada em wavelets para métodos numéricos para equações dife-
renciais com validação automática a-posteriori, utilizando o método dos polinômios radiais; e o
algoritmo Generalized Combinatorial Marching Hypercubes para geração de variedades em altas
dimensões, com técnicas combinatórias para maior eficiência computacional.

Palavras-chave: Robustez da estabilidade, Dicotomia exponencial, Métodos computacionais
rigorosos, Wavelet de Haar, Combinatorial Marching Hypercubes.





ABSTRACT

NAKASSIMA, G. K. On exponential dichotomy and frameworks for rigorous computation
for differential equations. 2023. 142 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2023.

In this work we show research results on three different topics: robustness of asymptotic stability
and exponential dichotomy for a class of differential equations in Banach spaces; a wavelet-based
approach for a-posteriori self-validating numerical methods for differential equations, using the
radii polynomial method; and the Generalized Combinatorial Marching Hypercubes algorithm
for generation of manifolds in high dimensions, using combinatorial techniques to improve
computational efficiency.

Keywords: Robustness of stability, Exponential dichotomy, Rigorous computational methods,
Haar wavelets, Combinatorial Marching Hypercubes.
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CHAPTER

1
INTRODUCTION

In this work we show results related to differential equations and dynamical systems,
from both theoretical and computational points of view. We show research papers for three
different topics:

• Robustness of the asymptotic stability and exponential dichotomy for a class of ordinary
differential equations in Banach spaces (RODRIGUES; SOLÀ-MORALES; NAKAS-
SIMA, 2020; RODRIGUES; CARABALLO; NAKASSIMA, 2022);

• Validated numerics for differential equations combining Haar wavelets with the radii
polynomial approach (NAKASSIMA; GAMEIRO, Submitted for publication);

• A Generalized Combinatorial Marching Hypercubes (GCMH) algorithm, which extends
the classic Marching Cubes algorithm for isossurface generation to higher dimensions in a
computationally efficient way(CASTELO et al., Submitted for publication).

The first two papers explore more theoretical results, related to structural robustness of
dynamical systems. The third paper presents a method for computer-assisted proofs for theorems
on differential equations; for example, existence of special structures such as periodic orbits.
The fourth paper presents a numerical method to compute approximations to solution manifolds.
We aim to use this manifold approximation as a basis for computer-assisted proof methods for
multi-parameter differential equations (for example, adapting the algorithm in the third paper);
this is work in progress.

We briefly summarize the main ideas and contributions of each paper; more details can
be found in the papers themselves.
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1.1 Robustness of asymptotic stability and exponential
dichotomy

These two papers (RODRIGUES; SOLÀ-MORALES; NAKASSIMA, 2020; RODRIGUES;
CARABALLO; NAKASSIMA, 2022) explore robustness characteristics of differential equations
in Banach spaces. Given a Banach space X (not necessarily finite-dimensional) and the space
L(X) of all bounded linear operators from X to itself, we consider the system

ẋ = A(t)x , A(t) ∈ L(X) for all t ∈ R

and we disturb it as follows:

ẋ = A(t)x+B(t)x , A(t), B(t) ∈ L(X) for all t ∈ R

It is assumed that A(t) and B(t) belong to a class of functions called Generalized Almost Periodic
(G A P) functions, which as the name suggests are a generalization of almost periodic functions
(FINK, 2006). This G A P class is presented in the first paper.

The main contribution of these works is to extend results known for finite-dimensional
systems (see e.g. (COPPEL, 1965; COPPEL, 1978; HENRY, 1981)) to infinite-dimensional
spaces. As an example of application, many partial differential equations can be recast as abstract
differential equations in Banach spaces, by defining the partial derivative as a linear operator.
This allows us to use techniques from functional analysis to study such equations without
explicitly finding their solutions (EVANS, 2010). However, infinite-dimensional spaces can
behave differently than finite dimensional ones; for example, a classical result is that the unit ball
in a finite-dimensional space is always compact, but it might not be in an infinite-dimensional
space (BREZIS, 2010). Thus the techniques for the extension of the results need to be adapted.

The first paper discuss robustness characteristics of asymptotic stability of differential
equations after perturbation. It is shown that asymptotic stability is preserved under integrally
small perturbations, that is, if

∣∣∣
∫ t2

t1 B(t)dt
∣∣∣≤ δ when |t2− t1| ≤ h. An important observation is

that B(t) does not necessarily need to be small, provided it “oscillates” rapidly. This is made
precise in the papers for the G A P class of functions; in the usual periodic setting, it means that
the amplitude of the oscillation can be rather large as long as it has a high enough frequency. Also,
when A(t) is an unbounded operator, we still obtain that the perturbed system is asymptotically
stable if certain additional conditions are met.

Moreover, we show two striking examples where an asymptotically unstable system is
stabilized, one in two dimensions and another in infinite dimensions; this shows that asymptotic
instability is not robust. This example was based on an example by Kakutani (RICKART, 1960).
These results may have impact in areas such as control theory.

The second paper extends the first by studying the robustness of exponential dichotomy
under similar perturbations. We show that, if the first system exhibits an exponential dichotomy,
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the perturbed system also exhibits an exponential dichotomy when the perturbation is integrally
small. When A(t) is unbounded, we also obtain an exponential dichotomy if additional conditions
similar to the first paper are met. We apply those results to examples in infinite dimensions in
both cases.

1.2 Rigorous computation using wavelets
In this paper (NAKASSIMA; GAMEIRO, Submitted for publication) we present a frame-

work for a rigorous computational method using Haar wavelets by combining two techniques:
the radii polynomial approach and the Haar wavelet method.

Consider an initial value problem

ẋ = f (x) , x(0) = x0.

If ẋ ∈ L2([0,1]), we can expand the derivative ẋ(t) in a Haar wavelet series, and thus the solution
x(t) can be expanded using the integral of the wavelets w(t):

ẋ(t) =
∞

∑
i=1

ciψi(t) , x(t) = x0 +
∞

∑
i=0

ciwi(t)

and c := (ci)
∞
i=1 ∈ ℓ2(R). Thus the diferential equation turns into a functional equation

F(c) = 0

where F : ℓ2(R)→ ℓ2(R). Thus, we can find a numerical, finite-dimensional solution c̄ by
truncating the above equation and applying an usual numerical method, such as Newton’s
method. This is known as the Haar wavelet method (CHEN; HSIAO, 1997; LEPIK, 2006;
MAJAK et al., 2015; MEHANDIRATTA; MEHRA; LEUGERING, 2020).

Our contribution is to develop an a-posteriori verification method which rigorously
proves the existence of a true solution in a neighborhood of the numerical one. This is done
by employing the so-called radii polynomial approach (NAKAO; PLUM; WATANABE, 2019;
LESSARD; REINHARDT, 2014; FIGUERAS et al., 2017; REINHARDT; JAMES, 2019). The
general idea is as follows. We recast the problem of finding zeros of F into a problem of finding
fixed points of the Newton-like map T : ℓ2(R)→ ℓ2(R) given by

T (c) := c−AF(c)

where A : ℓ2(R)→ ℓ2(R) is a linear operator, taken as an approximation to DF(c̄)−1. In this way,
finding a fixed point for T is equivalent to finding a zero for F . Then we find bounds for T and
DT which are used to construct (finitely many) radii polynomials pk(r). If we can find r > 0
such that pk(r)< 0 for all k, then the verification is successful, and there is a true solution near
the numerical one. This is all verified rigorously with the use of interval arithmetic (MOORE;
KEARLOTT; CLOUD, 2009).
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For our method, we choose the Haar wavelet because of its simplicity. Since its integral
can be calculated analytically, we do not need to rely on numerical algorithms or lookup tables in
order to relate it to the Haar wavelet themselves. Not only this eliminates a source of numerical
error, but also helps finding recursive formulas for the nonlinearity, which are exploited to find
sharper bounds for the terms. The Newton-like map thus becomes similar to the one in (BERG;
GROOTHEDDE; WILLIAMS, 2015).

This work was motivated by the fact that most other methods use other bases, such
as Taylor (REINHARDT; JAMES, 2019), Fourier (FIGUERAS et al., 2017) or Chebyshev
(LESSARD; REINHARDT, 2014) series, and thus rely on stricter smoothness assumptions in
order to be applicable. Since wavelets are bases for L2 spaces (HERNÁNDEZ; WEISS, 1996),
our method can deal with much less smooth problems.

We show the capabilities and applicability of the method to some example cases, includ-
ing a discontinuous one and the Lorenz system.

The method has some drawbacks for its capabilities, such as increased complexity and
computational power needed. Nevertheless, we believe these can be mitigated in future works,
for example by choosing more suitable wavelets to each problem. Also, this work only dealt
with first-order equations and quadratic nonlinearities; we believe that similar estimates may be
found for higher-order nonlinearities and derivatives. Lastly, the method can be adapted to other
applications, such as rigorously finding invariant structures in other problems or continuation
methods.

1.3 A Generalized Combinatorial Marching Hypercubes
method

In this paper (CASTELO et al., Submitted for publication) we present the Generalized
Combinatorial Marching Hypercubes (GCMH) method for generating isomanifold approxima-
tions, that is, an approximation to the set

M := {x ∈ Rn : f (x) = 0}

for a given map f : Rn→ Rk. This paper builds upon a previous generalization (CASTELO;
MOUTINHO BUENO; GAMEIRO, 2022), which extended the original Marching Cubes method
from (LORENSEN; CLINE, 1987) — which originally only generates isosurfaces for f :R3→R,
that is, surfaces in three dimensions — to functions f : Rn → R. The main contribution is
extending the method to any dimension and co-dimension in a computationally efficient way,
that is, for general functions f : Rn→ Rk.

In our method, we first generate a grid of n-dimensional hypercubes in Rn. Then, for a
given hypercube, we search for manifold vertices on the k-dimensional faces of the hypercube
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(that is, points of intersection between the manifold and the faces) using a simplicial methods
called the CFK triangulation (COXETER, 1934; FREUDENTHAL, 1942; KUHN, 1968). By
using combinatorial techniques to label the faces of a given hypercube, we can connect the
manifold vertices into edges and higher-dimensional cells. As with all Marching Cubes methods
(NEWMAN; YI, 2006), this process can lead to ambiguities; we solve those via a path-following
algorithm applying a CFK triangulation step to the faces of dimension k+1.

Most other Marching Cubes methods rely on lookup tables (NEWMAN; YI, 2006), which
rapidly increase in size as the dimensions grow. Furthermore, while simplex-based methods
(ALLGOWER; GEORG, 1980; CASTELO et al., 2006; SCHWAHA; HEINZL, 2010) are also
able to compute such approximations to zero-level sets, the number of simplices also grow rapidly
as dimensions increase. The use of combinatorial techniques to build the higher-dimensional
cell complexes — organized in a structure called “combinatorial skeleton” — greatly reduces
computational complexity compared to both approaches. This structure is similar to the one
presented in (CASTELO; MOUTINHO BUENO; GAMEIRO, 2022). With this technique, the
number of calculations for the GMCH method grow at a much smaller rate as dimensions
increase, making it more suitable for higher dimensional problems.

Similarly to previous work (CASTELO; MOUTINHO BUENO; GAMEIRO, 2022),
we also present an extension called the Generalized Combinatorial Continuation Hypercube
(GCCH) method. Instead of traversing the entire grid as the GCMH algorithm does, the GCCH
algorithm uses a starting point and, after each hypercube is processed as in GCMH, it identifies
which adjacent hypercubes should be analyzed (if any) and puts them in a list of hypercubes to
be processed. This continues until the list is exhausted. While this method can be considerably
faster than the GCMH method, it relies on having a starting point and may not find all connected
components of M inside the computational domain with a single starting point.

We apply both algorithms to generate approximations for various manifolds, such as
the complex cosine function z = cos(w) and the Klein Bottle. It also performs much faster than
previous algorithms. We also show that the GCCH performs significantly faster, especially when
n− k is small. However, the aforementioned drawbacks still apply.

We conclude with some ideas for future work. The two main improvements would be
parallelization of the algorithm (especially considering that the GCMH processes one hypercube
at a time without input from previous steps, and therefore is highly parallelizable) and an adaptive
step. We also consider the application of this method to validated numerics; for example, using
the methods in Chapter 3 to validate the numerical approximation obtained from the GCMH and
GCCH algorithms.
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1. Introduction. In several papers of some of us we have been extending or
analysing in infinite dimensions some results that were known for finite-dimensional
problems. This was the case of Kloeden & Rodrigues [10], Rodrigues [11], Rodrigues
& Ruas [16], Rodrigues & Solà-Morales [17, 18, 19, 20], Rodrigues, Caraballo &
Gameiro [14] and Rodrigues, Teixeira & Gameiro [15].

Following this philosophy, in this paper we study the relation between the stabil-
ity properties of a system ẋ = A(t)x of ordinary differential equations in an infinite
dimensional Banach space X and a perturbed system ẏ = A(t)y + B(t)y, where
B(t) is supposed to be small in some sense. We suppose first that A(t) and B(t)
are bounded operators, continuous and uniformly bounded with respect to t ∈ R,
that the first system is asymptotically stable and that B(t) is integrally small in
an arbitrary interval of length bounded by h > 0. We establish conditions on the
smallness of B(t) in such a way that the perturbed system will also be asymptot-
ically stable. This is established in Theorem 2.1. Then we extend to some cases
where A : D → X is unbounded and generates a C0- semigroup T (t), t ≥ 0. This is
established in Theorem 5.1.

In Daleckii & Krein [4] page 178 and in Carvalho et al. [1] similar results are
presented about robustness of stability but with a stronger assumption, given by
1
τ0

∫ t+τ0
t

‖B(τ)‖dτ ≤ δ, for some τ0 > 0, for every t ∈ R for sufficiently small δ. One
observes that the smallness condition is imposed with the norm inside the integral
and in our case the norm appears outside the integral and this makes a significant
difference, as it is shown in Theorem 2.1.

Then we introduce in Section 3 a class of functions that we call Generalised Al-
most Periodic Functions , that contains the usual almost periodic functions. In fact
part of it was introduced in Kloeden & Rodrigues [10], where the authors studied
perturbations of an hyperbolic equilibrium. This class of Generalized Almost Peri-
odic Functions (GAP) is suitable to define the concept of mean value, as it will be
shown, which will be used in this paper.

This new class of functions has some important advantages compared with the
usual almost periodic functions, namely, if we perturb an almost periodic function
of a variable t with a local perturbation in t, then the perturbed function will no
longer be almost periodic. Therefore, the usual class is not robust with respect to
this kind of perturbations. It is also not robust with respect to some more general
perturbations, like chaotic functions. We understand that the class GAP is one of
the natural classes for our perturbation B(t) belong to.

As an application of Theorem 2.1 we study a system of the form ẏ = A(t)y +
B(ωt)y and prove that if ω > 0 is sufficiently large the stability is preserved. When
B(t) is periodic the result says that for sufficiently small periods and large oscilla-
tions the stability is preserved. The function B(t) does not need to be small and if
we have a linear perturbation with large oscillations the stability is preserved. This
is shown in Theorem 3.9. In the periodic case the perturbation will have a very
small period. In Section 4 we present an example in the infinite-dimensional space
`2 where we show that the stability is preserved. These results extend to infinite
dimensions some results of Coppel [3].

Then in Theorem 5.1 we extend the above results to the case where we have an
unbounded infinitesimal generator. Henry [8] proves similar results with different
applications, but using a different method where he passes from the continuous case
to a discrete case and then recovers the results for the continuous problem. Our
method follows more the method of Coppel [3] (finite dimension).
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As a counterpart of the previous results on the robustness of the stability, the
last two sections are devoted to show, by means of examples, that instability is not
so difficult to break. In Section 7 we present a two dimensional example where we
show that it is possible to stabilise an unstable system with a periodic perturbation
with large period and small mean value.

Finally in Section 8 using some ideas developed in Rodrigues & Solà-Morales
[21] and in an example of Kakutani [13], we give an example in infinite dimensions
where we stabilize an unstable linear system using a linear perturbation B(t) that
tends to zero as t tends to infinity.

These two last examples seem to be new in the literature, to our knowledge.

2. Robustness of Stability. This section is devoted to state and prove the fol-
lowing Theorem. It extends to infinite dimensional Banach spaces a result of W.
A. Coppel [3], Proposition 6, p.6. We think that the key point is the three-terms
integration by parts that appears in the beginning of the proof. This integration
by parts shows also how the condition of B(t) being integrally small appears along
the proof.

Theorem 2.1. Let X be a Banach space and A, B : R → L(X) be continuous
functions such that ‖A(t)‖ ≤M and ‖B(t)‖ ≤M for every t ∈ R.

Consider the equations:

ẋ = A(t)x, (2.1)

ẏ = A(t)y +B(t)y. (2.2)

Let T (t, s) = X(t)X−1(s) the evolution operator of (2.1). Suppose that ‖T (t, s)‖ ≤
Keα(t−s) for t ≥ s, t, s ∈ R, where α ∈ R and K ≥ 1.

Let δ, h be two positive numbers. If ‖
∫ t2
t1
B(t)dt‖ ≤ δ for |t2 − t1| ≤ h, and

t1, t2 ∈ R, then the evolution operator S(t, s) = Y (t)Y −1(s) of (2.2) satisfies the
inequality:

‖S(t, s)‖ ≤ (1 + δ)Keβ(t−s) for t ≥ s, t, s ∈ R,

where β = α+ 3MKδ + log((1+δ)K)
h .

If α is negative, h is sufficiently large and δ sufficiently small in such a way that
β < 0 then it follows that system (2.2) is asymptotically stable.

Proof. By the variation of constants formula

S(t, s) = T (t, s) +

∫ t

s

T (t, u)B(u)S(u, s)du, t ≥ s.

If we let C(u) =
∫ u
t
B(τ)dτ,

∫ t

s

T (t, u)B(u)S(u, s)du =

∫ t

s

T (t, u)
d

du

∫ u

t

B(τ)dτS(u, s)du

=

∫ t

s

T (t, u)
d

du
C(u)S(u, s)du.

Taking derivatives,

d

du
[T (t, u)C(u)S(u, s)] =− T (t, u)A(u)C(u)S(u, s) + T (t, u)B(u)S(u, s)

+ T (t, u)C(u)(A(u) +B(u))S(u, s).
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Integrating the above equation gives the three-terms integration by parts we com-
mented above. Then we obtain

∫ t

s

d

du
[T (t, u)C(u)S(u, s)]du

=−
∫ t

s

T (t, u)A(u)C(u)S(u, s)du+

∫ t

s

T (t, u)B(u)S(u, s)du

+

∫ t

s

T (t, u)C(u)A(u)S(u, s)du+

∫ t

s

T (t, u)C(u)B(u)S(u, s)du.

And so,

− T (t, s)C(s)

=−
∫ t

s

T (t, u)A(u)C(u)S(u, s)du+

∫ t

s

T (t, u)B(u)S(u, s)du

+

∫ t

s

T (t, u)C(u)A(u)S(u, s)du+

∫ t

s

T (t, u)C(u)B(u)S(u, s)du.

Therefore,
∫ t

s

T (t, u)B(u)S(u, s)du

=− T (t, s)C(s) +

∫ t

s

T (t, u)A(u)C(u)S(u, s)du

−
∫ t

s

T (t, u)C(u)A(u)S(u, s)du−
∫ t

s

T (t, u)C(u)B(u)S(u, s)du.

Therefore,

S(t, s) =T (t, s) +

∫ t

s

T (t, u)B(u)S(u, s)du

=T (t, s)(I − C(s)) +

∫ t

s

T (t, u)A(u)C(u)S(u, s)du

−
∫ t

s

T (t, u)C(u)A(u)S(u, s)du−
∫ t

s

T (t, u)C(u)B(u)S(u, s)du.

We first suppose that s ≤ t ≤ s + h and estimate |S(t, s)|. Let s ≤ u ≤ s + h.
Suppose

|C(u)| ≤ |
∫ u

t

B(τ)dτ | ≤ δ.

Therefore,

|S(t, s)| ≤ K(1 + δ)eα(t−s) + 3MKδ

∫ t

s

e−α(t−u)|S(u, s)|du.

and so, using Gronwall’s inequality it follows that in an arbitrary interval of length
h, say for s ≤ t ≤ s+ h we have

|S(t, s)| ≤ K(1 + δ)eα(t−s)e3MKδ(t−s) = K(1 + δ)e(α+3MKδ)(t−s).

For t ≥ s there exists n ∈ N, n = n(t, s) such that s+ nh ≤ t ≤ s+ (n+ 1)h and so

|S(t, s+ nh)| ≤ K(1 + δ)e(α+3MKδ)(t−s−nh).
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We are going to prove by induction that for s+ nh ≤ t ≤ s+ (n+ 1)h

|S(t, s)| ≤ [K(1 + δ)]n+1e(α+3KMδ)(t−s).

The case n = 0 has already been proved. But S(s+ nh, s) = S(s+ nh, s+ (n−
1)h) · · ·S(s+ h, s) and so

|S(s+ nh, s)| ≤ [K(1 + δ)]ne(α+3KMδ)nh.

Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h,

|S(t, s)| ≤|S(t, s+ nh)||S(s+ nh, s)|
≤K(1 + δ)e(α+3KMδ)(t−s−nh)[K(1 + δ)]ne(α+3KMδ)nh

=[K(1 + δ)]n+1e(α+3KMδ)(t−s).

Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h, we have

|S(t, s)| ≤ [K(1 + δ)]n+1e((α+3KMδ)(t−s).

Let γ
.
= ln((1+δ)K)

h . Since t ≥ s+ nh, we have

[(1 + δ)K]n = eγnh ≤ eγ(t−s).

Therefore,

|S(t, s)| ≤ K(1 + δ)e(α+3KMδ+
ln((1+δ)K)

h )(t−s).

3. The space of generalised almost periodic functions. In this section we
introduce the class that we call Generalised Almost Periodic Functions that extends
the usual concept of almost periodicity. As we said in the Introduction Section, this
new class is more robust with respect to perturbations and it is a natural class for
our function B(t) to belong, as it will appear in Theorem 3.9 and its corollary.

Let (X, | · |) be a Banach space and recall the definition of an almost periodic
function [5].

Definition 3.1. A continuous function f : R→ X is said to be almost periodic if for
every sequence (α′n) there exists a subsequence (αn) such that the limn→∞ f(t+αn)
exists uniformly in R.

Now let BUC(R, L(X) denote the space of bounded and uniformly continuous
functions A : R → L(X), which is a Banach space with the supremum norm ‖A‖ .=
supt∈R |A(t)|, and define

F .
={A ∈ BUC(R, L(X)) :A is uniformly continuous

with precompact range R(A)}.
The class F is quite large and includes both periodic and almost periodic functions
as well as other nonrecurrent functions.

Proposition 1. Let A(t) ∈ L(X) be almost periodic. Then A ∈ F .

Proof. The proof is trivial.

Theorem 3.2. F is a closed subspace of BUC(R, L(X)) and hence a Banach space.

Proof. This proof can be found in Kloeden-Rodrigues [10].

Lemma 3.3. Let supt∈R |A(t)| ≤ M , If there exists limT→∞ 1
T

∫ a+T

a
A(t)dt for

some a ∈ R then it is independent of a.



3194 H. M. RODRIGUES, J. SOLÀ-MORALES AND G. K. NAKASSIMA

Proof. Let a ∈ R.
∣∣∣∣∣

1

T

∫ a+T

a

A(t)dt− 1

T

∫ T

0

A(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
1

T

[∫ a+T

a

A(t)dt−
∫ T

0

A(t)dt

]∣∣∣∣∣ ,
∣∣∣∣∣

1

T

[∫ 0

a

A(t)dt+

∫ a+T

T

A(t)dt

]∣∣∣∣∣ ≤
2M |a|
T

→ 0, as T →∞.

Then we define:

Definition 3.4. We say that A ∈ F is a generalized almost periodic function if

there exists the limit limT→∞ 1
T

∫ a+T

a
A(t)dt in L(X), that is, there exists A ∈ L(X)

such that, given ε > 0 there exists T0 = T0(ε) > 0 such that | 1T
∫ a+T

a
A(t)dt−A| < ε

for every T ≥ T0 uniformly with respect to a ∈ R.

Definition 3.5. We define the class of generalized almost periodic functions as

GAP = {A ∈ F : A is a generalized almost periodic function}.
Lemma 3.6. GAP is a closed subspace of F .

Proof: Let An ∈ GAP, An → A in F. We must prove that A ∈ GAP. Given ε > 0
there exists n0 = n0(ε) such that ‖An0

−A‖ = supt∈R |An0
(t)−A(t)| < ε.

Since there exists the limT→∞ 1
T

∫ a+T

a
An0

(t)dt = An0
, there exists T0 = T0(ε)

such that

T1, T2 > T0 ⇒
∣∣∣∣∣

1

T2

∫ a+T2

a

An0(t)dt− 1

T1

∫ a+T1

a

An0(t)dt

∣∣∣∣∣ < ε, ∀a ∈ R.

Then T1, T2 > T0 ⇒∣∣∣∣∣
1

T2

∫ a+T2

a

A(t)dt− 1

T1

∫ a+T1

a

A(t)dt

∣∣∣∣∣

≤
∣∣∣∣∣

1

T2

∫ a+T2

a

A(t)dt− 1

T2

∫ a+T2

a

An0(t)dt

∣∣∣∣∣

+

∣∣∣∣∣
1

T2

∫ a+T2

a

An0
(t)dt− 1

T1

∫ a+T1

a

An0
(t)dt

∣∣∣∣∣

+

∣∣∣∣∣
1

T1

∫ a+T1

a

An0
(t)dt− 1

T1

∫ a+T1

a

A(t)dt

∣∣∣∣∣

≤ 1

T2

∫ a+T2

a

|A(t)−An0(t)|dt+

∣∣∣∣∣
1

T2

∫ a+T2

a

An0(t)dt− 1

T1

∫ a+T1

a

An0(t)dt

∣∣∣∣∣

+
1

T1

∫ a+T1

a

|A(t)−An0
(t)|dt ≤ 3ε.

Using Cauchy Criterion we conclude that there exists

lim
T→∞

1

T

∫ a+T

a

A(t)dt = A ∈ L(X), ∀a ∈ R.

This implies that A ∈ GAP.
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Definition 3.7. For A ∈ GAP we define the mean value of A as:

M(A)
.
= lim
T→∞

1

T

∫ a+T

a

A(t)dt ∈ L(X).

Lemma 3.8. The function M : GAP → L(X) is a uniformly continuous function.

Proof. Let A,B ∈ GAP. Then

|M(A)−M(B)| =
∣∣∣∣∣ lim
T→∞

1

T

∫ a+T

a

A(t)dt− lim
T→∞

1

T

∫ a+T

a

B(t)dt

∣∣∣∣∣

=

∣∣∣∣∣ lim
T→∞

1

T

∫ a+T

a

[A(t)−B(t)]dt

∣∣∣∣∣ ≤ sup
t∈R
|A(t)−B(t)| = ‖A−B‖.

Let O = {A ∈ GAP :M(A) = limT→∞ 1
T

∫ a+T

a
A(t)dt = 0, ∀ a ∈ R},

Corollary 1. O is a closed subspace of GAP.

Proof. Since M(A) is a continuous function, the set O = M−1{{0}} is closed
set.

Corollary 2. Any function A ∈ GAP can be written as A = A0 + B, where
A0 =M(A) and B ∈ O.

The next theorem shows that stability is preserved if the linear perturbation has
sufficiently large frequency:

Theorem 3.9. Let A, B : R→ L(X) be continuous functions such that ‖A(t)‖ ≤
M and ‖B(t)‖ ≤ M for every t ∈ R. Suppose that B(t) is a generalized almost
periodic function with mean value zero (GAP). Consider the equations:

ẋ = A(t)x, (3.1)

ẋ = A(t)x+B(ωt)x. (3.2)

Let T (t, s) be the evolution operator of (3.1). Suppose that ‖T (t, s)‖ ≤ Ke−α(t−s)

for t ≥ s, t, s ∈ R, where α > 0 and K > 1. Then there exists K̃ and ω0 > 0 such
that for ω > ω0

|Sω(t, s)| ≤ K̃e−α
2 (t−s), t ≥ s,

where Sω(t, s) indicates the evolution operator of (3.2).

Proof. We are going to show that for any h > 0, δ > 0 there exists ω0 = ω0(h, δ) > 0
such that if ω > ω0 then

∣∣∣∣
∫ t2

t1

B(ωt)dt

∣∣∣∣ ≤ δ for |t2 − t1| ≤ h.

Let us consider first the case |t2 − t1| ≤ δ
M . Since |B(t)| ≤ M for every t ∈ R,

we have
∣∣∣∣
∫ t2

t1

B(ωt)dt

∣∣∣∣ ≤
∣∣∣∣
∫ t2

t1

|B(ωt)|dt
∣∣∣∣ ≤M |t2 − t1| ≤M

δ

M
= δ.

To complete the proof we consider now the case h ≥ |t2 − t1| ≥ δ
M .
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Since B(t) has mean value zero, there exists T0 = T0( δh ) > 0 such that

T ≥ T0 ⇒
∣∣∣∣∣

1

T

∫ s+T

s

B(t)dt

∣∣∣∣∣ ≤
δ

h
for all s ∈ R.

By a change of variables,
∫ t2

t1

B(ωt)dt =
1

ω

∫ ωt2

ωt1

B(u)du,

and so for δ
M ≤ |t2 − t1| ≤ h,

∣∣∣∣
∫ t2

t1

B(ωt)dt

∣∣∣∣=
1

ω|t2−t1|

∣∣∣∣
∫ ωt2

ωt1

B(u)du

∣∣∣∣ |t2−t1| ≤
1

|ωt2−ωt1|

∣∣∣∣
∫ ωt2

ωt1

B(u)du

∣∣∣∣ h.

If we take ω0
.
= MT0

δ , we have for ω ≥ ω0,

|ωt2 − ωt1| ≥ ω0|t2 − t1| ≥
MT0

δ

δ

M
= T0.

Therefore,
∣∣∣∣
∫ t2

t1

B(ωt)dt

∣∣∣∣ =
1

|ωt2 − ωt1|

∣∣∣∣
∫ ωt2

ωt1

B(u)du

∣∣∣∣ h ≤
δ

h
h = δ.

The result follows from Theorem 3.9 for δ sufficiently small.

Consider now A ∈ GAP. Then we have A(t) = A0 + B(t), where A0 = M(A)
and M(B) = 0. We suppose that |A0| ≤ M and |B(t)| ≤ M for every t ∈ R.
Consider the equations:

ẋ = A0x, (3.3)

ẋ = A0x+B(ωt)x. (3.4)

Let T (t)
.
= eA0t be the semigroup generated by (3.3) and Sω(t, s) be the evolution

operator of (3.4).
As a consequence of Theorem 3.9 it follows that if σ(A0) ⊂ {λ ∈ C : Re(λ) < −α}

we will have:

Corollary 3. Suppose |T (t)| ≤ Ke−αt for t ≥ 0, K ≥ 1. Then there exist α̃ < α,

K̃ > K, ω0 > 0, such that for ω > ω0 we have

Sω(t, s) ≤ K̃e−α̃(t−s),∀t ≥ s.

4. An infinite dimensional example. In this section we will construct a true
infinite dimensional example to apply the results of the previous section. We are
going to use some results of the paper Rodrigues and Solà-Morales [19]. Consider the
space X = `2. We consider the operator J ∈ L(X) given by the infinite dimensional
Jordan matrix:

J :=




0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
. . . · · ·
. . . · · ·



. (4.1)
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As it is proved in Rodrigues and Solà-Morales [19] the spectrum of J is the closed
unity circle of the complex plane. Now we take 0 < a < 1 and we define the
operator:

L :=

(
a 0
0 νJ + aI

)
= aI + ν

(
0 0
0 J

)
= a

(
I −

(−ν
a

)(
0 0
0 J

))
. (4.2)

If we let

D =

(−ν
a

)(
0 0
0 J

)
,

we have that

L = a(I −D).

From the same paper above it follows that the spectrum of L is the closed disc
Bν(a) with center in a and radius ν. Then we take 0 < ν < min{a, 1− a}. Then we
let A := logL = (log a)I + log(I −D).

Figure 1. Left: The spectrum of L given by σ(L) = Bν(a). Right:
The spectrum of A given by σ(A) = log(σ(L)), with a = 1/2 and
ν = 1/4.

But

log(I −D) = −(D +
D2

2
+ · · · D

n

n
· · · ).

Therefore

‖ log(I −D)‖ ≤ ν

a
+

(νa )2

2
+ · · · (

ν
a )n

n
+ · · · = − log(1− ν

a
).

Let ν > 0 sufficiently small such that 0 < − log(1− ν
a ) < a

2 . Then it follows that

‖eAt‖ ≤ e(−at−log(1− νa )t) ≤ e− a2 t, t ≥ 0.

In the space X = `2. We consider the operator A ∈ L(X) given above. In FIGURE
1 we show the spectrum of L and the spectrum of A.

Corollary 4. Consider now the systems:

ẋ = Ax, (4.3)

ẏ = Ay +B(ωt)y. (4.4)

where B ∈ GAP with mean value zero. Let M > 0 be such that |A| ≤ M and
supt∈R |B(t)| ≤M .
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Let Sω(t, s) = Y (t)Y −1(s) be the evolution operator associated to system (4.4),
where Y (t) is the solution with initial condition Y (0) = I, where I indicates the
Identity operator.

Then there exists K̃, α̃ and ω0 > 0 such that for ω > ω0

|Sω(t, s)| ≤ K̃e−α̃(t−s), t ≥ s.

Proof. Follows from Theorem 3.9 .

Next we will present a simple example where the perturbation B(t) belongs to
GAP but it is not almost periodic.

Example 4.1. Let b : R → R be uniformly continuous, bounded with mean value
zero. Let

B(t)
.
=




0 0 0 · · ·
b(t) 0 0 · · ·
0 b(t) 0 · · ·
0 0 b(t) · · ·
. . . · · ·
. . . · · ·




= b(t)




0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
. . . · · ·
. . . · · ·



. (4.5)

Then B ∈ GAP and has mean value zero. Let d(t)
.
=
√

1− t2 if −1 ≤ t ≤ 1,
d(t) = 0 if t ∈ (∞, 0) ∪ (1,∞). In the special case that we take b(t)

.
= d(t) + cos t,

B(t) is not almost periodic.
Therefore we can apply Corollary 4 if we take b(ωt) = d(ωt) + cos(ωt) and then

we can take B(ωt) as above.

5. A case where the infinitesimal generator is unbounded. Consider the
equations:

ẋ = Ax (5.1)

ẏ = Ay +B(t)y. (5.2)

We suppose that D is dense in X and A : D → X is the infinitesimal generator of a
C0 semigroup T (t), such that |T (t)| ≤ Keαt, t ≥ 0, K ≥ 1, α ∈ R.

Now we will analyse some smallness conditions on the perturbation B(t), such
that equation (5.2) is also asymptotically stable in the case α < 0. The case when
B(t) is uniformly small is studied in Kloeden-Rodrigues [10] without leaving the
continuous case. Similar results are obtained by Carvalho et al [1], but they first
find the result for the discrete case.

Similar results to the next theorem are treated by Carvalho et al [1] and Dalekii-

Krein [4] but they use the stronger assumption that
∫ t
τ
|B(t)| is small, with the

norm inside the integral and in the first one they prove via a discretiztion method.
Similar results are obtained by Henry [8] in Thorem 7.6.11, pag. 238, where he
also considers first the discrete case, and requires that B(t) is uniformly small and
integrally small.

Our result is an extension of a classical result of Coppel [3] for the infinite di-
mensional case, and A being an unbounded operator.

We will follow the steps of Theorem 2.1 where we imposed that |B(t)| ≤ M for
every t ∈ R and that |

∫ u
t
B(τ)dτ | ≤ δ for t ≤ u ≤ t + h. We also assume that the

range of B(t) is contained in the domain of A.
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Theorem 5.1. We assume besides the above assumptions on A and T (t), that
B : R → L(X) is a continuous function and such that for each t ∈ R AB(t)
is a bounded operator and B(t)A can be extended to the whole space as a bounded
operator. For each t ∈ R let Ct(u)

.
=
∫ u
t
B(τ)dτ , for |t − u| ≤ h, where h is a

positive real number. We suppose that there are positive numbers M and δ such
that

|Ct(u)B(u)| ≤Mδ, |Ct(u)A| ≤Mδ, and |ACt(u)| ≤Mδ, for |u− t| ≤ h.
Let S(t, s) be the evolution operator associated to system (5.2). Then

‖S(t, s)‖ ≤ (1 + δ)Keβ(t−s) for t ≥ s, t, s ∈ R,

where

β = α+ 3MKδ +
log((1 + δ)K)

h
.

If α is negative, h is sufficiently large and δ sufficiently small in such a way that
β < 0 then it follows that system (5.2) is asymptotically stable.

Proof. The proof follows the ideas of Theorem 2.1. By the variation of constants
formula

S(t, s) = T (t− s) +

∫ t

s

T (t− u)B(u)S(u, s)du, t ≥ s.
∫ t

s

T (t− u)B(u)S(u, s)du =

∫ t

s

T (t− u)
d

du

∫ u

t

B(τ)dτS(u, s)du

=

∫ t

s

T (t− u)
d

du
Ct(u)S(u, s)du.

Taking derivatives,

d

du
[T (t− u)Ct(u)S(u, s)] =− T (t− u)ACt(u)S(u, s) + T (t− u)B(u)S(u, s)

+ T (t− u)Ct(u)(A+B(u))S(u, s).

Integrating the above equation, we obtain
∫ t

s

d

du
[T (t− u)Ct(u)S(u, s)]du

= −
∫ t

s

T (t− u)ACt(u)S(u, s)du+

∫ t

s

T (t− u)B(u)S(u, s)du

+

∫ t

s

T (t− u)Ct(u)AS(u, s)du+

∫ t

s

T (t− u)Ct(u)B(u)S(u, s)du.

And so,

−T (t− s)Ct(s) =−
∫ t

s

T (t− u)ACt(u)S(u, s)du+

∫ t

s

T (t− u)B(u)S(u, s)du

+

∫ t

s

T (t−u)Ct(u)AS(u, s)du+

∫ t

s

T (t−u)Ct(u)B(u)S(u, s)du.

Therefore,
∫ t

s

T (t− u)B(u)S(u, s)du = −T (t− s)Ct(s) +

∫ t

s

T (t− u)ACt(u)S(u, s)du
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−
∫ t

s

T (t− u)C(tu)AS(u, s)du−
∫ t

s

T (t− u)Ct(u)B(u)S(u, s)du.

Therefore,

S(t, s) =T (t− s) +

∫ t

s

T (t− u)B(u)S(u, s)du

=T (t− s)(I − Ct(s)) +

∫ t

s

T (t− u)ACt(u)S(u, s)du

−
∫ t

s

T (t− u)Ct(u)AS(u, s)du−
∫ t

s

T (t− u)Ct(u)B(u)S(u, s)du.

We first suppose that s ≤ t ≤ s+ h and estimate |S(t, s)|.
If 0 ≤ |u− t| ≤ h then

|Ct(u)B(u)| ≤ |
∫ u

t

B(τ)dτB(u)| ≤Mδ, |Ct(u)A| ≤Mδ

and |ACt(u)| ≤Mδ. Therefore,

|S(t, s)| ≤ K(1 + δ)eα(t−s) + 3MKδ

∫ t

s

e−α(t−u)|S(u, s)|du.

and so using Gronwall’s inequality it follows that, in an arbitrary interval of length
h, say for s ≤ t ≤ s+ h we have

|S(t, s)| ≤ K(1 + δ)eα(t−s)e3MKδ(t−s) = K(1 + δ)e(α+3MKδ)(t−s).

For t ≥ s there exists n ∈ N, n = n(t, s) such that s+ nh ≤ t ≤ s+ (n+ 1)h and so

|S(t, s+ nh)| ≤ K(1 + δ)e(α+3MKδ)(t−s−nh).

We are going to prove by induction that for s+ nh ≤ t ≤ s+ (n+ 1)h,

|S(t, s)| ≤ [K(1 + δ)]n+1e(α+3KMδ)(t−s).

The case n = 0 has already been proved. But S(s+ nh, s) = S(s+ nh, s+ (n−
1)h) · · ·S(s+ h, s) and so

|S(s+ nh, s)| ≤ [K(1 + δ)]ne(α+3KMδ)nh.

Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h,

|S(t, s)| ≤ |S(t, s+ nh)||S(s+ nh, s)|
≤ K(1 + δ)e(−α−3KMδ)(t−s−nh)[K(1 + δ)]ne(α+3KMδ)nh

= [K(1 + δ)]n+1e(α+3KMδ)(t−s).

Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h, we have

|S(t, s)| ≤ [K(1 + δ)]n+1e(α+3KMδ)(t−s).

Let γ
.
= ln((1+δ)K)

h . Since t ≥ s+ nh, we have

[(1 + δ)K]n = eγnh ≤ eγ(t−s).

Therefore,

|S(t, s)| ≤ K(1 + δ)e(α−+3KMδ+
ln((1+δ)K)

h )(t−s).
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6. Applications of Section 5. Consider the following result from Henry [8] pg.
30.

Theorem 6.1. Suppose A is a closed operator in the Banach space X and suppose
that σ1 is a bounded spectral set of A, and σ2 = σ(A)− σ1 so σ2 ∪ {∞} is another
spectral set. Let E1, E2 be the projections associated with these spectral sets, and
Xj = Ej(X), j = 1, 2. Then X = X1 ⊕ X2, the Xj are invariant under A, and if
Aj is the restriction of A to Xj, then

A1 : X1 → X1 is bounded, σ(A1) = σ1, D(A2) = D(A) ∩X2 and σ(A2) = σ2.

With our techniques what we can get is the next result:

Theorem 6.2. Let h and δ be positive real numbers. Suppose that A : D(A) ⊂
X → X a generator of a C0-semigroup T (t), t ≥ 0, B(t) ∈ L(X) and |B(t)| ≤ M
for every t ∈ R. Suppose we can decompose σ(A)

.
= σ1 ∪ σ2, where σ1 is a bounded

spectral set and σ2 = σ(A)− σ1 so σ2 ∪ {∞} is another spectral set. Suppose there
is a smooth curve Γ, oriented positively, that contains σ1 in its interior and σ2 is in
the exterior of Γ. Consider the projection P1

.
= −1

2πi

∮
Γ
(λ−A)−1dλ that projects X in

the subspace X1 associated to the spectral set σ1. Let P2
.
= I−P1. |T (t)P1| ≤ Ke−αt

and |T (t)P2| ≤ Ke−µt, for t ≥ 0, where µ > α. Then AP1 is a bounded operator
and P1A = AP1 and so P1A is also a bounded operator.

The above decomposition is chosen in such a way that |P2B(t)| ≤ Mδ for every
t ∈ R .

In analogy with the bounded case if Ct(u)
.
=
∫ u
t
B(τ)dτ , we suppose that

|P1Ct(u)B| ≤Mδ, |P1ACt(u)| ≤Mδ and |P1Ct(u)A| ≤Mδ, for t ≤ u ≤ t+ h.
(6.1)

Consider the equations:

ẋ = Ax, (6.2)

ẏ = Ay +B(t)y. (6.3)

If the above assumptions are satisfied if δ is sufficiently small, h is sufficiently large
and (6.2) is asymptotically stable then system (6.3) is also asymptotically stable.

Proof. The proof follows the ideas of Theorem 5.1.

Remark 1. The decomposition σ(A) = σ1 ∪ σ2 and the smallness conditions (6.1)
are satisfied if A is at least a sectorial operator and if B(t) commutes with P1.

7. Stabilising unstable systems under small periodic perturbations, with
large period. In contrast with the results of the previous sections on the robustness
of the stability, this section and the next one are devoted to show, by means of
examples, that instability is not so difficult to break.

The next example is in X =R2 and it shows that it is possible to stabilise an
unstable system under a small (in mean value) periodic perturbation.

Let 0 < α < β and δ < T . Let

A
.
=

(
α 0
0 −β

)
, R

.
=

(
0 π

2δ

− π
2δ 0

)
.

Let D(t) the T -periodic operator given by

D(t) = −A+R, T − δ ≤ t < T, D(t) = 0 t ∈ R− [T − δ, T ). (7.1)
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Consider the systems:

ẋ = Ax, (7.2)

ẏ = Ay +D(t)y. (7.3)

First we observe that limT→∞ 1
T

∫ T
0
D(s)ds = 0, that is B(t) has zero mean

value, but has large period. Next we are going to prove, using Floquet Theorem
that system (7.3) is uniformly asymptotically stable. For the system ẋ = A(t)x,
where A(t) is continuous and T -periodic, we will use Floquet Theorem even if A(t)
is not continuous, according to the comment in [7] page 118.

Consider the matrix solution X(t) of (7.2) such that X(0) = I the identity
matrix. Then it is given by

X(t) = eAt =

(
eαt 0
0 e−βt

)
.

If we let R
.
=

(
0 π

2δ
− π

2δ 0

)
, then we have the rotation matrix:

eRt =




cos

(
πt

2δ

)
sin

(
πt

2δ

)

− sin

(
πt

2δ

)
cos

(
πt

2δ

)


 .

Since

X(T − δ) = eA(t−δ) =

(
eα(T−δ) 0

0 e−β(T−δ)

)
,

the fundamental matrix Y (t) of ẏ = (A+D(t))y, such that Y (0) = I will be given
by

{
Y (t) = eAt for 0 ≤ t < T − δ,
Y (t) = eR(t−(T−δ))eA(T−δ) = eR(t−T )eRδeA(T−δ), for T − δ ≤ t < T.

Then the monodromy matrix will be

Y (T ) = eRδeA(T−δ) =




cos

(
πδ

2δ

)
sin

(
πδ

2δ

)

− sin

(
πδ

2δ

)
cos

(
πδ

2δ

)



(
eα(T−δ) 0

0 e−β(T−δ)

)

=

(
0 1
−1 0

)(
eα(T−δ) 0

0 e−β(T−δ)

)
=

(
0 e−β(T−δ)

−eα(T−δ) 0

)
.

Now we can find the eigenvalues of the monodromy Y (T ) and they will be the
characteristic multipliers of (7.3)

Y (T )− λI =

(
−λ e−β(T−δ)

−eα(T−δ) −λ

)
.

The characteristic polynomial is given by p(λ)
.
= λ2 +e(α−β)(T−δ). Since β > α this

implies that

|λ| =
√
e(α−β)(T−δ) < 1.

Therefore ẏ = (A+D(t))y is uniformly asymptotically stable.
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8. Stabilizing unstable linear ODE in infinite dimensions. There is a clas-
sical example in Operator Theory due to S. Kakutani of a bounded operator in an
infinite-dimensional Hilbert space whose spectrum shrinks drastically from a disk
to a single point under an arbitrarily small bounded perturbation. The example
can be found in [13] (p. 282) and [6] (p. 248) and it is also described in [21],
where the present authors recently used it to build an example of the possibility
of nonlinear stabilization of an unstable linear map under Fréchet differentiability
hypotheses. It is also briefly described below. The purpose of the present section
is, by means of two examples, to use the ideas of Kakutani’s example to show this
drastic stabilization in linear ordinary differential equations in infinite dimensional
Hilbert spaces, of the form

ẋ(t) = Ax(t) +B(t)x(t), (8.1)

when the system ẋ(t) = Ax(t) is unstable and the perturbation B(t) is small in
some senses. Roughly speaking, we could say that the examples of this section
show that while stability is a robust feature, instability does not need to be so.

Let us describe briefly the example of Kakutani with the notations and choices of
[21]. In a real separable Hilbert space H with a Hilbert orthonormal basis (en)n≥1

a weighted shift operator W ∈ L(H) is a bounded linear operator defined by the
relations Wei = αiei+1 for a bounded sequence of real numbers (αn)n≥1. One
readily sees that

‖W‖ = sup{|αn|} and ‖W k‖ = sup{|αnαn+1 · · ·αn+k−1|}. (8.2)

We choose first the sequence εm = M/Km−1 for some M > 0 and some K > 1,
and define a weighted shift Wε by αn = εm if n = 2(m−1)(2` + 1), where ` is a
non-negative integer. This sophisticated way of distributing the numbers εm into
a sequence αn makes a number εm to appear for the first time in the αn sequence
at the position n = 2(m−1) and from that position onwards to appear periodically,
infinitely many times, with a period of 2m.

Then, one also defines the weighted shifts Lm by a sequence of weights αn that
are all of them equal to zero, except at the positions n = 2(m−1)(2` + 1), where `
is a non-negative integer, where αn = εm. With this choice, the operator Wε − Lm
is also a weighted shift, and it has zeroes along its sequence of weights, distributed
each 2m places, and starting at the 2(m−1) position. This means, according to 8.2,
that Wε−Lm is nilpotent of index 2m, (Wε−Lm)2m = 0. Consequently, its spectral
radius ρ(Wε−Lm) = 0. One can also obtain, after some work, that ρ(Wε) = M/K
and that the spectrum σ(Wε) is the whole disk of radius M/K centered at zero.
Concerning the norms, by using (8.2) one gets that ‖Wε‖ = M and ‖ −Lm‖ = εm.

In this way, Kakutani’s example shows the existence of a bounded linear operator
Wε with positive spectral radius that is approximated, in the operator norm, by a
sequence Wε − Lm of operators whose spectrum reduces to the single point 0.

Our first example of translation of these ideas to (8.1) is very simple. Let us
choose a number R and the previous numbers M and K in such a way that 0 <
R −M/K < R < 1 < R + M/K and with these choices define the new operator
T = RI + Wε, where I is the identity operator. The spectrum of T is a disk of
radius M/K centered at the point R. This spectrum intersects the exterior of the
unit circle and lies entirely in the half-plane Re z ≥ R−M/K > 0. Because of this
last property, the operator A

.
= log(T ) can be defined, and by the Spectral Mapping

Theorem
‖etA‖ ≥ ρ(etA) = et log(R+M/K), (8.3)
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which is unstable since R+M/K > 1.
We construct now the sequence of operators Sm = R I +Wε − Lm. All of these

operators have their spectra reduced to the single point z = R, and these operators
converge in the operator norm to T = RI+Wε, which spectrum is the disk of radius
M/K centered at z = R. If we take now Am = log(RI +Wε −Lm), we again have
that the sequence Am tends to A = log(T ) as m→∞ in the operator norm, by the
continuity of the logarithm. Also, by the properties of the exponential, perhaps by
using adapted norms, for all δ > 0 and all m, there exists a number Dm,δ such that

‖etAm‖ ≤ Dm,δ e
t(log(R)+δ), (8.4)

which implies stability since log(R) < 0, and δ can be chosen small enough.
In this way we have perturbed an autonomous unstable system ẋ(t) = Ax(t)

to a new autonomous system ẋ(t) = Ax(t) + (Am − A)x(t), with a perturbation
that can be taken as small as we wish in the operator norm, and the new system is
asymptotically stable.

This example deserves to be commented in relation of Theorem 4 of [10] (p.
2704). According to that theorem, if an equation ẋ(t) = A(t)x(t) exhibits an expo-
nential dichotomy with nontrivial stable and an unstable part (which in particular
means that it is unstable), then a new system ẋ(t) = A(t)x(t)+B(t)x(t) will exhibit
a similar dichotomy (which means that it is also unstable) if sup{‖B(t)‖; t ∈ R} is
sufficiently small, and if some compactness conditions are met, that are automat-
ically satisfied in our case since B does not depend on t. This robustness of the
instability is broken in our example, since the spectrum of A is a connected set
that has points both in Re z < 0 and in Re z > 0, but it is not possible to divide
it into two spectral sets by the vertical line Re z = 0. This is something very typi-
cal from infinite dimensional functional analysis, that cannot be expected in finite
dimensions.

Our second example, also based on Kakutani’s construction, starts with the
same system ẋ(t) = Ax(t) as above, with A = log(RI + Wε) and Wε, with the
relations 0 < R−M/K < R < 1 < R+M/K, whose instability is expressed by the
inequality (8.3) above. We want to add to it now a time-dependent perturbation
B(t), depending continuously on t ≥ 0 such that sup{‖B(t)‖; t ∈ [0,∞)} can be
taken as small as we wish, but with the novelty that limt→∞ ‖B(t)‖ = 0. Despite
this, we want to obtain a system ẋ(t) = Ax(t) +B(t)x(t) that will be stable.

Let us name Bm the operators Am −A considered above. Let us say again that
‖Bm‖ → 0 as m → ∞ and that the spectra σ(A + Bm) = σ(Am) = {logR}. Let
us fix now one value of δ > 0 in (8.4) such that if we define ω = − log(R) − δ we
still have ω > 0. For example, δ = − 1

2 logR. If we write Dm for Dm,δ in (8.4) we

will have ‖etAm‖ ≤ Dme
−ωt. We do not expect the sequence Dm to be bounded as

m→∞. Let us choose an index m0 ≥ 1 and define

B(t) =

{
Bm0+k, for tk ≤ t ≤ tk+1 − 1,

(tk+1−t)Bm0+k+(t−tk+1+1)Bm0+k+1 for tk+1−1 ≤ t ≤ tk+1,
(8.5)

for an increasing sequence tk with t0 = 0 and tk + 1 < tk+1, to be defined later. It
is clear that B(t) is a continuous function from [0,∞) to L(H). Since ‖Bm‖ → 0 it
is clear that

Em0

.
= sup{‖Bm‖;m ≥ m0} → 0 as m0 →∞.

Therefore, ‖B(t)‖ ≤ Em0 for all t ≥ 0, and this can be made as small as we like by
choosing m0 sufficiently large.
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In order to define the sequence (tk)k≥0 let us now bound the solutions of
{
ẋ(t) = Ax(t) +B(t)x(t),

x(0) = x0.
(8.6)

For t between tk and tk+1−1 we will have A+B(t) = Am0+k and, because of (8.4),

‖x(t)‖ ≤ ‖x(tk)‖Dm0+ke
−ω(t−tk).

To fix ideas, let us start with k = 0. For 0 = t0 ≤ t ≤ t1 − 1 we can write
‖x(t)‖ ≤ Dm0

e−ωt‖x(0)‖. Then, for t1 − 1 ≤ t ≤ t1 we can broadly bound as

‖x(t)‖ ≤ e(t−t1+1)(‖A‖+Em0
)‖x(t1 − 1)‖ ≤ e(‖A‖+Em0

)‖x(t1 − 1)‖,
and, putting the two parts together

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ωt‖x(0)‖, (8.7)

which obviously implies the weaker bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

− 1
2ωt‖x(0)‖, (8.8)

both for 0 ≤ t ≤ t1. Then, we continue with t1 ≤ t ≤ t2 − 1, and for this range of t
we have A+B(t) = Am0+1 and

‖x(t)‖ ≤ Dm0+1e
−ω(t−t1)‖x(t1)‖,

and, as before,

‖x(t)‖ ≤ e(‖A‖+Em0 )Dm0+1e
−ω(t−t1)‖x(t1)‖,

now for the whole t1 ≤ t ≤ t2. Putting this together with (8.7) we get, again for
t1 ≤ t ≤ t2,

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0+1e

−ω(t−t1)e(‖A‖+Em0
)Dm0

e−ωt1‖x(0)‖,
that we can write again as

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0+1e

−ω(t−t1)e(‖A‖+Em0
)Dm0e

− 1
2ωt1e−

1
2ωt1‖x(0)‖,

and at this point we see that we can choose t1 large enough in such a way that

e(‖A‖+Em0
)Dm0+1e

− 1
2ωt1 ≤ 1.

With this choice we get

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ω(t−t1)e−
1
2ωt1‖x(0)‖, (8.9)

for t1 ≤ t ≤ t2, which will be needed in the next interval, and also deduce, together
with (8.8) the weaker but more global bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

− 1
2ωt‖x(0)‖, (8.10)

now for all t such that 0 ≤ t ≤ t2.
Now we proceed inductively. Suppose that along the interval tk−1 ≤ t ≤ tk,

where tk is still to be chosen, we have obtained, as in (8.9), the bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ω(t−tk−1)e−
1
2ωtk−1‖x(0)‖, (8.11)

for tk−1 ≤ t ≤ tk, and the weaker inequality

‖x(t)‖ ≤ e(‖A‖+Em0 )Dm0
e−

1
2ωt‖x(0)‖, (8.12)

for 0 ≤ t ≤ tk. Then we analyze for tk ≤ t ≤ tk+1 and obtain that

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0+ke

−w(t−tk)e(‖A‖+Em0
)Dm0e

−ω(tk−tk−1)e−
1
2ωtk−1‖x(0)‖.
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Then we choose tk in such a way that

e(‖A‖+Em0
)Dm0+ke

− 1
2ω(tk−tk−1) ≤ 1,

and obtain

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0

e−ω(t−tk)e−
1
2ωtk‖x(0)‖, (8.13)

for tk ≤ t ≤ tk+1, and the weaker inequality

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0

e−
1
2ωt‖x(0)‖, (8.14)

for 0 ≤ t ≤ tk+1.
With these choices of the tk one can make k →∞ and obtain the final bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0

e−
1
2ωt‖x(0)‖, (8.15)

for all t ≥ 0, that proves the exponential asymptotic stability of the solutions of
(8.6).
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[19] H. M. Rodrigues and J. Solà-Morales, Invertible Contractions and Asymptotically Stable

ODE’s that are not C1-Linearizable, J. Dyn. Differ. Equ., 18 (2006), 961–973.
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Abstract
In this paper we study the robustness of the exponential dichotomy in nonautonomous linear
ordinary differential equations under integrally small perturbations in infinite dimensional
Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations,
with arbitrarily small periods, showing that even in this case the stability is robust. These
results extend to infinite dimensions some results given in Coppel (Dichotomies in stability
theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariân-
cia para sistemas de equações diferenciais com retardamento e aplicações, Tese deMestrado,
Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear
Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear
differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of
functions that we call Generalized Almost Periodic Functions that extend the usual class of
almost periodic functions and are suitable to model these oscillating perturbations. We also
present an infinite dimensional example of the previous results.
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1 Introduction

The main objective of this paper is to study the robustness of the exponential dichotomy in
nonautonomous linear ordinary differential equations under integrally small perturbations in
infinite dimensional Banach spaces. Also, we provide some applications to the case of rapidly
oscillating perturbations, with arbitrarily small periods, showing that even in this case the
dichotomy is robust. In particular, our results extend some results given in Coppel [2] to
infinite dimensions. Based in Rodrigues [6] and in Kloeden and Rodrigues [5], Rodrigues et
al. [7] we use the class of functions that we call Generalized Almost Periodic Functions that
extend the usual class of almost periodic functions and are suitable to model these oscillating
perturbations. We also present an infinite dimensional example to illustrate the previous
abstract results.

Let X be a Banach space and A(t), B(t) be bounded operators defined in X , such that
‖A(t)‖, ‖B(t)‖ are bounded for every t ∈ R. We consider the following systems:

ẋ = A(t)x (1)

ẋ = A(t)x + B(t)x . (2)

In Sect. 3 we show that if system (1) possesses an exponential dichotomy in R and B(t) is
integrably small, then system (2) has an exponential dichotomy in R. Then if we suppose
that B(t) belongs to the class of generalized almost periodic functions and we consider the
systems

ẋ = A(t)x (3)

ẋ = A(t)x + B(ωt)x, (4)

if system (3) has an exponential dichotomy in R and ω is sufficiently large, then system (4)
has also an exponential dichotomy in R. We observe that if B(t) is periodic then B(ωt) will
have small period if ω is large.

In [7], page 17, there is a two dimensional example such that (1) has a non-trivial expo-
nential dichotomy (and therefore it is not asymptotically stable), B(t) is periodic with very
large period and very small mean value and (2) is asymptotically stable.

In Sect. 4 we present an infinite dimensional example where A(t) = A is constant, (3)
admits an exponential dichotomy, B(t) belongs to the class of generalized almost periodic
functions and (4) has an exponential dichotomy with sufficiently large ω.

In Sect. 5 we consider a case where the linear part is constant, unbounded, generates a
C0-semigroup and the perturbation B(t) is small in some sense, and in Theorem 3 we present
the necessary results for this case. In Example 1 we present an application of our abstract
results to the heat equation.

2 Integral Inequalities

In the next lemma we prove a new integral inequality that will be very useful to show our
main results.

Lemma 1 Let s be a fixed number in R. Let u(t) ≥ 0 be a real continuous and bounded
function for t ≥ s, such that
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u(t) ≤ Ke−α(t−s) + N
∫ t

s
e−μ(t−τ)u(τ )dτ + L

∫ t

s
e−α(t−τ)u(τ )dτ

+M
∫ ∞

t
eγ (t−τ)u(τ )dτ, (5)

where K , N , L, M, μ, α, γ are positive numbers, withμ < α. Let β
.= N

μ
+ L

α
+ M

γ
< 1.

Then

u(t) ≤ K

1 − β
e
−
(
α− N+L

1−β

)
(t−s)

, t ≥ s.

Also, if u(t) ≥ 0 is continuous and bounded for t ≤ s, and

u(t) ≤ Keα(t−s) + N
∫ s

t
eμ(t−τ)u(τ )dτ + L

∫ s

t
eα(t−τ)u(τ )dτ

+M
∫ t

−∞
e−γ (t−τ)u(τ )dτ, (6)

where K , N , L, M, μ, α, γ are positive numbers, with μ < α, then

u(t) ≤ K

1 − β
e

(
α− N+L

1−β

)
(t−s)

, t ≤ s.

Proof We will first prove that u(t) → 0 as t → ∞. Suppose, by contradiction, that this is
not true. Let δ

.= lim supt→∞ u(t). Then δ > 0.
Let 0 < ν < θ < 1. Then there exists t1 > s such that u(t) ≤ δ

θ
for t ≥ t1.

Therefore for t ≥ t1,

u(t) ≤ Ke−α(t−s) + N
∫ t1

s
e−μ(t−τ)u(τ )dτ + N

∫ t

t1
e−μ(t−τ)u(τ )dτ

+L
∫ t1

s
e−α(t−τ)u(τ )dτ + L

∫ t

t1
e−α(t−τ)u(τ )dτ

+M
∫ ∞

t
eγ (t−τ)u(τ )dτ

≤ Ke−α(t−s) + N
∫ t1

s
e−μ(t−τ)u(τ )dτ + N δ

θ

∫ t

t1
e−μ(t−τ)dτ

+L
∫ t1

s
e−α(t−τ)u(τ )dτ + Lδ

θ

∫ t

t1
e−α(t−τ)dτ

+Mδ

θ

∫ ∞

t
eγ (t−τ)u(τ )dτ

≤ Ke−α(t−s) + N
∫ t1

s
e−μ(t−τ)u(τ )dτ + N δ

μθ

+L
∫ t1

s
e−α(t−τ)u(τ )dτ + Lδ

αθ
+ Mδ

γ θ

= Ke−α(t−s) + N
∫ t1

s
e−μ(t−τ)u(τ )dτ + L

∫ t1

s
e−μ(t−τ)u(τ )dτ
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+
[N

μ
+ L

α
+ M

γ

]
δ

θ

= Ke−α(t−s) + (N + L)

∫ t1

s
e−μ(t−τ)u(τ )dτ + β

δ

θ
.

Then δ = lim supt→∞ u(t) ≤ βδ
θ

< δ, which is a contradiction. Therefore u(t) → 0 as
t → ∞.

Now for t ≥ s let v(t)
.= supτ≥t u(τ ). We can see that v(t) is a decreasing function for

t ≥ s.
Since u(t) → 0 as t → ∞, given t ∈ [s,∞) there exists t1 ≥ t such that v(t) = v(τ) =

u(t1) for t ≤ τ ≤ t1 and v(τ) < v(t1) if τ > t1. Indeed, let us prove this statement. Let t̄
such that u(t̄) < v(t). Let t1 = max{τ ∈ [t, t̄]} such that v(τ) = u(t1). Then for τ ∈ [t, t1]
v(τ) = v(t) = u(t1) and v(τ) < v(t1) if τ > t1.

Then

v(t) = u(t1) ≤ Ke−α(t1−s) + N
∫ t1

s
e−μ(t1−τ)v(τ )dτ

+L
∫ t1

s
e−α(t1−τ)v(τ )dτ + M

∫ ∞

t1
eγ (t1−τ)v(τ )dτ

≤ Ke−α(t1−s) + N
∫ t

s
e−μ(t1−τ)v(τ )dτ + N

∫ t1

t
e−μ(t1−τ)v(τ )dτ

+L
∫ t

s
e−α(t1−τ)v(τ )dτ + L

∫ t1

t
e−α(t1−τ)v(τ )dτ

+M
∫ ∞

t
eγ (t1−τ)v(τ )dτ

≤ Ke−α(t−s) + N
∫ t

s
e−μ(t1−τ)v(τ )dτ + Nv(t)

∫ t1

t
e−μ(t1−τ)dτ

+L
∫ t

s
e−α(t1−τ)v(τ )dτ + Lv(t)

∫ t1

t
e−α(t1−τ)dτ

+Mv(t)
∫ ∞

t
eγ (t1−τ)dτ

= Ke−α(t−s) +
[N

μ
+ L

α
+ M

γ

]
v(t) + N

∫ t

s
e−μ(t−τ)v(τ )dτ

+L
∫ t

s
e−α(t−τ)v(τ )dτ

= Ke−α(t−s) + βv(t) + [N + L]
∫ t

s
e−α(t−τ)v(τ )dτ.

Therefore (1 − β)v(t) ≤ Ke−α(t−s) + [N + L] ∫ t
s e

−α(t−τ)v(τ )dτ and

v(t) ≤ K

1 − β
e−α(t−s) + N + L

1 − β

∫ t

s
e−α(t−τ)v(τ )dτ,

eα(t−s)v(t) ≤ K

1 − β
+ N + L

1 − β

∫ t

s
eα(t−s)e−α(t−τ)v(τ )dτ

= K

1 − β
+ N + L

1 − β

∫ t

s
eα(τ−s)v(τ )dτ
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Thanks to Gronwall’s inequality,

eα(t−s)v(t) ≤ K

1 − β
e

N+L
1−β

(t−s)
, and so u(t) ≤ v(t) ≤ K

1 − β
e
−
(
α− N+L

1−β

)
(t−s)

, t ≥ s.

The proof of the second integral inequality is similar. �	

3 Robustness of Exponential Dichotomy inRRR

Based on [4] we define the concept of exponential dichotomies. Suppose the evolution opera-
tors T (t, s) ∈ L(X), t ≥ s, for ẋ = A(t)x are defined in R (see [7] for a detailed description
of the concepts used in this paper).

Definition 1 Equation ẋ = A(t)x is said to have an exponential dichotomy in R, with expo-
nent β > 0 and bound M if there exist projections P(t), t ∈ R such that

1. T (t, s)(I − P(s)) = (I − P(t))T (t, s), t ≥ s, t, s ∈ R.
2. the restriction T (t, s)|R(I−P(s)), t ≥ s, is an isomorphism of R(I − P(s)) onto R(I −

P(t)), and we define T (s, t) as the inverse from R(I − P(t)) to R(I − P(s)).
3.

‖T (t, s)P(s)‖ ≤ Me−β(t−s) f or t ≥ s in R

‖T (t, s)(I − P(s))‖ ≤ Me−β(s−t) f or s ≥ t in R
(7)

Remark 1 In [4], P(t) projects X onto the unstable manifold, differing from the usual con-
vention. In this paper, we chose to follow the usual convention, thus P(t) will project X onto
the stable manifold.

Suppose now that t ∈ R → A(t) ∈ L(X) is continuous and that equation ẋ = A(t)x has
an exponential dichotomy in R. Then, there is no solution x(t) defined and bounded in R.
Let X1 be the subspace of X of initial conditions on t = 0 of the solutions that are bounded
for t ≥ 0 and X2 be the subspace of X of initial conditions on t = 0 of the solutions that are
bounded for t ≤ 0. Then, we have X = X1 ⊕ X2 and P1, P2 the projections from X onto X1

and X2 respectively. Then we can take P(t) = X(t)P1X−1(t), where X(t) is the operator
solution of the equation such that X(0) = I .

Theorem 1 Let A, B : R → L(X) be continuous functions such that there exists M > 0
and ‖A(t)‖ ≤ M and ‖B(t)‖ ≤ M for every t ∈ R. Consider the equations:

ẋ = A(t)x (8)

ẏ = A(t)y + B(t)y (9)

Let T (t, s) = X(t)X−1(s) be the evolution operator of (8) and S(t, s) = Y (t)Y−1(s) the
evolution operator of (9). We suppose that system (8) admits an exponential dichotomy in R,
i.e., there exist projections P(s), s ∈ R, constants K > 1, α > 0, such that

‖T (t, s)P(s)‖ ≤ Ke−α(t−s), t ≥ s

‖T (t, s)(I − P(s))‖ ≤ Keα(t−s), t ≤ s
(10)

Assume that there exist δ, h > 0 such that ‖ ∫ t2
t1

B(t)dt‖ ≤ δ provided that |t2 − t1| ≤ h,
t1, t2 ∈ R.
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Then, there exist projections Q(s), s ∈ R and constants K̃ and α̃ > 0, such that we have
S(t, s)Q(s) = Q(t)S(t, s) and

‖S(t, s)Q(s)‖ ≤ K̃ e−α̃(t−s), t ≥ s

‖S(t, s)(I − Q(s))‖ ≤ K̃ eα̃(t−s), t ≤ s
(11)

where, K̃ =
K

(
1+δ K

1−
(
K+ 6KM

α

)
δ

)

1−β
, β = 6KMδ

α
< 1, and α̃ = α − 6KMδ

1−β
.

Proof We first prove that there exists a projection Q(s) such that S(t, s)Q(s) is bounded for
t ≥ s for t, s ∈ R.

From the variation of constants formula it follows that

S(t, s) = T (t, s) +
∫ t

s
T (t, τ )B(τ )S(τ, s)dτ.

Since we look for Q(s) as a perturbation of P(s), we will show that the following implicit
equation

S(t, s)Q(s) = T (t, s)P(s) +
∫ t

s
T (t, τ )B(τ )S(τ, s)Q(s)dτ.

has a solution S(t, s)Q(s) bounded for t ≥ s. Let Y (t, s)
.= S(t, s)Q(s).

Then we should prove that the equation

Y (t, s) = T (t, s)P(s) +
∫ t

s
T (t, τ )B(τ )Y (τ, s)dτ

has a solution Y (t, s) ∈ L(X) bounded for t � s and t, s ∈ R, and then Q(s) =
S(t, s)−1Y (t, s):

Y (t, s) = T (t, s)P(s) +
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

+
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

= T (t, s)P(s) +
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

+
∫ ∞

s
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

+
∫ t

∞
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

= T (t, s)

[
P(s) +

∫ ∞

s
T (s, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

]

+
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

+
∫ t

∞
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ.

Since∫ ∞

s
T (s, τ )(I − P(τ ))B(τ )Y (τ, s)dτ = (I − P(s))

∫ ∞

s
T (s, τ )(I − P(τ ))B(τ )Y (τ, s)dτ
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and T (t, s)(I−P(s))
∫∞
s T (s, τ )(I−P(τ ))B(τ )Y (τ, s)dτ is bounded for t ≥ s this implies

that this term must be equal zero.
Therefore we must solve the equation,

Y (t, s) = T (t, s)P(s) +
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

+
∫ t

∞
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ.

We will first estimate Y (t, s) in an arbitrary interval of length h. To this end, we consider
the strip Hh

.= {(s, t) ∈ R2 : s ≤ t ≤ s+h}. For (t, s) ∈ Hh consider the integral equation:

Y (t, s) = T (t, s)P(s) +
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

−
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ (12)

We prove the existence of a solution Y (t, s) of this equation using the Banach Fixed Point
Theorem.

Now we consider the space Yh
.= BC(Hh, X) of the bounded continuous functions Y

from Hh to X with the norm |Y | .= sup(s,t)∈Hh)
|Y (t, s)|. This is a Banach space. For Y ∈ Yh

we define the operator T as

(T Y )(t, s)
.= T (t, s)P(s) +

∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

−
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ. (13)

We first prove that T (Yh) ⊂ Yh . The continuity is trivial. Let us prove the boundedness. Let
Y ∈ Yh . For (s, t) ∈ Hh

|(T Y )(t, s)| ≤ |T (t, s)P(s)| +
∣∣∣∣
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

∣∣∣∣
+
∣∣∣∣
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

∣∣∣∣
≤ Ke−α(t−s) +

∫ t

s
K e−α(t−τ)M |Y | dτ

+
∫ ∞

t
K e−α(τ−t)M |Y | dτ

≤ K + 2KM |Y |
α

From (13) it follows that

(T Y )(t, s) = T (t, s)P(s) + (T1Y )(t, s),

where

(T1Y )(t, s) =
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

−
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ. (14)
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Since (T1Y )(t, s) is linear, to prove that (T Y )(t, s) is a contraction it is sufficient to prove
that (T1Y )(t, s) is a contraction.

Let us analyse the first integral of (14). Let (s, t) ∈ Hh such that s ≤ t ≤ s + h. Consider
the integral:

∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ.

We letCt (τ )
.= ∫ τ

t B(u)du. In order to use the smallness of the integralCt (τ )
.= ∫ τ

t B(u)du,
we will perform an integration by parts taking the derivative of three terms:

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]

= −T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s) + T (t, τ )P(τ )B(τ )Y (τ, s)

+T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s).

Therefore

T (t, τ )P(τ )B(τ )Y (τ, s) = d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]

+T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)

−T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s).

Integrating,

∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ =

∫ t

s

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

+
∫ t

s
T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)dτ

−
∫ t

s
T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ

= −T (t, s)P(s))Ct (s)Y (s, s) +
∫ t

s
T (t, τ )

P(τ )A(τ )Ct (τ )Y (τ, s)dτ

−
∫ t

s
T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ.

Therefore,
∣∣∣∣
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

∣∣∣∣
≤ T (t, s)P(s))Ct (s)Y (s, s)| +

∣∣∣∣
∫ t

s
T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)dτ

∣∣∣∣
+
∣∣∣∣
∫ t

s
T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ

∣∣∣∣
≤ K δe−α(t−s)|Y (s, s)| + 3KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)|dτ.
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We conclude that for (s, t) ∈ Hh , that is for s ≤ t ≤ s + h,
∣∣∣∣
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

∣∣∣∣
≤ K δe−α(t−s)|Y (s, s)| + 3KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)|dτ. (15)

Now if s < t let n ∈ N such that s + nh ≤ t ≤ s + (n + 1)h.

∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ =

n−1∑
j=0

∫ s+( j+1)h

s+ jh
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

+
∫ t

s+nh
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

=
n−1∑
j=0

∫ s+( j+1)h

s+ jh
T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)dτ

+
∫ t

s+nh
T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)dτ

−
n−1∑
j=0

∫ s+( j+1)h

s+ jh
T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ

−
∫ t

s+nh
T (t, τ )P(τ )Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ

+
n−1∑
j=0

∫ s+( j+1)h

s+ jh

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

+
∫ t

s+nh

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ.

But

n−1∑
j=0

∫ s+( j+1)h

s+ jh

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

+
∫ t

s+nh

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

=
∫ s+h

s

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

+
∫ s+2h

s+h

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ + · · ·

+
∫ s+(n−1)h

s+(n−2)h

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

+
∫ t

s+(n−1)h

d

dτ
[T (t, τ )P(τ )Ct (τ )Y (τ, s)]dτ

= [T (t, s + h)P(s + h)Ct (s + h)Y (s + h, s) − T (t, s)P(s)Ct (s)Y (s, s)]
+[T (t, s + 2h)P(s + 2h)Ct (s + 2h)Y (s + 2h, s)
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−T (t, s + h)P(s + h)Ct (s + h)Y (s + h, s)] + · · ·
+T (t, s + (n − 1)h)P(s + (n − 1)h)Ct (s + (n − 1)h)Y (s + (n − 1)h, s)

−T (t, s + (n − 2)h)P(s + (n − 2)h)Ct (s + (n − 2)h)Y (s + (n − 2)h, s)

−T (t, s + (n − 1)h)P(s + (n − 1)h)Ct (s + (n − 1)h)Y (s + (n − 1)h, s)

= −T (t, s)P(s)C(s)Y (s, s).

Therefore if s < t and n ∈ N such that s + nh ≤ t ≤ s + (n + 1)h, we have
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ = −T (t, s)P(s)C(s)Y (s, s)

+
n−1∑
j=0

∫ s+( j+1)h

s+ jh
T (t, τ )P(τ )A(τ )C(τ )Y (τ, s)dτ

+
∫ t

s+nh
T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)dτ

+
n−1∑
j=0

∫ s+( j+1)h

s+ jh
T (t, τ )P(τ )[A(τ )

+B(τ )]Ct (τ )Y (τ, s)dτ

+
∫ t

s+nh
T (t, τ )P(τ )[A(τ ) + B(τ )]Ct (τ )Y (τ, s)dτ.

Estimating,
∣∣∣∣
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

∣∣∣∣ ≤ |T (t, s)P(s)Ct (s)Y (s, s)|

+
n−1∑
j=0

∫ s+( j+1)h

s+ jh
|T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)dτ |

+
∫ t

s+nh
|T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)|dτ

+
n−1∑
j=0

∫ s+( j+1)h

s+ jh
|T (t, τ )P(τ )[A(τ )

+B(τ )]Ct (τ )Y (τ, s)dτ |
+
∫ t

s+nh
|T (t, τ )P(τ )A(τ )Ct (τ )Y (τ, s)|dτ

≤ δKe−α(t−s)|Y (s, s)|

+KMδ

n−1∑
j=0

∫ s+( j+1)h

s+ jh
e−α(t−τ)|Y (τ, s)|dτ

+KMδ

∫ t

s+nh
e−α(t−τ)|Y (τ, s)|dτ

+2KMδ

n−1∑
j=0

∫ s+( j+1)h

s+ jh
e−α(t−τ)|Y (τ, s)|dτ
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+2KMδ

n−1∑
j=0

∫ t

s+nh
e−α(t−τ)|Y (τ, s)|dτ

= 4KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)|dτ.

Therefore, if s < t , let n ∈ N such that s + nh ≤ t ≤ s + (n + 1)h, we have
∣∣∣∣
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

∣∣∣∣ ≤ δKe−α(t−s)|Y (s, s)|

+3KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)|dτ. (16)

Consider now
∫∞
t T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ .

As before, we pick s ≤ t ≤ s + h, and we estimate the integral

∫ t

s
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ.

Let us denote Ct (τ ) = ∫ τ

t B(u)du.
Taking derivatives,

d

dτ
[T (t, τ )(I − P(τ ))Ct (τ )Y (τ, s)] = −T (t, τ )(I − P(τ ))A(τ )Ct (τ )Y (τ, s)

+T (t, τ )(I − P(τ ))B(τ )Y (τ, s)

+T (t, τ )(I − P(τ ))Ct (τ )(A(τ ) + B(τ ))Y (τ, s).

Therefore

T (t, τ )(I − P(τ ))B(τ )Y (τ, s) = d

dτ
[T (t, τ )(I − P(τ ))Ct (τ )Y (τ, s)]

+T (t, τ )(I − P(τ ))A(τ )Ct (τ )Y (τ, s)

−T (t, τ )(I − P(τ ))Ct (τ )(A(τ ) + B(τ ))Y (τ, s).

Integrating,

∫ t

s
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ =

∫ t

s

d

dτ
[T (t, τ )(I − P(τ ))Ct (τ )Y (τ, s)]dτ

+
∫ t

s
T (t, τ )(I − P(τ ))A(τ )Ct (τ )Y (τ, s)dτ

−
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

−
∫ t

s
T (t, τ )(I − P(τ ))Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ

= T (t, s)(I − P(s))Ct (s)Y (s, s)

+
∫ t

s
T (t, τ )(I − P(τ ))A(τ )Ct (τ )Y (τ, s)dτ

−
∫ t

s
T (t, τ )(I − P(τ ))Ct (τ )(A(τ ) + B(τ ))Y (τ, s)dτ.
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We have

∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ =

∞∑
N=0

∫ t+(N+1)h

t+Nh
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

=
∞∑
N=0

∫ t+(N+1)h

t+Nh

d

dτ
[T (t, τ )(I − P(τ ))Ct (τ )Y (τ, s)]dτ

+
∞∑
N=0

∫ t+(N+1)h

t+Nh
[T (t, τ )(I − P(τ ))A(τ )Ct (τ )Y (τ, s)

−T (t, τ )(I − P(τ ))Ct (τ )(A(τ ) + B(τ ))Y (τ, s)]dτ

Since the first term is zero we have
∣∣∣∣
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

∣∣∣∣ ≤
∞∑
N=0

∫ t+(N+1)h

t+Nh
Keα(t−τ)3Mδ|Y (τ, s)|dτ

= 3KMδ

∫ ∞

t
eα(t−τ)|Y (τ, s)|dτ

≤ 3KMδ

α
|Y |. (17)

Therefore

|(T1Y )(t, s)| ≤ δ

[
K

1 − e−αh
+ 3KM

α
+ 3KM

α

]
|Y |,

and we conclude that, if δ is sufficiently small, T1 is contraction and so T is a contraction.
The Banach Fixed Point Theorem ensures the existence of a unique fixed point Y (t, s).

From the above inequality also follows that for s ≤ t
∣∣∣∣
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

∣∣∣∣ ≤ 3KMδ

∫ ∞

t
eα(t−τ)|Y (τ, s)|dτ (18)

Therefore

Y (t, s) = T (t, s)P(s) +
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)dτ

−
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)dτ, (19)

and Y (s, s) = P(s) +
∫ ∞

s
T (s, τ )(I − P(τ ))B(τ )Y (τ, s)dτ.

From (19) it follows that

Y (t, s)Y (s, s) = T (t, s)P(s)Y (s, s)

+
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)Y (s, s)dτ

−
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)Y (s, s)dτ.
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But

P(s)Y (s, s) = P(s) − P(s)
∫ ∞

s
T (s, τ )(I − P(τ ))B(τ )Y (τ, s)dτ

= P(s) −
∫ ∞

s
T (s, τ )P(τ )(I − P(τ ))B(τ )Y (τ, s)dτ

= P(s).

Then Y (t, s)Y (s, s) is also a solution of (19) and so Y (t, s)Y (s, s) = Y (t, s). This implies
that Y (s, s)Y (s, s) = Y (s, s) and so Q(s)

.= Y (s, s) is a projection. In particular,

P(s)Q(s) = P(s).

Also from (19), it follows that Y (t, s)P(s) is a solution, and then Y (t, s)P(s) = Y (t, s),
which implies that Y (s, s)P(s) = Y (s, s) and so Q(s)P(s) = Q(s).

From (19) it follows that

Y (t, s)Q(s) = T (t, s)P(s) +
∫ t

s
T (t, τ )P(τ )B(τ )Y (τ, s)Q(s)dτ

−
∫ ∞

t
T (t, τ )(I − P(τ ))B(τ )Y (τ, s)Q(s)dτ,

and from (16) and (17) it follows that, for s ≤ t

|Y (t, s)Q(s)| ≤ K (1 + δ|Y (s, s)|)e−α(t−s) + 3KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)Q(s)|dτ

+3KMδ

∫ ∞

t
eα(t−τ)|Y (τ, s)Q(s)|dτ. (20)

Thus we must estimate |Y (s, s)|. From (19), using the estimates (15) and 17) we obtain for
s ≤ t ≤ s + h

|Y (t, s)| ≤ Ke−α(t−s) + δKe−α(t−s)|Y (s, s)|
+3KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)|dτ

+3KMδ

∫ ∞

t
eα(t−τ)|Y (τ, s)|dτ.

and

|Y | ≤ K + δK |Y | + 3KMδ

α
|Y | + 3KMδ

α
|Y | = K + δK |Y | + 6KMδ

α
|Y |.

Then

|Y | ≤ K

1 − K δ
(
1 + 6M

α

)

In particular

|Y (s, s)| = |Q(s)| ≤ K

1 − (
K + 6KM

α

)
δ
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and thus we have a bound for |Q(s)|.

|Y (t, s)Q(s)| ≤ K

(
1 + δ

K

1 − (
K + 6KM

α

)
δ

)
e−α(t−s)

+3KMδ

∫ t

s
e−α(t−τ)|Y (τ, s)Q(s)|dτ

+3KMδ

∫ ∞

t
eα(t−τ)|Y (τ, s)Q(s)|dτ

If we let S(t, s)Q(s) = Y (t, s)Q(s), from Lemma 1, we obtain

|S(t, s)Q(s)| ≤
K

(
1 + δ K

1−
(
K+ 6KM

α

)
δ

)

1 − β
e
−
(
α− 6KMδ

1−β

)
(t−s)

, t ≥ s (21)

and β = 6KMδ
α

.
From the variation of constants formula it follows that

S(t, s) = T (t, s) +
∫ t

s
T (t, τ )B(τ )S(τ, s)dτ.

Since we are looking for a projection W (s) as a perturbation of I − P(s), we will show
that the following implicit equation

S(t, s)W (s) = T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )B(τ )S(τ, s)W (s)dτ.

has a solution S(t, s)W (s) bounded for t ≤ s. Let Z(t, s)
.= S(t, s)W (s), then

Z(t, s) = T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )B(τ )Z(τ, s)dτ,

and if Z(t, s) is bounded for t ≤ s,

Z(t, s) = T (t, s)(I − P(s))

+
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ

+
∫ t

s
T (t, τ )P(τ )B(τ )Z(τ, s)dτ.

Z(t, s) = T (t, s)(I − P(s))

+
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ

+
∫ t

s
T (t, τ )P(τ )B(τ )Z(τ, s)dτ

+
∫ t

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ

+
∫ −∞

t
T (t, τ )P(τ )B(τ )Z(τ, s)dτ

= T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ
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+
∫ t

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ

−
∫ s

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ.

But∫ s

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ = T (t, s)P(s)

∫ s

−∞
T (s, τ )P(τ )B(τ )Z(τ, s)dτ.

Since this term should be bounded for t ≤ s, then it must be equal to 0. Therefore,

Z(t, s) = T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ

+
∫ t

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ.

Now we proceed as in (12). Let H
.= {(t, s) ∈ R2 : t ≤ s}. For (t, s) ∈ H we consider the

integral equation:

Z(t, s) = T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ

+
∫ t

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ. (22)

We now prove the existence of a solution Z(t, s) for this equation by using the Banach
Fixed Point Theorem. To this end, we consider the space Z .= BC(H , X) of the bounded
continuous functions Z from H to X with the norm |Z | .= supt≤s |Z(t, s)|. This is a Banach
space. For Z ∈ Z we define the operator T1 as

(T1Z)(t, s) = T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ

+
∫ t

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ.

One can prove that T1Z ⊂ Z) and that T1 is a contraction. Then the integral equation (22)
has a unique solution Z(t, s) in Z.

Since Z(t, s)Z(s, s) is also a solution of that equation, this implies that Z(s, s)Z(s, s) =
Z(s, s) and so Z(s, s) is a projection and

Z(s, s) = I − P(s) +
∫ s

−∞
T (s, τ )P(τ )B(τ )Z(τ, s)dτ.

Now

(I − Q(s))Z(s, s) = (I − Q(s))(I − P(s))

+
∫ s

−∞
(I − Q(s))T (s, τ )P(τ )B(τ )Z(τ, s)dτ

= I − Q(s) +
∫ s

−∞
T (s, τ )(I − Q(τ ))P(τ )B(τ )Z(τ, s)dτ
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= (I − Q(s)) +
∫ s

−∞
T (s, τ )(P(τ ) − P(τ )B(τ )Z(τ, s)dτ

= I − Q(s).

Therefore Z(s, s) = I − Q(s). From (22) it follows that

S(t, s)(I − Q(s)) = T (t, s)(I − P(s)) +
∫ t

s
T (t, τ )(I − P(τ ))B(τ )Z(τ, s)dτ

+
∫ t

−∞
T (t, τ )P(τ )B(τ )Z(τ, s)dτ. (23)

If we proceed as in the estimate of S(t, s)Q(s) in 21, and use (1), we can prove that

|S(t, s)(I − Q(s))| ≤
K

(
1 + δ K

1−
(
K+ 6KM

α

)
δ

)

1 − β
e

(
α− 6KMδ

1−β

)
(s−t)

, s ≤ t (24)

and β = 6KMδ
α

. �	
Following the ideas of [7] pages 9 and 10 and from Coppel [2] page 8 we obtain

Corollary 1 Let A, B : R → L(X) be continuous functions such that ‖A(t)‖ ≤ M and
‖B(t)‖ ≤ M for every t ∈ R, where M is a positive constant. Suppose that B(t) is a
generalized almost periodic function (GAP) with mean value zero. Consider the equations

ẋ = A(t)x (25)

ẋ = A(t)x + B(ωt)x (26)

Let T (t, s) be the evolution operator of (25) and Sω(t, s) be the evolution operator of (26).
Suppose that there exist projections P(s), s ∈ R such that |T (t, s)P(s)| ≤ Ke−α(t−s) for
t ≥ s and |T (t, s)(I − P(s))| ≤ Keα(t−s) for t ≤ s , t, s ∈ R, where α > 0 and K > 1.
Then there exist projections Qω(s), s ∈ R, K̃ > K, β̃ < α andω0 > 0 such that forω > ω0

|Sω(t, s)Qω(s)| ≤ K̃ e−β̃(t−s), t ≥ s,

|Sω(t, s)(I − Qω(s))| ≤ K̃ eβ̃(t−s), t ≤ s,

where Sω(t, s) indicates the evolution operator of (26).

Consider now A ∈ GAP . Then we have A(t) = A0 + B(t), where A0 = M(A) and
M(B) = 0, where M denotes the mean value. We suppose that |A0| ≤ M and |B(t)| ≤ M
for every t ∈ R. Consider the equations:

ẋ = A0x (27)

ẋ = A0x + B(ωt)x . (28)

Let T (t)
.= eA0t be the group generated by (27) and Sω(t, s) be the evolution operator of

(28). The next corollary follows from Corollary 1.

Corollary 2 Assume that system (8) admits an exponential dichotomy in R, i.e., there exist
projections P, constants K > 1, α > 0, such that

‖T (t)P‖ ≤ Ke−α(t−s), t ≥ s (29)

‖T (t)(I − P)‖ ≤ Keα(t−s), t ≤ s (30)
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Then there exist projections Qω(s), s ∈ R and constants K̃ > K, 0 < α̃ < α and ω0 > 0
such that for every ω > ω0 we have

Sω(t, s)Qω(s) ≤ K̃ e−α̃(t−s), ∀t ≥ s,

Sω(t, s)(I − Qω(s)) ≤ K̃ eα̃(t−s), ∀t ≤ s.

�	

4 Example of Exponential Dichotomy

If we proceed as in the infinite dimensional example in [7], we can construct bounded oper-
ators A1, A2 from 
2 to 
2, such that |eA1t | ≤ e

−a
2 t for t ≥ 0 and |eA2t | ≤ e

a
2 t for t ≤ 0.

Ifwe proceed as in [7], defining L(a,ν)
.=
(
a 0
0 ν J + aI

)
, L1

.= L(1/2,1/4), L2
.= L(3/2,1/4),

A1
.= log(L1) and A2

.= log(L2), where

J :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
. . . · · ·
. . . · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

(31)

Now we consider the bounded linear operator

A
.=
(
A1 0
0 A2

)
(32)

and projections

P1
.=
(
I 0
0 0

)
, P2

.=
(
0 0
0 I

)
,

and we have

|eAt P1| ≤ e
−a
2 t , t ≥ 0, |eAt P2| ≤ e

a
2 t , t ≤ 0. (33)

Let B(t)
.=
(
B11(t) B12(t)
B21(t) B22(t)

)
be a generalized almost periodic function GAP withmean

value zero, |A| ≤ M, supt∈R |B(t)| ≤ M .
Consider the equations:

ẋ = Ax (34)

ẏ = Ay + B(ωt)y (35)

From the above assumptions and the last previous result it follows the next one (Figs. 1, 2).

Corollary 3 Let Sω(t, s) be the evolution operator of (35). Then there exist ω0 > 0, constants
K̃ ≥ 1, α̃ ≤ α, projections Q(s), s ∈ R such that for ω ≥ ω0

|S(t, s)Q(s)| ≤ K̃ e−α̃(t−s), t ≥ s,

|S(t, s)(I − Q(s))| ≤ K̃ eα̃(t−s), t ≤ s.

�	
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Fig. 1 Left: The spectrum of L1 given by σ(L1) = B1/4(1/2). Right: The spectrum of A1 given by σ(A1) =
log(σ (L1))

Fig. 2 Left: The spectrum of L2 given by σ(L2) = B1/4(3/2). Right: The spectrum of A2 given by σ(A2) =
log(σ (L2))

5 A CaseWhere the Infinitesimal Generator is Unbounded

In this section we consider the equations

ẋ = Ax

ẏ = Ay + B(t)y,

where we assume that D is dense in X and A : D → X is the infinitesimal generator of a
C0 semigroup T (t). We also assume that there exist a projection P : X → X and constants
K ≥ 1, α ∈ R, such that the following exponential dichotomy is satisfied:

‖T (t)P‖ ≤ Ke−αt , t ≥ 0

‖T (t)(I − P)‖ ≤ Keαt , t ≤ 0
(36)

Let us now recall an important result from Henry [4, page 30].
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Theorem 2 SupposeA is a closed operator in aBanach space X and assume that the spectrum
of A can be decomposed as

σ(A) = σ+ ∪ σ 1 ∪ σ 2, σ 1 ∩ σ 2 = ∅,

σ+ ⊂ {λ ∈ C : Re(λ) ≥ α > 0} is a bounded spectral set, σ 1 ∪ σ 2 ⊂ {λ ∈ C : Re(λ) ≤
−α}, σ1 is a bounded spectral set of A, and σ2 = σ(A) − σ1 is closed and unbounded and
so σ2 ∪ {−∞} is another spectral set.

Let I − P, P1and P2 be, respectively, the projections associated with these three spectral
sets: σ+, σ 1, σ 2, and X+

.= (I − P)X and X j = Pj (X), j = 1, 2. Then X−
.= X1 ⊕ X2

and X j are invariant under A, and if A j is the restriction of A to X j , for j = 1, 2 and A+
is the restriction of A to X+ then A+ : X+ → X+ is bounded σ(A+) = σ+ and

A1 : X1 → X1 is bounded, σ (A1) = σ1, D(A2) = D(A) ∩ X2 and σ(A2) = σ2.

Furthemore, P = P1 + P2.

Now we will analyse some smallness conditions on the perturbation B(t), such that equa-
tion (39) also admits an exponential dichotomy. The case when B(t) is uniformly small is
studied in Kloeden–Rodrigues [5] without leaving the continuous case. Similar results are
obtained by Carvalho et al. [1], but they first find the result for the discrete case.

Similar results to the next theorem are treated by Carvalho et al. [1] and Dalekii-Krein [3]
but they use the stronger assumption that

∫ t
τ

|B(t)| is small, with the norm inside the integral,
and in the first one, they prove via a discretization method. Similar results are obtained by
Henry [4, Theorem 7.6.11, page 238], where he also considers first the discrete case, and
requires that B(t) is uniformly small and integrally small.

Our next result is an extension of a classical result of Coppel [2] to the infinite dimensional
case, and A being an unbounded operator.

Theorem 3 Let h and δ be positive real numbers.
Suppose that A : D(A) ⊂ X → X is the generator of a C0-semigroup T (t), t ≥ 0,

B(t) ∈ L(X) and |B(t)| ≤ M for every t ∈ R. Assume that for every t ∈ R we have that
R(B(t)) ⊂ D(A), AB(t) is bounded and BA(t) can be extended to a bounded operator.
Also assume that B(t) is integrally small, that is,∣∣∣∣

∫ u

t
B(τ )dτ

∣∣∣∣ ≤ δ whenever |t − u| ≤ h.

Suppose we can decompose σ(A)
.= σ+ ∪ σ1 ∪ σ2, as in Theorem 2, and define the

respective projections I − P, P1 and P2, with P = P1 + P2.
Suppose the equation

ẋ = Ax (37)

admits an exponential dichotomy, or more specifically,

|T (t)(I − P)| ≤ Keαt ,

|T (t)P1| ≤ Ke−αt ,

|T (t)P2| ≤ Ke−μt ,

where K > 0 and μ > α > 0.
Assume that δ is sufficiently small in such a way that δ < α

6KM . We also assume that
|P2B(t)| < Mδ, for every t ∈ R (See Example 1 below).
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In analogy with the bounded case, if Ct (u)
.= ∫ u

t B(τ )dτ , we suppose that for t ≤ u ≤
t + h

|P1Ct (u)B| ≤ Mδ, |(I − P)Ct (u)B| ≤ Mδ,

|P1ACt (u)| ≤ Mδ, |(I − P)ACt (u)| ≤ Mδ,

|P1Ct (u)A| ≤ Mδ, |(I − P)Ct (u)A| ≤ Mδ.

(38)

If the above assumptions are satisfied, then the perturbed equation

ẏ = Ay + B(t)y (39)

also admits an exponential dichotomy, that is,

|S(t, s)Q(s)| ≤ 2Ke−(α−4KMδ)(t−s), t ≥ s

|S(t, s)(I − Q(s))| ≤ 2Ke(α−4KMδ)(t−s), t ≤ s.

Proof We will partially follow the steps of Theorem 1. Let us consider

S(t, s)Q(s) = T (t − s)P +
∫ t

s
T (t − τ)PB(τ )S(τ, s)Q(s)dτ

+
∫ ∞

t
T (t − τ)(I − P)B(τ )S(τ, s)Q(s)dτ.

S(t, s)Q(s) = T (t − s)P +
∫ t

s
T (t − τ)P2B(τ )S(τ, s)Q(s)dτ

+
∫ t

s
T (t − τ)P1B(τ )S(τ, s)Q(s)dτ

+
∫ ∞

t
T (t − τ)(I − P)B(τ )S(τ, s)Q(s)dτ.

|S(t, s)Q(s)| ≤ |T (t − s)P| +
∣∣∣∣
∫ t

s
T (t − τ)P2B(τ )S(τ, s)Q(s)dτ

∣∣∣∣
+
∣∣∣∣
∫ t

s
T (t − τ)P1B(τ )S(τ, s)Q(s)dτ

∣∣∣∣
+
∣∣∣∣
∫ ∞

t
T (t − τ)(I − P)B(τ )S(τ, s)Q(s)dτ

∣∣∣∣ .
To estimate the two last integrals we proceed as in the proof of Theorem 1 using the fact

that B(t) is integrably small and in the first integral we use the estimate |T (t)P2| ≤ Ke−μt .
∣∣∣∣
∫ t

s
T (t − τ)P2B(τ )S(τ, s)Q(s)dτ

∣∣∣∣ ≤
∫ t

s
K e−μ(t−τ)Mδ|S(τ, s)Q(s)|dτ.

Therefore we obtain

|S(t, s)Q(s)| ≤ Ke−α(t−s) +
∫ t

s
K e−μ(t−τ)Mδ|S(τ, s)Q(s)|dτ

+
∫ t

s
K e−α(t−τ)Mδ|S(τ, s)Q(s)|dτ

+
∫ ∞

t
K eα(t−τ)Mδ|S(τ, s)Q(s)|dτ.
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Now we use Lemma 1 with

N = KMδ, L = KMδ, M = KMδ,

β
.= KMδ

(
1

μ
+ 2

α

)
< KMδ

(
1

α
+ 2

α

)
≤ 3KMδ

α
<

1

2
.

Then we have that β < 1
2 if δ < α

6KM , −β > − 1
2 and so 1 − β > 1

2 .

|S(t, s)Q(s)| ≤ 2Ke
−
(

α− 2KMδ

1−KMδ
(
1
μ + 2

α

)
)

(t−s)

, t ≥ s

But

2KMδ

1 − KMδ
(
1
μ

+ 2
α

) ≤ 2KMδ

1/2
≤ 4KMδ,

⎛
⎝α − 2KMδ

1 − KMδ
(
1
μ

+ 2
α

)
⎞
⎠ ≥ α − 4KMδ,

−
⎛
⎝α − 2KMδ

1 − KMδ
(
1
μ

+ 2
α

)
⎞
⎠ ≤ −(α − 4KMδ),

therefore,

|S(t, s)Q(s)| ≤ 2Ke−(α−4KMδ)(t−s), t ≤ s, if δ <
α

6KM
.

For t ≤ s

S(t, s)(I − Q(s)) = T (t − s)(I − P)

+
∫ s

t
T (t − τ)P2B(τ )S(τ, s)(I − Q(s))dτ

+
∫ s

t
T (t − τ)P1B(τ )S(τ, s)(I − Q(s))dτ

+
∫ t

−∞
T (t − τ)(I − P)B(τ )S(τ, s)(I − Q(s))dτ.

|S(t, s)(I − Q(s))| ≤ |T (t − s)(I − P)|
+
∫ s

t
|T (t − τ)P2B(τ )S(τ, s)(I − Q(s))|dτ

+
∫ s

t
|T (t − τ)P1B(τ )S(τ, s)(I − Q(s)|)dτ

+
∫ t

−∞
|T (t − τ)(I − P)B(τ )S(τ, s)(I − Q(s))|dτ

≤ Keα(t−s) +
∫ s

t
K eμ(t−τ)Mδ|S(τ, s)(I − Q(s))|dτ

+
∫ s

t
K eα(t−τ)Mδ|S(τ, s)(I − Q(s))|dτ

+
∫ t

−∞
Ke−α(t−τ)Mδ|S(τ, s)(I − Q(s))|dτ
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≤ Keα(t−s) + KMδ

∫ s

t
eμ(t−τ)|S(τ, s)(I − Q(s))|dτ

+KMδ

∫ s

t
eα(t−τ)|S(τ, s)(I − Q(s))|dτ

+KMδ

∫ t

−∞
e−α(t−τ)|S(τ, s)(I − Q(s))|dτ.

Now we use Lemma 1 with

N = KMδ, L = KMδ, M = KMδ,

β
.= KMδ

(
1

μ
+ 2

α

)
< KMδ

(
1

α
+ 2

α

)
≤ 3KMδ

α
<

1

2
.

We obtain

|S(t, s)(I − Q(s))| ≤ K
1

1 − KMδ
(
1
μ

+ 2
α

)e
(

α− 2KMδ

1−KMδ
(
1
μ + 2

α

)
)

(t−s)

, t ≤ s.

Therefore,

|S(t, s)(I − Q(s))| ≤ 2Ke(α−4KMδ)(t−s), t ≤ s, if δ <
α

6KM
.

�	
Remark 2 Themethod used, the unbounded operator A and its domain impose restrictions on
the class of perturbations B(t) that can be used. For example if D(t) ∈ L(X) is continuous
and bounded for t ∈ R, is integrally small and 0 belongs to the resolvent set of A, we
could define B(t)

.= A−1D(t)A−1 and then the above assumptions including (38) could be
satisfied.

Remark 3 Another case is when B(t) ∈ L(X) is continuous and bounded for t ∈ R, is
integrally small, commutes with A and B(t)A can be considered as a bounded operator. In
this case B(t) acts as a smooth operator. This will be observed in some applications to the
heat equation below.

Example 1 Application to the Heat Equation
In this part we use some results of Henry [4], page 119.

Let X = L2(0, π), Au = − d2u
dx2

. Let D(A) = H1
0 (0, π) ∩ H2(0, π). If φn(x) =√

2
π
sin nx and u = ∑∞

n=1 φn(φn, u), then define ‖u‖ = [∑∞
n=1 |(φn, u)|2]1/2.

Au =
∞∑
n=1

(−n2)φn(φn, u), eAtu =
∞∑
n=1

e−n2tφn(φn, u),

σ (A) = {−n2, n = 1, 2, 3, . . .}.
Consider the equations

∂u

∂t
= ∂2u

∂x2
+ λu, 0 < x < π; u = 0 at x = 0, π (40)

This equation defines a local dynamical system in X1/2 = H1
0 (0, π) and σ(A − λI ) =

{λ − n2 : n = 1, 2, 3 . . .}.
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Let T (t) be the semigroup generated by A − λI . If λ > 1 we can decompose the space
H1
0 (0, π) = E− ⊕ E+, with projections Pλ and (I − Pλ), respectively on E+ and E− and

we will have an exponential dichotomy:
{

‖T (t)Pλ‖ ≤ Ke−αt , t ≥ 0,

‖T (t)(I − Pλ)‖ ≤ Keαt , t ≤ 0.

The subspace E+ is generated by the eigenfunctions φn(x), such that λ − n2 > 0.
For n ∈ N, let bn(t) be real continuous functions in t ∈ R.
Consider now the equation

∂u

∂t
= ∂2u

∂x2
+ λu + B(t)u, 0 < x < π; u = 0 at x = 0, π, (41)

where B(t)u
.= ∑∞

n=1 bn(t)φn(φn, u).
In order to simplify the calculations and to verify the assumptions (38) of Theorem 3, we

will assume that M = 1 and |bn(t)| ≤ 1
n22(n+1)/2 ,∀ t ∈ R, n ≥ 1. We will also assume that

for δ > 0, sufficiently small and h > 0 sufficiently large that | ∫ u
t bn(τ )dτ | ≤ 1

n22(n+1)/2 δ for
|t − u| ≤ h.

In this case we consider

σ+
λ = {λ − n2 > 0, n = 1, 2, . . . , Nλ},

σ−
λ = {λ − n2 < 0, n = Nλ + 1, Nλ + 2, . . . , Mλ},

σ−∞
λ = {λ − n2, n = Mλ + 1, . . . ,∞}, Mλ ≥ Nλ + 1

Consider the projections: (I − Pλ)u
.= ∑Nλ

n=1 φn(φn, u) associated to σ+
λ and Pλu

.=∑∞
n=Nλ+1 φn(φn, u) associated to σ−

λ ∪ σ−∞
λ = {n : λ − n2 < 0}. Let P1 = P1(λ) be the

projection associated to σ−
λ and P2 = P2(λ) associated to σ−∞

λ , be given respectively by

P1u = ∑Mλ

n=Nλ+1 φn(φn, u), P2u = ∑∞
n=Mλ+1 φn(φn, u).

P2e
Atu =

∞∑
n=Mλ+1

e−n2tφn(φn, u),

‖P2eAtu‖ =
∥∥∥∥∥∥

∞∑
n=Mλ+1

e−n2tφn(φn, u)

∥∥∥∥∥∥ =
⎛
⎝ ∞∑

n=Mλ+1

∣∣∣e−n2tφn(φn, u)

∣∣∣2
⎞
⎠

1
2

= e−(Mλ+1)2t

⎛
⎝ ∞∑

n=Mλ+1

∣∣∣e−(n2−(Mλ+1)2)tφn(φn, u)

∣∣∣2
⎞
⎠

1
2

≤ e−(Mλ+1)2t

⎛
⎝ ∞∑

n=Mλ+1

|φn(φn, u)|2
⎞
⎠

1
2

= e−(Mλ+1)2t‖u‖.

Taking μ
.= (Mλ + 1)2, we obtain ‖P2eAtu‖ ≤ e−(Mλ+1)2t‖u‖ = e−μt‖u‖, for t ≥ 0.

Next we prove that P2 commutes with B(t).

P2B(t)u =
∞∑

n=Mλ+1

φn(φn, B(t)u) =
∞∑

n=Mλ+1

φn

(
φn,

∞∑
k=1

bk(t)φk(φk, u)

)
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=
∞∑

n=Mλ+1

bn(t)φn(φn, u)

B(t)P2u =
∞∑
n=1

bn(t)φn(φn, Pu) =
∞∑
n=1

bn(t)φn

⎛
⎝φn,

∞∑
k=Mλ+1

φn(φk, u)

⎞
⎠

=
∞∑

n=Mλ+1

bn(t)φn(φn, u).

‖P2B(t)u‖ ≤
⎡
⎣ ∞∑
n=Mλ+1

|bn(t)|2
⎤
⎦
1/2 ⎡

⎣ ∞∑
n=Mλ+1

|(φn, u)|2
⎤
⎦
1/2

≤
⎡
⎣ ∞∑
n=Mλ+1

(
δ

2(n+1)/2

)2
⎤
⎦
1/2

‖u‖ ≤ δ

[ ∞∑
n=0

(
1

2(n+1)/2

)2
]1/2

‖u‖

= δ‖u‖

Therefore B(t) commuteswith Pλ andwith I−Pλ and alsowith P1 and P2, |P2B(t)| → 0,
as Mλ → ∞, uniformly with respect to t ∈ R. With a similar calculation we can prove
(I − Pλ)B(t)v = ∑N

n=1 bn(t)φn(φn, v).
Also if u ∈ D(A) we have

APλu =
∞∑
n=1

(−n2)φn(φn, Pλu) =
∞∑
n=1

(−n2)φn

⎛
⎝φn,

∞∑
k=Nλ+1

φk(φk, u)

⎞
⎠

=
∞∑

n=Nλ+1

(−n2)φn(φn, u)

PλAu =
∞∑

n=Nλ+1

φn(φn, Au) =
∞∑

n=Nλ+1

φn

(
φn,

∞∑
k=1

(−k2)φk(φk, u)

)

=
∞∑

n=Nλ+1

(−n2)φn(φn, u).

Therefore APλ = PλA and so they commute and they are both bounded operators.
In order to use Theorem 3 we consider Ct (u)

.= ∫ u
t B(τ )dτ and it is easy to see that

PλCt (v) = Ct (u)Pλ and PλCt (v) = ∑∞
n=Nλ+1

∫ u
t bn(τ )dτφn(φn, v). Hence, it can be seen

that the conditions of Theorem 3 are satisfied.

Acknowledgements The research of T. Caraballo has been partially supported by Ministerio de Ciencia,
Innovación y Universidades (Spain), FEDER (European Community) under Grant PGC2018-096540-B-I00.
The research of H. Rodrigues was partially supported by FAPESP Grant Processo 2018/05218-8 and CNPq
Grant Processo 304767/2018-2, Brazil. The research of G. K. Nakassima was partially supported by CAPES
Processos PROEX-6812070/M, PROEX-6812070/D and PROEX-6812070/D1.

123



Journal of Dynamics and Differential Equations (2022) 34:2841–2865 2865

References

1. Carvalho,A.N., Langa, J.A.,Robinson, J.C.:Attractors of InfiniteDimensionalNonautonomousDynamical
Syustems. Springer, Berlin (2011)

2. Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics, p. 629. Springer, Berlin
(1970)

3. Daleckı̆i, J.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Space, Translation
of Mathematical Monographs, vol. 43. American Mathematical Society, Providence (1974)

4. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840.
Springer, Berlin (1981)

5. Kloeden, P.E., Rodrigues,H.M.:Dynamics of a class ofODEsmore general than almost periodic.Nonlinear
Anal. 74, 2695–2719 (2011)

6. Rodrigues, H.M.: Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese
de Mestrado, Universidade de São Paulo, São Carlos (1970)

7. Rodrigues, H.M., Solà-Morales, J., Nakassima, G.K.: Stability problems in non autonomous linear differ-
ential equations in infinite dimensions (2019). arXiv:1906.04642

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123





69

CHAPTER

3
RIGOROUS COMPUTATION USING HAAR

WAVELETS

Paper submitted to Communications on Pure and Applied Analysis; preprint available at
<https://arxiv.org/abs/2304.14536>

NAKASSIMA, G. K.; GAMEIRO, M. A framework for rigorous computational methods
using Haar wavelets for differential equations. Submitted for publication, 2023. Preprint available
at: <https://arxiv.org/abs/2304.14536>.

https://arxiv.org/abs/2304.14536
https://arxiv.org/abs/2304.14536


A framework for rigorous computational methods using Haar

wavelets for differential equations

Guilherme Nakassima∗, †, Marcio Gameiro‡

Abstract

This work presents a framework for a-posteriori error-estimating algorithms for differ-
ential equations which combines the radii polynomial approach with Haar wavelets. By
using Haar wavelets, we obtain recursive structures for the matrix representations of the
differential operators and quadratic nonlinearities, which can be exploited for the radii poly-
nomial method in order to get error estimates in the L2 sense. This allows the method to
be applicable when the system or solution is not continuous, which is a limitation of other
radii-polynomial-based methods. Numerical examples show how the method is implemented
in practice.

Keywords: Rigorous computation, Computer-assisted proofs, Haar wavelets, Nonlinear
dynamical systems.

2020 MSC: 34A34, 34L30, 65G20, 65H10, 65T60.

1 Introduction

Rigorous computation is an area under active development since the 1980s [18]. With an steady
increase of computing power, numerical methods became viable tools for analyzing differential
equations and gaining insight on structures such as invariant objects. However, standard nu-
merical methods provide only approximations; the results are non-rigorous and cannot be used
in formal proofs. They can only be used to gain insights on the true structures of the sys-
tem. Moreover, some structures, such as bifurcations, may still be hidden even when using very
accurate numerical methods.

Rigorous computational methods try to fill these gaps, providing mathematically valid es-
timates and bounds for truncation and rounding errors, and rigorously proving the existence
of such hidden structures. Over the years, a number of such methods were developed, such as
rigorous integration [29, 8, 17], Conley index methods [4, 14], self-consistent bounds [30, 28]
and discretization methods [19, 9]. A more thorough review can be seen in [20] and references
therein.

Of particular interest to us are the radii polynomials approach [5, 7, 27, 13, 11, 6, 2, 22,
26]. These methods recast the problem of investigating the existence of structures as finding
solutions to functional equations, usually expanding the solutions in terms of a basis. Then,
usual numerical methods are employed to find an approximate solution to these equations.
Finally, using fixed point theorems, we can guarantee the existence of a true, rigorous solution
of the functional equations within certain bounds of the numerical solution. The hypotheses of

∗Corresponding author
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Carlense Avenue, São Carlos, 13566-590, São Paulo, Brazil. E-mail: gknakassima@gmail.com
‡Department of Mathematics, Rutgers, The State University of New Jersey, 57 US Highway 1, Piscataway,

08854, NJ, USA. E-mail: marciogameiro@gmail.com
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the fixed point theorems are in turn proven to be satisfied with the aid of the so-called radii
polynomials.

In this work we present a new radii polynomial method employing Haar wavelets. While
many other bases were already employed by this approach, such as Taylor series [22], Fourier
series [27] and Chebyshev polynomials [13], to the best of our knowledge, no attempt has been
made to combine wavelet methods and rigorous computations. We also believe that this method
can be can be a framework to build other methods upon, such as rigorous continuation methods
and methods for partial differential equations.

Wavelets are functions that form an orthonormal basis for the L2 function space. While
wavelet theory was only relatively recently formalized, their special properties — such as time
and frequency localization — made them widely applicable in many fields, such as signal pro-
cessing and compression algorithms. This poses an interesting case, because most of the afore-
mentioned radii polynomial methods were proposed to work with smooth functions, while our
wavelet-based radii polynomial method works in more general settings.

The radii polynomial method presented in this paper is based on the ideas of a numerical
method for solving differential equations, the Haar wavelet method, which was first proposed in
[3]. It is assumed that the highest-order derivative is expressed in terms of wavelets, and the
solutions are given by the integral of the series, essentially rewriting the differential equation in
its integral form. This allows the method to work with only Haar wavelets, the simplest wavelet
available, and leads to a matrix representation of the integral operator. The simplicity of the
Haar wavelet allows this matrix to be easily and recursively calculated. The original Haar wavelet
method was further analyzed, developed and applied in several publications [12, 21, 1, 24, 16, 15].

In our method, we find the functional equations for the radii polynomial method using
the same expansions of the Haar wavelet method. This essentially transforms the differential
equation into an integral one, and allow us to use a radii polynomial theorem similar to [25].
Also, by using Haar wavelets, the integral operator and nonlinearities can be represented using
infinite but recursive matrices, allowing us to make the estimates needed in the radii polynomial
approach.

The work is organized in the following way. In Section 2 we introduce the Haar wavelet
and its integral, and review some of their properties. In Section 3 we introduce the radii
polynomial method and prove the theorems that guarantee the existence of a true solution,
provided that certain estimates are satisfied. In Section 4 we study quadratic nonlinearities
in order to prove estimates needed in the method. In Section 5 we present some examples
illustrating the applications of the proposed method.

2 The Haar wavelets and their integral

Here we introduce the Haar wavelet and its integral, which are one of the pillars of the proposed
methods. Consider the space L2([0, 1]) of the square-integrable functions f : [0, 1] → R with
respect to the usual Lebesgue measure. The Haar wavelets are a family of functions {ϕ, ψj,k} ⊂
L2([0, 1]) defined, for j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1, by

ϕ(t) :=

{
1 , 0 ≤ t < 1

0 , otherwise
, ψj,k(t) :=





2j/2 , k
2j
≤ t < k+0.5

2j

−2j/2 , k+0.5
2j
≤ t < k+1

2j

0 , otherwise

(1)

The Haar wavelets form an orthonormal basis for L2([0, 1]); the proof is in many standard
texts in wavelet theory, see e.g. [10]. Hence any function y(t) ∈ L2([0, 1]) can be expanded into

2



a unique Haar wavelet series

y(t) = c1ϕ(t) +

∞∑

j=0

2j−1∑

k=0

cj,kψj,k(t),

where c1 =
∫ 1
0 y(t)ϕ(t) dt, cj,k =

∫ 1
0 y(t)ψj,k(t) dt, and the sum converges in L2([0, 1]). If we

make i = 2j + k + 1, then the sequence (ci)
∞
i=1 ∈ ℓ2(R).

Notation. We can change between the “one-index” and “two-indices” notations, depending on
which is more convenient in each case. One can be converted to the other by making, for all
i > 2,

i = 2j + k + 1 ⇐⇒
j = ⌊log2i⌋
k = i− 2j − 1

where ⌊·⌋ is the floor function. The index i = 1 is reserved for the scaling function ϕ.

Conversely, any (ci)
∞
i=1 ∈ ℓ2(R) defines a unique f(t) ∈ L2([0, 1]) by making

f(t) =
∞∑

i=1

ciψi(t) = c1ϕ(t) +
∞∑

j=0

2j−1∑

k=0

cj,kψj,k(t).

This means that we can define an invertible operator H : L2([0, 1])→ ℓ2(R) defined element-
wise as

(Hf)i :=
∫ 1

0
f(t)ψi(t) dt.

The inverse Haar transform H−1 is given by

(H−1c)(t) := hT (t)c =

∞∑

i=1

ciψi(t) , h(t) := (ψ1(t), ψ2(t), ...)

It is worth noting that the Haar transform is an isometry, due to the fact that the Haar wavelet
system is an orthonormal basis of L2([0, 1]).

Another interesting and useful property of the Haar wavelets is what we call the “nesting
property”:

Proposition 2.1 (Nesting property). Let ψj,k and ψm,n be two Haar wavelets such that j < m.
If supp ψj,k ∩ supp ψm,n ̸= ∅, then either supp ψm,n ⊆ [ k

2j
, k+0.5

2j
) or supp ψm,n ⊆ [k+0.5

2j
, k+1

2j
).

The proof is simple and will be omitted; it consists in comparing the supports of the wavelets
ϕj,k, which are dyadic intervals of length 2−j , for different j. Intuitively, it means that, if the
supports of two wavelets at different resolutions overlap, then the support of the “finer” wavelet
(that is, the higher-resolution one) is entirely nested within either the positive or the negative
part of the “coarser” wavelet.

For this work, we are also interested in the integral of the Haar wavelets, and how the integral
relates to the wavelet themselves. The integrals of the Haar wavelet family in the interval [0, 1]
are the triangular functions given by

w1(t) = t , wj,k(t) =





2j/2
(
t− k

2j

)
, k

2j
≤ t ≤ k+0.5

2j

2j/2
(
k+1
2j
− t
)

, k+0.5
2j
≤ t ≤ k+1

2j

0 , otherwise.

(2)

We also extend the one-index notation to the Haar wavelet integrals wi.

3



The Haar wavelet integrals are continuous functions in [0, 1]; thus they are square-integrable
in that interval, and can be expanded in Haar wavelet series themselves:

wi(t) =

∞∑

l=1

Pi,lψl(t) = PhT (t) , Pi,l :=

∫ 1

0
ψl(t)wi(t) dt. (3)

While P is expressed by an infinite matrix, there is a recursive formula to compute it. We
must first define the Haar matrix of our wavelet system:

Definition 2.1. For a given resolution J , the Haar matrix HM of order M = 2J+1 is given
element-wise by

(HM )p,q := ψp(tq) (4)

where tq =
q − 0.5

M
, for q = 1, . . . ,M .

The discrete Haar transform matrix HTM of order M = 2J+1 is defined by

HTM :=
1√
M
HM (5)

A particularly important fact is that HTM is unitary for all J , and hence HM is invertible
and (HM )−1 = 1

MHT
M .

Theorem 2.1. The infinite matrix P can be recursively calculated as

P1 =
1

2
, P2m =




Pm − 1

4
√
m3

Hm

1

4
√
m3

HT
m 0m×m


 (6)

for m = 2j and j = 0, 1, 2, . . . .

The proof for this formula is in [3], with some modifications to account for the fact that we
are using normalized wavelets.

Let us prove that P T c ∈ ℓ2(R) for all c ∈ ℓ2(R). We first need to define some projections.
Given a resolution level J , let M = 2J+1 as before, and define the projection ΠM as

ΠM : ℓ2(R)→ RM

c 7→ (c1, ..., cM ).
(7)

We identify the vector (c1, ..., cM ) ∈ RM with its infinite-dimensional counterpart (c1, ..., cM , 0, 0, ...) ∈
ℓ2(R). We also define the projection Π∞ ∈ B(ℓ2(R)) as

Π∞c := (I −ΠM )c.

Notation. Given c ∈ ℓ2(R), we sometimes divide it into blocks of length 2n, n = 0, 1, 2, ... as

c = (c∗0, c
∗
1, c

∗
2, c

∗
4, ...)

T , where c∗0 = c1 , c∗2n = (c2n−1+1, c2n−1+2, ..., c2n)
T . (8)

Also, given a matrix A, we denote Am1:m2,n1:n2 the submatrix of A given by

Am1:m2,n1:n2 =



Am1,n1 · · · Am1,n2

...
...

Am2,n1 · · · Am2,n2




If we wish to take all rows or all columns of A, we denote A∗,n1:n2 and Am1:m2,∗, respectively.
Lastly, to reduce notation clutter, we denote cM = ΠMc and c∞ = Π∞c.
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Proposition 2.2. For c ∈ ℓ2(R), M = 2J+1, J = 0, 1, 2, ... and the projections as defined before,

∥∥ΠMP
T c
∥∥
ℓ2
≤ 1√

3

(
4− 1

22J+2

) 1
2

∥c∥ℓ2 ,
∥∥Π∞P T c

∥∥
ℓ2
≤ 1√

3

∥c∥2ℓ2
2J+1

In particular, letting J →∞, P T c ∈ ℓ2(R) and P T : ℓ2(R)→ ℓ2(R) is a bounded linear operator.

Proof. From the structure of P in Theorem 2.1 and the block representation of c, we have

(
P T c

)∗
2j

= − 1

2
3j
2
+2
HT

2j (Π2jc) +
∞∑

q=j+1

1

2
3q
2
+2
H2qc

∗
2q (9)

Recalling that HM =
√
MHTM and HTM is a unitary matrix, we can bound the above term by

∥∥∥
(
P T c

)∗
2j

∥∥∥
ℓ2
≤ 1

2j+2

∥∥HT T
2j (Π2jc)

∥∥
ℓ2
+

∞∑

q=j+1

1

2q+2
∥HT2qc∗2q∥ℓ2

≤ ∥c∥ℓ2
2j+2

+
∞∑

q=j+1

1

2q+2
∥c∗2q∥ℓ2 ≤

∥c∥ℓ2
2j+1

(10)

The only term left is
(
P T c̄

)
1
. We can bound it with

∣∣(P T c̄
)
1

∣∣ =

∣∣∣∣∣∣
1

2
c1 −

∞∑

q=0

1

2
3q
2
+2
H2qc

∗
2q

∣∣∣∣∣∣
≤ 1

2
|c1|+

∞∑

q=0

1

2q+2
∥HT2qc∗2q∥ℓ2 ≤ ∥c∥ℓ2 (11)

Thus, the norm of ΠMP
T c can be estimated by

∥∥ΠMP
T c
∥∥2
ℓ2
≤
∣∣(P T c

)
1

∣∣2 +
J∑

j=0

∥∥∥
(
P T c

)∗
2j

∥∥∥
2

ℓ2
=

(
4− 1

22J+2

) ∥c∥2ℓ2
3

Analogously, the norm of Π∞P T c is bounded by

∥∥Π∞P T c
∥∥2
ℓ2
≤

∞∑

j=J+1

∥∥∥
(
P T c̄

)∗
2j

∥∥∥
2

ℓ2
≤

∞∑

j=J+1

∥c∥2ℓ2
22j+2

=
1

3

∥c∥2ℓ2
22J+2

3 The radii polynomial approach

In this section, we introduce the radii polynomial [5, 7, 27, 13, 11, 6] approach for rigorous
computation. Consider an initial value problem

{
u̇ = f(u, t)

u(0) = u0
(12)

and suppose we find a numerical, approximate solution ū(t). Our aim is to prove the existence
of a true solution ũ(t) in some neighborhood of ū(t). This is done using the radii polynomial
method.

For our work, suppose that u̇(t) ∈ L2([0, 1]). Then, we can write u̇ and u using the Haar
wavelet and its integral as

u̇(t) =
∞∑

i=1

ciψi(t) , u(t) =
∞∑

i=1

ciwi(t) + u0 (13)
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Substituting back into the differential equation (12) and taking the Haar transform,

F (c) := c−H
(
f

(
t,

∞∑

i=1

ciwi(t) + u0

))
= 0 (14)

Thus, we have a map F : ℓ2(R)→ ℓ2(R) such that finding a solution of the differential equation
implies finding a zero of F . Conversely, due to the uniqueness of the wavelet series that represents
u̇ — and consequently of the series that represents u(t) — finding a zero of F is equivalent to
finding a solution to (12).

Now we recast the problem of finding the zeros of F to finding a fixed point of a map
T : ℓ2(R)→ ℓ2(R) near the numerical solution ū. This is done by showing that T is a contraction
near ū. First, define the operator A : ℓ2(R)→ ℓ2(R) as

Ax = AMΠMx+Π∞x,

where AM : RM → RM is a finite-dimensional, computational approximation for the inverse
D(ΠMF (x̄))

−1, with x̄ the solution numerically obtained. Then we can define the fixed-point
map T : ℓ2(R)→ ℓ2(R) by

T (x) := x−AF (x) = (ΠM −AMΠMF )(x) + Π∞(x− F (x)) (15)

Its derivative, which is used for the radii polynomial method, is given by

DT (x) = ΠM −AMΠMDF (x) + Π∞(I −DF (x)) (16)

Remark 3.1. Since many of the matrices in this work are block matrices, one can compute
their inverse as

[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

provided that the matrices A and D − CA−1B are invertible. Calculating the inverse with this
formula can be faster than directly inverting the full matrix D(ΠMF (x̄)).

Notation. In order to help visualize the operators and reduce clutter in notation, we employ the
following “block matrix” notation for an operator C : ℓ2(R)→ ℓ2(R) whenever it is convenient:

Cx =

[
CM CM,∞
C∞,M C∞

](
ΠMx
Π∞x

)
. (17)

We refer to this as the finite-infinite decomposition.

Intuitively, the first term of (15) is a Newton-like map for the finite terms we computed
numerically. In the second term, we hope the “tail” of F will contract to zero by itself — which
is what happens with quadratic nonlinearities. This is all motivated by the fact that, as M
increases, the new elements of the matrix PM become smaller.

We now formally prove that a fixed point of T corresponds to a zero of F :

Proposition 3.1. Suppose the map T as defined above in (15) is a contraction in some closed
neighborhood of ℓ2(R). Then T has a unique fixed point c̃ in that neighborhood. Moreover, c̃ is
a fixed point of T if and only if it is a zero of F as defined earlier in (14).

Proof. Since T is a contraction in a closed neighborhood of ℓ2(R), the Banach Fixed Point
Theorem guarantees that it has a fixed point c̃ in the same neighborhood. Also, if c̃ is a zero of
F , then a straightforward calculation shows that it is a fixed point of T .
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It remains to prove that the fixed point c̃ is a zero of F . By (15)

T (c̃)− c̃ = 0 = AMΠMF (c̃) + Π∞F (c̃).

Since AMΠMF (c̃) ∈ ΠM (ℓ2(R)), we have

Π∞F (c̃) = 0 , AMΠMF (c̃) = 0

and since AM is invertible, then ΠMF (c̃) = 0 as well. Thus F (c̃) = 0.

To prove that T is actually a contraction near of our numerical solution c̄, we use the radii
polynomials. First, we define the closed neighborhood

Bω(c̄, r) =
{
y ∈ ℓ2(R) : ∥ΠM (y − c̄)∥ ≤ ωr and ∥Π∞(y − c̄)∥ ≤ (1− ω)r

}
(18)

in which T will be a contraction. ω ∈ (0, 1) is a “trade-off parameter”: we can loosen the radius
in the infinite part, at the cost of tightening the radius in the finite part, and vice-versa. For
the next calculations, we assume ω is fixed, though in practice it is chosen later.

Next, we need bounds YM and Y∞, and polynomials ZM (r) and Z∞(r) such that

∥ΠM (T (c̄)− c̄)∥ℓ2 ≤ YM (19)

∥Π∞(T (c̄)− c̄)∥ℓ2 ≤ Y∞ (20)

sup
x1,x2∈B(r)

∥ΠM (DT (c̄+ x1)x2)∥ ≤ ZM (r)r (21)

sup
x1,x2∈B(r)

∥Π∞(DT (c̄+ x1)x2)∥ ≤ Z∞(r)r (22)

Then, we can define the radii polynomials as

pM (r) := ZM (r)r − ωr + YM , p∞(r) := Z∞(r)r − (1− ω)r + Y∞ (23)

Theorem 3.1. Consider the radii polynomials as defined in (23). If there exists an r0 > 0 such
that pM (r0) < 0 and p∞(r0) < 0, then there exists a unique c̃ ∈ Bω(c̄, r0) such that T (c̃) = c̃.

Proof. Due to the Banach Fixed Point Theorem, we only need to prove that T
(
Bω(c̄, r0)

)
⊆

Bω(c̄, r0) and that T is a contraction when restricted to Bω(c̄, r0).
We first prove that T restricted to Bω(c̄, r0) is a contraction. If y1, y2 ∈ Bω(c̄, r0), then by

the Mean Value Theorem

∥T (y1)− T (y2)∥ℓ2 ≤ sup
x∈Bω(c̄,r0)

∥DT (x)∥∥y1 − y2∥ℓ2 = sup
x1∈B(r0)

∥DT (c̄+ x1)∥∥y1 − y2∥ℓ2

Hence, we must show that ∥DT (c̄+ x1)∥ < 1 for x1 ∈ B(r0). Observe that

sup
x1∈B(r0)

∥DT (c̄+ x1)∥ =
1

r0
sup

x1,x2∈B(r0)

∥DT (c̄+ x1)x2∥ℓ2

≤ 1

r0

(
sup

x1,x2∈B(r0)

∥ΠMDT (c̄+ x1)x2∥ℓ2 + sup
x1,x2∈B(r0)

∥Π∞DT (c̄+ x1)x2∥ℓ2
)

≤ ZM (r0) + Z∞(r0)

So we have
∥T (y1)− T (y2)∥ℓ2 ≤ (ZM (r0) + Z∞(r0))∥y1 − y2∥ℓ2
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But since pM (r0) < 0 and p∞(r0) < 0,

ZM (r0)r0 + Z∞(r0)r0 − r0 ≤ (ZM (r0)r0 − ωr0 + YM ) + (Z∞(r0)r0 − (1− ω)r0 + Y∞)

= pM (r0) + p∞(r0) < 0

Thus ZM (r0) + Z∞(r0) < 1, and T restricted to Bω(c̄, r0) is a contraction.

Now we must prove that T
(
Bω(c̄, r0)

)
⊆ Bω(c̄, r0). If y ∈ Bω(c̄, r0), then

∥ΠM (T (y)− c̄)∥ℓ2 ≤ ∥ΠM (T (y)− T (c̄))∥ℓ2 + ∥ΠM (T (c̄)− c̄)∥ℓ2
≤ ZM (r0)∥y − c̄∥ℓ2 + YM ≤ ZM (r0)r0 + YM < ωr0

and similarly for Π∞(T (y)− c̄)

∥Π∞(T (y)− c̄)∥ℓ2 ≤ ∥Π∞(T (y)− T (c̄))∥ℓ2 + ∥Π∞(T (c̄)− c̄)∥ℓ2
≤ Z∞(r0)∥y − c̄∥ℓ2 + Y∞ ≤ Z∞(r0)r0 + Y∞ < (1− ω)r0

and hence T (y) ∈ Bω(c̄, r0).

Thus, if the radii polynomial method is successful in finding an r0, then the solution c̄ found
by the numerical method is “close” to the wavelet coefficients of true solution c̃ in the ℓ2(R)
sense, that is, ∥c̄ − c̃∥ℓ2 ≤ r0. Or equivalently, the numerical approximation ū(t) = c̄Th(t) is
“close” to the true solution ũ(t) in the L2([0, 1]) sense, that is, ∥ū− ũ∥L2 ≤ r0.

4 Nonlinear terms

In this section we study quadratic nonlinearities in more depth. This may seem restrictive, but
there are many interesting systems involving those, such as the Lorenz system. Furthermore,
we believe that estimates for higher nonlinearities can be computed with similar techniques.

Consider two functions u and v such that u̇, v̇ ∈ L2([0, 1]). Their expansions into Haar
wavelet integrals as in (13) are

u(t) = u0 +
∞∑

i=1

ciwi(t) = u0 +wT (t)c , v(t) = v0 +
∞∑

i=1

diwi(t) = v0 +wT (t)d

Thus, considering the product u(t)v(t), we have

u(t)v(t) = u0v0 + u0w
T (t)d+ v0w

T (t)c+ (W (t))(c,d)

where, for t ∈ [0, 1], (W (t))(c,d) := cTw(t)wT (t)d. A crucial observation is that, for any given
t ∈ [0, 1], W (t) is a symmetric bilinear form.

The next theorem shows that W (t)(c,d) ∈ L2([0, 1]) for any pair c,d ∈ ℓ2(R), which allows
us to calculate its Haar transform and use the radii polynomial methods developed in Section 3.
However, its proof is lengthy and will be left to A for clarity.

Theorem 4.1. The bilinear form (W (c,d)) (t) := cTw(t)w(t)d is bounded in L2([0, 1]) for all
c,d ∈ ℓ2(R), that is, there exists C > 0 such that

∥W (c,d)∥L2 ≤ C ∥c∥ℓ2 ∥d∥ℓ2 for all c,d ∈ ℓ2(R).

Additionally, making a := P T c and b := P Td, we can write

cTw(t)w(t)d = aTΩ(t)b+ aTΩT (t)b+ aTΘ(t)b (24)
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where the operator Ω(t) can be recursively defined as

Ω1(t) = 0 , Ω2m(t) =

[
Ωm(t) Υm(t)

0m×m 0m×m

]
(25)

with Υm(t) being a m×m matrix defined element-wise as

(Υm)i,l(t) = (Hm)i,lψm+l(t),

and the operator Θ(t) can be represented as an infinite diagonal matrix given by

Θ(t) =




ψ2
1(t)

ψ2
2(t)

ψ2
3(t)

. . .




(26)

with zeros omitted for clarity. With the terms defined as above,

H(cTw(t)w(t)d) = H(aTΩ(t)b) +H(aTΩ(t)b) +H(aTΩ(t)b)

and
H(aTΩ(t)b) = (Ω̃Ta)⊙ b

H(aTΩT (t)b) = (Ω̃Tb)⊙ a

H(aTΘ(t)b) = ΓT (a⊙ b)

(27)

where Ω̃T and Γ̃T are recursively defined as

Ω̃1 = 0 , Ω̃2m =

[
Ω̃m Hm

0m 0m

]

Γ1 = 1 , Γ2m =

[
Γm 0m
HT

m 0m

] , for m = 2j and j = 0, 1, 2, 3, ...

We now present some estimates required for the radii polynomial method. The full proof
for those estimates are lengthy and left B. The main strategy consists in employing both the
recursive block structures of the matrices from Theorems 2.1 and 4.1 and the finite-infinite
decomposition from (17). These estimates provide tighter bounds which increase the likelihood
of finding an r0 which satisfies Theorem 3.1. We believe that similar estimates may be applied
for higher-degree polynomial nonlinearities.

Proposition 4.1. Given c̄, d̄ ∈ RM , M = 2J+1 for some J ≥ 0, and ā = P T c̄, b̄ = P T d̄, the
following estimates are valid:

i) ΠMP
T c̄ = P T

M c̄

ii) ΠMH(āTΩ(t)b̄) = (Ω̃T
MP

T
M c̄)⊙ (P T

M d̄)

iii) ΠMH(āTΘ(t)b̄) = ΓT
M (āM ⊙ b̄M ) + ΓT

∞,M (ā∞ ⊙ b̄∞); moreover,

∥∥ΓT
∞(ā∞ ⊙ b̄∞)

∥∥
ℓ2
≤
√
2 ∥c̄∥ℓ2∥d̄∥ℓ2(

4−
√
2
)
2

3J
2
+3
.

Proposition 4.2. Given c̄, d̄ ∈ RM , M = 2J+1 for some J ≥ 0, and ā = P T c̄, b̄ = P T d̄, the
following estimates are valid:
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i)
∥∥Π∞P T c̄

∥∥
ℓ2
≤ 1√

3

∥c̄∥ℓ2
2J+2

ii)
∥∥Π∞H(āTΩ(t)b̄)

∥∥
ℓ2
≤ 1√

3

∥c̄∥ℓ2
∥∥d̄
∥∥
ℓ2

22J+4

iii)
∥∥Π∞H(āTΘ(t)b̄)

∥∥
ℓ2
≤ 1

21
√
7

∥c̄∥ℓ2
∥∥d̄
∥∥
ℓ2

23J+6
.

Proposition 4.3. Given x,y ∈ ℓ2(R) and c̄ ∈ RM ,

i)
∥∥(P T

∞,M y∞)
∥∥
ℓ2
≤ ∥y∥ℓ2

2J+2

ii)

∥∥∥∥
(
Ω̃TP T

)
M,∞

y∞

∥∥∥∥
ℓ2
≤
(
1 +
√
2
) ∥y∥ℓ2

2
J+3
2

iii)
∥∥ΓT

∞,M (ā∞ ⊙Π∞P Ty)
∥∥
ℓ2
≤

√
2

4−
√
2

∥c̄∥ℓ2 ∥y∥ℓ2
2

3J
2
+3

iv)
∥∥AMΠMH(xTP Ω(t)P Ty)

∥∥
ℓ2
≤ K1∥x∥ℓ2∥y∥ℓ2

v)
∥∥AMΠMH(xTPΘ(t)P Ty)

∥∥
ℓ2
≤ K2∥x∥ℓ2∥y∥ℓ2

where

K1 =
∥∥∥AM diag

(
∥(P T

M )i,∗∥ℓ2
)
Ω̃T
MP

T
M

∥∥∥+ ∥AM Ω̃T
MP

T
M∥

2J+2
+

(1 +
√
2)∥AMP

T
M∥

2
J+3
2

+
(1 +

√
2)∥AM∥

2
3J+7

2

K2 =
∥∥AMΓT

Mdiag(∥(P T
M )i,∗∥2ℓ )P T

M

∥∥+
∥∥AMΓT

MP
T
M

∥∥
2J+1

+

∥∥AMΓT
M

∥∥
22J+4

+

√
2∥AM∥

(4−
√
2)2

3J
2
+4

Proposition 4.4. Given x,y ∈ ℓ2(R) and c̄ ∈ RM , the following estimates are valid:

i)
∥∥Π∞H(c̄Tw(t)wT (t)y)

∥∥
ℓ2
≤ D1

∥c̄∥ℓ2 ∥y∥ℓ2
2

3J
2

, D1 =
1

8
√
7

(
3 +

√
2

4
+

4

4−
√
2

)
;

ii)
∥∥Π∞H(xTw(t)wT (t)y)

∥∥
ℓ2
≤ D2

∥x∥ℓ2 ∥y∥ℓ2
2

3J
2
+2

, D2 =
8 + 6

√
2√

7
(
4−
√
2
) .

5 Examples

In this section we illustrate the implementation of our method by means of three examples:
the logistic equation, the logistic equation with a discontinuous forcing term, and the Lorenz
system. The method was implemented in MATLAB R2021b using the INTLAB package for
interval arithmetic [23]. The files for these examples are available at https://github.com/

gknakassima/RigComp-HaarWavelet.

5.1 Logistic equation

As a first simple example we look at the logistic equation

u̇ = λu(1− u) , u(0) = u0 (28)

since it has a polynomial nonlinearity and its analytical solution is given by u(t) = u0eλt

1−u0+u0eλt
.

Using the expansions in (13), we have the functional equation equivalent to (28):

cTh(t)− λ
(
cTw(t) + u0 − u20 − 2u0c

Tw(t)− (W (t))(c, c)
)
= 0. (29)
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5.1.1 Obtaining a numerical approximation

In order to obtain a finite-dimensional approximation c̄ of the solution, we first consider a
truncated version of our matrix equation. Given a resolution level J > 0 and makingM = 2J+1,
we apply the projection ΠM to all sequences of (29), obtaining

cTMhM (t)− λ
(
cTMwM (t) + u0 − u20 − 2u0c

T
MwM (t)− (WM (t))(cM , cM )

)
= 0

where, for aM ,bM ∈ RM , (WM (t))(aM ,bM ) := aTMwM (t)wT
M (t)bM . Since the equation holds

for all t ∈ [0, 1], we sample it at the times tl =
l−0.5
2J

for l = 1, ...,M . Recalling that

HM = [hM (t1),hM (t2), ...,hM (tl), ...,hM (t2J+1)],

we can organize the time samples in matrix form as

cTMHM + λ(2u0 − 1)cTMPMHM + λ(u20 − u0)eT + λ(WM (cM , cM ))T = 0

with e and WM (cM , cM ) being M × 1 vectors given by

e := (1, 1, ..., 1)T ,
(
WM (cM , cM )

)
i
:= (WM (ti))(cM , cM ).

By transposing this system and multiplying by (HT
M )−1 = 1

MHM we finally arrive at the equation
to solve numerically:

cM + λ(2u0 − 1)P T
McM +

λ(u20 − u0)
M

HMe+
λ

M
HMWM (cM , cM ) = 0. (30)

As this is a nonlinear equation, we use Newton’s method. Define FM : RM → RM as

FM (cM ) := cM + λ(2u0 − 1)P T
McM +

λ(u20 − u0)
M

HMe+
λ

M
HMWM (cM , cM ) (31)

Thus, we apply Newton’s method by iteratively calculating

cp+1
M = cpM −AM (cpM )FM (cpM ) (32)

where AM (cpM ) is a numerical approximation for
(
DFM (cpM )

)−1
and cpM is the result from the

p-th iteration.

5.1.2 Estimates for the radii polynomials

Here, we provide the bounds for Theorem 3.1. The maps T and DT for the fixed point theorem
are given by (15) and (16), respectively. For this example, the map F : ℓ2(R) → ℓ2(R) is given
as

F (x) := λ(u20 − u0)e1 + x+ λ(2u0 − 1)P Tx+ λH
(
xTw(t)wT (t)x

)
. (33)

and its derivative DF (x) applied to y ∈ ℓ2(R) is given by

(DF (x))y = y + λ(2u0 − 1)P Ty + 2λH(xTw(t)wT (t)y). (34)

where the last equality comes from the symmetry of the bilinear form.
Before proceeding, it is worth outlining the general strategy for the estimates. We separate

the operator matrices according to the finite-infinite decomposition in (17). Then, all the finite-
dimensional parts are collected together and left for the computer to calculate, while we use the
analytic estimates from Section 4 for the infinite parts.

• YM : Using the decomposition of λH
(
c̄Tw(t)wT (t)c̄

)
and Proposition 4.1,

11



ΠM (T (c̄)− c̄) = −AMΠMHF (c̄)
= −AM

[
λ(u20 − u0)e+ c̄+ λ(2u0 − 1)P T

M c̄+ 2λ
(
(Ω̃T

MP
T
M c̄)⊙ (P T

M c̄)
)

+ λΓT
M (āM ⊙ āM )

]
− λAMΠMΓT

∞,M (ā∞ ⊙ ā∞),

with ā = P T c̄. Note that the term in the brackets can be computationally evaluated. Using the
bound from Proposition 4.1 (iii) for the last term, we can define YM as

YM :=
∥∥∥AM

[
λ(u20 − u0)e+ c̄+ λ(2u0 − 1)P T

M c̄+ 2λ
(
(Ω̃T

MP
T
M c̄)⊙ (P T

M c̄)
)
+ λΓT

M (āM ⊙ āM )
]∥∥∥

ℓ2

+
|λ|∥AM∥

√
2

(
4−
√
2
)
2

3J
2
+3
∥c̄∥2ℓ2

(35)

• Y∞: Observe that

Π∞(T (c̄)− c̄) = Π∞
(
λ(2u0 − 1)P T c̄+ λH(āTΩ(t)ā+ āTΩT (t)ā+ āTΘ(t)ā

)
.

With the estimates from Proposition 4.2, we can make Y∞ as

Y∞ :=
|λ(2u0 − 1)|√

3

∥c̄∥ℓ2
2J+2

+
|λ|√
3

∥c̄∥2ℓ2
22J+3

+
|λ|

21
√
7

∥c̄∥2ℓ2
23J+6

. (36)

• ZM : Using the finite-infinite decomposition and the fact that c̄ ∈ RM ,

ΠM (DT (c̄+ x))y = (IM −AMB1)yM −AMB2P
T
∞,My∞ − 2λAMdiag(P T

M c̄)
(
Ω̃TP T

)
M,∞y∞

− 2λAMΓT
∞,MΠ∞

(
P T c̄⊙ P Ty

)
− 2λAMΠMH(xTw(t)wT (t)y)

where

B1 := IM + λ(2u0 − 1)P T
M + 2λdiag

(
c̄TPM Ω̃M

)
P T
M

+ 2λdiag(P T
M c̄)Ω̃T

MP
T
M + 2λΓT

Mdiag
(
P T
M c̄
)
P T
M

B2 := λ(2u0 − 1)IM + 2λdiag
(
c̄TPM Ω̃M

)
+ 2λdiag(P T

M c̄) + 2λΓT
Mdiag

(
P T
M c̄
)

and IM is the M ×M identity matrix. While the expression of B1 and B2 seem complicated, all
terms are finite-dimensional and hence their norms can be calculated computationally. Thus,
using the estimates from Proposition 4.3 with the expression for DT to bound the terms which
cannot be easily estimated computationally,

∥ΠM (DT (c̄+ x))y∥ℓ2 ≤ (C1 + C2 ∥x∥ℓ2) ∥y∥ℓ2

where

C1 := ∥IM −AMB1∥+
∥AMB2∥
2J+2

+
(1 +

√
2)
∥∥λAMdiag(P T

M c̄)
∥∥

2
J+1
2

+

√
2 ∥λAM∥ ∥c̄∥ℓ2

(4−
√
2) 2

3J
2
+2

C2 := 2|λ| (2K1 +K2)

and K1 and K2 are as in Proposition 4.3. Hence, we can make ZM (r) as

ZM (r) := C1 + C2r (37)

• Z∞: We have that

12



Π∞(DT (c̄+ x))y = λ(2u0 − 1)Π∞P Ty + 2λΠ∞H(c̄Tw(t)wT (t)y) + 2λΠ∞H(xTw(t)wT (t)y)

All terms are infinite-dimensional and need to be analitically estimated. Using the estimates
from Propositions 4.4 and 2.2, we can make Z∞(r) as

Z∞(r) :=

( |λ(2u0 − 1)|
2J+1

√
3

+
|λ|D1 ∥c̄∥ℓ2

2
3J
2

)
+
|λ|D2

2
3J
2
+2

r (38)

with D1 and D2 as in Proposition 4.4.

5.1.3 Results

Figure 1 shows the numerical solutions for J = 6 and J = 10 compared to the true solution,
using λ = 6 and u0 = 0.2 for both cases. Visually, the numerical solutions agrees with the true
one.

(a) J = 6 (b) J = 10

Figure 1: Numerical and true solutions for the logistic equation.

Figure 2 shows the radius r0 obtained as J increases for different ω. It is clear that, as J
increases, the radius r0 decreases; this is due to more terms being calculated more accurately,
instead of only being bounded by analytical estimates. Also, smaller values of ω yield tighter
radii; however, if ω is too small the method will not work, as there will not be a true solution
within Bω(c̄, r). Figure 3a shows the radii obtained with ω optimized up to two significant
digits.

Lastly, Figure 3b shows the radii and computation time. As J increases, the computation
time is expected to increase; however, Figure 3b shows that after a certain point it increases
more rapidly than r0 decreases. This is expected as the size of the matrices quadruples for every
increase of J , and so one must carefully balance the needed precision with computing time.

5.2 Logistic equation with a discontinuous forcing term

The next example is again the logistic equation, but with a discontinuous forcing term

u̇ = λu(1− u) + g(t)

u(0) = u0
, g(t) =

{
1 , if t ≤ 1

2

0 , if t > 1
2

(39)

While this is a Ricatti equation which can be explicitly solved, we can see from the equation
itself that the solution should not be smooth, since g is discontinuous. Nonetheless, we can find
a verification radius in the L2 sense.

The functional equation for this case is similar to (28); making g = H(g),

cTh(t)− λ
(
cTw(t) + u0 − u20 − 2u0c

Tw(t)− (W (t))(c, c)
)
− gTh(t) = 0. (40)
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J r0 (ω = 0.6) r0 (ω = 0.75) r0 (ω = 0.85)
6 2.1677704× 10−2 3.4976922× 10−2 5.9222878× 10−2

7 1.0690405× 10−2 1.7163569× 10−2 2.8785441× 10−2

8 5.3120948× 10−3 8.5120420× 10−3 1.4224769× 10−2

9 2.6483940× 10−3 4.2402808× 10−3 7.0756199× 10−3

10 1.3223867× 10−3 2.1164777× 10−3 3.5294192× 10−3

Figure 2: Radius r0 obtained for different values of ω

(a) (b)
J ω r0 Time
6 0.51 1.7651807× 10−2 0.283
7 0.31 6.1826325× 10−3 0.377
8 0.21 2.6863885× 10−3 1.499
9 0.14 1.4138969× 10−3 9.447
10 0.089 1.2789917× 10−3 70.958
11 0.060 7.4420035× 10−4 474.220

Figure 3: (a) Radius r0 obtained with more optimized ω for each resolution level J . (b) Com-
parison between r0 and time elapsed.

5.2.1 Numerical approximation

Applying the same method as in the previous example, we get the equation to obtain the
numerical, finite-dimensional approximation c̄, which is similar to before:

cM + λ(2u0 − 1)P T
McM +

λ(u20 − u0)
M

HMe+
λ

M
HMWM (cM , cM )− 1

M
HMgM = 0 (41)

where gM := (g(t1) , ... , g(tM ))T . Again, since this is a nonlinear equation, we will use Newton’s
method.

14



5.2.2 Estimates for the radii polynomials

In order to apply the radii polynomial method, we use the following functional equation F :
ℓ2(R)→ ℓ2(R):

F (x) := λ(u20 − u0)e1 + x+ λ(2u0 − 1)P Tx+ λH
(
xTw(t)wT (t)x

)
−H(g).

Observe that g = 1
2(ψ1 + ψ2), and thus H(g) =

(
1
2 ,

1
2 , 0, 0, ...

)T
=: g; in particular, g ∈ RM .

Hence, the map used is given by

F (x) = λ(u20 − u0)e1 + x+ λ(2u0 − 1)P Tx+ λH
(
xTw(t)wT (t)x

)
− g. (42)

The maps T and DT (x) for the radii polynomials are the same as (15) and (16), respectively.
Actually, since g does not depend on x, the derivativeDF is the same as in the non-forced logistic
equation from (34).

Using the same methods as before, we have the following bounds for the radii polynomial
method:

YM := C0 +
|λ|∥AM∥

√
2

(
4−
√
2
)
2

3J
2
+3
∥c̄∥2ℓ2 (43)

Y∞ :=
|λ(2u0 − 1)|√

3

∥c̄∥ℓ2
2J+2

+
|λ|√
3

∥c̄∥2ℓ2
22J+3

+
|λ|

21
√
7

∥c̄∥2ℓ2
23J+6

(44)

ZM (r) := C1 + C2r (45)

Z∞(r) :=

( |λ(2u0 − 1)|
2J+1

√
3

+
|λ|D1 ∥c̄∥ℓ2

2
3J
2

)
+
|λ|D2

2
3J
2
+2

r (46)

where C1, C2, D1 and D2 are as in the estimates for the non-forced logistic equation, and

C0 =
∥∥∥AM

[
λ(u20 − u0)e+ c̄+ λ(2u0 − 1)P T

M c̄

+ 2λ
(
(Ω̃T

MP
T
M c̄)⊙ (P T

M c̄)
)
+ λΓT

M (āM ⊙ āM )− g
]∥∥∥

ℓ2
.

5.2.3 Results

Figure 4 shows the results using the Haar wavelet method compared to numerical integration,
using λ = 6 and u0 = 0.2. For the numerical integration, we used the same amount of points
as the Haar wavelet method, that is, 2J+1 points. It can be seen that the numerical integration
tends to smooth the graph at t = 0.5, while our method preserves the original shape.

(a) J = 6 (b) J = 10

Figure 4: Numerical and true solutions for the logistic equation with forcing term
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Figure 5 shows the verification radius as J increases. It is worth noting that the solution is
not smooth; nonetheless, our method returned verification radii similar to the non-forced logistic
equation.

J ω r0
6 0.53 2.6161420× 10−2

7 0.31 9.2508029× 10−3

8 0.20 5.1495598× 10−3

9 0.13 3.1382945× 10−3

10 0.086 1.7710909× 10−3

11 0.057 1.1107730× 10−3

Figure 5: Verification radius for the forced logistic equation

5.3 Lorenz system

The Lorenz system is given by
ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

(47)

where σ, ρ and β are positive parameters, usually taken as σ = 10, β = 8
3 and ρ = 28. This is

a well-studied system, and with these parameters the system exhibits chaotic behavior with a
strange attractor.

Since this is a system of equations, we must first some of our definitions in order to apply
our method. First, we define the spaces Xs := ℓ2(R) × ℓ2(R) × ℓ2(R) and Xf := L2([0, 1]) ×
L2([0, 1])× L2([0, 1]), and endow them with the norms

∥(c1, c2, c3)∥Xs := max {∥c1∥ℓ2 , ∥c2∥ℓ2 , ∥c3∥ℓ2}
∥(f1, f2, f3)∥Xf

:= max {∥f1∥L2 , ∥f2∥L2 , ∥f3∥L2} (48)

With these norms, Xs and Xf are still Banach spaces; though they are no longer Hilbert spaces,
the methods of Section 3 are still applicable. Also, an operator A : Xs → Xs can be expressed
using block matrix notation as

A =



A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3




where Ai,j : ℓ
2(R)→ ℓ2(R) for i, j = 1, 2, 3. If those are bounded, A is bounded and

∥A∥B(Xs) = max
1≤i≤3

3∑

j=1

∥Ai,j∥B(ℓ2). (49)

Similar notation will be used when Ai,j ∈ B(RM ). Lastly, we make a small abuse of notation
and extend the notation for the operators in ℓ2(R) such as the projections ΠM and Π∞ to Xs

by applying them element-wise:

ΠM (c1, c2, c3) := (ΠMc1,ΠMc2,ΠMc3)

Π∞(c1, c2, c3) := (Π∞c1,Π∞c2,Π∞c3).
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Applying the same methods used to obtain (29) to each equation in (47), we obtain the
functional equation

cTxh(t)− σcTy w(t) + σcTxw(t)− σ(y0 − x0) = 0

cTy h(t) + x0c
T
z w(t)− (ρ− z0)cTxw(t) + cTy w(t)− (x0(ρ− z0)− y0) +W (t)(cx, cz) = 0

cTz h(t)− y0cTxw(t)− x0cTy w(t) + βcTz w(t)− (x0y0 − βz0)−W (t)(cx, cy) = 0

(50)

where cx = H(ẋ), cy = H(ẏ) and cz = H(ż).

5.3.1 Numerical approximation

Using the same techniques used to obtain (30) and (41) to each equation in (50), we obtain the
system to be solved numerically with Newton’s method:

c̄x −
σ

M
P T
M c̄y +

σ

M
P T
M c̄x −

σ

M
(y0 − x0)HMe = 0

c̄y +
1

M
HMWM (c̄x, c̄z) + x0P

T
M c̄z − (ρ− z0)P T

M c̄x + P T
M c̄y −

1

M
(x0(ρ− z0)− y0)HMe = 0

c̄z −
1

M
HMWM (c̄x, c̄y)− y0P T

M c̄x − x0P T
M c̄y + βP T

M c̄z −
1

M
(x0y0 − βz0)HMe = 0

(51)

Remark 5.1. One interesting remark in [12] is that one can use results from lower resolutions
as initial guesses for the Newton’s method for higher resolution levels, instead of using a high
resolution level right from the start. For the Lorenz system, this can reduce convergence problems
and overall calculation time.

5.3.2 Estimates for the radii polynomials

For the Lorenz system, the maps T and DT are as in (15) and (16) respectively, with c =
(cx, cy, cz) ∈ Xs. The map F : Xs → Xs is given by

F (c) :=




cx − σP T cy + σP T cx − σ(y0 − x0)e1
cy +H

(
cTxw(t)wT (t)cz

)
+ x0P

T cz − (ρ− z0)P T cx + P T cy − (x0(ρ− z0)− y0)e1
cz −H

(
cTxw(t)wT (t)cy

)
− y0P T cx − x0P T cy + βP T cz − (x0y0 − βz0)e1




and for v = (vx,vy,vz) ∈ Xs,

DF (c)v :=




vx − σP Tvy + σP Tvx

vy +H
(
cTxw(t)wT (t)vz

)
+H

(
cTz w(t)wT (t)vx

)

+x0P
Tvz − (ρ− z0)P Tvx + P Tvy

cz −H
(
cTxw(t)wT (t)vy

)
−H

(
cTy w(t)wT (t)vx

)

−y0P Tvx − x0P Tvy + βP Tvz



.

For the Lorenz system, we have the following estimates for the radii polynomial method.
Using the norms defined in (48) and (49) and applying the same techniques and techniques as
before to each equation, we find the following bounds:

YM = ∥AMFM (c̄)∥Xs +
∥AM∥B(Xs)∥c̄x∥ℓ2
(4−

√
2)2

3J+5
2

max
{
∥c̄y∥ℓ2 , ∥c̄z∥ℓ2

}

Y∞ = max{Y 1
∞, Y

2
∞, Y

3
∞}

ZM (r) = α1 + α2r

Z∞(r) = γ1 + γ2r

(52)
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where the constants above are given by

Y 1
∞ :=

|σ|√
3

∥c̄x − c̄y∥ℓ2
2J+2

Y 2
∞ :=

∥c̄x∥ℓ2∥c̄z∥ℓ2√
3 22J+5

+
∥c̄x∥ℓ2∥c̄z∥ℓ2
(21
√
7) 23J+6

+
∥x0c̄z − (ρ− z0)c̄x + c̄y∥ℓ2√

3 2J+2

Y 3
∞ :=

∥c̄x∥ℓ2∥c̄y∥ℓ2
22J+5

√
3

+
∥c̄x∥ℓ2∥c̄y∥ℓ2
(21
√
7) 23J+6

+
∥βc̄z − y0c̄x − x0c̄y∥ℓ2√

3 2J+2

α1 := ∥IM −AMB1∥B(Xs)
+
∥AMB2∥B(Xs)

2J+2

+
1 +
√
2

2
J+3
2

∥AMB2∥B(Xs)
+

√
2

4−
√
2

∥∥∥∥∥∥
A†

M




0
∥c̄x∥ℓ2 + ∥c̄z∥ℓ2
∥c̄x∥ℓ2 + ∥c̄y∥ℓ2



∥∥∥∥∥∥
Xs

α2 := ∥4C + 2D∥B(Xs)

γ1 := max

{ |σ|√
3 2J+1

,
D1

(
∥c̄z∥ℓ2 + ∥c̄x∥ℓ2

)

2
3J
2

+
1 + |ρ− z0|+ |x0|√

3 2J+2
,

D1

(
∥c̄z∥ℓ2 + ∥c̄x∥ℓ2

)

2
3J
2

+
β + |x0|+ |y0|√

3 2J+2

}

γ2 :=
D2

2
3J
2
+1
.

and the auxiliary quantities to calculate the constants are given by

A†
M :=



∥AMx,x∥B(ℓ2) ∥AMx,y∥B(ℓ2) ∥AMx,z∥B(ℓ2)

∥AMy,x∥B(ℓ2) ∥AMy,y∥B(ℓ2) ∥AMy,z∥B(ℓ2)

∥AMz,x∥B(ℓ2) ∥AMz,y∥B(ℓ2) ∥AMz,z∥B(ℓ2)




B1 :=




IM + σP T
M −σP T

M 0
(BM (c̄z)− (ρ− z0)IM )P T

M IM + P T
M (BM (c̄x) + x0IM )P T

M

(−BM (c̄y)− y0IM )P T
M −(BM (c̄x) + x0IM )P T

M IM + P T
M




BM (c̄i) := diag(Ω̃T
MP

T
M c̄i) + ΓT

Mdiag(P T
M c̄i)

B2 :=




σIM −σIM 0
BM (c̄z) IM BM (c̄x)
−BM (c̄y) −BM (c̄x) IM




C =



0 Cx,y Cx,z

0 Cy,y Cy,z

0 Cz,y Cz,z


 , D =



0 Dx,y Dx,z

0 Dy,y Dy,z

0 Dz,y Dz,z




and for i, j ∈ {x, y, z}

Ci,j := ∥AMi,j diag
(
∥(P T

M )i,∗∥ℓ2
)
Ω̃T
MP

T
M∥+

∥∥∥AMi,j Ω̃
T
MP

T
M

∥∥∥
2J+2

+
(1 +

√
2)
∥∥AMi,jP

T
M

∥∥

2
J+3
2

+
(1 +

√
2)
∥∥AMi,j

∥∥

2
3J+7

2

Di,j :=
∥∥∥AMi,jΓ

T
Mi,j

diag(∥(P T
M )i,∗∥2ℓ )P T

M

∥∥∥+

∥∥∥AMi,jΓ
T
Mi,j

P T
M

∥∥∥
2J+1

+

∥∥∥AMi,jΓ
T
Mi,j

∥∥∥
22J+4

+

√
2(

4−
√
2
) ∥AMi,j∥

2
3J
2
+4

and D1 and D2 are as in Proposition 4.4.
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5.3.3 Results

Figure 6 shows the approximation obtained with the Haar wavelet method using J = 10 and
numerical integration (fewer points from the Haar wavelet method are displayed for clarity); for
the latter, we used M2 = 22J+2 points in order to obtain a precise result. Visually, there seems
to be good agreement between both results.

Figure 6: Results for the Lorenz system

For the same resolution level, the numerical result was rigorously verified by the radii poly-
nomial method using the estimates described above, obtaining an r0 = 3.9868504 × 10−2 for
ω = 0.45 in which the true solution lies in Xs.

6 Conclusions and future work

We developed a radii polynomial method using the Haar wavelet approach for differential equa-
tions, and illustrated the method by applying it to three differential equations. One advantage
of our method over previous methods based on the radii polynomials approach is that, due to
the use of the Haar wavelets, our method does not require the solutions to be smooth.

In the future we plan to develop the estimates for higher-order derivatives. While a higher-
order differential equation can be transformed into a system of first-order equations, this in-
creases the size of the matrices. Thus it might be interesting to use operators that directly
represent higher-order derivatives. While some of those have already been used for usual nu-
merical methods, we need to compute the estimates needed for our radii polynomial method.

Furthermore, we only presented the estimates needed for the radii polynomials for quadratic
nonlinearities, since the main goal of this paper is to present the general method and illustrate
how to compute the estimates and apply the method. In the future we plan to extend these
estimates to include higher-order polynomial nonlinearities, as this would greatly expand the
applicability of our method.

Lastly, we believe this method can be a basis to build other methods using similar techniques,
such as continuation methods.
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Appendices

A Proof of Theorem 4.1

Here we present the full proof of Theorem 4.1. While lengthy, this proof not only validates
the theorem that allows us to deal with quadratic nonlinearities, but also hints at how to find
bounds for the radii polynomials.

Let us outline the general strategy. We first make heuristical calculations to find an expres-
sion for the Haar transforms; then, by proving that they are indeed in ℓ2(R), the uniqueness of
the Haar wavelet series justifies the calculations.

Let c,d ∈ ℓ2(R), and assume that cTw(t)wT (t)d ∈ L2([0, 1]). We have

cTw(t)wT (t)d = aTh(t)hT (t)b

where we denote a = P T c and b = P Td for simplicity. Let us study the matrix h(t)hT (t) in more
depth. First, by definition, we have ψj,k(t)ψj,q(t) ̸= 0 if and only if k = q. For ψj,k(t)ψp,q(t)
when j ̸= p, without loss of generality, consider j < p for a fixed p. Because of the nesting

property, ψj,k is constant (possibly zero) in suppψp,q, so we can assume ψj,k(t) = ψj,k

(
q+0.5
2p

)

for t ∈ suppψp,q. Thus, we can write ψj,k(t)ψp,q(t) as

ψj,k(t)ψp,q(t) = ψj,k

(
q + 0.5

2p

)
ψp,q(t) = (Hm/2)i,lψl(t).

Hence, after adjusting indices and taking into account the symmetry of the matrix, we have
proved the following:

Lemma .1. The product h(t)hT (t) can be recursively calculated for m = 2j, j = 0, 1, 2, . . . as

h1(t)h
T
1 (t) = ψ2

1(t) = ϕ2(t) , h2m(t)hT
2m(t) =

[
hm(t)hT

m(t) Υm(t)

ΥT
m(t) ∆m(t)

]

where, for i, l = 1, ..., 2m, Γm and ∆m are m×m matrices defined element-wise as

(Υm)i,l(t) = (Hm)i,lψm+l(t) , (∆m)i,l(t) =

{
ψ2
i (t) , if i = l

0 , otherwise.

This justifies the decomposition of h(t)hT (t) as in Theorem 4.1, that is, h(t)hT (t) = Ω(t) +
ΩT (t) +Θ(t). We treat each term separately. First, for aTΩ(t)b, dividing b in 2j vector blocks,
the product Ω(t)b is given element-wise by

(Ω(t)b)i =
∞∑

p=j

(Υ2p)i,∗b∗
2p =

∞∑

p=j

2p∑

q=1

(H2p)i,q ψ2p+q(t) b2p+q

=
∞∑

p=j

(H2p)i,∗ (b∗
2p ⊙ h∗

2p(t)) =: (Ω̃(b⊙ h(t)))i

where ⊙ denotes the Hadamard (i.e. element-wise) product, and the matrix Ω̃ can be recursively
constructed as

Ω̃1 = 0 , Ω̃2m =

[
Ω̃m Hm

0m 0m

]
, for m = 2j and j = 0, 1, 2, ...
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Thus, the product aTΩ(t)b is given by

aTΩ(t)b = (cTP )Ω̃ (b⊙ h(t)) =

∞∑

i=1

∞∑

l=1

ci(P Ω̃)i,lblψl(t).

In particular, if we assume aTΩ(t)b ∈ L2([0, 1]), then

(
H
(
aTΩ(t)b

))
l
= bl

∞∑

i=1

ci(P Ω̃)i,l = (cTP Ω̃)lbl. (53)

or written in another way, H
(
aTΩ(t)b

)
=
(
Ω̃TP T c

)
⊙ b.

Also, since the output of aTΩT (t)b is a real number, then aTΩT (t)b =
(
aTΩT (t)b

)T
=

bTΩ(t)a, and thus H
(
aTΩT (t)b

)
=
(
Ω̃TP Td

)
⊙ a as well.

For the term H(aTΘ(t)b), we have

aTΘ(t)b =
∞∑

i=1

aibiψ
2
i (t) , ψ2

i (t) =




2j , if

k

2j
≤ t ≤ k + 1

2j
;

0 , otherwise.

Then ψ2
i ∈ L2([0, 1]), and we can write it as a Haar wavelet series:

ψ2
i (t) =

∞∑

l=1

γi,lψl(t) = Γh(t) , γi,l :=

∫ 1

0
ψ2
i (t)ψl(t) dt.

Similar to P , the matrix Γ also has a recursive structure:

Lemma .2. The matrix Γ can be recursively calculated by

Γ1 = 1 , Γ2m =

[
Γm 0m
HT

m 0m

]
, for m = 2j and j = 0, 1, 2, 3, ... (54)

Proof. First, calculating Γ1 = γ11 is straightforward. By definition, for i, l = 1, 2, ...,m, we have

(Γ2m)i,l =

∫ 1

0
ψ2
i (t)ψl(t) dt = (Γm)i,l

Suppose now that m+ 1 ≤ l ≤ 2m, and denote using the two-index notation ψl = ψp,q and
ψi = ψj,k. For 2 ≤ i ≤ 2m, due to the nesting property, ψj,k is constant (possibly zero) in
suppψp,q. However, even if ψj,k is non-zero in suppψp,q,

(Γ2m)i,l =

∫ 1

0
ψ2
i (t)ψl(t) dt = 2j

∫ k+1

2j

k

2j

ψp,q(t) dt = 2j
∫ q+1

2p

q
2p

ψp,q(t) dt = 0.

Similar reasoning applies for i = 1 (in which case ψ1(t) = ϕ(t) ≡ 1 in [0, 1]).
Suppose now that m+ 1 ≤ i ≤ 2m and l ≤ m. For l = 1 a straightforward calculation show

that (Γ2m)i,l = 1 = (Hm)1,i. For l > 1, since p < j, we can apply the same reasoning as in the
proof of Lemma .1, yielding

γi,l = 2j
∫ k+1

2j

k

2j

ψp,q(t) dt = 2j
∫ k+1

2j

k

2j

ψp,q

(
k + 0.5

2j

)
dt = ψl(ti) = (Hm)l,i.
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Hence,

aTΘ(t)b =

∞∑

i=1

aibiψ
2
i (t) =

∞∑

i=1

aibi

∞∑

l=1

γi,lψl(t) = (a⊙ b)TΓh(t)

Thus, if ΓT (a⊙ b) ∈ ℓ2(R), then H(aTΘ(t)b) = ΓT (a⊙ b).
Now we must prove that our tentative Haar transforms are indeed elements of ℓ2(R); Theorem

4.1 follows then from the uniqueness of the Haar series. Before that, we prove a few lemmas:

Lemma .3. The matrix P Ω̃ is recursively given by

P2mΩ̃2m =




PmΩ̃m PmHm

1

4
√
m3

HT
mΩ̃m

1

4
√
m
Im


 . (55)

This is proven by multiplying the recursive formulas for P and Ω̃.

Lemma .4. The matrix HT
mΩ̃m is given element-wise as

(HT
mΩ̃m)i,l =

{
0 , if l = 1;

ψ2
l (ti) , otherwise.

(56)

Proof. First, observe that, since the first column of the matrix Ω̃m is zero, then the first column
of HT

mΩ̃m is also zero, proving the case l = 1.
For l ≥ 2, fix an element (HT

mΩ̃m)i,l and make ψi = ψj,k and ψl = ψp,q using the two-index
notation. Due to the structure of HT

m and Ω̃m,

(HT
mΩ̃m)i,l = hT

2p(ti)h2p(tq+1) = 1 +

p−1∑

r=0

2r−1∑

s=0

ψr,s(ti)ψr,s(tq+1).

where ti = 2−j(k − 0.5) and tq+1 = 2−p(q + 0.5). Since ti and tq+1 are fixed, for each r there
is at most a single wavelet ψr,sr whose support contains both ti and tq+1, because the intervals
where wavelets at the same resolution level are non-zero do not overlap. Thus,

(HT
mΩ̃m)i,l = 1 +

p−1∑

r=0

ψr,sr(ti)ψr,sr(tq+1)

If neither ψr,sr(ti) nor ψr,sr(tq+1) are zero, only two cases may occur: either ψr,sr(ti) = ψr,sr(tq+1)
or ψr,sr(ti) = −ψr,sr(tq+1). The possible situations are depicted in Figure 7, supposing without
loss of generality that ti ≤ tq+1.

Let us study what happens when we change the resolution level r:

a) Suppose that ψr,sr(ti) = ψr,sr(tq+1) (situations (a) or (c) in Figure 7) for every r =
0, ..., p − 1. Then ti = tq+1, since for r = p − 1 we only sample ψr,sr at the times t1 = sr+0.25

2r

and t2 =
sr+0.75

2r , and we have ψr,sr(t1) = −ψr,sr(t2). Thus

(HT
mΩ̃m)i,l = 1 +

p−1∑

r=0

ψ2
r,sr(ti) = 1 +

p−1∑

r=0

2r = 2p = ψ2
l (ti)

b) Suppose that ψr,sr(ti) = −ψr,sr(tq+1) (situation (b) in Figure 7) happens for some r for
some r ≤ p− 1. Then ti ∈ [ s

2r ,
s+0.5
2r ] and tq+1 ∈ [ s+0.5

2r , s+1
2r ]. Due to the nesting property of the
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ti tq+1

(a) ψr,sr (ti) = ψr,sr (tq+1)

ti tq+1

(b) ψr,sr (ti) =
−ψr,sr (tq+1)

ti tq+1

(c) ψr,sr (ti) = ψr,sr (tq+1)

Figure 7: All possible situations for the product ψr,sr(ti)ψr,sr(tq+1)

Haar wavelets, no finer wavelet has both ti and tq+1 in its support, and for all coarser resolutions
ρ < r we have ψρ,sρ(ti) = ψρ,sρ(tq+1). Hence

(HT
mΩ̃m)i,l = 1 +

r−1∑

ρ=0

ψ2
ρ,sρ(ti)− ψ2

r,sr(ti) = 1 +

r−1∑

ρ=0

2ρ − 2r = 0

Lastly, since p > r and tq ∈ supp ψp,q, then ti ̸∈ suppψp,q. Thus ψ2
l (ti) = ψ2

p,q(ti) = 0 =

(HT
mΩ̃m)i,l.

Now we finally prove that (Ω̃TP T c)⊙ b and ΓT (a⊙ b) are indeed in ℓ2(R).

Proposition .1. The sequences (Ω̃TP T c)⊙b and ΓT (a⊙b) are in ℓ2(R) and satisfy, for some
C1, C2 > 0,

∥∥(Ω̃TP T c)⊙ b
∥∥
ℓ2
≤ C1∥c∥ℓ2∥d∥ℓ2∥∥ΓT (a⊙ b)

∥∥
ℓ2(R) ≤ C2∥c∥ℓ2∥d∥ℓ2

Proof. For (Ω̃TP T c)⊙ b, if we divide c as in (8) and using the block structure from Lemma .3,
each block of (Ω̃TP T c) is given by

(Ω̃TP T c)1 =
∞∑

r=0

1

2
3r
2
+2

(c∗2r)
THT

2r Ω̃2r

(Ω̃TP T c)∗2j = (c1, ..., c2j )P2jH2j +
1

2
j
2
+2

(c∗2j )
T +

∞∑

r=j+1

1

2
3r
2
+2

(c∗2r)
THT

2r Ω̃2r

We bound each term in the right-hand side:

• ∥(c1, ..., c2j )P2jH2j∥ℓ2 ≤
∥∥HT

2j

∥∥∥∥P T
2j
(c1, ..., c2j )

∥∥
ℓ2
≤ ∥c∥ℓ2

2
j
2+1

•
∥∥∥∥ 1

2
j
2+2

(c∗
2j
)T
∥∥∥∥
ℓ2
≤ ∥c∥ℓ2

2
j
2+2

• From Lemma .4, maxHT
2j
ΩT
2j

= 2j ; thus

∥∥∥∥∥∥

∞∑

r=j+1

1

2
3r
2
+2

(c∗2r)
THT

2rΩ
T
2r

∥∥∥∥∥∥
ℓ2

≤
∞∑

r=j+1

1

2
3r
2
+2
∥c∥ℓ2

∥∥HT
2rΩ

T
2r
∥∥
ℓ2
≤ 1 +

√
2

2
j
2
+2
∥c∥ℓ2
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Hence,
∥∥(Ω̃TP T c)∗2j

∥∥
ℓ2
≤
(
1 +

√
2

8

)
∥c∥ℓ2
2

j
2

, |(Ω̃TP T c)1| ≤
1 +
√
2

4
∥c∥ℓ2 (57)

Also, for i = 2j , 2j + 1, ..., 22j − 1,
∣∣(P Td)i

∣∣ ≤
∥∥(P Td)∗

2j

∥∥
ℓ2
≤ ∥d∥ℓ2

2j+1 , and thus

∥∥∥
(
(Ω̃TP T c)⊙ b

)∗
2j

∥∥∥
ℓ2
≤
∥∥(Ω̃TP T c)∗2j

∥∥
ℓ2

max
2j≤i≤22j−1

∣∣(P Td)i
∣∣ ≤

(
1 +

√
2

8

)
∥c∥ℓ2 ∥d∥ℓ2

2
3j
2
+1

Therefore, we can bound (Ω̃TP T c)⊙ b by

∥∥∥(Ω̃TP T c)⊙ b
∥∥∥
2

ℓ2
=
∣∣((Ω̃TP T c)⊙ b

)
1

∣∣2 +
∞∑

j=0

∥∥∥
(
(Ω̃TP T c)⊙ b

)∗
2j

∥∥∥
2

ℓ2

≤ 1

112
(169 + 79

√
2) ∥c∥2ℓ2 ∥d∥2ℓ2 = C2

1 ∥c∥2ℓ2 ∥d∥2ℓ2 .

For ΓT (a⊙ b), from (54) we have

∣∣(ΓT (a⊙ b)
)
1

∣∣ =
∣∣∣∣∣a1b1 +

∞∑

r=0

H2r (a
∗
2r ⊙ b∗

2r)

∣∣∣∣∣ ≤ |a1b1|+
∞∑

r=0

∥H2r∥ ∥a∗2r∥ℓ2 max |b∗
2r |

≤ ∥c∥ℓ2 ∥d∥ℓ2 +
∞∑

r=0

∥c∥ℓ2 ∥d∥ℓ2
2

3r
2
+2

≤ 18 +
√
2

14
∥c∥ℓ2 ∥d∥ℓ2

∥∥∥
(
ΓT (a⊙ b)

)∗
2j

∥∥∥
ℓ2

=

∥∥∥∥∥∥

∞∑

r=j+1

H2r (a
∗
2r ⊙ b∗

2r)

∥∥∥∥∥∥
ℓ2

≤
∞∑

r=j+1

∥H2r∥ ∥a∗2r∥ℓ2 max |b∗
2r |

≤
∞∑

r=j+1

∥c∥ℓ2 ∥d∥ℓ2
2

3r
2
+2

=
1 + 2

√
2

4

∥c∥ℓ2 ∥d∥ℓ2
2

3r
2

Finally, we bound the sequence ΓT (a⊙ b) with

∥∥ΓT (a⊙ b)
∥∥2
ℓ2

=
∣∣(ΓT (a⊙ b)

)
1

∣∣2 +
∞∑

j=0

∥∥∥
(
ΓT (a⊙ b)

)∗
2j

∥∥∥
2

ℓ2

≤ 1

49
(113 + 23

√
2) ∥c∥ℓ2 ∥d∥ℓ2 = C2

2 ∥c∥ℓ2 ∥d∥ℓ2

B Proofs of quadratic estimates from Section 4

Here we prove the quadratic estimates from Propositions 4.1—4.4. As stated in the paper, the
main strategy is to employ both the recursive block structures of the matrices from Theorems 2.1
and 4.1 and the finite-infinite decomposition from (17). For clarity, Figure 8 shows how they
overlap for the operator P ; the other matrices follow a similar pattern. We also draw insights
from A to bound the sums that appear in the proof. We believe that similar procedures may be
applied for higher-degree polynomial nonlinearities.

B.1 Proof of Proposition 4.1

i) For i ≤M , since c̄ ∈ RM , the i-th element of ΠMP
T c̄ is given by

(
P T c̄

)
i
=

M∑

l=1

(
P T
)
i,l
cl =

(
P T
M c̄
)
i
.
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Figure 8: Overlay of the block structure and finite-infinite decomposition for P

ii) For i ≤M ,

(
H(āTΩ(t)b̄)

)
i
= (c̄TP Ω̃)ib̄i =

M∑

l=1

cl(P Ω̃)l,ib̄i = (c̄TPM Ω̃M )ib̄i.

with the last equality due to Lemma .3. Thus, from item (i)

ΠMH(āTΩ(t)b̄) = (c̄TPM Ω̃M )T ⊙ΠM b̄ = (Ω̃T
MP

T
M c̄)⊙ (P T

M d̄).

iii) Using the finite-infinite decomposition, we can separate ΠMH(āTΘ(t)b̄) as

ΠMH(āTΘ(t)b̄) = ΓT
M (āM ⊙ b̄M ) + ΓT

∞,M (ā∞ ⊙ b̄∞)

We now need to bound the infinite sum in the second term. Adapting the expression of b̄ = P T d̄
in the proof of Proposition 2.2 for 2j + l > M and d̄ ∈ RM ,

b̄2j+l = −
1

2
3j
2
+2

M∑

q=1

(
HT

2j

)
l,q
c̄q,

and thus, using the structure of Γ, (58) and the fact that H2jH
T
2j

= 2jI2j ,

∣∣(ΓT
∞(Π∞ā⊙Π∞b̄)

)
i

∣∣ =

∣∣∣∣∣∣

∞∑

j=J+1

2j∑

l=1

(H2j )i,l ā2j+lb̄2j+l

∣∣∣∣∣∣

≤
∞∑

j=J+1

∣∣∣∣∣∣

2j∑

l=1

− (H2j )i,l


 1

2
3j
2
+2

M∑

q=1

(
HT

2j

)
l,q
cq


 b̄2j+l

∣∣∣∣∣∣

≤
∞∑

j=J+1

1

2
3j
2
+2

∣∣∣∣∣∣




M∑

q=1

2j∑

l=1

(H2j )i,l
(
HT

2j

)
l,q
cq



∣∣∣∣∣∣
∥d̄∥ℓ2
2j+1

=

√
2 ∥d̄∥ℓ2(

4−
√
2
)
2

3J
2
+3
|ci|

and thus

∥ΓT
∞(Π∞ā⊙Π∞b̄)∥ℓ2 ≤

√
2 ∥c̄∥ℓ2∥d̄∥ℓ2(

4−
√
2
)
2

3J
2
+3
.
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B.2 Proof of Proposition 4.2

i) Using the finite-infinite decomposition, the recursive block structure of P and the fact
that c̄ ∈ RM , we have for j > J

∥∥∥
(
P T c̄

)∗
2j

∥∥∥
ℓ2

=

∥∥∥∥−
1

2
3j
2
+2
HT

2j c̄

∥∥∥∥
ℓ2
≤ 1

2
3j
2
+2

∥∥HT
2j

∥∥ ∥c̄∥ℓ2 =
∥c̄∥ℓ2
2j+2

(58)

Estimating as we did in Theorem .1,

∥∥Π∞
(
P T c̄

)∥∥
ℓ2

=

√√√√
∞∑

j=J+1

∥∥(P T c̄)∗2j
∥∥2
ℓ2
≤ 1√

3

∥c̄∥ℓ2
2J+2

.

ii) For j > J , dividing Π∞H(āTΩ(t)b̄) in blocks,

∥∥∥
(
H(āTΩ(t)b̄)

)∗
2j

∥∥∥
ℓ2

=

∥∥∥∥−
1

2
3j
2
+2

(
HT

2jP
T
2j c̄
)
⊙
(
HT

2j d̄
)∥∥∥∥

ℓ2
≤ 1

2
3j
2
+2

(
max

1≤k≤2j

∣∣(HT
2j c̄
)
k

∣∣
) ∥∥HT

2jP
T
2j d̄
∥∥
ℓ2

≤ 1

2
3j
2
+2

∥∥HT
2j c̄
∥∥
ℓ2

∥∥HT
2jP

T
2j d̄
∥∥
ℓ2
≤
∥c̄∥ℓ2

∥∥d̄
∥∥
ℓ2

2j+4

and thus

∥∥Π∞
(
H(āTΩ(t)b̄)

)∥∥
ℓ2

=

√√√√
∞∑

j=J+1

∥∥(H(āTΩ(t)b̄)
)∗
2j

∥∥2
ℓ2
≤ 1√

3

∥c̄∥ℓ2
∥∥d̄
∥∥
ℓ2

22J+4
.

iii) To estimate Π∞H(āTΘ(t)ā), with the block matrix structure from (54) for i > M ,

∣∣(H(āTΘ(t)b̄)
)
i

∣∣ =
∣∣ΓT

i,∗(ā⊙ b̄)
∣∣ =

∣∣∣∣∣∣

∞∑

p=j+1

1

23p+4

2p∑

q=1

(H2p)i,q
(
(HT

2p)q,∗c̄
) (

(HT
2p)q,∗d̄

)
∣∣∣∣∣∣

≤
∞∑

p=j+1

1

23p+4
max

1≤q≤2p

∣∣((HT
2p)q,∗d̄

)∣∣
2p∑

q=1

∣∣(H2p)i,q
(
(HT

2p)q,∗c̄
)∣∣

≤
∞∑

p=j+1

|(I2p)i,∗c̄|
∥d̄∥ℓ2
23p+6

=
|ci|
23j+6

∥d̄∥ℓ2
7

and hence ∥∥Π∞H(āTΘ(t)b̄)
∥∥
ℓ2
≤ 1

21
√
7

∥c̄∥ℓ2∥d̄∥ℓ2
23J+6

.

B.3 Proof of Proposition 4.3

The following Lemma helps estimating terms of the type AM (BM x̄⊙CM ȳ) for arbitrary x̄, ȳ ∈
RM , which would be tricky otherwise.

Lemma .5. Given x̄, ȳ ∈ RM and M ×M matrices AM , BM , CM , then

∥AM (BM x̄⊙ CM ȳ)∥ℓ2 ≤ ∥AM diag(∥(CM )l,∗∥ℓ2)BM∥ ∥x̄∥ℓ2∥ȳ∥ℓ2 , (59)

where

diag(x̄) :=




x1 0
x2

0

. . .

xn




, (∥(CM )l,∗∥ℓ2) =




∥(CM )1,∗∥ℓ2
∥(CM )2,∗∥ℓ2

...
∥(CM )M,∗∥ℓ2


 .
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Proof. For each element of AM (BM x̄⊙ CM ȳ)

|(AM (BM x̄⊙ CM ȳ))i| =
∣∣∣∣∣
M∑

l=1

(AM )i,l(BM x̄)l(CM ȳ)l

∣∣∣∣∣

≤
∣∣∣∣∣
M∑

l=1

(AM )i,l(BM x̄)l∥(CM )l,∗∥ℓ2∥ȳ∥ℓ2
∣∣∣∣∣ = |(AM )i,∗diag (∥(CM )l,∗∥ℓ2)BM x̄| ∥ȳ∥ℓ2 .

Taking the ℓ2 norm, the result follows.

i) Applying the finite-infinite decomposition to P and observing its block structure as in
Figure 8, we have that

∥∥(P T
∞,M y∞)

∥∥
ℓ2

=

∥∥∥∥∥∥

∞∑

q=J+1

1

2
3q
2
+2

(H2q)1:M,∗ y
∗
2q

∥∥∥∥∥∥
ℓ2

≤
∞∑

q=J+1

1

2
3q
2
+2

∥∥∥(H2q)1:M,∗

∥∥∥ ∥y∗
2q∥ℓ2

≤
∞∑

q=J+1

1

2
3q
2
+2
∥H2q∥ ∥y∗

2q∥ℓ2 ≤
∥y∥ℓ2
2J+2

. (60)

ii) Fix j > J and make z2j := H2jy
∗
2j
. From Lemma .3,

(
Ω̃TP T

)
M,∞

y∞ =

∞∑

j=J+1

1

2
3j
2
+2

(
Ω̃T
2jH2j

)
1:M,∗

y∗
2j

=

∞∑

j=J+1

1

2
3j
2
+2

(
Ω̃T
2j

)
1:M,∗

H2jy
∗
2j =

∞∑

j=J+1

1

2
3j
2
+2

(
Ω̃T
2j

)
1:M,∗

z2j

Observe that, for p = 0, 1, ..., J ,
(
Ω̃T
2jz2j

)
1
= 0 ,

∥∥∥
(
Ω̃T
2jz2j

)∗
2p

∥∥∥
ℓ2
=
∥∥HT

2p(z1, ..., z2p)
T
∥∥
ℓ2
≤ 2

p
2 ∥z2j∥ℓ2

and therefore, for each j > J ,

∥∥∥Ω̃T
2jz2j

∥∥∥
ℓ2

=

√√√√
j∑

p=0

∥∥∥
(
Ω̃T
2j
z2j
)∗
2p

∥∥∥
2

ℓ2
≤ 2

j+1
2 ∥z2j∥ℓ2 ≤ 2j+

1
2

∥∥y∗
2j

∥∥
ℓ2
.

Hence, we can bound the norm of
(
Ω̃TP T

)
M,∞

y∞ with

∥∥∥∥
(
Ω̃TP T

)
M,∞

y∞

∥∥∥∥
ℓ2
≤

∞∑

j=J+1

1

2
3j
2
+2

∥∥∥∥
(
Ω̃T
2j

)
1:M,∗

z2j

∥∥∥∥
ℓ2

≤
∞∑

j=J+1

1

2
j+3
2

∥∥y∗
2j

∥∥
ℓ2
≤
(
1 +
√
2
) ∥y∥ℓ2

2
J+3
2

iii) From the block structure of (54), and using (10) and (58),

∥∥ΓT
∞,M (ā∞ ⊙Π∞P Ty)

∥∥
ℓ2

=

∥∥∥∥∥∥

∞∑

q=J+1

(H2q)1:M,∗
(
ā∗2q ⊙ (P Ty)∗2q

)
∥∥∥∥∥∥
ℓ2

≤
∞∑

q=J+1

∥(H2q)∥
(

max
1≤r≤2q

|(ā∗2q)r|
)∥∥(P Ty)∗2q

∥∥
ℓ2

≤
∞∑

q=J+1

2
q
2
∥c̄∥ℓ2
2q+2

∥y∥ℓ2
2q+1

=

√
2

4−
√
2

∥c̄∥ℓ2 ∥y∥ℓ2
2

3J
2
+3
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iv) Applying the finite-infinite decomposition to AMΠMH(xTP Ω(t)P Ty), we have

ΠMH(xTP Ω(t)P Ty) =
(
xT
MPM Ω̃M

)T ⊙
(
P T
MyM

)
+
(
xT
MPM Ω̃M

)T
⊙
(
P T
∞,My∞

)

+
(
xT
∞(P Ω̃)M,∞

)T ⊙
(
P T
MyM

)
+
(
xT
∞(P Ω̃)M,∞

)T ⊙
(
P T
∞,My∞

)
.

Using (59), we can bound the first term with Lemma .5:

∥∥∥∥AM

((
xT
MPM Ω̃M

)T
⊙
(
P T
MyM

))∥∥∥∥
ℓ2
≤
∥∥∥AM diag

(
∥(P T

M )i,∗∥ℓ2
)
Ω̃T
MP

T
M

∥∥∥ ∥x∥ℓ2∥y∥ℓ2 .

For the second term, using the bound from (60),

∣∣∣∣
(
AM

((
xT
MPM Ω̃M

)T
⊙
(
P T
∞,My∞

)))

i

∣∣∣∣ =
∣∣∣∣∣
M∑

l=1

(AM )i,l

(
xT
MPM Ω̃M

)
l

(
P T
∞,My∞

)
l

∣∣∣∣∣

≤
∣∣∣∣∣
M∑

l=1

(AM )i,l

(
xT
MPM Ω̃M

)
l

∣∣∣∣∣
∥y∥ℓ2
2J+2

=
∣∣∣
(
AM Ω̃T

MP
T
MxM

)
i

∣∣∣ ∥y∥ℓ2
2J+2

and thus

∥∥∥∥AM

((
xT
MPM Ω̃M

)T
⊙
(
P T
∞,My∞

))∥∥∥∥
ℓ2
≤

∥∥∥AM Ω̃T
MP

T
M

∥∥∥
2J+2

∥x∥ℓ2∥y∥ℓ2 .

For the third term, with a similar method to the previous term and the estimate for xT
∞(P Ω̃)M,∞,

∣∣∣∣
(
AM

((
xT
∞(P Ω̃)M,∞

)T
⊙
(
P T
MyM

)))

i

∣∣∣∣ =

∣∣∣∣∣∣

M∑

q=1

(AM )i,q
(
P T
MyM

)
q

(
xT
∞(P Ω̃)M,∞

)
q

∣∣∣∣∣∣

≤
(

max
1≤q≤M

∣∣∣∣
(
xT
∞(P Ω̃)M,∞

)
q

∣∣∣∣
) ∣∣∣∣∣∣

M∑

q=1

(AM )i,q
(
P T
MyM

)
q

∣∣∣∣∣∣

≤
∥∥∥xT

∞(P Ω̃)M,∞
∥∥∥
ℓ2

∣∣(AMP
T
MyM

)
i

∣∣ ≤
(
1 +
√
2
) ∥x∥ℓ2

2
J+3
2

∣∣(AMP
T
MyM

)
i

∣∣

and thus
∥∥∥∥AM

((
xT
∞(P Ω̃)M,∞

)T
⊙
(
P T
MyM

))∥∥∥∥
ℓ2
≤
(
1 +
√
2
) ∥x∥ℓ2

2
J+3
2

∥∥AMP
T
MyM

∥∥
ℓ2

≤
(
1 +
√
2
)∥∥AMP

T
M

∥∥ ∥x∥ℓ2 ∥y∥ℓ2
2

J+3
2

For the fourth term, with the estimates for xT
∞
(
(P Ω̃)M,∞

)
and P T

∞,My∞, we obtain

∥∥∥∥AM

((
xT
∞(P Ω̃)M,∞

)T
⊙
(
P T
∞,My∞

))∥∥∥∥
ℓ2

=

∥∥∥∥AM diag
(
P T
∞,My∞

) (
xT
∞(P Ω̃)M,∞

)T∥∥∥∥
ℓ2

≤ ∥AM∥
∥∥P T

∞,My∞
∥∥
ℓ2

∥∥∥xT
∞(P Ω̃)M,∞

∥∥∥
ℓ2
≤ ∥AM∥

(
1 +
√
2
) ∥x∥ℓ2 ∥y∥ℓ2

2
3J+7

2

Finally, adding the four bounds, we obtain the desired bound.
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v) Applying the finite-infinite decomposition to both P T and ΓT , we have

AMΠMH(xTPΘ(t)P Ty) = AMΓT
M

[ (
P T
MxM

)
⊙
(
P T
MyM

)
+
(
P T
MxM

)
⊙
(
P T
∞,My∞

)

+
(
P T
∞,Mx∞

)
⊙
(
P T
MyM

)
+
(
P T
∞,Mx∞

)
⊙
(
P T
∞,My∞

) ]

+AMΓT
∞,MΠ∞

(
P Tx⊙ P Ty

)
.

We estimate it term by term again. For the first one, using Lemma .5,

∥∥AMΓT
M

((
P T
MxM

)
⊙
(
P T
MyM

))∥∥
ℓ2
≤
∥∥AMΓT

Mdiag(∥(P T
M )i,∗∥ℓ2)P T

M

∥∥ ∥x∥ℓ2∥y∥ℓ2 .

For the second term, we can use (60) to bound it element-wise by

∣∣∣
(
AMΓT

M

((
P T
MxM

)
⊙
(
P T
∞,My∞

)) )
i

∣∣∣ =
∣∣∣∣∣
M∑

l=1

(AMΓT
M )i,l

(
P T
MxM

)
l

(
P T
∞,My∞

)
l

∣∣∣∣∣

≤
∣∣∣∣∣
M∑

l=1

(AMΓT
M )i,l

(
P T
MxM

)
l

∣∣∣∣∣
1

2J+2
∥y∥ℓ2 =

∣∣(AMΓT
MP

T
MxM )i

∣∣
2J+2

∥y∥ℓ2

and thus

∥∥AMΓT
M

((
P T
MxM

)
⊙
(
P T
∞,My∞

))∥∥
ℓ2

=

(
M∑

i=1

∣∣∣
(
AMΓT

M

((
P T
MxM

)
⊙
(
P T
∞,My∞

)) )
i

∣∣∣
2
) 1

2

≤
(

M∑

i=1

∣∣(AMΓT
MP

T
MxM )i

∣∣2
) 1

2 ∥y∥ℓ2
2J+2

=
∥∥AMΓT

MP
T
MxM

∥∥
ℓ2
∥y∥ℓ2
2J+2

≤
∥∥AMΓT

MP
T
M

∥∥
2J+2

∥x∥ℓ2 ∥y∥ℓ2

The same procedure applied to the third term yields the same bound as above. For the fourth
term, using previous estimates,

∥∥AMΓT
M

((
P T
∞,Mx∞

)
⊙
(
P T
∞,My∞

))∥∥
ℓ2
≤
∥∥AMΓT

M

∥∥∥∥P T
∞,Mx∞

∥∥
ℓ2

∥∥P T
∞,My∞

∥∥
ℓ2

≤
∥∥AMΓT

M

∥∥ ∥x∥ℓ2 ∥y∥ℓ2
22J+4

.

For the fifth term, using the block structure of ΓT in (54) and previous estimates,

∥∥AMΓT
∞,MΠ∞

(
P Tx⊙ P Ty

)∥∥
ℓ2

=

∥∥∥∥∥∥
AM

∞∑

p=J+1

(H2p)1:M,∗
(
diag

(
P Tx

)∗
2p

) (
P Ty

)∗
2p

∥∥∥∥∥∥
ℓ2

≤ ∥AM∥
∞∑

p=J+1

∥H2p∥
∥∥∥
(
P Tx

)∗
2p

∥∥∥
ℓ2

∥∥∥
(
P Ty

)∗
2p

∥∥∥
ℓ2

≤ ∥AM∥
∞∑

p=J+1

2
p
2
∥x∥ℓ2
2p+2

∥y∥ℓ2
2p+2

=

√
2 ∥AM∥
4−
√
2

∥x∥ℓ2 ∥y∥ℓ2
2

3J
2
+4

Hence, adding the estimates, the result follows.
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B.4 Proof of Proposition 4.4

i) To estimate H(c̄Tw(t)wTy), we again decompose in three parts and estimate each one
separately:

H(c̄Tw(t)wT (t)y) = H(āTΩ(t)P Ty) +H(āTΩT (t)P Ty) +H(āTΘ(t)P Ty).

• H(āTΩ(t)P Ty): Since c̄ ∈ RM ,
(
H(āTΩ(t)P Ty)

)
i
= (c̄TP2jH2j )i(P

Ty)i. Therefore,

applying the block decomposition to H(āTΩ(t)P Ty) and some previously calculated estimates
from (10) and (58),

∥∥∥
(
H(āTΩ(t)P Ty)

)∗
2j

∥∥∥
ℓ2

=
∥∥∥
(
HT

2jP
T
2j c̄
)∗
2j
⊙
(
P Ty

)∗
2j

∥∥∥
ℓ2
≤
∥∥diag

(
(P Ty)∗2j

)∥∥
∥∥∥
(
HT

2jP
T
2j c̄
)∗
2j

∥∥∥
ℓ2

= max
2j+1≤i≤2j+1

∣∣(P Ty
)
i

∣∣
∥∥∥
(
HT

2jP
T
2j c̄
)∗
2j

∥∥∥
ℓ2
≤ ∥c̄∥ℓ2∥y∥ℓ2

2
3j
2
+3

and thus

∥∥Π∞H(āTΩ(t)P Ty)
∥∥ =

√√√√
∞∑

j=J+1

∥∥(H(āTΩ(t)P Ty))
∗
2j

∥∥2 ≤ 1√
7

∥c̄∥ℓ2∥y∥ℓ2
2

3J
2
+3

.

• H(āTΩT (t)P Ty): Since āTΩT (t)P Ty = (āTΩT (t)P Ty)T = (P Ty)TΩ(t)ā, then using the
estimate from (57),

∥∥∥
(
H(āTΩT (t)P Ty)

)∗
2j

∥∥∥
ℓ2

=
∥∥∥diag

(
(P T c̄)∗2j

) (
Ω̃TP Ty

)∗
2j

∥∥∥
ℓ2

≤ max
2j+1≤i≤2j+1

∣∣(P T c̄)i
∣∣
(
1 +

√
2

8

)
∥y∥ℓ2
2

j
2

≤
(
1 +

√
2

8

)
∥c̄∥ℓ2∥y∥ℓ2

2
3j
2
+2

,

and the bound for Π∞H(āTΩT (t)P Ty) becomes

∥∥Π∞H(āTΩT (t)P Ty)
∥∥
ℓ2
≤ 1√

7

(
1 +

√
2

8

)
∥c̄∥ℓ2∥y∥ℓ2

2
3J
2
+2

.

• H(āTΘ(t)P Ty): Using the block structure of ΓT from (54) and the estimates (58) and
(10), we have

∥∥∥
(
ΓT
(
ā⊙ P Ty

))∗
2j

∥∥∥
ℓ2

=

∥∥∥∥∥∥

∞∑

p=j+1

(H2p)2j+1:2j+1,∗
(
ā∗2p ⊙ (P Ty)∗2p

)
∥∥∥∥∥∥
ℓ2

≤
∞∑

p=j+1

∥∥(H2p)2j+1:2j+1,∗
∥∥ ∥diag(ā∗2p)∥

∥∥(P Ty)∗2p
∥∥
ℓ2

≤
∞∑

p=j+1

∥H2p∥ max
2p+1≤i≤2p+1

∣∣(P T c̄)i
∣∣ ∥∥(P Ty)∗2p

∥∥
ℓ2

≤
∞∑

p=j+1

2
p
2
∥c̄∥ℓ2
2p+2

∥y∥ℓ2
2p+1

=

√
2

4−
√
2

∥c̄∥ℓ2 ∥y∥ℓ2
2

3j
2
+3

,

and thus

∥∥Π∞H(āTΘ(t)P Ty)
∥∥
ℓ2
≤

√
2√

7(4−
√
2)

∥c̄∥ℓ2 ∥y∥ℓ2
2

3J
2
+3

.
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The result follows from summing the estimates.

ii) We proceed in the same way as we did for Π∞H(c̄Tw(t)wT (t)y), that is, separate it in
three parts

H(xTw(t)wT (t)y) = H(xTΩ(t)P Ty) +H(xTΩT (t)P Ty) +H(xTΘ(t)P Ty)

and estimate each one.

• H(xTΩ(t)P Ty): Applying the block decomposition to the expression of H(xTΩ(t)P Ty)
and the estimates from (10) and (58),

∥∥∥
(
H(xTΩ(t)P Ty)

)∗
2j

∥∥∥
ℓ2

=
∥∥∥(Ω̃TP Tx)∗2j ⊙ (P Ty)∗2j

∥∥∥
ℓ2
≤
∥∥∥diag

(
P Ty

)∗
2j

∥∥∥
∥∥∥(Ω̃TP Tx)∗2j

∥∥∥
ℓ2

≤ ∥y∥ℓ2
2j+1

(
3 + 2

√
2
) ∥x∥ℓ2

2
j
2
+2

=

(
3 + 2

√
2
)

2
3j
2
+3

∥x∥ℓ2∥y∥ℓ2

and then
∥∥Π∞H(xTΩ(t)P Ty)

∥∥
ℓ2
≤
(
3 + 2

√
2
)

√
7

∥x∥ℓ2∥y∥ℓ2
2

3J
2
+3

• H(xTΩT (t)P Ty): Since xTΩT (t)P Ty = (xTΩT (t)P Ty)T = yTΩT (t)P Tx, repeating the
same process for the previous item, we also have

∥∥Π∞H(xTΩT (t)P Ty)
∥∥
ℓ2
≤
(
3 + 2

√
2
)

√
7

∥x∥ℓ2∥y∥ℓ2
2

3J
2
+3

• H(xTΘ(t)P Ty): Using the block decomposition and the block structure of Γ,

∥∥∥
(
ΓT
(
P Tx⊙ P Ty

))∗
2j

∥∥∥
ℓ2

=

∥∥∥∥∥∥

∞∑

p=j+1

(H2p)2j+1:2j+1,∗
(
(P Tx)∗2p ⊙ (P Ty)∗2p

)
∥∥∥∥∥∥
ℓ2

≤
∞∑

p=j+1

∥(H2p)∥
∥∥diag((P Tx)∗2p)

∥∥∥∥(P Ty)∗2p
∥∥
ℓ2

≤
∞∑

p=j+1

2
p
2
∥x∥ℓ2
2p+1

∥y∥ℓ2
2p+1

=

√
2

4−
√
2

∥x∥ℓ2 ∥y∥ℓ2
2

3j
2
+2

and thus
∥∥Π∞H(xTΘ(t)P Ty)

∥∥
ℓ2
≤

√
2√

7
(
4−
√
2
) ∥x∥ℓ2 ∥y∥ℓ2

2
3J
2
+2

Putting together the estimates, we have the desired result.
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Abstract

We present a Generalized Combinatorial Marching Hypercubes (GCMH)
algorithm to compute a cell complex approximation of a manifold of
any dimension and co-dimension, that is, manifolds of dimension n − k
embedded into an n-dimensional space. The algorithm uses combinato-
rial and topological methods to avoid the use of expensive lookup tables
and hence be efficient in higher dimensions. We illustrate the effectiveness
of our algorithm in higher dimensions and compare its performance with
a similar algorithm based on a simplicial decomposition of the domain.

Keywords: Manifold approximation, High-dimensional manifolds, Marching
Hypercubes, Combinatorial skeleton
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1 Introduction

Methods to compute approximations of two- and three-dimensional manifolds
(surfaces and volumes) are widely available and used in computer graphics
and applied to animation, digital games, molecular modeling, object detection,
object tracking, medical imaging, object reconstruction, etc. (see [1–7]).

Higher-dimensional manifolds are less prevalent, but they are also used
in applications such as superstring theory [8], time-dependent 3D modeling
and visualization [9, 10] and mathematical visualization [11]. Methods to com-
pute such manifolds are also available; however, most of these methods are
highly inefficient in high dimensions. An efficient algorithm, called Combina-
torial Marching Hypercubes (CMH), to compute high dimensional manifolds
of dimension n−1 embedded into a n-dimensional space was presented in [12].

In this paper, we present a generalization of the method presented in
[12]. More precisely, we present the Generalized Combinatorial Marching
Hypercubes (GCMH) algorithm to compute and represent implicitly defined
(n − k)-dimensional manifolds as a cell complex embedded into a grid of
n-dimensional hypercubes. The main advantage over the previous method
is the ability to compute manifolds of dimension n − k, for any k < n,
while the method in [12] is strictly limited to compute manifolds of dimen-
sion n − 1. Our implementation of the algorithm can be found at https:
//github.com/gknakassima/GCMH.

An implicitly defined (n− k)-dimensional manifoldM is the set of points
where a function F : Rn → Rk takes on a given value c (see Section 2 for a
precise definition). Figure 1 shows an example of the output of our algorithm
to represent a Bagel Klein Bottle defined by F (x, y, z, s, t) = (0, 0, 0), where
F : R5 → R3 is given by

F (x, y, z, s, t) =



cos(s)(3 + cos(s/2) sin(t)− sin(s/2) sin(2t))− x
sin(s)(3 + cos(s/2) sin(t)− sin(s/2) sin(2t))− y

sin(s/2) sin(t) + cos(s/2) sin(2t)− z


 .

Note that the Bagel Klein Bottle, as defined above, is a non-orientable two-
dimensional manifold embedded in R5.

1.1 Literature review

One of the most renowned algorithms to approximate 2-dimensional manifolds
embedded into a three-dimensional space is the Marching Cubes algorithm [13]
by Lorensen and Cline. Improvements to this algorithm to deal with ambi-
guities and improve topological correctness have been presented in [14–22]. A
survey of Marching Cubes type algorithms can be found in [23], and estimates
on its complexity can be found in [24, 25]. Algorithms based on a grid of tetra-
hedra, rather than a cubical grid, called Marching Tetrahedra are presented
in [26–29].
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Fig. 1 Left: The Bagel Klein Bottle manifold in R5. Right: A zoom in of the same manifold
showing its non-orientability.

Generalizations of Marching Cubes to compute manifolds of dimension
n− 1 embedded into an n-dimensional space are presented in [30–32] for n =
4, and in [33, 34] for n ≥ 4. Generalizations of the Marching Tetrahedra
algorithm to higher dimensions are presented in [35–37] and are usually called
Marching Simplex algortihms. A continuation algorithm to create simplicial
approximations of manifolds in arbitrary dimensions is presented in [38].

However, those generalized methods often employ data structures that are
very memory intensive and, for this reason, are not efficient in high dimensions.
For example, typical generalizations of Marching Cubes to higher dimensions
use look-up tables, which grows with 22

n

; thus those algorithms can be very
memory-intensive even for relatively mild values of n. In [12] a memory-efficient
algorithm, called Combinatorial Marching Hypercubes (CMH), was presented,
to compute approximations to manifolds of dimension n−1 embedded into an
n-dimensional space for arbitrary values of n. See [12] for more details of the
relevant literature and for examples in dimensions n > 4.

1.2 Contributions and paper organization

In this paper, we present the Generalized Combinatorial Marching Hypercubes
(GCMH) algorithm, a generalization of CMH to compute (n− k)-dimensional
manifolds embedded into an n-dimensional space.

This paper is organized as follows. In Section 2 we present the background
material and mathematical definitions used in the paper. In Section 3 we
present the details of the GCMH algorithm. In Section 4 we compare the results
of our method with the Combinatorial Marching Simplex algorithm from [12].
In Section 5 we present a variation of the GCMH called the Generalized Com-
binatorial Continuation Hypercube (GCCH) algorithm. Finally, in Section 6
we present results and comparison with other methods, and in Section 7 we
present some concluding remarks.
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2 Background

In this section we present the definition of an implicitly defined manifold and
other objects used in the paper. These definitions are from [12].

Definition 1 Let F : U ⊂ Rn → R be a C1 function. We say that a point c ∈ R is
a regular value of F if ∇F (x) ̸= 0 for all x ∈ F−1(c). If c ∈ R is not a regular value
of F we say that it is a critical value of F .

Definition 2 A set M ⊂ Rn is called an implicitly defined (n − 1)-dimensional
manifold if there exists a differentiable function F : Rn → R and a regular value c of
F such that

M = F−1(c) = {x ∈ Rn | F (x) = c}.
The tangent space at p ∈ M is TMp = ker(∇F (p)), where ker denotes the null space
of a linear map [39].

We can assume without any loss of generality that c = 0, that is, that the
manifold is given by

M = F−1(0) = {x ∈ Rn | F (x) = 0}.

Definition 3 (Transversality) Let M and N be differentiable manifolds of dimen-
sions m and n, respectively, in Rk with max{m,n} ≤ k. Given p ∈ M ∩N we say
that M and N are transverse at p if TMp ⊕ TNp = Rk, where TMp and TNp are
the tangent spaces to M and N , respectively, at p and ⊕ denotes the direct sum of
two vector spaces [39]. We say that M and N are transverse if they are transverse
at every point p ∈ M∩N or if M∩N = ∅.

Definition 4 (Simplex) The simplex generated by the points v0, . . . , vm ∈ Rn is
the set

σ =

{
v ∈ Rn | v =

m∑

i=0

λivi, with λi ≥ 0 and

m∑

i=0

λi = 1

}
,

and it is denoted by σ = [v0, . . . , vm]. The dimension of σ is defined as dim(σ) =
dim(span{v1 − v0, . . . , vm − v0}). For clarity, a simplex of dimension k is referred to
as a k-simplex.

A simplex of dimension 0 is also referred to as a vertex and a simplex
of dimension a 1 is also referred to as an edge. Notice that an edge may be
represented by multiple collinear vertices.

Definition 5 (Simplex Face) Let σ = [u0, . . . , uk1
] be a k-simplex and τ =

[v0, . . . , vk2
] be an m-simplex with {v0, . . . , vk2

} ⊆ {u0, . . . , uk1
}. Then τ is a m-face

(or simply a face) of σ if τ = σ or if the following conditions are satisfied:

1. m < k;
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2. If η is an m-simplex with τ ⊆ η, then η = τ .

If τ is a face of σ with τ ̸= σ we say that τ is a proper face of σ.

Definition 6 (Hypercube) The set In =
∏n

i=1[ai, bi] ⊂ Rn with ai < bi ∈ R is
called an n-dimensional hypercube (or simply a hypercube). The (n− 1)-faces of In

are the sets

In−1
i = {x ∈ In | xi = ai} and In−1

n+i = {x ∈ In | xi = bi}
for each i = 1, . . . , n. The faces of dimension less than n− 1 can be obtained by the
intersection of two or more faces of higher dimension, that is

• In−2
i,j = In−1

i ∩ In−1
j , for j ̸= n − i (since opposite faces have an empty

intersection);
• In−3

i,j,k = In−1
i ∩ In−1

j ∩ In−1
k , for j ̸= n− i, k ̸= n− i, k ̸= n− j.

The pattern above continues until the edges (I1) of the hypercube. Each edge is
the intersection of n− 1 faces of dimension n− 2.

Definition 7 (Adjacency) Two simplices σ1 and σ2 are said to be adjacent if σ1∩σ2
is a common face to both σ1 and σ2.

Similarly, two hypercubes I and I′ are said to be adjacent if I ∩I′ is a common
face to both I and I′.

Definition 8 (Incidence) A simplex τ is said to be incident to a simplex σ if τ is a
proper face of σ.

Similarly, a hypercube I is said to be incident to a hypercube J if I is a face of
J .

Our algorithm produces a collection of cells, as described in [12], to
represent the computed manifold approximation.

Definition 9 (Cells) We define a cell as follows: A cell of dimension 0 or 1 is a
convex affine cell of dimension 0 or 1, respectively. A cell of dimension k is defined
as a list of its vertices and a list of its lower dimensional faces represented as cells.

A cell of dimension k is referred to as a k-cell or simply a cell. We also
refer to 0-cells and 1-cells as vertices and edges, respectively.

3 The Generalized Combinatorial Marching
Hypercubes Algorithm

This section describes the Generalized Combinatorial Marching Hypercubes
algorithm (GCMH). It computes an approximation of an (n− k)-dimensional
implicit manifoldM = F−1(0), with F : Rn → Rk. The main difference from
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the CMH algorithm in [12] is the application of a simplex decomposition pro-
cess to both find the vertices of the manifold and solve possible ambiguities,
as described in the following subsections.

3.1 Algorithm Description

Here, we present the main steps of the GCMH algorithm.

Input

The input of GCMH is:

• A C1 function F : Rn → Rk.
• A domain hypercube D =

∏n
i=1[ai, bi] ⊂ Rn.

• A grid size tuple (k1, . . . , kn) ∈ Zn
+.

We subdivide each interval [ai, bi] uniformly into ki intervals; this way we
divide D into a uniform grid of smaller hypercubes. We shall refer to it as the
domain grid. Each (n− k)-cell will be incident to two grid hypercubes or one
grid hypercube and the boundary.

Output

The output of GCMH is an approximationMA forM = F−1(0), represented
by:

• The coordinates of the vertices ofMA.
• A set of (n− k)-cells and their r-faces for 0 ≤ r ≤ n− k − 1.

Each (n−k)-cell inMA will be a subset of a hypercube of the domain grid,
and the algorithm does not create pairs of adjacent (n − k)-cells within the
same hypercube. Thus, two adjacent (n−k)-cells inMA necessarily belong to
two different adjacent hypercubes.

Given a hypercube H of the domain grid we denote by MH the cells of
MA contained in H, that is,MH =MA ∩H.

The main steps of the GCMH algorithm are:

1) Add a perturbation to each vertex vi in the domain grid by adding a random
n-dimensional vector ϵi to vi.

2) For each hypercube H in the domain grid do:
2.1) Compute the vertices and edges of MH and their incidence and

adjacency relations. This computation results into a graph GH.
2.2) For each connected component of GH, create an (n− k)-cell ofMH and

compute its r-faces using combinatorial techniques for 2 ≤ r ≤ n−k−1.

Perturbations to each vertex vi are added in order to displace any eventual
vertices of H that are directly on the manifold, which could lead to errors.
This step is further explained in [12].

The steps (2.1) and (2.2) of the GCMH algorithm are detailed in
Sections 3.1.1 and 3.1.2, respectively.
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3.1.1 Vertices and Edges Computation

Vertices of the approximation MA are computed using the Coxeter-
Freudenthal-Kuhn (CFK) simplex decomposition algorithm, described in
[40–42], applied to each k-face. As stated before, this is the main difference
between the previous CMH method, and allows the GCMH method to be
applied to manifolds of any co-dimension k < n. It is worth noting that, while
this calculation is carried out with a simplex decomposition algorithm, infor-
mation about the simplices is not needed for the combinatorial skeleton, which
greatly reduces processing time after the computation of vertices and edges.

For a given hypercube H of the domain grid, we break each of its k-faces fk
into k! simplices of dimension k, using the CFK triangulation. Then, a vertex of
MH =MA∩H may be created in each of those k-simplices by computing the
linear interpolation of the vertices vi incident to the given k-simplex, weighted
by F (vi); that is, the intersection point v is given by v =

∑k
i=0 λivi, where λi,

i = 1, ..., k, satisfy
k∑

i=0

λiF (vi) = 0,

k∑

i=0

λi = 1.

If all λi ≥ 0, a new vertex ofMH will be created in that k-simplex; otherwise,
no vertex is created.

To compute the edges of MH, the algorithm loops through each (k + 1)-
face fk+1 connecting the manifold vertices created on the k-faces incident to
fk+1. For each fk+1, three cases may occur:

• No vertices are found: The algorithm does not create any vertex or edge on
this face.

• Two vertices are found: The algorithm simply connects both with an edge
ofMH.

• More than two vertices are found: In this case there is more than one way
of connecting the vertices with edges, leading to an ambiguity.

These ambiguities are solved using the CFK triangulation applied to the
(k + 1)-face. An example of the finished process can be seen in Figure 2 for
a 2-face, where the blue dashed lines represent the edges added to MH. A
fully worked example is illustrated in Figure 3 with a 3-face, which is a 3-
dimensional cube; thus, in this case we have k = 2. For clarity, we will denote
faces and simplices using the cube vertices, which are numbered 0 to 7, in
ascending order; for example, the top 2-face will be denoted face 4567.

Suppose that the algorithm found the manifold vertices a — d, marked
with blue dots, as in Figure 3 (a). Vertices a and b are in face 0246, vertex c
is in face 2367 and vertex d is in face 1357. In order to solve the ambiguity,
the cube is divided into (k + 1)-simplices in Figure 3 (b). For all k-simplices
incident to each (k + 1)-simplex we calculate the manifold vertices using the
linear interpolation described above. In this example, suppose the vertices
found are the red dots in Figure 3 (c), which are in the 2-simplices 027, 047
and 057. This will also recalculate the vertices a — d and show they are in
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the 2-simplices 046, 026, 237 and 157, respectively. Those 2-simplices are in
shades of grey in Figure 3 (c).

After all k-simplices are analyzed, we pick a manifold vertex in a k-face;
for example, vertex a. The algorithm then identifies which manifold vertex
found in the previous step connects with vertex a, and connects them. This
is done by checking incidence relations between the k-simplices and (k + 1)-
simplices. Then in the same manner it identifies and connects a third manifold
vertex that connects to the second one and so on, until it finds one that is in
a k-face of the cube. In our example, the algorithm identified that vertex a
is in the 2-simplex 046, which is incident to the 3-simplex 0467. The second
manifold vertex that a is connected to is the one in the same 3-simplex, which
is the red vertex in the 2-simplex 047. This 2-simplex is also incident to the
3-simplex 0457, and thus this second vertex is connected to the red vertex in
the 2-simplex 057. Finally, this vertex is connected to the blue vertex d. The
result of this process is illustrated in Figure Figure 3 (d).

Once the algorithm identifies a second vertex in a 2-face (in our example,
two blue vertices), it connects them with a single manifold edge (denoted by a
blue dashed line in Figure Figure 3 (e) between vertices a and d), stores it, and
pick a new manifold vertex in a k-face to start again. Lastly, once all manifold
vertices in k-faces are exhausted, the algorithm only keeps the vertices and
the manifold edges stored; all internal vertices and connections are discarded.
The end result can be seen in Figure 3 (e).

Fig. 2 Disambiguation for a 2-face using the CFK triangulation

3.1.2 Combinatorial Skeleton

Here we summarize the main definitions and ideas for the construction of
the Combinatorial Skeleton, which is a structure used to compute higher-
dimensional faces of the approximation MA. Further details can be found in
[12].
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(a) (b)

(c) (d)

(e)

Fig. 3 Disambiguation process in a 3-face using the CFK triangulation. (a) Manifold ver-
tices computed on the 2-faces. (b) 3-face divided into 3-simplices. (c) Internal manifold
vertices found on the shaded faces of the 3-simplices. (d) Internal manifold vertices con-
nected along the 3-simplices. (e) Final manifold edges created and stored in MH.

Definition 10 (Face labeling) We represent the faces In−1
i and In−1

n+i of the n-

dimensional hypercube In by the integers i and n+ i, that is, we label ℓ(In−1
i ) = i

and ℓ(In−1
n+i ) = n+ i.

The faces of dimensions lower than n − 1 are labeled accordingly as ℓ(In−2
i,j ) =

{i, j}, ℓ(In−3
i,j,k ) = {i, j, k}, etc. The pattern continues until the edges I1 of In.
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Due to the construction of the r-faces and the properties of hypercubes,
one can prove the following [12]:

• Each (n− k)-cell C inMH is indeed a cell as defined in Definition 9;
• We can represent the incidence relations of C using the labels ofH by labeling
each r-face of C with the labels of the corresponding (r + 1)-face of H.
These facts are used to build the combinatorial skeleton. Let Lr be the set

of labels of the r-faces of C, for r = 0, . . . , n − 2, and set L =
⋃n−2

r=0 Lr. We
also define V as the set of manifold vertices ofMH.

The combinatorial skeleton is built as follows: The vertices and edges of
MH obtained from Section 3.1.1 form a graph G, with possibly more than one
connected component. For each component G′ of G, we apply the following
algorithm:

function CombinatorialSkeleton(n, V , C, H, L)
for all vertices v ∈ V of G′ on a k-face f of H do

add v to C
ℓ(v)← ℓ(e)
add ℓ(v) to L0

end for
for r ← 2 to n− 2 do

for all (r + 1)-faces fH of H do
if ∃ℓ(x) ∈ Lr−1 such that ℓ(fH) ⊂ ℓ(x) then

create a new r-face fC
add fC to C
ℓ(fC)← ℓ(fH)
add ℓ(fC) to Lr

for all (r − 1)-faces f ′C of C do
if ℓ(fC) ⊂ ℓ(f ′C) then

Add f ′C as a face of fC in C
end if

end for
end if

end for
end for
return C

end function

3.2 Consistency

This section addresses the consistency of the manifold approximation MA

generated by the GCMH algorithm, as described below.

Definition 11 (Consistency) Let H1 and H2 be two adjacent hypercubes of the
domain grid that share a common (n − 1)-face f and let Mf = MH1

∩ MH2
. We

say that Mf is consistent if MH1
∩ f = MH2

∩ f . In this case we also say that each
cell of Mf is consistent.
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In other words, the approximation is consistent if it generates the same
vertices, edges, and higher-dimensional cells on shared (n−1)-faces of adjacent
hypercubes. In order for the algorithm to be correct, it is sufficient that the
approximation is consistent for all pairs of adjacent hypercubes in the domain
grid.

Since the construction of the combinatorial skeleton is the same as in [12],
the proofs of the consistency results can mostly be adapted from there with
minor changes. The only proof which needs a more significant modification
is vertex consistency because the vertex generation uses a different process.
Thus, for higher-dimensional consistency, we will only state those results and
refer to [12] for details of their proofs.

Lemma 1 (Vertex consistency) The vertices generated by the GCMH algorithm on
MH1

∩ f and MH2
∩ f are the same.

Proof Since the vertices of the (n− 1)-face f are common to H1 and H2, the values
of the function F at the vertices of f are the same on H1 and H2, that is, when
f is viewed as a face of H1 and as a face of H2. Moreover, the consistency of the
CFK triangulation ensures that the simplices which MH1

∩ f and MH2
∩ f are

decomposed in having the same vertices. Therefore the vertices of Mf , which are
obtained by linear interpolation on the values of F at the vertices of the simplices in
f , are the same on MH1

and MH2
. □

Lemma 2 (Edge consistency) The edges generated by the GCMH algorithm on
MH1

∩ f and MH2
∩ f are the same.

Lemma 3 (Higher dimensional consistency) The k-cells generated by the GCMH
algorithm on MH1

∩ f and MH2
∩ f are the same for 2 ≤ r ≤ n− 2.

The lemmas above prove the following theorem:

Theorem 3.1 (GCMH algorithm consistency) The set of cells Mf = MH1
∩MH2

generated by the GCMH algorithm is consistent for any pair H1 and H2 of adjacent
hypercubes of the domain grid.

3.3 Combinatorial methods for grid generation

In order to represent hypercubes and their vertices and generate grid ele-
ments, we use combinatorial techniques based on the enumeration of discrete
Cartesian products. Those methods are presented in [12] with almost no
modifications; we, therefore, refer to [12] for details on these combinatorial
methods.
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4 Comparison to Combinatorial Marching
Simplex

In order to study the performance of the GCMH algorithm, we implemented
the Combinatorial Marching Simplex (CMS) method, also described in [12].
This method is a triangulation method that also uses a combinatorial struc-
ture to compute an approximation MA of a manifold implicitly defined by
M = F−1(0), with F : Rn → Rk. This is the main reason for choosing CMS
for a performance comparison, since the main advantage of GCMH over the
CMH algorithm in [12] is the ability to compute manifolds of co-dimension
higher than 1, and thus the comparison with CMH would not be very mean-
ingful. Furthermore, since CMS also uses a combinatorial structure similar to
GCMH, we were able to compare the performance of our method with a similar
algorithm.

The CMS algorithm is broadly described as follows:

1. Subdivide a regular and finite grid of hypercubes of a compact subspace of
Rn into simplices using the CFK triangulation. The resulting subdivision
is the domain grid.

2. For each simplex S of each hypercube H in the domain do:
(a) Compute the vertices of MS = S ∩ MA that are on the edges of S.

This is done with linear interpolation of the vertices of each face of the
simplex, similar to the computation of vertices in the GCMH algorithm
(Section 3.1.1).

(b) Define the edges ofMS that are on the 2-faces of S. Contrary to GCMH
there is an unique way to this.

(c) Build the Combinatorial Skeleton to get the k-faces of MS for k > 2.
The details of this step are analogous to GCMH.

It is worth noting that it is expected that CMS will require more memory
and processing time in comparison to GCMH. This is because CMS breaks
each hypercube into n-simplices, analyzes each k-face of every n-simplex, then
stores the data from every manifold vertex found in an n-simplex in order to
build the approximation MA. The CFK triangulation generates n! simplices
for every n-dimensional hypercube and then each

(
n
k

)
k-face of every simplex

needs to be analyzed; hence, the CMS algorithm will need to analyze
(
n
k

)
n! k-

simplices for every hypercube. On the other hand, GMHC only uses the data
from the vertices found in the k-simplices in the k-faces of each hypercube.
Since there are 2n−k

(
n
k

)
k-faces in a hypercube and each k-face is decomposed

into k! k-simplices, this means there are 2n−k
(
n
k

)
k! k-simplices for GCMH to

analyze for every hypercube. This leads to CMS having a substantial increase
not only in the number of simplex faces to search for manifold vertices, but
also in the processing time of the edges and higher-dimensional cells of MA

in comparison to GCMH, as the number of vertices will also increase. This
difference is illustrated in Figure 4 (it is worth noting that we necessarily must
have n ≥ k + 1). In all cases, we can expect that GCMH will need to process
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substantially less k-simplices than CMS. This point will be made clearer in
Section 6.

Fig. 4 Estimates on number of k-simplices analyzed by CMS and GCMH per hypercube.

5 The Generalized Combinatorial Continuation
Hypercube extension

In a similar way to [12], here we also propose an extension to the GCMH algo-
rithm called the Generalized Combinatorial Continuation Hypercube (GCCH).
The aim is to improve the time efficiency of the GCMH algorithm by checking
for vertices only in the hypercubes adjacent to the ones that are transversal to
the manifold and therefore have a chance to be transversal themselves. This
extension to a continuation method was mainly based on the continuation
method in the work of Allgower and Georg [43].

5.1 Starting Point

Given a user-input starting point x0, we first find a starting hypercube that
contains it. Since the hypercubes are defined by intervals along each dimension,
the starting hypercube is found by comparing the coordinates of x0 with those
intervals.

5.2 List of Hypercubes

After finding the initial hypercube H0 containing the initial point x0, we put
all of its adjacent hypercubes into a list Ltbp of hypercubes to be processed,
and we process H0 using the GCMH algorithm. We then create a list Lp of
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already processed hypercubes, and add H0 to it. After that, the algorithm
proceeds as follows:

While Ltbp is not empty do:

1. Remove an hypercube Hi from Ltbp.
2. Find all hypercubes adjacent to Hi that are not in Lp and are transverse

toM; add them to Ltbp.
3. Process Hi like in the GCMH algorithm.
4. Add Hi to Lp.

When M has more than one connected component, some components
might not be computed by the steps above. In order to reach those compo-
nents, the user can execute the algorithm again with another starting point
on a different connected component.

5.3 Estimate on complexity

Tha main difference between GCMH and GCCH is their strategy for traversing
the hypercube grid. The GCMH algorithm traverses the entire grid sequen-
tially; therefore, supposing the the domain is divided in m segments for every
dimension, the GCMH algorithm is expected to have O(mn) complexity.

On the other hand, the GCCH algorithm restricts the analysis to hyper-
cubes adjacent to the ones already verified to be transversal to M, and thus
the ones most likely to have manifold vertices. Since the list of hypercubes grow
alongM and it has dimension n− k, it is expected that the GCCH algorithm
will have O(mn−k) complexity for smooth manifolds, which is a significant
gain over GCMH.

6 Results

This section describes some experimental results to show the empirical
effectiveness and efficiency of the GCMH algorithm and the GCCH extension.

We used a computer with a 2.3 GHz 8-Core Intel Core i9 Processor and
64 GB 2667 MHz DDR4 memory, and the software Matlab 2021b for all the
computations.

In order to show the efficiency of the GCMH and GCCH we ran an experi-
ment based on the complex cosine function:M = F−1(0), where F : C2 → C1

is given by F (z, w) = z−cos(w). For the purpose of our algorithm, F is treated
as a function from R4 to R2; this was done by separating the real and imagi-
nary parts and treating them as real numbers. We compared the results using
GCMH, GCCH, CMS, and Combinatorial Continuation Simplex (CCS). The
experiment shows that (see discussion in Section 6.1):

• The processing time of GCMH is significantly lower than the processing time
of CMS. The same applies to GCCH when compared to CCS.

• The continuation method significantly decreases the processing time of
GCCH and CCS.
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div CMS GCMH CCS GCCH

5 3.83 2.16 0.69 0.54

10 55.54 34.20 2.25 1.54

20 2048.63 589.38 8.34 5.54

40 12362.45 7927.68 38.30 22.35

80 236.79 87.22

160 2837.64 396.12

320 41355.25 1912.98

Table 1 Processing time, in seconds, of CMS, GCMH, CCS, GCCH to approximate the
complex cosine function z = cos(w) for each number div of divisions per dimension.

div CCS GCCH

5 1162 148

10 4378 612

20 17258 2112

40 68354 8336

Table 2 Output size (number of (n− 1)-cells) of the approximation of z = cos(w) using
CCS and GCCH.

• Although the output size of GCCH is smaller than the output size of CCS,
the output approximation is smoother when using GCCH.

A second experiment was made to test the efficiency of GCMH and GCCH
in higher dimensions. For that purpose we used the 3-torus (or 3D torus)
embedded in R6, given by M = S1 × S1 × S1. More specifically, F (x) = 0
where F : R6 → R3 is given by

F (x1, x2, x3, x4, x5, x6) =



x21 + x22 − 1

4
x23 + x24 − 1
x25 + x26 − 4


 .

6.1 Comparing CMS, GCMH, CCS and GCCH

In order to show the advantages of the GCMH algorithm over the CMS and the
advantages of the continuation method for both GCCH and CCS, we measured
the processing time needed to approximate the complex cosine function. For
each run the number of hypercubes of the domain grid is set by a number div
of divisions per dimension, that is, the total number of hypercubes is div4.

The results can be seen on Table 1 and Figure 5. As expected, the con-
tinuation method significantly improves both algorithms. Also, the processing
time using the GCMH algorithm is significantly lower than the CMS.

We also measured the output size, as the number of (n−1)-cells, of GCCH
and CCS. Note that the continuation method does not change the output of
the approximation when compared to GCMH and CMS. The results can be
seen on Table 2. As expected, the output of GCCH is smaller.
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Fig. 5 Processing time, in logarithmic , of CMS, GCMH, CCS and GCMH to approximate
the complex cosine function z = cos(w) as a function of the number div of subdivisions.

div GCMH GCCH div GCMH GCCH

2 93.61 93.07 5 22686.60 2946.30

3 1055.67 734.47 6 67749.18 7126.96

4 5910.59 846.46 7 172271.80 13545.33

Table 3 Processing time, in seconds, of GCMH and GCCH to approximate the 3-torus
for each number div of divisions per dimension.

Figures 6(a) and 6(b) show projections of the approximation of the complex
cosine function using GCCH and CCS, respectively. Figures 6(c) and 6(d)
show a zoom in of a portion of both projections. Although the output using
GCCH is less dense, it is smoother. We indicate the smoothness of the results
in Figures 6(c) and 6(d) by a series of red segments. The consecutive red
segments represent “curve breaks”; a higher density of curve breaks indicates
better smoothness.

6.2 Results in higher dimension

In order to show the effectiveness of GCMH and GCCH in higher dimensions,
we measured the processing time needed to approximate the 3-torus embedded
in R6 (see Figure 8). For each computation, the number of hypercubes of the
domain grid was set by a number div of divisions per dimension, that is, the
total number of hypercubes is given by div6. The results can be seen on Table 3
and Figure 7.

7 Conclusion

This paper proposed a generalization of the Combinatorial Marching Hyper-
cubes algorithm [12] that extends the renowned Marching Cubes algorithm to
approximate manifolds of any dimension. In [12] the manifold was required to
have co-dimension 1 while in the generalization proposed in this paper this
requirement was eliminated.
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(a)

(b)

(c)

(d)

Fig. 6 Projections of the complex cosine function z = cos(w) using (a) GCCH with div = 40
and (b) CCS with div = 20. In (c) and (d) we show a zoom in of a portion of the manifolds
in (a) and (b), respectively.
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Fig. 7 Processing time of GCMH and GCMH to approximate the 3-torus, in logarithmic
scale.

The proposed implementation did not rely on lookup tables or other expen-
sive memory structure that grows exponentially with dimension. Our algorithm
used combinatorial and topological techniques to build the manifold approx-
imation by a cell complex. Each hypercube can be processed independently,
making the proposed algorithm highly parallelizable.

We showed the effectiveness of our method in higher dimensions by
approximating classical manifolds from the literature and we also showed
that the algorithm outperformed a similar algorithm based on a simplicial
decomposition of the domain grid.

As future work, we plan a parallel implementation, as the algorithm is
highly parallelizable. We also plan to study the accuracy of the manifolds
created, and apply it to practical problems.
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(a)

(b)

(c)

Fig. 8 Projections of the approximations computed by the GCCH algorithm of the 3-torus
M = S1 × S1 × S1 embedded in R6. (a) A projection of M with div = 8. (b) A projection
of M∩ {x6 = 0} with div = 8. (c) A projection of M∩ R6

+ with div = 5.
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CHAPTER

5
CONCLUSION

In this work we showed works on three different aspects of differential equations:

• The first two works are concerned with the robustness of asymptotical stability and
exponential dichotomy of differential equations in Banach spaces. Those works extend
previous results in finite dimensions to infinite dimensions. We show that if the equation is
in the class of Generalized Almost Periodic (G A P) functions (which include important
functions, such as periodic ones), then asymptotic stability and exponential dichotomy are
robust under integrally small perturbations. The amplitude of those oscillations need not
be small, as long as they are fast enough.

We also show examples in infinite dimensions, including one that shows that asymptotic
stability is not robust; we are able to stabilize a system with a forcing term that oscillates
fast enough. This may have applications on control systems.

• The second object of interest is a rigorous computational method using wavelets. This
method combines the radii polynomial approach for validated numerics with the Haar
wavelet method for differential equations. This results in a rigorous computational method
which can deal with less smooth problems, which is a limitation of previous methods. We
believe further work using other types of nonlinearities, higher-order derivatives and other
wavelet types will mitigate its weaknesses.

• The last topic is the Generalized Combinatorial Marching Hypercube (GCMH) algorithm.
This is an algorithm which builds upon the classic Marching Cubes algorithm for generating
isosurfaces. Our method is able to work in any dimension for both the domain and co-
domain, and uses a combinatorial technique to avoid using the large lookup tables that
other Marching Hypercubes methods would require. It also performs considerably faster
than simplex-based algorithms, especially as dimensions increase.
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We also study an extension called the Generalized Combinatorial Continuation Hypercube
(GCCH) which combines the method with a continuation algorithm. This extension can be
faster but has some drawbacks.

This method can still be improved via adaptative algorithms and parallelization. We are
also working on combining the GCMH and GCCH algorithms with validated numerical
methods, in order to both implement adaptive refinement and obtaining an efficient rigorous
algorithm for multi-parameter differential equations and dynamical systems.
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