
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Detecting outliers and annotating their types with indexing
structures

Guilherme Domingos Faria Silva
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Guilherme Domingos Faria Silva

Detecting outliers and annotating their types with indexing
structures

Dissertation submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Master of Science. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Robson Leonardo Ferreira Cordeiro

USP – São Carlos
April 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

S586d
Silva, Guilherme Domingos Faria
 Detecting outliers and annotating their types
with indexing structures / Guilherme Domingos Faria
 Silva; orientador Robson Leonardo Ferreira
Cordeiro. -- São Carlos, 2022.
 99 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2022.

 1. Detecção de anomalias. 2. Anotação de
anomalias. 3. Estruturas de Indexação. 4. Slim-tree.
I. Cordeiro, Robson Leonardo Ferreira, orient. II.
Título.

Guilherme Domingos Faria Silva

Detectando anomalias e anotando seus tipos com
estruturas de indexação

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências - Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Robson Leonardo
Ferreira Cordeiro

USP – São Carlos
Abril de 2022

Dedicated to my family, for their constant support, availability and for instilling me to push

forward with their hard work. To my friends, who never failed to enlighten me with good mood

or remind me of what life really is about. To those who see anomalies as opportunities to raise

the ordinary.

ACKNOWLEDGEMENTS

Thanks to my advisor, Robson Cordeiro, for his trust, constant availability, helpful
criticism and his extensive guidance during the development of this MSc work.

Thanks to Leman Akoglu, for the important discussions, new ideas and for opening my
mind to many possibilities to make this work reach new heights. Her advice and knowledge
transfer played a large role in this project.

I am also very thankful to all members of GBDI. Their support and hints helped this
work progress faster and prevented many setbacks.

Finally, I would like to thank the financial support from the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001; the Fundação de
Amparo à Pesquisa do Estado de São Paulo - Brasil (FAPESP) – 2021/05623-2, 2020/07200-9,
2018/05714- 5 and 2016/17078-0, and; the Conselho Nacional de Desenvolvimento Científico e
Tecnológico – Brasil (CNPq).

“We are as much automata as minds.”

(Blaise Pascal)

ABSTRACT

SILVA, G. D. F. Detecting outliers and annotating their types with indexing structures.
2022. 99 p. Dissertação (Mestrado em Ciências - Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2022.

The constant increase in the amount of data available on the internet is accentuated with the
popularization of technologies such as 5G and Internet of Things. In datasets of large volume
there is usually a strong presence of outliers that are not detected or that are just discarded. The
outlier detection literature demonstrates that the investigation of these singular instances can
provide new insights into the behavior of systems and people. This inspection allows diseases to
be identified early, financial market trends to be better interpreted and cybersecurity attacks to
be prevented. However, outlier detection techniques carry limitations, being: (1) dependent on
the availability of the instances features, which can generate privacy issues; (2) poorly scalable
and; (3) capable of providing only a binary separation that allows detecting outliers, but not
classifying them so that they are better understood. Starting from an unlabeled dataset for which
only the distances between the instances are available, how to detect outliers and categorize
them by type efficiently? In the vast literature on outlier detection, there is no work, as far as we
know, that deals with the problem of annotating outliers. Outliers can be classified into three
large groups: (a) global outliers, instances that are severely different from others in the dataset,
such as errors during insertion of information into a database; (b) local outliers, instances that,
despite being similar to the others in the dataset as a whole, have minimal variations that make
them different in a smaller scope, for instance, a football player who makes many mistakes
while playing in a strong team and; (c) collective outliers, small groups of instances that are,
simultaneously, quite different from the rest, such as a denial-of-service cyberattack, with few
machines having similar harmful behavior. In this project we introduce C-ALLOUT: a new
method for detecting outliers that is also able to categorize them by type. C-ALLOUT is able
to maintain itself in terms of equality, or even superiority, when compared to state-of-the-art
algorithms, still contributing with the annotation of outliers, a task that competitors are not able
to perform. C-ALLOUT is based on Slim-tree, an indexing structure that makes it scalable, with
O(n logn) complexity of time and space. Our proposed method deals with both scenarios: having
the features available or limited to distances only. Finally, C-ALLOUT works without depending
on any interaction with the user, being parameter-free by default, the ideal for unsupervised tasks
like outlier analysis.

Keywords: outlier detection, outlier annotation, anomalies, indexing structures, Slim-tree.

RESUMO

SILVA, G. D. F. Detectando anomalias e anotando seus tipos com estruturas de indexação.
2022. 99 p. Dissertação (Mestrado em Ciências - Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2022.

O aumento na quantidade de dados disponíveis na internet se acentua com a popularização
de tecnologias como 5G e Internet das Coisas. Em grandes bases de dados costuma haver
forte presença de anomalias não detectadas ou apenas descartadas. A literatura de detecção
de anomalias demonstra que a investigação dessas instâncias singulares pode fornecer novas
perspectivas sobre os comportamentos de sistemas e pessoas. Essa inspeção permite que doenças
sejam identificadas precocemente, tendências do mercado financeiro sejam melhor interpretadas e
que ataques de segurança digital sejam impedidos. Contudo, as técnicas de detecção de anomalias
carregam limitações, sendo: (1) dependentes da disponibilidade dos atributos das instâncias, o
que pode gerar problemas de privacidade; (2) pouco escaláveis e; (3) capazes de prover apenas
uma separação binária que permite detectar anomalias, mas não classificá-las para que sejam
melhor entendidas. Partindo de um conjunto de dados não rotulados para o qual apenas distâncias
entre as instâncias estão disponíveis, como detectar anomalias e categorizá-las por tipo de forma
eficiente? Na vasta literatura de detecção de anomalias não há trabalhos, até onde sabemos, que
lidam com o problema de anotação de anomalias. Anomalias podem ser classificadas em três
grandes grupos: (a) anomalias globais, instâncias severamente diferentes das outras, como erros
de inserção de informações em uma base de dados; (b) anomalias locais, instâncias parecidas
com algumas outras da base de dados como um todo, mas com variações mínimas que as tornam
diferentes em um escopo menor, como um jogador de futebol que acerta poucas jogadas jogando
em um time forte e; (c) anomalias coletivas, pequenos grupos de instâncias que são, em conjunto,
bastante diferentes das restantes, como um ataque cibernético por negação de serviço, com
poucas máquinas tendo um comportamento nocivo semelhante. Neste projeto é apresentado o
C-ALLOUT: um novo método para detecção e anotação de anomalias. C-ALLOUT é capaz de se
manter em nível de igualdade, ou até superioridade, quando comparado aos algoritmos do estado
da arte, ainda contribuindo com a anotação das anomalias, uma tarefa que os competidores não
são capazes de realizar. C-ALLOUT toma proveito da Slim-tree, uma estrutura de indexação que
o torna escalável, atingindo complexidade de tempo e espaço O(n logn). O método funciona
tendo acesso aos atributos das instâncias ou limitado a distâncias. Por fim, C-ALLOUT não
depende de nenhuma interação com o usuário, sendo livre de parâmetros por padrão, o ideal para
tarefas não-supervisionadas como análise de anomalias.

Palavras-chave: detecção de anomalias, anotação de anomalias, casos de exceção, estruturas de
indexação, Slim-tree.

LIST OF FIGURES

Figure 1 – (a) Example toy dataset with inliers (circles) and 3 types of outliers (stars): global

(red), local (green), and collective (black); (b) Existing methods provide an overall

outlier ranking regardless of type. C-ALLOUT also provides individual outlierness

rankings by outlier type. 30
Figure 2 – The three outlier types in our scope. 35
Figure 3 – Outlier detection using neighborhood-based approaches. Outlier in red and

inliers in black. 37
Figure 4 – Outlier detection using a clustering-based approach. Outlier as red circle,

inliers as black circles and black stars as cluster centroids. α and β are clusters. 39
Figure 5 – Outlier detection using an angle-based approach. Point of interest in red and

others in black. 41
Figure 6 – Slim-tree T for the toy data in Figure 1(a) of Chapter 1. 44
Figure 7 – MST algorithm revised for the Slim-tree. Adapted from Traina et al. (2002). 48
Figure 8 – Slim-down algorithm visualized. Adapted from Traina et al. (2002). 49
Figure 9 – Angle-based outlier detection using the Slim-tree representative objects.

Adapted from Junior and Cordeiro (2019a). 63
Figure 10 – The local ranking of outliers Rl visualized. 74
Figure 11 – Wall-clock time (avg. 10 runs) of C-ALLOUT as the size of random samples

taken from Shuttle2 increases. 87
Figure 12 – C-ALLOUT at work to detect a forest fire in Greece. Numbers are outlier

positions in rankings. 88
Figure 13 – C-ALLOUT at work to route attention to touristic places in Tokyo Imperial

Palace. Numbers are outlier positions in rankings. 89

LIST OF ALGORITHMS

Algorithm 1 – Slim-down algorithm. Adapted from Traina et al. (2002). 49

Algorithm 2 – iTree(X ,e, l). Adapted from Liu, Ting and Zhou (2008). 54

Algorithm 3 – iForest(X , t,ψ). Adapted from Liu, Ting and Zhou (2008). 54

Algorithm 4 – PathLength(x,T,e). Adapted from Liu, Ting and Zhou (2008). 55

Algorithm 5 – si f Tree(X ,e, l) . 56

Algorithm 6 – Brute-force kNNOutlier . 57

Algorithm 7 – Local Outlier Factor . 59

Algorithm 8 – Spectral Ranking for Anomalies. Adapted from Nian et al. (2016). . . . 64

Algorithm 9 – C-ALLOUT . 69

Algorithm 10 – Synthetic Dataset Generator . 83

Algorithm 11 – Realistic Dataset Generator . 84

LIST OF TABLES

Table 1 – Summary on the presented features in C-ALLOUT and its most related works. 65
Table 2 – Testbed 1: Summary of the 20 benchmark datasets used for overall outlier

detection. 78
Table 3 – Hyperparameters and configurations for the baseline methods 79
Table 4 – Hyperparameters for baseline RAE. 79
Table 5 – AUCROC performance on Testbed 1 . 80
Table 6 – AUCPR performance on Testbed 1 . 81
Table 7 – Paired one-sided significance test (Wilcoxon): C-ALLOUT vs. baseline with

respect to overall performance on Testbed 1. p-value in bold if significant at 0.1. 81
Table 8 – Testbeds 2 and 3: Summary of the 8 base datasets used in for outlier annotation. 81
Table 9 – Parameters used in the synthetic data generator; each outlier type corresponds

to a third of the total number. 82
Table 10 – AUCROC performance on Testbed 2 with annotated outliers. Note that in

Sx_A datasets with all three outlier types, type-specific rankings are evaluated
against outliers of the corresponding type only. 85

Table 11 – AUCPR performance on Testbed 2 with annotated outliers. Note that in Sx_-
A datasets with all three outlier types, type-specific rankings are evaluated
against outliers of the corresponding type only. 85

Table 12 – AUCROC performance on Testbed 3 with annotated outliers. Note that in
variant _A datasets with all three outlier types, type-specific rankings are
evaluated against outliers of the corresponding type only. 86

Table 13 – AUCPR performance on Testbed 3 with annotated outliers. Note that in variant
_A datasets with all three outlier types, type-specific rankings are evaluated
against outliers of the corresponding type only. 86

LIST OF ABBREVIATIONS AND ACRONYMS

ABOD Angle-based Outlier Detection

ABOF Angle-Based Outlier Factor

AP Average Precision

AUCPR Area Under the Curve of Precision-Recall

AUCROC Area Under the Curve of Receiver Operating Characteristic

CBLOF Cluster-Based Local Outlier Factor

DB-Out Distance-Based Outlier Detection

DPMM Dirichlet Process Multinomial Mixture

GLAD Global and Local Anomaly Detection

GSDPMM Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture

kNN k-Nearest Neighbors

LOCI Local Correlation Integral

LOF Local Outlier Factor

LR Learning Rate

LRD Local Reachability Distance

MAM Metric Access Methods

MDEF Multi-granularity Deviation Factor

MLP Multilayer Perceptron

MST Minimal Spanning Tree

OCSVM One-Class Support Vector Machine

RAE Robust Deep Autoencoder

RBF Radial Basis Function

RD Reachability Distance

RPCA Robust Principal Component Anaylsis

SIF Similarity Isolation Forest

SRA Spectral Ranking of Anomalies

SVM Support Vector Machine

CONTENTS

1 INTRODUCTION . 27
1.1 Context . 27
1.2 Problem and Motivation . 28
1.3 Objective . 30
1.4 Contributions . 30
1.5 Final Considerations . 31

2 PRELIMINARIES AND THEORETICAL FOUNDATION 33
2.1 Outlier Detection . 33
2.1.1 Neighborhood-based Outlier Detection 36
2.1.2 Clustering-based Outlier Detection . 39
2.1.3 Angle-based Outlier Detection . 40
2.2 Outlier Annotation . 42
2.3 MAM and Tree-based Indexing Structures 43
2.4 The Slim-tree in Detail . 43
2.4.1 Defining Slim-tree’s Composing Elements 43
2.4.2 A Functional Overview of Slim-tree 45
2.4.2.1 Slim-tree’s Building Methods . 46
2.4.2.2 Slim-tree’s Optimization Methods . 47
2.5 Final Considerations . 50

3 RELATED WORK . 51
3.1 Outlier Detection Techniques . 51
3.1.1 Clustering . 52
3.1.2 Neural Networks . 53
3.1.3 Isolation Forest . 53
3.1.4 Similarity Isolation Forest . 55
3.1.5 k-Nearest Neighbors . 56
3.1.6 Local Outlier Factor . 57
3.1.7 Ensembles . 58
3.1.8 One-Class Support Vector Machines 59
3.1.9 Robust Deep Autoencoders . 61
3.1.10 Indexing Data Structures . 62

3.2 Outlier Annotation Techniques . 63
3.3 Final Considerations . 64

4 C-ALLOUT: CATCHING AND CALLING OUTLIERS BY TYPE . . 67
4.1 Problem Statement . 67
4.2 C-AllOut in a Nutshell . 68
4.2.1 Building and Refining the Tree . 68
4.2.2 Overall Ranking of Outliers . 69
4.2.3 Refinement of Rankings . 70
4.2.4 Outlier-type Focused Ranking of Objects 71
4.2.4.1 Global Ranking of Outliers . 71
4.2.4.2 Collective Ranking of Outliers . 72
4.2.4.3 Local Ranking of Outliers . 73
4.2.5 Time and Space Complexity . 75
4.3 Final Considerations . 75

5 RESULTS AND DISCUSSIONS . 77
5.1 Overall Outlier Detection Performance 77
5.1.1 Experiment Setup . 77
5.1.1.1 Testbed 1 . 77
5.1.1.2 Competitors . 78
5.1.1.3 Model Configurations . 79
5.1.1.4 Measures . 79
5.1.2 Results . 80
5.2 Outlier Annotation Performance . 80
5.2.1 Experiment Setup . 80
5.2.1.1 Testbed 2 . 81
5.2.1.2 Synthetic Data Generation . 82
5.2.1.3 Testbed 3 . 82
5.2.1.4 Realistic Data Generation . 83
5.2.1.5 Competitor . 84
5.2.1.6 Measures . 85
5.2.2 Results . 85
5.3 Scalability Performance . 87
5.4 C-AllOut at Work: Attention Routing 87
5.5 Final Considerations . 88

6 CONCLUSION . 91
6.1 Limitations and Difficulties . 92
6.2 Future Work . 93

BIBLIOGRAPHY . 95

27

CHAPTER

1
INTRODUCTION

The amount of data available for data mining is increasing by the day. Along with this
data availability, anomalous instances are becoming ubiquitous. The outlier analysis can help in
many ways to develop useful tools or to reach new insights and conclusions about the data being
processed. The sections in this chapter give an introductory view over our work. Our motivation
and contributions are discussed and our hypothesis is presented as well as our objective. We
remark that, in this work, instances, observations, points and objects are used interchangeably.

1.1 Context

Outlier detection has a number of usages across different fields of study. Many outlier
detection techniques have been already proposed and they take advantage of several different
aspects of machine learning and data mining. In the literature, one can find various detection
techniques broadly classified as those based on distances, density, statistical modeling, clustering,
angles, subspaces, etc. (HAN; KAMBER; PEI, 2012). However, a key gap can be found in the
literature: methods that are able to not only detect outliers but also to annotate their type. Three
main types of outliers can be identified in data mining: global, local and collective as it can be
seen in Figure 1(a).

One can argue that there are already many existing methods (BANDARAGODA et al.,
2018; BREUNIG et al., 2000; KRIEGEL; SCHUBERT; ZIMEK, 2008; MOONESINGHE;
TAN, 2006; PAPADIMITRIOU et al., 2003) capable of detecting all three types of outliers.
Still, they are unable to annotate them explicitly. Usually, in currently available outlier detection
algorithms, no labels are returned. These algorithms output either binary labels (outlier or inlier),
or outlierness scores for each point. Therefore, it is impossible to interpret the outlier type using
the output of such methods.

In fact, to the best of our knowledge, there is no outlier mining algorithm able to annotate

28 Chapter 1. Introduction

outliers of all three types. In this research, we found that Spectral Ranking of Anomalies (SRA)
(NIAN et al., 2016) is the algorithm which comes the closest to being able to annotate outliers.
Nevertheless, it only provides a single ranking along with a binary flag that differentiates outliers
in two types: scattered and clustered. The solution, although useful, cannot satisfactorily address
the task (see related work in Chapter 3), and performs poorly in experiments (Chapter 5).

Being key indicators of faults, malicious activities, errors and overall points of interest,
outliers not only identified, but even annotated, can provide beneficial information to analysts.
Sensemaking, triage, troubleshooting can all be made better or even available using this extracted
knowledge. Global outliers, being the most extreme cases, are the simplest form of outlier. The
global name comes from the fact that it is far away from every other point in space. Local outliers
are distinguished from most points, yet they bear many resemblances to a set of the points.
Collective outliers can be understood as a group of similar global outliers: many overall singular
observations which form a cluster by having similarities to some others singular observations.
Collective outliers cannot be close to an inlier cluster since that would make them an appendix
to the inlier cluster.

The different types of outliers can be observed under the same context: a guitar in an
orchestra of trumpets is a global outlier, an instrument that is very different from every other;
an off-tone trumpet is a local outlier as even though it shares many features with the rest of
the orchestra, it is still producing unique sounds, a particular feature; finally, a small set of
harmonicas constitute a collective outlier, as they are very different from the orchestra, but still
similar to each other, generating a small detachment from the overall band.

While outlier detection has been applied over many different contexts, as to understand
the behavior of customers of a company that access its platform (ZHANG; BENYOUCEF, 2016),
the different medical observations made over a patient (CRIMINISI, 2016), or even variations in
currency prices (ALESSANDRETTI et al., 2018). Real-world applications for outlier annotation,
although not yet present in the literature, can be readily found. Global outliers can be a human
mistake while inserting values of a transaction in the system, where $1000.00 would be informed
as $100000. Local outliers can be a toxic bottle of beverage among many good ones, where the
difference would be only the amount of a certain ingredient. Collective outliers may be small
groups of cancerous cells having much in common with each other while being very different
from the majority of healthy cells.

1.2 Problem and Motivation

Going beyond outlier detection, outlier annotation by type is a more general but also
strictly harder problem. Being a sort of classification task, it is still harder than most categorization
problems as the task remains an unsupervised one. Outlier detection tasks, in general, do not
provide labels. Doing a post-hoc analysis by annotating outliers after detection may seem a good

1.2. Problem and Motivation 29

way to go. However, multiple issues arise from that scenario as it would require knowledge
about the dataset clusters and similar points in the dataset. Having this knowledge, one could
define local outliers as being in the boundaries of the clusters and collective outliers as micro-
clusters having points with high outlierness scores. Unfortunately, clustering is not an easy
task. Most clustering or distance-based algorithms in the literature require hard to define user
hyperparameters, like the number of clusters k in k-Means (STEINLEY, 2006), number of
neighbors k in k-Nearest Neighbors (kNN) (RAMASWAMY; RASTOGI; SHIM, 2000) and
Local Outlier Factor (LOF) (BREUNIG et al., 2000), or even the minimum density MinPts in
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (ESTER et al., 1996).
Data sometimes have clusters with different shapes, sizes, densities, distributions and, sometimes,
do not even have clusters. All of these variables are probably why there is not post-hoc attempts
on outlier annotation in the literature.

It is important to remark that, to the best of our knowledge, the problem of outlier
annotation by type has not been tackled yet in the literature. Importantly, the method proposed in
this work is self-contained. This means that we do not do any post-hoc analysis on any outlier
detection algorithm output. Instead, we provide a new algorithm, C-ALLOUT, that can detect
and annotate outliers at the same time.

To visualize how C-ALLOUT works in comparison with common outlier detection
algorithms, we show in Figure 1(a) the plot of a two-dimensional dataset having outliers that is
used as input for general outlier detection algorithms. In the figure, we can see the red global
outliers very far from the blue inliers, with the green local anomalies lying closer to the blue
cluster and, finally, a small group of black collective outliers. Meanwhile, Figure 1(b) shows
first the output of traditional methods for outlier detection, having no separation between outlier
types, just a single outlier ranking. C-ALLOUT, on the other hand, returns four rankings: one
overall (gray) that refers to the outlier detection aspect of our algorithm, and three type-specific
rankings, where outliers are identified by their type, using the same colors described earlier. Note
that for type-specific rankings, say the global ranking, the goal is to put global anomalies in the
top and let the other anomalies remain together with inliers, at the bottom positions.

Using the Slim-tree (TRAINA et al., 2000), an efficient data indexing structure, we
introduce novel measures that can effectively attribute outlierness scores for each point by type,
be it a global, local or collective outlier. The Slim-tree supports our method with log-linear
time complexity and a construction phase that needs to query only O(n logn) pairwise distances
between the points being inserted in the structure.

As a desirable side-effect, our solution can deal with specific, and sometimes troublesome,
settings for which only pairwise distances are available. In these cases, the points may not fit in a
feature space, but their distances may still be calculated. Domains with complex objects, such as
galaxies, graphs, fingerprints or videos, may have distances between objects that can be more
convenient to provide for domain experts than measuring or attributing features to them.

30 Chapter 1. Introduction

(a) Example input. (b) Example output.
Figure 1 – (a) Example toy dataset with inliers (circles) and 3 types of outliers (stars): global (red),

local (green), and collective (black); (b) Existing methods provide an overall outlier ranking
regardless of type. C-ALLOUT also provides individual outlierness rankings by outlier type.

In other scenarios, for privacy reasons, as in medicine or finance, providing only pairwise
distances can be safer than revealing the sensitive feature values. Note that, while addressing
these scenarios, our work is not limited by them and can handle traditional settings where features
are accessible. Distance functions that can find distance measures in feature spaces are plentiful.

Conclusively, we hypothesize that with the support of an indexing tree data structure, it
is possible to detect outliers and annotate their types with sub-quadratic scalability,

without losing in accuracy to state-of-the-art outlier detection algorithms.

1.3 Objective

The main objective of this MSc work is to employ tree-based data indexing structures
to detect and annotate outliers in multidimensional sets of data. Additionally, we work on the
treatment of the issues of efficiency and scalability, still incipient in the literature for outlier
detection. To make this viable, we propose a new algorithm based on the usage of metric access
methods and a state-of-the-art indexing structure. Nonetheless, we work on establishing new
grounds for outlier type annotation while maintaining the progress already solidified by the
literature’s best outlier detection algorithms.

1.4 Contributions

Following the hypothesis previously mentioned, we propose a novel algorithm capable of
addressing both outlier detection and outlier annotation tasks. In accordance to our experiments,
our main contributions are summarized as:

• New outlier detection algorithm: we introduce C-ALLOUT, a novel algorithm that can

1.5. Final Considerations 31

effectively detect and annotate outliers by type. To our knowledge, there is no algorithm in
the literature able to perform both tasks.

• Outlier annotation: C-ALLOUT provides four individual rankings (as in Figure 1(b)): one
overall ranking and three type-specific rankings for local, global and collective outlierness
scores. All rankings are built in an efficient manner by leveraging C-ALLOUT’s indexing
data structure.

• Effectiveness along with new benchmark datasets: C-ALLOUT is compared against
state-of-the-art detectors on traditional benchmark datasets. Our method holds on par
or significantly better performance in our experiments. Considering carefully designed
testbeds having annotated outliers, we show the effectiveness of C-ALLOUT at outlier
annotation, a task no competitor can really address. SRA (NIAN et al., 2016), having very
limited capabilities on outlier annotation is surpassed by C-ALLOUT.

• Miscellaneous desirable properties: Several other interesting properties are maintained
by C-ALLOUT. Firstly, it is a virtually parameter-free algorithm requiring no user inputs.
It can deal with settings in which only pairwise similarities are accessible (without a
feature space). Lastly, it is scalable, bearing log-linear time and space complexity for
model construction and scoring.

1.5 Final Considerations
This chapter provided context and brief information about the state of the art in detecting

outliers. The problem and motivation were also presented, followed by the objective and contribu-
tions. With this introductory view settled, we organize this monograph in six chapters. Chapter 2
presents a basis for the main detection techniques for outliers, as well as the conceptualization
of the techniques that were used in this research. In Chapter 3, related works are discussed and
compared with our solution. Then, the methodology of this work is addressed by Chapter 4.
Chapter 5 reports the obtained results along with their discussion. Lastly, in Chapter 6 we share
our final thoughts and discuss the main contributions of this MSc work.

For reproducibility purposes and to encourage future work on both outlier detection and
annotation, we make available the code for C-ALLOUT, all datasets used in experiments, data
generators and also the data and satellite imagery used in our case study. Everything can be
found at <https://bit.ly/3JezWe4>.

https://bit.ly/3JezWe4

33

CHAPTER

2
PRELIMINARIES AND THEORETICAL

FOUNDATION

The numerous available outlier detection techniques are often bounded by resource
limitations that renders them not applicable to large databases. This is specially true for distance-
based outlier detection, which in many iterations include clustering techniques as well. To detect
outliers using distances, methods need to compare each point with the whole set of points or
with large subsets of the dataset. Eventually, many detection algorithms can be close to, or even
above, quadratic in time performance, as it is shown in this chapter. Due to this context of finite
resources, new outlier detection techniques are being proposed with the intent of being scalable
(LIU; TING; ZHOU, 2008; JUNIOR; CORDEIRO, 2019b; CABRAL; CORDEIRO, 2020). In
distance-based outlier annotation, as is our case, multiple distance computations are needed to
call out the outliers by their type. Having eyes on the presented issue as well, our proposal is
grounded on the usage of an indexing structure that makes it more scalable and faster overall.

This chapter sets up the preliminaries of our work. Definitions are provided for all the
foundations of our solution: outliers and their types, common outlier detection approaches, metric
spaces and the Slim-tree indexing structure. Slim-tree working aspect is discussed to cover its
construction and internal schemes. Finally, a problem definition and an overview on the outlier
annotation task is conveyed.

2.1 Outlier Detection

In the large and interdisciplinary literature encompassing outlier detection some groups
can be outlined according to the context for which the methods were devised. Originally an
statistical task and later a mostly computed-based one, outlier mining has already set paths
on many different fields. We can see the existence of outliers being investigated in finance
(TRIPATHI et al., 2018), social networks (BINDU; THILAGAM; AHUJA, 2017), information

34 Chapter 2. Preliminaries and Theoretical Foundation

security (TRIPATHI et al., 2018), cancer diagnosis (DURAJ; CHOMATEK, 2017) and others.
Being a general task with many applications, incompatibilities arise between the proposed
techniques, which can be very field specific. For each area of interest, an anomaly can take
deviations in definition. The outlier definition dilemma is also noticeable in the different detection
approaches.

Although it is hard to formally define what is an outlier, all definitions have a common
ground. One of the first endeavors on defining outliers was made by Hawkins (1980): "An outlier
is an observation, which deviates so much from the other observations as to arouse suspicions
that it was generated by a different mechanism". Another interesting attempt was arranged
by Barnett and Lewis (1974): "An outlier is an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data". A more recent bid done by
Chandola, Banerjee and Kumar (2009) was also not able to be objective: "Those measurements
that significantly deviate from the normal pattern of sensed data".

To try to avoid the lack of objectivity and dissonance across outlier definitions, a three-
level index was proposed by Aggarwal (2015) to classify observations into three groups. De-
nominated as outlierness score, the index sets boundaries to help discretize data: (i) inliers:
observations that describe normal, or expected, behavior for the domain in which they are found;
(ii) noise: observations that define the semantic limit between an expected observation for the
domain and an unexpected observation; (iii) outliers: observations that are considerably different
than expected for the domain in which they are found. The subjectivity of these definitions can
be understood as inherent to the nature of outliers. It is always going to be necessary to set a
limit of inconsistency for an object to be stated as an outlier inside its group.

In certain scenarios, the domain expert can categorize a noise as an anomaly, in others,
as an observation close enough to the standards. In this sense, the outlier definition will always
need input from the user or domain expert and there is no one-above-all definition for outliers.
In time, it is possible to say that outlier analysis always follows a common objective direction:
every outlier data must be able to provide additional information about the behavior of a system,
which the normal data is not able to express.

Going further deep on the outlier definition scrutiny, some types of outliers are often
differentiated during analysis (AJITHA; CHANDRA, 2015). Three main types of outliers can be
cited: global, local and collective. Informal definitions for the three types are given below, and
they are also illustrated in Figure 2:

• Global outlier: when an observation deviates from the rest of the dataset as a whole. An
example is a denial of service cyberattack, when attackers send a huge amount of hits to a
server in a short time. The number of accesses to the server during the day of the attack
will be considerably greater than the number of legitimate accesses to the server during an
average day.

2.1. Outlier Detection 35

• Local outlier: when an observation deviates only from other observations close to it,
but not necessarily from the rest of the dataset as a whole. Observations on broadband
consumption can be considered local outliers when the user downloads a file from the
internet. In this example, the file download temporarily increases bandwidth consumption,
however, this behavior is always repeated when the user downloads files. Therefore, if
only the bandwidth consumption during downloads is considered, all local outliers become
inliers.

• Collective outlier: when a group of observations deviates from the dataset as a whole.
The maximum size of a group to be considered a collective outlier and not an inlier cluster
is difficult to define and it depends on the analysis of a domain specialist. In general,
collective outliers cannot be large enough to establish a new expected pattern. For example,
players who use the same malicious software to cheat in a game form a collective outlier
group. They exhibit similar behavior with each other, but not with the significantly larger
portion of normal players.

(a) Global outlier. (b) Collective outlier.

(c) Local outlier.

Figure 2 – The three outlier types in our scope.

36 Chapter 2. Preliminaries and Theoretical Foundation

The detection of outliers must be applied to a set of instances, commonly referred to as a
dataset. Each instance may contain one or more dimensions, being called multidimensional. In
multidimensional datasets, the input instances have a uniform representation, all being expressed
with the same dimensionality. However, it is also possible for the data to be “dimensionless”,
when each instance can be represented by a different number of dimensions. Some numerical
representations of graphs are dimensionless. For example, if each vertex in a graph is an instance
and each one of its edges are attributes, we reach a dimensionless instance since the number of
edges around vertexes can vary a lot.

If the outlier analysis is done by calculating the distance between instances, some
common distance functions can be used, such as, Euclidean, Mahalanobis (LEYS et al., 2018) or
Minkowski (FIGUEROA-GARCÍA; MELGAREJO-REY; HERNÁNDEZ-PÉREZ, 2018). Both
multidimensional and dimensionless data can be analyzed in metric spaces because they can
be represented using a distance function that calculates their dissimilarity following the metric
space properties. Since the base data structure of C-ALLOUT, Slim-tree (TRAINA et al., 2000),
is based on metric distances, it provides C-ALLOUT with the ability to find outliers in both
multidimensional and dimensionless realms. Further details on Section 2.3 and Section 2.4.

Among the different methods for detecting outliers, the most common in the literature are
those based on distance. Their popularity is due, for the most part, to the ease of interpretation
of the results and instinctive understanding of the techniques. It is usually more intuitive to
understand an outlier as an object distant from the others than as an object that escapes the
distribution of the dataset. Another factor that contributes to the popularity of distance-based
techniques is the existence of algorithms that are used for other purposes that can be easily
adapted to identify outliers, for instance, k-Nearest Neighbors (kNN) (MALINI; PUSHPA,
2017).

The next subsections discuss the main subdivisions of unsupervised outlier detection
methods. Less common groupings of methods and the supervised ones are not reviewed here.
Some of these approaches include, linear models (SHAWE-TAYLOR; ŽLIČAR, 2015), al-
gorithms based on information theory (WU; WANG, 2011) and genetic algorithms (SHI; LI,
2013).

2.1.1 Neighborhood-based Outlier Detection

Being the most common type of outlier detection algorithm, the neighborhood-based
approach uses the closest objects to an object of interest to reach an outlierness score. A
neighborhood must be defined using a distance, or similarity, function capable of summarizing
the differences in the features of the objects. Usually, if objects are multidimensional, we can
say that the distance function is going to indicate that the neighbors of an object are the nearest
objects in a feature space. Sometimes, feature values are not available, and sometimes, the data
is not multidimensional. For these special cases, the distance function must find a way to tell

2.1. Outlier Detection 37

how close one object is to another (i.e. how close a word is to another word). The Hamming
distance is an example of a distance function that does not need a feature space to work.

The two most common ways to define a neighborhood is by either considering as
neighbors the k nearest objects or considering as neighbors the objects that are closer than a
defined threshold ε . These approaches are also known as nearest neighbor queries and range
queries, respectively. Even if both approaches are similar, they can lead to very different results.
Take Figure 3a for instance, even if looking at the same data, a k-nearest neighbor approach is
always going to find neighbors, no matter the k value (how far they are). On the other hand, as
we can see in Figure 3b, a range approach is not guaranteed to find neighbors if ε is too small.

(a) k-Nearest Neighbors with k = 2. (b) ε-neighborhood.

Figure 3 – Outlier detection using neighborhood-based approaches. Outlier in red and inliers in black.

Nearest neighbors approaches need less information about the dataset and they will find
neighbors no matter the density or dimensionality of the data. Range-based approaches need
initial information on the data to work properly. If the data is too sparse in the space, or has a
very high dimensionality, parameter ε needs to compensate for that. This is an important factor
because neighborhood-based outlier detection is understood as useful because it does not require
prior knowledge on data distribution.

The connection of these two main approaches for neighborhood-based detection can
be understood when defining that, for a given instance, the distance to its kth nearest neighbor
is equivalent to the radius ε of a hypersphere centered at this given instance (CHANDOLA;
BANERJEE; KUMAR, 2009).

The first algorithm to introduce the range-based approach to outlier detection was
Distance-Based Outlier Detection (DB-Out) (KNORR; NG, 1998). In the first iteration of the
proposed algorithm, a radius ε is provided for it to count how many neighbors exist around
each instance within the maximum distance ε . Another parameter provided by the user to the
algorithm is the fraction p. If the instance studied has less than a p fraction of the whole dataset
inside its ε radius, it is flagged as outlier.

38 Chapter 2. Preliminaries and Theoretical Foundation

Later on, another version of DB-Out was proposed where p is removed and instead of
flagging outliers, the algorithm scores outliers. The fraction of instances inside a ε radius around
a studied instance is the outlierness score of such studied instance. Other methods tried to take
further the idea of DB-Out by being able to deal with categorical data (LI; LEE; LANG, 2007)
and by using the connectivity property instead of a distance function (WEI et al., 2003).

KNNOut (RAMASWAMY; RASTOGI; SHIM, 2000) was the first to algorithm to use
the nearest neighbor concept in the outlier mining field. Being an adaptation of the popular
classification algorithm kNN (PATRICK; III, 1970), KNNOut works by using the distance to
the kth neighbor as outlierness score for the object of interest. In its naive implementation, it has
time complexity of O(n2), however, many indexing structures have being employed to reduce its
average-case time complexity to O(n logn).

Local Outlier Factor (LOF) took one step further from KNNOut seeing its inability
to deal with datasets having varying densities. This is done through a concept called average
reachability distance, in which LOF defines how sparse, or how far from a cluster, a point of
interest and its k neighbors are. Points with high LOF, or high outlierness score, are the ones that
have the largest average reachability distance in comparison with their k neighbors. More details
on KNNOut and LOF can be found in Chapter 3.

Another important neighborhood-based algorithm for outlier detection is Local Corre-
lation Integral (LOCI) (PAPADIMITRIOU et al., 2003). Since finding a good value for k is
not a trivial task, LOCI introduces the concept of Multi-granularity Deviation Factor (MDEF)
and goes in a different direction. It works in a similar fashion to LOF, using ε-neighborhoods
instead of k-nearest neighbors. Anyhow, LOCI has a problematic time complexity and hence, an
approximation version was also proposed in the same article.

Many approximation versions have also been proposed to kNN for dealing with outliers,
for instance, HilOut (ANGIULLI; PIZZUTI, 2002). It approximates the nearest neighbor concept
by using the Hilbert curve to reduce the dimensionality of the data to one. Since the Hilbert
curve returns the points ordered by proximity in this single-dimensional representation, HilOut
can use it to find the k-nearest neighbors of a studied point.

Overall, even if being able to have a good performance in quality measures, neighborhood-
based outlier detectors have a hard time with their time complexities. It is usual to find time
complexities of O(n2) for these algorithms when no indexing structure is incorporated. If defining
a distance function to support these methods is not considered a hard task, the definition of k

by the user is very tricky by itself. Tuning hyperparameters for neighborhood-based anomaly
detectors is problematic considering that, after all, neighborhood-based anomaly detection is
usually an unsupervised task.

2.1. Outlier Detection 39

2.1.2 Clustering-based Outlier Detection

Algorithms based on clustering are intuitive solutions for outlier detection, taking into
account that their objective is also to group instances by similarity (JAIN; DUBES, 1988).
Clustering-based outlier detection also bears many intersections with neighborhood-based ap-
proaches. The clustering process begins with the input dataset being placed over a multidimen-
sional space. Each new entry is placed under a group, normally called a cluster. A cluster contains
instances similar to each other. The number of clusters is usually defined in advance with a
user-defined hyperparameter or using some heuristic. The first objects received as input form the
first clusters. Clusters can be resized and redefined according to the degree of similarity across
all objects of each cluster internally and also externally.

Clustering algorithms can provide the outliers of a dataset as a by-product of their ex-
ecution. In some cases, the algorithms fail to insert some objects into a cluster, due to their
dissimilarity with the features that standardize the existing clusters. These objects can be clas-
sified as outliers, as it can be seen in Figure 4. In general, clustering-based outlier detection is
performed by following one of these strategies: (CHANDOLA; BANERJEE; KUMAR, 2009)

Figure 4 – Outlier detection using a clustering-based approach. Outlier as red circle, inliers as black circles
and black stars as cluster centroids. α and β are clusters.

• Consider that inliers always belong to a cluster, while outliers do not belong to any. In this
approach, a maximum distance for the size of a cluster is defined, such as the radius of a
circle. Therefore, when an instance exceeds the radius of all clusters, it is not inserted into
any cluster and is considered an outlier. An example of an algorithm based on this premise
is DBSCAN (ESTER et al., 1996).

• Consider that inliers are located close to the centroids of the clusters, while outliers are far
from the centroids. This notion is used in outlier detection based on KMeans (STEINLEY,
2006). In this case, a threshold distance to the centroid of the cluster is defined so that if
an instance goes beyond the threshold, it is considered an outlier, even if it belongs to a
cluster.

40 Chapter 2. Preliminaries and Theoretical Foundation

• Consider that inliers are in large or dense clusters, while outliers are in small or sparse
clusters. The FindCBLOF (HE; XU; DENG, 2003) algorithm, for example, defines the
metric Cluster-Based Local Outlier Factor (CBLOF) that can represent the size of the
cluster in which the instance is located, and also the distance from the instance to the
centroid of the cluster.

Not needing labels to establish a model, outlier detection by clustering is an unsupervised
technique. Because of this, the algorithm has a natural advantage for the detection of outliers,
especially when the database analyzed is dynamic, with a data flow that constantly updates the
dataset with new observations. In addition, clustering algorithms can also be adapted to work
with mixed data types, as long as it is possible to establish a degree of similarity between the
data, using distance functions, for example.

As clustering methods seek to find patterns in data by means of grouping, their original
proposal was not to detect anomalous observations that do not fit any foreseen pattern. Thus,
for these algorithms to bring results that indicate outliers, they need to be adapted for this
practice. In some cases, however, the clustering algorithms assume that all observations must be
part of some clustering, such as KMeans. This setting makes it difficult, although still possible
(BARADARAN; REDDY; THAKUR, 2017), to classify an observation as outlier, since all
observations are forced to match some pattern. Anyway, setting thresholds to draw a line between
inlier and outlier observations is also not a trivial task and usually requires prior knowledge on
the data.

2.1.3 Angle-based Outlier Detection

In the outlier analysis based on angles, comparisons between objects are performed until
all objects in a selected scope are compared. However, the comparisons do not consider the object
features themselves, but rather the relationships between the objects at a higher level. These
relationships, which cannot be seen as intrinsic to the data, are the angles formed by triplets of
objects. To study these angles, the observations need to be placed on a vector space, where each
of one of them is represented by a point whose coordinates are the observation feature values.
The analysis seeks to observe the variation in the angle between two points using a third point as
a reference, called pivot. The proposal for this detection model is based on a principle that states
that if a point is surrounded by others, that is, it is part of a group, the angles formed between
that point and the other points have a high variation in degrees.

Inlier observation forms large and small angles with other observations (Figure 5a).
Outlier observations have little variation in their angles because they are far away from the other
instances (Figure 5b). Hence, the smaller the variation in the possible angles around a point, the
greater the chances of the point being an outlier. The angular variation can be defined as the
outlierness score for that point. A threshold can be established based on the angular variation

2.1. Outlier Detection 41

to define which points should be considered normal and which ones should be considered
anomalous. Otherwise, a ranking can be provided with the outlierness scores sorted. Kriegel,
Schubert and Zimek (2008) established an outlierness score called Angle-Based Outlier Factor
(ABOF) which weights the angle variation using the related distances.

(a) Inlier observation having large variations
across angles α,β and γ .

(b) Outlier observation having small varia-
tions across angles α,β and γ .

Figure 5 – Outlier detection using an angle-based approach. Point of interest in red and others in black.

Angle-based Outlier Detection (ABOD) (KRIEGEL; SCHUBERT; ZIMEK, 2008) aims
to produce better results for high-dimensional datasets, as the variation in angles is not much
affected by the increase in the number of dimensions of the data, differently from the distance-
based approach. Like this, the curse of dimensionality (HAMMER, 1962) can be avoided.
However, as angles between two points depend on a reference point, three points are needed
for the analysis of each possible angle. Therefore, the time complexity of the algorithm is
cubic, O(n3), since the algorithm needs to cover all possible triplets of points. To mitigate this
issue, the authors proposed approximations for ABOD, including FastABOD which calculates
angles only considering the k-nearest neighbors of the point of interest. There is also a lower
bound approximation for ABOF, LB-ABOF, that makes ABOD have quadratic time complexity,
overall keeping the same accuracy. FastVOA (PHAM; PAGH, 2012) even provides a near-linear
approximation for ABOD, but other issues with the technique remain hard to tackle.

Angle-based outlier detection has some limitations that prevents it from being generalist.
With collective outliers, that is, small groups of objects that stand out from the rest, the analysis
is impaired because the outlying instances have a high angular variation with their neighbors.
Another factor to be taken into account is that datasets can take the form of “lines” of points.
The points at the limits of the lines are going to have small angle deviance but they are still in
the lines. In this way, they will, but should not, get flagged as outliers. Consequently, even if the
principle of angle-based detection algorithms works better with high-dimensional data, there are
generality concerns.

42 Chapter 2. Preliminaries and Theoretical Foundation

2.2 Outlier Annotation

In the broad literature on outlier detection, even if many applications for outlier analysis
have been considered (AGGARWAL; YU, 2001), there is little to no discussion on outlier type
differentiation. Even if outliers have already been set asunder by type, what has mostly been
discussed is that superior outlier detection algorithms should be able to detect all types of outliers.
This objective comes from the idea that outliers are false or noise data that should be removed
from the dataset in order to keep it clean and, therefore, useful. However, outlier analysis can
benefit from studying outliers and even more by categorizing them. The examples provided
along with the outlier definitions in Section 2.1 give a short perspective on the gains of outlier
annotation.

Between the techniques developed to have the ability to detect multiple types of outliers,
we can cite the recent work Global and Local Anomaly Detection (GLAD). GLAD is able to
detect both local and global outliers at the same time, but cannot annotate the outlier types.
Differently from C-ALLOUT, GLAD is a not a distance-based method, but a deep learning model
that uses autoencoders on image data, specifically. For local outlier detection, the proposal is
that when autoencoders reconstruct the original local outlier image fed to them, in the decoding
phase, they will return an image with a high error rate. That is because the network is not trained
enough to work with outlying examples. On the other hand, global outlier detection happens
in the encoding phase of the autoencoders. Deep learning autoencoders compress the input
and reduce its dimensionality when encoding. Global outliers can be detected because in their
reduced version the differences between them and inlier data is substantial. Even though the
detection step for global and local outliers is independent, it is not clear if the algorithm is
returning only global outliers in the global outlier detection step. The same goes for the local
outlier detection step.

Another example on the robust outlier detectors, able to find multiple types of outliers at
once, is Spectral Ranking for Anomalies (SRA) (NIAN et al., 2016). This one is even able to
marginally separate outliers by type. Using the principal components obtained from the similarity
matrix of the dataset, the method is able to find inlier clusters in vector space and to calculate
an outlierness score for every point based on the distance to the center of the inlier clusters.
At the end, the algorithm also provides a flag which determines if the outlier type found is
scattered (local and global) or clustered (collective). However, this flag is binary, so all outliers
in the dataset are said to be of the same type. Since SRA can provide limited results on outlier
categorization, we selected it as a competitor and it is further discussed in Section 3.2.

Even if some older algorithms, like LOF (BREUNIG et al., 2000) and its variations, were
theoretically able to detect multiple types of outliers, the objective was robustness and not outlier
annotation. This overview granted context for the literature gap that we explore in this work.

2.3. MAM and Tree-based Indexing Structures 43

2.3 MAM and Tree-based Indexing Structures
Metric Access Methods (MAM) support the execution of queries and comparisons for

data collections represented in a metric space (TRAINA et al., 2002). A metric space is defined
by a domain X and a distance function d : X ×X −→ R, following the properties:

• Non-negativity: for all x,y ∈ X , 0 ≤ d(x,y)< ∞

• Identity: for all x,y ∈ X , d(x,y) = 0 ⇐⇒ x = y

• Symmetry: for all x,y ∈ X , d(x,y) = d(y,x)

• Triangle inequality: for all x,y,z ∈ X , d(x,y)≤ d(x,z)+d(z,y)

Many distance functions follow the stated properties. To name a few, we have: Lp-norms,
like the Euclidean distance, the Manhattan distance and the Hamming distance. All of them
being commonly used in machine learning algorithms.

MAM structures are based solely on distances as the metric properties do not allow the
ordering of points. Slim-tree (TRAINA et al., 2000), along with other state-of-the-art MAMs, is
developed in the form of a tree. Slim-tree in particular can hold several levels until it indexes
the entire dataset. The tree levels are composed of nodes that can be either leaf nodes or index
nodes. Intermediate level nodes are index nodes and the ones belonging to the last level of the
tree are the leaf nodes. While leaf nodes hold subsets of actual data points, index nodes hold
representative points (indexes) of its children nodes. Representative points are only copies of the
real data that lies in the leaf nodes.

To determine the representative points and also which points are going to be inserted
on each node, the metric distance is fundamental. Metric distances, unlike many other distance
measures, have the triangle inequality property that allow the Slim-tree to take shortcuts while
computing distances and organize itself much faster. Selection of representative points and node
creation are detailed further in the next sections of this chapter.

2.4 The Slim-tree in Detail
Slim-trees (TRAINA et al., 2000) are complex data structures and have many components,

algorithms and heuristics for its inner schemes. The following subsections yield definitions and
details for its pieces and expose the concepts behind the tree construction.

2.4.1 Defining Slim-tree’s Composing Elements

Slim-tree is an indexing tree-based data structure. It relies on distance (or similarity)
measures d(xi,x j) between pairs of objects xi,x j ∈ X, and can be built in O(n logn) time using

44 Chapter 2. Preliminaries and Theoretical Foundation

any metric distance function in a feature space. Distances can be either given to the tree without
using features (precalculated), or computed directly from the features while building the tree.

A Slim-tree T organizes its nodes hierarchically into levels. As per Definitions 2.4.1,
2.4.2, 2.4.3 and 2.4.4, T has always only one root node ρ . Root node ρ holds at most c ∈ Z+

points from dataset X, into a set R, where c is the maximum node capacity. Each object x(η)
e ∈ R

is said to be the representative of a child node η of the root; thus, root node ρ has |R| children
nodes. Node η also follows the same structure: it holds at most c objects from X into a set N.
It is always true that R∩N = {x(η)

e }, which means that x(η)
e is the one and only object stored

redundantly both in η and in its direct ancestor αη = ρ .

The representative object x(η)
e is always nearby the most centralized object in N. The

algorithms that build Slim-tree always try to have as representative the most centralized point
in a node. Additionally, it is correct to say that αη = ρ is the direct ancestor of node η . The
tree hierarchy continues recursively with node η having |N| child nodes, each also having their
own children nodes, until reaching a leaf node τ . Leaf τ has no children nodes and do not hold
representative points, but the actual data points from X. Note that every point xi ∈ X is stored
into the set L(i) of one and only one leaf node τ(i).

Definition 2.4.1 (Root). The root node ρ of a Slim-tree T built for a dataset X = {x1,x2, . . . ,xn}
is the single node existing at the highest level of T . The set of (root) points stored in ρ is denoted

by R, where R ⊆ X.

Definition 2.4.2 (Leaf). The leaf node of a point of interest xi ∈ X = {x1,x2, . . .xn} in a Slim-tree

T is the node τ(i) existing at the lowest level of T such that xi ∈ L(i), where L(i) ⊆ X is the set

of points stored in τ(i).

(a) Root node. (b) Leaf nodes.

Figure 6 – Slim-tree T for the toy data in Figure 1(a) of Chapter 1.

Definition 2.4.3 (Direct Ancestor). The direct ancestor node αη of a node η ̸= ρ in a Slim-tree

T is the node that directly points to η from the previous level of T .

2.4. The Slim-tree in Detail 45

Definition 2.4.4 (Representative). The representative object x(η)
e ∈ X = {x1,x2, . . .xn} of a node

η ̸= ρ in a Slim-tree T built for a dataset X is the only object both in η and in αη .

Note that, for Definitions 2.4.3 and 2.4.4, since ρ is at the top level of Slim-tree T , it
has neither ancestor node nor representative object defined for it. Hence, for the Definitions to be
valid, η ̸= ρ . Moreover, ρ is also an index node, as every other node in T that is not a leaf node
τ(i).

Figure 6 shows a Slim-tree T built for the toy dataset in Figure 1(a) of Chapter 1. T has
three levels: root node level (the only index node level), leaf node level and object level. Each of
the 3 root objects in (a) represents one leaf node in (b). One of them is leaf τ(i) with radius a(τ

(i)).
Object xi is in τ(i); its nearest neighbor is x(i)nn. The representative of τ(i) is x(τ

(i))
e , a real object

copied to the root node to be a root object. x(i)f is the closest representative object to x(τ
(i))

e , called
foreign representative (later defined in Definition 4.2.2).

2.4.2 A Functional Overview of Slim-tree

Slim-tree, as many other metric trees, is built in a bottom-up manner. New levels are
created just when the leaf nodes τ(i) are full and have to be split in two. The Slim-tree T indexes
data in abstract inner data structures called pages. The pages are based on hard disk drive pages
as Slim-tree was originally proposed to work with large datasets that would only fit in secondary
memory. However, pages work more as a concept, since Slim-tree can work using only the main
memory.

Pages can have any size, provided that its bytes can be sequentially stored in the main
memory of the machine. All of the pages of a Slim-tree T must have the same maximum size
but they can vary in size, according to their current number of entries. Pages are divided in
entries, each entry in a page has one, and only one, object related to it. Every leaf and index
nodes, including the root, has an associated page and they use their pages to store their content
that can be divided in header space and data space. In the following, we present an overview on
the information hold by a page (TRAINA et al., 2000):

1. Index node:

a) Header:

i. Type: the type of the node. In this case, it will always be an index node;

ii. Occupation: the number of entries stored in this node.

b) For each entry:

i. PageID: the identifier for the page storing the root of the subtree contained by
this entry;

46 Chapter 2. Preliminaries and Theoretical Foundation

ii. Distance: the distance between the object related to this entry and the represen-
tative object for the index node;

iii. Number of entries: the number of objects in the subtree contained by this entry;

iv. Radius: the radius of the subtree contained by this entry;

v. Offset: the byte offset to the position of the serialized object related to this entry
in the page.

c) Object: an array of bytes that stores the serialized version of the object and can be
used to rebuild the object to its original form. It is always uniquely related to an entry.

2. Leaf node:

a) Header:

i. Type: the type of the node. In this case, it will always be a leaf node;

ii. Occupation: the number of entries stored in this node.

b) For each entry:

i. Distance: the distance between the object related to this entry and the represen-
tative object for the leaf node;

ii. Offset: the byte offset to the position of the serialized object related to this entry
in the page.

c) Object: an array of bytes that stores the serialized version of the object and can be
used to rebuild the object to its original form. It is always uniquely related to an entry.

The above information is used by the Slim-tree to locate any object, or any data related
to it, using recursive search algorithms, starting from the root node.

2.4.2.1 Slim-tree’s Building Methods

Slim-tree follows some heuristics while the tree is being built. These heuristics help the
tree to be balanced and with a good data distribution among the nodes. When an object needs to
be inserted into the tree, it searches for all nodes that can cover that object. This means that if
the radius of a node covers the space in which the object is located, it is a qualifying node. The
search starts from the root node and goes through every index node level until it reaches the leaf
node level. Since an index node radius covers all of its child nodes’ radii, if an index node radius
covers the object being inserted, one of its child nodes also does and the search goes on to the
level below. If, in the end, there are no qualifying leaf nodes, the object is assigned to the leaf
node whose representative is the closest to the object. When this happens, the radius of the node
increases to accommodate the inserted object.

In the case where there is more than one qualifying node, the ChooseMethod algorithm
is applied to select one qualifying node. This algorithm has four options for selecting the node,
or subtree, that will cover the object:

2.4. The Slim-tree in Detail 47

• biased: choose the first of the qualifying nodes;

• random: choose any of the qualifying nodes at random;

• mindist: choose the qualifying node which has its center, or representative object, closest
to the new object. This is the option used in C-ALLOUT since it provides more accurate
selection of nodes, even if a bit more expensive;

• minoccup: choose the qualifying node which has the current minimum occupancy.

When a full node is selected to be the node to insert the new object, the node has to be
split, by dividing all of its members in two different new nodes. The SplittingMethod algorithm
is used to split a node and it has three options for splitting:

• random: randomly select any two objects in the node to be the representatives (centers) of
the two new nodes. All of the remaining objects will be distributed between the two nodes.
Each object goes to the node for which it has the minimum distance to its center.

• minMax: all pairs of objects in the full node are considered potential representatives for
the two new nodes. The pair that minimizes the covering radius from the pair dual center
to the most distant of the remaining objects is chosen. This method has the best query
performance with a built tree, but it is also the slowest for building the tree, due to its
Θ(c3) complexity (TRAINA et al., 2000). It is the default splitting method for the M-tree
(CIACCIA; PATELLA; ZEZULA, 1997; CIACCIA et al., 1997), another metric tree in
which the Slim-tree is based upon.

• MST: a Minimal Spanning Tree (MST) (KRUSKAL, 1956) is built using all objects in the
node to be split. The MST’s nodes are the objects and the MST’s edges are the distances
calculated between the nodes. The longest edge from the MST is cut. The resulting two
connected components become the two new Slim-tree nodes. The representative of the
two new nodes is the object that minimizes the covering radius. Figure 7 illustrates the
MST method. This method was proposed along with the Slim-tree and can build the tree
at a much faster rate (O(c2 logc)), with minimal negative effect on query performance
(TRAINA et al., 2000). This is the option used in C-ALLOUT.

2.4.2.2 Slim-tree’s Optimization Methods

The insertion of new objects through the building methods is not perfect and can lead
to an unbalanced Slim-tree. One of the issues that can happen during object insertions is the
overlapping between two nodes. This happens when the radius of two given nodes in the same
level of the tree can reach the same object. In vector spaces, the overlap between two nodes
is the volume of their intersection. However, in metric spaces there is no definition of volume.

48 Chapter 2. Preliminaries and Theoretical Foundation

Figure 7 – MST algorithm revised for the Slim-tree. Adapted from Traina et al. (2002).

Therefore, Slim-tree’s authors proposed to calculate the overlap between two nodes as the amount
of objects covered by both region boundaries. This definition of node overlapping for metric trees
allows optimization techniques used in vector spaces to be applied on metric trees (TRAINA et

al., 2000).

In Slim-tree’s original proposal, when querying for any object, the quickest way to
perform the query would be to access the minimum number of disk pages necessary. This is
due to the fact that retrieving disk pages is expensive. After all, this notion also applies when
dealing only with main memory since accessing less nodes also means less distance calculations
to check where to go next. When there are nodes overlapping with each other and covering the
same space related to the queried object, all of the overlapping nodes need to be examined to
successfully locate the object. Consequently, the less amount of overlapping in a tree, the better.

To calculate the amount of overlapping in a tree, the FatFactor metric was developed:

FatFactor(T) =
IC −H ×N

N
× 1

(M−H)
.

Where T is a Slim-tree; H is the height of the tree; M ≥ 1 is the number of nodes in the tree; N

is the number of objects in the tree, and; IC is the total number of disk access needed to perform a
point query on all of the objects in the tree. A point query is a range query with radius zero, that
returns one, and only one, node from the level where the query is performed. The most optimized
Slim-tree allows that only one node for each tree level is returned to find any queried object. The
worst optimized Slim-tree requires that all nodes for every tree level are returned to find any
queried object. Encapsulating the formula, a lower FatFactor means a more optimized Slim-tree.

To minimize the FatFactor of a Slim-tree, the Slim-down algorithm was proposed.
Generally, it reduces the radius of the nodes by moving their most distant objects to other nodes
that can cover those objects. As it can be seen in Figure 8, when instance c is transferred from
node i to node j, the intersection region between the two nodes is reduced, thus minimizing IC
(node overlapping).

The slim-down procedure is overviewed in the self-explanatory Algorithm 1. The algo-
rithm can be applied in many situations at many stages of the tree construction, some of them

2.4. The Slim-tree in Detail 49

Figure 8 – Slim-down algorithm visualized. Adapted from Traina et al. (2002).

are:

• When the building phase of the tree is finished, across all leaf nodes;

• When the building phase of the tree is finished, across all index nodes, with needed
adaptations;

• When one of the direct descendants of a node splits, apply it to that node;

• When one object needs to be inserted into a node that is full, to relocate the farthest object
instead of splitting the node.

Algorithm 1: Slim-down algorithm. Adapted from Traina et al. (2002).
Input: T : the built metric tree to be optimized, h: level of the tree to be optimized
Output: T ′: an optimized metric tree

1 for each node i in the level h of the tree T do
2 Find the farthest object c from the representative b
3 Find the sibling node j of i that also covers object c
4 if node j exists and it is not full then
5 Remove object c from node i
6 Insert object c into node j
7 end
8 if node i is not empty then
9 Correct radius of node i

10 else
11 Delete node i
12 end
13 end
14 if any object moves from one node to another then
15 Restart from line 1
16 end

The distance calculation function is one of the main aspects of the Slim-tree and it can
be defined during its instantiation. The distance function must be metric and it must return a
numeric value that indicates the distance between two compared objects.

50 Chapter 2. Preliminaries and Theoretical Foundation

2.5 Final Considerations
This chapter discussed the outliers and outlier types, providing informal definitions for

both while also overviewing the literature which gave meaning and usage to outlier analysis.
The most popular outlier detectors were briefly presented while discussing how they participate
in the literature. By presenting three different outlier detection strategies in groups, the outlier
detection methods were contextualized so that we could also present the idea for the outlier
annotation problem and its formal definitions.

The metric space properties were introduced and through that we were able to define
some elements of Slim-tree. The inner workings of the tree structure were explained so that the
background for our proposed C-ALLOUT could be solidified. Some important insights on the
reasoning behind Slim-tree choices and also our choices for this work were given as a preliminary
step towards presenting C-ALLOUT and its related works.

In the next chapter, the related work is presented giving an overview of what has been
achieved on both outlier detection and annotation. We thoroughly review specific related works
as they are not only comparable to our proposal, but also selected as our competitors in our
experimental evaluation.

51

CHAPTER

3
RELATED WORK

There is a large literature behind outlier detection where multiple algorithms and method-
ologies are presented to solve numerous real-world problems (AGGARWAL, 2015). The detec-
tors use a vast range of different measures to find outliers. These measure are usually based on
analyzing distances, densities, angles, depths, subspaces, clusterings and statistical distributions
in the data (HAN; KAMBER; PEI, 2012).

It is important to remark that, our proposal is not only to detect, but also to annotate
outliers. The outliers annotations can separate outlier in three types, as discussed before: global,
local and collective. We can find in the literature different techniques that search for a specific
type of outlier. Anomaly points far from the majority of the data are looked for by most outlier
detectors (KNORR; NG, 1998; KRIEGEL; SCHUBERT; ZIMEK, 2008; RAMASWAMY;
RASTOGI; SHIM, 2000; SCHöLKOPF et al., 1999) and are known as global outliers. There are
also local outlier detectors, looking for those that deviate not from the majority of the data, but
from the majority of their neighborhood (BREUNIG et al., 2000; DANG et al., 2013; KRIEGEL
et al., 2009). Another category of outlier mining algorithms has those that hunt for collective
anomalies, the outlier-filled groups that are isolated from the large clusters of inliers (HAN;
KAMBER; PEI, 2012; NIAN et al., 2016).

Our proposed method C-ALLOUT fills the annotation gap in the literature. In the next
section we review important outlier detectors, delivering more details on the ones closely related
to our project (and present in our experiments): SIF, KNNOut, LOF, OCSVM and SRA.

3.1 Outlier Detection Techniques

In many occasions outlier detectors can find multiple types of outliers without separating
them. That is the case for kNN (RAMASWAMY; RASTOGI; SHIM, 2000) and Isolation Forest
(LIU; TING; ZHOU, 2008), both capable of attributing higher outlierness scores for local

52 Chapter 3. Related Work

outliers in comparison with inliers. kNN can also find collective outliers if the value provided
for parameter k is larger than the number of points in a collective outlier micro-cluster. LOF
(BREUNIG et al., 2000), even if proposed for local outlier detection, also assigns large scores
for global outliers. Because of this, all of these cited methods are present in our experiments
where we evaluate overall outlier detection capabilities. Likewise, the literature also provides
some methods developed to detect, but not annotate, all three outlier types (BANDARAGODA
et al., 2018; MOONESINGHE; TAN, 2006; PAPADIMITRIOU et al., 2003).

3.1.1 Clustering

Yin and Wang (2016) proposed the collapsed Gibbs Sampling algorithm for the Dirichlet
Process Multinomial Mixture (GSDPMM) clustering model taking the assumption from Dirichlet
Process Multinomial Mixture (DPMM) that there is an infinite amount of possible clusters but
only a finite amount is needed to describe a document. From this assumption, the model does not
need to have a exogenous parameter to determine the number of clusters needed to describe a
dataset or a document. Then, the number of clusters dynamically grows as more instances are
received as input.

The GSDPMM model basically can calculate the probability of a document (instance) to
choose an existing cluster or establish a new one, given the similarity of its terms with the ones
from other documents of the existing clusters. The model works to support two predefined rules
based on two objectives defined in Rosenberg and Hirschberg (2007):

• Rule 1: "Choose a cluster with more documents" (YIN; WANG, 2016), as the more
documents a cluster has, the more terms in common it will have with the document chosen.
This is in conformance with the completeness objective, "all members of a ground true
group are assigned to the same cluster" (ROSENBERG; HIRSCHBERG, 2007).

• Rule 2: "Choose a cluster whose documents share more words with the current document"
(YIN; WANG, 2016), as the clusters with more terms related to a document are more
likely to be chosen by the document for having more in common. This conforms with
the homogeneity objective, "each cluster contains only members of a single ground true
group" (ROSENBERG; HIRSCHBERG, 2007).

Initially, all the documents are assigned to the same cluster. In each iteration of GSDPMM,
every document from the corpus gets the chance to choose another cluster or to create a new one.
The model assumes that outlier documents are more likely to choose new clusters than existing
ones, as they do not share much terms with the existing clusters. Other documents will also likely
not choose to compose the outlier cluster, as they also do not share much terms with the outlier
cluster. Most empty clusters indicate outliers.

3.1. Outlier Detection Techniques 53

3.1.2 Neural Networks

Most neural networks are limited to working with numerical data with a predetermined
dimensionality. However, there are some networks that are able to extract numerical data from
image, graph or text data.

Observing the extractor potential in Convolutional Neural Networks (CNN), Gorokhov,
Petrovskiy and Mashechkin (2017) developed a detection method for outliers which is based on
the combination of convolutional filters at first with clustering of Radial Basis Function (RBF)
(PARK; SANDBERG, 1991) later. Using a CNN as a feature extractor, it is possible to later
group these features in a multidimensional space. The grouping is performed with the addition
of RBFs in the penultimate layer of the proposed neural network. Then, the last layer is able to
determine if the instance inserted in the network is part of any of the groups created by the RBFs.
If not, the instance is considered outlier.

3.1.3 Isolation Forest

Going on a different direction than most outlier detection algorithms, Isolation Forest,
also known as iForest (LIU; TING; ZHOU, 2008), is an algorithm that tries to detect outliers
using knowledge obtained by a group of tree structures, each one looking at different subsets of
data. The main concept behind iForest is that, in a feature space, if random cuts are done using a
single feature, the probability of outliers being isolated by a cut in space is higher than that of
inliers. This notion comes from the fact that outliers are already isolated in space, so a sequence
of random cuts will detach them from inlier clusters sooner.

To make random cuts happen, binary trees are used. Every node of a tree is split in
two subtrees using a randomly selected attribute from the data. By having the minimum and
maximum values for this attribute, it is possible to define a split value where all points in the
data can be separated in two groups, each one to be passed to each subtree. This is a summary
of what happens in Algorithm 2. Note that, eventually, every point is going to be isolated, but
outliers are isolated in a subtree earlier. That happens because outliers have very distinct feature
values. The other main concept to note about Algorithm 2 is that nodes of the tree are split only
until one of three criteria is reached:

• The node is in a tree level corresponding to tree height limit l;

• The number of points in the node is below 2;

• All points in the node are equal.

Tree height limit l is calculated by iForest using hyperparameter ψ , provided by the
user. ψ has a default value of 256 recommended by the authors. ψ is used as in Line 2 from
Algorithm 3, the pseudocode describing the higher level of iForest. The empirical outcome noted

54 Chapter 3. Related Work

Algorithm 2: iTree(X ,e, l). Adapted from Liu, Ting and Zhou (2008).

Input: Input dataset X ∈ Rn×d , current tree height e, height limit l
Output: an iTree

1 if e ≥ l or |X | ≤ 1 then
2 return exNode{Size = |X |}
3 else
4 let Q be the list of attributes in X
5 randomly select an attribute q ∈ Q
6 randomly select a split point p from min and max values of attribute q in X
7 Xl = f ilter(X ,q < p)
8 Xr = f ilter(X ,q ≥ p)
9 return inNode{Le f t = iTree(Xl,e+1, l),

10 Right = iTree(Xr,e+1, l),
11 SplitAtt = q,
12 SplitValue = p}
13 end

by the authors to set a tree height limit is that, usually, outliers are isolated in the very first node
splits. Thus, it is unnecessary to keep splitting nodes after a certain point, when outliers are
already isolated. ψ is also the number of samples taken from the dataset and passed to each tree
in the forest.

Algorithm 3: iForest(X , t,ψ). Adapted from Liu, Ting and Zhou (2008).

Input: Input dataset X ∈ Rn×d , number of trees t, subsampling size ψ

Output: a set of t iTrees
1 Initialize Forest
2 l = ceiling(log2 ψ)
3 for i = 1 to t do
4 X ′ = sample(X ,ψ)
5 Forest = Forest ∪ iTree(X ′,0, l)
6 end
7 return Forest

Another user-defined hyperparameter is t, the number of trees in the forest. The main
motivation to use a collection of trees instead of just one is that each tree is constructed using
different subsets (of ψ size) of the dataset. Therefore, overfitting can be avoided as each tree
is learning different characteristics about the data. Conceptually, with more trees it is possible
to get better knowledge extraction, however, each tree adds more cost to iForest. Experiments
done by the authors suggest that at around t = 100, the number of trees is not worth increasing
anymore.

All the knowledge obtained by each tree is joined in the outlierness score of the points.
The score comes from the average path length to find the point in every tree in the forest. As
shown in Algorithm 4, the path length of a point is calculated by traversing the tree until its

3.1. Outlier Detection Techniques 55

last level is reached (Line 1 to 3). To traverse the tree, the algorithm chooses the path by using
the current node information on which attribute and value were used to split it. In Line 2 of
Algorithm 4 we can see that the value returned for path length is e+ c(T.size). e is the path
length until the last level of the tree is reached and c(T.size) is an estimation of how many edges
there would be if the tree was expanded fully:

c(n) = 2H(n−1)− (2(n−1)/n)

Where H(i) is the harmonic number estimated by ln(i)+ e.

Algorithm 4: PathLength(x,T,e). Adapted from Liu, Ting and Zhou (2008).
Input: Instance x ∈ X , an iTree T , current path length e; to be initialized to zero when

first called
Output: path length of x

1 if T is an external node then
2 return e+ c(T.size)
3 end
4 a = T.splitAtt
5 if xa < T.splitValue then
6 return PathLength(x,T.le f t,e+1)
7 else
8 return PathLength(x,T.right,e+1)
9 end

3.1.4 Similarity Isolation Forest

Even though Isolation Forest has become increasingly popular in machine learning, it
is still not based on pairwise similarities and need the actual features to cut the feature space.
As stated in Chapter 1, this is problematic if the features are not available. Having this setting
in mind, Sathe and Aggarwal (2017) proposed an adaptation to the Random Forests algorithm
(BREIMAN, 2001). In this adaptation, the proposed Similarity Forest works with similarities
instead of data features.

The new objective is achieved by doing a new type of split where, in the current subsample
of points, two are randomly picked to be used as pivots, p and q. Then, using these pivots, all
other points in the subsample are projected into the imaginary line between p and q. It is possible
to use the Gini-index, or any other entropy calculation method, to find a cut-point in the line that
will best divide the points into two groups, minimizing entropy. Points closer to q will belong to
subtree q and the remainder go to subtree p. As it can be noticed, to analyze entropies labels are
needed and Similarity Forest is indeed a supervised classification algorithm.

Observing the new possibility brought by Similarity Forests, Czekalski and Morzy
(2021) decided to unify the Similarity Forest idea with iForest. Now, two fronts can be tackled

56 Chapter 3. Related Work

simultaneously: bringing the Similarity Forest concepts to the realm of unsupervised learning
and making it possible for iForest to work with similarities only.

The combination of Similarity and Isolation Forest is conveniently called Similarity
Isolation Forest (SIF). We can summarize the needed changes by taking Algorithm 5 from Line
4 downwards. Note that, Algorithm 5 describes one approach where instead of using the dot
product to get projections of points to the line between p and q, the Euclidean distance is used.
This is not only supported by the algorithm, but is also aligned with C-ALLOUT that also uses the
Euclidean distance. With the two algorithms using the same distance measure, the comparison
between them in Chapter 5 becomes fair. In Line 6 of Algorithm 5, the projection of points in
the line connecting p and q is obtained by subtracting the vectors of Euclidean distances. In
the similarities vector, points closer to p have negative value; points closer to q have positive
value. Nonetheless, to keep the random principle of Isolation Forest, the split point for the node
is selected at random (Line 8).

The main advantages of iForest that are inherited by SIF are its time complexities of
O(logn) to reach any point in a tree, and O(n) to build a tree, and its ability to have easily defined
user hyperparameters, since the algorithm performance is not much affected by changes in them.

Algorithm 5: si f Tree(X ,e, l)

Input: Input dataset X ∈ Rn×d , current tree height e, height limit l
Output: an iTree

1 if e ≥ l or |X | ≤ 1 then
2 return exNode{Size = |X |}
3 else
4 let p and q be two random points in X
5 peuc = Euclidean distance between all points in X and p
6 qeuc = Euclidean distance between all points in X and q
7 similarities = qeuc − peuc
8 splitValue = random(min(similarities),max(similarities))
9 Xl = f ilter(X ,similarities ≤ splitValue)

10 Xr = f ilter(X ,similarities > splitValue)
11 return inNode{Le f t = si f Tree(Xl,e+1, l),
12 Right = si f Tree(Xr,e+1, l),
13 SplitAtt = q,
14 SplitValue = p}
15 end

3.1.5 k-Nearest Neighbors

Being a very popular method for classification tasks, k-Nearest Neighbors (kNN) (FIX;
HODGES, 1989) has gone through many adaptations to work with many different applications.
One of these applications is outlier detection, where the common clustering of the points in a
training phase is not needed. Since outlier detection does not necessarily need to classify data

3.1. Outlier Detection Techniques 57

between inlier and outlier, the most successful adaptation of kNN to work with outliers has been
a ranking-based one. In this version, KNNOutlier (RAMASWAMY; RASTOGI; SHIM, 2000)
returns a single ranking having outlierness scores. In this case, the score of a point is defined as
the distance between the point and its kth neighbor, considering the entire dataset. The greater
the distance to the kth neighbor, the more outlier is the point. Algorithm 6 shows the overall steps
taken by KNNOutlier.

Algorithm 6: Brute-force kNNOutlier
Input: Input dataset X ∈ Rn×d , nearest neighbor k to use to set the scores, distance

function d
Output: Ranking vector r ∈ Rn with larger values being more outlier

1 r = /0
2 for each point x in X do
3 for each point y in X do
4 xn.append(d(x,y))
5 end
6 Sort xn in ascending order
7 kdist = xn[k]
8 r.append(kdist)

9 end
10 Return r

As it can be seen, KNNOutlier needs and depends heavily on a distance function.
Defining a distance function to be used in machine learning algorithms is not a hard task and any
distance function can be used with the brute force version of KNNOutlier shown in Algorithm 6.
However, brute-force KNNOutlier has O(n2) time complexity. For that reason, many different
data structures have been proposed to speed up KNNOutlier. Amongst the examples of such
structures, we can name the Ball Tree (or Metric Tree) (OMOHUNDRO, 1989) and the k-d Tree
(BENTLEY, 1975). Some of these structures may have constraints on their distance functions,
for instance, Ball Tree only works with metric distance functions. Although these data structures
guarantee an average time complexity of O(n logn) to measure the outlierness score of all points,
they are still exact methods. Hence, in the worst case, time complexity still is O(n2). Finally, it
is also important to note that these data structures have their own set of hyperparameters as well.

3.1.6 Local Outlier Factor

Local Outlier Factor (LOF) (BREUNIG et al., 2000) was proposed to improve on
KNNOutlier shortcomings, while maintaining its principles. One of the major limitations of
KNNOutlier is its inability to work with densities. This limitation could possibly make KN-
NOutlier ignore outliers in dense neighborhoods, as the points belonging to more sparse regions
of the vector space would eventually receive larger outlierness scores. So, there should be a
normalizing factor to make up for differences in neighborhood densities. LOF’s concept is to

58 Chapter 3. Related Work

find how reachable a point is in comparison to the rest of the dataset, while also considering the
densities involved.

To calculate the Local Reachability Distance (LRD) of a point, the algorithm must first
find the pairwise Reachability Distance (RD) between the point and all of its k neighbors. RD is
defined as:

RD(xi,x j) = max(k_distance(x j),d(xi,x j))

With X being the analyzed dataset, xi,x j ∈ X ; k_distance is the distance to the kth

neighbor and; d is the distance function defined by the user.

The maximum between the two is used as the RD to statistically minimize the statistical
fluctuations for distances in the local neighborhood of a point (BREUNIG et al., 2000). Therefore,
by substituting the distance between the point analyzed and its neighbors by its k_distance, a
smoothing effect is applied to the closest distances.

LRD is then defined using RD:

LRDk(xi) =
1

∑x j∈Nk(xi)
RD(xi,x j)
∥Nk(xi)∥

With X being the analyzed dataset, xi,x j ∈ X and; Nk(xi) being the neighborhood of xi.

We can interpret that LRD is the inverse of the average RD between a point and its k

neighbors. Then, the larger the average RD, the smaller the density around a point. A low LRD
implies low density and also that the point is far from the closest dense group, i.e., inlier cluster.

Lastly, the final LOF measure is defined as:

LOFk(xi) =
∑x j∈Nk(xi)LRDk(x j)

∥Nk(xi)∥
× 1

LRDk(xi)

We can say that the LOF metric is a comparison between the average LRD of the k

neighbors of a point and the LRD of the point itself. Thus, if LOF is close to 1, that means that
the density of a point is roughly the same as the density of its neighbors. But, if the LRD value is
smaller for the point, its low density will throw the LOF measure high. This is, overall, a local
outlier detection approach, where the neighboring instances define the outlierness score of a
point. The LOF method is presented in Algorithm 7.

3.1.7 Ensembles

fastText (GRAVE et al., 2017) is a popular algorithm for extracting semantic features
from texts with the support of deep learning. With the text data represented in feature vectors,
Walkowiak, Datko and Maciejewski (2019) proposed to ignore the linear model based on a
soft-max classifier, originally expected to be used with fastText. In its place, the authors argue

3.1. Outlier Detection Techniques 59

Algorithm 7: Local Outlier Factor
Input: Input dataset X ∈ Rn×d , nearest neighbor k to use to set the scores
Output: Ranking vector r ∈ Rn with local density factors

1 r = Nk = LRDk = /0
2 for each point xi in X do
3 Nk.append(k_distance(xi,k))
4 LRDk.append(local_reach_dist(xi,Nk(xi),k))
5 end
6 for each point xi in X do
7 lo f = 0
8 for each point x j in Nk(xi) do
9 lo f = lo f +LRDk(x j)

10 end
11 lo f = lo f

∥Nk(xi)∥ ×
1

LRDk(xi)

12 r.append(lo f)
13 end
14 Return r

that other classifiers, such as the Multilayer Perceptron (MLP) can perform better in datasets
having outliers. After the training and tuning of the MLP classifier, LOF (BREUNIG et al., 2000)
comes as the third piece of the ensemble to validate the neural network’s output.

As thoroughly explained previously, the LOF method has an homonym metric used
to check the density of the data in a region. If an instance has low density in its region, it is
considered an outlier. A LOF clustering structure is instantiated using the MLP training data. If
the MLP labels a test instance as outlier, but the same instance get in a cluster with a different
label when input to LOF, the outlier status is removed from the instance. In experiments, even
though not increasing much the MLP scores for the original dataset, when outliers participate in
another dataset, the LOF correction boosts the MLP model performance.

3.1.8 One-Class Support Vector Machines

As a popular classification method, Support Vector Machine (SVM)s (CORTES; VAP-
NIK, 1995) has gone through many variations to attend many different purposes. SVMs have
the notorious capacity of drawing a hyperplane capable of separating linearly inseparable points
from different classes. This is achieved through the usage of kernel functions that can project the
points into a higher dimension. In high-dimensional feature spaces points have a greater chance
of being linearly separable. After a hyperplane is created in this high-dimensional feature space,
it can be brought over to the original low-dimensional feature space. In the end, the new complex
shape originated from the hyperplane keeps separating the points even in the low-dimensional
feature space. The hyperplane can be defined by a vector ω and an offset to the origin b:

ω
T x+b = 0

60 Chapter 3. Related Work

With F being the feature space, x is a data point from X ∈ F , ω ∈ F and b ∈ R.

For the One-Class Support Vector Machine (OCSVM) (SCHöLKOPF et al., 1999) there
are only two classes being considered, one having outlier points and one having inlier points.
We can interpret that the hyperplane sets a margin dividing both classes. The hyperplane’s main
purpose is to maximize the margin separating the points in each class. The margin is limited by
the points from both classes that are the closest to the hyperplane. To minimize the overfitting
that can happen with OCSVM, additional slack variables ξ can be added to allow some points
from both classes to lie within the margin. The points within the margin become the training
errors.

In the OCSVM version described by Schölkopf et al. (1999) the hyperplane separates all
training points from the origin while maximizing the distance between the hyperplane and the
origin. Hence, we have two regions with outliers going to be located near the origin and inliers
on the other side. The classifier can be described by the quadratic programming minimization
function:

min
ω,ξ ,ρ

1
2
∥ω∥2 −ρ +

1
νn

n

∑
i=1

ξi

subject to:
(ω ·φ(xi))≥ ρ −ξi for all i = 1, ...,n

ξi ≥ 0 for all i = 1, ...,n

Where ω are the weights of the classifier; φ(xi) is a kernel function taking point xi to a higher
dimension and; ρ is an additional parameter to bound the increase in slack variables in the sum.

Most importantly, ν is a user-defined parameter which adds some smoothness to the
margin of the hyperplane. Therefore, ν determines the trade-off between the margin maximization
and the number of training points allowed to be within the margin. Because of this, ν sets an
upper bound on the fraction of outliers (training points viewed as wrongly placed) and, at the
same time, a lower bound on the number of training points used as support vectors. One can
interpret ν as a penalty for the OCSVM. The larger it is, the more penalty the OCSVM will
receive for a mistake. Thus, a large ν creates a narrower margin that results in less penalties and
few support vectors used.

The support vectors are the points used to define the margin itself, being the points in
the two classes which are the closest to the hyperplane. Support vectors are obtained when the
quadratic programming problem is solved using Lagrange multipliers. Lagrange multipliers
αi "support" the machine by contributing with weights for OCSVM decision function which
classifies the points:

f (x) = sgn((ω ·φ(xi))−ρ) = sgn(
n

∑
i=1

αiK(x,xi)−ρ)

Where sgn is the sign function; K(x,xi) is the kernel function using support vector x to take point
xi to a higher dimensional space and; n is the size of the training data.

3.1. Outlier Detection Techniques 61

The kernel function K(x,xi) = φ(x)T φ(xi) can be one of many different functions, since
the feature space F can be of unlimited dimensions. Anyway, complex kernel functions are
avoided since they have their own set of parameters and can increase the complexity of OCSVM.
Usual kernel functions are: linear, polynomial, sigmoidal and Gaussian Radial Basis Function.
The kernel function needs to return a similarity measure between the two points passed to
it. Since we are using the Euclidean distance for all methods in our experiments, to obtain
reasonable comparisons, the most related kernel function to consider would be the linear one:

K(x,xi) = xT · xi

In the end, OCSVM will separate two classes, the least populated class is the one
holding outliers. In our experiments we noticed that OCSVM is very sensitive to changes in its
hyperparameters. Although it was not under our evaluation, the kernel function choice is a tricky
one (KEERTHI; LIN, 2003). OCSVM is also known for not having good performance on large
datasets and for having issues with noisy data or overlap between classes.

3.1.9 Robust Deep Autoencoders

Robust Deep Autoencoder (RAE) (ZHOU; PAFFENROTH, 2017) was proposed to
enhance the robustness of autoencoders when dealing with noisy or anomalous data. As proposed,
RAE can be used as a more robust classifier or as an outlier detector. Just as most autoencoders,
the method distinguishes outliers from inliers using the reconstruction error of the input. In the
encoding phase, the usual autoencoder learns the features of the data so that in the decoding
phase it can reconstruct the data using only the features learned. Points with large reconstruction
errors have high outlierness scores. RAE, on the other hand, takes a step beyond and use the
methodology of Robust Principal Component Anaylsis (RPCA) to define that the input to be
encoded needs to first be filtered of outliers. Outliers cannot be represented in reduced dimensions
by the encoder because they naturally fall out of the expected patterns.

RPCA is incorporated into RAE with the addition of a filter layer to the autoencoder
network. This new layer acts similarly to RPCA and the input matrix X is factored:

X = LD +S

where LD is the part of the input matrix that is clean of anomalies and is well-represented by the
encoding layers of the autoencoder and S is the matrix having anomalies.

To achieve the best factorization, the authors proposed two optimization problems for
dealing with datasets composed of instances as lines and features as columns. One is able to find
outlying features and the other one, more related to our work, can find outlying instances:

min
θ ,S

∥LD −Dθ (Eθ (LD))∥2 +λ
∥∥ST∥∥

2,1

62 Chapter 3. Related Work

subject to:

X −LD −S = 0

where Dθ and Eθ are, respectively, the decoder and encoder associated with the autoencoder;
∥·∥2 and ∥·∥2,1 are, respectively, the L2 and L2,1 norms; ST is the transposed of S and λ is a
hyperparameter used for tuning the sparsity of S.

The L2,1 norm is used as a regularization method for S and λ works by inducing the
amount of instances to be isolated in S. The smaller λ is, the less objects are considered outliers
and moved to S. This sensitivity hyperparameter allows to balance between false-positives
and false-negatives, since larger values for λ makes the algorithm more sensible and set more
points as outliers. The LD and S matrices are updated through many iterations until a defined
threshold or number of iterations is reached. Following the literature for RPCA, RAE optimizes
both matrices individually, as separated problems. LD is optimized using the backpropagation
algorithm in the autoencoder and S is optimized using proximal methods for the norm used (the
norm used varies according to the application of the method). To find the outliers, a L1 norm
must be executed over the final S matrix.

3.1.10 Indexing Data Structures

In general, outlier detection methods have limitations when applied to large databases,
obtaining poor performance when applied to real databases. In addition, the methods are mostly
effective in a specific context, but have notable drops in accuracy when tested on datasets that
differ from the baseline for which they were designed. Considering mainly these two points,
Junior and Cordeiro (2019a) found in data indexing structures a way to make detection more
scalable and generalized. The presented angle-based outlier detection algorithm, MetricABOD,
uses the Slim-tree (TRAINA et al., 2000) indexing structure as means for indexing analyzed
datasets.

Unlike traditional angle-based methods, which check the angle variation of all elements,
MetricABOD checks only instances that represent a group of elements. These representative
instances are acquired from the tree structure of the Slim-tree, which sets representative objects
during its construction. This selection of elements significantly reduces the amount of angle
calculations required. Even if cutting down a lot of comparisons between instances, the method
is sometimes able to achieve better performance, in matters of runtime and also accuracy, than
other methods for outlier detection popular in the literature, not based on indexing structures.

The way an outlier candidate P is compared with all the representative objects (A, B,
C and D) from the Slim-tree structure can be seen in Figure 9. The other points in the figure
represent unimportant instances of data and are marked with a red cross to emphasize that they
are being ignored in the analysis.

3.2. Outlier Annotation Techniques 63

Figure 9 – Angle-based outlier detection using the Slim-tree representative objects. Adapted from Junior
and Cordeiro (2019a).

3.2 Outlier Annotation Techniques

As our closest related work, Spectral Ranking for Anomalies (SRA) (NIAN et al., 2016)
was proposed as an algorithm capable of detecting outliers and also flagging outlier types between
scattered and clustered. The technique is, to the extent of our knowledge, the only algorithm
capable of doing any sort of outlier type categorization. The algorithm separates the feature
space in two partitions, scoring the points considering their similarity with the centers of the
partitions. SRA only seeks for two types of outliers, scattered (or point outliers) and clustered
(or collective outliers). The definition given for collective outliers in its original paper is similar
to ours: groups of anomalies that are not only close to each other but also numerous enough to
be possibly misinterpreted as inlier clusters. Point outliers, on the other hand, are outliers not
grouped together. Point outliers enclose both our definitions for global and local outliers. In this
manner, we can say that SRA is able to detect all three types of outliers we have defined.

Although being able to detect both local and global outliers, the method is unable to
distinguish them from each other. The method only returns a single ranking with outlierness
scores and a flag telling if the algorithm considers the outliers to be point or collective ones. This
points to another limitation of the algorithm, it is not able to annotate multiple types of outliers
at once. It can only tag all outliers as being point or collective. Even with limited capacities on
the outlier annotation task, we consider the algorithm to be our only reasonable competitor in
this endeavor. Algorithm 8 shows the general steps performed by SRA.

In the first line of the algorithm, a Laplacian matrix L (in fact, the symmetric normalized
Laplacian) is formed using similarity matrix W . L is a simplified graph representation of the
dataset that can be used to find bi-partitions for the graph. This is the usual approach for spectral
clustering. So, in the second line, we can see the first non-principal eigenvector (the second

64 Chapter 3. Related Work

Algorithm 8: Spectral Ranking for Anomalies. Adapted from Nian et al. (2016).
Input: Similarity matrix W ∈ Rn×n, anomaly ratio upper bound χ

Output: Ranking vector f∗ ∈ Rn with larger values being more outlier, flag for outlier
type in ranking mFLAG

1 Form Laplacian matrix L = I −D−1/2WD−1/2

2 Compute g∗1 (the first non-principal eigenvector for L)
3 Compute z∗ = D1/2g∗1
4 Let C+ = {i : z∗i ≥ 0} and C− = {i : z∗i < 0}
5 if min{ |C+|

n , |C−|
n } ≥ χ then

6 mFLAG = 1, f∗ = max(|z∗|)−|z∗| % ranking point outliers
7 else if |C+|> |C−| then
8 mFLAG = 0, f∗ =−z∗ % ranking collective outliers
9 else

10 mFLAG = 0, f∗ = z∗ % ranking collective outliers
11 end

eigenvector sorted by the eigenvalues magnitudes) for L being calculated as g∗1. With g∗1 it is
possible to find a cut in the graph representation which will create the bi-partitioned graph. With
this, we can find two clusters, one for each partition, one on each side of g∗1.

However, instead of assigning points to both clusters that were determined through the
bi-partition, SRA intends to rank all points using eigenvector g∗1. z∗ gives us, in a sense, the
similarity to g∗1. Using this similarity measure, we can reach the two clusters C+ and C−, where
each one is going to have the points that belong to each partition. z∗ is used as the outlierness
score for the points and, therefore, the scores are the similarity to the clusters previously obtained.
The percentage of anomalies χ is used as a threshold for deciding what type of outlier is being
dealt with. If both clusters percentage of points are larger or equal than χ , then both clusters
are considered inlier clusters, and outliers are point outliers. If one of the clusters percentage of
points is not larger than χ , the smallest one is an outlier cluster, or a collective outlier group, and
the ranking is adapted as needed with outliers being collective outliers. The previous condition is
what determines the value of mFLAG, that tells which type of outlier was found.

3.3 Final Considerations

In this chapter we have done a general review over the outlier detection literature. The
review covered many detectors that work with similarities, subspaces, neural networks, clustering
and many other techniques. Nonetheless, in this review, we focused on these most related works,
i.e., outlier detectors able to work with distances, or similarities, alone and one algorithm capable
of doing a very limited outlier annotation. We thoroughly explained SIF, kNN, LOF, OCSVM,
RAE and SRA, and we provided algorithms for most of them. Going further to the experimental
analysis, these six algorithms appear again as we put our method C-ALLOUT to the test.

3.3. Final Considerations 65

Table 1 – Summary on the presented features in C-ALLOUT and its most related works.

Algorithm Deterministic Approach Outlier annotation Data indexing Default HP Scalable
kNN ✓ Nearest Neighbors No Possible ✗ Possible

OCSVM ✓ Hyperplane & kernel function No No ✗ No
LOF ✓ Nearest Neighbors & density No Possible ✗ Possible
SIF ✗ Random subspaces No Naturally ✓ Naturally

RAE ✗ Autoencoder No No ✗ Possible
SRA ✓ Clustering Very limited No ✗ No

C-ALLOUT ✓ Indexing-tree distances Naturally Naturally ✓ Naturally

Table 1 presents a summary for our most related work, it contains descriptive and
desirable features on columns. Deterministic are methods that always return the same response
given the same input and hyperparameters. Approach suggest the main technique employed
during outlier detection. Outlier annotation indicates if the algorithm is able to annotate outlier
types. Data indexing points out if the method readily accepts indexing structures. Default HP
shows us the methods that have recommended default hyperparameters that can make the
method virtually parameter-free. Scalable if the proposed solution is scalable by either its own
proposal or by using adequate data structures. Possible indicates if the presence of the feature is
implementation dependent and naturally if it is not implementation dependent.

As it can be seen, C-ALLOUT has many desirable properties for outlier detection methods
and just like every other method on the table, can work with just pairwise distances. With the
exception of SIF, all other proposals have hard to define hyperparameters, meaning that a
reasonable amount of prior knowledge on the data is required to select the best configuration.
It is also important to note that most anomaly detectors are quite sensitive to hyperparameter
choices (GOLDSTEIN; UCHIDA, 2016).

It is unclear how to select the best configuration for hyperparameters for unsupervised
learning since ground-truth labels do not exist. Algorithms based on nearest neighbors are the
most prevalent techniques, specially when considering the scenario where only pairwise distances
are provided, but they are computationally expensive and very sensitive to their hyperparameter
settings. We remark that C-ALLOUT is free of these challenges, while also being able to separate
outliers by type.

In the next chapter we present C-ALLOUT and provide definitions for its main compo-
nents and the ones from Slim-tree related to it. We discuss how the method ranks outliers and we
also analyze its time and space complexity.

67

CHAPTER

4
C-ALLOUT: CATCHING AND CALLING

OUTLIERS BY TYPE

This section starts by defining outliers and the problem of outlier annotation. Next, there
is a general overview highlighting C-ALLOUT’s main steps. We also provide definitions for the
overall and the type-specific rankings returned by our method. Optimizations for Slim-tree’s
structure are discussed and, lastly, we analyze time and space complexity.

4.1 Problem Statement

Since, to the best of our knowledge, C-ALLOUT is the pioneer algorithm on outlier
annotation, we first formalize the outlier types and the outlier annotation problem.

Definition 4.1.1 (Outlier). Given a point-cloud dataset X = {x1, . . . ,xn} with points mostly

generated by one of K distributions f1(x;Θ1), . . . , fK(x;ΘK), where Θ j is the parameter of

distribution f j(x;Θ j), and Pi, j is the probability of a point xi ∈ X be generated by a distribution

f j(x;Θ j); An outlier is a point xi ∈ X whose probability Pi = max j Pi, j is smaller than the

corresponding probabilities of the vast majority of points in X.

Definition 4.1.2 (Global Outlier). A global outlier is an outlier xi from a dataset X whose

probability Pi is much smaller than those of the vast majority of points in X, thus it arouses the

suspicion that xi is a result of one undefined process. And, there is no point x j ∈ X\{xi} whose

distance d(xi,x j) to xi is similar to the distances between most points in X and their closest

neighbors.

Definition 4.1.3 (Collective Outlier). A collective outlier is an outlier xi from a dataset X, such

that at least another outlier x j ∈ X \ {xi} has a distance d(xi,x j) to xi that is similar to the

distances between most points in X and their closest neighbors.

68 Chapter 4. C-AllOut: Catching and Calling Outliers By Type

Definition 4.1.4 (Local Outlier). A local outlier is an outlier xi from a dataset X whose proba-

bility Pi is small enough to be suspicious, when compared with the corresponding probabilities

of the vast majority of points in X, but it is still feasible that xi is a result of at least one of

the distributions f1(x;Θ1), . . . , fK(x;ΘK) seen in X. And, there is no point x j ∈ X\{xi} whose

distance d(xi,x j) to xi is similar to the distances between most points in X and their closest

neighbors.

Definition 4.1.5 (Outlier Annotation Problem). Given a point-cloud dataset X = {x1, . . . ,xn}
in which only the distances, or similarities, d(xi,x j) between any two objects xi and x j can be

accessed; Provide four types of ranking of the points by outlierness degree: 1) Ro, an overall

ranking of outliers regardless of their type; as well as a ranking by 2) global, 3) local, and 4)

collective outlierness, respectively denoted by Rg, Rl and Rc.

Definition 4.1.6 (Ranking of Outliers). A ranking of outliers R = (r1,r2, . . . ,rn) is a permuta-

tion of the set {1,2, . . . ,n}. It defines an ordering of the instances in a dataset X = {x1, . . . ,xn}
by separating the outliers {xr1,xr2, . . . ,xrm} from the inliers {xrm+1,xrm+2, . . . , xrn}, where m ≪ n

is the number of outliers in X.

4.2 C-AllOut in a Nutshell

The main idea behind our method is to tackle the outlier annotation problem by leveraging
the information present in a tree-based indexing structure, namely the Slim-tree. Particularly, C-
ALLOUT takes advantage of the ability of this data structure to group together similar instances
and keep apart distinct instances, with varying “degrees” of similarity being captured by means
of distinct tree levels. The pseudocode of C-ALLOUT is in Algorithm 9.

In line with the problem statement in Definition 4.1.5, C-ALLOUT receives a dataset
X as input, and produces four rankings of outliers Ro, Rg, Rl and Rc, respectively reflecting
outlierness overall, as well as global, local and collective outlierness.

In a nutshell, C-ALLOUT has two main phases. It begins in Phase 1 with a data-driven
procedure that automatically creates and fine-tunes the base tree structure; see Lines 1-4 in Algo-
rithm 9. In this phase, we refine the tree using the overall ranking produced from a preliminary
tree. Once a fine-tuned tree is obtained, Phase 2 takes place; see Lines 5-10 in Algorithm 9. It
extracts from the refined tree the information required to rank outliers by type, and produces the
final output. The next two subsections give details on each of these phases.

4.2.1 Building and Refining the Tree

We build and refine a Slim tree as the base to both rank and annotate the outliers. For
construction, the tree relies solely on pairwise distances and can be built using any metric
distance function. This property makes C-ALLOUT applicable to settings where only distances

4.2. C-ALLOUT in a Nutshell 69

Algorithm 9: C-ALLOUT

Input: Dataset X = {x1,x2, . . .xn}
Output: Overall ranking Ro; Global ranking Rg; Local ranking Rl; Collective ranking

Rc.
// Phase 1: refining the tree

1 R = (1,2, . . . ,n) // given order of objects
2 T = CREATETREE(X, R)
3 Ro = OVERALL(X, T) // Ranking 1 (§4.2.2)
4 reverse_Ro = sort_ascending(Ro)

// Phase 2: outlier-type focused ranking of objects
5 T = CREATETREE(X, reverse_Ro)
6 Ro = OVERALL(X, T)
7 Rg = GLOBAL(X, T) // Ranking 2 (§4.2.4.1)
8 Rc = COLLECTIVE(X, T) // Ranking 3 (§4.2.4.2)
9 Rl = LOCAL(X, T) // Ranking 4 (§4.2.4.3)

10 return Ro,Rg,Rl,Rc

between objects are available, but not explicit features. Importantly, not all but only O(n logn)

pairwise distances are required for construction, making it scalable to large datasets.

In the following two subsections, we (1) describe how to use the tree to create an overall
outlierness ranking of the objects, which is then used to (2) improve the tree structure by ensuring
that inliers are more likely to be inserted early on.

4.2.2 Overall Ranking of Outliers

Our overall ranking Ro is based on two structural components of the tree in Defini-
tions 4.2.1 and 4.2.2 which are presented first.

Definition 4.2.1 (Closest Root Object). The closest root object x(i)r of an object xi ∈ X inside a

tree T is given by x(i)r := {x j ∈ R | argmin j d(xi,x j)}.

Definition 4.2.2 (Foreign Representative). The foreign representative x(i)f of an object xi ∈ X
indexed by a tree T is given by x(i)f := {x j ∈ E | argmin j d(xi,x j)}, where E = {x(η)

e | η ∈
T ∧ αη = α

τ(i)}.

Ranking 1 (Overall Ranking). The overall ranking of outliers Ro = (r1,r2, . . . ,rn) for a dataset
X = {x1, . . . ,xn} indexed by a tree T is the ranking in which s(ri)

o ≥ s(ri+1)
o ∀i ∈ {1,2, . . . ,n−1},

where

s(j)
o = d(x j,x

(j)
r) · d(x j,x

(j)
f) (4.1)

The main idea is to leverage the set of objects R that are stored in the root node ρ of the
tree T built from the input dataset X, by recognizing that R is in fact a small and data-driven

70 Chapter 4. C-AllOut: Catching and Calling Outliers By Type

sample (i.e., subset of objects from X) containing only the objects from X that best summarize
the main clusters of inliers. As described in Section 2.4, the leaf nodes of T store all the objects
in X, with each leaf having only objects that are very similar to each other. Distinctly, an internal
node solely has one object from each one of its child nodes: the most centralized object in the
child. It means that any internal node is essentially a cluster of clusters.

As a consequence, it is reasonable to expect that an object xi ∈ X that clearly belongs
to a cluster of inliers tends to be the one selected as the representative x(τ

(i))
e of its leaf node

τ(i), and then again selected to be the representative of the direct ancestor α
τ(i) of leaf τ(i), and

still continue being selected as a representative up to the root node ρ , thus becoming a member
of set R. This line of thought lead us to believe that each object in R represents one of the
clusters of inliers in X, where the larger is the cluster, the more representatives it has1. Following
Definition 4.2.1, let x(i)r be the object in R that is the closest to an object of interest xi. For short,
we simply say that x(i)r is the closest root object of xi. Note that it helps us to distinguish outliers
from inliers: if xi is an inlier, then it tends to be closer to x(i)r than it would be if it were an outlier.

Nonetheless, some small clusters of inliers may be underrepresented in the root node.
In this particular case, the distance to the closest root object becomes less helpful. Fortunately,
there also exists the tendency that a cluster of inliers requires more than one leaf node to be
stored, since any tiny cluster that fits entirely into a single leaf is more likely to contain collective
outliers than inliers. This tendency also helps us to distinguish outliers from inliers: if an object
xi is close to at least one leaf other than leaf τ(i), it tends to be an inlier; otherwise, xi is probably
an outlier. Following Definition 4.2.2, we efficiently take advantage of this idea through the
concept of foreign representative x(i)f of an object xi. The overall ranking of outliers Ro shown
in Ranking 1 builds on the aforementioned concepts by using a new score s(i)o as a base. It
capitalizes on the proximity of an object xi both to its closest root object x(i)r and to its foreign
representative x(i)f to accurately and efficiently rank outliers of any type.

4.2.3 Refinement of Rankings

The tree structure that we leverage is built by a sequential insertion of objects. It has its
own heuristics to efficiently avoid unfortunate selections of node representatives that nonetheless
may occur depending on the order in which the objects are given for insertion. When a node
splits in the tree, the two new representatives are going to be the most centralized objects from
both newly-created nodes. These two new representative are also the ones that are going to be
promoted to the parent node. In other words, only representatives, or most centralized objects,
are going to have the chance to become representatives in the parent node. This behavior is
repeated across all levels of the Slim-tree.

Although objects can be promoted, they cannot be demoted. In summary, if an outlier

1Note that R typically has a few hundreds of objects, so we expect k ≪ |R|, where k is the number of inlier
clusters in X.

4.2. C-ALLOUT in a Nutshell 71

object gets to the root of the tree by being the first one of its neighboring space to be inserted,
i.e., by being considered the most centralized object in a premature stage of the tree construction,
it can get promoted to the root, affecting our rankings. Because of this, it is best to insert first
objects that are inliers and later outlier objects. It is possible to improve the initial tree created by
insertions of randomly ordered objects, reaching a fine-tuned tree by creating it from a better
ordering of the objects. Consequentially, C-ALLOUT becomes robust to any original order of
objects given for a dataset X.

There are multiple ways of achieving a good ordering of objects, but this is not an easy
task. First of all, putting inliers first in a list of objects would already be an outlier detection task.
Secondly, even if we try to approximate this ordering by considering the most centered objects
in a dataset as inliers, we would still need to perform a task that usually has a time complexity of
O(n2). Besides that, C-ALLOUT would not be a self-contained method anymore. A particularly
good option, for not depending on methods other than our own, is to use our own overall score
as a measure to sort the permutation.

As can be seen in Lines 1-4 of Algorithm 9, we propose to achieve this goal by performing
a refinement of rankings. Specifically, an initial tree T is created by following the given order of
objects R; then, T can be refined by exploiting the overall ranking Ro produced from it. Note
that function CREATETREE(X, R) in Line 5 of Algorithm 9 uses the reverse order of Ro to
insert objects in T . The idea behind this procedure is to insert clear inliers first in T , so as to
avoid the selection of an outlier to be a node representative.

4.2.4 Outlier-type Focused Ranking of Objects

Moving further from an overall ranking, we next describe how C-ALLOUT ranks outliers
of each particular type; focusing first on global outliers, and then the collective and local outlier
ranking.

4.2.4.1 Global Ranking of Outliers

Here we build on the fact that the overall ranking by Equation (4.1) tends to rank global
and collective outliers ahead of the other objects. Recall that the overall ranking Ro ranks
each object according to its distance to the closest cluster of inliers. Both global and collective
outliers tend to be far away from any of such clusters; distinctly, local outliers are close to at
least one cluster, while the inliers themselves are even closer. Consequently, we expect that
Ro = (r1,r2, . . . ,rn) sorts any two objects xri,xr j ∈ X such that i < j only when xri is either a
global or a collective outlier, and xr j is not. Thus, the main challenge here is to differentiate the
global outliers from the collective ones.

Fortunately, these two types of outliers can be distinguished: collective outliers have
close neighbors; global ones do not. Building on Definitions 4.2.3 and 4.2.4, we form the ranking

72 Chapter 4. C-AllOut: Catching and Calling Outliers By Type

Rg of global outliers by combining (a) the score s(i)o of an object xi, which is the core of our
overall ranking; with (b) the normalized distance d(i)nn between xi and its nearest neighbor x(i)nn, as
shown in Equation (4.3).

Intuitively, score so separates global and collective outliers from other objects, while
distance dnn differentiates outliers of these two types. Note that the normalization in Equation
(4.2)2 balances the distances according to the local neighborhood of xi. Also, the nearest neighbor
x(i)nn is in fact an approximate one; it is efficiently obtained by comparing xi only with the few
objects in leaf τ(i). It tends to be a good approximation since our base tree is built to have each
leaf storing only objects that are very similar to each other.

Definition 4.2.3 (Approximate Nearest Neighbor). The approximate nearest neighbor x(i)nn of

object xi ∈ X in a tree T is x(i)nn := {x j ∈ L(i) | argmin j ̸=i d(xi,x j)}, where L(i) is the set of

objects stored in leaf τ(i).

Definition 4.2.4 (Normalized 1nn Distance). The normalized nearest neighbor distance d(i)nn of

an object xi ∈ X indexed in a tree T is defined as

d(i)nn =
d(xi,x

(i)
nn)

1+d(x(τ
(i))

e ,x(τ
(i))

nn)
(4.2)

where x(τ
(i))

nn := x(j)
nn s.t. x j is equivalent to x(τ

(i))
e .

Ranking 2 (Global Ranking). The global ranking Rg = (r1, . . . ,rn) for dataset X is the ranking
in which s(ri)

g ≥ s(ri+1)
g ∀i ∈ {1,2, . . . ,n−1}, where

s(j)
g = s(j)

o · d(j)
nn (4.3)

4.2.4.2 Collective Ranking of Outliers

The ranking Rc of collective outliers builds naturally from the ideas discussed in the
previous section, where we exploit the tendency of global and collective outliers to have the
highest scores so, and then “amplify” each object xi that is a global outlier by multiplying s(i)o by
the nearest neighbor distance d(i)nn. In a similar fashion, we bump up collective outliers simply by
replacing the multiplication with its reverse operation division2, as presented in Equation (4.4).

Ranking 3 (Collective Ranking). The collective ranking Rc = (r1, . . . ,rn) for dataset X is the
ranking in which s(ri)

c ≥ s(ri+1)
c ∀i ∈ {1, . . . ,n−1}, where

s(j)
c =

s(j)
o

1+d(j)
nn

(4.4)

2Note that value 1 in the denominator avoids division by zero.

4.2. C-ALLOUT in a Nutshell 73

4.2.4.3 Local Ranking of Outliers

The local ranking of outliers Rl is formally given in Ranking 4 below, which builds on
Definitions 4.2.5 and 4.2.6.

Definition 4.2.5 (Normalized Leaf Radius). The normalized leaf radius a(τ) of a leaf τ in a

tree T is
a(τ) =

d(x(τ)e ,x(τ)a)

1+d(x(τ)e ,x(τ)nn)
(4.5)

where x(τ)a := {xi ∈ L(τ)|argmaxi d(x
(τ)
e ,xi)} is the farthest from the leaf representative among

objects L(τ) in leaf τ , and x(τ)nn := x(j)
nn s.t. x j is equiv. to x(τ)e .

Definition 4.2.6 (Knee Radius). The knee radius akr for a dataset X = {x1, . . .xn} in a tree T

is defined as
akr = kneedle(a1, . . . ,a|A|) (4.6)

s.t. A = {a(τ
(1)), . . . ,a(τ

(n))}, and a j < a j+1 ∀ j ∈ {1, . . . , |A| − 1}. Function kneedle refers to

algorithm Kneedle (SATOPAA et al., 2011); it takes a sorted list
(
a1, . . . ,a|A|

)
as input and

returns one of its values ap.

Ranking 4 (Local Ranking). The local ranking for dataset X is denoted by Rl . Let P =

{xi | d(i)nn ≥ akr}. Then, Rl = (r1, . . . ,rn) is the ranking in which

xr j ∈

P, i f 1 ≤ j ≤ |P|

X\P, otherwise
(4.7)

where s(rp)
g ≤ s(rp+1)

g ∀p ∈ {1, . . . , |P|−1} and s(rq)
g ≥ s(rq+1)

g ∀q ∈ {|P|+1, . . . ,n−1}.

The main idea is to distinguish local outliers from other objects by using the normalized
leaf radius a(τ) of each leaf τ ∈T . Particularly, we expect a(τ) to be: (a) small, if the object x(τ)a ∈
X that defines the radius is an inlier; (b) larger, if x(τ)a is a local outlier; (c) very large, if x(τ)a is a
global outlier; and (d) either very small or large3, if x(τ)a is a collective outlier.

As a result, the vast majority of leaf radii are expected to be small, mostly coming from
case (a) and some from case (d) above, with only a few large radius leaves. Thus, when the radii
in A = {a(τ

(1)), . . . ,a(τ
(n))} are sorted into a list (a1, . . . ,a|A|), there must exist a “knee” value akr

that clearly separates the small radii from the rest. Intuitively, akr is approximately the smallest
nearest neighbor distance d(i)nn considering each local outlier object ∈ X. Therefore, all objects
which have their closest neighbor farther than akr, can be considered either local or global
outliers. Our Ranking 4 computes akr using an off-the-shelf “knee”-detector algorithm; then,
it separates large-radii outliers in set P, and reuses our global score to rank them in increasing
order of sg, effectively placing local outliers ahead of the other objects.

3If the collective outliers are in a leaf of their own, a(τ) would be very small, and very large otherwise.

74 Chapter 4. C-AllOut: Catching and Calling Outliers By Type

Figure 10 helps visualize the steps done to reach the local ranking of outliers Rl . In
Figure 10a we have the same input dataset presented in Figure 1 with the knee leaf radius akr

returned by function kneedle with a orange circle. It is selected as the knee radius because it
is the knee point in a curve intersecting the sorted list of leaf radius values. Figure 10b shows
the remaining points after filtering using akr as opaque points. The filter removes every point
xi ∈ X that has its nearest neighbor closer than akr. Therefore, the only remaining points are
the green local outliers and the red global outliers. For reference, the nearest neighbor points
used in the filtering step, and also in the global score sg, are kept in transparent color along
with the representative point of each not filtered point. Figure 10c illustrates how filtered points
are ignored in the global ranking so that the remaining points (local and global outliers) can be
resorted in ascending order using sg. Finally, local outliers take the top positions of the local
ranking and previously filtered points are appended to the end of the ranking.

(a) Data points and Slim-tree leaves with the
knee radius akr highlighted in orange.

(b) Data points after filtering with akr. Transpar-
ent points kept for reference of sg.

(c) Steps to transform a global ranking of outliers into a local ranking
of outliers.

Figure 10 – The local ranking of outliers Rl visualized.

4.3. Final Considerations 75

4.2.5 Time and Space Complexity

Lemma 4.2.1 (Time Complexity). The overall time complexity of C-ALLOUT is O(n logn).

Proof. As shown in Algorithm 9, C-ALLOUT has two phases. The cost of Phase 1 is mostly in
Lines 2 and 3. The former builds a Slim-tree T for dataset X; the latter analyzes T to obtain
an overall ranking Ro. As Slim-tree is one state-of-the-art tree-based data structure, it requires
only O(n logn) time for construction. The time to build Ro is O(n), since C-ALLOUT needs
to find x(i)r and x(i)f by comparing each object xi ∈ X with the objects stored in only two nodes,
i.e., ρ and α

τ(i) , whose sizes are limited by a small constant c. Thus, the total time of Phase 1 is
O(n logn). In Phase 2, the rankings Rg and Rc are computed together in O(n) time since they
both reuse the score s(i)o from Ro and calculate d(i)nn by comparing objects from α

τ(i) with each

object xi ∈ X to identify x(i)nn and x(τ
(i))

nn . Finally, local ranking Rl is computed in O(n+ |A|2) time
by computing a(τ

(i)) for every object xi ∈ X in O(n) time; then, identifying akr in O(|A|2) time.
Provided that |A| is expected to be a small constant, the total time of Phase 2 is O(n). It leads to
the conclusion that the time complexity of C-ALLOUT is O(n logn).

Lemma 4.2.2 (Space Complexity). The overall space complexity of C-ALLOUT is O(n logn).

Proof. The space required by C-ALLOUT refers to the storage of Slim-tree T and of the four
rankings Ro, Rg, Rc and Rl . As Slim-tree is one state-of-the-art tree-based data structure, it
requires O(n logn) space to be stored. Each of the rankings Ro, Rg, Rc and Rl are in fact a
permutation of set {1,2, . . . ,n}; therefore, they require O(n) space to be stored. It leads to the
conclusion that the space complexity of C-ALLOUT is O(n logn).

4.3 Final Considerations
In this chapter we presented C-ALLOUT, our novel method for outlier detection and

annotation. We have shown more details on the Slim-tree and how we are able to extract
information from its structure built with any dataset. We have provided definitions which, while
being crucial to our rankings, are not original concepts of the Slim-tree. As it could be seen,
our solution outputs four rankings, one overall ranking and three other for specific outlier
types. These four rankings are evaluated separately in three different testbeds we prepared for
our experiments. Next chapter yields our experimental evaluation having C-ALLOUT and the
algorithms present in Table 1 from Section 3.3. The chapter also serves pertinent details on
synthetic data generation and the characteristics of the datasets.

77

CHAPTER

5
RESULTS AND DISCUSSIONS

We designed experiments to evaluate C-ALLOUT with respect to both overall detection
as well as outlier annotation tasks, aiming to answer the following.

Q1: Overall detection performance: How does C-ALLOUT compare to state-of-the-art
baselines on benchmark datasets with respect to overall detection performance, regardless
of outlier type?

Q2: Outlier annotation performance: How well does C-ALLOUT perform on outlier annota-
tion, that is, with respect to its ranking of the outliers by type?

5.1 Overall Outlier Detection Performance

5.1.1 Experiment Setup

First we aim to showcase that, while specializing on outlier annotation, C-ALLOUT is
competitive in terms of overall outlier detection on standard benchmark datasets compared to
state-of-the-art baselines. We remark that C-ALLOUT’s overall ranking Ro is used for evaluation
here, regardless of outlier type.

5.1.1.1 Testbed 1

We create our first testbed using classical benchmark datasets1,2,3. Specifically, a total
of 20 datasets were chosen at random among those with outlier percentage less than 25%; a
detailed list of which is in Table 2.

1<http://odds.cs.stonybrook.edu/>
2<http://lapad-web.icmc.usp.br/repositories/outlier-evaluation/DAMI/>
3<https://archive.ics.uci.edu/ml/datasets.php>

http://odds.cs.stonybrook.edu/
http://lapad-web.icmc.usp.br/repositories/outlier-evaluation/DAMI/
https://archive.ics.uci.edu/ml/datasets.php

78 Chapter 5. Results and Discussions

Table 2 – Testbed 1: Summary of the 20 benchmark datasets used for overall outlier detection.

Dataset Points Outliers Features
Annthyroid 7,062 534 6
Cardio 2,110 465 21
Glass 213 9 7
Letter 1,598 100 32
Mammography 7,848 253 6
Mnist 7,603 700 100
Musk 3,062 97 166
Optdigits 5,198 132 64
Pageblocks 5,393 510 10
Pendigits 6,870 156 16
Satimage-2 5,801 69 36
Shuttle 1,013 13 9
Shuttle2 49,097 3,511 9
Stamps 340 31 9
Thyroid 3,656 93 6
Vowels 1,452 46 12
Waveform 3,443 100 21
WBC 377 20 30
WDBC 367 10 30
Wilt 4,819 257 5

5.1.1.2 Competitors

We compare against five state-of-the-art similarity or distance-based detection algorithms;
namely, LOF (BREUNIG et al., 2000), kNN (RAMASWAMY; RASTOGI; SHIM, 2000),
OCSVM (SCHöLKOPF et al., 1999), Similarity Isolation Forest (SIF) (CZEKALSKI; MORZY,
2021) and RAE (ZHOU; PAFFENROTH, 2017). Like C-ALLOUT, the first four are similarity
or distance-based algorithms. Specifically, LOF, kNN and SIF employ Euclidean distance and
OCSVM uses the linear kernel. RAE is an autoencoder and uses the actual features. It is added
as competitor so that we can compare C-ALLOUT to a deep-learning-based and recent state-of-
the-art algorithm. Note that SIF is a version of the popular iForest (LIU; TING; ZHOU, 2008),
constructed by using pairwise similarities only based on ideas from similarity forests (SATHE;
AGGARWAL, 2017). (See Chapter 3)

Unlike C-ALLOUT, all baselines exhibit one or more hyperparameters that are non-trivial
to pick without any labels. We run each baseline using a corresponding list of hyperparameter
configurations (see Table 3 and Table 4) and report the average performance. In effect, this is
equivalent to their expected performance when hyperparameters are selected at random from
the list. For the non-deterministic baselines SIF and RAE, the performance is averaged over 10
random runs.

5.1. Overall Outlier Detection Performance 79

Table 3 – Hyperparameters and configurations for the baseline methods

LOF_k kNN_k OCSVM_nu SIF_n_trees/SIF_ψ

1 1 0.01 100/256
3 3 0.05 -
5 5 0.1 -

10 10 0.15 -
15 15 0.2 -
30 30 0.25 -
50 50 0.3 -
75 75 0.35 -
100 100 0.4 -

- - 0.45 -
- - 0.5 -

5.1.1.3 Model Configurations

Table 3 reports the full list of the hyperparameters used for each of our competitors.
Column names have the form method_parameter, where method is the name of the competitor,
and parameter is the corresponding hyperparameter name. SIF only uses its default values of
100 for number of trees n_trees and 256 for ψ . OCSVM hyperparameters range from a very
small value up to its conservative default value of 0.5 for an upperbound on the number of
outliers. Finally, both LOF and kNN use values of k ∈ {1,3,5,10,15,30,50,75,100} in their
searches for the kth nearest neighbors.

Table 4 reports the hyperparameters used for RAE. They were defined to be aligned with
the original anomaly detection proposal (ZHOU; PAFFENROTH, 2017). Column names have
the hyperparameter names. RAE only uses its default value of 0.001 for the Learning Rate (LR).
The autoencoder network architecture is always symmetric.

Table 4 – Hyperparameters for baseline RAE.

n_layers λ input_dim_decay LR Inner/Outer Iterations
2 10e−5 1 0.001 20
3 7.5e−5 2 - 50
4 10e−4 4 - -

5.1.1.4 Measures

We evaluate the outlier ranking quality using both Area Under the Curve of Receiver
Operating Characteristic (AUCROC) and Area Under the Curve of Precision-Recall (AUCPR),
sometimes referred to as Average Precision (AP). In addition, we apply the paired Wilcoxon
signed rank test on AUCROC and AUCPR results across datasets to establish statistical signifi-
cance of the differences.

80 Chapter 5. Results and Discussions

5.1.2 Results

Table 5 and Table 6 present, respectively, the AUCROC and AUCPR overall detection
performance results for all methods across all benchmark datasets. The last lines on both tables
have the average ranking of each method for every dataset, lower values are better. Additionally,
Table 7 provides the p-values for one-sided significance tests of the differences, testing that the
left-side method (C-ALLOUT) is better than the right-side (baseline) against the null hypothesis
that they are indifferent. In terms of average AUCROC performance, C-ALLOUT significantly
outperforms LOF, OCSVM and SIF and achieves better results than the second best performer
kNN (1.900 vs. 2.050) where the differences are not significant (p ≈ 0.1). Similar results hold
for AUCPR, where C-ALLOUT achieves the best average performance. The performance is on
par with RAE’s and significantly better than the rest.

Table 5 – AUCROC performance on Testbed 1

Dataset C-ALLOUT-Ro LOF ▼ kNN OCSVM ▼ IF ▼ RAE ■
Annth. 0.720 0.718 0.773 0.469 0.585 0.677
Cardio 0.539 0.535 0.503 0.380 0.795 0.743
Glass 0.839 0.738 0.825 0.638 0.634 0.685
Letter 0.779 0.849 0.841 0.491 0.219 0.465
Mamm. 0.807 0.643 0.802 0.343 0.772 0.703
Mnist 0.850 0.662 0.852 0.408 0.585 0.861
Musk 0.972 0.555 0.795 0.415 0.919 0.997
Optdig. 0.519 0.506 0.437 0.504 0.372 0.443
Pageb. 0.896 0.712 0.877 0.523 0.852 0.894
Pendig. 0.859 0.517 0.813 0.615 0.879 0.918
Satim. 0.994 0.639 0.961 0.527 0.894 0.961
Shuttle 0.985 0.851 0.953 0.374 0.765 0.906
Shuttle2 0.759 0.517 0.701 0.647 0.963 0.991
Stamps 0.838 0.643 0.856 0.530 0.859 0.795
Thyroid 0.952 0.721 0.957 0.514 0.876 0.963
Vowels 0.935 0.885 0.953 0.549 0.317 0.484
Wavef. 0.690 0.696 0.742 0.452 0.647 0.623
WBC 0.940 0.856 0.947 0.403 0.914 0.857
WDBC 0.912 0.831 0.923 0.474 0.927 0.855
Wilt 0.455 0.635 0.541 0.296 0.299 0.466
Avg. Rank 2.25 3.95 2.50 5.50 3.80 3.00

5.2 Outlier Annotation Performance

5.2.1 Experiment Setup

Next we aim to show the effectiveness of C-ALLOUT on annotating outliers by type,
and specifically the accuracy of its type-specific rankings. However, there exists no benchmark
datasets with annotated outliers. Hence, Testbed 1 datasets do not have a characterization of their
outliers. To this end, we create two novel testbeds containing specific types of outliers, described
as follows.

5.2. Outlier Annotation Performance 81

Table 6 – AUCPR performance on Testbed 1

Dataset C-ALLOUT-Ro LOF ▼ kNN ● OCSVM ▼ IF ■ RAE
Annth. 0.217 0.174 0.214 0.077 0.103 0.233
Cardio 0.324 0.272 0.312 0.209 0.582 0.504
Glass 0.117 0.130 0.127 0.116 0.058 0.135
Letter 0.173 0.385 0.258 0.071 0.037 0.071
Mamm. 0.163 0.096 0.165 0.083 0.183 0.105
Mnist 0.389 0.233 0.396 0.101 0.158 0.404
Musk 0.862 0.178 0.559 0.040 0.754 0.925
Optdig. 0.028 0.029 0.021 0.032 0.019 0.021
Pageb. 0.542 0.303 0.515 0.237 0.420 0.536
Pendig. 0.171 0.036 0.109 0.075 0.135 0.235
Satim. 0.868 0.050 0.583 0.108 0.170 0.702
Shuttle 0.315 0.220 0.271 0.011 0.027 0.164
Shuttle2 0.245 0.101 0.182 0.317 0.776 0.927
Stamps 0.271 0.186 0.283 0.258 0.289 0.257
Thyroid 0.392 0.137 0.337 0.162 0.237 0.476
Vowels 0.393 0.320 0.477 0.076 0.021 0.042
Wavef. 0.073 0.079 0.110 0.028 0.049 0.053
WBC 0.565 0.397 0.518 0.075 0.571 0.532
WDBC 0.558 0.433 0.532 0.101 0.655 0.560
Wilt 0.044 0.079 0.053 0.048 0.035 0.048
Avg. Rank 2.60 4.10 2.90 5.05 3.75 2.60

Table 7 – Paired one-sided significance test (Wilcoxon): C-ALLOUT vs. baseline with respect to overall
performance on Testbed 1. p-value in bold if significant at 0.1.

Methods AUCROC p-value AUCPR p-value
C-ALLOUT-Ro > LOF 0.001 0.001
C-ALLOUT-Ro > kNN 0.337 0.095
C-ALLOUT-Ro > OCSVM 0.001 0.001
C-ALLOUT-Ro > IF 0.005 0.029
C-ALLOUT-Ro > RAE 0.045 0.449

5.2.1.1 Testbed 2

We start with simulating three synthetic base datasets, denoted S1, S2 and S3; consisting
of Gaussian inlier clusters of varying count, size, standard deviation, and dimensionality. (See
Table 9) From each base dataset Sx, we create four versions: Sx_G, Sx_L, Sx_C, and Sx_A
respectively with only global, only local, only collective, and all three types of outliers combined.
Global and local outliers are simulated from each inlier cluster by up-scaling the respective
standard deviation, while each set of collective outliers are simulated from a global outlier as the
mean and down-scaled standard deviation.

Table 8 – Testbeds 2 and 3: Summary of the 8 base datasets used in for outlier annotation.

Dataset Points Outliers Features
S1 24,713 90 2
S2 13,832 120 5
S3 10,076 60 10
ALOI 48,266 240 27
Glass 234 30 9
skin 14,726 72 3
smtp 71,566 357 3
Waveform 3,391 48 21

82 Chapter 5. Results and Discussions

5.2.1.2 Synthetic Data Generation

We show in Table 9 the hyperparameters used in our synthetic dataset generator. For
every dataset variation having a specific type of outlier, the number of outliers is equal to one
third of the total number of outliers.

Table 9 – Parameters used in the synthetic data generator; each outlier type corresponds to a third of the
total number.

Dataset # points # clusters # outliers standard deviation # dimensions
S1_A 500-5000 10 90 10-50 2
S2_A 500-5000 7 120 10-50 5
S3_A 500-5000 3 60 10-50 10

The sequence of steps in Algorithm 10 gives an overview of the synthetic dataset
generator. The synthetic generator creates multiple Gaussians distributed across the space. The
points generated in these initial Gaussian distributions become the inlier clusters. The space
in which the center of the Gaussians can fall is defined using a range bounded by the number
of Gaussians times the maximum standard deviation in all Gaussians. This way, the space can
accommodate all Gaussians without too much overlap between them.

Specific types of outliers are generated like this: (1) Local outliers are generated using
as Gaussians having the same mean as the inlier Gaussians, only with a magnified standard
deviation; (2) Global outliers are generated using the same method as local outliers, only with a
larger standard deviation; (3) For collective outliers, we base the number of collectives clusters
on the desired number of collective outliers. All collective clusters have a fixed size of ten points,
and randomly pick from the list of available global outliers. These selected global outliers are
labeled as collective outliers. Then, a small Gaussian is generated having the global points
coordinates as mean, only with a standard deviation that is a fraction of the minimum standard
deviation for the inlier clusters.

5.2.1.3 Testbed 3

We also create a testbed with real-world data inliers, and simulated outliers based on
Steinbuss and Böhm’s “realistic synthetic data” generator (STEINBUSS; BÖHM, 2021). The
idea is to start with a real-world dataset containing only inliers, to which a Gaussian Mixture
Model (GMM) is fit. Outliers are then simulated by up-scaling the variances of the GMM clusters.
Their generator does not create collective outliers; to that end, we follow suit with Testbed 2 and
simulate small-standard-deviation micro-clusters centered at randomly chosen global outliers.
As the base, we use five real-world datasets (after discarding the (non-annotated) ground-truth
outliers); namely ALOI, Glass, skin, smtp, Waveform3 with various sizes and dimensionalities to
represent different dataset characteristics (see Table 8). Similar to Testbed 2, we create 4 variants
(_G, _L, _C, _A) from each base dataset with various types of (annotated) outliers.

5.2. Outlier Annotation Performance 83

Algorithm 10: Synthetic Dataset Generator
Input: Minimum size for inlier clusters min_inlier, maximum size for inlier clusters

max_inlier, minimum standard deviation for inlier clusters min_std, maximum
standard deviation for inlier clusters max_std, number of inlier clusters to
generate num_inlier_c, number of local outliers to generate num_local, number
of global outliers to generate num_global, number of collective outlier micro
clusters to generate num_collective_c, number of collective outliers per micro
cluster num_collective_p, dimensionality for the data ndim.

Output: synthetic dataset Y with outlier type labels.
1 Define the space range to be used to generate all points based on the hyperparameters

max_std, num_inlier_clusters, ndim
2 C = gaussian_inliers(num_inlier_c,min_inlier,max_inlier,min_std,max_std,ndim)
3 Based on max_std, set the variances to be used for each outlier type generation
4 for c in C do
5 locals = gaussian_locals(c,ndim)
6 globals = gaussian_globals(c,ndim)
7 f inal_locals,globals = f ilter_close_outliers(locals,globals,num_local)
8 globals = f ilter_globals_near_inliers(c,globals,num_global)
9 end

10 collective_centers, f inal_globals = random_select(globals,num_collective_c)
11 f inal_collectives = gaussian_collectives(collective_centers,num_collective_p,ndim)

12 Return dataset Y with inliers and outliers joined, along with respective labels

5.2.1.4 Realistic Data Generation

As it can be seen in Algorithm 11, the realistic data generator has two main phases. In
the first one, we alter the dataset generator proposed by Steinbuss and Böhm (2021) so that it can
return separate outlier type labels and other necessary information like the predicted densities
for the points. In the second phase, we take the output from their generator and work around it
to remove some problematic outliers and add collective outliers. The realistic dataset generator
starts by taking the inlier data from the base dataset X passed to it. The generator then fits
a Gaussian Mixture Model (GMM) f itted_GMM to the inlier points. The GMM uses a VEI
setting, which means that all fitted Gaussians have a diagonal covariance matrix, varying volume
and equal shape.

After the model is finished fitting to the inlier data, the generator starts simulating local
and global outliers. For each Gaussian, using its mean and a five times increased standard
deviation, a Gaussian cluster of points is created. The generator returns the inlier points along
with the simulated outliers with a binary label for outlierness. The outlier binary label have no
use in the outlier annotation task, so we label local and global outlier points using their densities
provided by the GMM. Lots of generated outlier points are going to be intersecting inlier clusters.
By removing a subsample which corresponds to 68.3% of the data, we clear out most of the
interior outliers that overlap with inliers. 68.3% is the percentage of points that lie one standard

84 Chapter 5. Results and Discussions

deviation from a Gaussian mean. A third of the remaining 31.7% of points is also discarded, to
create a margin between inliers and outliers.

After subsampling, the remaining outlier points with the lowest density become global
outliers. Remaining outlier points with the highest density become local outliers. By selecting the
extreme sections to create the outliers, a gap between global and local outliers is naturally formed
and they become well-defined in space. The collective outlier micro-clusters are generated around
points randomly selected from the global outlier pool.

Algorithm 11: Realistic Dataset Generator
Input: Base dataset X , number of outliers to generate in Phase 1 n_out (same as number

of inliers by default), data distribution to use for simulated outliers d (Gaussian
by default), number of local outliers to generate num_local, number of global
outliers to generate num_global, number of collective outlier micro clusters to
generate num_collective_c, number of collective outliers per micro cluster
num_collective_p.

Output: Realistic dataset Y with labels, GMM metadata Y _var, predicted density for all
points using inlier-fitted GMMs Y _dens.

// Phase 1: GMM fitting and outlier generation
1 Instantiate and fit GMM model f itted_GMM on X using d
2 Increase the Gaussians variances learned by the GMM model in f itted_GMM by 5

times
3 for g in f itted_GMM.gaussians do
4 locals,globals = generate_outliers(g.variance,n_out)
5 end
6 Prepare dataset Y with real inliers from X and generated realistic outliers joined, along

with each point label and Y _dens predicted density by f itted_GMM for points in Y
// Phase 2: Outlier filtering and collective outlier generation

7 Sort all outlier points in Y by their density from Y _dens
8 Remove 68.3% (1 std from a Gaussian) of the most dense outlier points
9 Divide the remaining 31.7% in three portions and discard the most dense one

10 f inal_locals = num_local most dense points in the edited Y
11 globals = num_global +num_collective_c least dense points in the edited Y
12 collective_centers, f inal_globals = random_select(globals,num_collective_c)
13 f inal_collectives = gaussian_collectives(collective_centers,num_collective_p)
14 Return dataset Y with inliers and outliers joined, along with respective labels

5.2.1.5 Competitor

There is no baseline for annotating all three types of outliers. We found the spectral
SRA (NIAN et al., 2016), also based on pairwise similarities (i.e. Laplacian), as a close attempt
(details in Section 3.2). When it identifies a small cluster4, it raises the flag “clustered” and
“scattered” otherwise. It provides a single ranking and does not distinguish between global and
local outliers. Thus, SRA is only comparable in some cases.

4SRA needs a size threshold for collective outliers; we give it an advantage by setting the threshold equal to the
ground-truth size.

5.2. Outlier Annotation Performance 85

5.2.1.6 Measures

We evaluate the outlier ranking quality using, again, both AUCROC and AUCPR. Note
that, now there are different AUCROC and AUCPR measures for each one of the 4 rankings that
C-ALLOUT provides. That includes the overall ranking Ro, also tested in Testbed 1, and the
specific rankings Rg, Rl and Rc. Since C-ALLOUT is clearly better than SRA, no Wilcoxon
signed rank tests were performed.

5.2.2 Results

Table 10 presents AUCROC results on Testbed 2. C-ALLOUT achieves near-ideal
overall performance, while SRA ranking is significantly poor. C-ALLOUT type-specific rankings
continue to achieve near-perfect performance, while SRA struggles, especially in identifying
local outliers with a near-random ranking. Moreover, it fails to flag “clustered” on datasets that
contain collective outliers. Results are similar with respect to AUCPR (see Table 11). “NF", or
not flagged, cells show that the method was not able to note the existence of that type of outlier
described in the name of the dataset.

Table 10 – AUCROC performance on Testbed 2 with annotated outliers. Note that in Sx_A datasets with
all three outlier types, type-specific rankings are evaluated against outliers of the corresponding
type only.

Dataset C-ALLOUT-Ro SRA C-ALLOUT-Rl SRA C-ALLOUT-Rg SRA C-ALLOUT-Rc SRA
S1_A 0.998 0.663 0.997 0.452 1 0.851 0.999 NF
S1_L 0.998 0.453 0.999 0.453 - - - -
S1_G 1 0.851 - - 1 0.851 - -
S1_C 1 0.685 - - - - 1 NF
S2_A 0.999 0.703 0.997 0.511 1 0.747 1 NF
S2_L 0.999 0.512 1 0.512 - - - -
S2_G 1 0.744 - - 1 0.744 - -
S2_C 1 0.849 - - - - 1 NF
S3_A 0.963 0.599 0.918 0.567 1 0.729 1 NF
S3_L 0.950 0.576 0.993 0.576 - - - -
S3_G 1 0.730 - - 1 0.730 - -
S3_C 1 0.500 - - - - 1 NF

Table 11 – AUCPR performance on Testbed 2 with annotated outliers. Note that in Sx_A datasets with all
three outlier types, type-specific rankings are evaluated against outliers of the corresponding
type only.

Dataset C-ALLOUT-Ro SRA C-ALLOUT-Rl SRA C-ALLOUT-Rg SRA C-ALLOUT-Rc SRA
S1_A 0.862 0.458 0.241 0.001 1 0.661 0.356 NF
S1_L 0.740 0.001 0.874 0.001 - - - -
S1_G 0.988 0.696 - - 1 0.696 - -
S1_C 1 0.667 - - - - 1 NF
S2_A 0.976 0.368 0.292 0.003 0.983 0.086 0.978 NF
S2_L 0.878 0.017 0.989 0.017 - - - -
S2_G 1 0.295 - - 1 0.295 - -
S2_C 1 0.751 - - - - 1 NF
S3_A 0.872 0.444 0.137 0.01 1 0.597 1 NF
S3_L 0.545 0.041 0.692 0.041 - - - -
S3_G 1 0.671 - - 1 0.671 - -
S3_C 1 0.501 - - - - 1 NF

86 Chapter 5. Results and Discussions

AUCROC results on the “realistic synthetic” Testbed 3 are shown in Table 12. C-
ALLOUT achieves highly competitive performance and significantly outperforms SRA in all
cases. Interestingly, type-specific rankings are better than the overall ranking for those specific
outliers, which shows that they are effectively specialized. SRA again fails to flag the collective
outliers. Results with respect to AUCPR are similar (see Table 13). “NF", or not flagged, cells
show that the method was not able to note the existence of that type of outlier described in the
name of the dataset

Table 12 – AUCROC performance on Testbed 3 with annotated outliers. Note that in variant _A datasets
with all three outlier types, type-specific rankings are evaluated against outliers of the corre-
sponding type only.

Dataset C-ALLOUT-Ro SRA C-ALLOUT-Rl SRA C-ALLOUT-Rg SRA C-ALLOUT-Rc SRA
ALOI_A 1 0.943 0.997 0.825 1 0.999 1 NF
ALOI_L 1 0.861 1 0.861 - - - -
ALOI_G 1 1 - - 1 1 - -
ALOI_C 1 1 - - - - 1 NF
Glass_A 0.965 0.848 0.904 0.585 1 0.866 1 NF
Glass_L 0.905 0.686 0.944 0.686 - - - -
Glass_G 1 1 - - 1 1 - -
Glass_C 1 1 - - - - 1 NF
skin_A 0.999 0.838 0.997 0.745 1 0.897 0.997 NF
skin_L 0.997 0.778 0.999 0.778 - - - -
skin_G 1 0.902 - - 1 0.902 - -
skin_C 1 0.854 - - - - 1 NF
smtp_A 0.999 0.987 0.997 0.960 1 0.998 0.999 NF
smtp_L 0.996 0.679 0.999 0.679 - - - -
smtp_G 1 0.771 - - 1 0.771 - -
smtp_C 1 0.852 - - - - 1 NF
Waveform_A 1 0.613 0.995 0.494 1 0.547 1 NF
Waveform_L 1 0.495 1 0.495 - - - -
Waveform_G 1 0.551 - - 1 0.551 - -
Waveform_C 1 0.789 - - - - 1 NF

Table 13 – AUCPR performance on Testbed 3 with annotated outliers. Note that in variant _A datasets with
all three outlier types, type-specific rankings are evaluated against outliers of the corresponding
type only.

Dataset C-ALLOUT-Ro SRA C-ALLOUT-Rl SRA C-ALLOUT-Rg SRA C-ALLOUT-Rc SRA
ALOI_A 0.995 0.898 0.281 0.099 1 0.451 0.865 NF
ALOI_L 0.966 0.294 0.996 0.294 - - - -
ALOI_G 1 1 - - 1 1 - -
ALOI_C 1 1 - - - - 1 NF
Glass_A 0.877 0.801 0.165 0.063 1 0.207 1 NF
Glass_L 0.352 0.253 0.506 0.253 - - - -
Glass_G 1 1 - - 1 1 - -
Glass_C 1 1 - - - - 1 NF
skin_A 0.924 0.233 0.253 0.017 0.977 0.541 0.413 NF
skin_L 0.647 0.024 0.857 0.024 - - - -
skin_G 0.983 0.558 - - 0.983 0.558 - -
skin_C 0.983 0.022 - - - - 0.983 NF
smtp_A 0.959 0.939 0.258 0.142 0.989 0.587 0.481 NF
smtp_L 0.794 0.006 0.899 0.006 - - - -
smtp_G 0.996 0.258 - - 1 0.258 - -
smtp_C 1 0.173 - - - - 1 NF
Waveform_A 0.997 0.127 0.283 0.006 0.944 0.080 0.963 NF
Waveform_L 0.963 0.007 0.963 0.007 - - - -
Waveform_G 0.963 0.081 - - 0.963 0.081 - -
Waveform_C 0.963 0.082 - - - - 0.963 NF

5.3. Scalability Performance 87

5.3 Scalability Performance
Figure 11 shows the scalability performance for C-ALLOUT using increasing random

samples of our largest benchmark dataset, Shuttle2 (See Table 2). Reported runtimes are averages
of 10 independent runs and they refer to the time taken to compute each ranking (Ro in yellow,
Rg in red, Rl in green, and Rc in black) and to build the Slim-tree (orange). Total time (gray) is
the time needed to build the tree plus the time to find all 4 rankings. In line with Lemma 4.2.1,
C-ALLOUT presents O(n logn) time complexity. The wall-clock time was measured using a
machine having a dual-core Intel Xeon CPU E5-2640 v3 @ 2.6GHz processor, 16 GB RAM,
running Ubuntu 18.04.2 OS.

Figure 11 – Wall-clock time (avg. 10 runs) of C-ALLOUT as the size of random samples taken from
Shuttle2 increases.

5.4 C-AllOut at Work: Attention Routing
One of the applications for outlier annotation is to route attention to points of interest.

This section shows that C-ALLOUT can, for instance, automatically identify nature hazards and
send helpful coordinates to local fire departments. First, we consider a satellite infrared image
showing a large forest fire that spread in Greece, near Athens. A dataset is created based on
the image by first dividing it in a 12×12 grid, obtaining 144 image tiles, which become data
instances. Then, we extract the average RGB values from each tile, thus the data dimensionality
is 3. Figure 12 highlights the overall outliers tiles (yellow) found by C-ALLOUT, as well as the
three specific types of outliers. It is possible to see that the global outliers (red) are extreme image
tiles, including those that are singular, such as the water part in the bottom-right corner. The
collective ranking identifies 2 groups of outliers (black); one group of fire, and another one of
smoke, as highlighted in the image. Meanwhile, the local ranking highlights borderline outliers

88 Chapter 5. Results and Discussions

Figure 12 – C-ALLOUT at work to detect a forest fire in Greece. Numbers are outlier positions in rankings.

(green), like deforested zones or tiles with very bright colors. In dark gray are the closest inlier
tiles (1NN) to the local outlier tiles. They are highlighted to show how the boundary between
some inliers and local outliers can be subtle, making local outliers the hardest challenge in outlier
annotation. Since they are borderline inliers, they appear a bit different from the rest of the
image.

Using the same methodology, we created another dataset based on an image taken from
Tokyo Imperial Palace. The 3 average RGB values constitute the dimensionality of this dataset
that has 144 instances. Overall outliers (in yellow) can be seen in Figure 13, along with the
specific types of outliers (global in red, local in green, and collective in black). Global ranking
highlights the extreme tiles in the image: two structures with a blue shade (Imperial Palace and
the dome) and a brown field. Collective ranking identifies three groups of outliers: two structures
with a blue shade, two portions of the river around the green area and two tiles having sparse city
blocks. Finally, the local ranking focuses on borderline outliers. It highlights image tiles where
the river shares the tile with vegetation or city blocks, and another tile with vegetation and the
Imperial Palace sharing space. Orange tiles are the closest inlier tiles (1NN) to the local outlier
tiles. In this scenario, C-ALLOUT can help to find touristic places for people visiting a city.

5.5 Final Considerations

This chapter evaluated C-ALLOUT, our proposed method and main contribution of
this work. We were able to show through our experiments using Testbed 1 that C-ALLOUT is

5.5. Final Considerations 89

Figure 13 – C-ALLOUT at work to route attention to touristic places in Tokyo Imperial Palace. Numbers
are outlier positions in rankings.

capable of maintaining outlier detection quality comparable, if not better, than state-of-the-art
competitors. We were also able to show that the outlier annotation problem that we defined is
feasible and can be performed using an indexing structure like the Slim-tree. Our results on
outlier annotation datasets in Testbed 2 and 3 expose that C-ALLOUT is very much superior to
SRA, the algorithm that comes the closest, to the best of out knowledge, to work in the outlier
annotation task. Not only that, but through Testbed 3, we were able to show that C-ALLOUT

can work with realistic datasets. Realistic datasets are not purely synthetic, they follow the
distributions of real data.

The dataset generators for synthetic and realistic data were also discussed in this chapter.
We provided details for them and algorithms to guide their routines. The empirically defined
parameters used in dataset generation were also showcased to make the generation process more
transparent. Our results, specially the ones related to SRA, display that our data generation
process is sound and can work with other algorithms besides C-ALLOUT.

On the next chapter we conclude this monograph citing the major contributions of this
MSc work. Limitations and difficulties are also discussed and future work is enlightened.

91

CHAPTER

6
CONCLUSION

In this work, we investigated the outlier detection techniques provided by the literature.
Even though having many different solutions for the outlier detection problem, a gap was
identified as there were no algorithms capable of categorizing outliers per type. We explored
this gap by developing C-ALLOUT, a solution capable of both detecting and annotating outliers.
We showed in our experiments that C-ALLOUT is capable of keeping up with state-of-the-art
outlier detectors, detecting multiple types of outliers at once and annotating outliers by type
as well. Code, datasets and generators developed and used in this work are all available at
<https://bit.ly/3JezWe4>. Our main contributions with this work are:

C1: Outlier Annotation: We present definitions for a new problem in outlier mining that can
fill an important gap in the literature. Going beyond, we also provide the C-ALLOUT

solution to the problem. We settle this first step while providing ranking intuitions and
definitions that can help other works in the future;

C2: Scalability: Having both time and space complexity of O(n logn), according to the proofs
presented, we grant a scalable outlier detector and annotator fit to be applied in resource
demanding tasks and large datasets;

C3: Explainability: Our rankings have their intuitions proven to be useful and sound by our
experiments. These intuitions provide an explainable take on the outlier detection and
annotation task and C-ALLOUT’s outlierness scores are easily explained for any point of
interest;

C4: Simplicity: We developed C-ALLOUT to act on a parameter-free basis, not requiring any
input or fine-tuning from the user, making the outlier mining task really unsupervised;

C5: Benchmark Experiments, Datasets and Generators: Using 20 popular outlier detec-
tion benchmark datasets with distinct sizes and dimensionalities, we arrange a thorough

https://bit.ly/3JezWe4

92 Chapter 6. Conclusion

comparison across different state-of-the-art algorithms and C-ALLOUT. To be able to
evaluate our proposed method, we also developed synthetic and realistic dataset generators
being empirically tested to form inliers and outliers labeled by type. We disclose to the
community the generators and outlier annotation datasets generated, for public use.

The contents of this MSc work were compiled into a full paper, submitted as:

• Guilherme D. F. Silva, Leman Akoglu, Robson L. F. Cordeiro. C-AllOut: Catching and
Calling Outliers By Type. European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases. ECML PKDD 2022. (under revision)

6.1 Limitations and Difficulties

Some difficulties came along during the development of this work which limited our
development and took time from our schedule. From the varied list of issues we faced during
this MSc work, we highlight the following:

• Since outlier annotation is a novel task, lots of concerns were unveiled and engaged for
the first time. No real or synthetic datasets having outlier type annotations were available
while this research was carried. This resulted in us having to devise dataset generators to
make possible for us to test our algorithms. As we did not want to limit our work dealing
only with synthetic data, we had to go further and develop generators that could create
realistic datasets. In this way, even if we did not have any domain expert to label our
datasets, we were able to synthetically create datasets that would follow the patterns of
real ones, as discussed in Chapter 5.

• Another difficulty that the novelty of our work has brought to us was the nonexistence of
baseline methods for the task. Having no previous work to base ourselves upon, we had to
come up with a ranking method that would, to the best of our knowledge, for the first time,
objectively put certain outliers above others, given their type. The lack of competition has
limited our experiments, since we do not have any algorithm to compete directly. SRA
turns up as the only method capable of returning some sort of outlier annotation, but its
limitations made it not a good competitor to C-ALLOUT.

• Midway through this project, while we were focusing on outlier detection in text data,
we noticed that C-ALLOUT capabilities were not being used to their full potential. The
possibility of annotating outlier types and the contributions that this could bring to the
data mining field made us favor a change of plans so that we could exploit C-ALLOUT

potential and make it more visible, exceeding the text processing eyes.

6.2. Future Work 93

6.2 Future Work
We still think that C-ALLOUT’s full potential is not reached yet and future works will

help us get there. The following list presents some interesting investigations that could go further
and find interesting results:

• The Slim-tree gave us many opportunities to extract knowledge from datasets, just working
with its original structure. Since we see many "forest" algorithms dominating supervised
(Random Forests) and unsupervised learning (Isolation Forests), we think that a group of
Slim-trees would probably be able to extract even more knowledge from data.

• There are good intuitions behind each one of our scores, and many of them came along
during the course of this work. Other good intuitions may come from understanding the
Slim-tree, and other indexing structures, which could result in new scores or modified
versions of the ones we proposed.

• Understanding other indexing structures will probably not only provide good intuitions but
also check if our proposed scores can also work with them, maybe achieving better results.
Since Slim-tree has a fair share of concept overlapping with hierarchical clustering, many
parallels and extensions can come from thorough analyses of this connection.

95

BIBLIOGRAPHY

AGGARWAL, C. C. Outlier analysis. In: SPRINGER. Data mining. [S.l.]: Springer, 2015. p.
237–263. ISBN 978-1-4614-6396-2. Citations on pages 34 and 51.

AGGARWAL, C. C.; YU, P. S. Outlier detection for high dimensional data. In: SIGMOD. [S.l.:
s.n.], 2001. p. 37–46. Citation on page 42.

AJITHA, P.; CHANDRA, E. A survey on outliers detection in distributed data mining for big
data. Journal of Basic and Applied Scentific Research, v. 5, n. 2, p. 31–38, 2015. Citation on
page 34.

ALESSANDRETTI, L.; ELBAHRAWY, A.; AIELLO, L. M.; BARONCHELLI, A. Anticipating
cryptocurrency prices using machine learning. Complexity, Hindawi, v. 2018, 2018. Citation
on page 28.

ANGIULLI, F.; PIZZUTI, C. Fast outlier detection in high dimensional spaces. In: SPRINGER.
European conference on principles of data mining and knowledge discovery. [S.l.], 2002. p.
15–27. Citation on page 38.

BANDARAGODA, T. R.; TING, K. M.; ALBRECHT, D.; LIU, F. T.; ZHU, Y.; WELLS,
J. R. Isolation-based anomaly detection using nearest-neighbor ensembles. Computational
Intelligence, v. 34, n. 4, 2018. Citations on pages 27 and 52.

BARADARAN, N.; REDDY, A.; THAKUR, R. S. Anomaly detection with k-means clustering
and artificial outlier injection. [S.l.]: Google Patents, 2017. US Patent App. 14/927,553.
Citation on page 40.

BARNETT, V.; LEWIS, T. Outliers in statistical data. [S.l.]: Wiley, 1974. Citation on page 34.

BENTLEY, J. L. Multidimensional binary search trees used for associative searching. Commu-
nications of the ACM, ACM New York, NY, USA, v. 18, n. 9, p. 509–517, 1975. Citation on
page 57.

BINDU, P.; THILAGAM, P. S.; AHUJA, D. Discovering suspicious behavior in multilayer social
networks. Computers in Human Behavior, Elsevier, v. 73, p. 568–582, 2017. Citation on page
33.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001. Citation
on page 55.

BREUNIG, M. M.; KRIEGEL, H.-P.; NG, R. T.; SANDER, J. Lof: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. New York, NY, USA: Association for Computing Machinery, 2000. v. 29,
n. 2, p. 93–104. ISSN 0163-5808. Citations on pages 27, 29, 42, 51, 52, 57, 58, 59, and 78.

CABRAL, E. F.; CORDEIRO, R. L. Fast and scalable outlier detection with sorted hypercubes.
In: Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. [S.l.: s.n.], 2020. p. 95–104. Citation on page 33.

96 Bibliography

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly detection: A survey. ACM computing
surveys (CSUR), ACM, v. 41, n. 3, p. 15, 2009. Citations on pages 34, 37, and 39.

CIACCIA, P.; PATELLA, M.; RABITTI, F.; ZEZULA, P. Indexing metric spaces with m-tree.
In: SEBD. [S.l.: s.n.], 1997. v. 97, p. 67–86. Citation on page 47.

CIACCIA, P.; PATELLA, M.; ZEZULA, P. M-tree: An efficient access method for similarity
search in metric spaces. In: CITESEER. Proceedings of the 23rd VLDB conference, Athens,
Greece. [S.l.], 1997. p. 426–435. Citation on page 47.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20, n. 3, p.
273–297, 1995. Citation on page 59.

CRIMINISI, A. Machine learning for medical images analysis. [S.l.]: Elsevier, 2016. Citation
on page 28.

CZEKALSKI, S.; MORZY, M. Similarity forests revisited: A swiss army knife for machine
learning. In: PAKDD. [S.l.: s.n.], 2021. p. 42–53. Citations on pages 55 and 78.

DANG, X. H.; MICENKOVÁ, B.; ASSENT, I.; NG, R. T. Local outlier detection with interpreta-
tion. In: SPRINGER. ECML PKDD. [S.l.], 2013. p. 304–320. Citation on page 51.

DURAJ, A.; CHOMATEK, L. Supporting breast cancer diagnosis with multi-objective genetic
algorithm for outlier detection. In: SPRINGER. International Conference on Diagnostics of
Processes and Systems. [S.l.], 2017. p. 304–315. Citation on page 34.

ESTER, M.; KRIEGEL, H.-P.; SANDER, J.; XU, X. et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Kdd. [S.l.: s.n.], 1996. v. 96, n. 34,
p. 226–231. Citations on pages 29 and 39.

FIGUEROA-GARCÍA, J. C.; MELGAREJO-REY, M. A.; HERNÁNDEZ-PÉREZ, G. Represen-
tation of the minkowski metric as a fuzzy set. Optimization Letters, Springer, p. 1–14, 2018.
Citation on page 36.

FIX, E.; HODGES, J. L. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review/Revue Internationale de Statistique, JSTOR,
v. 57, n. 3, p. 238–247, 1989. Citation on page 56.

GOLDSTEIN, M.; UCHIDA, S. A comparative evaluation of unsupervised anomaly detection
algorithms for multivariate data. PloS one, v. 11, n. 4, 2016. Citation on page 65.

GOROKHOV, O.; PETROVSKIY, M.; MASHECHKIN, I. Convolutional neural networks for
unsupervised anomaly detection in text data. In: SPRINGER. International Conference on
Intelligent Data Engineering and Automated Learning. [S.l.], 2017. p. 500–507. Citation on
page 53.

GRAVE, E.; MIKOLOV, T.; JOULIN, A.; BOJANOWSKI, P. Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume
2: Short Papers. [s.n.], 2017. p. 427–431. Available: <https://www.aclweb.org/anthology/
E17-2068/>. Citation on page 58.

HAMMER, P. Adaptive control processes: a guided tour (R. Bellman). [S.l.]: Society for
Industrial and Applied Mathematics, 1962. Citation on page 41.

https://www.aclweb.org/anthology/E17-2068/
https://www.aclweb.org/anthology/E17-2068/

Bibliography 97

HAN, J.; KAMBER, M.; PEI, J. Outlier detection. Data mining: Concepts and Techniques,
Morgan Kaufmann, 2012. Citations on pages 27 and 51.

HAWKINS, D. M. Identification of outliers. [S.l.]: Springer, 1980. Citation on page 34.

HE, Z.; XU, X.; DENG, S. Discovering cluster-based local outliers. Pattern Recognition
Letters, Elsevier, v. 24, n. 9-10, p. 1641–1650, 2003. Citation on page 40.

JAIN, A. K.; DUBES, R. C. Algorithms for clustering data. Englewood Cliffs: Prentice Hall,
1988, 1988. Citation on page 39.

JUNIOR, A. G. B.; CORDEIRO, R. L. F. Fast and scalable outlier detection with metric access
methods. In: SPRINGER. International Conference on Computational Science. [S.l.], 2019.
p. 189–203. Citations on pages 15, 62, and 63.

JUNIOR, A. G. B.; CORDEIRO, R. L. F. Fast and scalable outlier detection with metric access
methods. In: SPRINGER. International Conference on Computational Science. [S.l.], 2019.
p. 189–203. Citation on page 33.

KEERTHI, S. S.; LIN, C.-J. Asymptotic behaviors of support vector machines with gaussian
kernel. Neural computation, mit press, v. 15, n. 7, p. 1667–1689, 2003. Citation on page 61.

KNORR, E. M.; NG, R. T. Algorithms for mining distance-based outliers in large datasets. In:
VLDB. [S.l.: s.n.], 1998. v. 98, p. 392–403. Citations on pages 37 and 51.

KRIEGEL, H.-P.; KRÖGER, P.; SCHUBERT, E.; ZIMEK, A. LoOP: local outlier probabilities.
In: CIKM. [S.l.: s.n.], 2009. p. 1649–1652. Citation on page 51.

KRIEGEL, H.-P.; SCHUBERT, M.; ZIMEK, A. Angle-based outlier detection in high-
dimensional data. In: Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. [S.l.]: ACM, 2008. p. 444–452. Citations on pages
27, 41, and 51.

KRUSKAL, J. B. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, JSTOR, v. 7, n. 1, p. 48–50,
1956. Citation on page 47.

LEYS, C.; KLEIN, O.; DOMINICY, Y.; LEY, C. Detecting multivariate outliers: Use a robust
variant of the mahalanobis distance. Journal of Experimental Social Psychology, Elsevier,
v. 74, p. 150–156, 2018. Citation on page 36.

LI, S.; LEE, R.; LANG, S.-D. Mining distance-based outliers from categorical data. In: IEEE.
Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007). [S.l.],
2007. p. 225–230. Citation on page 38.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation forest. In: ICDM. [S.l.: s.n.], 2008. p. 413–422.
Citations on pages 17, 33, 51, 53, 54, 55, and 78.

MALINI, N.; PUSHPA, M. Analysis on credit card fraud identification techniques based on
knn and outlier detection. In: IEEE. 2017 Third International Conference on Advances in
Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). [S.l.],
2017. p. 255–258. Citation on page 36.

98 Bibliography

MOONESINGHE, H.; TAN, P.-N. Outlier detection using random walks. In: IEEE. ICTAI.
[S.l.], 2006. Citations on pages 27 and 52.

NIAN, K.; ZHANG, H.; TAYAL, A.; COLEMAN, T.; LI, Y. Auto insurance fraud detection
using unsupervised spectral ranking for anomaly. The Journal of Finance and Data Science,
v. 2, n. 1, p. 58–75, 2016. Citations on pages 17, 28, 31, 42, 51, 63, 64, and 84.

OMOHUNDRO, S. M. Five balltree construction algorithms. [S.l.]: International Computer
Science Institute Berkeley, 1989. Citation on page 57.

PAPADIMITRIOU, S.; KITAGAWA, H.; GIBBONS, P. B.; FALOUTSOS, C. LOCI: Fast outlier
detection using the local correlation integral. In: IEEE. ICDE. [S.l.], 2003. Citations on pages
27, 38, and 52.

PARK, J.; SANDBERG, I. W. Universal approximation using radial-basis-function networks.
Neural computation, MITP, v. 3, n. 2, p. 246–257, 1991. Citation on page 53.

PATRICK, E. A.; III, F. P. F. A generalized k-nearest neighbor rule. Information and control,
Elsevier, v. 16, n. 2, p. 128–152, 1970. Citation on page 38.

PHAM, N.; PAGH, R. A near-linear time approximation algorithm for angle-based outlier detec-
tion in high-dimensional data. In: ACM. Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. [S.l.], 2012. p. 877–885. Citation on
page 41.

RAMASWAMY, S.; RASTOGI, R.; SHIM, K. Efficient algorithms for mining outliers from
large data sets. In: Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. New York, NY, USA: Association for Computing Machinery, 2000. v. 29,
n. 2, p. 427–438. ISSN 0163-5808. Citations on pages 29, 38, 51, 57, and 78.

ROSENBERG, A.; HIRSCHBERG, J. V-measure: A conditional entropy-based external cluster
evaluation measure. In: Proceedings of the 2007 joint conference on empirical methods
in natural language processing and computational natural language learning (EMNLP-
CoNLL). [S.l.: s.n.], 2007. p. 410–420. Citation on page 52.

SATHE, S.; AGGARWAL, C. C. Similarity forests. In: KDD. [S.l.: s.n.], 2017. p. 395–403.
Citations on pages 55 and 78.

SATOPAA, V.; ALBRECHT, J.; IRWIN, D.; RAGHAVAN, B. Finding a "kneedle" in a haystack:
Detecting knee points in system behavior. In: ICDCS Workshops. [S.l.: s.n.], 2011. Citation on
page 73.

SCHöLKOPF, B.; WILLIAMSON, R. C.; SMOLA, A. J.; SHAWE-TAYLOR, J.; PLATT, J. C.
Support vector method for novelty detection. In: NIPS. [S.l.: s.n.], 1999. Citations on pages 51,
60, and 78.

SHAWE-TAYLOR, J.; ŽLIČAR, B. Novelty detection with one-class support vector machines.
In: Advances in Statistical Models for Data Analysis. [S.l.]: Springer, 2015. p. 231–257.
Citation on page 36.

SHI, K.; LI, L. High performance genetic algorithm based text clustering using parts of speech
and outlier elimination. Applied intelligence, Springer, v. 38, n. 4, p. 511–519, 2013. Citation
on page 36.

Bibliography 99

STEINBUSS, G.; BÖHM, K. Benchmarking unsupervised outlier detection with realistic syn-
thetic data. ACM TKDD, v. 15, n. 4, p. 1–20, 2021. Citations on pages 82 and 83.

STEINLEY, D. K-means clustering: a half-century synthesis. British Journal of Mathematical
and Statistical Psychology, Wiley Online Library, v. 59, n. 1, p. 1–34, 2006. Citations on pages
29 and 39.

TRAINA, C.; TRAINA, A.; FALOUTSOS, C.; CORDEIRO, R. Arboretum. 2000. Available:
<https://bitbucket.org/gbdi/arboretum/src/master/>. Citation on page 45.

TRAINA, C.; TRAINA, A.; FALOUTSOS, C.; SEEGER, B. Fast indexing and visualization of
metric data sets using slim-trees. IEEE Transactions on Knowledge and Data Engineering,
IEEE, v. 14, n. 2, p. 244–260, 2002. Citations on pages 15, 17, 43, 48, and 49.

TRAINA, C.; TRAINA, A.; SEEGER, B.; FALOUTSOS, C. Slim-trees: High performance
metric trees minimizing overlap between nodes. In: SPRINGER. International Conference on
Extending Database Technology. [S.l.], 2000. p. 51–65. Citations on pages 29, 36, 43, 47, 48,
and 62.

TRIPATHI, D.; LONE, T.; SHARMA, Y.; DWIVEDI, S. Credit card fraud detection using
local outlier factor. International Journal of Pure and Applied Mathematics, v. 118, n. 7, p.
229–234, 2018. Citations on pages 33 and 34.

WALKOWIAK, T.; DATKO, S.; MACIEJEWSKI, H. Utilizing local outlier factor for open-set
classification in high-dimensional data-case study applied for text documents. In: SPRINGER.
Proceedings of SAI Intelligent Systems Conference. [S.l.], 2019. p. 408–418. Citation on
page 58.

WEI, L.; QIAN, W.; ZHOU, A.; JIN, W.; YU, J. X. Hot: Hypergraph-based outlier test for
categorical data. In: SPRINGER. Pacific-Asia Conference on Knowledge Discovery and Data
Mining. [S.l.], 2003. p. 399–410. Citation on page 38.

WU, S.; WANG, S. Information-theoretic outlier detection for large-scale categorical data. IEEE
transactions on knowledge and data engineering, IEEE, v. 25, n. 3, p. 589–602, 2011. Citation
on page 36.

YIN, J.; WANG, J. A model-based approach for text clustering with outlier detection. In: IEEE.
2016 IEEE 32nd International Conference on Data Engineering (ICDE). [S.l.], 2016. p.
625–636. Citation on page 52.

ZHANG, K. Z.; BENYOUCEF, M. Consumer behavior in social commerce: A literature review.
Decision Support Systems, Elsevier, v. 86, p. 95–108, 2016. Citation on page 28.

ZHOU, C.; PAFFENROTH, R. C. Anomaly detection with robust deep autoencoders. In: ACM.
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. [S.l.], 2017. p. 665–674. Citations on pages 61, 78, and 79.

https://bitbucket.org/gbdi/arboretum/src/master/

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Problem and Motivation
	Objective
	Contributions
	Final Considerations

	Preliminaries and Theoretical Foundation
	Outlier Detection
	Neighborhood-based Outlier Detection
	Clustering-based Outlier Detection
	Angle-based Outlier Detection

	Outlier Annotation
	MAM and Tree-based Indexing Structures
	The Slim-tree in Detail
	Defining Slim-tree's Composing Elements
	A Functional Overview of Slim-tree
	Slim-tree's Building Methods
	Slim-tree's Optimization Methods

	Final Considerations

	Related Work
	Outlier Detection Techniques
	Clustering
	Neural Networks
	Isolation Forest
	Similarity Isolation Forest
	k-Nearest Neighbors
	Local Outlier Factor
	Ensembles
	One-Class Support Vector Machines
	Robust Deep Autoencoders
	Indexing Data Structures

	Outlier Annotation Techniques
	Final Considerations

	C-AllOut: Catching and Calling Outliers By Type
	Problem Statement
	C-AllOut in a Nutshell
	Building and Refining the Tree
	Overall Ranking of Outliers
	Refinement of Rankings
	Outlier-type Focused Ranking of Objects
	Global Ranking of Outliers
	Collective Ranking of Outliers
	Local Ranking of Outliers

	Time and Space Complexity

	Final Considerations

	Results and Discussions
	Overall Outlier Detection Performance
	Experiment Setup
	Testbed 1
	Competitors
	Model Configurations
	Measures

	Results

	Outlier Annotation Performance
	Experiment Setup
	Testbed 2
	Synthetic Data Generation
	Testbed 3
	Realistic Data Generation
	Competitor
	Measures

	Results

	Scalability Performance
	C-AllOut at Work: Attention Routing
	Final Considerations

	Conclusion
	Limitations and Difficulties
	Future Work

	Bibliography

