Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2011.tde-15032011-102039
Documento
Autor
Nombre completo
João Roberto Bertini Júnior
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2011
Director
Tribunal
Liang, Zhao (Presidente)
Hruschka Junior, Estevam Rafael
Lopes, Alneu de Andrade
Macau, Elbert Einstein Nehrer
Silva, Ivan Nunes da
Título en portugués
Classificação de dados estacionários e não estacionários baseada em grafos
Palabras clave en portugués
Aprendizado baseado em grafos
Aprendizado incremental
Classificação multiclasse
Classificação não paramétrica
Formação do grafo
Grafo K-associado
Medida de pureza
Mudança de conceito
Resumen en portugués
Métodos baseados em grafos consistem em uma poderosa forma de representação e abstração de dados que proporcionam, dentre outras vantagens, representar relações topológicas, visualizar estruturas, representar grupos de dados com formatos distintos, bem como, fornecer medidas alternativas para caracterizar os dados. Esse tipo de abordagem tem sido cada vez mais considerada para solucionar problemas de aprendizado de máquina, principalmente no aprendizado não supervisionado, como agrupamento de dados, e mais recentemente, no aprendizado semissupervisionado. No aprendizado supervisionado, por outro lado, o uso de algoritmos baseados em grafos ainda tem sido pouco explorado na literatura. Este trabalho apresenta um algoritmo não paramétrico baseado em grafos para problemas de classificação com distribuição estacionária, bem como sua extensão para problemas que apresentam distribuição não estacionária. O algoritmo desenvolvido baseia-se em dois conceitos, a saber, 1) em uma estrutura chamada grafo K-associado ótimo, que representa o conjunto de treinamento como um grafo esparso e dividido em componentes; e 2) na medida de pureza de cada componente, que utiliza a estrutura do grafo para determinar o nível de mistura local dos dados em relação às suas classes. O trabalho também considera problemas de classificação que apresentam alteração na distribuição de novos dados. Este problema caracteriza a mudança de conceito e degrada o desempenho do classificador. De modo que, para manter bom desempenho, é necessário que o classificador continue aprendendo durante a fase de aplicação, por exemplo, por meio de aprendizado incremental. Resultados experimentais sugerem que ambas as abordagens apresentam vantagens na classificação de dados em relação aos algoritmos testados
Título en inglés
Graph-based classification for stationary and non-stationary data
Palabras clave en inglés
Concept drift
Graph formation
Graph-based learning
Incremental learning
K-associated graph
Multi-class classification
Nonparametric classification
Purity measure
Resumen en inglés
Graph-based methods consist in a powerful form for data representation and abstraction which provides, among others advantages, representing topological relations, visualizing structures, representing groups of data with distinct formats, as well as, supplying alternative measures to characterize data. Such approach has been each time more considered to solve machine learning related problems, mainly concerning unsupervised learning, like clustering, and recently, semi-supervised learning. However, graph-based solutions for supervised learning tasks still remain underexplored in literature. This work presents a non-parametric graph-based algorithm suitable for classification problems with stationary distribution, as well as its extension to cope with problems of non-stationary distributed data. The developed algorithm relies on the following concepts, 1) a graph structure called optimal K-associated graph, which represents the training set as a sparse graph separated into components; and 2) the purity measure for each component, which uses the graph structure to determine local data mixture level in relation to their classes. This work also considers classification problems that exhibit modification on distribution of data flow. This problem qualifies concept drift and worsens any static classifier performance. Hence, in order to maintain accuracy performance, it is necessary for the classifier to keep learning during application phase, for example, by implementing incremental learning. Experimental results, concerning both algorithms, suggest that they had presented advantages over the tested algorithms on data classification tasks
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2011-03-15