Tesis Doctoral
DOI
10.11606/T.55.2017.tde-14112017-150512
Documento
Autor
Nombre completo
Rafael Massambone de Oliveira
Dirección Electrónica
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2017
Director
Tribunal
Santos, Maristela Oliveira dos (Presidente)
Andreani, Roberto
Andretta, Marina
Silva, Paulo José da Silva e
Título en inglés
String-averaging incremental subgradient methods for constrained convex optimization problems
Palabras clave en inglés
Convex optimization
Stochastic optimization
String-averaging algorithms
Resumen en inglés
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization problems. In general, we consider problems in which the objective function is composed of a finite sum of convex functions and the set of constraints is, at least, convex and closed. The iterative methods we propose are basically designed through the combination of incremental subgradient methods and string-averaging algorithms. Furthermore, in order to obtain methods able to solve optimization problems with many constraints (and possibly in high dimensions), generally given by convex functions, our analysis includes an operator that calculates approximate projections onto the feasible set, instead of the Euclidean projection. This feature is employed in the two methods we propose; one deterministic and the other stochastic. A convergence analysis is proposed for both methods and numerical experiments are performed in order to verify their applicability, especially in large scale problems.
Título en portugués
Média das sequências e métodos de subgradientes incrementais para problemas de otimização convexa com restrições
Palabras clave en portugués
Algoritmos de média das sequências
Otimização convexa
Otimização estocástica
Resumen en portugués
Nesta tese de doutorado, propomos novos métodos iterativos para a solução de uma classe de problemas de otimização convexa. Em geral, consideramos problemas nos quais a função objetivo é composta por uma soma finita de funções convexas e o conjunto de restrições é, pelo menos, convexo e fechado. Os métodos iterativos que propomos são criados, basicamente, através da junção de métodos de subgradientes incrementais e do algoritmo de média das sequências. Além disso, visando obter métodos flexíveis para soluções de problemas de otimização com muitas restrições (e possivelmente em altas dimensões), dadas em geral por funções convexas, a nossa análise inclui um operador que calcula projeções aproximadas sobre o conjunto viável, no lugar da projeção Euclideana. Essa característica é empregada nos dois métodos que propomos; um determinístico e o outro estocástico. Uma análise de convergência é proposta para ambos os métodos e experimentos numéricos são realizados a fim de verificar a sua aplicabilidade, principalmente em problemas de grande escala.

ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-11-14